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A B S T R A C T

Selection bias may arise when data have been chosen in a way that subsequent analysis does not account
for. Such bias can arise in climate event attribution studies that are performed rapidly after a devastating
‘‘trigger event’’, whose occurrence corresponds to a stopping rule. Intuition suggests that naïvely including the
trigger event in a standard fit in which it is the final observation will bias its importance downwards, and that
excluding it will have the opposite effect. In either case the stopping rule leads to bias recently discussed in the
statistical literature (Barlow et al., 2020) and whose implications for climate event attribution we investigate.
Simulations in a univariate setting show substantially lower relative bias and root mean squared error for
estimation of the 200-year return level when the timing bias is accounted for. Simulations in a bivariate
setting show that not accounting for the stopping rule can lead to both over- and under-estimation of return
levels, but that bias can be reduced by more appropriate analysis. We also discuss biases arising when an
extreme event occurs in one of several related time series but this is not accounted for in data analysis, and
show that the estimated return period for the ‘‘trigger event’’ based on a dataset that contains this event can
be both biased and very uncertain. The ideas are illustrated by analysis of rainfall data from Venezuela and
temperature data from India and Canada.
0. Introduction

An important objective of extreme event attribution (EEA) studies
is to quantify the change in the probability of an extreme event due to
external forcing, such as anthropogenic climate change (Allen, 2003;
Stott et al., 2016; Naveau et al., 2020). Most such studies focus on the
extent to which increased greenhouse gas (GHG) levels in the atmo-
sphere affect the risk ratio for a specified extreme event (Stott et al.,
2004; Fischer and Knutti, 2015, 2016; Jones et al., 2020). The risk ratio
is commonly defined as the ratio of the probability 𝑝1 of exceeding
an extreme threshold 𝑢 in the factual world, and the corresponding
probability 𝑝0 of doing so in a counterfactual world, often taken to be
the pre-industrial era (Naveau et al., 2020).

The National Academies of Sciences, Engineering, and Medicine
(2016) report divides EEA studies into two types: observation-based
and climate-model-based. The first type uses series of historical and
recent data to capture temporal changes in the probabilities and mag-
nitudes of extreme events and thus to infer the effects of anthropogenic
climate change. The second type uses a data-generating process to sim-
ulate two different worlds that are intended to be identical except for
a ‘‘treatment’’ variable, usually GHG levels (Stott et al., 2004; Fischer
and Knutti, 2015), or fine particulate matter (Larsen et al., 2020),
and thereby assesses how the ‘‘treatment’’ affects phenomena such
as temperature, precipitation or wildfires. In this framework causal
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inference techniques are required to efficiently capture the causality
while reducing the signal-to-noise ratio in a complex and noisy cli-
mate system (Reich et al., 2021). The literature on causal statistical
analysis has greatly evolved in recent decades and now has many
applications (Hernàn and Robins, 2020).

Observation-based EEA studies can be further divided into two
groups: return-level-based studies intended to assess temporal changes
in the data distribution, and meteorology-oriented studies that explore
how long-term trends in large-scale circulation patterns affect local ex-
treme events sharing common meteorological characteristics (National
Academies of Sciences, Engineering, and Medicine, 2016).

The purpose of this paper is to bridge recent improvements in
inference using extreme value theory (EVT) and EEA studies that
employ EVT. Thus it focuses on return-level-based EEA studies such
as those using the approach developed within the World Weather
Attribution (WWA) initiative (see worldweatherattribution.org/about),
which performs rapid return-level-based EEA.

Rapid event attribution usually takes place immediately after an
extreme event, especially one with high economic or societal im-
pact (Lerch et al., 2017). In Risser and Wehner (2017), changes in
the likelihood of extreme rainfall near Houston, Texas, were analyzed
in September 2017, a month after Hurricane Harvey struck. Flood-
ing in the United Kingdom (van Oldenborgh et al., 2015) and in
vailable online 13 June 2023
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Louisiana (van der Wiel et al., 2017) triggered immediate forecast
evaluation studies for both events. The climate attribution study for the
2017 heatwave in India (van Oldenborgh et al., 2018) was conducted
within a year.

Protocols for the attribution of extreme climate events have recently
been improved (Philip et al., 2020; van Oldenborgh et al., 2021), but
although the motivations for the choices of a relevant area, timescale,
trend and distribution are well-documented, the question of whether
or not to include the ‘‘trigger event’’ that led to the attribution study is
rarely explored. Most recent studies include this event without further
comment (van der Wiel et al., 2017; Risser and Wehner, 2017; Philip
et al., 2018), but some exclude it because of a putative ‘‘positive
bias’’ (van Oldenborgh et al., 2018). Sometimes it is excluded because
the analysis takes place so soon after its occurrence that data are
unavailable. An example of this is the study of the 2015 flooding in
Northern England and Southern Scotland van Oldenborgh et al. (2015)
from which the extreme itself was initially excluded, but which was
undertaken again after the data became available (Otto et al., 2018).

Guidelines for avoiding pitfalls in climate event attribution studies
are provided by van Oldenborgh et al. (2021), who state:

‘‘There has been discussion on whether to include the event under
study in the fit or not. We used not to do this to be conservative,

but now realize that the event can be included if the event
definition does not depend on the extreme event itself.’’

Quote 1: Extract from van Oldenborgh et al. (2021) (our emphasis).

There can be confusion in the climate literature between events
nd realizations (Quote ). The ‘‘event definition’’ section of most rapid
EA papers (van der Wiel et al., 2017; van Oldenborgh et al., 2018)
elates to the random variable of concern, whereas the ‘‘extreme event’’
efers to the specific realization under study. For instance, in van der
iel et al. (2017), ‘‘event definition’’ refers to the annual maximum 3-

ay precipitation average (a random variable in statistical terms) and
he extreme event under study is the 3-day precipitation average of
16.1 mm.day−1 observed in Livingston, Louisiana, in August 2016 (a

realization of the random variable). This raises three issues: potential
for linguistic and hence conceptual confusion, in particular between
random variables and events; the possibility that the random variables
themselves are defined in light of an observed event; and the inclusion
or not of the particular realization in the data analysis. In this particular
case, the event definition does not depend on the Louisiana level, but
the latter is included in the analysis and thus influences the fitted
generalized extreme value distribution. In this paper, we differentiate
between random variables, their realizations and events using standard
notation: realizations of a random variable 𝑋 are designated by 𝑥 and
we refer to events using the letter  .

We now focus on the third of the issues just mentioned, namely the
inclusion or not of the trigger event in analysis. Certain discussions of
protocols for extreme event attribution suggest that even if the extreme
observation that stimulated the analysis is excluded from the dataset,
the corresponding information can be incorporated by constraining the
tail of the fitted distribution to be heavy enough to ensure that the
return period for that observation is finite:

‘‘We do use the information that [the extreme event] occurred by
demanding that the distribution has a non-zero probability of the

observed event occurring [...]. This primarily affects the
uncertainty estimates [...], which usually have upper bounds’’.

Quote 2: Extract from Philip et al. (2020).

We explain below how appropriate statistical methods can account
directly for the trigger event, thus removing any need for constraints
2

of this sort.
Recent work has shown that the upward bias observed when an
analysis is performed immediately after an extreme event may stem
from the timing of the analysis, whereas excluding the trigger event will
lead to a downward bias in estimated return levels (Philip et al., 2020;
Barlow et al., 2020). Introducing a stopping rule that appropriately
reflects the timing of the analysis can account for such biases without
requiring a decision to exclude or include the trigger event, though we
shall see below that it is best to exclude it if its return period is to be
estimated.

