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Resonant sloshing in circular cylinders was studied by Faltinsen et al. (J. Fluid Mech.,
vol. 804, 2016, pp. 608–645), whose theory was used to describe steady-state resonant
waves due to a time-harmonic container’s elliptic orbits. In the limit of longitudinal
container motions, a symmetry breaking of the planar wave solution occurs, with
clockwise and anti-clockwise swirling equally likely. In addition to this primary harmonic
dynamics, previous experiments have unveiled that diverse super-harmonic dynamics are
observable far from primary resonances. Among these, the so-called double-crest (DC)
dynamics, first observed by Reclari et al. (Phys. Fluids, vol. 26, no. 5, 2014, 052104) for
circular sloshing, is particularly relevant, as its manifestation is the most favoured by the
spatial structure of the external driving. Following Bongarzone et al. (J. Fluid Mech.,
vol. 943, 2022, A28), in this work we develop a weakly nonlinear analysis to describe the
system response to super-harmonic longitudinal forcing. The resulting system of amplitude
equations predicts that a planar wave symmetry breaking via stable swirling may also
occur under super-harmonic excitation. This finding is confirmed by our experimental
observations, which identify three possible super-harmonic regimes, i.e. (i) stable planar
DC waves, (ii) irregular motion and (iii) stable swirling DC waves, whose corresponding
stability boundaries in the forcing frequency-amplitude plane quantitatively match the
present theoretical estimates.

Key words: bifurcation, surface gravity waves

1. Introduction

Liquid sloshing related problems remain of great concern nowadays to many engineering
fields. Depending on the type of external forcing and container shape, the free liquid
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surface can experience different types of dynamics, whose nature has a major importance
in the design of, e.g. airplanes, rockets, spacecraft as well as road and ship tankers, since
the sloshing motion may have a strong influence on their dynamic stability (Ibrahim 2005;
Faltinsen & Timokha 2009). The case of resonant sloshing in upright circular cylinders
represents one of the archetypal sloshing systems and it has indeed been extensively
studied theoretically, experimentally and numerically.

In their work, Faltinsen, Lukovsky & Timokha (2016) thoroughly examine harmonically
resonant sloshing dynamics in upright annular (circular) reservoirs. By applying the
Narimanov–Moiseev multimodal sloshing theory (Narimanov 1957; Moiseev 1958;
Dodge, Kana & Abramson 1965; Faltinsen 1974; Narimanov, Dokuchaev & Lukovsky
1977; Lukovsky 1990; Lukovsky & Timokha 2011, 2015; Takahara & Kimura 2012;
Lukovsky 2015), capable of accurately describing the nonlinear wave dynamics near
primary harmonic resonances and in the absence of secondary resonances (Faltinsen,
Rognebakke & Timokha 2005; Faltinsen et al. 2016; Raynovskyy & Timokha 2018a,
2020), i.e. for a non-dimensional fluid depth H � 1.05, they derived the response curves
for planar elliptic-type tank excitation. In the two limit cases, system responses to
longitudinal and circular tank motions were retrieved.

Circular sloshing is widely used in biological and chemical industrial applications such
as small- and large-scale bioreactors for bacterial and cellular cultures (McDaniel & Bailey
1969; Wurm 2004), where the liquid motion prevents the sedimentation of suspended cells
in the liquid medium and allows for a homogenized concentration of dissolved oxygen and
nutrients. For these reasons, a strong interest in the gas exchange and mixing processes
taking place in these devices has emerged over the last decades (Büchs et al. 2000a,b;
Büchs 2001; Maier, Losen & Büchs 2004; Muller et al. 2005; Micheletti et al. 2006; Zhang
et al. 2009; Tissot et al. 2010; Tan, Eberhard & Büchs 2011; Tissot et al. 2011; Klöckner
& Büchs 2012).

Reclari (2013) and Reclari et al. (2014), among others (see also Hutton 1964; Bouvard,
Herreman & Moisy 2017; Moisy, Bouvard & Herreman 2018; Horstmann, Herreman &
Weier 2020; Horstmann et al. 2021), experimentally characterized in great detail the
hydrodynamics of orbitally shaken circular cylinders, which represent the typical shape of
lab-scale bioreactors. In addition to the primary harmonic system response via single-crest
(SC) wave dynamics, different multiple-crest wave patterns were observed. Among these,
the super-harmonic double-crest (DC) wave dynamics, as labelled by Reclari et al. (2014),
is particularly relevant, as it appears to be the most stable and the one that displays
the largest nonlinear amplitude response, that may eventually lead to wave breaking
occurring far from harmonic resonances and even at moderately low forcing amplitudes.
Its manifestation is indeed naturally favoured by the spatial structure, i.e. by the temporal
and azimuthal periodicities, of the external driving and, therefore, its understanding and
prediction can be important for practical application as in the design of bioreactors.

The analysis outlined in Bongarzone, Guido & Gallaire (2022a) was precisely dedicated
to the development of an inviscid weakly nonlinear (WNL) analysis, which was seen to
successfully capture nonlinear effects for this subtle additive and multiplicative resonance
governing the super-harmonic DC swirling and which well matched the experimental
findings of Reclari (2013) and Reclari et al. (2014).

Nonetheless, the applicability of the aforementioned analysis is limited to circular
sloshing, whereas the emergence of super-harmonic DC dynamics is in principle expected
for any elliptic-type container excitation and, therefore, for longitudinal forcing as well.

The latter forcing condition has been analytically and experimentally studied for decades
(Hutton 1963; Abramson 1966; Chu 1968) and it is of interest from the perspective
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of hydrodynamic instabilities due to the occurrence of hysteretic symmetry-breaking
conditions (Miles 1984a,b). With regards to circular cylindrical containers, particularly
relevant are the experimental studies by Abramson, Chu & Kana (1966), Royon-Lebeaud,
Hopfinger & Cartellier (2007) and Hopfinger & Baumbach (2009), who detected the
stability bounds between harmonic planar, swirling and irregular waves and whose
estimates were later used by Faltinsen et al. (2016) to validate their theoretical analysis.
However, these works were mostly focused on the investigation of system responses in
the neighbourhood of harmonic resonances, whereas, with the exception of Reclari et al.
(2014) and Bongarzone et al. (2022a) in the context of circular sloshing, the literature
seems to lack comprehensive experimental and theoretical studies dealing with the most
relevant secondary super-harmonic resonances (by super harmonic, we mean here a wave
of a certain frequency ω emerging from an excitation at Ω = ω/2, with Ω the driving
angular frequency), i.e. far from primary ones, under longitudinal or, more generally,
elliptical container excitation.

In this work we take a first step in this direction by applying to longitudinal planar
forcing the analysis formalized by Bongarzone et al. (2022a) for circular container
motions. In the spirit of the multiple time-scale method, we develop a WNL model leading
to a system of two amplitude equations, which, via thorough comparison with dedicated
lab-scale experiments, is proven capable of describing satisfactorily the steady-state
system response to super-harmonic longitudinal forcing and, particularly, of detecting the
various possible dynamical regimes.

The manuscript is organized as follows. The flow configuration and governing equations
are given in § 2. In § 3 we briefly introduce the classical linear potential model and briefly
describe the numerical method employed in this work. By analogy with Bongarzone et al.
(2022a), in § 4 we first tackle the simpler case of the harmonic SC wave. The WNL
system of amplitude equations governing the DC wave dynamics under super-harmonic
longitudinal forcing, which represents the core of this study, is then formalized in
§ 5. The experimental apparatus, procedure and findings are described in § 6, where a
thorough quantitative comparison with the present theoretical estimates is carried out.
Final comments and conclusions are outlined in § 7. Lastly, Appendix B complements
the theoretical model by briefly showing how a straightforward extension of the present
analysis to a generic container’s elliptic orbits can be readily obtained without any further
calculation, hence paving the way for further analyses and experimental investigations.

2. Flow configuration and governing equations

We consider a cylindrical container of diameter D = 2R filled to a depth h with a
liquid of density ρ. The air–liquid surface tension is denoted by γ , whereas the gravity
acceleration is denoted by g. Here O′e′

xe′
ye′

z is the Cartesian inertial reference frame, while
Oexeyez is the Cartesian reference frame moving with the container. The origin of the
moving cylindrical reference frame (r, θ, z) is placed at the container revolution axis and,
specifically, at the unperturbed liquid height, z = 0 (see figure 1). A longitudinal shaking in
the horizontal plane, e.g. along the x axis, can be represented by the following equations
describing the motion velocity of the container axis intersection with the z = 0 plane,
parametrized in polar coordinates (r, θ ):

Ẋ 0 =
{

−āxΩ̄ sin (Ω̄t) cos θer,

āxΩ̄ sin (Ω̄t) sin θeθ .
(2.1)

966 A41-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.438


A. Marcotte, F. Gallaire and A. Bongarzone

Fixed vessel

orientation

δ

η

O

h

r
θ

g

ey

ex

ez

e′z

e′yO′
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Figure 1. Sketch of a cylindrical container of diameter D = 2R and filled to a depth h. The gravity acceleration
is denoted by g. Here O′e′

xe′
ye′

z is the Cartesian inertial reference frame, while Oexeyez is the Cartesian reference
frame moving with the container. The origin of the moving cylindrical reference frame (r, θ, z) is placed at the
container revolution axis and, specifically, at the unperturbed liquid height, z = 0. The perturbed free-surface
and contact line elevation are denoted by η and δ, respectively. Here āx is the amplitudes of the longitudinal
periodic forcing of the driving angular frequency Ω̄ .

Here āx is the dimensional forcing amplitude and Ω̄ is the dimensional driving angular
frequency. In the potential flow limit, the liquid motion within the moving container is
governed by the Laplace equation, subjected to the homogeneous no-penetration condition
at the solid lateral wall and bottom,

ΔΦ = 0, ∇Φ · n = 0, (2.2a,b)

and by the dynamic and kinematic boundary conditions at the free surface z = η(r, θ)

(Ibrahim 2005; Faltinsen & Timokha 2009),

∂Φ

∂t
+ 1

2
∇Φ · ∇Φ + η − κ(η)

Bo
= rf cos (Ωt) cos θ, (2.3a)

∂η

∂t
+ ∇Φ · ∇η − ∂Φ

∂z
= 0, (2.3b)

which have been made non-dimensional by using the container’s characteristic length R,
the velocity

√
gR and the time scale

√
R/g. In (2.3a), κ(η) denotes the fully nonlinear

curvature, while Bo = ρgR2/γ is the Bond number. As soon as the Bond number
is sufficiently large, i.e. Bo ∼ 103 (Bouvard et al. 2017), surface tension effects are
almost negligible (fully negligible for Bo � 104, except in the neighbourhood of the
contact line Faltinsen et al. 2016). In the following, we assume large Bond numbers
and, accordingly, the curvature term in (2.3a) is neglected. The non-dimensional driving
acceleration along the x axis reads f = axΩ

2, with ax = āx/R and Ω = Ω̄/
√

g/R. Lastly,
the non-dimensional fluid depth is H = h/R.

3. Linear potential model

Far from resonances and in the limit of small forcing amplitudes, the linear theory is
expected to provide a good approximation of the harmonic system response. Let us
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Resonant swirling waves in longitudinally forced cylinders

consider small perturbations of a base state q0,

q(r, θ, z, t) = {Φ(r, θ, z, t), η(r, θ, t)}T = q0 + εq′ = ε{Φ ′, η′}T + O(ε2), (3.1)

together with the assumption of small driving forcing amplitudes of order O(ε), i.e. f =
εF, with ε a small parameter ε � 1 and with the auxiliary variable F of order O(1).

In the following, we assume that the dynamic contact line freely slides along the lateral
wall with a constant slope while keeping a contact angle equal to a static value of 90◦. The
latter hypothesis implicitly assumes the absence of a static meniscus so that the base-state
configuration is q0 = {Φ0, η0}T = 0, i.e. the fluid is at rest with a flat static interface.

At order ε, (2.2a,b) and (2.3b) reduce to a forced linear system, whose matrix compact
form reads

(∂tB − A)q′ = F ′, (3.2)

with F ′ = FF̂(1
2 ei(Ωt−θ) + 1

2 ei(Ωt+θ)) + c.c., F̂ = {0, r/2}T and

B =
(

0 0
Iη 0

)
, A =

(
Δ 0
0 −Iη

)
, (3.3a,b)

where c.c. stands for complex conjugate and Iη is the identity matrix associated with the
interface η. Note that the kinematic condition does not explicitly appear in (3.3a,b), but
it is enforced as a boundary condition at the interface (Viola, Brun & Gallaire 2018). We
then seek a standing wave solution in the form

q′(r, θ, z, t) = Fq̂(r, z)(1
2 ei(Ωt−θ) + 1

2 ei(Ωt+θ)) + c.c., (3.4)

where q̂ is straightforwardly computed by solving the system

(iΩB − Am=1)q̂ = F̂ . (3.5)

Note that, due to the normal mode ansatz (3.4), the linear operator Am depends on
the azimuthal wavenumber m, here m = 1. Even though an exact analytical solution
to (3.5) can be readily obtained via a Bessel–Fourier series representation, in this
work, as in Bongarzone et al. (2022a), we opt for a numerical scheme based on
a discretization technique, where linear operators B and Am are discretized in space
by means of a Chebyshev pseudo-spectral collocation method with a two-dimensional
mapping implemented in Matlab, which is analogous to that described by Viola et al.
(2018) and Bongarzone, Viola & Gallaire (2021b). The numerical scheme requires explicit
boundary conditions at r = 0 in order to regularize the problem on the revolution axis
(r = 0), i.e.

m = 0 :
∂η̂

∂r
= ∂Φ̂

∂r
= 0, (3.6a)

m ≥ 1 : η̂ = Φ̂ = 0. (3.6b)

The numerical convergence of the results presented throughout the paper is achieved
using a computational grid Nr = Nz ≤ 40, with Nr and Nz the number of radial and
axial collocation grid points, respectively. Due to the low computational cost, we used
Nr = Nz = 60.

