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Estimation of self-exciting point processes from time-censored data
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Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult
to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts
on a finite partition of the observation interval. In this paper, we propose the recursive identification with
sample correction (RISC) algorithm for the estimation of process parameters from time-censored data. In every
iteration, a synthetic sample path is generated and corrected to match the observed bin counts. Then the process
parameters update and a unique iteration is performed to successively approximate the stochastic characteristics
of the observed process. In terms of finite-sample approximation error, the proposed RISC framework performs
favorably over extant methods, as well as compared to a naïve locally uniform sample redistribution. The
results of an extensive numerical experiment indicate that the reconstruction of an intrabin history based on
the conditional intensity of the process is crucial for attaining superior performance in terms of estimation error.
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I. INTRODUCTION

Self-exciting point processes have been used in a broad
range of areas such as biology [1], credit collections [2], crim-
inology [3], earthquake prediction [4], epidemiology [5,6],
information theory [7], marketing [8], neuroscience [9], and
social networks [10]. The identification of these processes
depends on historical data which are usually assumed to be
available in the form of precise time stamps of arrival events.
However, there are also numerous practical situations where
arrival data are only reported in batches, e.g., as daily aggre-
gates. In the case of COVID-19 disease statistics, for instance,
updated data are posted and recorded at the end of any given
working day, with weekend arrivals reported only as part of
the following Monday statistics. The time censoring appears
as a natural consequence of quasiperiodic reporting cycles
which are dictated by the absence of live feeds, as well as
a need for prerelease verification.1 At other times, time ag-
gregation into bins may even occur deliberately, as a means
of masking the data, either for reasons of privacy or—as often
the case in financial markets—to differentiate a low-resolution
basic data feed from a high-resolution premium data feed.

This paper considers the identification of self-exciting
point processes based on time-censored (or binned) data.
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1Delayed state information poses challenges for the determination
of effective feedback-control strategies. During the COVID-19 pan-
demic, for instance, delays in the transmission of contact-tracing
data proved a salient difficulty for governments in their efforts to
effectively control the epidemiological situation [11].

Our proposed recursive identification with sample correction
(RISC) algorithm takes as input a vector of observed arrival
counts on the subintervals (or bins) of a given partition of the
observation interval. The key idea is to maintain an estima-
tion based on full-resolution time series which are obtained
from simulated (synthetic) sample paths conditional on being
consistent with the observed bin counts. An essential element
of the algorithm is therefore a sample correction (SC) so
as to either subtract samples by thinning or add samples by
thickening, until the bin-count vector of the sample-corrected
synthetic sequence equals the original bin-count vector. The
sequence of parameter estimates is chosen to guarantee an
increasing conditional likelihood, which in turn ensures con-
vergence of the algorithm. When tested against other extant
estimation methods, the RISC algorithm performs favorably.
Our extensive numerical analysis highlights the difficulties of
estimating process parameters which result from the generally
nonconvex likelihood objective. The latter is to the detriment
of other methods which may well exhibit consistent large-
sample estimation behavior but might then perform poorly in
realistic finite-data use cases.

A. Literature

Self-exciting point processes, also referred to as Hawkes
processes, whose intensity for new arrivals depends on the
arrival history, were introduced by Hawkes [12,13]. The
identification of Hawkes processes is customarily performed
using either maximum-likelihood estimation (MLE) [14,15]
or expectation-maximization (EM) algorithms [16–18]. While
these methods are not without their own challenges (e.g.,
due to the nonconvexity or local flatness of the likelihood
function) [19], our RISC algorithm uses these mainstream
estimation techniques for the internal inference of parameters
after having removed time censoring; cf. Sec. II A 2.

In the presence of time-censored (binned) data, three
main ideas have emerged in the literature to identify the
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dynamics of Hawkes processes: autoregressive discrete-time
approaches, spectral methods using filtering and averag-
ing concepts, and, finally, approaches based on resampling
continuous-time histories consistent with observed bin counts.
We briefly discuss these three classes of algorithms in turn; the
proposed RISC algorithm is most closely related to the last.

The first class of algorithms uses autoregressive models
to describe the evolution of bin counts when passing along
the evenly spaced discrete time periods. For example, Mark
et al. [20] used a sampled version of the standard log likeli-
hood for Hawkes processes derived by Ozaki [21] to account
for the discrete-time evolution of the intensity.2 In the same
spirit, Kirchner [22] introduced an integer-valued autoregres-
sion (INAR) as a discrete-time approximation of a Hawkes
process, establishing convergence when the order of the au-
toregression goes to infinity. Finally, the INAR estimation
procedure was extended by the same author to also cover mul-
tivariate Hawkes processes, with an application to financial
limit-order-book data [23]. Kirchner and Bercher [24] showed
that for weakly interval-censored data (i.e., for fairly narrow
bins), the INAR method achieves similar estimation results as
MLE on uncensored data.3

Consider now the second class of algorithms, based on
spectral methods. Cheysson and Lang [25] developed a spec-
tral estimation method based on Whittle’s log likelihood [26],
building on the work by Dzhaparidze [27]. Consistency and
asymptotic normality of the estimator are obtained using the
strong mixing properties of Hawkes processes. The authors
derived the spectral density via the Bartlett spectrum and
account for aliasing.4 Another interesting development, based
on spectral methods, is due to Rizoiu et al. [28] who con-
sidered a mean behavior Poisson (MBP) process, obtained
via Laplace transform, which represents the expected inten-
sity of a Hawkes process. The Hawkes-process parameters
are then proxied by MBP parameters. In an extension of
that work, Calderon et al. [29] used a so-called partial mean
behavior Poisson process to fit a multivariate Hawkes pro-
cess when not all components of the event data are time-
censored.

The third class of algorithms aims at reconstructing a syn-
thetic event history that most likely caused the observed vector
of bin counts. In this vein, Shlomovich et al. [30] introduced
a binned Hawkes expectation maximization (BH-EM) algo-
rithm for estimating Hawkes process parameters. The method
is based on the Monte Carlo implementation of the EM algo-
rithm by Wei and Tanner [31], which uses a random sample
of latent data to update the expected value of the log posterior
as an arithmetic average (or mixture) before the maximization
step. To generate distinct arrival time stamps, the authors iter-
ate over each bin and attempt to determine intermediate event
times which maximize (at least locally) the joint probability
density conditional on the observed bin count.

2Due to the superiority of the method by Shlomovich et al. [30], we
neglect the approach by Mark et al. [20] in our comparison tests.

3We test the performance of the RISC algorithm allowing for very
significant time censoring; cf. Sec. III.

4Aliasing folds high frequencies of the original process into the
spectrum of the interval-censored process.

As noted before, our proposed RISC algorithm falls into
the third class, combining SC with recursive parameter es-
timation. Regarding the latter, quite general properties of
recursive identification methods were outlined by Söderström
et al. [32]. Indeed, recursive MLE is a common identifica-
tion technique in signal processing with nonlinear systems
and observational noise [33,34]. Similarly, by recursively
identifying the process parameters, successive iterates are
associated with a maximizing sequence of likelihood values
which leads to convergence, and ultimately to parameters
being less affected by the noise introduced through inter-
val censoring of event-arrival times. On the other hand, SC
refers to the notion of adjusting a simulated (synthetic) sam-
ple path, based on the last parameter estimates, to achieve
a high fidelity to the best available estimate of the Hawkes
process. Four different SC methods are proposed and tested.
Finally, it is important to note that—in contrast to all extant
approaches—the RISC algorithm has been constructed for any
(nonuniform) partition of the observation interval, thus al-
lowing for different process regimes. This flexibility suggests
the formulation of an inverse problem, namely, that of opti-
mizing time censoring in view of achieving certain envelope
objectives (e.g., energy efficiency in sensor operations); cf.
Sec. IV D.

B. Outline

The remainder of the paper is organized as follows. Sec-
tion II introduces the preliminaries for the proposed RISC
algorithm. We determine various theoretical approaches for
reconstructing a valid sample compatible with the observed
time-censored data vector by correcting a given continuous-
time sample path that reflects the current parameter estimate.
Convergence of the RISC algorithm is established formally.
In Sec. III, we introduce relative and absolute performance
criteria to compare the RISC algorithm against other known
solutions. In Sec. IV, we further discuss algorithmic perfor-
mance and extensions. Section V concludes.

II. RECURSIVE IDENTIFICATION
WITH SAMPLE CORRECTION

In line with extant literature, our RISC approach is intro-
duced and tested for the class of self-exciting point processes.
We first recall the corresponding law of motion and standard
estimation techniques, together with the entropy of time-
censored observations (in Sec. II A). Subsequently, the general
idea of the RISC method is discussed (in Sec. II B) before we
provide a collection of methods to redistribute synthetically
generated samples in statistically neutral ways (in Sec. II C)
using suitable thinning and thickening algorithms, so the
corrected synthetic sample is consistent with a given time-
censored sample-path observation that serves as a reference
envelope. Finally, we establish the convergence of the RISC
algorithm (in Sec. II D).

A. Preliminaries

1. Self-exciting point processes

Self-exciting point processes are a class of spatiotemporal
processes introduced by Hawkes [12,13]. The self-excitation

015303-2



ESTIMATION OF SELF-EXCITING POINT PROCESSES … PHYSICAL REVIEW E 108, 015303 (2023)

characteristic of any such Hawkes process refers to its prop-
erty that earlier arrivals (at times t1, . . . , ti > 0) determine the
likelihood of future arrivals (at times t j > ti). The correspond-
ing law of motion specifies the arrival intensity at any time
t � 0 conditional on the event history Ht = {ti : 0 < ti < t},
so

λ(t |Ht ) = μ +
∑
i:ti<t

φ(t − ti ), t � 0, (1)

where μ > 0 is the background rate and φ : R+ → R+ is
the (continuous and bounded) self-excitation function also
referred to as kernel.5 In the special case where φ = 0, the
process simplifies to a homogeneous Poisson process. A pop-
ular choice is the exponential kernel,

φ(t ) = α β e−β t , t � 0, (2)

where α = ∫ ∞
0 φ(t ) dt > 0 denotes the branching coefficient

and β > 0 the decay. The exponential kernel satisfies the
Markov property.6

2. Standard parameter estimation

Common approaches for estimating the process parame-
ters of self-exciting point processes include MLE, EM, and
nonparametric algorithms. Both parametric techniques (MLE
and EM) determine parameter estimates based on maximizing
the (expected) likelihood of an observed event history HT ⊂
(0, T ] over an observation horizon T > 0.

Maximum-likelihood estimation. Given an observation his-
tory HT = {t1, . . . , tK}, an MLE parameter estimate θ̂MLE for
the Hawkes process in Eq. (1) solves

θ̂MLE ∈ arg max
θ∈�

{
K∑

i=1

ln λ
(
ti|Hti

) −
∫ T

0
λ(s|Hs) ds

}
; (3)

the parameter vector θ ∈ � ⊂ RP contains the background
rate μ, together with P − 1 kernel parameters;7 the parameter
space � is assumed to be nonempty, convex, and compact.
Ogata [14] established that MLE estimators are consistent,
asymptotically normal, and efficient.

Expectation maximization. The maximization of the log
likelihood in Eq. (3) can be challenging in practice. Since the
objective is generally nonconvex (cf. Ogata and Akaike [38]),
determining an MLE estimator amounts to finding the so-
lution to a global optimization problem. In addition, the
log-likelihood function may exhibit regions with very shal-
low gradients that can lead to numerical divergence. To cope

5The background rate is assumed constant. This assumption has
to be critically assessed based on the application of interest. Recent
studies on Hawkes processes analyzing the endoexogeneity in finan-
cial markets indicate that this assumption may introduce a certain
estimation bias [35,36].

