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Abstract

Most recent test-time adaptation methods focus on only
classification tasks, use specialized network architectures,
destroy model calibration or rely on lightweight information
from the source domain. To tackle these issues, this paper
proposes a novel Test-time Self-Learning method with auto-
matic Adversarial augmentation dubbed TeSLA for adapt-
ing a pre-trained source model to the unlabeled streaming
test data. In contrast to conventional self-learning meth-
ods based on cross-entropy, we introduce a new test-time
loss function through an implicitly tight connection with
the mutual information and online knowledge distillation.
Furthermore, we propose a learnable efficient adversarial
augmentation module that further enhances online knowl-
edge distillation by simulating high entropy augmented im-
ages. Our method achieves state-of-the-art classification
and segmentation results on several benchmarks and types
of domain shifts, particularly on challenging measurement
shifts of medical images. TeSLA also benefits from several de-
sirable properties compared to competing methods in terms
of calibration, uncertainty metrics, insensitivity to model
architectures, and source training strategies, all supported
by extensive ablations. Our code and models are available
at https://github.com/devavratTomar/TeSLA.

1. Introduction

Deep neural networks (DNNs) perform exceptionally
well when the training (source) and test (target) data fol-
low the same distribution. However, distribution shifts are
inevitable in real-world settings and propose a major chal-
lenge to the performance of deep networks after deployment.
Also, access to the labeled training data may be infeasible
at test time due to privacy concerns or transmission band-
width. In such scenarios, source-free domain adaptation
(SFDA) [1, 23, 25] and test-time adaptation (TTA) meth-
ods [19, 28, 39] aim to adapt the pre-trained source model
to the unlabeled distributionally shifted target domain while
easing access to source data. While SFDA methods have
access to all full target data through multiple training epochs
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Figure 1. Knowledge distillation with adversarial augmenta-
tions. (a) Easy images with confident soft-pseudo labels and (b)
Hard images with unconfident soft-pseudo labels are adversarially
augmented and pushed to the uncertainty region (high entropy) near
the decision boundary. The model is updated for (a) to match its
output on the augmented views with non-augmented views of Easy
test images using KL-Divergence Lkd ̸= 0, while not updated for
(b) as Lkd ∼ 0 between Hard images and their augmented views.

(offline setup), TTA methods usually process test images in
an online streaming fashion and represent a more realistic
domain adaptation. However, most of these methods are
applied: (i) only to classification tasks, (ii) evaluated on the
non-real-world domain shifts, e.g., the non-measurement
shift; (iii) destroy model calibration—entropy minimizing
with overconfident predictions [45] on incorrectly classified
samples, and (iv) use specialized network architectures or
rely on the source dataset feature statistics [28].

We address these issues by proposing a new test-time
adaptation method with automatic adversarial augmentation
called TeSLA, under which we further define realistic TTA
protocols. Self-learning methods often supervise the model
adaptation on the unlabeled test images using their predicted
pseudo-labels. As the model can easily overfit on its own
pseudo-labels, a weight-averaged teacher model (slowly up-
dated by the student model) is employed for obtaining the
pseudo-labels [41, 47]. The student model is then trained
with cross-entropy (CE) loss between the one-hot pseudo-
labels and its predictions on the test images. In this paper, we
instead propose to minimize flipped cross-entropy between
the student model’s predictions and the soft pseudo-labels
(notice the reverse order) with the negative entropy of its
marginalized predictions over the test images. In Sec. 3,
we show that the proposed formulation is an equivalence
to mutual information maximization implicitly corrected
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by the teacher-student knowledge distillation via pseudo-
labels, yielding performance improvement on various test-
time adaptation protocols and compared to the basic CE
optimization (cf. ablation in Fig. 5-(1)).

Motivated by teacher-student knowledge distillation, an-
other central tenet of our method is to assist the student
model during adaptation in improving its performance on
the hard-to-classify (high entropy) test images. For this
purpose, we propose learning automatic adversarial aug-
mentations (see Fig. 1) as a proxy for simulating images
in the uncertainty region of the feature space. The model is
then updated to ensure consistency between predictions of
high entropy augmented images and soft-pseudo labels from
the respective non-augmented versions. Consequently, the
model is self-distilled on Easy test images with confident
soft-pseudo labels (Fig. 1a). In contrast, the model update
on Hard test images is discarded (Fig. 1b), resulting in better
class-wise feature separation.

In summary, our contributions are: (i) we propose a novel
test-time self-learning method based on flipped cross-entropy
(f-CE) through the tight connection with the mutual informa-
tion between the model’s predictions and the test images; (ii)
we propose an efficient plug-in test-time automatic adversar-
ial augmentation module used for online knowledge distilla-
tion from the teacher to the student network that consistently
improves the performance of test-time adaptation methods,
including ours; and (iii) TeSLA achieves new state-of-the-art
results on several benchmarks, from common image corrup-
tion to realistic measurement shifts for classification and
segmentation tasks. Furthermore, TeSLA outperforms ex-
isting TTA methods in terms of calibration and uncertainty
metrics while making no assumptions about the network
architecture and source domain’s information, e.g., feature
statistics or training strategy.