Below we sketch notions of inference using stopping rules, use
simulation to compare different approaches to data analysis and rean-
alyze examples from the recent literature on climate event attribution.
We also discuss the estimation of return periods for specific events
and the effects of spatial selection, which can occur when the trigger
event might have taken place in any of several time series in related
locations. The extent to which some selection biases influence EEA is
well-documented in the recent literature. The selection of the ‘‘trigger
event’’ itself produces a bias, since we are mainly interested in extreme
events that happened and for which an increased probability due
to climate change is expected (Philip et al., 2020; van Oldenborgh
et al., 2021). The bias introduced by reducing the spatial area of
interest (Stott et al., 2004; Hammerling et al., 2019) or the possible
weather conditions (Philip et al., 2020; van Oldenborgh et al., 2021)
to those of a specific observed event is also documented in recent EEA
studies. However, to our knowledge, there is no comparable study of
such biases in the literature on climate event attribution.

Sections 1 and 2 introduce timing and spatial selection biases, and
simulation results are then provided to show how such biases affect
return level estimation. Three fast event attribution studies are then re-
analyzed, accounting for those selection biases. The paper closes with
some recommendations for future rapid return-level-based attribution
analyses.

1. Accounting for timing bias

1.1. Preliminaries

We precede our discussion of remedies for timing bias by recalling
the cumulative distribution functions of the generalized extreme value
and generalized Pareto distributions, and of the joint cumulative dis-
tribution function associated with a logistic copula in 𝑆 dimensions,
viz

GEV(𝑥) = exp
{

−
(

1 + 𝜉
𝑥 − 𝜇
𝜎

)−1∕𝜉

+

}

, −∞ < 𝑥 < ∞, (1)

GPD𝑢(𝑥) = 1 −
(

1 + 𝜉 𝑥 − 𝑢
𝜎𝑢

)−1∕𝜉

+
, 𝑥 ∈ [𝑢,∞), (2)

𝐶
(

𝑤1,… , 𝑤𝑆
)

= exp

[

−

{ 𝑆
∑

𝑠=1

(

− log𝑤𝑠
)1∕𝛼

}𝛼]

,

0 < 𝑤1,… , 𝑤𝑆 < 1, 0 < 𝛼 ≤ 1, (3)

here 𝑎+ = max(𝑎, 0) for real numbers 𝑎. Expressions (1) and (2)
espectively provide standard models for block (e.g., annual or sea-
onal) maxima and for the exceedances of a high threshold 𝑢. Both

models depend on a shape parameter 𝜉 that determines the weight
of the distribution tails; the first also depends on location and scale
parameters 𝜇 and 𝜎, and the second depends on a scale parameter
𝜎𝑢. The logistic copula (3) is a one-parameter dependence model in
which the variables 𝑤1,… , 𝑤𝑆 are independent when 𝛼 = 1 and become
totally dependent when 𝛼 → 0. Such a simple dependence model
rarely fits real data well, but it is adequate for our purposes. Below we
denote the unknown parameters for each of these expressions by 𝜃. The
development in the univariate case below is closely based on Barlow
et al. (2020). Belzile and Davison (2022) give an alternative derivation

of the main results and investigate improved inference based on them.
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1.2. Stopping and estimation

When statistical analysis is performed immediately after the oc-
currence of a trigger event, the joint probability density of the data
should be modified. If for simplicity we suppose that the successive
observations are independent replicates of a random variable with
probability density and distribution functions 𝑓 and 𝐹 , and denote the
trigger event by  , at which time the available data are 𝑥1,… , 𝑥𝑇 , then
the joint density of the data, conditional on the occurrence of  , is

𝑓 (𝑥1,… , 𝑥𝑇 ∣ ) =
Pr( ∣ 𝑥1,… , 𝑥𝑇 )𝑓 (𝑥1,… , 𝑥𝑇 )

Pr()

=
𝐼( ∩ {𝑥1,… , 𝑥𝑇 })𝑓 (𝑥1)⋯ 𝑓 (𝑥𝑇 )

Pr()
,

here the first equality follows from Bayes’ theorem and the second
rom the assumption that 𝑥1,… , 𝑥𝑇 are independent. The indicator
unction appearing in the last expression ensures that the joint density
quals zero unless the configuration of the data 𝑥1,… , 𝑥𝑇 has led to the
rigger event; it can be dropped below, because we assume throughout
hat this is the case. If  occurs at time 𝑇 , when the data series first
xceeds some pre-determined high level 𝜂, for example, then Pr() =
(𝜂)𝑇−1{1 − 𝐹 (𝜂)}, leading to

(𝑥1,… , 𝑥𝑇 ∣ ) =
𝑇−1
∏

𝑡=1

𝑓 (𝑥𝑡)
𝐹 (𝜂)

×
𝑓 (𝑥𝑇 )

1 − 𝐹 (𝜂)
, 𝑥1,… , 𝑥𝑇−1 ≤ 𝜂 < 𝑥𝑇 . (4)

The first 𝑇 − 1 terms on the right-hand side of (4) correspond to those
observations that did not exceed 𝜂, and the last term to the value
𝑥𝑇 > 𝜂 that caused the trigger event. The observations 𝑥1,… , 𝑥𝑇−1 are
ight-truncated at 𝜂, whereas 𝑥𝑇 is left-truncated at 𝜂.

The above formulation assumes that the trigger event is generated
y the same physical mechanisms as earlier data. In some cases this
ay be untrue, because of changes in the background climatology or
ovel conjunctions of circumstances, but in any case one aspect of
ttribution analysis is to gauge the appropriate degree of surprise at the
rigger event, and this involves comparison with the past. Moreover if
his event is so unprecedented that relevant data are very limited or
ven unavailable, statistical analysis is difficult to justify. We therefore
aintain this assumption, though rather gingerly.

For simplicity above we have suppressed the parameter vector 𝜃
n which an expression such as (4) depends, but in applications the
onditional density is used to fit the model, so we henceforth include 𝜃
n the notation. Estimation by maximizing the standard log-likelihood
unction

STD (𝜃) =
𝑇
∑

𝑡=1
log 𝑓 (𝑥𝑡; 𝜃) (5)

oes not account for the fact that 𝑇 is determined by the data. A
aïve correction excludes the final observation from the data, giving
he ‘exclusion’ log-likelihood function

EX (𝜃) =
𝑇−1
∑

𝑡=1
log 𝑓 (𝑥𝑡; 𝜃), (6)

ut although 𝑥𝑇 itself does not appear here, it influences the fit because
t helps to determine 𝑇 . Neither (5) nor (6) allows for the fact that 𝑇 is
andom, and, as mentioned above, fitting using them can be expected
o lead to respective under- and over-estimation of the return period
or 𝑥𝑇 .

Two difficulties in the statistical formulation of the trigger event
nd its associated stopping rule is that these are typically only known
fter this event has occurred and that the event itself may be somewhat
aguely defined, so entirely watertight inferences appear unattain-
ble. However, sensitivity analysis based on plausible stopping rules
s certainly feasible, and below we shall see that it can provide useful
nsights.