6That is, the intensity change dλ(t |Ht ) depends only on λ(t |Ht )
and the change of the corresponding counting process N (t |Ht ) =∑

ti�t 1, so dλ(t |Ht ) = −βλ(t |Ht )dt + αβN (t |Ht ); see, e.g., Bacry
et al. [[37], Prop. 2].

7For example, when using the exponential kernel in Eq. (2), it is
θ = (μ, α, β ) ∈ � ⊂ RP

+, with P = 3.

with these issues, the use of additional structural process
information has proved useful. Dempster et al. [16] consid-
ered parameter estimation in the presence of latent variables.
Marsan and Lengline [39], Veen and Schoenberg [18], and
Mohler et al. [17] adopted this procedure to derive EM-type
algorithms for Hawkes processes, maximizing the expected
log likelihood of a parameter vector conditional on an ob-
servation history HT = {t1, . . . , tK}, as before. Using the
immigrant-offspring representation as derived by Hawkes and
Oakes [40] as latent information, the stochastic branching-
structure matrix P = [pi j]K

i, j=1 of the Hawkes process in
Eq. (1) is given by

pii = μ

λ
(
ti|Hti

) , pi j = φ(ti − t j )

λ
(
ti|Hti

) ,

p ji = 0, 1 � j < i � K, (4)

where pii is the probability of an event being an immigrant
and pi j is the probability for an offspring event. By offsprings,
we refer to events being caused by previous events. Immigrant
events, on the other hand, are a product of the background rate
and occur independently of the event history. The conditional
expected (complete) log-likelihood function Q : � → R aug-
ments the standard log likelihood for the parameter vector θ,
with the branching structure P̂ = [ p̂i j]K

i, j=1 conditioned on the

parameter vector θ̂ (generally different from θ),

Q(θ|θ̂) =
K∑

i=1

p̂ii ln μ +
K∑

i=2

i−1∑
j=1

p̂i j ln (φ(ti − t j ))

−
∫ T

0
λ(t |Ht ) ds, θ, θ̂ ∈ �, (5)

where the parameter space � ⊂ RP is as before. An EM
estimator θ̂EM is obtained iteratively. Given an approximate

solution θ̂
k
, a solution update θ̂

k+1
is found by first calculating

the branching structure (E step) and then maximizing Q(·|θ̂k
)

(M step) with respect to θ ∈ �. The two-step EM process
repeats until a convergence criterion is reached, say, at k = k̄,

so θ̂EM = θ̂
k̄
; see Mark and Weber [19] for details. In recent

studies, Nandan et al. [41,42] augmented an EM algorithm to
also account for spatial variability in modeling earthquake oc-
currences by including a time- and space-varying exogenous
influence.

Nonparametric estimation. In practice, at times there
is no ready-to-use parametric kernel, rendering process-
identification challenging. This issue is addressed by non-
parametric estimation methods that require only limited prior
knowledge about the shape or scale of the kernel (such as a
Lipschitz constant). Some of the latest nonparametric methods
are due to Achab et al. [43] and Bacry and Muzy [44].

3. Time-censored observation

In many practical applications, the event history HT =
{t1, . . . , tK} ⊂ (0, T ] cannot be observed at full resolution,
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but only after some time censoring. The latter consists in
aggregating event counts X�, for � ∈ {1, . . . , L}, relative to
a binning partition PT = {B1, . . . ,BL} of the observation
interval (0, T ], where L is the number of bins B� = (τ�−1, τ�],
and 0 = τ0 < τ1 < · · · < τL = T . That is,

X� =
K∑

i=1

1{ti∈B�}

= N (τ�|HT ) − N (τ�−1|HT ), �∈ {1, . . . , L}. (6)

In particular, the sum of the bin counts equals the total number
of observations:

L∑
�=1

X� = K = |HT |. (7)

The norm ‖PT ‖ of the binning partition PT is equal to the
length of its largest bin:

‖PT ‖ = max{τ� − τ�−1 : � ∈ {1, . . . , L}}.
We can conclude that a time-censored observation (relative
to the binning partition PT ) yields the bin-count vector X =
(X1, . . . , XL ) instead of the full event history HT , so Eqs. (6)
and (7) hold. To indicate the fact that X is obtained by garbling

the information contained in the event history HT by means
of the binning partition PT , we write

X = HT /PT . (8)

The information in the bin-count vector can be measured by
the bin-count entropy:8

H (X ) = −
L∑

�=1

(
X�

K

)
ln

(
X�

K

)
. (9)

As a result, 0 � H (X ) � ln L, where the upper bound is at-
tained for X� = K/L observations in each bin and the lower
bound for L = 1. Indeed, full time censoring into a single
bin (when L = 1) cannot convey any information at all, while
the maximum amount of information is transmitted by a
binning partition that fully separates all observed events (so
X� ∈ {0, 1} for all �).

A bin-count partition P̂T = {B̂1, . . . , B̂L̂} is said to be
a refinement of PT (written as P̂T � PT ) if for any �̂ ∈
{1, . . . , L̂} there exists an index � ∈ {1, . . . , �} so B̂�̂ ⊂ B�. It
is clear that refining a binning partition can only increase the
information contained in a bin-count vector. That is,9

((X, X̂ ) = (HT /PT ,HT /P̂T ) and P̂T � PT ) ⇒ H (X̂ ) � H (X ). (10)

Consider now the relative norm of the binning partition,

	 = ‖PT ‖
T

∈ [0, 1],

which is useful for comparison purposes across different ob-
servation horizons. Given an event history HT , Fig. 1 shows
the bin-count entropy relative to a random selection of bin-
ning partitions (with uniformly distributed breakpoints τ�, for
different L ∈ {1, . . . , |HT |}), as a function of 	. The relative
spread (coefficient of variation) of entropy values diminishes
in the number of bins.

Remark 1 (Uniform time censoring). A Uniform binning
partition,

PT = {((T/L)(� − 1), (T/L)�]}L
�=1,

8We use the convention (which holds in the limit) that all terms for
which X� is zero do vanish.

9To see this, note first that B� ∩ B̂�̂ 
= ∅ implies that B� ⊃ B̂�̂,
for all (B�, B̂�̂) ∈ PT × P̂T , by virtue of the fact that P̂T � PT .
Thus, we have that bin counts in X = HT /PT can be obtained by
partially aggregating bin counts in X̂ = HT /P̂T , since X� = |B� ∩
HT | = ∑

�̂:B̂
�̂
⊂B�

|B̂�̂ ∩ HT | = ∑
�̂:B̂

�̂
⊂B�

X̂�̂ for all � ∈ {1, . . . , L}.
But this implies that H (X ) = ∑L

�=1

∑
�̂:B̂

�̂
⊂B�

(X̂�̂/K ) ln(X�/K ) �∑L
�=1

∑
�̂:B̂

�̂
⊂B�

(X̂�̂/K ) ln(X̂�̂/K ) = H (X̂ ) as claimed in Eq. (10),
due to Jensen’s inequality—in combination with the concavity of the
logarithm.

has the relative norm 	 = 1/L. For ease of comparison, we
restrict attention to uniform binning partitions in the numeri-
cal performance evaluation of our method; see Sec. III. This is
notwithstanding the fact that in practice nonuniform binning

FIG. 1. Bin-count entropy for random partitions with L uni-
formly distributed breakpoints.
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may occur naturally. For example, many national COVID-19
statistics use daily bins on weekdays, while weekends are
lumped together into larger bins.10

B. Recursive identification

Given a binning partition PT of the observation interval
(0, T ], a time-censored observation yields the bin-count vec-
tor X in Eq. (8), without the event history HT being known.
In fact, while many event histories may yield the observed
bin-count vector X , the idea of our proposed RISC algorithm
is to synthetically construct event histories Ĥs

T , subject to the
bin-count constraint

X = Ĥs
T

/
PT , (11)

so as to maximize the likelihood of having been generated by
a Hawkes process HP(θ̂) in Eq. (1), for which an estimate θ̂ of
the parameter vector is given.11 For this purpose, we generate
a synthetic event history,

Hs
T = {

t s
1, . . . , t s

Ks

}
,

by simulating HP(θ̂). Naturally the synthetic bin-count vector
X s = Hs

T /PT might differ from the observed bin-count vec-
tor X , which implies the need for thinning (when X� < X s

� ) or
thickening (when X� > X s

� ), to satisfy the bin-count constraint
in Eq. (11). The details of this sample correction within the
RISC algorithm are discussed in Sec. II C.

Given a corrected event history Ĥs
T = {t̂ s

1, . . . , t̂ s
K}, which

satisfies the bin-count constraint (so X = Ĥs
T /PT ), the iden-

tification portion of the RISC algorithm aims to use one of the
standard parametric identification methods in Sec. II A 2 (i.e.,
MLE or EM) to generate an updated parameter estimate θ̂

′
.

By recursion on the three steps, namely, sample generation,
sample correction, and identification (with parameter update),
the RISC algorithm gradually identifies the parameters of the
time-censored point process and at the same time produces
event histories consistent with the time-censored observation.
Figure 2 provides an overview. By construction, the corrected
synthetic event history has the same cardinality as the (un-
known) true history:

K = |HT | =
L∑

�=1

X� = ∣∣Ĥs
T

∣∣.
Hence, the likelihood of the synthetic event histories can be
compared across iterations, as well as within a given iteration
by using multiple corrected synthetic sample paths instead of
just one; selecting the corrected path with the highest likeli-
hood to have been generated by HP(θ̂) reduces the simulation
noise. The termination criterion,

‖θ̂ − θ̂
′‖ � ε,

is then predicated upon the norm of the parameter adjustment
after the identification step dropping below a prespecified

10Nonuniform (and random) time censoring is discussed in
Sec. IV C.

11The parameter vector pins down the background rate μ and the
self-excitation function φ; cf. footnote 7.

Time-censored observation

Sample generation

Sample correction

Identification

Thickening      Thinning

No Yes RISC Estimate

FIG. 2. RISC algorithm: Overview.

positive error ε. To initialize the RISC algorithm, one can
generate an event history Ĥ0

T by uniformly distributing X�

samples in each interval (τ�−1, τ�] of the binning partition
PT , so the bin-count constraint is naturally satisfied. This
implies that Ĥ0

T is in fact corrected, and the first parameter

vector θ̂
0

can be produced using a standard identification step.

C. Sample correction

By means of SC, a synthetically generated event his-
tory Hs

T of a Hawkes process HP(θ̂) can be converted to
an observation-compatible synthetic event history Ĥs

T which
satisfies the bin-count constraint (11), given the bin-count ob-
servation X and the binning partition PT . The corresponding
thinning and thickening procedures described next improve
upon the naïve uniform sampling method used to initialize
the RISC algorithm. The general goal of more sophisticated
SC methods is to produce continuous-time event histories
that most closely resemble the arrival characteristics of the
Hawkes process under consideration.