We recall the well-known dispersion relation for inviscid gravity waves (Lamb 1993),

ω2
mn = kmn tanh (kmnH), (3.7)

where the wavenumber kmn is given by the nth root of the first derivative of the mth-order
Bessel function of the first kind satisfying J′

m(kmn) = 0. By denoting the eigenvector
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associated with the natural frequency ωmn as q̂mn, the solution of the homogeneous version
of (3.5) for Ω = ωmn, it is useful for the rest of the analysis to note that owing to the
symmetries of the problem, the system admits the following invariant transformation:

(q̂mn, +m, iωmn) −→ (q̂mn, −m, iωmn). (3.8)

Such an invariance suggests that the spatial structure, q̂(r, z), of the system response to
an external forcing with temporal and azimuthal periodicity (Ω, m) is the same as that
computed for (Ω, −m), so that the linear solution form (3.4) holds true.

4. Harmonic SC resonance

With the aim to derive a WNL system of amplitude equations governing the
super-harmonic DC dynamics under longitudinal excitation, we first tackle the simpler
problem of harmonic SC waves. We look for a third-order asymptotic solution of the
system

q = {Φ, η}T = εq1 + ε2q2 + ε3q3 + O(ε4), (4.1)

where the zero-order solution, q0 = 0, associated with the rest state, is omitted.
With regards to SC waves and, specifically, to the harmonic response at a driving

frequency close to the natural frequency of one of the non-axisymmetric m = ±1 modes,
ω1n, we assume here a small forcing amplitude of order ε3. This assumption is justified by
the fact that close to resonance, Ω ≈ ω1n, and in the absence of dissipation, even a small
forcing will induce a large system response. Hence, the analysis is expected to hold for
Ω = ω1n + λ, where λ is a small detuning parameter assumed of order ε2. In the spirit of
the multiple-scale technique, we introduce the slow time scale T2 = ε2t, with t being the
fast time scale. Hence, the scalings

f = ε3F, Ω = ω1n + ε2Λ, T2 = ε2t (4.2a–c)

are assumed, with the auxiliary parameters, F and Λ, of order O(1).
Given the azimuthal periodicity of the external forcing, i.e. m = ±1, we assume a

leading-order solution as the sum of two counter-propagating travelling waves,

q1 = A1(T2)q̂
A1
1 ei(ω1nt−θ) + B1(T2)q̂

B1
1 ei(ω1nt+θ) + c.c., (4.3)

where q̂A1
1 = q̂B1

1 (owing to (3.8)) is the eigenmode computed by solving (3.5) for its
homogeneous solution at Ω = ω1n, where ω1n is given by (3.7). The complex amplitudes
A1 and B1, functions of the slow time scale T2 and still undetermined at this stage of the
expansion, describe the slow time amplitude modulation of the two oscillating waves and
must be determined at a higher order.

By pursuing the expansion to the second order, one obtains a linear system forced by
combinations of the first-order solutions. These forcing terms are proportional to A2

1 and B2
1

(second harmonics), to |A1|2 and |B1|2 (steady and axisymmetric mean flow corrections)
and to A1B1 and A1B̄1 (cross-quadratic interactions),

(∂tB − Am)q2 = F2 = (|A1|2F̂A1Ā1
2 + |B1|21F̂B1B̄1

2 )

+ (A2
1F̂A1A1

2 ei2(ω1nt−θ) + B2
1F̂B1B1

2 ei2(ω1nt+θ) + c.c.)

+ (A1B1F̂A1B1
2 ei2ω1nt + A1B̄1F̂A1B̄1

2 e−i2θ + c.c.). (4.4)
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Thus, we seek for a second-order solution of the form

q2 = |A1|2q̂A1Ā1
2 + |B1|2q̂B1B̄1

2 + (A2
1q̂A1A1

2 ei2(ω1nt−θ) + B2
1q̂B1B1

2 ei2(ω1nt+θ) + c.c.)

+ (A1B1q̂A1B1
2 ei2ω1nt + A1B̄1q̂A1B̄1

2 e−i2θ + c.c.). (4.5)

Given the invariant transformation (3.8), only some of these second-order responses need

to be computed explicitly, as, e.g. q̂A1Ā1
2 = q̂B1B̄1

2 and q̂A1A1
2 = q̂B1B1

2 .
We now move forward to the ε3-order problem, which is once again a linear problem

forced by combinations of the first-order (4.3) and second-order solutions (4.5), produced
by third-order nonlinearities such as (∇Φ1 · ∇Φ2 + ∇Φ2 · ∇Φ1)/2 in the dynamic
condition or ∇Φ1 · ∇η2 + ∇Φ2 · ∇η1 in the kinematic equation, as well as by the slow
time T2 derivative of the leading-order solution and by the external forcing, which was
assumed of order ε3,

(∂tB − Am)q3 = F3 = −∂A1

∂T2
Bq̂A1

1 ei(ω1nt−θ) − ∂B1

∂T2
Bq̂B1

1 ei(ω1nt+θ)

+ |A1|2A1F̂ |A1|2A1
3 ei(ω1nt−θ) + |B1|2B1F̂ |B1|2B1

3 ei(ω1nt+θ)

+ |B1|2A1F̂ |B1|2A1
3 ei(ω1nt−θ) + |A1|2B1F̂ |A1|2B1

3 ei(ω1nt+θ)

+ 1
2

FF̂F
3 ei(ω1nt−θ) eiΛT2 + 1

2
FF̂F

3 ei(ω1nt+θ) eiΛT2

+ N.R.T. + c.c., (4.6)

with F̂F
3 = {0, r/2}T and where N.R.T. stands for non-resonating terms. These terms

are not strictly relevant for further analysis and can therefore be neglected. Amplitude
equations for A1 and B1 are obtained by requiring that secular terms do not appear in
the solution to (4.6), where secularity results from all resonant forcing terms in F3
(see Appendix D of Bongarzone et al. (2022a) for its explicit expression), i.e. all terms
sharing the same frequency and wavenumber of q1, e.g. (ω, m) = (ω1n, ±1), and in effect
all terms explicitly written in (4.6). It follows that a compatibility condition must be
enforced through the Fredholm alternative (Friedrichs 2012; Olver 2014), which imposes
the amplitudes A = εA1e−iλt and B = εB1e−iλt to obey the following normal form:

dA
dt

= −iλA + i
μSC

2
f + iνSC|A|2A + iξSC|B|2A, (4.7a)

dB
dt

= −iλB + i
μSC

2
f + iνSC|B|2B + iξSC|A|2B. (4.7b)

Here the physical time t = T2/ε
2 has been reintroduced and where the forcing amplitude

and detuning parameter are recast in terms of their corresponding physical values, f = ε3F
and λ = ε2Λ = Ω − ω1n, so as to eliminate the small implicit parameter ε (Bongarzone
et al. 2021a, 2022b). The subscript SC stands for single crest. The various normal form
coefficients, which turn out to be real-valued quantities due to the absence of dissipation,
are computed as scalar products between the adjoint mode, q̂A1†

1 = q̂B1†
1 , associated with

q̂A1
1 = q̂B1

1 , and the third-order resonant forcing terms (see Appendix A and Bongarzone
et al. (2022a) for further details).
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Once stable stationary solutions are computed, A and B are replaced in expressions (4.3)
and (4.5) and the total harmonic SC wave solution is reconstructed as

qSC = {Φ, η}T = εq1 + ε2q2. (4.8)

To this end, it is first convenient to express (4.7a) and (4.7b) in polar coordinates,
i.e. by defining A = |A|eiΦA and B = |B|eiΦB , and then to introduce the following change
of variables, |a| = |A| + |B| and |b| = |A| − |B|. By looking for periodic solutions with
stationary amplitudes |A|, |B| /= 0, one can sum and subtract (4.7a) and (4.7b), hence
obtaining

f = axΩ
2 = ±|a|

(
λ−

(
νSC + ξSC

4

)
|a|2 −

(
3νSC − ξSC

4

)
|b|2

)
1

μSC
, (4.9a)

0 = |b|
(
λ−

(
νSC + ξSC

4

)
|b|2 −

(
3νSC − ξSC

4

)
|a|2

)
. (4.9b)

As expected, (4.9b) suggests that two possible solutions exist. The planar (or standing)
wave solution is retrieved for

|b| = |A| − |B| = 0 → |A| = |B|, (4.10a)

axΩ
2 = ±|a|

(
λ−

(
νSC + ξSC

4

)
|a|2

)
1

μSC
, (4.10b)

whereas the swirling wave solution is found when |b| /= 0 and

|b|2 =
(
λ−

(
3νSC − ξSC

4

)
|a|2

) (
4

νSC + ξSC

)
, (4.11a)

axΩ
2 = ±2|a|

(
ξSC − νSC

νSC + ξSC

) (
λ− νSC|a|2

) 1
μSC

. (4.11b)

The various branches prescribed by (4.10b), (4.11a) and (4.11b) for |a| and |b| as a function
of τ = Ω/ω1n and at a fixed non-dimensional shaking amplitude ax are here computed by
means of the Matlab function fimplicit.

From (4.7a) and (4.7b) expressed in polar coordinates, one finds that the stationary
module equations read μSCf sin ΦA/2 = 0 and μSCf sin ΦB/2 = 0, hence implying
sin ΦA = sin ΦB = 0. We therefore note that four possible combinations of stationary
phases, ΦA and ΦB ∈ [0, 2π], are in principle admitted, i.e. (i) ΦA = ΦB = 0, (ii) ΦA =
ΦB = π, (iii) ΦA = 0, ΦB = π and (iv) ΦA = π, ΦB = 0. However, (iii) and (iv) are
totally equivalent to (i) and (ii), respectively, with amplitudes |a| → |b| and |b| → |a|.
Therefore, only combinations (i) ΦA = ΦB = Φ = 0 and (ii) Φ = π, which produce the
± sign in (4.9a), are retained.

4.1. Comparison with existing experiments and theoretical predictions
In figure 2 we reproduce figure 8 of Faltinsen et al. (2016), which shows the estimates
of bounds between the frequency ranges where harmonic planar, irregular and swirling
waves occur. The outcomes of the present analysis are consistent with those of Faltinsen
et al. (2016) and with the experimental measurements by Royon-Lebeaud et al. (2007). The
values of the normal form coefficients μSC, νSC and ξSC reported in table 1 of Appendix A
confirm that the stability boundaries vary weakly with the liquid depth, as stated by
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Figure 2. Estimates of bounds, in the (Ω/ω11, ax) plane, between the frequency ranges where planar, irregular
and swirling waves occur when the container undergoes a longitudinal and harmonic motion. Filled markers:
experiments by Royon-Lebeaud et al. (2007). Black dashed lines: theoretical prediction by Faltinsen et al.
(2016), whose theoretical curves have been reproduced here by manually sampling those reported in their
original figure 8(a).

H = h/R μSC νSC ξSC μDC νDC ξDC ζDC χ− χ+

1.10 −0.279 1.414 −7.487 0.118 9.821 −32.077 0.104 2.697 −3.257
1.20 −0.280 1.407 −7.914 0.108 9.812 −32.110 0.067 2.692 −3.159
1.30 −0.281 1.406 −8.101 0.101 9.813 −32.128 0.046 2.687 −3.089
1.40 −0.282 1.407 −8.211 0.096 9.812 −32.138 0.035 2.682 −3.040
1.50 −0.283 1.409 −8.281 0.093 9.811 −32.143 0.029 2.678 −3.006
1.60 −0.283 1.410 −8.328 0.091 9.811 −32.146 0.028 2.675 −2.982
1.70 −0.283 1.411 −8.359 0.089 9.810 −32.148 0.029 2.673 −2.965
1.80 −0.284 1.412 −8.381 0.089 9.810 −32.149 0.032 2.672 −2.953
1.90 −0.284 1.412 −8.395 0.088 9.810 −32.149 0.035 2.671 −2.945
2.00 −0.284 1.413 −8.405 0.087 9.810 −32.150 0.040 2.670 −2.940

Table 1. Value of the normal form coefficients appearing in (4.7a) and (4.7b) (SC) and in (5.9a) and (5.9b)
(DC) computed at different fluid depths H = h/R and associated with mode (m, n) = (1, 1). Note that in (5.9a)
and (5.9b), χDC = χ− + χ+.