One natural formulation of the stopping rule is to define the trigger
vent so that the preceding data are not regarded as particularly
3

nusual. A simple way to do this is to set 𝑇 = min{𝑡 ∶ 𝑥𝑡 > 𝜂𝑡}, where
1, 𝜂2,… is a series of thresholds and 𝑥𝑇 is the first observation to exceed
he corresponding threshold. Thus 𝑥𝑡 < 𝜂𝑡 for 𝑡 = 1,… , 𝑇 − 1, and then
𝑇 > 𝜂𝑇 . In many cases, 𝜂𝑡 might be constant over time, but this is not
ssential to the argument. The resulting full conditional log-likelihood
unction (Barlow et al., 2020) is a generalization of expression (4),

COND (𝜃) =
𝑇
∑

𝑡=1
log

{

𝑓 (𝑥𝑡; 𝜃)
𝐹 (𝜂𝑡; 𝜃)

}

+ log
{

𝑓 (𝑥𝑇 ; 𝜃)
1 − 𝐹 (𝜂𝑇 ; 𝜃)

}

, (7)

which incorporates this stopping rule and thus allows for the timing
bias. We do not consider the partial conditioning approach suggested
by Barlow et al. (2020), but by analogy to EX (𝜃) we introduce

CONDEX (𝜃) =
𝑇−1
∑

𝑡=1
log

{

𝑓 (𝑥𝑡; 𝜃)
𝐹 (𝜂𝑡; 𝜃)

}

, (8)

hich excludes the trigger event from COND. Eqs. (5), (6), (7) and
8) easily adapt to the non-stationary case by replacing the parameter
ector 𝜃 by a time-varying parameter vector 𝜃𝑡.

The use of varying thresholds would be natural in many applica-
ions, but allowing them to depend on recent extremes raises computa-
ional issues; see the Supplementary Material.

Analyzing correlated time series to predict return levels in a specific
rea is common in climate studies. For example, van der Wiel et al.
2017) selected 19 out of 324 stations in the state of Louisiana (US),
ith at least 0.5◦ of spatial separation among those selected, in order to

educe spatial dependence between time series of annual maximum 3-
ay precipitation averages. In van Oldenborgh et al. (2018), maximum
nnual temperature return levels for two correlated time series close
o Phalodi (India) are derived from separate event attribution studies.
hus it is useful to extend our discussion above to the multivari-
te setting. A simple approach uses a copula to model dependence
mong 𝑆-dimensional variables 𝑥1,… , 𝑥𝑇 , where 𝑥𝑡 = (𝑥𝑡,1,… , 𝑥𝑡,𝑆 )
ow consists of observations at 𝑆 spatial locations that we denote
ollectively by . Then the log-likelihood functions (5), (6), (7) and
8) for independent 𝑥1,… , 𝑥𝑇 generalize to

STD (𝜃) =
𝑇
∑

𝑡=1
log

[

𝑓 (𝑥𝑡; 𝜃)𝑐
{

𝐹 (𝑥𝑡; 𝜃); 𝜃
}]

, (9)

EX (𝜃) =
𝑇−1
∑

𝑡=1
log

[

𝑓 (𝑥𝑡; 𝜃)𝑐
{

𝐹 (𝑥𝑡; 𝜃); 𝜃
}]

, (10)

COND (𝜃) =
𝑇−1
∑

𝑡=1
log

[

𝑓 (𝑥𝑡; 𝜃)𝑐
{

𝐹 (𝑥𝑡; 𝜃); 𝜃
}

𝐶
{

𝐹 (𝜂𝑡; 𝜃); 𝜃
}

]

+ log

[

𝑓 (𝑥𝑇 ; 𝜃)𝑐
{

𝐹 (𝑥𝑇 ; 𝜃); 𝜃
}

1 − 𝐶
{

𝐹 (𝜂𝑇 ; 𝜃); 𝜃
}

]

, (11)

CONDEX (𝜃) =
𝑇−1
∑

𝑡=1
log

[

𝑓 (𝑥𝑡; 𝜃)𝑐
{

𝐹 (𝑥𝑡; 𝜃); 𝜃
}

𝐶
{

𝐹 (𝜂𝑡; 𝜃); 𝜃
}

]

, (12)

where 𝐹 (𝑥𝑡; 𝜃) =
{

𝐹1
(

𝑥𝑡,1; 𝜃
)

,… , 𝐹𝑆
(

𝑥𝑡,𝑆 ; 𝜃
)}

represents the vector of
marginal cumulative distribution functions, 𝑓 (𝑥𝑡) =

∏𝑆
𝑠=1 𝑓𝑠(𝑥𝑡,𝑠; 𝜃) is

the product of their marginal density functions, and 𝐶 is a copula with
uniform margins defined by

P
(

𝑋1 ≤ 𝑥1,… , 𝑋𝑆 ≤ 𝑥𝑆 ; 𝜃
)

= 𝐶 {𝐹 (𝑥; 𝜃); 𝜃} (13)

with associated density function 𝑐(𝑢; 𝜃) = 𝜕𝑆𝐶(𝑢; 𝜃)∕𝜕𝑢1 ⋯ 𝜕𝑢𝑆 , with
𝑢 = (𝑢1,… , 𝑢𝑆 ) ∈ [0, 1]𝑆 .

1.3. Discussion of the stopping rule

In an ideal world the stopping rule would be clearly specified in
advance of potential trigger events by listing circumstances exceptional
enough to warrant an attribution study. In many practical situations,
such a task is impossible, too time-consuming or too restrictive, so
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attribution analysis is often performed without the clear prior speci-
fication of a trigger event. In many cases contextual information about
what events can be treated as extreme in a specific geographical region
can be used to ‘‘guess’’ the stopping rule and thus to determine terms
appearing in Eqs. (7) and (8). For example, the authors of the attri-
bution study for the August 2016 Louisiana floods give the following
quantitative definition of extreme flooding:

‘‘In places, the 3-day precipitation totals in Louisiana exceeded
[. . . ] 3 times the average annual 3-day precipitation maximum’’

Quote 3: Extract from van der Wiel et al. (2017).

If this definition was not influenced by the level recorded in Au-
gust 2016, then a flooding event would be considered as extreme
when, somewhere in the region, a 3-day average precipitation annual
maximum three times bigger than its historical average was recorded.
The data analyzed in van der Wiel et al. (2017) involve 𝑆 = 19
different spatial locations. Assuming that there is no spatial selection,
the stopping rule could be defined as the first time at which one or
more of these spatial locations records a 3-day average precipitation 𝑋𝑠

𝑡
that exceeds three times the historical annual average 3-day maximum.
If data for the years 1950–2000 are used to compute the historical
average �̄�𝑠 at each location 𝑠 in the set  containing the locations and
stopping can only occur in subsequent years, we might take 𝑇 to be the
first time from the year 2001 onwards that such an event occurs at one
or more locations in , i.e.,

𝑇 = min

{

𝑡 ≥ 2001 ∶
⋃

𝑠∈

(

𝑋𝑠
𝑡 ≥ 3�̄�𝑠)

}

. (14)

In van Oldenborgh et al. (2018), an extreme heatwave is declared
when TXx, the annual maximum daily temperature between May and
June, is at least 4 or 5 degrees above its average for 1981–2010.
Eq. (15) transcribes this contextual vision of an extreme temperature
to a quantitative stopping rule for use in fitting the observed series,
i.e.,

𝑇 = min
{

𝑡 ≥ 2010 ∶ TXx𝑡 − TXx[1981,2010] ≥ 4
}

. (15)

When the precise definition of the extreme event is unclear, various
plausible stopping rules could be formulated and used as the basis for
sensitivity analyses.

2. Accounting for spatial selection

Thus far we have discussed how analysis immediately after a trigger
event can influence the estimation of an underlying extremal prob-
ability model and thus affect the probability and/or return period
associated with that event. Bias can also arise when the trigger event
occurs in a single time series that is selected among several related
series, and no allowance is made for the selection. We now give a
stylized discussion of how this affects estimated return periods for the
event in question.