1. Thinning

Based on a (possibly already modified) synthetic event his-
tory Hs

T = {t s
1, . . . , t s

Ks
}, obtained by simulating the Hawkes

process HP(θ̂) for a given parameter vector θ̂, we now con-
sider the removal of excess samples from bin B� = (τ�−1, τ�].
For this, we first compute the intensity λs

T (t |Hs
T ) by means

of Eq. (1), for all t ∈ [0, τ�] that is, from the beginning of the
observation interval (i.e., t = 0) until the end of bin � (i.e.,
t = τ�). Based on this hazard rate, it is possible to determine
the arrival probability of the ith simulated event (conditional
on t s

i−1),

F s
i = 1 − exp

[
−

∫ t s
i

max{τ�−1,t s
i−1}

λs
T

(
t |Hs

T

)
dt

]
, t s

i ∈ [
Hs

T

]
�
,

(12)

which corresponds to one minus the conditional survival
probability on the interval (max{τ�−1, t s

i−1}, t s
i ] for a death-

arrival process with hazard rate λs
T (·|Hs

T ), where [Hs
T ]� =

B� ∩ Hs
T denotes the set of simulated arrivals t s

i in the interval

015303-5



PHILIPP J. SCHNEIDER AND THOMAS A. WEBER PHYSICAL REVIEW E 108, 015303 (2023)

FIG. 3. Thinning process when X s
� − X� = 2. Two events with the lowest conditional arrival probabilities (measured as the corresponding

areas under the curve) are removed. The dashed grey lines indicate the canceled events.

(τ�−1, τ�], and where we set t s
0 = 0 as initial condition. By

assumption, for thinning to be required in bin �, it is

X s
� − X� = ∣∣[Hs

T

]
�

∣∣ − |B� ∩ HT | > 0.

Thus, a corrected sample history Ĥs
T is obtained from Hs

T
by removing X s

� − X� samples, namely, those featuring the
smallest arrival probabilities, so[

Ĥs
T

]
�
∈ arg max

{t s
i }⊂[Hs

T ]�

∏
t s
i

F s
i , s.t.

∣∣{t s
i

}∣∣ = X�.

The proposed thinning procedure therefore maximizes the
joint conditional arrival probability, subject to the �th bin-
count constraint, whence X̂ s

� = |[Ĥs
T ]�| = X�. See Fig. 3 for

an illustration of the thinning procedure in a case with two
excess samples.

Remark 2 (Iterative thinning with intensity update). Instead
of removing all excess samples at once from a given bin, a
more precise method is to remove only one excess sample at
a time (based on the lowest arrival rate), and to then recom-
pute the sample intensity path λs

T , repeating the removals and
subsequent intensity updates until the bin-count constraint is
satisfied.

2. Thickening

Maintaining the same notation as in the preceding thinning
procedure, we now consider the statistically neutral adding of
samples in bin � when

X s
� − X� = ∣∣[Hs

T

]
�

∣∣ − |B� ∩ HT | = −n < 0.

Four different thickening procedures (I)–(IV) are discussed in
turn. The first method (I), based on order statistics, generates
all n missing events at once, whereas the remaining three
methods (II)–(IV) add one event at a time recursively, in n
iterations.

(I) Order statistics. Given that n events need to be added,
the idea is to take the nonhomogeneous arrival intensity
λs

T (·|Hs
T ) as given and add the events at their expected time

instants, which amount to the expected values of the corre-
sponding n distinct order statistics conditional on n arrivals,
pertaining to the first event, the second event, and so forth, un-
til the nth event. By the law of large numbers, these expected
arrival times would be approximated by the observed averages

of the arrival times taken over sufficiently many n-event sam-
ple paths (discarding all sample paths with a different number
of events).

To derive closed-form expressions for the thickening ar-
rival times (ζ1, . . . , ζn), recall first that any Poisson process
with a constant (positive) intensity, conditional on n arrivals
in an interval B� = (τ�−1, τ�], features expected arrival times
which partition B� into n + 1 subintervals of the same length,
so

ζi = τ�−1 +
(

τ� − τ�−1

n + 1

)
i, i ∈ {1, . . . , n}.

When the arrival intensity is nonuniform, the expected inser-
tion times are obtained by means of a standard time change
(see, e.g., Daley and Vere-Jones [[45], p. 22]), whence

ζi = �−1

(
�(τ�−1) +

(
�(τ�) − �(τ�−1)

n + 1

)
i

)
,

i ∈ {1, . . . , n}, (13)

using the inverse �−1(·) of the cumulative rate function,12

�(t ) =
∫ t

0
λs

T

(
ϑ

∣∣Hs
T

)
dϑ, t ∈ [0, τ�], (14)

where the intensity λs
T (ϑ |Hs

T ) is obtained by means of Eq. (1),
for all ϑ ∈ [0, τ�]. By construction, the corrected sample
history Ĥs

T = Hs
T ∪ {ζ1, . . . , ζn} satisfies the �th bin-count

constraint, so again X̂ s
� = |[Ĥs

T ]�| = X�.
(II) Expectation. The idea behind our first iterative thick-

ening method is to successively add events at the expected
arrival time in the most likely interarrival intervals. For
this, consider any interarrival interval (t s

i−1, t s
i ] which has a

nonempty intersection with B�, i.e., for all

i ∈ I� = {
i ∈ {1, . . . , Ks} :

(
t s
i−1, t s

i

] ∩ B� 
= ∅}
,

where Ks is the number of samples in the current sam-
ple history, which is assumed to have been already cor-
rected on all bins to the left of B� and which may
already contain SCs for the current bin under consideration.

12For notational convenience, we suppress in � the explicit depen-
dence on the sample history Hs

T .
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Thus, if

i′ ∈ arg max
i∈I�

{
�

(
min

{
τ�, t s

i

}) − �
(

max
{
t s
i−1, τ�−1

})}
(15)

designates an interarrival interval with the highest arrival
probability (featuring the largest area under the intensity
curve), then one additional sample ζ̂ is added to the inter-
val (t s

i′−1, t s
i′ ] ∩ B�. The new sample is added at the expected

arrival time

ζ̂ = E[ζ |ti′−1 < ζ � ti′ ]

=
∫ ti′

ti′−1
tλs

T

(
t
∣∣Hs

T

)
exp[−(�(t ) − �(ti′−1))]dt

1 − exp[−(�(ti′ ) − �(ti′−1))]
,

where �(·) is the cumulative rate function defined in Eq. (14).
Based on an update of the sample history,

Hs
T ← � Hs

T ∪ {ζ̂ },
which increments the �th bin count X s

� by 1, we then re-
compute both the sample-path intensity λs

T (·|Hs
T ) and the

cumulative rate function �(·) (on (0, T ] to be on the safe
side) using Eqs. (1) and (14), respectively. The recursion
terminates when the bin-count constraint X s

� = X� is satisfied.
Then the corrected sample history is obtained by direct as-
signment: Ĥs

T ← � Hs
T , with the corrected bin count X̂� = X�,

where X̂ s
� ← � X s

� .13

(III) Exact. Instead of generating a sample at the ex-
pected arrival time in the most likely interarrival interval as in
method (II), it is also possible to create additional samples
ζ̂ via inverse transform sampling. Thus, once the most likely
interarrival interval, (ti′−1, ti′ ] = (t s

i′−1, t s
i′ ] ∩ B�, has been iden-

tified according to Eq. (15) (with ti′−1 = max{τ�−1, t s
i′−1} and

ti′ = min{τ�, t s
i′ }), an additional arrival is generated based on

the cumulative distribution function (CDF) conditional on
an observation in the selected interarrival interval within the
current sample history Hs

T :

Gs
i′ (t ) = P [ζ � t |ti′−1 < ζ � ti′ ]

= 1 − exp[−(�(t ) − �(ti′−1))]

1 − exp[−(�(ti′ ) − �(ti′−1))]
, t ∈ (ti′−1, ti′ ].

For lack of a closed-form inverse, we numerically approxi-
mate this sample-based CDF, and subsequently generate ζ̂ via
inverse transform sampling. We then proceed as under (II) by
updating the sample history, Hs

T ← � Hs
T ∪ {ζ̂ }, recomputing

the intensity path λs
T (·|Hs

T ) in Eq. (1), the arrival probabilities
F s

i in Eq. (12), and the cumulative rate function in Eq. (14).
New samples are added in this manner until the �th bin-count
constraint is satisfied.

(IV) Offspring. A processcentric approach is to base the
sample generation on the available knowledge of the law of
motion in Eq. (1), and thus to create an additional sample as
an offspring using the kernel φ(·|θ̂) for the current parameter
estimate θ̂. The algorithm proceeds as in method (III), using
the most likely interarrival interval (ti′−1, ti′ ] = (t s

i′−1, t s
i′ ] ∩ B�

13In case X� = 0, we place a uniform sample in the time interval
(τ�−1, τ�] to avoid potential edge effects biasing the estimation.

according to Eq. (15), except that the inverse transform sam-
pling is now based on the CDF for the offspring distribution
conditional on θ̂,

Ĝs
i′ (t ) = P [ζ � t |ti′−1 < ζ � ti′ ]

=
1 − exp

[−∫ t
ti′−1

φ(ϑ |θ̂) dϑ
]

1 − exp
[−∫ ti′

ti′−1
φ(ϑ |θ̂) dϑ

] , t ∈ (ti′−1, ti′ ].

The latter does not depend directly on the sample history
Hs

T , so—depending on the kernel—a computational advan-
tage over method (III) arises when an inverse of the CDF can
be obtained explicitly.14 Samples are generated until the �th
bin-count constraint holds.

Comparison of the thickening methods. The four thick-
ening methods outlined thus far follow quite different
philosophies. Method (I) adds all missing samples at once,
based on the time-varying intensity path generated by the
sample history Hs

T . Method (II) supplements samples one
at a time, each into the most likely interarrival interval, at
its expected location, recomputing the intensity path after
each such addition. The last two methods generate additional
random samples one at a time, based on the intensity path
in the most likely interarrival interval [method (III)], or else
using the available offspring dynamics based on the current
process-parameter estimate [method (IV)]. Figure 4 depicts a
situation where two samples need to be added to satisfy the
bin-count constraint.

D. Convergence

We now formally establish the convergence of the RISC
algorithm, when executed subject to a sample-monotonicity
constraint. The added constraint is used to construct a
maximizing (joint) sequence of estimators together with
corrected-sample histories.15 In practice, the algorithm con-
verges well without imposing sample monotonicity.

The given reference bin-count vector X distributes the K =
|X | binned reference observations into the binning partition
PT . In iteration k + 1, the RISC algorithm takes the process

estimate θ̂
k

from the previous iteration k to simulate HP(θ̂
k
) so

as to obtain a sample history Hs,k+1
T , which is then corrected

to Ĥs,k+1
T via thinning and thickening on each bin in the given

partition PT . By construction, the bin-count constraint,

Ĥs,k+1
T

/
PT = X,

remains therefore satisfied for all k � 0. The log-likelihood
function L(θ̂|Ĥs,k+1

T ) is a continuous function of the P + K
real-valued variables consisting of the P-dimensional process-
parameter estimate θ̂ and the K-dimensional sample vector
(t̂ s,k+1

1 , . . . , t̂ s,k+1
K ), containing the time-ordered elements of

the corrected sample history Ĥs,k+1
T .

14Consider the exponential kernel φ(ϑ |β̂ ) = β̂ exp(−β̂ϑ )
for ϑ � 0. Then Ĝs

i′ (t ) = y ∈ (0, 1] implies that t =
−(1/β̂ ) ln[− ln(1 − κ y) − exp(−β̂ti′−1)] ∈ (ti′−1, ti′ ], where
κ = 1 − exp[− ∫ ti′

ti′−1
φ(ϑ |β̂ ) dϑ].

15The concept of a maximizing sequence is used here as in the
calculus of variations [[46], pp. 193–195].
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FIG. 4. Thickening process. In bin B� = (τ�−1, τ�], two events have to be added (i.e., X s
� − X� = −2). For our proposed thickening

techniques (I)–(IV), we illustrate the change in the intensity function from λs
T (·|Hs

T ) to λs
T (·|Ĥs

T ), depending on the locations of the
sample-correction events; the latter are either deterministic (I), (II) or stochastic (III), (IV).