Faltinsen et al. (2016) for non-dimensional fluid depths H � 1.05, but strongly depend on
the forcing amplitude, with the frequency range for irregular and swirling waves widening
for increasing forcing amplitudes. In this context, irregular means that both the planar and
the swirling wave solutions are unstable, hence, one could expect irregular and chaotic
patterns with a switching between planar and swirling motion. The green shaded region
corresponds to stable SC swirling waves, while the light purple shaded region corresponds
to the multi-solution regime, where both stable swirling SC and planar SC wave motions
are possible depending on the initial transient, i.e. on the initial conditions, as typical of
hysteretic systems.

In figures 3(a) and 3(b) the non-dimensional maximum steady-state wave elevation,
computed by reconstructing the total flow solution in accordance with (4.8), is compared
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Figure 3. Non-dimensional maximum steady-state wave elevation, maxt,θ=0,π/2 η (the maximum is taken
from values at two probes located at (x, y) = (0.875, 0) and (0, 0.875)) versus the forcing frequency Ω/ω11
and for different x-longitudinal shaking amplitudes, ax: (a) 0.0033, 0.0066, 0.0133 and 0.0266; (b) 0.023 and
0.045. Markers are associated with two experimental series by Royon-Lebeaud et al. (2007) (experimental data
from their original figures 2 (now (a)) and 7 (now (b)). Filled circles correspond to measurements done for the
planar regime, whereas filled squares indicate swirling. The black dashed lines represent the stable branches
predicted by Faltinsen et al. (2016). Their curves have been carefully reproduced here by manually sampling
those reported in their original figure 10 in the range of frequency available, i.e. Ω/ω11 ∈ [0.7, 1.2]. Coloured
solid lines correspond to the present theoretical predictions for stable branches.

with the theoretical estimations by Faltinsen et al. (2016) (black dashed lines) from
their figure 8 and with the corresponding experimental measurements by Royon-Lebeaud
et al. (2007) (coloured filled markers). The agreement between the present model and
experiments is fairly good and consistent with predictions by Faltinsen et al. (2016). The
larger disagreement between theory and experiments at smaller forcing amplitudes was
tentatively attributed by Faltinsen et al. (2016) to the fact that the actual elevation of these
wave amplitudes was approximately 1 mm and may therefore be more difficult to measure
with sufficient accuracy.

A comparable mismatch is here retrieved. As a side comment, we note that, within the
present inviscid framework, the lower left stable planar branch, Ω/ω11 < 1, is obtained for
a phase Φ = 0, which implies a fluid motion in phase with the container motion, whereas
the lower right planar branch, Ω/ω11 > 1, has a phase Φ = π, hence implying a phase
opposition. The stable swirling branch is characterized by Φ = 0. This is consistent with
previous studies (Royon-Lebeaud et al. 2007).

4.2. Discussion: present analysis vs the Narimanov–Moiseev multimodal theory
In this section the present model for harmonic resonances has been compared with the
Narimanov–Moiseev multimodal theory employed by Faltinsen et al. (2016) and has been
shown to provide very consistent and close predictions. Before moving to the next section,
it is therefore worth pointing out the methodological analogies and differences as well as
the pros and cons of the two approaches.

Adopting a variational formulation (Miles 1976) and assuming an incompressible and
irrotational flow, the multimodal method reduces the hydrodynamic sloshing system to a
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modal system of nonlinearly coupled ordinary differential equations written in terms of the
so-called generalized coordinates (Faltinsen & Timokha 2009). This projection step uses a
Fourier-type representation of the time-dependent surface elevation and potential velocity
field. Because the resulting coefficients in the equation system are derived analytically
and only ordinary differential equations must be numerically time integrated, numerical
errors are negligible with small CPU time relative to that for computational fluid dynamics
methods based on the governing equations of the full hydrodynamic sloshing system.

For theoretical modelling purposes, postulating proper asymptotic relations between
these generalized coordinates simplifies the system to a WNL form. Specifically in the case
of harmonic resonances, the Narimanov–Moiseev asymptotic relations assume a leading
dynamics of order ∼ ε, a frequency detuning ∼ ε2, a forcing amplitude ∼ ε3 and a slow
time scale ∼ ε2. As surface tension effects are neglected and the contact line is assumed
to freely sleep along the sidewall with a constant and zero slope, the Fourier basis (Bessel
functions for circular cylinders) also coincides with the actual natural sloshing modes.

Under these assumptions, although we do not go through this initial projection step, the
present model and the Narimanov–Moiseev multimodal theory are essentially equivalent.
The ε-order leading dynamics (4.3) is indeed written in terms of natural sloshing modes
(here computed numerically) and the same asymptotic scaling is adopted (see (4.2a–c)).

Nevertheless, the reintroduction of surface tension in the multimodal theory can be
challenging. In particular, it is not clear yet how to account for static meniscus and contact
line dynamics (Raynovskyy & Timokha 2020). Moreover, in these cases, the element of
the Fourier basis (Bessel) functions no more coincide with the actual natural sloshing
modes.

The numerical nature of our approach, based on primitive equations, not only allows
us to reintroduce straightforwardly surface tension (see Bongarzone et al. 2022a) but
also to possibly account (asymptotically) for static meniscus effects and contact angle
dynamics while keeping the leading-order dynamics expressed in terms of exact (up to a
numerical convergence error) linear natural modes computed numerically. This has been
shown possible in a series of works by some of the authors (Viola et al. 2018; Viola &
Gallaire 2018; Bongarzone et al. 2021b, 2022b) and makes the present approach in this
sense more versatile to study the sloshing problem under non-ideal sidewall conditions.

Most important for the following analysis, is the case of the resonant amplification
of higher-order modes. Below a critical liquid depth, typically Hcr ≈ 1.05 for circular
cylinders, such amplification (secondary or internal resonances) can happen in the vicinity
of the primary resonance. These cases, which require a reordering of the asymptotic
scaling, can still be tackled in the framework of the multimodal theory by employing
the so-called adaptive modal approach (see chapters 7–9 of Faltinsen & Timokha 2009;
Raynovskyy & Timokha 2020). However, secondary resonances may also occur more
broadly even far from the primary resonance zone and for H > Hcr, as in the case of the
DC super-harmonic resonance. To the authors’ knowledge, even though its formalization
appears possible, no variant of the abovementioned adaptive modal approach capable of
dealing with super-harmonic resonances far from the primary one has been reported yet.
The WNL analysis of the next section proposes an asymptotic reordering allowing one to
deal with the specific case of super-harmonic DC resonances (Bongarzone et al. 2022a).

5. Super-harmonic DC resonance

We now tackle the DC wave response to longitudinal shaking, whose investigation
represents the core of the present work. We remind that the DC dynamics occurs at
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(a) (b) (c)

Figure 4. Spatial structures of the first-order contributions (a) qF
1 (r, z) ei cos θ (SC) and (b) q̂A2

1 cos 2θ =
q̂B2

1 cos 2θ (DC) appearing in (5.2) and computed for t = 0 and T1 = 0. (c) Superposition of (a) and (b). Here
the corresponding amplitudes have been arbitrarily chosen for visualization purposes, but we note that, while
amplitudes A2 and B2 still need to be determined, the amplitude of the SC solution (a) is univocally defined
once the amplitude, F, and the oscillation frequency, Ω , of the external driving are prescribed.

a driving frequency Ω ≈ ω2n/2 (see figure 4 of Reclari et al. 2014). For the sake of
generality, the following analysis is therefore formalized for any mode (2, n), i.e. Ω =
ω2n/2 + λ, where λ is the small detuning parameter.

By analogy with Bongarzone et al. (2022a), the leading-order solution is here assumed
to be given by the sum of a particular solution, given by the linear response to the external
forcing, computed by solving (3.5) with Ω = ω2n/2 and m = ±1, and a homogeneous
solution, represented by the two natural modes for (m, n) = (±2, n) associated with ω2n,
up to their amplitudes to be determined at higher orders (see figure 4). At second order,
quadratic terms in (Ω, m) = (ω2n/2, ±1) will produce resonant terms in (ω2n, ±2). These
ε2-order resonating terms will then require, in the spirit of multiple time-scale analysis, an
additional second-order solvability condition, hence suggesting that two slow time scales
exist, namely T1 and T2. Thus, the asymptotic scalings of the WNL expansion for DC
waves are

f = εF, Ω = ω2n/2 + εΛ, T1 = εt, T2 = ε2t, (5.1a–d)

with a first-order solution reading

q1 = A2(T1, T2)q̂
A2
1 ei(ω2nt−2θ) + B2(T1, T2)q̂

B2
1 ei(ω2nt+2θ)

+ 1
2

Fq̂F
1 ei((ω2n/2)t−θ) eiΛT1 + 1

2
Fq̂F

1 ei((ω2n/2)t+θ) eiΛT1 + c.c. (5.2)

In (5.2), q̂A2
1 = q̂B2

1 , whereas A2 and B2 are the unknown slow time amplitude modulations,
here functions of the two time scales T1 and T2. The second-order linearized forced
problem reads

(∂tB − Am)q2 = F2 = F ij
2 −

(
∂A2

∂T1
Bq̂A2

1 ei(ω2nt−2θ) + ∂B2

∂T1
Bq̂B2

1 ei(ω2nt+2θ) + c.c.
)

− iΛF
(

1
2

Bq̂F
1 ei((ω2n/2)t−θ)eiΛT1 + 1

2
Bq̂F

1 ei((ω2n/2)t+θ)eiΛT1 + c.c.
)

. (5.3)

The first-order solution is indeed made of eight different contributions (including the
complex conjugates) and it generates, in total, 36 different second-order forcing terms,
here implicitly gathered in F ij

2, each characterized by a certain oscillation frequency
and azimuthal periodicity. For the sake of brevity, indices (i, j) are used to remind that
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each forcing is proportional to a quadratic combination of leading-order amplitudes.
These indices can assume the following values: i, j = A2, B2, F, Ā2, B̄2, F̄. For instance,
the quadratic interaction of A2(T1, T2)q̂

A2
1 ei(ω2nt−2θ) with itself will have indices (i =

A2, j = A2) and will produce a forcing term proportional to A2
2, i.e. FA2A2

2 . The additional
eight forcing terms, with their complex conjugates, appearing in (5.3), stem from the
time derivative of the first-order solution (5.2) with respect to the first-order slow
time scale T1. None of the forcing terms in (5.3) are resonant, as their oscillation
frequency or azimuthal wavenumber differ from those of the leading-order homogeneous
solution, except the two terms produced by the second harmonic of the leading-order
particular solution, i.e. FFF

2 = 1
4 F2F̂FF

2 ei(ω2nt−2θ) ei2ΛT1 + 1
4 F2F̂FF

2 ei(ω2nt+2θ) ei2ΛT1 +
c.c.. To avoid secular terms, a second-order compatibility condition is thus imposed,
requiring that the following normal form equations are verified:

∂A2

∂T1
= i

μDC

4
F2 ei2ΛT1,

∂B2

∂T1
= i

μDC

4
F2 ei2ΛT1 . (5.4a,b)

Taken alone, the dynamics resulting from system (5.4a,b) is still of little relevance, since
it can be shown that the wave amplitudes A2 and B2 scale like ∼ 1/Λ, hence diverging
symmetrically to infinity for Λ → 0 (Ω → ω2n/2) in the absence of any restoring term,
i.e. the nonlinear mechanism responsible for the finite amplitude saturation, which only
comes into play at order ε3. The expansion must be therefore pursued up to the next order,
and thereby one must solve for the second-order solution (Fujimura 1989, 1991).

By substituting (5.2) and (5.4a,b) in the forcing expression, (5.3) can be rewritten as

(∂tB − Am)q2 = F ij
2NRT

+ F ij
2RT

= F ij
2NRT

+ c.c.

+ 1
4 F2(F̂FF

2 − iμDCBq̂A2
1 ) ei(ω2nt−2θ) ei2ΛT1 + c.c.

+ 1
4 F2(F̂FF

2 − iμDCBq̂B2
1 ) ei(ω2nt+2θ) ei2ΛT1 + c.c., (5.5)

where the subscripts NRT and RT denote non-resonating and resonating terms, respectively.
Note that the term proportional to ΛF in (5.3) has been included in the non-resonating
forcing terms, while resonant terms are written explicitly. The compatibility condition is
now satisfied, meaning that the new resonant forcing term is orthogonal to the adjoint
mode, q̂A2†

1 = ¯̂qA2
1 , by construction so that, according to the Fredholm alternative, a

non-trivial unique solution can be computed. Hence, we can write the second-order
solution as

q2 = (|A2|2q̂A2Ā2
2 + 1

4 |F|2q̂FF̄
2 )

+ (A2
2q̂A2A2

2 ei(2ω2nt−4θ) + 1
2ΛFq̂ΛF

2 ei((ω2n/2)t−θ) eiΛT1 + c.c.)

+ (1
2 A2Fq̂A2F

2 ei((3ω2n/2)t−3θ) eiΛT1 + 1
2 A2F̄q̂A2F̄

2 ei((ω2n/2)t−θ) e−iΛT1 + c.c.)

+ (|B2|2q̂B2B̄2
2 + 1

4 |F|2q̂FF̄
2 )
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+ (B2
2q̂B2B2

2 ei(2ω2nt+4θ) + 1
2ΛFq̂ΛF

2 ei((ω2n/2)t+θ) eiΛT1 + c.c.)