Suppose that 𝑆 independent time series are monitored and that
extreme events occur in the 𝑠th series with distribution GEV𝑠(𝑥), where
the subscript indicates that the parameters that determine the distribu-
tion depend on the series. Suppose that analysis takes place when the
largest of the corresponding variables 𝑋1,… , 𝑋𝑆 exceeds a given return
level, and that this selection is ignored. Without loss of generality we
further suppose that this largest value occurs in series 𝑠 = 1, and that
its value 𝑥1 is associated with a return period of 𝑚 years based on the
distribution GEV1(𝑥), i.e.,

GEV1(𝑥1) = 1 − 1∕𝑚.

This calculation ignores the fact that corresponding values 𝑥2,… , 𝑥𝑆
in time series 2,… , 𝑆, each such that GEV (𝑥 ) = 1 − 1∕𝑚, would also
4

𝑠 𝑠
Fig. 1. Dependence of true return period 𝑚𝜒 on naïve return period 𝑚 when the
selection of an extreme event in one series among 𝜒 ‘‘equivalent independent’’ series
is ignored. The figures at the right of the black lines show 𝜒 . The red line corresponds
to 𝜒 ≈ 1.43 for the Phalodi analysis in Section 4.2. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

have led to the same return period estimate. Taking the selection into
account, the true return period 𝑚𝑆 is therefore given by

1 − 1∕𝑚𝑆 = Pr(𝑋1 ≤ 𝑥1,… , 𝑋𝑆 ≤ 𝑥𝑆 ) =
𝑆
∏

𝑠=1
Pr(𝑋𝑠 ≤ 𝑥𝑠) = (1 − 1∕𝑚)𝑆 ,

i.e.,

𝑚𝑆 =
{

1 − (1 − 1∕𝑚)𝑆
}−1 . (16)

If 𝑆 = 1, i.e., there is no selection, then 𝑚𝑆 = 𝑚, and if 𝑚 is large
then 𝑚𝑆 ≈ 𝑚∕𝑆: 𝑚-year events will occur 𝑆 times more frequently in 𝑆
independent series.

At first sight, these calculations for independent series might appear
irrelevant to the analysis of dependent series. For so-called asymptoti-
cally dependent series, however, and with the same notation, one can
write

Pr(𝑋1 ≤ 𝑥1,… , 𝑋𝑆 ≤ 𝑥𝑆 ) = (1 − 1∕𝑚)𝜒 = 1 − 1∕𝑚𝜒 , (17)

where the so-called extremal coefficient 𝜒 satisfies 1 ≤ 𝜒 ≤ 𝑆 and can
be interpreted as the ‘‘number of independent series’’ contributing to
the overall maximum. If 𝑋1,… , 𝑋𝑆 are totally dependent, then 𝜒 = 1,
and if they are fully independent, then 𝜒 = 𝑆; see expression (31.12)
of Davison et al. (2019), for example. Asymptotically dependent models
for spatial extremes can be expected to provide reasonable approxima-
tions to phenomena such as maxima of temperature time series at 𝑆
sites in a relatively small spatial region, and such models will then
provide upper bounds on 𝑚𝑆 . An alternative class of models, often
found appropriate for phenomena such as rainfall at spatially separated
sites, has the property of asymptotic independence: increasingly rare
observations become closer to independence, i.e., 𝜒 ≲ 𝑆 for very rare
events. The corresponding 𝑚𝑆 given by (16) will then provide a lower
bound on the true return period.

Fig. 1 shows how 𝑚𝜒 is related to 𝑚 for various values of 𝜒 . Each
function is roughly linear for 𝑚 ≥ 𝜒 , so the approximation 𝑚𝜒 ≈ 𝑚∕𝜒
seems adequate in most cases.

3. Simulation studies

3.1. Setup

We now use stochastic simulation of extremal data to compare how
fitting based on the various log-likelihood functions described above
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affects the estimation of a 𝑝-year return level, i.e., the level expected to
be crossed by the variable of interest every 𝑝 years, taking 𝑝 = 200 for
llustration. We shall see that not accounting for timing bias can lead
o poor estimation in both univariate and bivariate settings. We also
onsider the association of a return period with a specific observation.

Our Monte Carlo settings were chosen to resemble real uses of
xtreme event attribution. Many climate variables studied are positive,
nbounded and somewhat heavy-tailed, and their annual maxima are
ommonly fitted with a generalized extreme-value (GEV) distribution.
s in Barlow et al. (2020), we defined quantitative stopping rules using
simulated historical sample of 𝑛ℎ = 10 maxima, then generated

further independent variables from the same GEV distribution, applied
different stopping rules, and used the resulting samples of maxima to
estimate the three GEV parameters and the 𝑝-year return level.

For each run, stopping rules in which the chosen thresholds were
return levels 𝜂𝜏 for a GEV (see Eq. (1)) with parameters 𝜇 = 0, 𝜎 = 1
and 𝜉 = −0.2, 0, 0.2 with different return periods 𝜏 were applied, giving
stopping times

𝑇 𝜏 = min
{

𝑡 > 𝑛ℎ ∶ 𝑋𝑡 ≥ 𝜂𝜏
}

. (18)

The goal was to evaluate the impact of increasing the unlikeliness of the
trigger event on the estimation of the 200-year return level based on
the log-likelihood functions (5)–(8). Fits from 1000 simulated datasets
were compared to the true 200-year return level in terms of the bias
and relative root mean squared error (RRMSE). Confidence interval
coverage (CIC) and width (CIW) are derived from confidence bounds
for the 200-year return level estimator.

3.2. Timing bias with univariate extremes

We first discuss the effect of timing bias when estimating return
levels based on a univariate time series. The results from parameter
estimation using the log-likelihood functions (5), (6), (7), and (8) are
respectively designated by ‘‘Standard’’, ‘‘Excluding Extreme’’, ‘‘Cond.
Including Extreme’’ and ‘‘Cond. Excluding Extreme’’ in the figures and
the text.

Barlow et al. (2020) sampled GEV random variables until they first
exceeded a threshold 𝜂𝜏 (see Eq. (18)) or until the maximum sample
size 𝑁 was reached, estimated the parameters 𝜃 and then estimated the
200-year return level and its 95% confidence bounds. Their simulation
studies result in lower relative bias and root mean squared error using
the full conditional log-likelihood than using the standard likelihood,
whether or not the trigger event is included, with comparable confi-
dence interval coverage and width; see the Supplementary Material.
The relative bias decreases when the full conditional log-likelihood
includes the extreme event for return periods of 𝜏 ≥ 500, but this
s due to the imposition of a maximum sample size. As 𝜏 increases,
xceedances of 𝜂𝜏 become less likely, and when no realization exceeds
𝜏 , sampling stops when the maximum sample size is reached, and it is
nappropriate to condition the log-likelihood with regard to a stopping
ule that has not been applied.