Since by assumption the kernel function is bounded, that
is, there exists a finite constant J > 1/K such that φ(t ) � J
for all t � 0, we can conclude by Eq. (1) that the intensity
is bounded, as λ(t ) � μ + KJ . But this implies that the log
likelihood is bounded as well:16

L
(
θ̂
∣∣Ĥs,k+1

T

)
� Lk+1 � L

(
θ̂

k+1∣∣Ĥs,k+1
T

)
� K ln(μ + KJ ), θ̂ ∈ �. (16)

To obtain monotonicity in the maximized log likelihoods, in
the sense that

Lk = L
(
θ̂

k|Ĥs,k
T

)
� L

(
θ̂

k+1∣∣Ĥs,k+1
T

) = Lk+1, (17)

it is enough to subject the corrected history Ĥs,k+1
T [obtained

from the sample history Hs,k
T of HP(θk )] to a sample-

monotonicity constraint of the form

L
(
θ̂

k∣∣Ĥs,k+1
T

)
� Lk = L

(
θ̂

k∣∣Ĥs,k
T

)
. (18)

The sample-monotonicity constraint (18) and the first in-
equality in Eq. (16) together imply the likelihood monotonic-
ity (17). In addition, Eqs. (16) and (17) yield, by the monotone
convergence theorem, that there exists a limit L∗ in the

16By Eq. (1), this bound is tight. For example, the exponential
kernel φ(t |β ) = β exp(−βt ) � β, for t � 0, can produce intensi-
ties arbitrarily close to μ + Kβ when the sample history HT (with
|HT | = K) is concentrated near t = 0. Indeed, if for ε ∈ (0, T ) it is
HT ⊂ [0, ε], then for ε → 0+ one would obtain λ(ε) → μ + Kβ.

interval (0, K ln(μ + KJ )] such that

lim
k→∞

Lk = L∗.

Since L is an upper semicontinuous function on the com-
pact set � × TK , with TK = {(t1, . . . , tK ) ∈ RK

+ : t1 � · · · �
tK}, by the Weierstrass theorem there exists a parameter vec-
tor θ̂

∗
and a (possibly degenerate) history Ĥs,∗

T in TK so
L(θ̂

∗|Ĥs,∗
T ) = L∗. In this context, a history is called degen-

erate if it contains samples that coincide with others. Since
simulated histories cannot produce degenerate histories, the
maximum of the log likelihood (i.e., L∗) can, in general, only
be approximated.

The remaining question is whether the sample-
monotonicity constraint (18) can be satisfied by a corrected

sample Ĥs,k+1
T of HP(θ̂

k
) with positive probability. In other

words, when repeating the sampling/correction procedure
as many times as needed to satisfy the constraint, would
this process stop with positive probability after finitely many
iterations? That this question has a positive answer can be
seen as follows. Indeed, note first that Eq. (18) is satisfied
trivially if Ĥs,k+1

T = Ĥs,k
T , which in itself may happen with

probability zero. However, if we divide an open set N ⊂ TK ,
which contains Ĥs,k

T , into

N1 = {HT ∈ N : L(θ̂k|HT ) � Lk},

and its complement N0 = N \ N1, then we know by assump-
tion that N1 is nonempty. Moreover, because small variations
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FIG. 5. Mean absolute percentage error (MAPE) per iteration k.

of Ĥs,k
T produce variations in the log-likelihood function,17

by the local differentiability of L in any arrival time ti (as
element of a nondegenerate sample history), the probability
measure of N1 must be greater than zero, so indeed the
sample-monotonicity constraint must be satisfied with posi-
tive probability.

We can therefore conclude that the RISC algorithm, ex-
ecuted subject to the sample-monotonicity constraint (18),

converges in finite time, in the sense that θ̂
k

approximates
a maximum-likelihood parameter vector θ̂

∗
up to any given

error in a finite number of iterations with a finite amount of
oversampling.18

Figure 5 illustrates the convergence of the Cauchy differ-
ence of successive parameter estimates19 in terms of the mean
absolute percentage error (MAPE) introduced in Sec. III A. As
a function of the iteration k, the error decreases at first signifi-
cantly and then levels off, indicating that the simulation noise
floor has been reached. Coarser bin partitions suffer from a
higher noise floor due to the additional loss of entropy. Lastly,
we note that in practice the sample-monotonicity constraint

17Differentiating the log likelihood L(θ̂|HT ) in Eq. (3) with respect
to any ti ∈ HT ∈ N ⊂ TK yields

∂L(θ̂|HT )

∂ti
=

∑
j:t j<ti

φ′(ti − t j )

λ(ti|Hti )
−

K∑
l=i+1

φ′(tl − ti )

λ(tl |Htl )
+ φ(T − ti ).

Since this derivative does not vanish in any small open neighborhood
of Ĥs,k

T (for any nontrivial Hawkes process) conditional on having ob-
tained Ĥs,k+1

T ∈ N (which constitutes a positive-probability event),
we can conclude that the probability of having attained the global
maximum in the previous RISC-iteration k is zero, and correspond-
ingly the probability of having exceeded the preceding log-likelihood
value (Lk) is positive.

18While we have established the convergence of the monotonic
likelihood sequence, and by continuity the sequence of parameter
estimates, there is no guarantee with respect to reaching a global
optimum due to the inherent nonconvexity of the likelihood function.

19Since the Euclidean space RP is complete, any Cauchy sequence
converges.

can usually be ignored without a noticeable decrease in the
speed of convergence.

III. PERFORMANCE ASSESSMENT

To analyze the usefulness of the RISC method, we intro-
duce two simple evaluation criteria, discuss the setup of our
numerical study, and then compare the method performance;
first, internally—across our four different SC variants—and
then externally with respect to other extant methods for the
estimation of time-censored point processes.

A. Evaluation criteria

To quantify the performance of the proposed RISC esti-
mator, we use the (expected) MAPE for tracking deviations
of the full parameter estimate θ̂ = (θ̂1, . . . , θ̂P ) relative to a
reference vector θ = (θ1, . . . , θP ),

e(θ̂|θ) = 1

P

P∑
p=1

|θ̂p − θp|
|θp| , θ̂, θ ∈ RP

++, (19)

as well as the (signed) statistical bias,

B(θ̂p|θp) = θ̂p − θp, θ̂p, θp ∈ R++, (20)

to track systematic deviations of any individual component θ̂p,
for p ∈ {1, . . . , P}, of the estimate from the underlying true
value θp. To isolate these relative and absolute measures from
fluctuations in reference bin counts and randomness stemming
from SC, the expected performance measures are obtained
from Eqs. (19) and (20) as averages over N different instances,

ēθ = 1

N

N∑
n=1

e(θ̂(n)|θ) and B̄θ̂p
= 1

N

N∑
n=1

B
(
θ̂ (n)

p

∣∣θp
)
, (21)

for p ∈ {1, . . . , P}, where each estimated parameter vector

θ̂
(n)

belongs to a bin-count vector X (n), derived from realiza-
tion n ∈ {1, . . . , N} of the reference process HP(θ).

B. Numerical study: Setup

In our numerical analysis, we concentrate on Hawkes
processes with an exponential kernel, characterized by the
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TABLE I. Parameter configurations for the time-censored identi-
fication of HP(θm ).

θm μm αm βm

θ0 1.0 0.0 0.0
θ1 0.4 0.6 0.5
θ2 0.4 0.6 1.5
θ3 0.1 0.9 0.5
θ4 0.1 0.9 1.5

parameter vectors θm = (μm, αm, βm), for m ∈ {1, . . . , 4}. As
a reference, we include a pure Poisson process parameter
vector for m = 0, which can also be viewed as a Hawkes
process HP(θ0), for θ0 = (μ0, 0, 0); see Table I. To match the
expected number of arrivals across experiments, the different
process scenarios are chosen to feature (approximately) the
same expected average arrival rate λ̄ ≈ μ/(1 − α) = 1.20 In
other words, the expected number of arrivals over the obser-
vation interval (0, T ] of length T = 1000 is about 1000 for
any of the five parameter configurations. For every θm, we
identify N = 1000 synthetically generated Hawkes processes
that are time-censored on a uniform binning partition PT (cf.
Remark 1) of relative norm 	 ∈ [0.1%, 2%]. Each reference
sample history Hs,n

T,m, for (m, n) ∈ {1, . . . , 4} × {1, . . . , N}, is
obtained via simulation using the Python library TICK [47],
which is based on Ogata’s thinning algorithm [48]. By it-
eration of SC, identification, and sample generation, the

RISC algorithm produces the corresponding estimators θ̂
(m,n)
RISC ,

using a suitable ε-convergence criterion; see Fig. 2 and
Appendix B 2 for further details.

Figure 6 illustrates the bin-to-bin variability of HP(θm) in
terms of three summary statistics. First, we consider the bin-
to-bin standard deviation,

σm =
⎡
⎣ 1

L · N

L,N∑
�,n=1

(
X (m,n)

� − K (m,n)

L

)2
⎤
⎦

1/2

,

where X (m,n) = (X (m,n)
1 , . . . , X (m,n)

L )L
�=1 is the bin-count vec-

tor associated with simulation run (m, n), and K (m,n) =∑L
�=1 X (m,n)

� = |Hs,n
T,m| records the number of observed sam-

ples across the L = |PT | ≈ �T/	� bins. Correspondingly,

CVm = (L · N ) σm∑N
n=1 K (m,n)

is the (measured) bin-to-bin coefficient of variation for
HP(θm). Finally,

Hm = 1

N

N∑
n=1

H (X (m,n) )

denotes the average of the run-specific bin-count entropy as
introduced in Eq. (9). The parameter vectors θm are such that
each variability measure is monotonic in m ∈ {0, . . . , 4}; a
higher m thus indicates a higher degree of differentiation of

20See Appendix C 2 for details on how to compute the expected
average arrival rate λ̄ for HP(θ) on (0, T ].

HP(θm) from the Poisson reference, HP(θ0). Specifically, the
parameter vector θ1 describes a process similar to a Poisson
process with a low bin-to-bin standard deviation and coef-
ficient of variation. By contrast, HP(θ4) is characterized by
the highest bin-to-bin standard deviation and coefficient of
variation, as a result of the distinctive clusters formed by the
near-critical branching ratio α4 (close to 1), and the relatively
fast kernel decay rate β4. We consider HP(θ1) and HP(θ4) as
representative extreme cases in the spectrum of self-exciting
point processes, with close-to-Poisson behavior on the one
hand and near-critical behavior on the other. The simulation
studies below (in Secs. III C–III D) focus on those cases.21

Remark 3 (Interrun versus intrarun variability). For a
given Hawkes process (with unobserved parameter vector),
the RISC estimate θ̂RISC fluctuates, since (i) the observed
bin-count vector X changes across runs (i.e., across different
sample paths) and (ii) even for a fixed X there is randomness
built into the RISC algorithm, thus producing slightly
varying estimates based on the same input data. As shown
in Appendix B 4, the interrun variability, relating to (i),
significantly exceeds the intrarun variability, relating to (ii),
no matter which particular SC method (I)–(IV) is used.22

Naturally, the RISC estimates θ̂RISC obtained from stochastic
sample-correction methods (III) and (IV) are more variable,
with a larger inter- and intrarun variability than when using
deterministic SC methods (I) and (II); note that the latter
also produces stochastic estimates because of the intermittent
simulations contained in the RISC algorithm.