+ (1
2 B2Fq̂B2F

2 ei((3ω2n/2)t+3θ) eiΛT1 + 1
2 B2F̄q̂B2F̄

2 ei((ω2n/2)t+θ) e−iΛT1 + c.c.)

+ (A2B2q̂A2B2
2 ei2ω2nt + A2B̄2q̂A2B̄2

2 e−i4θ + c.c.)

+ (1
4 F2q̂FF

2 eiω2nt ei2ΛT1 + 1
4 FF̄q̂FF̄

2 e−i2θ + c.c.)

+ (1
2 A2Fq̂A2F

2 ei((3ω2n/2)t−θ) eiΛT1 + 1
2 A2F̄q̂A2F̄

2 ei((ω2n/2)t−3θ) e−iΛT1 + c.c.)

+ (1
2 B2Fq̂B2F

2 ei((3ω2n/2)t+θ) eiΛT1 + 1
2

B2F̄q̂B2F̄
2 ei((ω2n/2)t+3θ) e−iΛT1 + c.c.)

+ (1
4 F2q̂FF

2 ei(ω2nt−2θ) ei2ΛT1 + 1
4

F2q̂FF
2 ei(ω2nt+2θ) ei2ΛT1 + c.c.). (5.6)

All non-resonant responses in (5.6) are handled similarly, i.e. they are computed in Matlab
by performing a simple matrix inversion using standard LU solvers. Although the operator
associated with the resonant forcing term, i.e. (iω2nB − A2), is singular, the value of the
normal form coefficient μDC ensures that a non-trivial solution for q̂F2

2 exists. Diverse
approaches can be followed to compute this response, which was here computed by
using the pseudo-inverse matrix of the singular operator (Orchini, Rigas & Juniper 2016)
obtained via the built-in Matlab function pinv. We also recall that due to the invariant
transformation (3.8), only some of the spatial structures appearing in (5.6) need to be
computed. Lastly, at third order in ε, the problem reads

(∂tB − Am)q3 = F3 = −∂A2

∂T2
Bq̂A2

1 ei(ω2nt−2θ) − ∂B2

∂T2
Bq̂B2

1 ei(ω2nt+2θ)

− i
1
4

2ΛF2Bq̂F2

2 ei(ω2nt−2θ) ei2ΛT1 − i
1
4

2ΛF2Bq̂F2

2 ei(ω2nt+2θ) ei2ΛT1

+ |A2|2A2F̂ |A2|2A2
3 ei(ω2nt−2θ) + |B2|2B2F̂ |B2|2B2

3 ei(ω2nt+2θ)

+ |B2|2A2F̂ |B2|2A2
3 ei(ω2nt−2θ) + |A2|2B2F̂ |A2|2B2

3 ei(ω2nt+2θ)

+ 1
4

F2A2F̂ |F|2A2
3 ei(ω2nt−2θ) + 1

4
F2B2F̂ |F|2B2

3 ei(ω2nt+2θ)

+ 1
4
ΛF2F̂ΛF2

3 ei(ω2nt−2θ) ei2ΛT1 + 1
4
ΛF2F̂ΛF2

3 ei(ω2nt+2θ) ei2ΛT1 + N.R.T. + c.c.,

(5.7)

where the first two forcing terms arise from the time derivative of the first-order solution
with respect to the second-order slow time scale T2 and from that of the second-order
solution with respect to the first-order slow time scale T1, respectively (see Appendix D
of Bongarzone et al. (2022a) for the full expression of F2 and F3). Once again, all
terms explicitly written in (5.7) are resonant, as they share the same pair (ω2n, ±2) as the
first-order homogeneous solutions, hence a third-order compatibility condition, leading to
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the following normal form, must be enforced,

∂A2

∂T2
= i

ζDC

4
ΛF2 ei2ΛT1 + i

χDC

4
A2F2 + iνDC|A2|2A2 + iξDC|B2|2A2, (5.8a)

∂B2

∂T2
= i

ζDC

4
ΛF2 ei2ΛT1 + i

χDC

4
B2F2 + iνDC|B2|2B2 + iξDC|A2|2B2. (5.8b)

where the coefficients are defined in Appendix A.
As a last step in the derivation of the final amplitude equation for the DC waves and in

order to eliminate the implicit small parameter ε, we unify systems (5.4a,b), (5.8a) and
(5.8b) into a single system of equations recast in terms of the physical time t = T1/ε =
T2/ε

2, physical forcing control parameters, f = εF, λ = εΛ and total amplitudes, A =
εA2 e−i2λt and B = εB2 e−i2λt. This is achieved by summing (5.4a,b)–(5.8a) and (5.8b)
along with their respective weights ε2 and ε3, thus obtaining

dA
dt

= −i
(

2λ− χDC

4
f 2

)
A + i

(ζDCλ+ μDC)

4
f 2 + iνDC|A|2A + iξDC|B|2A, (5.9a)

dB
dt

= −i
(

2λ− χDC

4
f 2

)
B + i

(ζDCλ+ μDC)

4
f 2 + iνDC|B|2B + iξDC|A|2B. (5.9b)

We note that no second-order homogeneous solutions, e.g. proportional to amplitudes
C2(T1, T2) and D2(T1, T2), have been accounted for in (5.6), as their presence will
produce two resonant third-order terms, (∂C2/∂T1)Bq̂C2

2 ei(ω2nt−2θ) (q̂C2
2 = q̂A2

2 ) and
(∂D2/∂T1)Bq̂D2

2 ei(ω2nt+2θ) (q̂C2
2 = q̂A2

2 ), that can be incorporated in the final amplitude
equations (5.9a) and (5.9b) by simply defining A = ε(A2 + εC2) e−i2λt and B = ε(B2 +
εD2) e−i2λt.

As in § 4, we first turn to polar coordinates, A = |A|eiΦA and B = |B|eiΦA , and we
split the modulus and phase parts of (5.9a) and (5.9b). We then look for stationary
solutions, d/dt = 0 with |A|, |B| /= 0 (ΦA = ΦB = Φ = 0, π; see § 4). By summing and
subtracting (5.9a) and (5.9b), after introducing the auxiliary amplitudes |a| = |A| + |B|
and |b| = |A| − |B|, the following implicit relations are obtained:

f 2 = |a|
(

2λ− νDC + ξDC

4
|a|2 − 3νDC − ξDC

4
|b|2

)
4

(|a|χDC ± 2(ζDCλ+ μDC))
,

(5.10a)

0 = |b|
(

χDC

4
f 2 −

(
2λ− νDC + ξDC

4
|b|2 − 3νDC − ξDC

4
|a|2

))
. (5.10b)

Here f = axΩ
2 and λ = Ω − ω2n/2. By analogy with harmonic forcing conditions, two

possible (super-harmonic) solutions exist, i.e. a planar wave solution for |b| = 0,

f =
√

|a|
(

2λ− νDC + ξDC

4
|a|2

)
4

(|a|χDC ± 2(ζDCλ+ μDC))
, (5.11)
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and a swirling solution for |b| /= 0, defined by

|b|2 =
(

2λ− χDC

4
f 2 − 3νDC − ξDC

4
|a|2

) (
4

νDC + ξDC

)
, (5.12a)

f =
√√√√√2|a|

(
ξDC − νDC

νDC + ξDC

)
(2λ− νDC|a|2) 4(

2|a|(ξDC − νDC)

(νDC + ξDC)
χDC ± 2(ζDCλ+ μDC)

) ,

(5.12b)

where only real solutions corresponding to f = axΩ
2 > 0 are retained, as the

combinations axΩ
2 < 0 are not physically meaningful.

The stability of such stationary solutions ys = (|A|, ΦA, |B|, ΦB) is computed by
introducing small amplitude and phase perturbations (� 1) with the ansatz yp(t) =
(|Ap|, ΦA,p, |Bp|, ΦB,p) est in (5.9a) and (5.9b), which are then linearized around y0, hence
obtaining at first order an eigenvalue problem in the complex eigenvalue s = sR + isI . For
each (|A|, ΦA, |B|, ΦB), one obtains four eigenvalues s and if the real part sR of at least
one of these eigenvalues is positive, then that configuration is deemed as unstable. An
analogous procedure has been followed for the case of harmonic resonances discussed in
§ 4.

Once the various branches for |a| and |b| as a function of τ = Ω/ω2n and at a fixed
non-dimensional shaking amplitude ax are computed and their stability is determined,
amplitudes A and B are substituted in (5.2) and (5.6), so that the total flow solution
predicted by the WNL for DC waves is reconstructed as

qDC = {Φ, η}T = εq1 + ε2q2. (5.13)

As discussed in Bongarzone et al. (2022a) for circular sloshing, although the
quantitative dependence on the external control parameters, i.e. driving amplitude and
frequency, is different with respect to the SC case, e.g. f 2 instead of f , system (5.9a) and
(5.9b) is essentially analogous to that given in (4.7a) and (4.7b). Indeed, (5.9a) and (5.9b)
contain four main contributions,

λ↔
(

2λ− χDC

4
f 2

)
, μSCf ↔ ζDCλ+ μDC

4
f 2, νSC ↔ νDC, ξSC ↔ ξDC,

(5.14a–d)
corresponding respectively to a detuning term (forcing amplitude dependent), an additive
(quadratic) forcing term (driving frequency dependent), the classic cubic restoring
term and, lastly, the cubic term dictating the nonlinear interaction between the two
counter-propagating travelling waves. For these reasons, figure 5 shows the nonlinear
amplitude saturation for |a| = |A| + |B| and |b| = |A| − |B| that are reminiscent of those
commented and displayed by Faltinsen et al. (2016) in their figure 7 with regard to
harmonic system responses, although the phases associated to each super-harmonic branch
are π shifted with respect to the their harmonic analogous.

A more detailed description of the bifurcation diagrams shown in figures 5(a) and 5(b) is
given in Faltinsen et al. (2016). Here we limit to note that the branching diagrams contain
three bifurcation points, namely U (turning point), H (Hopf bifurcation) and P (Poincaré
bifurcation, Miles 1984b), whose positions determine the frequency ranges where stable
planar (standing), swirling or irregular waves are theoretically expected. By keeping track
of the position of these three bifurcation points in the (Ω/ω21, |a|) plane as the forcing
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Figure 5. Typical response curve for a and b for a fluid depth H = 1.5 with longitudinal super-harmonic
forcing of amplitude ax = 0.2. Panel (a) shows a projection of the three-dimensional branch structure
(Ω/ω21, |a|, |b|) in the (Ω/ω21, |a|) plane, whereas panel (b) shows the same projection, but on the
(Ω/ω21, |b|) plane. Black solid lines mark stable steady-state planar waves, whereas light blue solid lines
indicate stable steady-state swirling waves. Dashed lines denote the corresponding unstable branches. Here
U denotes the turning point, H denotes the Hopf bifurcation and P denotes the Poincaré bifurcation. For
completeness, the phase values ΦA = ΦB = Φ = 0 or π associated to each branch are reported in panel (a).
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Figure 6. Estimates of bounds, in the (Ω/ω21, ax) plane, between the frequency ranges where planar, irregular
and swirling waves occur when the container undergoes a longitudinal and super-harmonic motion at a forcing
frequency Ω ≈ ω21/2. In this range of frequency, the theory predicts the superposition of an unconditionally
stable planar SC wave (m = ±1) oscillating harmonically with the driving frequency and a super-harmonic
DC dynamics (m = ±2), which can manifest itself via planar, swirling or irregular wave motions. The stability
boundaries (black solid lines) were computed for a fluid depth H = 1.5, as in Royon-Lebeaud et al. (2007).
The corresponding values of the normal form coefficients appearing in (5.9a) and (5.9b) are given in table 1.
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amplitude, ax, is varied, one can draw a super-harmonic stability chart in the (Ω/ω21, ax)
plane similar to that of figure 3 for harmonic resonances and which is shown in figure 6.

The first striking difference with respect to the harmonic stability chart of figure 2 is
the opposite curvature of the stability boundaries between the various super-harmonic
regimes. As mentioned above, this is due to the quantitative dependence of the additive
forcing term in system (5.9a) and (5.9b) on the driving amplitude, which is here quadratic
in f , thus leading to the square root in (5.11) (planar DC) and (5.12b) (swirling DC).

Furthermore, there is a substantial difference in terms of free-surface patterns. As
suggested by the form of the first-order solution (5.2), the leading-order dynamics,
governing the super-harmonic system response to longitudinal forcing, results from
a superposition of a stable planar (or standing) SC wave, oscillating harmonically
at a frequency ωSC = Ω ≈ ω2n/2 and generated by the two m = ±1 counter-rotating
travelling waves of equal amplitudes, and a super-harmonic DC wave dynamics oscillating
at a frequency of approximately ωDC = 2Ω ≈ ω2n (period halving). We can also
relate the SC wave frequency to its own natural frequency by writing ωSC = Ω ≈
1
2
√

k2n tanh k2nH/k1n tanh k1nHω1n, which is ≈ 0.657ω1n (in deep water) for n = 1 and
approaches 0.5ω1n for large n, hence showing that the DC resonance always occurs far
from the primary harmonic resonance.