To avoid the aforementioned problem we performed simulations
ith the sample size fixed to be 𝑛𝐶 = 200 and return periods 𝜏 exceeding
𝐶 − 𝑛ℎ, so that the last event observed is unlikely enough for the
topping rule to make sense. We first generated a ‘‘historical sample’’
f 𝑛ℎ GEV variables, and then, for each return period 𝜏 considered (see
q. (18)), we generated 𝑛𝐶 −𝑛ℎ −1 GEV variables right-truncated at 𝜂𝜏 ,

followed by a final GEV variable left-truncated at 𝜂𝜏 ; these correspond
to the conditional densities appearing in (7). We then concatenated the
historical sample, the data under the stopping threshold 𝜂𝜏 and the last
observation above 𝜂𝜏 to yield a sample of 𝑛𝐶 observations, of which the
only observation to exceed 𝜂𝜏 was the last, provided 𝜂 lies above all 𝑛ℎ
historical values. Fig. 2 shows the results of this experiment with GEV
shape parameter 𝜉 = 0.2. The standard fit shows an upward relative
bias that increases with the size of the trigger event, and the resulting
200-year return level is less and less reliable (the confidence interval
5

coverage decreases with 𝜏). The differences between results for the
other three log-likelihoods are smaller, especially for large 𝜂𝜏 , partly
because the conditioning term has little effect on Eqs. (7) and (8) when
𝐹 (𝜂𝜏 ) ≈ 1. The coverage of two-sided confidence intervals is most stable
for the conditional fits, but this disguises a difference in the one-tailed
errors: the intervals tend to be too short in the upper tail and too long
in the lower tail. There is little to choose between the results using the
conditional fits, though that with all the available information, based
on (7), seems slightly preferable for smaller 𝜏.

The corresponding results with 𝜉 = 0 and −0.2 reported in the
Supplementary Material lead to similar conclusions: conditioning while
either including (Eq. (7)) or excluding (Eq. (8)) the ‘‘trigger’’ pro-
vides less biased 200-year return level estimates than the standard
fit, whether or not the trigger is included in the latter. However, the
coverage of the conditioned fit that includes the ‘‘trigger’’ deteriorates
when 𝜉 = −0.2, and its upper coverage error also significantly increases,
as the upper bound for the 95% confidence interval is under-estimated
for negative 𝜉. In this case, excluding the trigger without conditioning
leads to underestimation of the upper confidence bound for 𝜏 < 1000
and of the lower confidence bound for any 𝜏 considered.

3.3. Timing bias with correlated extremes

We now investigate the impact of timing bias in a bivariate setting.
The univariate fit for the variable of interest is labeled ‘‘Independent’’,
while fits using the log-likelihood functions (9), (10), (11), and (12) are
respectively labeled ‘‘Including Extreme’’, ‘‘Excluding Extreme’’, ‘‘Cond.
Including Extreme’’ and ‘‘Cond. Excluding Extreme’’.

We suppose that the stopping rule is applied to one variable but the
other is merely part of the analysis. This situation can arise when, for
instance, a location 𝑠1 is very close to that of the trigger event, but its
time series for the variable of interest lacks the data for that event itself.
Often a more complete time series is available, and though its location
𝑠2 lies further from that of the trigger event, it can serve as a monitoring
reference for data at 𝑠1. If there is strong dependence between time
series at the two locations, then observation of an extreme event at 𝑠2
may aid in event attribution for an extreme at 𝑠1.

To explore this setting we generated replicates of two GEV variables
𝑋 and 𝑌 with shape parameters 0.2 and dependence given by the
logistic copula (3) with its parameter 𝛼 = 0.5 taken to be known. The
maximum sample size was set to 𝑁 , as in Barlow et al. (2020), and
the univariate stopping rule of Eq. (18) was applied to 𝑌 : sampling of
both series stopped when 𝑌 ≥ 𝜂𝜏 for some return period 𝜏. Although
the stopping rule is applied only to 𝑌 , it influences the estimation of
quantiles of 𝑋 because the series are dependent. For every return period
considered, the marginal distributions of 𝑋 and 𝑌 were estimated
from the time series stopped at 𝑇 𝜏 , say, using the log-likelihood func-
tions (9)–(12). The cumulative distribution function for 𝑌 is denoted by
𝐹𝑌 . In Eqs. (11) and (12), the bivariate conditional terms 𝐶

{

𝐹 (𝜂𝑡; 𝜃)
}

or 𝑡 ≤ 𝑇 𝜏 and 1−𝐶
{

𝐹 (𝜂𝑇 𝜏 )
}

are respectively replaced by 𝐹𝑌 (𝜂𝜏 ; 𝜃) and
−𝐹𝑌 (𝜂𝜏 ; 𝜃). Finally, the 200-year return level for 𝑋 and its confidence
ounds were derived and the summaries used in the univariate case
ere computed. The standard univariate fit for 𝑋 from Eq. (5) was used
s a benchmark.

When 𝛼 = 0.5, the probability that 𝑋 is extreme given that 𝑌 is
xtreme can be shown to equal 2−2𝛼 ≃ 0.59. This leads to the following
wo cases:

. both 𝑋 and 𝑌 are extreme when the trigger event occurs. In this
case, we expect the return levels of 𝑋 to be overestimated when
fitting the time series for 𝑋 assuming 𝑋 and 𝑌 are independent,
like in the standard univariate case. The corresponding simula-
tion results, displayed in Fig. 3, suggest that for every stopping
threshold 𝜂𝜏 the relative bias and root mean squared error from
the full conditional fit are much lower than for other fits, while
confidence intervals have similar coverages and widths. Upper
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Fig. 2. Summary results for the estimation of a 200-year return level based on simulated GEV random variables with shape parameter 0.2, with stopping thresholds defined from
the return periods 𝜏 shown on the 𝑥-axis as in Eq. (18). The relative bias and mean squared error are shown in Panels a and b, and coverage of 95% confidence intervals and
their average widths are shown in Panels c and d. Panels e and f represent the upper and lower coverage errors. The time series are generated so that the first exceedance of the
stopping threshold occurs at a specified time.
and lower coverage errors are very similar across methods ac-
counting for the dependence between the series (Fig. 3e and f),
though for high stopping thresholds, excluding the trigger with
the appropriate conditioning provides the closest upper coverage
error to the nominal rate, i.e., the most reliable upper confidence
limit for the 200-year return level, while other methods tend to
underestimate the upper confidence bound (Fig. 3e);

. 𝑋 is not extreme when the trigger event occurs, and we then
expect the univariate fit for 𝑋 to underestimate the return levels
for 𝑋. Indeed, realizations of 𝑋 sampled until the trigger event
will tend to be low because they are related to those of 𝑌 , which
lie below 𝜂𝜏 until sampling stops. Fig. 4 shows very reduced
relative bias and RRMSE with conditioned bivariate fits, both
including and excluding the extreme at 𝑠2, compared with the
independent fit for 𝑋, which strongly underestimates the 200-
year return level at 𝑠1, and with the standard fit including the
extreme event, which gives positively biased estimators of the
200-year return level. Excluding the extreme leads to slight
downward bias of the estimated return level for 𝑋 for every
stopping threshold 𝜏 considered. Of all methods, excluding the
trigger with the appropriate conditioning provides the upper
coverage error closest to the nominal error rate, especially for
high stopping thresholds (Fig. 4e).

The figures show how both cases affect the return level estimates. The
improvement due to accounting for the timing bias is much clearer in
case , but case  better illustrates the situation in which the data are
incomplete at the location of interest 𝑠1 but the trigger event is seen
only at 𝑠2.

3.4. Bias in return period estimation

Fits of extreme-value models can be highly sensitive to the largest
or smallest observations in a sample (Davison and Smith, 1990), so it
6

is natural to wonder whether estimated return periods for particular
observations corresponding to rare events might be biased. For con-
creteness, suppose that the generalized extreme-value distribution (1)
has been fitted to a sample whose largest value is 𝑋max and that
the return period of 𝑋max is to be estimated from the fit. The fitted
distribution is ĜEV(𝑥), so the true return period 𝑀 and its estimate 𝑀
may be written as

𝑀 =
{

1 − GEV
(

𝑋max
)}−1 , 𝑀 =

{

1 − ĜEV
(

𝑋max
)

}−1
.