2. Related Work
In general, domain adaptation methods aim to distill

knowledge from source data that are well-generalizable to
target data and relax the assumption of i.i.d. between source
and target datasets. To circumvent expensive and cumber-
some annotation of new target data, unsupervised domain
adaptation (UDA) emerges, and there has been a large cor-
pus of UDAs [13, 17, 32, 51] to match the distribution of
domains on both labeled source data and unlabeled target
data. Nonetheless, the above-mentioned methods demand
source data to achieve the domain adaptation process, which
is often impractical in real-world scenarios, e.g., due to pri-
vacy restrictions. The above issue motivates research into
source-free domain adaptation (SFDA) [1, 23, 25, 26] and
test-time training or adaptation (TTA) [19, 28, 39, 45],
which are more closely relevant to our problem setup.

SFDA approaches formulate domain adaptation through
pseudo labeling [23, 26], target feature clustering [49], syn-

thesizing extra training samples [24], or feature restora-
tion [12]. SHOT [26] proposed feature clustering via infor-
mation maximization while incorporating pseudo-labeling as
additional supervision. BAIT [48] leverages the fixed source
classifier as source anchors and uses them to achieve feature
alignment between the source and target domain. CPGA [35]
proposed the SFDA method based on matching feature pro-
totypes between source and target domains. AaD-SFDA [50]
proposed to optimize an objective by encouraging prediction
consistency of local neighbors in feature space. Neverthe-
less, SFDA methods require apriori access to all target data
in advance, and the current pseudo-labeling approach, e.g.,
SHOT [26], used offline pseudo-label refinement on a per-
epoch basis. In a more realistic domain adaptation scenario,
SFDA is still incompetent to perform inference and adapta-
tion simultaneously.

TTA methods [4, 45] propose alleviating the domina shift
by online (or streaming) adapting a model at test time. Still,
we argue that there are ambiguities over the problem setup
of TTA in the literature, particularly on whether sequential
inference on target test data is feasible upon arrival [19, 45]
or whether training objectives must be adapted [28, 40].
TTT [40] proposed fine-tuning the model parameters via rota-
tion classification task as a proxy. On-target adaptation [44]
used pseudo-labeling and contrastive learning to initialize
the target-domain feature; each performed independently in
their method. T3A [19] utilized pseudo-labeling to adjust the
classifier prototype. More recently, TTAC [39] leveraged the
clustering scheme to match target domain clusters to source
domain categories. Nevertheless, existing TTA methods rely
on specialized neural network architectures or only update
a fraction of model weights yielding limited performance
gain on the target data. For instance, TENT [45] proposed
updating affine parameters in the batchnorm layers of convo-
lutional neural networks (CNN), while AdaContrast [4] and
SHOT [26] used an additional weight normalization classi-
fication layer with a projection head. In contrast, we show
our method’s superiority for various neural network architec-
tures, including CNNs and vision transformers (ViTs) [11],
without additional architectural requirements or different
source model training strategies. Moreover, we update all
model parameters, and our method is stable over a wide
range of hyper-parameters, e.g., learning rate.

Test time augmentation methods [2,29] are another pop-
ular line of domain adaptation research. GPS [29] learns op-
timal augmentation sub-policies by combining image trans-
formations of RandAugment [10] that minimize calibrated
log-likelihood loss [2] on the validation set. OptTTA [42] op-
timized the magnitudes of augmentation sub-policies using
gradient descent to maximize mutual information and match
feature statistics over augmented images. Though effective,
these methods [29, 42, 46] are computationally expensive as
all augmentation sub-policies need to be evaluated, making
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their real-time application difficult. Instead, our proposed
adversarial augmentation policies can be learned online and
are several orders faster than the existing learnable test-time
augmentation strategies, e.g., [42].

3. Methodology
Overview. We first introduce our flipped cross-entropy (f-
CE) loss through the tight connection with the mutual infor-
mation between the model’s predictions and the test images.
(Sec. 3.1). Using this equivalence, we derive our test-time
loss function that implicitly incorporates teacher-student
knowledge distillation. In Sec. 3.2, we propose to enhance
the test-time teacher-student knowledge distillation by uti-
lizing the consistency of the student model’s predictions
on the proposed adversarial augmentations with their corre-
sponding refined soft-pseudo labels from the teacher model.
We refine the soft-pseudo labels by averaging the teacher
model’s predictions on (1) weakly augmented test images;
(2) nearest neighbors in the feature space. Furthermore, we
propose an efficient online algorithm for learning adversarial
augmentations (Sec. 3.3). Finally, in Sec. 3.4, we summa-
rize our online test-time adaptation method, TeSLA, based
on self-learning with the proposed automatic adversarial
augmentation. The overall framework is shown in Fig. 2.

Problem setup. Given an existing model fθ0 , parametrized
by θ0 and pre-trained on the inaccessible source data, we aim
to improve its performance by updating all its parameters
using the unlabeled streaming test data X during adaptation.
Motivated by the concept of mean teacher [41] as the weight-
averaged model over training steps that can yield a more
accurate model, we build our online knowledge distillation
framework upon teacher-student models. We utilize identical
network architecture for teacher and student models. Each
model f = h ◦ g comprises a backbone encoder g : X →
RD mapping unlabeled test image x ∈ X to the feature
representation z = g (x) ∈ RD and a classifier (hypothesis)
head h : RD → RK mapping z to the class prediction
y ∈ RK , where D and K denote the feature dimension and
number of classes. The parameters of teacher θt and student
θs are first initialized from the source model parameters
θ0. Then the teacher model’s parameters θt are updated
from the student model’s parameters θs using an exponential
moving average (EMA) with momentum coefficient α as:
θt ← α · θt + (1 − α) · θs. Following [26], we freeze the
classifier h’s parameters and only update the encoder g’s
parameters during test-time adaptation.