When the amplitudes of the two travelling waves with m = ±2 are equal, i.e. |A| = |B|
(or |b| = 0), the DC dynamics manifests itself via planar motion and the global solution
takes the form of a planar wave (planar SC + DC, light blue shaded region in figure 6). On
the contrary, when |A| /= |B| /= 0, one of the two m = ±2 waves dominates over the other
and a stable swirling motion, responsible for the system symmetry breaking, is established.
In this case, the total solution is given by the sum of a harmonic planar SC wave and
a super-harmonic swirling DC wave (swirling DC + planar SC, green shaded region in
figure 6). The white dotted region and the light red shaded regions in figure 6 correspond,
respectively, to the super-harmonic irregular motion regime (see § 6 for further details)
and to the multi-solution range where both types of motion are possible depending on the
initial conditions, i.e. to the region of hysteresis.

6. Experiments

In this section we present our experimental set-up dedicated to the generation and
characterization of sloshing waves under longitudinal super-harmonic forcing with driving
(dimensionless) frequency Ω ≈ ω21/2. The bounds between the different regimes for
the resulting super-harmonic wave are experimentally retrieved as a function of the
driving amplitude and frequency, and compared with the theoretical estimates. Finally, we
measure the wave amplitude saturation in the vicinity of the super-harmonic resonance,
and compare it with the theoretical WNL prediction (5.13).

6.1. Experimental set-up
The experimental set-up used to generate the sloshing waves in the cylindrical container
and to observe the resulting free-surface motion is shown in figure 7. A Plexiglas
cylindrical container of height 50 cm and inner diameter D = 2R = 17.2 cm, partially
filled with a column of distilled water of height h = 11 cm, is fixed on a single-axis linear
motion actuator (AEROTECH PRO165LM). Sloshing waves are generated by imposing
to the container a longitudinal sinusoidal forcing of angular frequency Ω̄ and amplitude
āx. The motion of the fluid free surface is recorded with a digital camera (NIKON D850)
coupled with a Nikon 60 mm f/2.8D lens and operated in slow motion mode, allowing
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X0(t) = a–x cos (Ω
–t)ex

Figure 7. Experimental apparatus.

for an acquisition frequency of 120 frames per second. The optical axis of the camera is
aligned with the container motion axis. A LED panel (not depicted in figure 7) placed
behind the tank provides back illumination of the fluid free surface for a better optical
contrast.

The actuation of the moving stage as well as the camera triggering for movie recording
are set and controlled via a home-made Labview program. In a typical experiment, the
container undergoes a harmonic motion of fixed amplitude in the range 4 mm ≤ āx ≤
34 mm (i.e. ax = āx/R ∈ [0.05, 0.40]), while a sweep in forcing frequency is implemented
within the interval Ω̄/2π ∈ [1.35 Hz, 1.58 Hz] corresponding to the dimensionless
range Ω/ω21 ∈ [0.45, 0.53]. Each frequency step lasts 100 oscillation periods while the
frequency increment between two consecutive steps is typically of 10 mHz. Along the
sweeping, a movie is recorded for each (āx, Ω̄) set of parameters. To ensure that the
steady-state amplitude regime is established at each step in the recorded free-surface
dynamics, the camera is triggered only after a certain number of cycles, typically 50, see
Appendix C.

6.2. Analysis of the free-surface dynamics

6.2.1. Qualitative observations
While operating a sweep in forcing frequency at a fixed forcing amplitude, we observe
in the vicinity of the super-harmonic resonance three different kinds of motion, namely
planar, irregular and swirling ones, whose occurrence depends on the forcing amplitude
and frequency; see, for instance, the snapshots displayed on figure 8 or the videos provided
among the supplementary movies available at https://doi.org/10.1017/jfm.2023.438.

For a given (and large enough) amplitude and starting from a frequency higher
than a certain amplitude-dependent threshold ΩP(ax), the free surface responds to
the longitudinal harmonic forcing by displaying a planar dynamics such as shown in
figure 8(c). When the critical frequency Ω = ΩP(ax) is reached, the motion bifurcates
to a swirling wave, which propagates along the container wall with a stationary amplitude;
see figure 8(b). The wave can rotate either clockwise or anti-clockwise (both rotation
directions were observed along the experiments). When the forcing frequency is further
decreased below a critical frequency Ω = ΩH(ax) ≈ ω21/2 < ΩP(ax), the free surface
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t = 0

t ≈ T/4

t ≈ T/2

t ≈ 3T/4

(a) (b) (c)

Figure 8. Images of the fluid free surface while the container is subjected to a longitudinal harmonic forcing
of amplitude ax = āx/R ≈ 0.23 at various driving angular frequencies Ω close to ω21/2. The fluid free surface
is observed in the direction aligned with the container motion. For each driving frequency (a), (b) and (c),
the time interval between two snapshots is about T/4, with T = 2π/Ω the corresponding oscillation period.
On each snapshot, the vertical middle axis is represented by a red dotted line. For a forcing frequency Ω ≈
0.48ω21 (a) and Ω ≈ 0.52ω21 (c) the free-surface image at each time t is mirror symmetric with respect to the
middle vertical axis, the signature of a planar wave regime, while the symmetry is broken for Ω ≈ 0.50ω21 (c)
revealing a swirling wave. Results are shown for (a) Ω/ω21 ≈ 0.48, (b) Ω/ω21 ≈ 0.50 and (c) Ω/ω21 ≈ 0.52.

exhibits an irregular dynamics, characterized by a switching between planar and swirling
motion (not shown in figure 8). For forcing frequencies lower than a certain threshold
Ω < ΩU(ax), the free-surface motion stabilizes into a steady planar wave such as shown in
figure 8(a). All together, these observations are qualitatively consistent with the outcomes
of the WNL analysis in § 5, that predicts the existence of three different dynamical regimes
– namely planar, irregular and swirling motions – for a longitudinal forcing frequency in
the vicinity of ω21/2. One of the main purposes of the present experimental investigation
is to determine the amplitude-dependent frequency bounds of these different regimes and
to compare them to our theoretical prediction of the positions of the bifurcation points U
(turning point), H (Hopf bifurcation) and P (Poincaré bifurcation) (see figures 5 and 6).

6.2.2. Procedure
Since the camera optical axis is aligned with the direction of the container motion, we note
that a planar wave is characterized by its symmetry with respect to the vertical middle axis
of the container image, whereas a swirling wave breaks this symmetry while travelling
clockwise or anti-clockwise along the container walls; see figure 8.

We take benefit of these observations to build a more quantitative description of the
free-surface dynamics, with the aim of identifying the various types of sloshing waves in
the vicinity of the super-harmonic resonance. This can be done by exploiting the symmetry
properties of the image of the free-surface response with respect to the vertical middle axis
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of the container image, and by characterizing the regularity of these waves as a function
of the forcing parameters, so as to identify the irregular regime.

To do so, the time evolution of the free-surface dynamics is extracted from the movies
along vertical directions that are mirror symmetric with respect to the vertical middle axis
of the container image. Comparing the resulting temporal signals with each other allows
one to discriminate between planar and swirling motions and to study the wave regularity.

The first step is to attach to each frame t of a given movie, a Cartesian reference frame
(Y(t), Z(t)), such that Y(t) = 0 corresponds to the vertical middle axis of the container
image, and that Y(t) = R represents the right-hand side edge of the container image. To
this end, the edges of the container are automatically detected in a dedicated Matlab
program. The vertical Z(t) axis (Y(t) = 0) on the frame corresponding to time t is then
set as the middle line between these two edges, while the distance between both edges sets
the scale of the horizontal direction Y . Note that we neglect the 4 mm thickness of the
container wall.

A direction y ∈ [−R, R] is then chosen to extract from each frame corresponding to
time ti, the intensity profile Iti( y) along the vertical line Y(ti) = y. The resulting intensity
profiles are then plotted as a function of time to build an image I( y) composed as I( y) =
[It1( y), It2( y), . . .], such as displayed in figure 9(c).

We note that at each time t, the intensity profile It( y) contains the intersection of
the front contact line image with the vertical axis (Y(t) = y), that corresponds to the
point of coordinates (R, θ, η(R, θ, t)) in the moving cylindrical frame of reference of the
container, where θ = arcsin( y/R) (see figure 9b). As a consequence, the final image I( y)
also contains the dynamics of the front contact line in the azimuthal direction θ .

The resulting image I( y) exhibits a periodic dark pattern that represents the free-surface
response to the harmonic forcing, see an example in figure 9(c) in which y = 0. Indeed,
on each frame of the movie, the free surface appears as the darkest feature, so that the
intensity profile along a given line (Y(t) = y) actually represents the vertical extension
of the free surface at time t along this direction, which is maximal whenever the
sloshing wave reaches its maximal elevation maxt η(R, θ, t) along the azimuthal direction
θ = arcsin( y/R) (in the front of the container with respect to the camera position,
corresponding to θ ∈] − π/2, π/2[) or along θ = π − arcsin( y/R) (in the back of the
container). Furthermore, when the contact line reaches its maximal elevation in the front
of the container, the free surface is imaged from below, so that it appears darker than when
the maximal elevation is reached in the back, where the free surface is imaged from above;
see the snapshots in figure 9(c). These observations allow us to identify in the image I( y)
the position as a function of time of the front contact line η(R, θ, t), with θ = arcsin( y/R),
as highlighted in red in figure 9(c), and following the method detailed in Appendix D.

Note that this procedure does not give a quantitative access to the actual amplitude of
the front contact line oscillations, since the intensity profiles Iti( y) constituting the image
I( y) are simply juxtaposed with each other without rescaling the pixel width along the
vertical direction. However, the position extracted from I( y) of the image of the points of
coordinates η(R, ±θ, t) as a function of time still encloses the symmetry properties of the
free-surface response, its regularity as well as its frequency content, which are the only
quantities needed in order to identify the wave regimes.

6.3. Regularity and frequency content of the free-surface response
The resulting image I( y) is then revealing of the free-surface dynamics η(r, θ, t) and, in
particular, of its dynamics at the front wall η(r = R, θ = arcsin( y/R), t). Figure 10(a–d)
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θ = arcsin (y/R)
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Figure 9. General procedure for the analysis of the free-surface dynamics. (a) On each frame, the edges of the
container are detected (black dotted lines) and the vertical Z(t) axis is set as the middle line between these two
edges, while the scale of the horizontal direction Y(t) is fixed by the distance between both edges. (b) Schematic
of the container illustrating the link between the Cartesian coordinate system (Y(t), Z(t)) attached to each frame
and the cylindrical coordinates in the referential frame of the container. (c) Left: the intensity profile along a
vertical line of coordinate (Y(t) = y) with y ∈ [−R, R] is then measured on each frame t and plot as a function
of time (here for y = 0). The position of the front contact line at the azimuthal coordinate θ = arcsin( y/R) = 0
as a function of time is highlighted in red. Right: frames from which the intensity profiles at times ti and tj on
the left-hand side image, along the line (Y(t) = 0) (represented by a red dotted line), are extracted. At ti, the
wave is climbing the front wall of the container (with respect to the camera position) whereas at tj it reaches
the back of the tank.

displays I(0) for various forcing frequencies close to the super-harmonic resonance, at the
same forcing amplitude. These images reveal that depending on the forcing frequency, the
free-surface oscillations (dark periodic pattern) can be either regular (a), (c) and (d) –
i.e. the oscillations are enclosed into an envelope of constant amplitude – or irregular (b)
with a temporal modulation of the amplitude envelope. Therefore, the profiles I(0) allow
us to characterize the regularity of the sloshing wave and, in particular, to identify the
irregular regime. The latter will be described in more detail in § 6.6, but such details are
not needed for the identification of the irregular regime bounds, for which the analysis
of the regularity property of the I(0) pattern is sufficient. Therefore, in the following we
will focus on the regular planar and swirling motions, which cannot be unambiguously
distinguished from each other on the basis of the profiles I(0).
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Figure 10. (a–d) Intensity profiles as a function of time along the vertical middle axis (Y = 0) – denoted
I(0) – for various forcing frequencies Ω in the vicinity of the super-harmonic resonance Ω ≈ ω21/2 at the
same forcing amplitude āx/R ≈ 0.23. In each case, the profile I(0) is extracted from a movie whose recording
has been started after about 50 oscillation cycles following each change in forcing frequency, thus ensuring that
initial transients are filtered out (see also Appendix C). (e–h) Power spectral densities (PSD) – normalized by
the maximal peak amplitude – corresponding to the front contact line dynamics as extracted from the profiles
I(0) displayed in panels (a)–(d).

Figure 10(e–h) displays the (normalized) power spectral densities of the front contact
line dynamics η(R, θ = 0, t) extracted from the profiles I(0) (a–d). It appears that in
all cases, the energy of the sloshing wave is massively distributed to its first (harmonic)
and second (super-harmonic) component, while the contribution of higher modes is fairly
negligible. This incidentally implies that the symmetry properties of a regular wave are
directly linked to the symmetry properties of these two first oscillation modes.

In other words, a planar dynamics should necessarily consist in the superposition of two
planar waves: a planar SC wave harmonically oscillating with the driving frequency Ω and
one super-harmonic planar DC wave oscillating at ωDC = 2Ω ≈ ω21. On the other hand,
a swirling dynamics must contain at least one symmetry-breaking (swirling) component
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that, as predicted by the present WNL analysis, should correspond to the super-harmonic
ω21 component.