The observation 𝑋max is often described as an ‘‘𝑀-year event’’, but this
term applies in relation to GEV(𝑥). In practice the estimate ĜEV(𝑥)
is often based on data that include 𝑋max, and the latter may strongly
influence the estimated distribution. It seems plausible that 𝑀 < 𝑀 if
𝑋max is included in the fit, and that 𝑀 > 𝑀 if not. The situation here
differs from those in previous sections, which concerned the estimation
of a return level, i.e., a parameter of the distribution, as the return
period 𝑀 depends on 𝑋max and thus is itself random. To investigate the
relation between 𝑀 and 𝑀 we performed a further simulation study,
which we now describe.

We generated 1000 independent datasets using a simplification of
the approach described in Section 3.1, by simulating 𝑛𝐶−1 observations
from (1) right-truncated at a fixed threshold 𝜂, supplemented by a
final observation with return period 𝑚. In order to measure the bias
as accurately as possible, this final observation is determined by the
equation GEV(𝑥) = 1 − 1∕𝑚 and thus is fixed. For each such dataset we
computed return period estimates �̂� using fitted distributions ĜEV(𝑥)
found using the log-likelihood functions (5)–(8). This process was
repeated for different configurations of values of 𝑛𝐶 , 𝜂 and 𝑚, with
shape parameter 𝜉 = 0.2 throughout.

Fig. 5 shows boxplots of the resulting ratios �̂�∕𝑚. The results are
extremely variable, with many simulated datasets in which �̂� ≫ 𝑚,
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Fig. 3. Summary results for simulated bivariate extremes, case : 𝑋 is also extreme when 𝑌 is stopped. Simulations of two correlated random variables 𝑋 and 𝑌 following a
logistic (𝛼 = 0.5) copula with GEV (𝜇 = 0, 𝜎 = 1, 𝜉 = 0.2) margins. The stopping rule is defined for 𝑌 as the return level of period 𝜏 as in Eq. (18). The return periods 𝜏 are shown on
the 𝑥-axis. The relative bias and relative mean squared error from the theoretical 200-year return level for 𝑋 are shown in Panels a and b, and 99% confidence interval coverage
and width are shown in Panels c and d. Panels e and f represent the upper and lower coverage errors.

Fig. 4. Summary results for bivariate extremes, case : 𝑋 is not extreme when 𝑌 is stopped. The simulation setup and stopping rule are the same as in Fig. 3. The relative bias
and relative mean squared error from the theoretical 200-year return level for 𝑋 are shown in Panels a and b, and the 99% confidence interval coverage and width are shown in
Panels c and d. Panels e and f represent the upper and lower coverage errors.
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Fig. 5. Ratios of estimated and true return periods �̂�∕𝑚 for various fits to samples of size 𝑛𝐶 , with threshold 𝜂 and true return period 𝑚, with parameters estimated from
standard and conditional log-likelihoods including and excluding the largest value, labeled Std, Ex, Cond and CondEx. From top in each block of boxes: (𝜂, 𝑚, 𝑛𝐶 ) = (100,200,50),
(100,200,80), (150,200,50), (150,200,80), (200,400,50), (200,400,100), (200,1000,50), (200,1000,100).
but some patterns emerge. When GEV is based on the standard log-
likelihood and the largest observation is included, we tend to see �̂� < 𝑚,
especially when the effect of not allowing for the right-truncation is
reinforced by increasing 𝑛𝐶 ; �̂� is systematically too large when the
largest observation is excluded. The situation is more variable with the
conditional likelihood, which gives the most consistent results when the
largest observation is excluded. In itself this is not surprising, as use
of log-likelihood (8) is then appropriate and the fitted distribution is
independent of the largest observation; thus in this case we expect that
�̂�∕𝑚 → 1 as 𝑛𝐶 increases, but clearly such convergence is unlikely to be
visible for values of 𝑛𝐶 seen in applications. Perhaps the most striking
feature of the results is that �̂�∕𝑚 is very variable and/or systematically
biased in all cases: an event with 𝑚 = 1000, say, might easily have �̂�
anywhere in the range 250 to 4000. This suggests that extreme caution
is required when attributing return periods to particular events; indeed,
this should not be attempted without a statement of uncertainty.

4. Real data analyses

4.1. 1999 Flooding in Vargas state, Venezuela

We now consider an extreme flooding event in the Venezuelan state
of Vargas in December 1999. According to Méndez et al. (2015), the
form of the San Julián basin implies that major rainfall events are
extremely rare in this area, but when they do happen the consequences
can be very serious. Indeed, these authors observe that this basin has
a very wide range of slopes, provoking increased erosion over time,
and that its small area (20.68 km2) implies rapid concentration of
surface runoff, so water can very quickly arrive in residential zones.
In December 1999, such flooding, combined with a landslide, massive
debris transportation and poor infrastructure, caused disastrous damage
in the Caraballeda area.

To predict the likelihood of such an event, we estimate return levels
for daily maximum hourly precipitation (mm) in Vargas from 1961 to
1999. The San Julián basin is not subject to much seasonality (Méndez
et al., 2015), and no long-term trend is perceptible in these data.

We use a generalized Pareto distribution (2) to model daily rainfall
amounts over 𝑢 = 12 mm, a choice of threshold justified in the
Supplementary Material using the approaches of Northrop and Coleman
(2014) and Varty et al. (2021). Let 𝜂𝑝 be defined such that

P(𝑋 > 𝜂𝑝) =
1
𝑝𝜆

, (19)

where 𝜆 is the average number of exceedances per year, so 𝑝𝜆 is the
average number in a 𝑝-year period. This allows us to interpret the GPD
quantile 𝜂 as the 𝑝-year return level.
8

𝑝

The stopping rule here is ill-defined, so for illustration we took the
trigger event to be the first crossing of the historical 100-year return
level computed using the first two decades of data. The standard and
conditioned fits with and without the extremes from December 1999
are displayed in Fig. 6. When the trigger event is included, the return
time for the 1999 event is 464 (95% CI [352, 647]) years for the
standard log-likelihood fit but 882 [597, 1447] for the full conditional
log-likelihood fit (Fig. 6a). The standard fit changes considerably when
the trigger event is excluded, and the return period for the Vargas 1999
event is multiplied by 2.6 to become 1207 [766, 2182] years, but the
full conditional results change little except for the upper confidence
bound, which increases faster with the return period (Fig. 6b). The
uncertainty range for every return period computed is very wide.

An alternative analysis fits the GEV distribution to the annual
maxima of daily precipitation values using the same stopping rule.
There are fewer annual maxima than exceedances of 12 mm, so each
has a larger influence on the fitted model, as we see in Fig. 7, where
the standard fit including the extreme event has a heavier upper tail
than the other fits. The return level for the 1999 extreme event using
a GEV fit is comparable to using a GPD fit when the likelihood is
conditioned, but the unconditioned GEV fit predicts a 250-year return
level for the Vargas event, around 200 years shorter than the prediction
using a GPD; see Coles and Pericchi (2003), Coles et al. (2003) and the
Supplementary Material.

Return levels and return periods for a flood as extreme as the trigger
estimated with a conditioned likelihood that includes the trigger event
are quite different from their unconditioned analog, especially using
a block maxima approach. Return level estimates based on the usual
likelihood including and excluding the extreme event are very different,
whereas inferences based on the conditional likelihoods with or without
the trigger event are more stable.