3.1. Rationale Behind the f -CE Objective

We start by analyzing the rationale behind the proposed
f-CE loss and its benefit for self-learning through the tight
connection with the mutual information between the model’s
predictions and unlabeled test images. Before that, we first
define the notations.

Notations. We define the random variables of unlabeled test
images and the predictions from the student model fs as X
and Y and those of the teacher model ft’s soft pseudo-label
predictions as Ŷ. Furthermore, let pY denotes the marginal
distribution over Y, p(Y,X) be the joint distribution of Y
and X, and pY|X be the conditional distribution of Y given
X. Then, the entropy of Y and the conditional entropy of
Y given X can be defined asH (Y) := EpY

[− log pY (Y)]
and H (Y | X) := Ep(Y,X)

[
− log pY|X (Y | X)

]
, respec-

tively. Besides, let the flipped cross-entropy (f-CE) given X

beH
(
Y; Ŷ | X

)
:= Ep(Y,X)

[
− log pŶ|X (Y | X)

]
.

Self-learning and mutual information. Based on the above
definitions, the f-CE between Y and Ŷ conditioned over
X has the tight connection with the mutual information
I (Y;X) between unlabeled test images X and the predic-
tions from the student model Y as follows:

H
(
Y; Ŷ | X

)
= H (Y | X) +DKL

(
Y ∥ Ŷ | X

)
(1)

= −I (Y;X) +H (Y) +DKL

(
Y ∥ Ŷ | X

)
This implies that minimizing the f-CE (H

(
Y; Ŷ | X

)
in Eq. 1) and maximizing the entropy of class-marginal
prediction H (Y) is equivalent to maximizing the mutual
information between the test images and the student model’s
predictions I (Y;X) with a correction KL-divergence term
DKL

(
Y ∥ Ŷ | X

)
involving soft-pseudo labels as:

H
(
Y; Ŷ | X

)
︸ ︷︷ ︸

f-CE

−H (Y) = −I (Y;X)︸ ︷︷ ︸
Mutual Info.

+DKL

(
Y ∥ Ŷ | X

)
(2)

Thus, minimizing the left side of Eq. 2 with respect to the
student model’s parameters θs allows the student model to
cluster test images using mutual information and criterion-
corrected knowledge distillation from soft-pseudo labels.
Using the above formulation, we define the following test-
time objective to train the student model fs on a batch of
B test images X = {x1, . . . ,xB} with their corresponding
soft-pseudo labels from teacher model Ŷ = {ŷ1, . . . , ŷB}.

Lpl(X, Ŷ ) = − 1

B

B∑
i=1

K∑
k=1

fs(xi)k log((ŷi)k)

+

K∑
k=1

f̂s(X)k log(f̂s(X))k (3)

where f̂s(X) = 1
B

∑B
i=1 fs(xi) denotes the marginal class

distribution over the batch of test images X .

20343



Soft-Pseudo Labels
PLR

Augmented Test Images

Moving Avg.
sample
from    

Test Images Test Images
Sub-policies Magnitudes M

Probabilites P

forward pass
backward pass

(a) (b)

M P

Soft-Pseudo
Label Refinement

Figure 2. Overview of TeSLA Framework. (a) The student model fs is adapted on the test images by minimizing the proposed test-time
objective Lpl. The high-quality soft-pseudo labels required by Lpl are obtained from the exponentially weighted averaged teacher model
ft and refined using the proposed Soft-Pseudo Label Refinement (PLR) on the corresponding test images. The soft-pseudo labels are
further utilized for teacher-student knowledge distillation via Lkd on the adversarially augmented views of the test images. (b) The
adversarial augmentations are obtained by applying learned sub-policies sampled i.i.d from P using the probability distribution P with their
corresponding magnitudes selected from M . The parameters M and P of the augmentation module are updated by the unbiased gradient
estimator (Eq. 13) of the loss LAug computed on the augmented test images.

3.2. Knowledge Distillation via Augmentation

Self-learning from adversarial augmentations. As illus-
trated in Fig. 1, adversarial augmentations are learned by
pushing their feature representations toward the decision
boundary (Expansion phase), followed by updating the stu-
dent model fs to match its prediction on these augmented
images with their corresponding soft-pseudo label (Separa-
tion phase), yielding better separation of features into their
respective classes. In our method setup, we continually learn
automatic augmentations of the test images (Sec. 3.3) that
are adversarial to the current teacher model ft and enforce
consistency between the student model’s fs predictions on
the augmented views and the corresponding soft-pseudo la-
bels. Since we freeze the classifier module, fs and ft share
the common decision boundary. Let x̃ denote the learned
adversarial augmented view of x and ŷ denote the corre-
sponding soft-pseudo label. We minimize the following
knowledge distillation loss Lkd using KL-divergence to dis-
till knowledge from the teacher model to the student model:

Lkd(x̃, ŷ) = DKL(ŷ∥fs(x̃)) (4)

Soft pseudo label refinement (PLR). We refine the qual-
ity of soft pseudo-labels and the feature representations by
averaging the teacher model’s outputs on multiple weakly
augmented image views ρw(x) (via FLIPPING, CROPPING aug-
mentations) of the same test image x as follows:

zt,yt ← Eu∈ρw(x)[gt(u), ht(gt(u))] (5)

The refined feature representations zt and the softmaxed
pseudo labels yt from the encoder gt and the classifier ht

are further stored in an online memory queue Q of fixed
size. The final soft pseudo-label is computed by averaging
the refined soft pseudo-labels of n-nearest neighbors of the
current test image in the feature space as follows:

Q[argmax(yt)].append({zt,yt})

ŷ =
1

n

∑
NQ,n(zt)

(6)

where Q denotes an online memory of class-balanced queues
(with size |Q[argmax(yt)]| ≤ NQ) of the refined feature
representations and the softmaxed label predictions on the
previously seen test images, and NQ,n(zt) denotes soft la-
bels of n-nearest neighbors of zt from Q.

3.3. Learning Adversarial Data Augmentation

This section presents our efficient online method for learn-
ing adversarial data augmentation for the current teacher ft.
We first introduce our adversarial augmentation search space.
Then, we describe our differentiable strategy to optimize and
sample adversarial augmentations that push the feature rep-
resentations of the test images toward the uncertain region
in the close vicinity of the decision boundary.

Policy search space. Let O be a set of all image transfor-
mation operations O : RH×W×3 → RH×W×3 defined in
our search space. In particular, we use image transforma-
tions AUTO-CONTRAST, EQUALIZE, INVERT, SOLARIZE, POSTERIZE,
CONTRAST, BRIGHTNESS, COLOR, SHEARX, SHEARY, TRANSLATEX,
TRANSLATEY, ROTATE, AND SHARPNESS. Each transformation O
is specified with its magnitude parameter m ∈ [0, 1]. Since
the output of some image operations may not be conditional
on its magnitude (e.g., EQUALIZE) or may not be differen-
tiable (e.g., POSTERIZE), for such image operations, we use
the straight-through gradient estimate w.r.t. each pixel as:
∂O (xij) /∂m = 1 for magnitude optimization.

We define a sub-policy ρ as a combination of N image
operations (sub-policy dimension) from O that is applied
sequentially to a given image x as:

ρ (x,mρ) = Oρ
1 · · · O

ρ
N (x,mρ

N ) (7)
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where mρ = [mρ
1, . . . ,m

ρ
N ] denotes the magnitude set of

the sub-policy ρ. We also define P = {ρ1, ρ2, . . . } as the set
of all possible sub-policies.

Policy evaluation. We propose learnable adversarial aug-
mentation, aiming to optimize and sample data augmenta-
tions as a proxy for simulating data in the uncertain region of
the feature space. Given the teacher model ft, a sub-policy ρ
with magnitude m is evaluated for a test image x using the
following adversarial objective:

Laug(x, ρ) =

K∑
k=1

ft (x̃) log (ft (x̃)) + λ1r(x̃,x) (8)

where x̃ = ρ (x,m) denotes the adversarial augmented
image and r (·, ·) regularizes augmentation severity. The hy-
perparameter λ1 controls the augmentation severity. We op-
timize the adversarial augmentation loss Laug with respect to
the sub-policy ρ’s parameters. Minimizing Laug is equivalent
to maximizing the entropy of the teacher model’s prediction
on the augmented image x̃, thus pushing its feature repre-
sentation towards the decision boundary (first term). For the
augmentation regularization (second term), we use the mean
squared distance function between the teacher encoder’s L
internal layers’ activations of the adversarial augmentation
and non-augmented versions of image x defined as:

r(x̃,x) =
1

L

L∑
l=1

∥µl(x̃)− µl(x)∥2 (9)

where µl (·) denotes the mean activation of the lth layer of
the teacher encoder gt.

Policy optimization. Let M = [mρ1 , . . . ,mρ∥P∥ ] denote
the set of magnitudes mρ of all sub-policies ρ ∈ P and
P = [p1, . . . , p∥P∥] denote the probability of selecting a sub-
policy from P. The expected policy evaluation loss (Eq. 8)
for an image x over the policy search space is given by:

E[Laug(x)] =

∥P∥∑
i=1

pi · Laug(x, ρi) (10)

Evaluating the gradient of E[Laug(x)] w.r.t. M and P can
become computationally expensive as ∥P∥ ∼

(∥O∥
N

)
. Thus,

we use the following re-parameterization trick to estimate its
unbiased gradient:

∇E[Laug(x)] = δ(x,P) =
∥P∥∑
i=1

∇(pi · Laug(x, ρi)) (11)

=

∥P∥∑
i=1

pi(∇Laug(x, ρi) + Laug(x, ρi) · ∇ log pi)

Thus, an unbiased estimator of δ(x,P) can be written as:

δ̂(x, ρi) = ∇Laug(x, ρi) + Laug(x, ρi) · ∇ log pi (12)

where index i is sampled from the probability distribution
P . For an online batch of B test images {x1,x2, . . . ,xB},
we apply augmentation sub-policies {ρi1 , ρi2 . . . , ρiB} from
P where {i1, i2, . . . , iB} are sampled i.i.d from distribution
P , and update the parameters P and M with the following
stochastic gradient update rule:

[P,M ]← [P,M ]− γ

B

B∑
j=1

δ̂(xj , ρij ) (13)

where γ is the learning rate. We set γ = 0.1 for all experi-
ments without the need for hyperparameter tuning.