6.4. Symmetry properties of the regular regimes: planar versus swirling waves
We now focus on the regular regimes, namely the steady planar and swirling motions.
As stated before, the profiles I(0) cannot discriminate between a planar and a swirling
dynamics and instead only contain information on their regularity and their frequency
content. To distinguish a planar from a swirling motion, we then compare the profiles
along two (Y /= 0) directions that are symmetric with respect to the vertical middle axis of
the container image.

Figures 11(b), 11(d) and 11( f ) show composite images, each produced using the Matlab
function imshowpair applied to the pair I(R/2) and I(−R/2) for three different forcing
frequencies that both result in a regular motion (the same forcing parameters as in
figure 10a,c,d). Briefly, imshowpair (Iα, Iβ) creates from a pair of greyscale images Iα
and Iβ , a red, green and blue (RGB) image where each pixel is represented by a RGB
triplet, the R intensity being the intensity of the corresponding pixel in Iα , and the G
and B intensities being equal to the intensity of the corresponding pixel in Iβ . A pixel
where Iα and Iβ have the same intensity will be represented by a RGB triplet of the form
[a, a, a], where a ∈ [0, 255], i.e. will appear as grey. On the contrary, if this pixel has a
much larger intensity on Iα (respectively on Iβ) than it has on Iβ (respectively on Iα), it
will appear in red (respectively in cyan) on the resulting composite image. The composite
images displayed in figure 11(b,d, f ) thus highlight in each case the differences between
I(R/2) and I(−R/2). They are then a direct signature of the symmetry of the free-surface
dynamics with respect to the vertical middle axis (Y = 0), and reveal two different kinds
of motion: (i) a planar motion, for which I(R/2) and I(−R/2) perfectly overlap with each
other due to the mirror symmetry of the wave; and (ii) a circular motion, characterized
by a symmetry breaking between the right- and left-hand side free-surface dynamics: the
maximum of the wave along θ = arcsin(1/2) = π/6 is indeed phase shifted with respect
to the maximum of the wave along θ = −π/6, thus revealing a travelling wave propagating
along the wall of the container.

To determine which ω component is responsible for the symmetry breaking induced
by the swirling motion, we extract from I(R/2) and I(−R/2) the position of the front
contact line as a function of time η(R, θ, t), where θ = ±π/6; see figure 12(b,e). This
makes it possible to compute the power spectrum of both signals, as well as the phase
difference between the phase angle of their components that oscillate at the frequencies
corresponding to their spectrum’s first and second peaks (see figure 12c–f ). A planar wave
oscillating at a frequency ω is then characterized by the ω components of η(R, π/6, t) and
of η(R, −π/6, t) being in phase with each other, while a swirling wave is characterized
by a mπ/3-phase shift between the ω components of these signals, where m denotes the
azimuthal wavenumber of the swirling wave (m = 1 for an harmonically oscillating SC
wave, m = 2 for a super-harmonic DC wave).

The Fourier analysis of the signals η(R, π/6, t) and η(R, −π/6, t) reveals that for
forcing frequencies Ω close to ω21/2, the free-surface motion mostly results from the
combination of a SC wave harmonically oscillating at the forcing frequency ωSC = Ω ≈
ω21/2, and of a super-harmonic DC wave oscillating at a frequency ωDC = 2Ω ≈ ω21.
From figures 12(c) and 12( f ), it is clear that the SC wave is a planar wave for both planar
(figure 12c) and swirling (figure 12f ) dynamics, as revealed by the vanishing phase shift
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Figure 11. Symmetry properties of the stationary waves. (a,c,e) Images of the fluid free surface while the
container is subjected to a longitudinal harmonic forcing of amplitude āx/R ≈ 0.23 at various driving angular
frequencies Ω close to ω21/2: (a) Ω ≈ 0.48ω21, (c) Ω ≈ 0.50ω21 and (e) Ω ≈ 0.52ω21 (same forcing
parameters as in figure 10a,c,d). For each driving frequency (a,c,e), the time interval between two snapshots
is about T/4, with T = 2π/Ω the corresponding oscillation period. On each snapshot, the vertical axes
(Y = R/2) and (Y = −R/2) are represented by a blue and red dotted line, respectively. For a forcing frequency
Ω = 0.48ω21 (a) and Ω = 0.52ω21 (e) the free-surface image at each time t is mirror symmetric with respect to
the middle vertical axis, while the symmetry is broken for Ω = 0.50ω21. (b,d, f ) Superposition of the intensity
profiles as a function of time along the vertical axis (Y = R/2) and (Y = −R/2) – denoted I(R/2) (in blue)
and I(−R/2) (in red), respectively – for the same forcing parameters as in figure 10(a, c, e). The grey regions
show where I(R/2) and I(−R/2) have the same intensities.
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Figure 12. Analysis of the steady-state free-surface dynamics under an harmonic forcing of amplitude ax =
0.23 and frequency (a–c) Ω/ω21 ≈ 0.48 and (d–f ) Ω/ω21 ≈ 0.50. (a,d) Image of the free surface with
vertical lines intersecting the image of the front contact line at the points of coordinates (R, π/6, η(R, π/6, t))
(blue arrows) and (R, −π/6, η(R, −π/6, t)) (red arrows) in the moving reference frame of the container.
(b,e) Normalized elevation of the front contact line η̃(R, π/6, t) (blue dots) and η̃(R, −π/6, t) (red dots)
extracted from the corresponding profiles I(R/2) and I(−R/2) (not shown here). The η̃ functions are
defined according to η̃(R, θ, t) = (η(R, θ, t) − σ)/δ, where σ = mint(η(R, θ, t)) + maxt(η(R, θ, t))/2 and
δ = maxt(η(R, θ, t)) − mint(η(R, θ, t)). (c, f ) Left: power spectral densities of η̃(R, π/6, t) (blue dots) and
of η̃(R, −π/6, t) (red dots). Right: absolute value of the phase shift between the components of η̃(R, π/6, t)
and of η̃(R, −π/6, t) oscillating at the frequencies corresponding to the first peak (ω = Ω) and to the second
peak (ω = 2Ω) of the power spectra.

between the harmonic components of η(R, π/6, t) and η(R, −π/6, t) in both cases. On
the other hand, the phase shift between the super-harmonic components is zero in the
case of the planar dynamics, and close to 2π/3 in the case of the swirling dynamics,
the signature of a DC swirling wave. These observations are general to the whole range
of forcing frequencies and amplitudes investigated along this study: in the vicinity of
the super-harmonic resonance, the SC wave is always a planar wave, as revealed by the
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vanishing phase shift between the harmonic components of η(R, π/6, t) and η(R, −π/6, t)
for both planar and swirling dynamics (this is also true in the case of the irregular
regime, see later § 6.6). In the case of a regular dynamics, the DC wave is either a planar
(for vanishing phase shift between the corresponding components) or a swirling wave
(characterized by a 2π/3 phase shift between the ω21 component of the right- and left-hand
side signals), depending on the exact ratio between Ω and ω21, as well as on the forcing
amplitude āx/R.

6.5. Experimental estimate of regime bounds
From the above analysis, it appears that consistently with the predictions provided
by our theoretical WNL analysis, the sloshing waves resulting from the longitudinal
super-harmonic forcing of the container at a frequency Ω ≈ ω21, consist in the
superposition of a planar SC wave, harmonically oscillating with the forcing at ω = Ω ,
and of a DC wave, which can exhibit either a planar, irregular or swirling dynamics.

Having identified the three different regimes for the free-surface dynamics in the vicinity
of the super-harmonic resonance, we can now experimentally determine their stability
regions in the (Ω/ω21, ax) space. To do so, we fix the forcing amplitude while operating a
frequency sweep from high to low frequencies, within the range Ω/ω21 ∈ [0.45, 0.53],
by frequency decrements of 10 mHz. Note that a downward frequency sweep ensures
recovery of the stability bound between the super-harmonic planar and swirling regimes,
as the transition in this direction occurs exactly at the threshold frequency ΩP(ax) below
which the super-harmonic planar motion becomes unstable. On the contrary, since the
super-harmonic swirling wave is still stable for frequencies larger than ΩP(ax) (hysteresis),
an upward frequency sweep will maintain the system’s response on the swirling branch,
thus, it is not suitable to experimentally detect the bifurcation point P. The downward
frequency sweep also enables one to detect the bounds that separate the irregular regime
from steady planar (Ω = ΩU(ax)) and swirling motions (Ω = ΩH(ax)).

This procedure is applied for various forcing amplitudes ax ∈ [0.05, 0.4], enabling us to
build the stability regions diagram displayed on figure 13. All together, the experimental
measurements are in very good quantitative agreement with the theoretical regime bounds
for ax > 0.15, below which the super-harmonic irregular and swirling regimes appear to
be suppressed by dissipative mechanisms, e.g. viscous dissipation occurring in the fluid
bulk, sidewall and free-surface boundary layers (Case & Parkinson 1957; Miles 1967;
Raynovskyy & Timokha 2020; Bongarzone et al. 2022b) as well as in the neighbourhood
of the moving contact line (Keulegan 1959; Dussan 1979; Hocking 1987; Cocciaro, Faetti
& Festa 1993; Viola & Gallaire 2018). This last contribution is likely to be important since
no particular precautions, such as wall treatment or pre-wetting, have been taken in order
to minimize contact angle hysteresis. Below this threshold amplitude, experiments have
shown a vanishing super-harmonic contribution to the dynamics, with a harmonic planar
motion produced by the SC wave only and well described by the potential linear model,
thus suggesting that the DC wave has been entirely killed by the dissipative mechanism.
Note that such a suppression of the DC dynamics at low forcing amplitude is reminiscent
of what was observed by Reclari et al. (2014) for circular shaking.

6.6. Irregular regime
In this section we provide a more thorough description of the irregular regime. When
fixing the forcing frequency slightly below ω21/2 and progressively increasing the forcing
amplitude, the free-surface response is first very regular and displays a planar dynamics
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Figure 13. Estimates of regime bounds in the (Ω/ω21, ax) plane for a container of diameter D = 0.172 m,
filled to a depth H = 1.3, driven longitudinally and super harmonically at a frequency Ω ≈ ω21/2: comparison
between the theoretical predictions (solid lines) and experimental measurements (markers). Grey thick solid
lines: present theoretical predictions. Black empty squares: super-harmonic planar motion. Black crosses:
irregular regime. Black filled circles: super-harmonic swirling motion.

for low enough forcing amplitudes. Above a threshold amplitude, the dynamics becomes
irregular and at large enough amplitudes, the response is again regular, but consists in a
swirling motion. Figure 14(a) displays the free-surface response along the vertical middle
axis Y = 0 for increasing forcing amplitudes at a fixed forcing frequency Ω ≈ 0.496ω21.
The regular regimes (top and bottom panels) are characterized by a constant amplitude of
the free-surface oscillations. In contrast, the oscillations of the free surface for intermediate
forcing amplitudes (second and third panels) are enclosed into a quasi-periodic envelope,
whose frequency linearly increases with the forcing amplitude (see figure 14(b) and
Appendix D for the methodology used to compute the envelope). This is very reminiscent
of the observations by Royon-Lebeaud et al. (2007) of the irregular regime present in the
vicinity of the harmonic resonance under longitudinal forcing. Note that these features
are also quantitatively recovered by proceeding with a downwards amplitude sweep. In
particular, upward and downward forcing amplitude sweeps provide the same threshold
amplitudes between planar and irregular dynamics, and between irregular and swirling
regimes. Furthermore, the frequency of the main peak in the power spectrum of the
amplitude envelope seems to be a robust feature that does not depend on the sweep
direction; see figure 14(b).