4.2. 2016 Heatwave in Phalodi, India

The importance of accounting for timing bias can be seen by re-
considering the attribution analysis for the 2016 heatwave in Phalodi,
India, which had disastrous public health consequences. Data sources
and methods are detailed in van Oldenborgh et al. (2018), though here
we compute likelihood-based confidence intervals rather than use a
bootstrap. The Phalodi series is not available in the GHCN-D dataset,
but sufficiently complete annual maximum temperature time series
are available at two nearby stations, Jodhpur and Bikaner, and we
analyze these as a proxy for data at Phalodi. Our findings for a standard
fit of the Jodhpur series with a time-related trend, shown in Fig. 8,
are similar to those in van Oldenborgh et al. (2018). The location
parameter of the fitted GEV distribution slightly decreases over time
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Fig. 6. Vargas data analysis. Estimated 𝑝-year return level 𝜂𝑝 (see Eq. (19)) and its 95% confidence interval (dashed lines) from a GPD fit. The 𝑥-axis shows the return period 𝑝
(years). Panel (a) shows standard and conditioned fits when the trigger event is included (see Eqs. (5) and (7)), and Panel (b) shows results from standard and conditioned fits
when it is excluded (see Eqs. (6) and (8)). Vertical dotted lines show the estimated return periods for the event in Vargas in December 1999.
Fig. 7. Vargas data analysis. Estimated 𝑝-year event 𝜂𝑝 using a GEV fit. The 𝑥-axis represents the return period in years 𝑝. Marks represent the estimated 𝑝-year event, vertical
bars denote 95% likelihood-based confidence intervals. Different colors represent results from different fits. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
(Fig. 8a) and a risk ratio (see Naveau et al., 2020, for a definition)
of 0.511 is found for the occurrence of the trigger event in 2016
relative to 1973 (Fig. 8b). The heterogeneity in the Jodhpur time series
could make the slightly negative trend in the location parameter very
sensitive to the three observations between 1940 and 1960 (Fig. 8a).
However, our aim is to reproduce as closely as possible the work of van
Oldenborgh et al. (2018) in order to compare findings when accounting
or not for timing and spatial selection bias. When fitting the Jodhpur
time series with the fully conditioned log-likelihood (7) and a trend in
the location parameter, the estimated risk ratio decreases from 0.511
to 0.4. Return periods for the heatwave as in 1973 and 2016 are
given in Fig. 8b for the standard fit and in Fig. 8c for the conditioned
fit, although they are very uncertain. The return period for a similar
heatwave with the standard fit is 26 (95% CI [14, 150]) years in 1973
and 51 [26, 91] years in 2016. Conditioning slightly increases both
return periods and the width of the 95% confidence interval, to reach
respectively 32 [15, 302] and 80 [31, 147] years in 1973 and 2016.

Our analysis was performed in two steps, using the fact that the
temperature time series at Jodhpur is more complete than that at
Bikaner and contains the 2016 extreme event (van Oldenborgh et al.,
2018), whereas Bikaner is closer to Phalodi. The stopping rule is
defined as in Eq. (15). The first step was an extremal analysis using
only the Jodhpur series of annual temperature maxima, TXx. The return
levels estimated from univariate fits based on (5)–(8) are shown in
Fig. 9. Those obtained using the standard likelihood (5) and including
the trigger event are higher than for the other fits, with much higher
upper confidence limits. To illustrate how allowing for timing bias can
stabilize estimation, we extend the Jodhpur time series with later data
9

and recompute return levels using standard and conditional likelihoods.
The latter involves conditioning up to the trigger event year, while
standard likelihood contributions are used for data after 2016. The full
conditional fits before 2016 use the log-likelihood function (8), since
the stopping rule has not yet been applied. Fig. 10 shows that using
the standard log likelihood (5) results in a jump in the predicted return
levels after the extreme 2016 heatwave, followed by a slow decrease,
whereas those from the conditional fits are more stable.

In a second step, we attempt to estimate the return level in Bikaner,
where the extreme is not directly observed, by using a logistic cop-
ula (3) to model the dependence between the annual maximum tem-
peratures there and at Jodhpur. Figure 18 of the Supplementary Ma-
terial compares contours of the fitted joint density and cumulative
distribution functions with the maxima.

A stopping rule for the Jodhpur series is then defined using the prin-
ciple described in Section 3. The parameter 𝛼 for the logistic copula (3),
assumed constant, is estimated. Fig. 11 shows how the estimated return
levels in Bikaner change over time. Assuming independent data yields
lower return level estimates, while using the dependence with the
Jodhpur series to incorporate the extreme event into the prediction is
stable over time only when the full conditional likelihood is used, as
the jump seen in 2016 in the Jodhpur series in Fig. 10 is also visible
in the Bikaner return levels estimated with the standard likelihood; see
Fig. 11.

The analysis of the Jodhpur TXx series shows that not accounting
for timing bias leads to a jump in return level estimates that dissipates
slowly for several years after a trigger event, whereas appropriate con-
ditioning avoids this. For bivariate time series, using even a very basic
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𝜒

Fig. 8. Phalodi heatwave analysis. Panel (a) shows the estimated location parameter �̂�𝑡 of the GEV fit (red line) for annual temperature maxima (blue points) at Jodhpur for
1944–2016. The vertical red lines show 95% profile likelihood confidence bounds for 𝜇𝑡 in 1973 and 2016, and the thin red lines denote �̂�𝑡 + �̂� and �̂�𝑡 + 2�̂�, where �̂� is the
estimated scale parameter. Panel (b) displays return level estimates for 1973 (solid blue) and 2016 (solid red) and their 95% confidence intervals (dotted). The observations are
shown twice, scaled with the time-related trend (blue and red points). The golden horizontal line represents the extreme temperature observed in Jodhpur in 2016 (48.8 ◦C), which
return periods in 1973 (blue) and 2016 (red) are shown by vertical dotted lines. Panel (c) reproduces plots from Panel (b using the COND log-likelihood (7). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Phalodi heatwave analysis. Estimated 𝑝-year event 𝜂𝑝 using GEV fits. The 𝑥-axis represents the return period in years. Marks represent the estimated 𝑝-year event, for
𝑝 = 200, 400,… , 2000, and vertical bars denote 66% likelihood-based confidence intervals.
Fig. 10. Phalodi heatwave analysis. Estimated return levels and their 66% confidence intervals (vertical lines finishing with ticks) with the standard and conditioned univariate
fits for three return periods for 2011–2021 for TXx in Jodhpur. The horizontal black line indicates the extreme observed in Jodhpur in 2016 (48.8 ◦C).
correlation model instead of assuming independence has a huge impact
on return level estimates, and accounting for timing bias prevents the
bias transfer in return level estimation from the stopped series to the
nearby series.

We now discuss the impact of spatial selection (Section 2). The
logistic copula (3) has 𝜒 = 𝑆𝛼 , and if we assume that we would
have performed a similar analysis had an equally extreme event been
observed in 2016 at Bikaner rather than at Jodhpur, then 𝑆 = 2 and
̂ = 𝑆 �̂� ≈ 1.43. This lies between 𝜒 = 1, which would correspond to
total dependence between extremes at Bikaner and Jodhpur, and 𝜒 = 2,
which would correspond to independence. Under this argument the
return period of 51 years found in Fig. 8 for the event at Jodhpur, with
10
this location specified before the event occurred, reduces to around
36 years for such an event at one of the two locations, using either
the exact formula 𝑚𝜒 = 1∕ {1 − (1 − 1∕𝑚)𝜒} given by (17) or the
approximation 𝑚𝜒 ≈ 𝑚∕𝜒 .

