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Abstract
We introduce a reconfigurable medium for the manipulation of elastic propagation properties of
Lamb waves. It is based on a shape memory polymer (SMP) with temperature-dependent
Young’s modulus. Waves are excited by a laser pulse and detected by a laser vibrometer. A
two-dimensional temperature field is controlled by a scanning heating laser. We use genetic
algorithms to determine optimal distributions of mechanical properties for the following
criteria: the wave amplitude has to be maximized at a given location and at the same time
minimized at one or two other locations. Due to the reconfigurability of the medium, the
optimization process is performed directly on the object of optimization, and not on a numerical
or analytical representative, based on a direct measurement of the fitness. The optimized
configuration makes the waves propagate away from (or around) the point of minimization
towards the point of maximization. We improve the genetic algorithm by adapting the mutation
probability of individual genes according to specific criteria, which depend on the surrounding
genes (distributed in two dimensions). This provides the advantages: concentrating the
mutations in the areas of genetic inconsistencies and counterbalancing the error of the fitness
measurement. The method is applicable for the intelligent design of wave energy harvesters,
ultrasonic transducers, and analogue wave computing devices.

Keywords: reconfigurable medium, adaptive structure, genetic algorithm, evolutional algorithm,
wave propagation optimization
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1. Introduction

Searching for an optimal solution for a given problem is a fun-
damental engineering challenge. The majority of optimization
processes rely on repeatedly iterating two steps: identifying a
potential solution and testing it. Their performance depends
on the quality of generation of new solutions candidates and
on how efficiently the feedback about the fitness of a given
solution can be determined.

An assumption made in any iterative optimization is that
the parameters to be optimized are reconfigurable in the relev-
ant range. Typically, the optimization is performed on a model
whose properties can be changed. In this case, there is an addi-
tional assumption of existence of a model that describes the
problem with sufficient accuracy. This is unfortunately not the
case formany real-case scenarios, given that the computational
times to estimate the fitness values increase together with the
complexity of models. In this work, we show an alternative—
an experimental measurement of the fitness value directly on
the object of optimization—which must be reconfigurable to
meet the above-mentioned assumption. The optimization is
performed directly on the real problem, and not on a model.

Among the important optimization problems one encoun-
ters in wave engineering, wavefront shaping is certainly one of
themost important [1]. Shapedwavefronts are used in adaptive
optics and elastics to compensate for dynamic aberrations [2–
4], or focus energy in disordered media at a point of interest [5,
6]. They are often determined from complex scattering matrix
measurements, or other calibration steps, that rely on assump-
tions such as linearity or time-reversal symmetry, and can-
not accommodate arbitrarily complex fitness functions. Here,
we demonstrate the direct optimization of a function with
150 binary variables, representing 15 vertical × 10 horizontal
positions where the wave medium can be modulated. This
modulation corresponds to the change of the propagation and
attenuation constants by a local temperature increase (heater
state at a specific position represented by a binary value). The
output of the function is the fitness value—taken as the differ-
ence between the amplitude at the position where it should be
maximized and the amplitudes at the positions where it should
be minimized. Because of the non-controlled geometry and
unknown medium properties, the function to be optimized is
not possible to model.

Among the derivative-free optimization algorithms [7],
gradient descend and coordinate descend optimizations were
less efficient for our application, because of reasons described
in the following section (The gradient of the optimized func-
tion can be experimentally measured instead of determined
analytically).We instead focused on genetic algorithms, which
are inspired by the natural evolution process and based on the
operators of mutation, crossover and selection applied on a
population of solution candidates containing a set of properties
(genome) [8–10]. Each iteration is providing a new generation
evolving toward better solutions.

Mutations are essential since they enable exploring a new
space of solutions. However, they contribute to increasing

the disorder in the population of solutions. Through the gen-
erations, the probability that genes (or gene combinations)
already in the optimal state are mutated is increased. The fit-
ness of solutions therefore reaches a limit without a chance of
approaching its maximal value (at the close-to-optimal solu-
tion). The difference between this limit and the optimal value
is higher for more complex solutions and for higher noise of
fitness measurements.

In this work, we describe a possibility to exceed this limit
by providing a specific criterion defining the probability that a
specific gene is mutated. This stabilizes and accelerates the
optimization process by reducing the chance that ordered/-
structured parts of the genome are changed, for example, in
the case when the fitness value is overestimated for a specific
solution. Using the adaptive mutation probability, the inter-
ventions in the structured parts of the genome are possible but
more methodical.

1.1. State of the art: optimization algorithms for wave control

In our review of the state, we focus on the previous works
using optimization algorithms for wave propagation control.
We divide them to the domains of optics, microwaves, audible
sound and ultrasound.