C. Comparison of sample-correction methods

SC forms an integral part of the RISC method in Sec. II,
developed for the estimation of the parameter vector θ that
characterizes the point process in Eq. (1), subject to time-
censored observation. As shown below, the performance of
the different SC algorithms in Sec. II C tends to decrease with
stronger time censoring. That is, when the norm of the binning
partition increases, both the relative error (MAPE) and the
expected absolute deviation (measured as the absolute value
of the statistical bias) go up.

In addition, the performance of the different SC algorithms
depends on the degree of self-excitingness in the underly-
ing process. For example, θ1 and θ4 in Table I illustrate,
respectively, both extremes of the spectrum of similarity to a
standard Poisson process. The inclusion of a naïve uniform SC
method highlights the effect. For HP(θ1), uniform resampling
according to the bin-count constraint in Eq. (11) outperforms
all of the nontrivial methods, as the implicit bias introduced
by the uniformity of the samples happens to work in the
right (i.e., Poisson) direction. By contrast, for HP(θ4), uniform
resampling comes last due to the significant self-excitation
behavior of the process, thus illustrating the benefits of the

21The corresponding results for the intermediate HP(θ2) and
HP(θ3) are reported in Appendix B 6.

22By fixing the seed of a random number generator, it is possible
to eliminate intrarun variability altogether. Yet, it must be accounted
for, at the very least, across different implementations of the same
algorithm.
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FIG. 6. Bin-to-bin standard deviation σm, coefficient of variation CVm, and entropy Hm for HP(θm ) on a uniform binning partition with
norm ‖PT ‖ ∈ [1, 20].23

intrabin emulation of nonhomogeneous process characteris-
tics when performing SC.

Estimation performance proves quite sensitive to the
coarseness of the binning partition. Specifically, consider first
HP(θ1), a Poisson-like process. When time censoring is weak
(i.e., for ‖PT ‖ = 1), all SC methods, including the uniform
reference, exhibit very similar performance and identify pa-
rameters fairly correctly (μ̂1 ≈ μ1, α̂1 ≈ α1), with a slight
negative bias for the decay coefficient β̂1 < β1; see Fig. 7(a).
When time censoring becomes more severe, e.g., through
merging blocks of the current (daily) bins into more aggregate
(weekly) observations (i.e., for ‖PT ‖ = 7), differences in the
resulting estimation errors begin to emerge.

Remark 4 (Noise floor). Given a finite observation hori-
zon, even an MLE estimator without time censoring (cf.

23Appendix B 1 provides some additional relevant statistics for the
different processes.

24The boxplots, one for each method in Sec. II, illustrate the param-
eter estimates. Boxplot whiskers range from minimum to maximum;
the box marks the range between the 25th and the 75th percentile
(i.e., the second and third quartiles); the median is indicated by
a horizontal line within the box. The (dashed) true-parameter line
serves as a reference.

Sec. II A 2) produces a persistent estimation error, which
therefore serves as a noise floor, indicated in Figs. 8 and 11
below.25

While the estimation quality of the background rate μ̂1 and
the branching coefficient α̂1 is only moderately affected by
time censoring, the identification of the decay rate β̂1 may be
subject to a significant bias; see Fig. 7(b). As bins are merged,
the self-excitation behavior in the form of separated clusters is
increasingly masked. Therefore, all previously introduced es-
timation algorithms struggle with the identification, especially
of the decay rate; cf. Sec. III D. Stochastic methods (III) and
(IV) provide weakly better estimation results, as these meth-
ods use, by design, more exploration than the deterministic
methods (I) and (II). The naïve uniform SC method displays
the best performance, in terms of lowest estimation bias, while
at the same time exhibiting the largest spread. The MAPE for
θ1 is dominated by the estimation bias for β1 and increases
monotonically with the degree of time censoring; see Figs. 8
and 9.

For near-critical Hawkes processes, such as HP(θ4), all
SC methods provide similar performance results, as long as

25The noise floor is also used as a reference in the following
sections, e.g., in Figs. 14 and 17.

FIG. 7. Estimates μ̂, α̂, β̂ of (μ1, α1, β1) = (0.4, 0.6, 0.5).24
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θ
)

MLE (Noise floor)

Uniform

(I) Order statistics

(II) Expectation

(III) Exact

(IV) Offspring

MLE (Noise floor)

Unifoff rm

(I) Order statistics

(II) Expectation

(III) Exact

(IV) Offspring

MLE (Noise floor)

Uniform

(I) Order statistics

(II) Expectation

(III) Exact

(IV) Offspring

FIG. 8. MAPE ēθ for (μ1, α1, β1) = (0.4, 0.6, 0.5).

time censoring remains weak. As the fast decay of β4 = 1.5 is
difficult to observe, the decay estimates are negatively biased
even with a relatively fine binning partition; see Fig. 10(a).
Further censoring increases the negative bias; see Fig. 10(b).
In comparison with uniform SC, the more sophisticated meth-
ods (I)–(IV) provide better performance—in particular for the
identification of the decay rate. This is a result of the SC
techniques that reconstruct an intrabin arrival history coherent
with the self-excitingness of the process. The exact method
(III), which corrects the simulation path using the exact con-
ditional intensity function for each interarrival time, exhibits
the smallest bias for the decay rate.

The MAPE increases in the severity of time censoring;
see Fig. 11. The stochastic methods, in particular (III), show
superior performance. The overall estimation error is largely
driven by the somewhat unavoidable large bias for the decay
rate; see Fig. 12.

Self-exciting behavior is a key feature of Hawkes processes
such as HP(θ4). Hence, the reconstruction of an intrabin
arrival history consistent with process characteristics is im-
portant to mitigate estimation bias—especially for the decay
parameter. Focusing on the better-performing stochastic SC
methods (III) and (IV), we proceed below with compar-
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FIG. 9. Bias B̄μ, B̄α , B̄β for (μ1, α1, β1) = (0.4, 0.6, 0.5).

TABLE II. Algorithm features.26

Algorithm RI SC

RISC � �
BH-EM � (�)
INAR ✗ ✗

Whittle ✗ ✗

ing the proposed RISC algorithm against extant estimation
algorithms for the identification of time-censored Hawkes
processes.

D. Comparison to extant algorithms

There are various algorithms for the identification of
self-exciting point processes based on time-censored obser-
vations [20,22,25,28–30]; see also our discussion in Sec. I A.
Specifically, we compare the RISC algorithm to the BH-EM
approach by Shlomovich et al. [30], the integer-valued au-
toregressive time series (INAR) approach by Kirchner [22],
and the spectral estimation approach (Whittle) by Cheysson
and Lang [25]. As shown in Table II, of the three compar-
ison benchmarks, only the BH-EM algorithm incorporates
both recursive estimation and a variation of SC, the latter via
successive bin-specific global maximization of a conditional
likelihood function. The other two algorithms use a discrete-
time (i.e., piecewise constant) approach (INAR), adapting
the timescale to the bins, and a spectral-estimation approach
(Whittle), respectively. Both of these restrict attention to uni-
form sampling partitions. For both algorithms (INAR and
Whittle), the authors proved that the estimators are consistent
and asymptotically normal. However, in the case of INAR,
consistency obtains only when the binning norm ‖PT ‖ tends
towards zero. As we consider coarser time-censored observa-
tions, consistency cannot be guaranteed. The strong mixing
conditions, a prerequisite for the Whittle algorithm, are sat-
isfied for the exponential kernel in Eq. (2). This implies
estimation consistency for T → ∞, assuming that the process
remains stationary. Since the BH-EM and the RISC algorithm
both use MLE, which is consistent (and asymptotically nor-
mal) for uncensored Hawkes processes, their estimates are
also asymptotically consistent for 	 → 0+.

Comparing the performance of the three alternative ap-
proaches to that of the RISC algorithm [with the stochastic
sample-correction methods (III) and (IV)], we find that al-
gorithms omitting the sample correction (i.e., those omitting
the reconstruction of an event history ĤT according to the
bin-count observation X ) exhibit an elevated estimation er-
ror and bias. Interestingly, in our simulation study these
estimation issues could be observed even for the smallest
considered relative binning norm 	 = 0.1% (corresponding
to ‖PT ‖ = 1). In addition, near-critical processes [such as
HP(θ4)] demonstrate a further challenge to these algorithms.

26The BH-EM algorithm generates samples in B� by solving an
optimization problem, successively for all �. By comparison, the
RISC algorithm corrects a synthetic sample history in each B� using
thinning or thickening.
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FIG. 10. Estimates μ̂, α̂, β̂ for (μ4, α4, β4) = (0.1, 0.9, 1.5).

While the BH-EM algorithm generates a sample history in a
similar spirit as the proposed RISC algorithm, it may exhibit
convergence/precision issues, since for every bin a nonconvex
optimization problem needs to be solved. Figure 13 depicts
significant deviations in the Whittle estimator from the true
parameter values, particularly for the decay rate (correspond-
ing to β̂).

As time censoring becomes more severe, the performance
of all algorithms decreases significantly. For the Poisson-
like process HP(θ1) the extant solutions tend to produce
rather high-variance estimates. Several approaches exhibit
convergence issues; see Fig. 13. For ‖PT ‖ � 8, the BH-EM
algorithm overestimates μ (and thus underestimates α) before
converging; see Fig. 14.

The advantage of recreating a statistically consistent sam-
ple history can be gleaned from Fig. 14, in terms of
MAPE. Additionally, algorithms with SC show lower per-
formance when identifying the background rate μ, and the
self-excitation dynamics α.27 Whittle and INAR estimates for

27Events caused by self-excitation describe the endogenous behav-
ior of the process, while the background rate μ captures the influence
of exogenous factors. To reliably classify the origin of events is es-
sential for numerous applications, such as for the analysis of trading
activity in cryptocurrency markets [49].
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FIG. 11. MAPE ēθ for (μ4, α4, β4) = (0.1, 0.9, 1.5).

μ̂ deteriorate with increasing time censoring showing signs
of parameter overestimation (positive bias). This tendency
to overestimate μ̂ results also in an estimation bias for the
branching coefficient α̂, as both parameters relate to the num-
ber of events generated; see Fig. 15 and Appendix C 2.

Consider now the near-critical process HP(θ4), with
‖PT ‖ = 1. Figure 16 shows that estimates exhibit a rather
large spread. The performance of both INAR and Whittle de-
clines fast in the degree of time censoring; see Fig. 17. On the
other hand, the RISC algorithm achieves superior results—in
terms of MAPE and bias—for most of the binning norms
under consideration; see Figs. 17 and 18.

In general, the difficulty of estimating a time-censored
Hawkes process depends on both the binning norm and the
process (in terms of θ). The average cluster-length ratio ξ =
(μ/β )/(1 − α) (cf. Appendix C 1) indicates that HP(θ1), with
ξ = 2, has overlapping clusters. On the other hand, HP(θ4),
with ξ = 2/3, is more difficult to estimate in the absence
of time censoring [cf. the noise floors in Figs. 14 and 17].
To effectively identify Hawkes-process characteristics, tak-
ing intrabin offspring behavior into account is essential. For
example, when ‖PT ‖ = 7, the process HP(θ1), conditional
on at least one arrival, features a parent and offspring in the
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FIG. 12. Bias B̄μ, B̄α , B̄β for (μ4, α4, β4) = (0.1, 0.9, 1.5).
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FIG. 13. Estimates μ̂, α̂, β̂ for (μ1, α1, β1) = (0.4, 0.6, 0.5).

same bin with no less than 72% probability. For HP(θ4), this
probability increases to 90%, meaning that censoring tends to
mask the self-excitingness of a near-critical process.28

IV. DISCUSSION

We are now ready to examine the general usefulness of
the RISC algorithm based on additional aspects, such as the
sensitivity of performance to data volume, the algorithm’s
computational complexity, the possibility of nonuniform (or
random) time censoring, as well as the relation to interesting
practical applications involving a somewhat inverse version
of the time-censored estimation problem where the censoring
can become a means to achieve an objective such as energy
efficiency.