4.3. 2021 Heatwave in the Pacific Northwest

Our third re-analysis concerns the unprecedented ‘‘heat dome’’
event in the United States and Canada in June 2021, which led to
wildfires that resulted in the inhabitants of the Canadian town of Lytton
becoming climate refugees within a couple of days.
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Fig. 11. Phalodi heatwave analysis. Estimated return levels with an independent standard fit (golden line) and with the standard (navy) and conditioned (salmon) fit with a
logistic correlation structure for three return periods throughout the 2011–2021 period for TXx in Bikaner. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. 12. Portland heatwave analysis. Panel (a) shows the location parameter �̂�𝑡 of the GEV fit (red line) to annual temperature maxima (blue points) at Portland for 1938–2021,
with 95% profile likelihood confidence bounds (vertical red lines). The thin red lines denote �̂�𝑡 + �̂� and �̂�𝑡 + �̂�, where �̂� is the estimated scale parameter. Panel (b) displays return
level estimates for the years 1951 (solid blue) and 2021 (solid red) and their 95% profile likelihood confidence intervals (dotted). The observations are shown twice, scaled with
the time-related trend (blue and red points). The golden horizontal line represents the extreme temperature observed in Portland in 2021 (46.7 ◦C). The return period estimate
for this event in 1951 (blue) is shown by a vertical dotted line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
We use the Portland International Airport series of observed daily
temperatures from the GHCN-D dataset to reproduce part of the attri-
bution study of Philip et al. (2022), wherein data sources and methods
are detailed, though we compute likelihood-based confidence intervals
rather than use a bootstrap. The chosen stopping rule is the same as
in the Phalodi case study; see (15). An increasing trend in the location
parameter as a function of the global temperature anomaly (data from
NASA-GISS) found in Philip et al. (2022) is shown in Fig. 12a, and
Fig. 12b shows return levels using the standard log-likelihood and their
95% confidence intervals. The return period for the 2021 event is
displayed in Fig. 12b, though the prediction is very uncertain (95%
confidence bounds are available in Table 1).

Table 1 shows how timing bias affects risk ratio estimation. The
historical and current probabilities of crossing the previous TXx record
of 41.7 ◦C and its confidence interval are computed by fixing the loca-
tion parameter of the GEV to the historical/current value for the linear
trend in the global temperature anomaly, which is the approach of the
WWA (Hammerling et al., 2019). We then parametrize the GEV in terms
of the probability of exceeding this level and fit using the different log-
likelihoods. Confidence intervals for the risk ratio were obtained using
the delta method on its logarithm; see the Supplementary Material. A
similar computation applies to the return period for the 2021 Portland
11
event, with the GEV parametrized in terms of its return period and
confidence intervals obtained using the profile likelihood.

Including the extreme event without conditioning yields a much
shorter return period for the 2021 Portland temperature of 46.7◦ than
when using conditioning, but the latter somewhat increases the risk
ratio (Table 1); note that the confidence intervals for the risk ratio
based on the standard and conditional fits do not overlap. Excluding
the trigger event makes it impossible to estimate its return period, and
the estimated risk ratio is less than half that computed by including
this event; the same applies for conditional analysis without the trigger
event.

5. Discussion

Our results in Sections 3.2 and 3.3 imply that in both univariate
and bivariate settings it is generally better to exclude the trigger event
if a conditioned fit is not used. In the univariate simulation framework
with fixed sample size, the relative bias and relative root mean squared
error reduce for 𝜏 ≥ 80 if the trigger is excluded (Fig. 2). Fitting
using a conditional log-likelihood always gives less biased return level
estimates, even if the trigger event is not very extreme: simulations
for both univariate and bivariate data show much lower bias using the
conditioned log-likelihood function for 𝜏 ≤ 200, and it is increasingly
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Table 1
Comparison of estimated risk ratios 𝑝1∕𝑝0 and current return periods for the extreme
021 temperature P

(

TXx2021 > 46.7 ◦C
)

for different log-likelihoods used to fit the
ortland TXx series. The factual probability is defined as 𝑝1 = P

(

TXx2021 > 𝑢
)

and
he counterfactual (or pre-industrial) probability as 𝑝0 = P

(

TXx1951 > 𝑢
)

for an extreme
hreshold 𝑢, here taken to be the previous record of 41.7 ◦C. Also given are 95%
onfidence intervals for the risk ratio and the return period for the 2021 event.

Risk ratio Return period for Portland 2021 (years)

Standard 3.31 [3.20, 3.44] 736 [147, 5744]
Excluding 1.41 [0.94, 2.10] ∞ [∞,∞]
Cond 3.77 [3.68, 3.86] 1830 [183, 16987]
CondEx 1.51 [1.06, 2.14] ∞ [∞,∞]

important to use an appropriate likelihood when the trigger event
becomes more extreme (see the results for 𝜏 > 500 in Section 3).
Table 1 suggests that although it depends heavily on the trigger event,
the estimated risk ratio is much more stable, presumably because it
contrasts two probabilities that are typically positively correlated; the
same can be expected for functions of the risk ratio, such as the fraction
of attributable risk.

The results of Section 3.4 suggest that attributing a return period
to a specific observation should if possible be avoided, but if this
is essential then the observation itself should be excluded from the
fit, which should be performed using a conditional log-likelihood; an
uncertainty statement should be included. In any case, the ratio of
the estimated and true return periods for a single large observation
is extremely uncertain. When the estimated shape parameter 𝜉 of the
xtremal distribution is negative, as often arises for temperature data
see Sections 4.2 and 4.3), the return periods for certain future events
ay be infinite (see Table 1). This highlights another limitation of the

tatistical method: when 𝜉 < 0, excluding the trigger event may make
his event effectively impossible. Including the extreme event is then
referable to excluding it, and applying appropriate conditioning will
rovide roughly unbiased (but very variable) results.

We now summarize the issues that our work raises for the choice
f the statistical model for event attribution under an implicit stopping
ule.

1. Potential timing bias may be suggested by time series in which
the last value is rather unusual.

2. The stopping rule may be difficult to formulate precisely: if ob-
taining a suitable quantitative definition of an extreme event is
impossible, it will be necessary to assemble contextual evidence
about what is seen as extreme in the given context and to use
that to guess a stopping rule for use in sensitivity analyses.

3. Accounting for timing bias by fitting the data with a conditional
log-likelihood is generally desirable, but if for some reason a
standard log likelihood must be used, then it is better to exclude
the trigger event.

4. A multivariate extremal model allows the analyst to assess the
potential effects of spatial selection in the analysis of several
related series.

5. Return period estimation for the trigger event can be biased and
very uncertain and thus should be avoided, but if it is required
then some indication of its uncertainty is essential.

urther work could explore sensitivity analysis on a set of plausible
topping rules with varying thresholds and historical sample sizes. This
aper concerns EEA studies that use observations in combination with
ossibly non-stationary extreme value distributions to estimate return
evels, and our simulation studies and examples are specific to the
iming bias problem using extreme value models. However, the general
ramework described in Section 1 could be used for conditioning any
ype of event with any distribution. Although conceptually straightfor-
ard, numerical aspects may become problematic when the computing

he probability of the stopping event is complex; see the Supplementary
aterial. Further work could address selection biases relevant to other
EA methodologies.
12
. Conclusion

Existing work on overcoming timing or spatial selection bias in
xtreme-value statistics has implications for return-level-based extreme
vent attribution analysis. Indeed, when such a bias exists, not taking
t into account in the event attribution can lead to poor, unstable,
eturn level estimates, seriously biased estimates of return periods for
xtreme observations, and hence to potentially misleading conclusions.
onditioning of the likelihood term uses contextual information more
ppropriately and hence leads to more reliable findings.
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