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Ultralong 100ns spin relaxation time in
graphite at room temperature

B. G. Márkus 1,2,3, M. Gmitra4,5, B. Dóra 6, G. Csősz3, T. Fehér3, P. Szirmai7,
B. Náfrádi 7, V. Zólyomi8, L. Forró1,7, J. Fabian 9 & F. Simon 2,10

Graphite has been intensively studied, yet its electron spins dynamics remains
an unresolved problem even 70 years after the first experiments. The central
quantities, the longitudinal (T1) and transverse (T2) relaxation times were
postulated to be equal, mirroring standard metals, but T1 has never been
measured for graphite. Here, based on a detailed band structure calculation
including spin-orbit coupling, we predict an unexpected behavior of the
relaxation times. We find, based on saturation ESR measurements, that T1 is
markedly different from T2. Spins injected with perpendicular polarization
with respect to the graphene plane have an extraordinarily long lifetime of 100
ns at room temperature. This is ten times more than in the best graphene
samples. The spin diffusion length across graphite planes is thus expected to
be ultralong, on the scale of ~ 70 μm, suggesting that thin films of graphite— or
multilayer AB graphene stacks — can be excellent platforms for spintronics
applications compatible with 2D van der Waals technologies. Finally, we pro-
vide a qualitative account of the observed spin relaxation based on the ani-
sotropic spin admixture of the Bloch states in graphite obtained from density
functional theory calculations.

Spintronic devices require materials with a suitably long spin-
relaxation time, τs. Carbon nanomaterials, such as graphite inter-
calated compounds1, graphene2, fullerenes3, and carbon nanotubes4,
have been considered5–7 for spintronics8–10, as small spin–orbit cou-
pling (SOC) systems with low concentration of magnetic 13C nuclei
which contribute to a long τs. However, experimental data and the
theory of spin-relaxation in carbon-based materials face critical open
questions. Chiefly, the absolute value of τs in graphene is debated with
values ranging from 100ps to 12 ns11–16, and theoretical investigations
suggest an extrinsic origin of the measured short τs values

17.

Contemporary studies, in order to introduce functionality into
spintronic devices18–26, focus on tailoring the SOC in two-dimensional
heterostructures with the help of proximity effect27–30. Theory pre-
dicted a giant spin-relaxation anisotropy in graphene when in contact
with a large-SOC material31 that was subsequently observed in mono-
and bilayer graphene32–37. This is in contrast with graphene on a SOC-
free substrate having a nearly isotropic spin-relaxation38–41. It would be
even better to have materials with an intrinsic spin-relaxation time
anisotropy, which would enable efficient control over the spin trans-
port and thereby boost the development of spintronic devices.
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A remarkably simple example of an anisotropic carbon-based
material is graphite, which, while being one of the most extensively
studied crystalline materials, still holds several puzzles. Specifically,
the spin-relaxation, its anisotropy, and the g-factor are not yet
understood in graphite, and this represents a 70-year-old challenge.
As early as 1953, the first spin spectroscopic study of graphite42, 43

used conduction electron spin resonance (CESR). The CESR line-
width, ΔB, yields directly the spin-decoherence time: T2 = (γΔB)−1,
where γ/2π ≈ 28GHz/T is the electron gyromagnetic ratio (which is
related to the g-factor as ∣γ∣ = gμB/ℏ). Magnetic resonance is char-
acterized by two distinct relaxation times, T1 and T2, which denote
the relaxation of the components parallel and perpendicular to the
external magnetic field, respectively44. In zero magnetic field,
T1 = T2 = τs holds and the latter parameter is measured in spin-
injected transport studies.

The ESR linewidth and g-factor have a peculiar anisotropy in
graphite. ΔB is about twice as large for a magnetic field perpendicular
to the graphene layers (denoted as ΔB⊥) as compared to when the
magnetic field is in the (a, b) plane (denoted as ΔB∥). The respective g-
factors are also strongly anisotropic: g⊥ is considerably shifted with
respect to the free-electron value of g0 = 2.0023, and is temperature-
dependent, whereas g∥ is barely shifted and is temperature
independent45, 46.

Although several explanations have been proposed45–48, no con-
sistent picture has emerged yet for these anomalous findings in gra-
phite. Nevertheless, understanding the spin-relaxation mechanism
would be important for the advancement of spin-relaxation theory in
general, but especially for spintronics applications of mono- or few-
layer graphene.