A. Small-sample versus large-sample behavior

The estimation approaches for time-censored Hawkes pro-
cesses discussed in Sec. III D (with the exception of the

28The probability that an immigrant at t j ∈ B� causes an offspring
in the same bin is β

∫ τ�

t j
e−β(t−t j ) dt . Hence, conditional on an immi-

grant arrival in B�, the probability of parent and at least one offspring
to appear in B� becomes [

∫ τ�

τ�−1
(β

∫ τ�

ϑ
e−β(t−ϑ ) dt )dϑ]/(τ� − τ�−1) =

1 − [1 − e−β(τ�−τ�−1 )]/[(τ� − τ�−1)β].
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θ
)

MLE (Noise floor)

(III) Exact

(IV) Offspring

BH-EM

INAR

Whittle

MLE (Noise floor)

(III) Exact

(IV) Offspring

BH-EM

INAR

Whittle

FIG. 14. MAPE ēθ for (μ1, α1, β1) = (0.4, 0.6, 0.5).

Whittle approach) are consistent and asymptotically normal
only as the norm of the binning partition tends to zero, i.e., for
‖PT ‖ → 0+. As the time censoring disappears, one recovers
the standard problem of estimating process characteristics
from an uncensored event history, which can be effectively ad-
dressed using standard parameter estimation (cf. Sec. II A 2).
For all uniform binning partitions, there remains a bias that
monotonically increases with the level of time censoring. The
Whittle estimator is consistent and hence converges to the
true estimates for a sufficiently large time horizon T . Yet,
as shown in our numerical experiments, to benefit from the
consistency of the Whittle estimator for Hawkes processes
with exponential kernel, the required amount of data can be
substantial, to the point that it may be practically infeasible
to obtain sufficient observations for the estimation error to
even become manageable.29 The sample size in many appli-
cations is limited (and may not even be a choice variable).

29For example, even by increasing the time horizon T from 1000 to
8000, the Whittle estimator—while showing slight improvement—
still exhibits substantially larger estimation errors than the RISC
algorithm; cf. Appendix B 8.
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FIG. 15. Bias B̄μ, B̄α , B̄β for (μ1, α1, β1) = (0.4, 0.6, 0.5).
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FIG. 16. Estimates μ̂, α̂, β̂ for (μ4, α4, β4) = (0.1, 0.9, 1.5).

Moreover, large-sample consistency depends on the long-term
stationarity of the underlying process, which in practice can be
assumed only rarely. For example, the estimation of Hawkes
processes in cryptocurrency markets is prone to intraday
regime changes [49].30

B. Runtime considerations

The numerical study in Sec. III suggests that the proposed
RISC algorithm is capable of outperforming other methods in
terms of MAPE and bias, at least when the amount of available
data is limited. From a computational complexity viewpoint,
considering runtime as an evaluation criterion, both INAR and
Whittle clearly outperform the other approaches. While INAR
features a linear runtime according to O(L), Whittle has an
algorithmic time complexity of O(L ln(L)), where L refers
to the cardinality of the binning partition. The computational
complexity of RISC and BH-EM have to be analyzed by look-

30Small-sample statistical inference has been studied extensively
for Hawkes processes, and the RISC algorithm can accommodate
multiple estimation methods, such as MLE (used throughout in the
numerical examples) or EM, which can overcome certain estimation
issues by augmenting the parameter space with the branching struc-
ture (cf. Sec. II A 2). Other techniques are also available, for example,
variational inference [50].
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FIG. 17. MAPE ēθ for (μ4, α4, β4) = (0.1, 0.9, 1.5).

ing at parameter inference and sample generation separately.
Parameter inference is performed k times until either the con-
vergence criterion ε or the maximum number of iterations M
is reached.31 For Hawkes processes, MLE scales polynomially
and results in an O(K2) complexity, where K denotes the
number of events in the (unobserved) sample history HT .
The event count K is equal to the sum of the elements of
the bin-count vector X , which is by Eq. (11) the same for
any sample-corrected history ĤT .32 Therefore, the time com-
plexity required for parameter inference exceeds the runtime
of both aforementioned algorithms. The complexity of the
sampling procedure, as part of the BH-EM algorithm, can be
viewed as solving an optimization problem L times, where
the complexity of the optimization problem depends on the

31The speed of convergence is sensitive with respect to the choice
of θ̂0. Using uniformly distributed events to derive the initial guess
speeds up the convergence of the RISC algorithm when compared to
random seeding.

32An exception is the Hawkes process with exponential kernel,
where the complexity is reduced to O(K ) [21].
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FIG. 18. Bias B̄μ, B̄α , B̄β for (μ4, α4, β4) = (0.1, 0.9, 1.5).

015303-15



PHILIPP J. SCHNEIDER AND THOMAS A. WEBER PHYSICAL REVIEW E 108, 015303 (2023)

chosen solver.33 For our approach, the sampling time com-
plexity is dominated by the time required for generating a
synthetic sequence. When utilizing Ogata’s thinning algo-
rithm [48], the runtime increases linearly in the length of
the simulation horizon T . Even under a worst-case scenario
of performing K sample adjustments, the RISC algorithm
requires significantly less runtime than the BH-EM algorithm,
which attempts to find a globally optimal event-time place-
ment within each bin.

C. Nonuniform and random time censoring

To ensure a fair performance comparison of the proposed
RISC algorithm to other extant solutions, our numerical ex-
periments relied on uniform binning partitions, despite the
fact that the general approach in Sec. II allows for any fi-
nite partition of the observation interval. Indeed, in many
real-world applications the available observations undergo
nonuniform time censoring. For instance, self-exciting point
processes have been used to model contagious diseases such
as COVID-19, where infection statistics would in many coun-
tries produce daily infection counts during the week and
aggregate counts over the weekend (often resulting in ag-
gregate counts published on Mondays). To remain within
the uniform time-censoring framework would require inter-
polation techniques for deaveraging, which need a separate
justification. By contrast, the RISC algorithm in its native
form can accommodate any type of time censoring. This in-
cludes partial time censoring when censored and uncensored
information coexist, in which case one can use a sufficiently
fine binning partition on the uncensored portions of the signal.

A random partition of time may arise when an interarrival
history is checked randomly, for example, when sporadi-
cally observing the inventory of a durable-goods monopolist
which decreases as a consequence of an intermittent stochas-
tic order-arrival process. Naturally, any given realization of
a (nontrivial) random partition is nonuniform with probabil-
ity 1. Since the relative error curves are usually increasing
and concave in the binning norm of a uniform partition, a
random partition with the same expected bin width (i.e., a
mean-preserving spread of the deterministic uniform parti-
tion) tends to have a lower average error, due to Jensen’s
inequality.34

D. Inverse problem and applications

The results in Sec. III indicate how Hawkes-process char-
acteristics influence estimation error and bias. Thus, if a
Hawkes process is subject to detectable (or known) regime
changes, then a desired estimation error can be achieved via

33Solvers for nonconvex optimization problems may include the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (respectively,
a limited-memory BFGS algorithm with box constraints: L-BFGS-B)
and sequential least-squares quadratic programming (SLSQP).

34For HP(θ1) and HP(θ4), with a random partition featuring a con-
stant coefficient of variation of 50% across all expected bin-widths
between 1 and 20, we find that the MAPE decreases by about 30%
across the board compared to a uniform partition.

an adapted time-censoring strategy. For example, when mon-
itoring traffic patterns on a social-media platform, during a
high-traffic regime a coarser time censoring may be able to
achieve the same estimation error as a finer binning partition
in a low-traffic regime. This insight suggests a unique stream
of research. Assuming the observed bias and process dynam-
ics of an application are known, the matter of time censoring
can be reformulated as an inverse problem. The question of in-
terest becomes how much time censoring can be applied while
maintaining a certain defined service level (or more generally,
while suitably tracking a predefined time-varying service-
level requirement). By service level, we refer to the algorithm
performance (e.g., in terms of estimation error and runtime) as
well as additional user requirements (e.g., aggregate energy
use by the time-censored arrival-detection sensors). In some
applications, an accurate process monitoring with detailed
event history might be very cost intensive. The recurring costs
may stem from the computation of updated estimates or from
the energy for sensor-based monitoring of an environment, to
name just a few. Therefore, the application might operate in
different modes when the process dynamics of a system are
fairly time invariant, switching from recording high-resolution
data to time-censored data.35 In this context, the design of the
binning partition to monitor the process in an economically
efficient manner becomes a choice variable.

V. CONCLUSION

In this paper, we introduced a RISC algorithm for the
estimation of Hawkes processes from time-censored data.
We reconstruct a history of continuous-time samples, which
on a given binning partition exhibits the same entropy as
an observed reference bin-count sequence (corresponding to
the only available actual data). The required thinning and
thickening of simulated sample paths is referred to as SC,
for which a variety of methods are proposed in Sec. II C
and subsequently tested in Sec. III C. In each iteration, a
synthetically generated sample path based on the current es-
timate of the process parameters is corrected by removing
(thinning) and adding (thickening) extra samples consistent
with the original bin-count sequence, as well as with the
conditional survival probability of each individual sample.
The recursive-identification portion of the RISC algorithm
refers to a structured update of the process parameters, which
ensures convergence; cf. Sec. II D.

The performance of the RISC algorithm is evaluated based
on relative and absolute estimation errors in comparison
with other extant algorithms. A large-scale simulation study
suggests that the proposed algorithm method significantly
outperforms a naïve uniform distribution of events match-
ing the presented bin-count sequence. The RISC algorithm
is also benchmarked against the INAR approximation pro-
posed by Kirchner [22], the Whittle estimation proposed by
Cheysson and Lang [25], and the BH-EM algorithm intro-
duced by Shlomovich et al. [30]. For a set of representative

35Recording might even be switched off completely during station-
ary phases, substituting missing bin counts by suitably averaged data
points ex post.
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TABLE III. Notation.

Symbol Description Range/value

B Bias R
B� Bin (an element of PT ) (τ�−1, τ�]
CV Coefficient of variation R+
e Mean absolute percentage error (MAPE) R+
H Bin-count entropy R+
Ht Available information at time t
k RISC algorithm iteration index N
K Number of arrival events N
L Number of bins N
� Bin index {1, . . . , L}
L Log likelihood R
M Maximum number of algorithm iterations N
N Number of synthetic sample paths N
N (t ) Counting process N
P Dimension of parameter space � N
PT Binning partition
t Current time R+
t j Arrival time of jth event R+
T Observation horizon R++
X Bin-count vector NK

α Branching coefficient R+
β Decay rate R+
	 Relative norm (of a binning partition) R+
ε Tolerance threshold R++
θ Vector of process parameters [θ = (μ, α, β )] � ⊂ RP

+
λ̄T , λ̄ Expected average arrival rate [λ̄ = limT →∞ λT ] R+
λ(t |Ht ) Conditional intensity function R+
�(t |Ht ) Cumulative rate function R+
μ Background rate R+
ξ Average cluster-length ratio [ξ = (μ/β )/(1 − α)] R+
τ� Discrete binning time [τ0 = 0; τL = T ] (0, T ]
φ(·) Self-excitation function (kernel) R+

parameter vectors θ and a uniform binning partition, we find
that the RISC algorithm achieves robust convergence (de-
spite inherent nonconvexities in the estimation problem) and
excellent model performance comparable to and above the
level of all extant methods. By varying the level of time
censoring extensively (between 	 = 0.1% and 	 = 2%), the
sensitivity of the estimation results to the severity of time
censoring is examined. In contrast to other algorithms, the
proposed approach allows for nonuniform binning partitions,
which also invites research into the inverse problem of find-
ing application-optimal partitions; cf. Sec. IV D. The RISC
algorithm can be easily adapted to other types of nonhomo-
geneous Poisson processes (NHPP). In future work, different
statistical inference approaches could be explored that ensure
convergence to a global optimum and to further improve the
runtime of the RISC algorithm.
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APPENDIX A: NOTATION

Table III summarizes the notation.