1.1.1. Wave propagation optimization in optics. Spatial light
modulators [11–17] and digital micromirror devices [5, 18]
opened a broad field of wavefront shaping of light for the pur-
pose of focusing in scattering media. Due to their efficiency
and broad field of possible applications, the domain of optics
is pioneering the research of optimization algorithms for wave
propagation control.

Frequently, the stepwise sequential algorithms [13, 14]
were used for the optimization as an equivalent of a gradient
descent method. Instead of calculating the gradient of the func-
tion to be optimized, it was measured by sequentially chan-
ging each degree of freedom separately. For the next itera-
tion step, only the changes that provided better feedback value
were applied for all parameters at once. Continuous sequen-
tial algorithms [13] were regularly used as well, and were an
equivalent of a coordinate descent method. In this case, each
dimension was sequentially changed and kept in the new state
only if an improvement of the feedback value was provided. At
iterative partitioning algorithm [11, 13], half of the dimensions
were randomly changed and kept in this state if improvement
was provided.

The key disadvantage of the above mentioned methods was
that they require a good repeatability of the measured feed-
back value. If the function to be optimized was exposed to
noise, certain changes could falsely be identified as providing
the advantage and thus kept for the next iteration.

Genetic algorithms [5, 15–18] are more efficient in this
situation, where a single iteration represents the measure-
ments on the whole population of solutions at one generation.
Surely, certain individual solutions can randomly be overrated.
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However, the new generation will compose of multiple differ-
ent solutions of previous generations, which provides us a cer-
tain degree of averaging and a smoother convergence towards
the optimal solution.

1.1.2. Optimization of microwave propagation. Spatial
microwave modulators [19–21] were used to perform wave
field optimization in microwave cavities. Spots of high or low
energy at single or multiple frequency bands were achieved
using a stepwise sequential algorithm.

1.1.3. Optimization of airborne sound propagation in the
audible frequency range. Being inspired by the previously
mentionedworks, spatial soundmodulators were used to shape
sound fields in the audible frequency range. In order to achieve
high influence on the sound field by small perimeter variations,
the active elements of the reconfigurable devices consisted
of membrane or hollow cavity resonators. They were modu-
lated by electromagnetic actuators [22], slider displacements
[23–26], or liquid level height control [27] for the purpose of
sound focusing or redirecting. Majority of the previous stud-
ies do not describe a systematic iterative optimization, except
for two works, where iterative angular spectrum approach [24]
and continuous sequential algorithm [22] were used.

1.1.4. Optimization of ultrasound propagation. All the pre-
vious works in the domain of ultrasound, describing optim-
ization of the sound field, were addressing modulation of
the source (ultrasonic array) and not the propagation medium
itself, as it is the case for this work. Optimal transducer place-
ments and optimal excitation forms of ultrasound fields were
typically estimated by simulations using numerical or ana-
lytical models. Experiments were performed on the optimal
configuration. In [28], thickness and diameter of a piezoelec-
tric element, together with acoustic impedance of a backing
material were variable parameters addressed by the particle
swarm optimization applied on a numerical model in order to
archive the desired center frequency and to maximize the echo
amplitude of a transducer. The following methods were using
genetic optimization algorithms. Element sizes and positions
of an one-dimensional piezoelectric transducer array were
optimized to achieve maximal ratio between the main and the
side loops of the ultrasound field [29]. Ultrasonic transducer
array configuration and process parameters were optimized to
improve focused ultrasonic therapy [30, 31]. Placements of
transducers and the time delays were optimized to achieve spe-
cific directivity of the emitted Lamb waves [32]. Placement of
piezoelectric transducers for a plate with specific geometry for
optimal damage detection was estimated [33].

Genetic algorithms have also been used to numerically
design the shapes of an acoustic amplifier [34] and a piezo-
electric energy harvester [35]. Topology of a microstructural
material was numerically optimized to control directivity of
elastic waves [36].

1.2. Knowledge gap

In contrary to all the previous studies addressing the wave field
optimization, we obtain the feedback about the quality of an
individual solution (fitness value) by performing a measure-
ment at each of the optimizing iteration. As we are able to
physically manipulate the propagation medium on demand,
our realization do not require a numerical or an analytical
model of the system, which are generally not available for
complex practical situations. Previous studies in the ultra-
sound or the domain of elastic wave manipulated only the
excitation properties (typically the phase delay and the amp-
litude). In the audible or ultrasound frequency range, there
were previously no realizations of the sound field optimiza-
tion where the medium itself was modulated. Our method does
not require an electroacoustic reconfigurable device included
in the medium. As the section to be optimized is separated
from the wave source and sensor, our work demonstrates for
the first time an equivalent of spatial modulators for the ultra-
sonic domain and for the Lamb elastic waves.