We unravel the anomalous spin relaxation in graphite by
studying the details of the spin-orbit coupling, its dependence over

the Fermi surface, and its anisotropy. We find that the SOC is strongly
anisotropic in graphite due to the symmetry47: the (pseudospin)
spin-orbit field is oriented along z. This results in a significant ani-
sotropy of the electron spin dynamics, spin-relaxation time, and a
giant g-factor anisotropy. We demonstrate that the ESR data
is compatible with the SOC anisotropy scenario. Remarkably,
the theory predicts an ultralong spin-relaxation time for spins
that are polarized perpendicular to the graphite (a, b) plane. Indeed,
saturated ESR experiments reveal a spin-relaxation time longer
than 100 ns at room temperature for this geometry. These findings
qualify graphite thin film as a strong candidate for spintronics
technology.

Theoretical predictions
We performed first-principles calculations of the electronic structure
of graphite in the presence of spin-orbit coupling. Figure 1. shows the
band dispersions near the K point of the Brillouin zone (BZ). We limit
our qualitative considerations to the shown energy scale, which cor-
responds to the quasiparticle energy smearing up to room tempera-
ture. The full calculated band structure along high symmetry lines is
presented in the Supporting Information (SI).

In Elliott-Yafet’s theory of spin relaxation49,50, which isdominant in
centrosymmetric metals such as graphite, spin-relaxation is due to the
mixing of the otherwise pure spin up/down states9, 51–55. For a selected
spin quantization axis, the two degenerate Bloch states can be char-
acterized as up, ∣"i, or down, ∣#i, in the absence of SOC. Due to spin-
orbit coupling, the spin up/down states have a (typically small)
admixture of the Pauli spin down/up spinors:

∣e"ik = ½ak ∣"i +bk ∣#i�eikr , ð1Þ

∣e#ik = ½a*
�k ∣#i +b*

�k ∣"i�eikr : ð2Þ

Here ∣e"i, and ∣e#i are the Bloch states in the presence of the SOC.
The spin-flip probability is proportional to b2

k .
Thanks to our high precision calculation of the dispersion

relation, we could determine b2
k near the Fermi level in Fig. 1. For

the electron spin quantized along the c-axis, the spin admixture
probability is rather small, less than 10−6, without a significant
momentum dependence. However, b2

k exhibits peaks at the band
crossings (in fact, those are anticrossings as SOC opens a gap of
24μeV such as in graphene56) when the spin quantization axis is in
the plane. Then the spin admixture probabilities are orders of mag-
nitude higher than elsewhere in the Brillouin zone. In fact, we find
here so-called spin hot-spots51, similar to what happens in monolayer
graphene at the Dirac point57. Figure 1 reveals that the dominant
contribution to the spin admixture comes from the momenta
along K→ Γ.

While calculating Fermi-level averages of b2
k is beyond the scope

of the present work (mainly due to the tiny Fermi surface of graphite
and the presence of the spin hot-spots), our calculation suggests that
the spin-relaxation rate in an in-plane magnetic field is expected to be
at least an order ofmagnitude faster than in amagneticfield parallel to
the c-axis.

To relay on the spin-relaxation rate to the ESR line, we evoke the
theory of Yafet50 developed for the case of an anisotropic SOC. For
graphite, the major features could be nicely followed in Fig. 2. He
argued that both the T1 and T2 relaxation times are caused by fluc-
tuating magnetic fields δB = (δBa, δBb, δBc) due to the SOC. Fluctu-
ating fields along a given direction give rise to spin relaxation of a
spin component perpendicular to them. (Amore recent and rigorous
derivation of the ESR relaxation times is found in ref. 58). Following
Yafet50, we introduce δB2

? and δB2
k for the squared magnitude of the

fluctuating fields along the crystalline c axis, and in the (a, b)

Fig. 1 | Top: calculated low-energy electronic band structure of graphite at K
along the lines towards Γ and M points. Note the band degeneracy near the
K point. Middle and bottom: spin-mixing parameters b2

k for the spin quantization
(magnetic fieldB) along c and in the plane (a, b), respectively. Also indicated are the
spin relaxation anisotropies for the momenta at the vertical dashed lines, implied
by the calculated b2

k there.
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plane, respectively. The results for the corresponding spin-relaxation
rates are:

T 1

� ��1
? / 2δB2

k ð3Þ

T2

� ��1
? / δB2

k + δB
2
? ð4Þ

T 1

� ��1
k / δB2

k + δB
2
? ð5Þ

T2

� ��1
k / 3

2
δB2

k +
1
2
δB2

?: ð6Þ

This is illustrated in Fig. 2. E.g., for B⊥, spins precess around the c
axis and T1 is caused entirely by δB∥ (Eq. (3)), however T2 is caused by
both δB∥ and δB⊥ fluctuating fields as these SOC fields are perpendi-
cular to spin component which is in the plane (Eq. (4)). For the B∥
orientation, the spins precess in the a − c plane thus T1 is caused by
both the δB∥ andδB⊥whichalso yieldsT2,⊥ = T1,∥ (Eqs. (4) and (5)). Yafet
discussed the case of the extreme uniaxial anisotropy, i.e., when
δB2

k =0 while δB2
? is finite, which is in fact, due to symmetry con-

siderations, the theoretical prediction for graphene (ref. 59). We sup-
pose that this is the case for graphite, as well, which we check
experimentally. It is interesting to notice, that somewhat

counterintuitively, the extremeanisotropy corresponds to just a factor
of 2 anisotropy in the ESR linewidth as ðT2Þ�1

? =ðT2Þ�1
k =ΔB?=ΔBk =2

(see Eqs. (4) and (6)).

Results and discussion
Anisotropy of the ESR linewidth and g-factor
Figure 3 shows the temperature dependence of the ESR linewidth for
the two major magnetic field orientations in highly-oriented pyr-
olytic graphite (HOPG) samples. Comparing the data with previous
measurements43, 46, 60–62, we find good agreement for the 50−300K
temperature range. Due to the finite penetration depth of micro-
waves, the ESR lineshape is asymmetric. This is taken into account by
fitting the ESR spectra to the so-called Dysonian lines63 that are well
approximated by a mixture of absorption and dispersion compo-
nents of a Lorentzian curve64. Additional data including typical ESR
spectra, the g-factor, the temperature-dependent ESR intensity,
angular dependence of the ESR spectra, and linewidth are provided
in the SI.

Above 50K, the linewidth increases with decreasing temperature
for both orientations. Linewidth data for B⊥ are not shown below 30K
where the significant line broadening and the relatively weak signal
intensity prevent a reliable analysis. Annealing at 300 °C in a dynamic
vacuum affects the ESR linewidth only below 50K. This is plausible
since due to its semi-metallic character and the small Fermi surface
even a few ppm of paramagnetic impurities can dominate the signal at
low temperatures due to their Curie spin susceptibility65. Higher

( ) 2 ( ) +

) +

( )
3

2
+
1

2

Fig. 2 | Schematics of the geometry of the different spin-relaxation contribu-
tions for B⊥ (upper panel) and B∥ (lower panel). Note that spins precess around
the magnetic field for both orientations. The respective spin-relaxation rates are

caused by the fluctuating components which are perpendicular to the given
direction. For the B∥, it consists of two contributions due to the Larmor precession
of the spins.
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annealing temperatures (up to 600 °C) did not influence further the
linewidth.

From a calibrated measurement of the spin-susceptibility, we
obtained that the Curie contribution to the ESR signal is due to 5(1)
ppm of S = 1/2 spins. We show in Fig. S2 that the susceptibility con-
tribution from the localized and delocalized spins is equal at ~15 K.
Given that any influence of the localized species on the g-factor and
the linewidth is weighted with the spin-susceptibility65, we conclude
that above 50−100 K (especially at the technologically important
room temperature region), the observed ESR linewidth is the
intrinsic property of graphite. Although the present work focuses on
the anisotropy of the ESR linewidth, we also mention that the con-
ventional Elliott-Yafet’s theory predicts an opposite temperature
dependence, which may be related to the near band degeneracy
around the graphite Fermi surface. Its full description requires
additional work though.