To gain more insight on this irregular dynamics, we compute at each time ti the spatial
correlation between Iti(R/2) and Iti(−R/2), which we refer to as corr(ti),

corr(ti) =

∑
n

(Iti,n(R/2) − Īti(R/2))(Iti,n(−R/2) − Īti(−R/2))

√∑
n

(Iti,n(R/2) − Īti(R/2))2
∑

n

(Iti,n(−R/2) − Īti(−R/2))2

, (6.1)

966 A41-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.438


Resonant swirling waves in longitudinally forced cylinders

1
0

0.2

0.4

0.6

0.8

1.0

2

ω/Ω
1

0

π/3

2π/3

π

2

ω/Ω

P
S

D

|ψ
| (

ra
d
)

1
0

0.2

0.4

0.6

0.8

1.0

2

ω/Ω
1

0

π/3

2π/3

π

2

ω/Ω

P
S

D

|ψ
| (

ra
d
)

t/T
0

–0.50

–0.25

0.25

0.50

0

1 2

(2)

(1)

3 4

t/T
100500

co
rr

 (
t)

0.4
0.6
0.8
1.0

150 200

100500

co
rr

 (
t)

0.4
0.6
0.8
1.0

150 200

100500

co
rr

 (
t)

0.4
0.6
0.8
1.0

150 200

100500

co
rr

 (
t)

0.4
0.6
0.8
1.0

150 200

5 6 7 8

η̃
 (

R,
 θ

, 
t)

0

–0.50

–0.25

0.25

0.50

0.02

0.04

0.06

0.08

0.10

0.12

0 0.1

R
e
g
u
la

r 
p
la

n
a
r 

S
C

 +
 D

C

R
e
g
u
la

r 
p
la

n
a
r 

S
C

 +
 S

w
ir

li
n
g
 D

C

0.2 0.3

Irregular

0.4 0.5

0

1 2 3 4 5 6 7 8

η̃
 (

R,
 θ

, 
t)

θ = π/6
θ = –π/6

ax ≈ 0.40

ax ≈ 0.35

ax ≈ 0.23

ax ≈ 0.12

ax ≈ 0.40

ax ≈ 0.23

ax ≈ 0.12

t/T
100500 150 200

100500 150 200

100500 150 200

100500 150 200

ax ≈ 0.40

ax

ax ≈ 0.35

ax ≈ 0.23

ax ≈ 0.12

2
π

f/
Ω–

0

(×105)

P
S

D

1
2
3

0.25

f (Hz)

0.50

0

(×105)

P
S

D

1
2
3

0.25 0.50

0

(×105)

P
S

D

1
2
3

0.25 0.50

(a) (b)

(c)

(d)

(e) ( f )

(1) (2)

Figure 14. (a) Intensity profiles I(0) for various forcing amplitudes and the same forcing frequency Ω ≈
0.496ω21. The oscillations of the free surface are enclosed into an envelope, plotted in black on top of the
images. (b) Left: frequency of the main peak in the power spectrum of the envelope (adimensionalized by the
forcing frequency Ω̄/2π) as a function of the forcing amplitude ax, for the same angular forcing frequency
Ω ≈ 0.496ω21, and for upwards (white markers) and downwards (black markers) amplitude sweeps. When the
envelope is a straight line (as it is the case here for ax < 0.15, which corresponds to a regular planar dynamics
of the free surface), the power spectrum is flat and we set the corresponding frequency equal to zero. For
ax ≈ 0.40, the power spectrum of the envelope is dominated by a low amplitude and small frequency noise,
causing a brutal decrease of the ‘burst’ frequency, thus indicating a transition from irregular to regular swirling
motion. Right: power spectra of the envelope for ax ≈ 0.12, ax ≈ 0.23 and ax ≈ 0.40. (c) Correlation between
I(R/2) and I(−R/2) as a function of time for the same set of forcing parameters as in (a). (d) Left: superposition
of I(R/2) (blue) and I(−R/2) (red); right: position of the front contact line η(R, ±π/6, t) as a function of time
extracted from I(−R/2) (red curve) and from I(R/2) (blue curve). The signals presented in (d) are taken from
the full signals used to compute their correlation in (c) for ax ≈ 0.23, over the time ranges highlighted in
blue and denoted as (1) (maximum of correlation) and (2) (minimum of correlation). (e, f ) Normalized power
spectra of η(R, −π/6, t) (red curve) and of η(R, π/6, t) (blue curve), and the absolute value of the phase shift
between their harmonic and super-harmonic components, where the dynamics of η(R, ±π/6, t) is considered
over (e) time range (1) and ( f ) time range (2).
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where n ∈ [1, N], with N the number of pixels in the vertical direction, and Īti( y)
represents the mean of the N-element vector Iti( y). A high and constant correlation
is a signature of a steady planar motion, while a low but still constant correlation is
characteristic of the steady swirling regime. At intermediary forcing amplitudes – i.e. in
the irregular regime – the correlation is a quasi-periodic function of time, with the same
quasi-period as the envelope; see figure 14(c).

A comparison between I(R/2) and I(−R/2) on time ranges corresponding to the
maximum and minimum of the correlation function reveals that in the time interval where
the signals are highly correlated, the motion is planar like (although irregular), while in
the time range where they are poorly correlated, the maxima of the right- and left-hand
side signals are phase shifted with respect to each other, thus reflecting the presence of a
swirling wave; see figure 14(d).

This is further confirmed by the power spectra of the front contact line dynamics
along the azimuthal directions θ = ±π/6, extracted from I(R/2) and I(−R/2), on time
ranges where these signals are highly correlated and where they are poorly correlated; see
figure 14(e, f ). In both cases, the sloshing wave contains a planar SC wave, as revealed
by the vanishing phase shift between the harmonic components of η(R, π/6, t) and
η(R, −π/6, t). The wave also contains a super-harmonic component that is responsible
for the switching between a planar-like motion (vanishing phase shift between the ω21
components of the η(R, π/6, t) and η(R, −π/6, t) signals, figure 14e) and a swirling
dynamics (rotating, symmetry-breaking wave that is super-harmonically oscillating at
ω ≈ ω21, figure 14f ).

This is again very similar to the features of the irregular regime in the vicinity of the
harmonic resonance described by Royon-Lebeaud et al. (2007) that relate the ‘bursts’ in
the free-surface oscillation amplitude to the quasi-periodic occurrence of a swirling wave.
However, in the case of super-harmonic resonance the irregular regime consists here in the
superposition of a stable planar SC wave and of a super-harmonic DC dynamics. The latter
is responsible for the irregularity of the total dynamics, by quasi-periodically switching
between super-harmonic planar and swirling motions.

6.7. Wave amplitude saturation: theoretical predictions vs experiments
In this last section we provide a more quantitative comparison in terms of wave amplitude
saturation between the theoretical predictions according to (5.13) and the experimental
measurements. On this point, the dimensional wave amplitude, Δδ̄ = maxθ,t η(r =
R, θ, t) − minθ,t η(r = R, θ, t), is experimentally measured by fixing the forcing amplitude
while operating a frequency sweep in two directions. A backward sweep is used so as to
follow the right lower planar branch until the sub-critical jump-up transition to swirling
(P: Poincaré bifurcation) occurs (Ω = ΩP(ax)). On the other hand, an upward sweep is
performed in order to maintain a stable super-harmonic swirling response from bifurcation
point H (Ω = ΩH(ax)) and beyond the threshold frequency Ω = ΩP(ax), above which the
super-harmonic planar and swirling motions are both stable solutions (right region in the
stability chart of figure 13).

For each set of forcing parameters (ax, Ω/ω21), the height in pixel of the wave crest
(respectively trough) on the front wall is manually extracted from the corresponding
movies and is compared, in the same frame it is extracted from, to the height of the fluid at
rest (flagged by a black mark on the container, also used as a scale) to obtain the maximal
(respectively minimal) front contact line elevation maxθ,t η(r = R, θ, t) (respectively
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Figure 15. Quantitative comparison with experimental measurements in terms of finite amplitude saturation
for various non-dimensional forcing amplitudes, ax. Black dotted lines: linear potential solution according to
(3.4) and (3.5). Light blue solid lines: stable planar and swirling branches predicted by the present WNL model
according to (5.13). Markers: experimental measurements. Black empty squares correspond to planar motion
whereas black filled circles refer to swirling dynamics. Results are shown for (a) ax = 0.1628, (b) ax = 0.1861,
(c) ax = 0.2093, (d) ax = 0.2325, (e) ax = 0.2558 and ( f ) ax = 0.2791.

minθ,t η(r = R, θ, t)). This value is converted into metres using the conversion factor
provided by the black scale. The resulting amplitude Δδ̄ is then averaged over three to
five cycles of oscillations and finally normalized by the container radius R.

The experimental dimensionless wave amplitude Δδ = Δδ̄/R as a function of the
forcing frequency for various forcing amplitudes is displayed in figure 15 together with
the theoretical WNL prediction (5.13) (light blue solid lines) and with the linear potential
solution (3.4) for comparison (black dashed line).

The experimental data associated with the two planar branches compare generally
well with the present WNL prediction, although the WNL theory slightly underestimates
the wave amplitude in the swirling regime. Such an underestimation is not necessarily
produced by overlooked nonlinear mechanisms, but it could be instead ascribed to the
linear superposition of viscous modes, whose phase shift’s characterization would require
a dedicated theoretical viscous analysis. The same holds for the asymmetry experimentally
observed in the DC wave profile reported in figures 9(c), 11(d) and 12(e).

We recall from § 5 that, at leading order, the wave solution in these two branches is
made by the superposition of two planar waves, i.e. an harmonic planar SC component,
oscillating in space and time as cos (Ωt) cos θ , and a super-harmonic planar DC
component, characterized by cos (2Ωt + Φ) cos 2θ , with a phase Φ = π in the left branch
and Φ = 0 in the right one. The information on the phase Φ is not directly discernible from
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the amplitude plot of figure 15, but it is contained in the snapshots sequence reported in
figure 11(a) for Ω/ω21 < 0.5 and (e) for Ω/ω21 > 0.5. Due to the temporal periodicity
of the SC wave, snapshots taken at t = T/4 = π/2Ω and t = 3T/4 = 3π/2Ω represent
temporal nodes for the harmonic component, so that, as a first-order approximation,
only the DC component, whose azimuthal spatial structure reads cos (π + Φ) cos 2θ , is
instantaneously left. It is then clear that for Ω/ω21 < 0.5 and Φ = π, the free surface
maximum is reached at the azimuthal coordinates θ = 0 and π, whereas the minimum
is at θ = ±π/2 (vice versa for Ω/ω21 > 0.5 and Φ = 0). This produces the concave
and convex shapes in the instantaneous free surface displayed in figures 11(a) and 11(e),
respectively.

Consistently with the stability chart in figure 13 obtained through a backward frequency
sweep, the threshold frequency ΩH(ax), at which the swirling branch becomes stable from
lower driving frequency Ω , is correctly detected. Furthermore, the upward sweep allows us
to detect also the jump-down transition from the swirling to the lower right planar branch.

The occurrence of the jump-down transition was to be expected as it is produced by
dissipative mechanisms (see also § 6.5), which are overlooked by the present inviscid
analysis. The associated damping, which is a function of the wave amplitude and of
the forcing acceleration amplitude (see Raynovskyy & Timokha (2018b), Raynovskyy
& Timokha (2020) and the discussion in Appendix A of Bongarzone et al. 2022a), is
responsible for the modulation in the phase lag between the external driving and the
wave response, which was shown by Bäuerlein & Avila (2021) (for unidirectional sloshing
waves in a rectangular container) to be of crucial importance for a correct prediction of
the jump-down frequency.

The damping coefficient could be tentatively fitted from experiments and
phenomenologically introduced a posteriori in amplitude (5.9a) and (5.9b) as done in
Appendix A of Bongarzone et al. (2022a). Nevertheless, the jump-down transition in
the cases examined in this section (see figure 15) was seen to be extremely sensitive to
the frequency sweeping rate. A decrease in the frequency step increment from 5 mHz to
1 mHz (used to produced the swirling branch in figure 15) was observed to give different
jump-down frequencies. This is also expected as it is known from the literature that in the
multi-solution range, the characteristic of the response mainly depends on the sweep rate
(Park, Do & Lopez 2011; Bourquard & Noiray 2019; Yu et al. 2020). Since we did not try
frequency increments smaller than 1 mHz, the jump-down frequency predictions as shown
in figure 15 are not entirely reliable for fitting the damping at stake in the experiments.

In spite of such limitations, the WNL model is seen to describe fairly well the
experimental swirling branch until the measured jump-down frequency. A relatively small
departure of the swirling response from the theoretical prediction is typically observed at
larger driving amplitude for increasing wave frequency. In agreement with previous studies
(Dodge et al. 1965; Ibrahim 2005; Bäuerlein & Avila 2021), our experiments reveal that
this is due to the progressive steepening and broadening of the wave crest and troughs,
respectively, in the vicinity of the container wall. This nonlinear mechanism eventually
becomes strong enough for the WNL model to lose accurateness.

7. Conclusion

In this work the behaviour of sloshing waves in a cylindrical container submitted to
longitudinal periodic forcing with driving amplitude ax and angular frequency Ω was
investigated. While previous studies of this forcing condition and geometry mostly focused
on the investigation of the free-surface response in the vicinity of harmonic resonance,
i.e. Ω/ω1n ≈ 1, the core of the present work was dedicated to the most relevant secondary
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super-harmonic resonances Ω/ω2n ≈ 1/2, characterized by the occurrence of a DC
dynamics oscillating at a frequency ω = 2Ω ≈ ω2n.

Such a super-harmonic resonance was first experimentally observed by Reclari (2013)
and Reclari et al. (2014) for circular container motions, but its investigation under different
forcing conditions, e.g. longitudinal forcing, seemed to be still unreported.

With the aim to take a further step in this direction, a WNL analysis via the multiple
time-scale method together with a dedicated experimental campaign were implemented
in order to account for the steady-state free-surface dynamics, and for the symmetry
breaking due to the emergence of a DC swirling wave in the vicinity of the super-harmonic
resonance.

In similar fashion to Bongarzone et al. (2022a), the WNL analysis was first formalized
to tackle the simpler case of harmonic resonances. The outcomes of the model were
compared with previous experimental measurements and to former theoretical predictions
based on the Narimanov–Moiseev multimodal sloshing theory (Faltinsen et al. 2016;
Raynovskyy & Timokha 2020). All together, our analysis addressing the SC wave
dynamics was shown to be consistent with the previously reported experimental and
theoretical results. In particular, the WNL model successfully captured the regime
bounds between SC planar, swirling and irregular waves, and correctly described the
close-to-resonance nonlinear behaviour, thus validating the relevance of this theoretical
approach.