The suitability of genetic algorithms has not yet been
researched for the situation of mechanical waves (for aud-
ible and ultrasonic frequency range), where the fitness value is
experimentally obtained and therefore subject of higher noise
levels. Furthermore, the nature of our method is that it does not
base on resonant behavior and is therefore not limited to a nar-
row frequency range, what was not the case for the previous
realizations [19–21, 24, 25, 27].

2. Methods

2.1. Genetic algorithms—adaptive mutation probability

Mutation is an important element of genetic optimization pro-
cesses since it provides new components to the population gen-
ome and allows exploring new space of possible solutions. If
the mutation level is decreased (low number of mutants and/or
low number of mutated genes), there is a high chance that
the optimization blocks at a given solution where any small
(gene) change would not provide a significant advantage. A
bigger change, which might provide an advantage, is inac-
cessible in this situation. However, if the mutation level is too
high, the algorithm becomes unstable and does not converge
towards better solutions. It is advantageous to vary the muta-
tion level and provide access to new solutions with both big-
ger and smaller changes. If the mutations are random (random
gene mutations of randomly chosen solutions), the optimiza-
tion process requires high number of generations to achieve the
convergence. Approaching the optimal solution, lower is the
chance that a certain mutation will provide advantage without
destructing parts of the genome, which are already close to the
optimal state. The convergence will stop at a certain level of
the fitness value, without reaching the close-to-optimal solu-
tion. This effect is more pronounced for larger genome sizes
(higher numbers of parameters to be optimized).

In this work, we suggest an adaptive probability of gene
mutations. This approach evaluates the consistency of each
gene of the solution, according to the previously defined
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Figure 1. For each gene of a given solution (a), we estimated the
number of surrounding genes, which differed from the central gene
(b) and the number of binary transition around the central gene (c).
The probability to mutate was calculated by the weighted sum of
these two values (d). This approach improved the convergence
capability of the optimization process by giving the mutation
priority to the inconsistent genes.

criteria, which depend on the remaining genome of the
solution (neighboring genes). Our approach fundamentally
differs to the one described in [37], where the probability is
defined for each solution (and not for each gene) and depended
on the fitness level.

In the case of wave propagation optimization, we expect a
certain degree of consistency. In the optimal state, larger parts
of the medium will have similar properties with clear bound-
aries in-between. We can therefore assume that a gene that is
more different from its neighbors has higher chance to have
the wrong state and assign it a higher chance to be selected for
the mutation.

Figure 1 shows how the probability for the gene mutation
was determined. For each gene of a given solution, we coun-
ted the number of surrounding genes (in two dimensions) that
were different from a central gene (figure 1(b)) S. In order to
differentiate between the case where the surrounding genes
with the same state lay next to each other (horizontal position
4, vertical position 6 in figure 1(a)) and the case where they
were scattered around the central gene (horizontal position 4,
vertical position 3 in figure 1(a)), we counted the number of
(binary) transition at the circle around the central gene as well
(figure 1(c)). Probability of mutation before the normalization
p̂(m, n) for gm,n (gene at the position (m, n)) was calculated
from the sum of both numbers, which had both the maximal
value of 8:

p̂(m,n) =
8∑

i=1

Si (m,n)+ k
8∑

j=1

Tj (m,n) (1)

went for all the 8 genes surrounding the. Si had a value of
1 if the gene at the position i was different from the cent-
ral gm,n, otherwise it was 0. Tj had a value of 1 if the two
neighboring genes (surrounding the central ) at the transition j

were different from each other, otherwise it was 0. The genes
at the boundary of the two-dimensional genome space were
threated in a way that the bias for the probability estimation
was omitted: 5 (or 3 for the corner gene) surrounding genes
were considered instead of 8. A factor number k was defined
in order to specify the ratio of significance between the number
of differed surrounding genes and the number of surrounding
transitions. We designated lower significance of the latter with
the ratio set to k = 0.25. This provided better convergence of
the optimization process comparing to the cases where k= 0.5
or k = 0. In the case described in this work, we considered
only the eight neighboring genes closely surrounding the
given gene. For the applications with higher genome sizes, we
expect that it is advantageous to consider more remote genes
as well.

Probability ofmutation p(m,n) (figure 1(d)) was normalized
with the sum of p̂(m, n) over the whole genome

p(m,n) =
p̂(m,n)∑mmax

m=1

∑nmax

n=1 p̂(m,n)
. (2)

It represented the probability that the will be mutated (its
state switched). Please note that the total number of mutated
genes was chosen randomly in a specified range.