The temperature-dependent g-factor data (see Fig. S5 of SI) con-
firms the earlier experimental data46, 60–62 and the theoretical predic-
tion. The measured factor of 2 anisotropy in the ESR linewidth of
graphite (see the bottom image of Fig. 3) matches exactly the theore-
tical prediction of a vanishing SOC for spins polarized in the (a, b)
plane and a finite SOC for spins polarized along the c-axis. Strictly
speaking, the linewidth anisotropy ratio is 2 only between 100 and
300K, while it deviates somewhat upwards below 100K and down-
wards above 300K, which calls for more detailed modeling.

The ultralong spin-relaxation time, T1

An important consequence of the absence of spin-orbit fields in the
graphene planes is the predicted ultralong spin-lattice relaxation time,
T1,⊥, according to Eq. (3), whereas the other three relaxation times
remain finite, below 50ns. To experimentally verify this prediction, we
performed saturation ESR measurements (see Fig. S7 of SI). Although
the transversal spin-relaxation time, T2 is accessible directly from the
linewidth, T1 does not directly affect the lineshape in conventional ESR
studies. In principle, both relaxation times can be measured with a

spin-echo technique but it is limited to relaxation times when both T1
and T2 are longer than ~1μs, which is not the case herein. However,
saturation ESR experiments44 yield relaxation times down to ~10 ns.
The method is based on monitoring the variation of the ESR signal
intensity and the linewidth as a function of the irradiating microwave
power. A characteristic drop in the signal intensity, accompanied by a
line broadening allows determining T1. Further technical details are
given in the SI together with the raw saturation ESR data.

The T1 results for both orientations of the magnetic field are
shown in Fig. 4. The data is given only above 300K for B⊥ and above
370K for B∥ as below these temperatures the shortening of the
respective T2 prevents the observation of the saturation effect.
Nevertheless, having in mind the spintronics application, this is the
relevant temperature range. Red triangles and the dashed line in Fig. 4
confirm that the T1,∥ = T2,⊥ prediction from Eqs. (4) and (5) is indeed
satisfied, which provides further proof that the extreme SOC aniso-
tropy is realized in graphite.

Themost striking experimental observation is the presence ofT1,⊥
relaxation times beyond 100ns and the approximate factor 10 aniso-
tropy of T1. Although it is observed in an ESR experiment, i.e., in the
presence of an external magnetic field, this result can be readily
extended to the case of zero magnetic fields: it implies that τs,⊥ in
graphite would be as long as 100 ns when electrons are injected with a
spin perpendicular to the graphene planes and it would be about a
factor 10 times shorter when the spins lie in the graphene planes. This
is also depicted in Fig. 4. The giant anisotropy may find a number of
applications, e.g., it could be exploited to control the spin-relaxation
times in spintronic devices.

It is known1 that electrons travel mainly in the graphene planes in
graphite and interlayer transport is diffusion limited and it leads to a
conduction anisotropy σ∥/σ⊥ beyond 103−104. This allows to approx-
imate the spin diffusion in graphite while considering that electrons
reside on a given graphene layer. The large value of τs,⊥ leads to an
ultra-long spin-diffusion length in graphite: δs =

vFffiffi
2

p ffiffiffiffiffiffiffi
ττs

p
(the factor 2

appears from the two-dimensional diffusion equation). It gives
δs ≈ 70μm with typical values of vF = 106m/s and τ = 10−13 s. This is

Fig. 4 | The spin-lattice relaxation time, T1, for the two orientations of the
magnetic field (red triangles: B∥, blue dots: B⊥) in graphite as a function of
temperature. Note the about 10 times longer T1 when B⊥ as compared to B∥. The
inset depicts the expected experimental situation in a spin transport experiment.
Dashed line denotes T2 when B⊥, which also confirms the case of extreme aniso-
tropy as it aligns well with the T1 values for B∥, as predicted by Eqs. (4) and (5).

Fig. 3 | Temperature-dependent ESR data at 9.4 GHz (~0.3 T) in graphite for
both crystallographic orientations.Upper panel: the ESR linewidthwith different
symbols for the as-obtained and annealed samples. For B⊥, the data is shown only
above 30K. Lower panel: linewidth anisotropy factor, i.e. the ratio of the linewidth
for B⊥ and B∥ configurations. The dashed line is the constant 2.
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already a macroscopic length scale, which could bring spintronic
devices closer to reality.