3.4. Self-Learning With Adversarial Augmentation

We minimize the following overall objective LTeSLA for
training the student model fs on a batch of B test images
X = {x1, . . . ,xB} and their adversarial augmented views
X̃ = {x̃1, . . . , x̃B} with the corresponding refined soft-
pseudo labels from the teacher model Ŷ = {ŷ1, . . . , ŷB}:

LTeSLA(X, X̃, Ŷ ) = Lpl(X, Ŷ )+
λ2

B

B∑
i=1

Lkd(x̃i, ŷi) (14)

where λ2 is a hyper-parameter for the knowledge distillation.
The adversarial augmented views X̃ are obtained by sam-
pling i.i.d. augmentation sub-policies from P for every test
image in X with probability P and applying the correspond-
ing magnitude from M . Concurrently, we also optimize M
and P using the policy optimization mentioned in Sec. 3.3.

4. Experiments
4.1. Datasets and Experimental Settings

We evaluate and compare TeSLA against state-of-the-art
(SOTA) test-time adaptation algorithms for both classifica-
tion and segmentation tasks under three types of test-time
distribution shifts resulting from (1) common image corrup-
tion, (2) synthetic to real data transfer, and (3) measure-
ment shifts on medical images. The latter is characterized by
a change in medical imaging systems, e.g., different scanners
across hospitals or various staining techniques.
TTA protocols. We adopt the TTA protocols in [39] and
categorize competing methods based on two factors: (i)
source training objective and (ii) sequential or non-sequential
inference. First, unlike [39], we use Y to indicate if access
to the source domain’s information, e.g., feature statistics is
possible or if the source training objective is allowed to be
modified; otherwise, we use N. Next, we use O to indicate a
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one-pass adaptation and evaluation protocol (one epoch) for
sequential test data and M to show a multi-pass adaptation
on all test data and inference after several epochs. Thus, we
end up with four possible TTA protocols, namely N-M, Y-M,
N-O, and Y-O. Unlike previous works [28, 39], TeSLA does
not rely on any source domain feature distribution, yielding
two realistic TTA protocols: N-M and N-O.
Hyperparameters for all experiments. We set λ1 = λ2 =
1.0 for all experiments (cf. ablation in Appendix E). For
the adversarial augmentation module, we use sub-policy
dimension N = 2 (except for VisDA-C [33], N = 4/3 for
N-O/N-M protocols) (cf. Appendix E) and Adam optimizer
[22]. For pseudo-label refinement (PLR), we use five weak
augmentations composed of random flips and resize crop.
More details of hyperparameters used for each experiment
can be found in Appendix A.
Common image corruptions. To evaluate TeSLA’s efficacy
for the classification task, we use CIFAR10-C/CIFAR100-
C [16] and large-scale ImageNet-C [16] datasets each con-
taining 19 types of corruptions applied to the clean test set
with five levels of severity. We perform validation on 4 out
of 19 types of corruption (SPATTER, GAUSSIAN BLUR, SPECKLE

NOISE, SATURATE) to select hyperparameters and test on the
remaining 15 corruptions at the maximum severity level of
5. Following [28], we train the ResNet50 [15] on the clean
CIFAR10/CIFAR100/ImageNet training set and adapt it to
classify the unlabeled corrupted test set.
Synthetic to real data adaption. We use challenging and
large-scale VisDA-C, and VisDA-S [33] datasets for evaluat-
ing synthetic-to-real data adaptation at test-time for clas-
sification and segmentation tasks, respectively. Follow-
ing [4, 26], we adapt the ResNet101 network pre-trained
on synthetic images to classify 12 vehicle classes on the
photo-realistic images of VisDA-C. While for VisDA-S, we
adapt the DeepLab-v3 [5] backbone pre-trained on synthetic
GTA5 [36] to the Cityscapes [7] to segment 19 classes.
Measurement shifts on medical images. We access TeSLA
on staining variations for the tissue type classification of
hematoxylin & eosin (H&E) stained patches from colorectal
cancer tissue slides. We use MobileNetV2 [38] trained on
the source Kather-19 dataset [20] and adapt it to the tar-
get Kather-16 dataset [21] on four tissue categories: tumor,
stroma, lymphocyte, and mucosa. We also evaluate TeSLA
for variations in scanners and imaging protocols in multi-site
medical images on two magnetic resonance imaging (MRI)
datasets for the segmentation task, namely the multi-site
prostate MRI [27] and spinal cord grey matter segmenta-
tion (SCGM) [34]. Following [42], we adapt the U-Net [37]
from site 1 to sites {2,3,4} of the spinal cord dataset, and
from sites {A,B} to sites {D,E,F} of the prostate dataset.
Competing baselines. We compare TeSLA with the fol-
lowing SFDA and TTA baselines, including direct inference
of the trained source model on the target test data without

Table 1. Comparison of SOTA TTA methods under different
protocols evaluated on CIFAR-10/100-C, ImageNet-C, VisDA-C
and Kather-16 datasets. We report the average error computed over
15 test corruptions for the common image corruption shifts. We
also report Class Avg. in % error rates for synthetic-to-real and
measurement shifts over 3 and 10 seeds, respectively.