As it is time-demanding to experimentally obtain the fitness
value, we firstly developed the genetic algorithm by a simula-
tion, where the fitness value was determined analytically. Total
processing time of one generation was 0.5 s instead of 4.3 min,
as it was the case for the experimental study. In order to make
the optimization problem similar to the experiment, the solu-
tions consisted of two dimensional arrays of binary values
(0 and 1), representing the heating laser turned on or off at a
specific two-dimensional position (represented by integer val-
uesm and n). For the purpose of simulation, we defined a two-
dimensional 2nd degree polynomial:

q(m,n) = − (m− 5)2 +(n− 11)2

50
,

for all except if

(m,n) = (1,6) or (2,7) ,

then q(m,n) = 0.1. (3)

The fitness value was defined as:

fitness=
mmax∑
m=1

nmax∑
n=1

q(m,n)gm,n, (4)

with gm,n being the gene at the integer position m,n. The
higher values of this polynomial, closer to its maximal value at
(m, n)= (5, 11), delivered higher chance that gm,n would have
the value 1, and vice versa. Please note that the parameters of
the 2nd degree polynomial and the locations of the two out-
liers could be chosen differently in a reasonable range, which
would, however, provide similar results. Figure 2(b) shows
the optimal solution of the optimization problem with the fit-
ness function defined by equation (3). The defined 2nd degree
polynomial was negative in the black area and positive in the
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Figure 2. Sufficient convergence towards the optimal solution was achieved only if the mutation probability of each gene was estimated as
described by figure 1. Maximal (dotted line) and mean values (full line) of the fitness value are shown (a) for each generation of solutions
using random mutations (red) and adaptive mutation probability (blue). In the latter case, the final solution after 70 generations (d) is very
close to the optimal solution (b). This is not the case if the genes are mutated randomly (c) (with other optimization parameters kept
identical). The adaptive mutation probability gives advantage to the genes, which have a higher chance to provide advantage in the case of
mutation. Consequently, the higher incidence of mutations is in the transition areas of the gene states (e).

white area. The gray area had no contribution to the fitness
value because the polynomial had the value 0 at this integer
values. For the points (m, n) = (1, 6) and (m, n) = (2, 7) we
defined the value 0.1 of the q(m, n), because we wanted to test
the efficiency of our optimization algorithms to find the solu-
tion with outliers, which might be decreased because of the
adaptive mutation probability.

In the simulation part, only the fitness functionwas changed
(defined analytically instead of a measurement), while the
other parameters of the genetic algorithm were the same
as for the experimental part described in section 2.3. We
ran it twice—with randomly selected genes for mutation
and with the adaptive mutation probability (as described in
figure 1). The maximum and mean value of the fitness func-
tion (equation (4)) for each generation of solution is presen-
ted in figure 2(a). If mutations were selected randomly, the
convergence was limited and the algorithm provided the solu-
tion, which was far from the optimal solution (figure 2(c))
with the fitness value of not more than −4.86. In contrary, a
close-to-optimal solution with the fitness value of 0.92 was
reached after 30 generations using adaptive mutation probab-
ility (figure 2(d)), which was very close to its maximal value
of 0.94. There is a very low chance that same result is achieved
at an adequate number of iterations by the random mutations,
as it is increasingly more difficult to target the last remaining
genes, the change of which would provide an increase of the
fitness value.

For the case of adaptive mutation probability, the cumu-
lative number of repeated mutations during 70 genera-
tions is represented for each gene in figure 2(e). The
adaptive mutation probability caused that more mutations

occurred at the areas around the transitions of the gene
state. This accelerated the optimization process since more
of the fine tuning was required there. The adaptive muta-
tion probability is also advantageous for other optimiza-
tion problems with the consistent interdependency of the
optimization parameters.

2.2. Experimental setup

The Lamb elastic waves were excited at a single chosen loc-
ation by a laser pulse with the wavelength of 532 nm, energy
of 10 mJ, duration of 5 ns (full width at half-maximum), and
repetition rate of 20 Hz using a Surelite SL I-20 pump laser
(figure 3(b)). Pulse energy, shape, and diameter of the laser
beam were randomly varying for up to 20%. Waves were
detected at two or three chosen locations using PSV-F-500-
HV laser vibrometer (manufacturer: Polytec) with 80 signal
averaging (figure 3(c)).