APPENDIX B: EXTENDED PERFORMANCE ASSESSMENT

1. Distribution of events

Figure 19 illustrates the distribution of events for the pa-
rameter vectors θ1, θ2, θ3, θ4, given the binning norm ‖PT ‖ ∈
{1, 7, 20}. For the Poisson process HP(θ0), and for the noncrit-
ical processes HP(θ1) and HP(θ2), the distribution of events
per bin approaches a normal distribution with increasing norm
‖PT ‖. For the near-critical processes HP(θ3) and HP(θ4),
the distribution of events per bin resembles an exponential
distribution.

Figure 20 shows representative process realizations for
all HP(θm) in Table I. HP(θ1) and HP(θ2) are Poisson-like
processes (with α � 1), while HP(θ3) and HP(θ4) are near-
critical processes (with α ≈ 1).

2. Algorithmic details

The RISC algorithm, outlined in Sec. II, requires as in-
put the time-censored history in the form of a bin-count
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FIG. 19. Distribution of events per bin for HP(θm ) and ‖PT ‖ ∈ {1, 7, 20}.
vector X = HT /PT as in Eq. (11), where HT is the (unob-
served) uncensored sample path on the interval (0, T ] (with
observation horizon T > 0), and PT is the binning parti-
tion. In our numerical experiments, we use a uniform binning
partition PT = {((T/L)(� − 1), (T/L)�]}L

�=1 (cf. Remark 1)
with relative norm 	 = ‖PT ‖/T = 1/L. Specifically, for an
observation horizon T = 1000 and binning norm ‖PT ‖ be-
tween 1 and 20, the number of L (which corresponds to

the number of bin-count entries X� in X ) varies between 50
and 1000. A tolerance threshold ε = 0.01 defines a stopping
criterion for the deviation of subsequent parameter iterates

θ̂
k

and θ̂
k−1

(cf. Fig. 2) for k ∈ {1, . . . , M}, with the max-
imum number of iterations M = 20 acting as a secondary
stopping threshold (which is hardly ever reached). To limit the
possibility of premature termination of the algorithm due to
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FIG. 20. Representative realizations of HP(θm ), for
m ∈ {0, . . . , 4}, on the time interval (0,50].

simulation noise we always perform at least 3 iterations, and
test whether

‖θ̂k − θ̂k−1‖2 + ‖θ̂k−1 − θ̂k−2‖2 + ‖θ̂k−2 − θ̂k−3‖2 � 3 ε,

k � 3,

that is, whether the moving average of subsequent Cauchy
deviations satisfies the primary stopping criterion (or not).
Naturally, the speed of convergence depends on the chosen
SC method (cf. Sec. II C), on the coarseness of the binning
partition (quantified by 	), and the operating point as defined

by the initial seed of the parameter estimate, θ̂
0
. The latter

is obtained by uniformly distributing X� arrivals on the �th
bin ((T/L)(� − 1), (T/L)�] for all � ∈ {1, . . . , L}. To demon-
strate the general applicability of the proposed RISC method,
the tolerance threshold ε = 1% remained fixed throughout the
study. The fine-tuning of the tolerance threshold as a function
of the SC method, partition coarseness, and operating point is
left for further research.

3. Solver comparison: SLSQP versus L-BFGS-B

Estimating the process parameters θ̂ requires the solu-
tion of a nonconvex optimization problem. Numerical solvers
available for this type of problem include the sequential least
squares programming (SLSQP) algorithm and the limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with

Algorithm 1. Recursive identification with sample correction.

Input: Bin-count vector X = (X1, . . . , XL ), observation horizon T ,
binning partition PT , tolerance threshold ε, maximum number
of iterations M, sample-correction methods (I)–(IV)

Output: θ̂RISC – RISC estimate of parameter vector
1: k ← � 0, δ ← � ∞
2: θ̂

k ← � Generate initial guess
3: while 3 ε < δ and k < M do

4: Hs,k
T ← � Simulate HP(θ̂

k
) on (0, T ]

5: X s,k ← � Bin the simulated process history Hs,k
T

6: for � = 1 → L do
7: if X� < X s,k

� then (According to chosen sample-
correction method)

8: Apply thinning to bin X s,k
� , and adjust sample

history: [Ĥk
T ]� ← � [Hs,k

T ]�
9: else if X� > X s,k

� then
10: Apply thickening to bin X s,k

� , and adjust sample
history: [Ĥk

T ]� ← � [Hs,k
T ]�

11: else
12: Continue with next bin
13: end if
14: end for

15: θ̂
k+1 ← � arg maxθ∈� lnL(θ|Ĥk

T )
16: k ← � k + 1
17: if k > 3 then

18: δ ← �

∑k
i=k−2 ‖θ̂k − θ̂

k−1‖2

19: end if
20: end while

box constraints (L-BFGS-B). In Figs. 21 and 22, the estima-
tion errors produced by the RISC algorithm (with its different
SC methods) and comparison algorithms, respectively, are
shown using N = 250 sample-path realizations. Note that for
RISC both solvers produce almost identical results.

It becomes apparent that both BH-EM and Whittle exhibit
convergence issues with the SLSQP solver. By contrast, the
INAR estimates feature only a small variation across the two
solvers. In our numerical study (cf. Sec. III), we use the
L-BFGS-B solver in all comparison algorithms, due to its su-
perior performance, with ε = 10−6 as convergence tolerance
and M = 105 as the maximum number of iterations.

FIG. 21. MAPE ēθ for sample-correction methods.
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FIG. 22. MAPE ēθ for extant algorithms.36

4. Interrun versus intrarun variability

Consider the estimation of the unknown parameter vector

θ of a Hawkes process HP(θ). For a fixed seed θ̂
0

of the
RISC algorithm (cf. Fig. 2), a given SC method (I)–(IV), a
tolerance threshold ε, and a maximum number of runs M, the
RISC-estimate θ̂RISC is generally subject to randomness due
to two sources of noise: process uncertainty and simulation
uncertainty. The process uncertainty stems from the fact that
(as long as 	 < 1) the bin-count vector varies from run to
run, resulting in interrun variability (measured by σ̄RISC).
Conditional on a fixed bin-count vector X , the simulation
uncertainty produces variations in the estimation output of the
RISC algorithm, which arises from the fact that it is necessary

to simulate processes based on the various iterates θ̂
k
, together

with the fact that some SC methods produce a stochastic re-
distribution of events. The simulation noise produces intrarun
variability (measured by σ̄RISC|X ).

Given N = 1000 sample-path realizations of HP(θ),
with the corresponding observations of bin-count vectors
X (1), . . . , X (N ), the pth component of the average RISC-

36For the Whittle algorithm with SLSQP solver the confidence
intervals are omitted due to salient divergence issues.

estimate,

θ̄RISC = (θ̄1, RISC, . . . , θ̄P, RISC),

is

θ̄p, RISC = 1

N

N∑
n=1

θ̂
(n)
p, RISC, p ∈ {1, . . . , P};

consequently, the component-specific (unbiased) sample stan-
dard deviation becomes

σ̄p, RISC=
√√√√ 1

N−1

N∑
n=1

(
θ̂

(n)
p, RISC−θ̄p, RISC

)2
, p∈{1, . . . , P}.

To aggregate across components we use the pooled standard
deviation (see, e.g., Cohen [51]),

σ̄RISC =
√

(σ̄1, RISC)2 + · · · + (σ̄P, RISC)2

P
,

which measures the interrun variability. Given a fixed run
with bin-count vector X , it is also possible to rerun the algo-
rithm N̂ = 100 times and use essentially the same formulas
as before (with N replaced by N̂) to compute the pooled
standard deviation σ̄RISC|X , which when averaged over all ob-
served bin-count vectors X (n) measures the (average) intrarun

FIG. 23. Interrun variability (σ̄RISC) versus average intrarun variability (σ̄RISC|X ) for methods (I) and (II).
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FIG. 24. Interrun variability (σ̄RISC) versus average intrarun variability (σ̄RISC|X ) for methods (III) and (IV).

variability σ̄RISC|X .37 As shown in Figs. 23(a) and 23(b)
[resp., Figs. 24(a) and 24(b)], for HP(θ1) and HP(θ4), re-
spectively, the interrun variability (σ̄RISC) exceeds the average
intrarun variability (σ̄RISC|X ) by a significant multiple (be-
tween 2 and 5).

5. High-traffic versus low-traffic regime

All process scenarios introduced in Sec. III B possess the
same expected arrival rate (λ̄ = 1). To understand how the
estimation error deviates in high-traffic regimes (λ̄ = 10), we
consider the additional parameter vector θ5 = (1, 0.9, 15) fea-
turing a higher background rate while clustering and offspring
behaviors remain unchanged (cf. Appendix C 1). Figure 25
illustrates that a high-traffic regime comes with elevated es-
timation errors. Indeed, even at the finest partition (with
‖PT ‖ = 1), the intrabin offspring behavior is no longer ob-
servable.38 By contrast, the MLE noise floor (for uncensored

37To keep the total run-time manageable, instead of averaging over
the pooled standard deviations for all runs, we average the results
over 100 randomly selected bin-count vectors (from the total of N =
1000 bin-count vectors).

38The average cluster length (1/β )/(1 − α) in Eq. (24) is smaller
than ‖PT ‖ in the simulation study. By comparison, for HP(θ4) the

sample paths) drops in the high-traffic regime θ5, in compari-
son to the low-traffic regime θ4.

6. Results for intermediate parameter vectors (θ2 and θ3)

To complement Sec. III B, we now provide the numerical
results for the intermediary parameter vectors θ2 and θ3; cf.
Table I.

a. Performance of sample-correction methods (θ2 and θ3)

Figures 26 and 28 show the MAPE for θ2 and θ3 for our
proposed RISC algorithm compared to the uniform reference
process. Figures 27 and 29, on the other hand, illustrate the
bias.

b. Comparison to extant algorithms (θ2 and θ3)

We compare the SC methods (III) and (IV) against extant
algorithms. Figures 30 and 32 display the MAPE for θ2 and
θ3. Figures 31 and 33 track the bias.

average cluster length is ten times larger: typical Hawkes-process
features such as clustered events followed by inactivity, which sim-
plify identification, remain detectable from a bin-count vector on a
sufficiently fine binning partition.

FIG. 25. MAPE ēθ for low-traffic regime and high-traffic regime.
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FIG. 26. MAPE ēθ for (μ2, α2, β2) = (0.4, 0.6, 1.5).39

7. Performance comparison (θ1, . . . , θ4)

Section III and Appendix B 6 contained a performance
overview as a function of the binning norm for all parameter
vectors θ specified in Table I. We now provide the key results
in tabular form for ‖PT ‖ ∈ {1, 7, 20}. In each table, the naïve
uniform SC method serves as baseline. Thereafter, we report
the estimation errors for the RISC algorithm with SC methods
(I)–(IV) followed by the extant algorithms in Table II.