Method

Pr
ot

oc
ol Common Image Corruptions Syn-to-Real Measurement

Shift

CIFAR10-C CIFAR100-C ImageNet-C VisDA-C Kather-16

O M O M O M O M O M

Source N 29.1 60.4 81.8 51.5 32.0

BN [18, 30] N 15.6 15.4 43.7 43.3 67.7 67.6 35.4 35.0 18.3 18.2
TENT [45] N 14.1 12.9 39.0 36.5 57.4 54.2 33.5 29.3 16.2 12.0
SHOT [26] N 13.9 14.2 39.2 38.7 68.7 68.2 29.4 24.5 14.7 12.0

AdaContrast [4] N - 23.1 20.2 -

TTT++ [28] Y 15.8 9.8 44.4 34.1 59.3 - 35.2 34.1 16.7 7.9
TTAC [39] Y 13.4 9.4 41.7 33.6 58.7 - 32.2 31.1 9.6 5.5

TeSLA N 12.5 9.7 38.2 32.9 55.0 51.5 17.8 13.5 9.2 3.3
TeSLA-s Y 12.1 9.7 37.3 32.6 53.1 - 24.0 17.9 9.9 3.1

adaptation (Source). We also implement the SFDA-based
pseudo-labeling baselines from a basic pseudo-labeling ap-
proach (PL) to the SHOT approach [26] based on training
the feature extraction module by adopting the information
maximization loss to make globally diverse but individually
certain predictions on the target domain. For recent TTA
methods, we compare our method against TTT++ [28], Ada-
Contrast [4], CoTTA [47], basic TENT [45] and BN [18]
as representative methods based on feature distribution align-
ment via stored statistics, contrastive learning, augmentation-
averaged predictions, entropy minimization, and batch nor-
malization statistic. Furthermore, we compare TeSLA to
more recent methods based on test-time augmentation policy
learning, OptTTA [42], and anchor clustering TTAC [39].
By default, [4,18,26] follow the N-M protocol, and we adapt
them to the N-O protocol, while [42, 45, 47], by default, fol-
low the N-O protocol and adapt them to the N-M protocol
setting. Using source features distribution, TTAC and TTT++
follow Y-O and Y-M. We report error rates on classification
tasks and Mean Intersection over Union (mIoU)/ Dice scores
on segmentation tasks. For consistency across baselines and
TTA protocols, we do not use any specialized model archi-
tectures (e.g., projection head, weight-normalized classifier
layer) for SHOT [26] and AdaContrast [4].

4.2. Results

Classification task. In Table 1, we summarize the average
(Avg) classification error rates (%) of TeSLA against several
SOTA SFDA and TTA baselines on the common image
corruptions of CIFAR10-C, CIFAR100-C, ImageNet-C;
synthetic to real data domain shifts of VisDA-C; and mea-
surement shifts on the Kather-16 dataset. We also report per-
class top-1 accuracies for VisDA-C and Kather-16 datasets
and corruption-wise error rates on CIFAR-10-C/CIFAR-100-
C and ImageNet-C datasets in Appendix B. TeSLA easily
surpasses all competing methods under the protocols N-O
and N-M on all the datasets. In particular, TeSLA outper-
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(a) (b)

Figure 3. Ablation experiments on the VisDA-C. (a) Source training strategy and model architecture. TeSLA outperforms the
competing TTA methods across varied source training strategies (Supervised, SimCLRV2 [6], and DINO [3]) and model architectures
(ResNet50, ResNet101 [15], and ViT-B/16 [11]) using the same set of hyperparameters for both protocols (N-O/N-M). Each vertex represents
the mean class avg accuracy over 3 seeds. (b) t-SNE visualization [43] comparison of feature embeddings for AdaContrast [4] and TeSLA.

Figure 4. Model calibration and uncertainty estimation. Model
calibration using reliability diagrams [31] and model uncertainty
estimation using Brier Score and Negative Log Likelihood (NLL)
of the Source Model, TENT [45], OptTTA [42] and, TeSLA on the
prostate dataset for test-time adaptation.

Table 2. Semantic segmentation results (Class Avg. mIoU in %)
on the VisDA-S (GTA5 → Cityscapes) test-time adaptation task.