The key element of the specimen was a foil with a 0.4 mm
thickness made of an SMP, (manufacturer: SMP Technologies
Inc, Tokyo), with a glass transition temperature in the range
between 25 ◦C and 90 ◦C. Its Young’s modulus continuously
fell by at least a factor of 20 by increasing its temperature a
few 10 ◦C above the room temperature [38]. The advantage
exploited in this study was that the wave propagation proper-
ties were easily reconfigurable by changing the temperature
field of the SMP foil. The SMP foil was mounted on a metal
frame (figure 3(a)) with the size of the opening 3 cm × 3 cm.
The lasers for wave excitation and detection were illuminat-
ing the opposite sides of the SMP foils in order to prevent
disturbances.
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Figure 3. Lamb waves were excited on a shape memory polymer (SMP) mounted in a metallic frame (a) by a pulsed laser (b) and detected
by a laser vibrometer (c). Heating laser (d) was projected on the specimen surface by a galvanometer scan head (e) to quasi-simultaneously
manipulate its mechanical properties at 15 × 10 binary heated positions, which were the object of the optimization. The temperature field of
the specimen was controlled by an infrared camera (f).

A third laser (FL-1064-CW, manufacturer: Changchun
New Industries Optoelectronics Technology) used in our
experiment was a continuous laser with power of 15 W and
wavelength of 1064 nm illuminating the SMP foil on the
side of the wave excitation (figure 3(d)). A XG210 two-
axis galvanometer scan head (manufacturer: Mecco) was used
to continuously repeat scans on the rectangular surface of
20 mm× 13 mm (figure 3(e)). The scanning pattern consisted
of 10 vertical lines. Each line was divided to 15 parts for which
the laser shutter state could individually be controlled. In con-
trary to [39], where the heater shape was unchangeable, this
gave us 10 × 15 individually controlled pixels where speci-
men can either be heated or not. The scan duration of 0.9 s
was independent from the laser shutter state.

The Lamb waves were excited in the middle of the longer
(vertical) side of the heated area at −1 horizontal position.
Its location was constant for all the experiments in this work,
while the location of wave detection was varied.

The heated area of the SMP foil was cooled by a room-
temperature air flow, achieved by two nozzles directed to the
specimen surface on the side of wave excitation. This delivered
us increased spatial temperature gradients. The thermal steady
state was achieved approximately after 4 s when heating up
and after 6 s when cooling down.

2.3. Parameters of the genetic algorithm

The goal of the optimization was to find an optimal bin-
ary configuration for 10 × 15 heated positions in order to
achieve specific wave propagation properties. The solutions
were therefore consisting of 150 binary genes. We chose a
relatively small population size of 10, because of the long
measurement duration of the fitness value for a single solution,
which took approximately 26 s. The flow chart of the genetic
algorithm used in the experimental optimization is shown in
figure 4. The minimum fitness value of the whole generation
was subtracted from each of themeasured fitness values. These
were subsequently divided by their total sum over the whole

Figure 4. A flow chart of the genetic algorithm used in the
experimental optimization. The fitness value was calculated
according to given optimization criteria using the ultrasound signal,
which was measured directly on the reconfigurable specimen.

corresponding generation. This delivered us the probability
that the specific solution was picked as one of the two parents.

The new generation was generated by the random cros-
sover operation—each of the genes for the new gen-
ome was randomly picked either from the first or the
second parent.

Five of these solutions of new generation were mutated at
each generation by flipping the binary gene value. The num-
ber of mutated genes was for each mutation chosen randomly
in the range between 1 and 6. The mutated genes were chosen
using adaptive mutation probability described in section 2.1.
The two optimization criteria are described in sections 3.1
and 3.2.
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3. Results and discussion

3.1. Wave guiding

The goal of the first optimization task was to maximize the
Lamb wave amplitude at one point on the SMP foil and at
the same time to minimize the wave amplitude at two other
points. As a criterion of the wave amplitude level, we chose
the maximal signal level in the time domain (at any time,
absolute value, and not peak-to-peak), previously filtered to
the frequency range between 200 Hz and 40 kHz. This fre-
quency range contained a majority of the ultrasound energy
transmitted between the ultrasound excitation and detection
points via zero-order antisymmetric Lamb wave mode, which
was considered in our study. The points were located on the
larger side of the heated area opposite to the wave excitation.
The point in the middle was located at the same horizontal line
opposite to the wave excitation. The top and bottom points
for wave detection were located 8.5 mm higher and 8.8 mm
lower, respectively, at the same horizontal position, outside of
the area illuminated with the heating laser (14.9 mm horizont-
ally from the wave excitation point).

Three optimization processes were performed. At the first
optimization, the wave amplitude at the top point was maxim-
ized and the amplitudes at the middle and bottom points were
minimized (first row in figure 5). At the second optimization,
the amplitude was maximized at the middle point and minim-
ized at the remaining two points (second row in figure 5), and
similarly for the last combination maximizing the amplitude at
the bottom point and minimizing the amplitude at the middle
and top points (third row in figure 5). The fitness value was
always defined as

fitness= 2×AMax −AMin,1 −AMin,2 (5)

where AMax is the maximal signal amplitude at the maximiza-
tion point. AMin,1 and AMin,2 are the maximal signal amplitudes
at the minimization points.