The WNL analysis was then extended to the more complex case of the super-harmonic
resonance. A dedicated lab-scale experiment was set-up to observe and characterize
the super-harmonic response to longitudinal forcing. In remarkable agreement with the
outcomes of the WNL model, the experimental investigation showed that the free-surface
dynamics in the vicinity of the super-harmonic resonance results from the superposition
of a permanent, first-order forced harmonic planar SC wave, and of a super-harmonic
DC wave that can exhibit either a planar, irregular or swirling dynamics, the latter being
responsible for a symmetry breaking in the system’s response through equally probable
clockwise or anti-clockwise swirling waves. The bounds in the (ax, Ω/ω21) plane between
the three different regimes were experimentally retrieved and were shown to be in very
good quantitative agreement with the WNL predictions, at least above a threshold forcing
amplitude, below which the swirling and irregular dynamics appear to be suppressed by
dissipative mechanisms, which are not accounted for by the present inviscid analysis.
Finally, the predicted wave amplitude saturation, computed by reconstructing the total flow
solution, was compared with the experimentally measured steady-state wave amplitude
and was shown to correctly describe the stable planar and swirling branches in the
neighbourhood of the super-harmonic resonance.

The fairly good agreement between the theoretical predictions and the experimental
findings validates the relevance of the WNL approach to successfully describe the sloshing
wave dynamics resulting from nonlinear harmonic and super-harmonic interactions. As
discussed in Appendix B, this analysis is not restricted to longitudinal forcing, but can
be straightforwardly generalized without any further calculation to any elliptic trajectory,
hence recovering the limit of circular sloshing investigated in Bongarzone et al. (2022a).
In this respect, the theory of Faltinsen et al. (2016) for elliptical container motions
interestingly predicts the occurrence of counter-rotating swirling waves, i.e. propagating in
the direction opposed to that of the container motion. The qualitative analogy between the
harmonic and super-harmonic system behaviour outlined in this paper would suggest that
such counter-propagating swirling waves could also be triggered by exciting the system
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in the vicinity of the super-harmonic DC resonance, thus calling for new experimental
campaigns.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.438.
Supplementary movies show the evolution of the free-surface dynamics experimentally observed at

increasing forcing frequency and for a fixed forcing amplitude āx = 20 mm, which corresponds to a
non-dimensional value ax = āx/R = 0.2325.
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Appendix A. Computation of the normal form coefficients

The normal form coefficients appearing in (4.7a) and (4.7b) for the harmonic SC dynamics
are computed as

iISCμSC = 〈q̂A1†
1 , F̂F

3 〉 =
∫ 1

0
(r/2) ¯̂ηA1†

1 r dr, (A1a)

iISCνSC = 〈q̂A1†
1 , F̂ |A1|2A1

3 〉 =
∫ 1

0
( ¯̂ηA1†

1 F̂ |A1|2A1
3dyn

+ ¯̂
Φ

A1†
1 F̂ |A1|2A1

3kin
)r dr, (A1b)

iISCξSC = 〈q̂A1†
1 , F̂ |B1|2A1

3 〉 =
∫ 1

0
( ¯̂ηA1†

1 F̂ |B1|2A1
3dyn

+ ¯̂
Φ

A1†
1 F̂ |B1|2A1

3kin
)r dr, (A1c)

where ISC = 〈q̂A1†
1 , Bq̂A1

1 〉 = ∫ 1
0 ( ¯̂ηA1†

1 Φ̂
A1
1 + ¯̂

Φ
A1†
1 η̂

A1
1 )r dr. Here (q̂A1†

1 , q̂B1†
1 ) = ( ¯̂qA1

1 , ¯̂qB1
1 ),

since the inviscid problem is self-adjoint with respect to the Hermitian scalar product
〈a, b〉 = ∫

Σ
ā · b dV , with a and b two generic vectors (see Viola et al. (2018) for a

thorough discussion and derivation of the adjoint problem).
Expressions (A1a) and (A1b) were already given in Bongarzone et al. (2022a).

However, the left-hand side of these expressions were mistakenly typed, as the mass
matrix B should not appear in their numerators. The present version is instead written
down correctly.

For the calculation of the amplitude equation coefficients at ε3 order, only resonant
terms matter. These terms, with their corresponding amplitudes, are proportional to
ei((ω1nt±θ) for SC waves and to ei(ω2nt±2θ) for DC waves. As an example, the expression
of F̂ |A|2A

3kin
, with A = A1 for SC waves and A = A2 for DC waves, is given in Appendix D of

Bongarzone et al. (2022a). The extraction of resonant terms was performed by using tools
of symbolic calculus, e.g. the software Wolfram Mathematica.
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Analogously, the normal form coefficients appearing in (5.9a) and (5.9b) for the
super-harmonic DC dynamics are calculated as

iIDCμDC =
∫ 1

0
( ¯̂ηA2†

1 F̂F2

2dyn
+ ¯̂

Φ
A2†
1 F̂F2

2kin
)r dr, (A2a)

iIDC ζDC =
∫ 1

0
( ¯̂ηA2†

1 F̂ΛF2

3dyn
+ ¯̂

Φ
A2†
1 F̂ΛF2

3kin
)r dr, (A2b)

iIDC χDC =
∫ 1

0
( ¯̂ηA2†

1 F̂A2|F|2
3dyn

+ ¯̂
Φ

A2†
1 F̂A2|F|2

3kin
)r dr, (A2c)

iIDCνDC =
∫ 1

0
( ¯̂ηA2†

1 F̂ |A2|2A2
3dyn

+ ¯̂
Φ

A2†
1 F̂ |A2|2A2

3kin
)r dr, (A2d)

iIDCξDC =
∫ 1

0
( ¯̂ηA2†

1 F̂ |B2|2A2
3dyn

+ ¯̂
Φ

A2†
1 F̂ |B2|2A2

3kin
)r dr, (A2e)

with IDC = 〈q̂A2†
1 , Bq̂A2

1 〉 = ∫ 1
0 ( ¯̂ηA2†

1 Φ̂
A2
1 + ¯̂

Φ
A2†
1 η̂

A2
1 )r dr. The integrals are all evaluated

at the free surface z = 0.
We note that the value of the normal form coefficient χDC contains two different

contributions. Indeed, it could be conveniently rewritten as χDC = χ− + χ+, with the
value of χ− and χ+ given in table 1. Here χ− precisely corresponds to the coefficient
χDC computed in Bongarzone et al. (2022a) and, by adopting the present formalism,
e.g. for mode A2 (same for mode B2), it is produced by the interaction of the second-order
responses

(1/2)A2Fq̂A2F
2 ei((3ω2n/2)t−3θ) eiΛT1 + (1/2)A2F̄q̂A2F̄

2 ei((ω2n/2)t−θ) e−iΛT1 (A3)

in (5.6) with the complex conjugate of the leading-order particular solution characterized
by m = −1 in (5.2). On the contrary, the contribution χ+ is the result of the interaction
between the second-order responses

(1/2)A2Fq̂A2F
2 ei((3ω2n/2)t−θ) eiΛT1 + (1/2)A2F̄q̂A2F̄

2 ei((ω2n/2)t−3θ) e−iΛT1 (A4)

in (5.6) and the complex conjugate of the leading-order particular solution for m = +1 in
(5.2).

Appendix B. Generalization to elliptic orbits

In this appendix we show how the analysis outlined in this paper for longitudinal container
motions can be straightforwardly generalized to any elliptic-like shaking. For elliptical
orbits in the horizontal (x, y) plane, (2.1) are modified as

Ẋ 0 =
{

(−axΩ sin (Ωt) cos θ + ayΩ cos (Ωt) sin θ)er,

(axΩ sin (Ωt) sin θ + ayΩ cos (Ωt) sin θ)eθ ,
(B1)

with ax and ay the non-dimensional major- and minor-axis forcing amplitude components,
respectively, and Ω the non-dimensional driving angular frequency. Under these forcing
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conditions, the unsteady and forced Bernoulli’s equation at z = η reads

∂Φ

∂t
+ 1

2
∇Φ · ∇Φ + η = r( fx cos (Ωt) cos θ + fy sin (Ωt) sin θ), (B2)

where fx = axΩ
2 and fy = ayΩ

2. By introducing the aspect ratio α = ay/ax = fy/fx, so
that fx = f and fy = αf , (B2) can be conveniently rewritten as

∂Φ

∂t
+ 1

2
∇Φ · ∇Φ + η = r

f
2

((
1 + α

2

)
ei(Ωt−θ) +

(
1 − α

2

)
ei(Ωt+θ)

)
+ c.c. (B3)

A value 0 < α < 1 implies elliptic orbits, whereas the two limit cases with α = 0 (ax /= 0,
ay = 0) and α = 1 (ax = ay /= 0) correspond, respectively, to longitudinal, as in the
present work, and circular (Bongarzone et al. 2022a) shaking conditions. For convenience
of notation, we also introduce the auxiliary variables

α− = 1 + α

2
, α+ = 1 − α

2
, (B4a,b)

with 1/2 ≤ α− ≤ 1 and 0 ≤ α+ ≤ 1/2. By accounting for the two auxiliary aspect ratios,
α− and α+ in the expression of the forcing term, the whole derivation can be repeated,
hence leading, without any further computation, to the following system of amplitude
equations for harmonic SC waves:

dA
dt

= −iλA + iμSCα−f + iνSC|A|2A + iξSC|B|2A, (B5a)

dB
dt

= −iλB + iμSCα+f + iνSC|B|2B + iξSC|A|2B. (B5b)

For super-harmonic DC waves,

dA
dt

= −i(2λ− (α2
−χ− + α2

+χ+)f 2)A + i(ζDCλ+ μDC)α2
−f 2 + iνDC|A|2A + iξDC|B|2A,

(B6a)

dB
dt

= −i(2λ− (α2
+χ+ + α2

−χ−)f 2)B + i(ζDCλ+ μDC)α2
+f 2 + iνDC|B|2B + iξDC|A|2B,

(B6b)

with the values of the normal form coefficients still given in table 1.
We note that in the limit of α = 0 (longitudinal), α− = α+ = 1/2 and (4.7a) and (4.7b)

and (5.9a) and (5.9b) are retrieved. On the contrary, in the limit of α = 1 (circular)
one has α− = 1 and α+ = 0, so that (B5a) and (B6a) corresponds to (4.6) and (4.22)
of Bongarzone et al. (2022a), with A /= 0 and B = 0 the only possible stable stationary
solution for (B6a) and (B6b).

Appendix C. Estimation of the duration of the transient regime

In this study we only consider the permanent response of the free surface to forced
oscillations. To ensure we discard the transient regime in our analysis of the free-surface
dynamics, we first obtained an estimation of the transient time by recording for various
forcing amplitudes āx and angular frequencies Ω̄ the full dynamics of the free surface,
initially at rest and then put into oscillations. The temporal evolution of the intensity profile
along the middle axis of the container extracted from our movies is a direct signature of
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Figure 16. Intensity profile along the middle axis of the container as a function of time. The free surface,
initially at rest (t < 0), is submitted to forced harmonic oscillations from t = 0.

0 1 2
t/T

3 4

50

100

150

200

250

0 1 2
t/T

3 4

50

100

150

200

250

δ

0 1 2 3 4 0 1 2 3 4

(a) (b)

(c) (d)

Figure 17. (a) Binarized intensity profile from figure 9(c). (b) Upper and lower envelopes of the binarized
profile. (c) Distance (in pixel) between the upper and lower envelope as a function of time. The local minima
(highlighted by blue dots) correspond to the time steps where the back and front contact line have similar
elevation. (d) Upper and lower envelopes of the binarized profile (black) and front contact line position as a
function of time (red dotted line).

the variation in time of the sloshing wave amplitude, and reveals that for all (āx, Ω̄) set
of parameters investigated, the free-surface dynamics can be safely considered as having
reached a steady state after typically 50 cycles of oscillations; see figure 16.

Appendix D. Extracting the contact line dynamics from the intensity profiles

Here we present the general methodology to extract, from the intensity profiles, the front
contact line position as a function of time. First, we binarize the intensity profiles, so as
to isolate the periodic pattern due to the free-surface motion from the rest of the image
(see figure 17a). Then the vertical positions of the first and last non-zero pixel of each
column in the binarized intensity profile are retrieved at each time step, thus providing the
top and bottom envelopes of the intensity profile; see figure 17(b). The front contact line
position periodically coincides with the elevation of the lower or of the upper envelope
of the pattern. By detecting the local minima of the distance between the top and bottom
envelopes as a function of time (see figure 17c), we identify the time instants at which
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the front and back contact lines have similar elevations, which corresponds for the front
contact line position to a switch from the lower to the upper envelope, or vice versa.
The front contact line dynamics is then obtained by extracting from the bottom and top
envelopes the time series corresponding to the front contact line position; see figure 17(d).
The exact position of the front contact line at intermediary time steps where the distance
between the lower and upper envelopes is minimal cannot be precisely detected, so that
the successive time series are connected through a simple linear interpolation. Note that
this procedure does not affect the frequency content of the dynamics.

Lastly, to compute the amplitude envelope of the front contact line oscillations, such as
displayed in figure 14(a), we use the Matlab function islocalmax (respectively islocalmin),
that extracts the local maxima (respectively minima) from the front contact line profile,
thus providing the position of the top (respectively bottom) amplitude envelope.
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