Summary
In conclusion, we unraveled the anomalous dynamics of itinerant
electron spins in graphite. We first studied the details of the band-
structure-related spin–orbit coupling which predicted a hitherto hid-
den, symmetry-related extreme anisotropy of the spin-orbit coupling.
This anisotropy in fact explains the known anomalous anisotropic
properties of graphite: a strongly anisotropic g-factor and the 1:2 ani-
sotropy of the ESR linewidth. We recognized that the latter should in
principle be accompanied by a giant anisotropy of the spin-lattice
relaxation time. This prediction was examined with saturation ESR
studies and we observe ultralong (T1 in excess of 100 ns) spin-
relaxation times for spins aligned perpendicular to the graphene
planes.When extrapolated to the zero-field limit, this predicts similarly
long spin-relaxation times in spin-transport studies and amacroscopic
spin-diffusion length.

Methods
Experiment
We studied high-quality HOPG (highly-oriented pyrolitic graphite)
from Structure Probe Inc. (SPI Grade I) using electron spin resonance
(ESR). The HOPG had a mosaicity of 0.4° ± 0.1°. We studied X-band
(0.33 T, 9.4 GHz) in a commercial ESR spectrometer (Bruker Elexsys
E500) in the 4−673 K temperature range. The spectrometer is equip-
ped with a goniometer which allows reliable and reproducible sample
rotations. We used HOPG disk samples of 3mm diameter and 70μm
thickness.

The samples were sealed in quartz ampules under 20 mbar He
for the ESR measurement. Annealing of some of the samples was
performed in a high dynamic vacuum in a furnace up to 300−600 °C.
The goals in this study are the accurate measurement of the ESR
linewidth, and temperature-dependent ESR intensity (penetration
effects for a bulky sample prevent the determination of the absolute
spin-susceptibility). We also monitored the g-factor as a function of
temperature to enable comparison with existing literature data. We
employed a lowmagnetic fieldmodulation to avoid signal distortion,
we also used a low (150μW) microwave power to avoid saturation of
the normal data and we monitored the change in the cavity reso-
nance frequency. We quote the widths of derivative Lorentzian
curves (or half width-half maximum data, HWHM) fitted to the
experimental data which is related to the peak-to-peak linewidth as:
ΔBHWHM =ΔBpp=

ffiffiffi
3

p
. Saturated ESR experiments were performed in a

commercial microwave cavity (Bruker ER 4122 SHQ, Super High Q
Resonator) with an unloaded Q0 = 7500 and with the sample
QL = 5500. This cavity produces AC magnetic fields of
B1 = 0:2 mT

ffiffiffiffiffiffiffi
pQL
Q0

q
, where p is the microwave power in Watts and we

used microwave powers up to 0.2W.

Theory
The electronic band structure of graphite in the presence of spin-orbit
coupling is determined by the full potential linearized augmented
plane waves (LAPW) method, based on density functional theory
implemented in Wien2k66. For exchange-correlation effects, the gen-
eralized gradient approximation was utilized67. In our three-
dimensional calculation the graphene sheets of lattice constant
a= 1:42

ffiffiffi
3

p
Å are separated by the distance of c = 3.35Å. Integration in

the reciprocal space was performed by the modified Blöchl tetra-
hedron scheme, taking the mesh of 33 × 33 k-points in the irreducible
Brillouin zone (BZ) wedge. As the plane-wave cut-off, we took 9.87Å−1.
The 1s core states were treated fully relativistically by solving the Dirac
equation, while spin-orbit coupling for the valence electrons was
treated within the muffin-tin radius of 1.34 a.u. by the second varia-
tional method68.

The algorithm and the code used to calculate the b2
k values were

proven to be correct for various other materials previously69. These
includeWS2

70, WSe2, MoSe2
71, various heterostructures72, 73, etc. We are

confident that it provides adequate results for the case of graphite as
well. However, averaging the spin admixture, b2, over the tiny Fermi-
surface pockets is, at themoment, not feasible. Themain reason is that
the admixture varies strongly (over several orders of magnitude) close
to the band degeneracies (spin hot spots), requiring very dense sam-
pling of the Fermi surface. At the moment, this is beyond the com-
putational capabilities of our available computing infrastructure.

Data availability
The data needed to evaluate and reproduce the conclusions are pre-
sent in the paper and the Supporting Information (Online Content).
Additional data related to this paper are available from the corre-
sponding author upon request.
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