The first column in figure 5 shows the mean (full line)
and maximal (dashed line) fitness values for the population of
each generation during the optimization. The second column
in figure 5 represents the gene configuration with the highest
fitness value (the optimal configuration of the heated posi-
tions) when the optimization process was terminated. The third
column in figure 5 shows the infrared image of the SMP speci-
men at the corresponding configuration of the heated positions.
One can observe that the temperature gradients were high
enough to distinguish the individual heated positions (pixels).
Higher density of the heated positions provided a higher tem-
perature levels and vice versa.

The fourth column in figure 5 shows the elastic wave sig-
nal captured at top, middle, and bottom points marked with
the letters D. The broadband laser excitation generated mul-
tiple modes of the Lamb waves. The first symmetric mode had
relatively small amplitude (approximately 0.1 mm s−1) and
arrived at the time of 0.52 ms. In this work, we focused on

the first asymmetric Lamb wave mode arriving later, with the
largest amplitude.

The average fitness value of the first generations was close
to zero if the heated positions were distributed randomly. In
this case, the amplitudes detected at the letters DMin and DMax

had approximately the same values. The measurement of the
fitness value had a poor repeatability (average standard devi-
ation of 0.09) causing certain solutions being over- or under-
valued, which made the optimization more difficult. This was
visible by high fluctuations of mean and maximal fitness val-
ues of individual generations. However, an improvement was
observed on average over the range of several tens of gener-
ations. At the current setup and the specific number of gen-
erations, the maximal amplitudes at the maximization point
were achieved to be approximately three times larger than the
maximal amplitudes at the minimization points. This ratio was
lower in the case of the wave amplitude maximization at the
middle position. In this case the maximum achieved fitness
value (defined by equation (5)) was 0.8, while it reached the
value of 1 for the remaining two cases. The reason for this was
that it was easier to minimize the wave amplitude at two neigh-
boring positions (first and third row in figure 5), comparing to
the case, where the maximization point was between the two
minimization points (second row in figure 5).

It is challenging to interpret the configuration of the heated
position suggested by the optimization algorithm (please refer
to the following paragraphs), which is due to the irregular
sample shape (the foil thickness can vary up to 10%, its mount-
ing to the metal frame could be irregular). These irregular-
ities are included in the optimization loop and influence the
final heater configuration, which remain optimal as long as
they are kept constant. The increase of the fitness value proves
the advantage of the optimal solution. No higher fitness values
have been achieved by any manually suggested configuration
of the heated positions.

The areas with assorted states (alternating black-white
areas in the second column of figure 5) were the areas where
it was chosen by the algorithm to increase the temperature to a
certain extent only—and not to heat up to the maximum (fully
white areas in the second column of figure 5) or to keep the
specimen at the room temperature (fully black areas in the
second column of figure 5). These transitions were possible
because the heat of a single heating position distributed over
approximately two neighboring pixels in both directions at the
current cooling properties. This explains why it was in certain
cases advantageous to keep the state of certain heated positions
different from the states of their neighboring heated positions.
Please note that these points were object to a higher chance for
mutation as described in section 2.1.

There are two characteristics that can be extracted from
the optimal configurations of the heated positions. The first
characteristic is the corridor of the heated area which guides
the Lamb wave towards the maximization point. This is vis-
ible as a white horizontal band in the middle vertical posi-
tions of the heated area in the second row of figure 5 and a
white diagonal band (heading towards the right down corner
of the heated area) in the third row of figure 5. This effect
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Figure 5. The configuration of the heated positions illuminating the same area of the SMP foil was optimized to achieve the given criteria:
maximization of the peak wave amplitude at a position marked with the letter DMax and minimization of wave amplitude at the remaining
two positions marked with the letters DMin. The three combinations are shown in the three rows. The columns from the left to the right:
increase of the fitness value during the optimization process, optimal configurations of the heated positions together with their infrared
images, and the corresponding signals captured at the positions marked with the letters DMin and DMax. The position of the ultrasound
excitation is marked with the black letter S. The captured signals at a random hater configuration (before the optimization) are shown in the
bottom right-hand corner.

is less pronounced in the first row of figure 5. In this case,
the optimization appears to use another strategy—the lensing
effect. Thewave is firstly traveling in themedium of room tem-
perature until reaching the heated area, which focuses thewave
energy towards the point of maximization. In this case—at the
focusing of the waves at the top position—themaximized peak
amplitude arrives earlier in time comparing to the remaining
two cases.

The second characteristic is the opposite of the previously
mentioned effect. At certain places (e.g. at the vertical pos-
ition 2 in the second row of figure 5), the areas beside the
direct path between the source point and the detecting point
are heated, which, by reducing the propagation speed at these
areas, causes the maximized wave deflection and guiding

of waves away from the point where its amplitude is to be
minimized.