Protocol Source BN [30] TENT [45] PL CoTTA [47] TeSLA

N O
35.3

36.7 38.3 38.8 37.0 44.5
N M 38.4 39.2 38.6 39.9 46.0

forms the second-best baseline under N-O/N-M protocol by
a (%) margin 1.4/3.2 on CIFAR10-C, 0.8/3.6 on CIFAR100-
C, 2.4/2.7 on ImageNet-C, 5.3/6.7 on VisDA-C, and 5.5/8.7
on the Kather-16 datasets. Despite not utilizing any source
feature statistic, TeSLA (N-O/N-M) is either competitive
or surpasses TTAC [39] and TTT++ [28] (Y-O/Y-M) that
benefit from the source dataset feature statistics during adap-
tation. Including the global source feature alignment module
of TTAC with TeSLA (TeSLA-s) could further improve its
performance under (Y-O/Y-M) protocols for slight domain
shifts (e.g., common image corruptions). We report the
results of AdaContrast for VisDA-C only as the implemen-
tation for other datasets are not provided. We do not report
TeSLA-s results on ImageNet-C under the Y-M protocol, as
previous baselines were evaluated only Y-O protocol.
Segmentation task. Unlike TeSLA, several TTA methods
e.g., AdaContrast [4], SHOT [26], TTT++ [28], TTAC [39],
have only been evaluated on the classification task. There-
fore, we compare TeSLA against the current SOTA TTA

Table 3. Semantic segmentation results (Class Avg. volume-wise
mean Dice in %) on the cross-site spinal cord and prostate MRI
test-time adaptation tasks.

Protocol Source BN [30] TENT [45] PL OptTTA [42] TeSLA

Spinal Cord Site {1} → Sites {2,3,4}
N O

76.0±11.8
81.6±8.3 81.1±9.1 81.7±8.6 84.1±4.8 85.3±5.8

N M 84.3±4.8 84.4±4.7 84.3±4.7 84.3±4.4 85.4±4.4

Prostate Sites {A,B} → Sites {D,E,F}
N O

60.5±27.0
72.1±15.2 74.7±17.9 72.4±15.2 83.1±7.7 83.5±6.5

N M 73.1±18.0 81.2±9.3 81.1±9.2 83.4±7.7 84.3±5.8

methods applied to the segmentation task on synthetic-
to-real data transfer of the VisDA-S dataset in Table 2.
TeSLA significantly outperforms the competing methods
and achieves the best mIOU scores for both N-O and N-M
protocols, beating the second-best baseline by a margin of
+5.7% and +6.1%, respectively. In Table 3, we compare
TeSLA against the recent SOTA test-time augmentation pol-
icy method, OptTTA [42] and other TTA baselines for the
inter-site adaptation on two challenging MRI datasets men-
tioned in Sec. 4.1. TeSLA convincingly outperforms all
other methods on severe measurement shifts across sites
under N-O and N-M protocols.
Computational cost for adversarial augmentations. As
shown in Table 4, TeSLA learns the adversarial augmentation
in an online manner, and thus its runtime is several orders
faster than learnable test-time augmentation OptTTA [42],
while comparable to that of static augmentation policies with
an additional overhead of only 0.10 GPU hours/epoch on the
VisDA-C dataset.
Test-time feature visualization. Fig. 3b compares t-SNE
projection [43] of the encoder’s features of AdaContrast [4]
with TeSLA on the VisDA-C. TeSLA shows better inter-class
separation for features than AdaContrast, as supported by an
improved silhouette score from 0.149 to 0.271.
Model calibration and uncertainty estimation. Entropy
minimization-based TTA methods [26, 45] explicitly make
the model confident in their predictions, resulting in poor
model calibration. For trusting the adapted model, it should
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Table 4. Performance comparison of adversarial augmentation
learned by TeSLA during adaptation against the prior art augmenta-
tion methods on runtime (GPU hours/epoch on NVIDIA GeForce
RTX 3090) and Class Avg. accuracy in % on the VisDA-C dataset.

Augmentation Type OptTTA
TeSLA
RA [10]

TeSLA
AA [8]

TeSLA
N = 2

TeSLA
N = 3

Runtime 4.50 0.05 0.06 0.16 0.18
Class Avg. Acc. (N-O) - 80.2 81.2 81.5 82.2
Class Avg. Acc. (N-M) - 84.7 85.7 86.3 86.5

output reliable confidence estimates matching its true under-
lying performance on the test images. Such a well-behaved
model is characterized by expected calibration error (ECE)
through reliability diagram [31], and uncertainty metrics
of brier score and negative log-likelihood (NLL) [14]. In
Fig. 4, we plot the reliability diagram (dividing the prob-
ability range [0, 0.5] into 10 bins), and uncertainty metrics
of the Source model, TENT [45] and OptTTA [42] against
TeSLA for the inter-site model adaptation on the prostate
dataset [27]. We observe that TeSLA achieves the best model
calibration (lowest ECE of 1.80%) and lowest Brier and NLL
scores of 0.12 and 0.24 (p < 0.006 against TENT).