3.2. Wave detouring for a broadband cloaking effect

In order to test the performance of the optimization algorithm
and the experimental setup for wavemanipulation, we changed
the optimization goal for the fourth time. Previously, the max-
imization points DMax and the minimization points DMin were
at the same horizontal distance from the wave source. The
wave amplitudes had therefore approximately the same val-
ues before the optimization. During the fourth experimental
optimization process, we chose the minimization point to lie at
the distance of 9.7 mm from the source, and the maximization
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Figure 6. The wave energy at the point marked with DMin was minimized and at the same time maximized at the point marked with DMax.
After 72 generations, the maximal fitness values (a) (defined as the amplitude difference at these two points) stabilized at 0.1. An optimal
solution candidate and its infrared image are shown in (b) and (c), respectively. It provided a reverse of the amplitude levels after the
optimization—at this heater configuration, the wave amplitude at the point further from the source had almost twice higher amplitude than
at the point closer to the source (e). Before the optimization, the wave amplitude at the point closer to the source was five times larger (d).

point at the distance of 14.8 mm from the source. Both points
and the wave source (marked with the letters DMin, DMax, and
S in figure 6) lay on the same horizontal line at the vertical
position of 8 (10 mm for the infrared image). The initial wave
amplitudes before the optimization were around 0.45 mm s−1

for the point lying closer to the source (where amplitude was
minimized) and around 0.1 mm s−1 for the point lying at the
higher distance to the source (where amplitude was maxim-
ized). The fitness value was defined as a difference between
these two points, which forced the wave to propagate against
its nature and—at least in a certain direction—provided higher
amplitudes at a further distance from the source. The goal of
this optimization was to guide the wave energy around the
minimization point towards the maximization point.

At the initial state before the optimization (at the random
configuration of the heated positions) the wave amplitude at
the minimization point was approximately five times larger
than the amplitude at the maximization point (figure 6(d)).
The average fitness value of the first generation of solutions
was therefore negative (−0.33). First 10 generations provided
a steep improvement. At around the 35th generation, the wave
amplitudes at both points had approximately the same amp-
litude (fitness values around 0). As it was the case also for
the previous three optimizations, the measurement of the fit-
ness value had a poor repeatability, which was visible as fluc-
tuations of its maximal and average values over generations.
In average, the fitness value was increasing until the 49th
generation.

After the optimization process, the amplitude at the max-
imization point was close to two times higher than at the min-
imization point, which was lying on the path between the
wave source and the maximization point (0.13 mm s−1 vs
0.23 mm s−1) (figure 6(e)). The fitness reached the value of
0.1 (figure 6(a)).

An optimal configuration of the heating positions together
with the infrared image of the heated area is shown in
figures 6(b) and (c), respectively. We can observe an arch

around the minimization point DMin (white area of increased
temperature above the vertical position 8). The temperature
gradient, and consequently a gradient in the wave propagation
velocity, guided the wave, bypassing the minimization point
on the side with the higher vertical positions. The arch was
thinner at the area closer to the source and thicker where the
wave was forced to change its propagation direction towards
the maximization point DMax.

In the area below the heater vertical position 8 and hori-
zontal position 6 (10 mm vertical direction and 8 mm hori-
zontal direction for the infrared image), one can observe a
large heated area. Its purpose was to deflect a large amount of
the wave energy away from the minimization point (and partly
also from the maximization point). In our case, this strategy
appears advantageous in comparison of having two arches on
the both sides of the minimization points.

There are multiple possible reasons why the heat arch was
guiding the wave around the minimization point on the side
with higher vertical position values. The chosen side might
depend on the initial random configuration of the heated pos-
itions. Certain solutions could randomly be evaluated with
higher fitness values due to the high noise levels of the fitness
measurement providing certain bias. Alternatively, the prefer-
ence for a certain final optimal solution could depend on the
imprecision of aligning the wave source and the two detecting
points on the same line (tolerances below 0.5 mm) or asym-
metry of the laser beam profile for wave generation.

4. Conclusions

We demonstrated a reconfigurable medium, which is capable
of local adaptations of Lamb wave propagation velocities.
This was achieved by projecting a heating-laser pattern on the
surface of the SMP foil with temperature-dependent Young’s
modulus. The Lamb waves were excited at a static position by
a laser pulse and detected at two or three static positions by a
laser vibrometer.
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We developed a genetic algorithm to optimize the
heating-laser pattern in order to achieve the defined propaga-
tion properties. In contrary to previous studies, we manip-
ulated the wave propagation medium and not its excitation
form. The optimization was performed directly on the phys-
ical object by experimentally measuring the fitness value at
each iteration.