4.3. Ablation Studies

In this section, we scrutinize the roles played by different
components of TeSLA. All ablations are performed on the
synthetic-to-real test data adaptation of the VisDA-C dataset.
Loss functions for self-learning. We compare TTA perfor-
mance of our self-learning objective Lpl with the proposed
flipped cross-entropy loss f -CE and the basic cross-entropy
loss CE in Fig. 5-(1). We do not use the proposed augmenta-
tion module and pseudo-label refinement in this experiment.
We observe that f -CE alone improves the accuracy of the
Source model in the N-M protocol by +23.1% compared
to +16.6% improvement by CE. Using Lpl (Eq. 3) further
improves the accuracy to a margin of +23.8%.
Contribution of individual components: PLR, Lpl, and
Lkd. Our test-time objective LTeSLA has three components–
(i) self-learning loss Lpl, (ii) pseudo-label refinement (PLR),
and (iii) knowledge distillation Lkd with adversarial augmen-
tation. In Fig. 5-(3), we study the effect of accruing indi-
vidual components to LTeSLA (starting from source trained
model) for the test-time adaptation accuracy. We observe
that Lpl alone improves the model’s accuracy from 48.5% to
72.3% while adding PLR and Lkd further boosts it to 81.6%
(+9.3) and 86.3% (+4.7), respectively.
PLR: ensembling on weak augmentations (Ens) and near-
est neighbor averaging (NN). We also conduct an ablation
on the two pseudo-label refinement approaches – (i) ensem-
bling the teacher model’s output on five weak augmentations.
(ii) averaging soft pseudo labels of n = 10 nearest neighbors
in the feature space (cf. sensitivity test in Appendix E). Fig.
5-(2) shows that combining both approaches gives better
results than using them individually.
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Figure 5. Ablation experiments on the VisDA-C. (left to right)
(1) Ablation results for self-learning loss functions, including f-CE,
CE, and Lpl; (2) ablation on different PLR methods: ensembling
predictions on 5 weak augmentations, averaging predictions of the
10 nearest neighbors in the feature space; (3) ablation on different
components of TeSLA’s objective function: Lpl, PLR, and Lkd.

Adversarial augmentation. Table 4 shows the benefit of
using our adversarial augmentation (N = 2, 3) with TeSLA
against (i) RandAugment (RA) [10], (ii) AutoAugment
(AA) [9] (optimized for ImageNet), and (iii) OptTTA [42].
We achieve far better Class Avg. accuracy on the VisDA-C
at the cost of slight runtime overhead compared to static
augmentation policies for protocols (N-O, N-M). In addi-
tion, TeSLA augmentation (TeAA) consistently improves
the performance of other TTA methods (Table 5).

Table 5. Class Avg. accuracy (%) of TeSLA augmentation (TeAA)
with other TTA objectives under N-O protocol on VisDA-C dataset.

TENT +TeAA SHOT +TeAA AdaContrast +TeAA

66.5 72.0 70.6 73.1 76.9 79.1

Source training strategies and model architectures. The
ablation results (Fig. 3a) on the VisDA-C show that TeSLA
surpasses competing TTA baselines for different source train-
ing strategies, including Supervised and self-supervised
(SimCLRV2 [6], DINO [3]). Moreover, we ablate TeSLA
over different architectures, ranging from ResNet-50/101
[15] to the recent vision transformer ViT-B [11] using the
same set of hyperparameters, showing the merits of no re-
liance on the network architecture or source training strategy.

Finally, in Appendix E, we provide detailed sensitivity
results with respect to all hyperparameters.

5. Conclusion
We introduced TeSLA, a novel self-learning algorithm for

test-time adaptation that utilizes automatic adversarial aug-
mentation. TeSLA is agnostic to the model architecture and
source training strategies and gives better model calibration
than other TTA methods. Through extensive experiments on
various domain shifts (measurement, common corruption,
synthetic to real), we show TeSLA’s superiority over previ-
ous TTA methods on classification and segmentation tasks.
Note that TeSLA assumes class uniformly when implicitly
maximizing mutual information and can be improved by
incorporating prior, e.g., class label distribution statistics.
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coni, Susanne M Melchers, Lothar R Schad, Timo Gaiser,
Alexander Marx, and Cleo-Aron Weis. Collection of textures
in colorectal cancer histology, May 2016. 6

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[23] Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu,
et al. Universal source-free domain adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4544–4553, 2020. 1, 2

[24] Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur,
R Venkatesh Babu, et al. Towards inheritable models for
open-set domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12376–12385, 2020. 2

[25] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model adaptation: Unsupervised domain adaptation
without source data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9641–9650, 2020. 1, 2

[26] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for

20349



unsupervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, 2020. 2, 3,
6, 7

[27] Quande Liu, Qi Dou, Lequan Yu, and Pheng Ann Heng. Ms-
net: Multi-site network for improving prostate segmentation
with heterogeneous mri data. IEEE Transactions on Medical
Imaging, 2020. 6, 8

[28] Yuejiang Liu, Parth Kothari, Bastien Germain van Delft, Bap-
tiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi.
TTT++: When does self-supervised test-time training fail
or thrive? In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, 2021. 1, 2, 6, 7

[29] Alexander Lyzhov, Yuliya Molchanova, Arsenii Ashukha,
Dmitry Molchanov, and Dmitry Vetrov. Greedy policy search:
A simple baseline for learnable test-time augmentation. In
Conference on Uncertainty in Artificial Intelligence, pages
1308–1317. PMLR, 2020. 2

[30] Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek. Eval-
uating prediction-time batch normalization for robustness
under covariate shift. arXiv preprint arXiv:2006.10963, 2020.
6, 7

[31] Alexandru Niculescu-Mizil and Rich Caruana. Predicting
good probabilities with supervised learning. In Proceedings
of the 22nd international conference on Machine learning,
pages 625–632, 2005. 7, 8

[32] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019. 2

[33] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge, 2017. 6

[34] Ferran Prados, John Ashburner, Claudia Blaiotta, Tom Brosch,
Julio Carballido-Gamio, Manuel Jorge Cardoso, Benjamin N
Conrad, Esha Datta, Gergely Dávid, Benjamin De Leener,
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