We simulated our experimental optimization problem using
a predefined fitness function, which accelerated the iteration
steps and allowed us to improve the genetic algorithm. Our
results show that if the gene mutations are applied randomly
(random number of randomly picked genes of random solu-
tions), the convergence ability of genetic algorithms is lim-
ited. At higher generation number, the chance is increased that
close-to-optimal parts of genome are deconstructed by muta-
tions and probability for advantageous mutations is decreased.
This problem is especially pronounced in the case of high
measurement error of the fitness function. No convergence
was achieved if random mutations were used for our experi-
mental optimization task.

We proposed a solution to this problem, which is proven
advantageous at least for our specific problem—optimization
of binary parameters in two dimensions. Radically improved
convergence ability is achieved if the mutation probability is
specified for each individual gene according to specific cri-
teria. For our optimization problem, higher mutation probab-
ility is set to the outlier genes, which have a different binary
state from their neighboring genes or have in their immediate
vicinity a higher number of binary transitions. This provides
an advantage of keeping (in the later stage of optimization pro-
cess) larger areas of the same gene state intact, as well as caus-
ing mutations to concentrate around the areas of gene state
transitions where fine tuning is more necessary. The numerical
simulation of the optimization shows that a close-to-optimal
solution is reached in more than four times lower number of
integrations in the case of adaptive mutation probability.

Furthermore, the adaptive mutation probability is essential
for the experimental optimization task, were the fitness value
is a subject to a high measurement error. While this error is
to a specific extend advantageous for exploring a new space of
possible solutions, it can cause certain solutions to have unjus-
tified priority to be used as parents for the subsequent gener-
ation. In this aspect, the error of the fitness measurement can
have a similar effect as too high number of mutants: volatil-
ity of the fitness value without the ability of approaching its
optimum. The error of the fitness measurement can be coun-
terbalanced by the adaptive mutation probability in a more
efficient way as decreasing the number or mutants. It struc-
tures the procedure of exploring new spaces, by increasing
the chance that the new mutations occur close to the previous
mutation (possibly suggested by the previous overestimation
of the fitness value). The fitness function was defined as a dif-
ference between the wave amplitude at the point of maximiz-
ation and the (one or two) points of minimization. A function
with 150 binary input variables and a single output parameter
(fitness value), which was obtainable only by the experiment,
was optimized. This was possible because the binary variables
(heater states at 15 × 10 positions) could be modulated in the

physical system. We show that the optimization can also be
performed if the fitness value measurement has poor repeatab-
ility (fluctuations above 30%) using genetic algorithms with
adaptive mutation probability. After the optimization process
finished, the mechanical properties were achieved to guide the
Lamb waves towards the points of maximization (we demon-
strate three different configurations of a single SMP film) and
to deflect it from the points of minimization.

The forth configuration of the optimization criteria was
defined as following: the point of minimization was lying
between the source and the maximization point. The solution
provided by the genetic algorithm forced the wave to propag-
ate around the point of minimization towards the point of max-
imization. Comparing these two points, at the optimal con-
figuration of the mechanical properties for this criterion, the
Lamb wave at the point further from the source had twice
higher amplitude. Before the optimization, this ratio (between
the amplitudes at the points of minimization and maximiza-
tion) was only 0.2.

The optimization method described in this work does
not necessitate an understanding of wave propagation prop-
erties and is therefore transferable to specimens of dif-
ferent (unknown) properties. The only condition is their
reconfigurability.

We expect that the improved genetic algorithms described
in this work can be used for other optimization problems
with two-dimensional binary optimization parameters as well.
Furthermore, the adaptive mutation probability approach is
transferable to optimization problems of different nature, if the
method to calculate the mutation probability is appropriately
adapted.

The describedmethod is applicable for efficient energy har-
vesting and energy transport with reduced loss, where a recon-
figurable wave-guiding device is installed on a source of dis-
tributed (ultrasonic) vibrations (various types of machines). Its
properties are optimized in a way to concentrate the energy at
a certain position where it can be exploited—also in the case
if the frequencies of the vibrations or the system properties
change. Furthermore, the method can be used for the intelli-
gent design of air-coupled and contact ultrasonic transducers.
A reconfigurable medium can be used to optimize material,
shape, and excitation form to achieve specific properties of the
emitted soundfield—e.g. in order to achieve efficient focusing
effect, reduce side loops, or maximize the sound transmission
at an impedance-mismatching interface in order to improve
performance of the method for a specific imaging purpose.
Finally, the property of long-term memory delivered by the
reconfigurable medium can be used to perform analogue com-
puting based on mechanical waves. The information carried
by the waves could be processed and extracted directly by the
wave propagation through an artificially engineered medium
using the principles of machine learning [40].

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).
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