Tables IV, V, VI, and VII provide the obtained results for
‖PT ‖ = 1 across all parameter vectors. For ‖PT ‖ = 7, the
corresponding results are presented in Tables VIII, IX, X, and
XI. Additionally, Tables XII, XIII, XIV, and XV display the
results for ‖PT ‖ = 20.

39For ‖PT ‖ = 20, the confidence interval widens, which is related
to a divergence in the decay-rate parameter β. Mark and Weber [19]
observe these types of MLE convergence issues pointing to flat log-
likelihood contours as their principal cause.
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FIG. 27. Bias B̄μ, B̄α , B̄β for (μ2, α2, β2) = (0.4, 0.6, 1.5).

FIG. 28. MAPE ēθ for (μ3, α3, β3) = (0.1, 0.9, 0.5).

8. Results for Whittle parameter estimation

Cheysson and Lang [25] proved that their proposed estima-
tor is consistent and asymptotically normal. More specifically,
consistency obtains as T → ∞ for a uniform binning parti-
tion of a given norm. As the results in Sec. III D indicate,
the Whittle algorithm tends to produce an elevated estima-
tor error or, in other words, rather high-variance estimates.
To check estimator consistency as a function of sample
size, the deviations are evaluated for the observation hori-
zons T ∈ {1000, 2000, 4000, 8000}; see Fig. 34. The uniform
SC method serves as reference. While the up-to-eightfold
increase in the observation horizon tends to improve the es-
timation error, extending T does not make a major difference.
In particular, Whittle does not outperform the naïve uni-
form SC method when time censoring becomes more severe.
These results suggest that the Whittle algorithm requires a
sufficiently large sample size and, in particular, also that the
observation horizon of T = 1000 in our numerical study may
simply be insufficient for this inference technique.

APPENDIX C: THEORETICAL BACKGROUND

1. Average cluster size

Statistical inference from time-censored Hawkes processes
proves to be challenging. One complicating determinant
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FIG. 29. Bias B̄μ, B̄α , B̄β for (μ3, α3, β3) = (0.1, 0.9, 0.5).
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FIG. 30. MAPE ēθ for (μ2, α2, β2) = (0.4, 0.6, 1.5).

is whether clusters are overlapping each other or not. To
derive the average cluster length,40 it is useful to introduce the
renormalized memory kernel R(·), also known as the response
function [52]:

R(t ) = φ(t )

α
+

∫ t

0
φ(t − ϑ ) R(ϑ ) dϑ, t � 0. (22)

Broadly speaking, the memory kernel describes an im-
pulse response, where—in the terminology of branching
processes—an impulse refers to an immigrant event, so the
considered response is in fact the implied cascade of events.41

The term φ(t )/α in Eq. (22) represents the bare memory
kernel, describing the probability of an event causing another
generation of offsprings. Solving the above Volterra integral
equation (of the second kind) in Eq. (22) for the exponential

40The average cluster length refers to the time point of the gen-
eration of the cluster, an immigrant, to the last offspring that is
associated with the generated cascade.

41A cascade refers to all generations of offsprings created by a
given immigrant.
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FIG. 31. Bias B̄μ, B̄α , B̄β for (μ2, α2, β2) = (0.4, 0.6, 1.5).

FIG. 32. MAPE ēθ for (μ3, α3, β3) = (0.1, 0.9, 0.5).

kernel in Eq. (2), one obtains (cf. Rustler [53]):

R(t ) = β exp [−(1 − α)βt], t � 0. (23)

Morzywołek [54] derived the average cluster length:

(1 − α)
∫ ∞

0
tR(t ) dt

= (1 − α)
∫ ∞

0
(βt ) exp [−(1 − α)(βt )]dt = 1/β

1 − α
.

(24)

To suitably discriminate cluster behavior, we use the ratio ξ of
the average cluster length in Eq. (24) to the average distance
between immigrants (i.e., 1/μ):

ξ = μ/β

1 − α
. (25)

For an average cluster-length ratio ξ � 1, clusters are over-
lapping. By contrast, processes with ξ < 1 tend to exhibit
well-separated clusters. As an illustration, consider ra-
tios ξm = (μm/βm)/(1 − αm) for each θm = (μm, αm, βm) in
Table I with m ∈ {1, . . . , 4}. Since ξ2 = ξ4 = 2/3 < 1 < 2 =
ξ1 = ξ3, one expects overlapping clusters for θ1 and θ3 while
for θ2 and θ4 clusters are more separated; see Fig. 20.
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FIG. 33. Bias B̄μ, B̄α , B̄β for (μ3, α3, β3) = (0.1, 0.9, 0.5).
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TABLE IV. (μ1, α1, β1) = (0.4, 0.6, 0.5) for ‖PT ‖ = 1.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.095 0.059 0.096 0.049 0.068 0.051 0.121 0.075
(I) Order statistics 0.095 0.054 0.094 0.047 0.067 0.049 0.123 0.064
(II) Expectation 0.094 0.054 0.093 0.047 0.066 0.049 0.121 0.065
(III) Exact 0.093 0.057 0.094 0.048 0.067 0.050 0.119 0.071
(IV) Offspring 0.093 0.056 0.094 0.048 0.067 0.050 0.118 0.068
BH-EM 0.095 0.059 0.098 0.050 0.068 0.051 0.120 0.072
INAR 0.214 0.094 0.236 0.075 0.159 0.073 0.247 0.124
Whittle 0.131 0.083 0.139 0.069 0.077 0.058 0.177 0.111

TABLE V. (μ2, α2, β2) = (0.4, 0.6, 1.5) for ‖PT ‖ = 1.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.094 0.075 0.067 0.032 0.048 0.035 0.169 0.120
(I) Order statistics 0.118 0.066 0.076 0.031 0.053 0.034 0.226 0.105
(II) Expectation 0.107 0.070 0.071 0.031 0.050 0.034 0.199 0.112
(III) Exact 0.080 0.084 0.065 0.031 0.047 0.035 0.129 0.137
(IV) Offspring 0.094 0.075 0.067 0.031 0.048 0.035 0.168 0.122
BH-EM 0.092 0.083 0.069 0.034 0.050 0.037 0.157 0.135
INAR 0.333 0.076 0.390 0.077 0.263 0.074 0.346 0.077
Whittle 0.164 0.272 0.203 0.104 0.066 0.050 0.222 0.456

TABLE VI. (μ3, α3, β3) = (0.1, 0.9, 0.5) for ‖PT ‖ = 1.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.083 0.036 0.142 0.018 0.03 0.034 0.077 0.048
(I) Order statistics 0.083 0.034 0.139 0.018 0.03 0.034 0.080 0.046
(II) Expectation 0.083 0.036 0.140 0.018 0.03 0.034 0.078 0.048
(III) Exact 0.084 0.037 0.143 0.018 0.03 0.035 0.079 0.050
(IV) Offspring 0.083 0.036 0.142 0.018 0.03 0.034 0.078 0.049
BH-EM 0.083 0.036 0.142 0.018 0.029 0.034 0.078 0.049
INAR 0.266 0.078 0.508 0.044 0.069 0.057 0.220 0.115
Whittle 0.179 0.070 0.336 0.051 0.043 0.045 0.159 0.101

TABLE VII. (μ4, α4, β4) = (0.1, 0.9, 1.5) for ‖PT ‖ = 1.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.075 0.060 0.098 0.013 0.028 0.032 0.098 0.098
(I) Order statistics 0.083 0.060 0.100 0.012 0.027 0.031 0.122 0.098
(II) Expectation 0.069 0.068 0.098 0.013 0.028 0.032 0.080 0.113
(III) Exact 0.067 0.080 0.102 0.013 0.029 0.033 0.071 0.133
(IV) Offspring 0.068 0.067 0.098 0.013 0.028 0.032 0.078 0.110
BH-EM 0.068 0.063 0.100 0.012 0.027 0.032 0.077 0.104
INAR 0.428 0.066 0.836 0.056 0.108 0.070 0.339 0.071
Whittle 0.232 0.291 0.424 0.060 0.038 0.042 0.233 0.498
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TABLE VIII. (μ1, α1, β1) = (0.4, 0.6, 0.5) for ‖PT ‖ = 7.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.176 0.056 0.108 0.055 0.076 0.058 0.345 0.054
(I) Order statistics 0.216 0.050 0.116 0.052 0.082 0.055 0.450 0.041
(II) Expectation 0.235 0.047 0.121 0.050 0.085 0.053 0.497 0.036
(III) Exact 0.197 0.051 0.106 0.050 0.075 0.053 0.408 0.050
(IV) Offspring 0.215 0.049 0.112 0.050 0.080 0.053 0.454 0.042
BH-EM 0.131 0.056 0.104 0.053 0.074 0.056 0.215 0.060
INAR 0.616 0.085 0.680 0.102 0.458 0.096 0.708 0.045
Whittle 0.672 0.452 0.804 0.398 0.213 0.153 0.998 0.657

TABLE IX. (μ2, α2, β2) = (0.4, 0.6, 1.5) for ‖PT ‖ = 7.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.267 0.057 0.089 0.045 0.061 0.047 0.650 0.074
(I) Order statistics 0.287 0.050 0.099 0.042 0.068 0.044 0.694 0.062
(II) Expectation 0.301 0.047 0.107 0.041 0.074 0.043 0.722 0.056
(III) Exact 0.264 0.057 0.085 0.040 0.059 0.042 0.648 0.080
(IV) Offspring 0.283 0.050 0.093 0.040 0.065 0.043 0.690 0.064
BH-EM 0.240 0.053 0.084 0.041 0.058 0.043 0.578 0.069
INAR 0.900 0.142 1.087 0.120 0.732 0.106 0.880 0.186
Whittle 1.271 2.793 2.345 0.971 0.321 0.166 1.146 4.737

TABLE X. (μ3, α3, β3) = (0.1, 0.9, 0.5) for ‖PT ‖ = 7.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.132 0.033 0.148 0.019 0.031 0.035 0.218 0.042
(I) Order statistics 0.129 0.036 0.145 0.018 0.029 0.033 0.214 0.050
(II) Expectation 0.126 0.034 0.139 0.018 0.029 0.034 0.209 0.044
(III) Exact 0.102 0.046 0.157 0.019 0.033 0.037 0.116 0.068
(IV) Offspring 0.110 0.036 0.143 0.018 0.031 0.036 0.156 0.049
BH-EM 0.109 0.035 0.157 0.020 0.031 0.036 0.139 0.043
INAR 0.900 0.072 1.784 0.080 0.220 0.095 0.697 0.005
Whittle 0.643 0.265 1.210 0.177 0.052 0.061 0.668 0.419

TABLE XI. (μ4, α4, β4) = (0.1, 0.9, 1.5) for ‖PT ‖ = 7.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.209 0.062 0.141 0.016 0.032 0.035 0.454 0.100
(I) Order statistics 0.165 0.126 0.137 0.017 0.027 0.030 0.331 0.215
(II) Expectation 0.161 0.097 0.114 0.015 0.028 0.033 0.340 0.163
(III) Exact 0.120 0.137 0.145 0.016 0.033 0.035 0.181 0.234
(IV) Offspring 0.154 0.088 0.117 0.015 0.031 0.035 0.316 0.148
BH-EM 0.191 0.057 0.136 0.016 0.031 0.035 0.406 0.091
INAR 1.819 0.123 4.074 0.151 0.486 0.143 0.898 0.049
Whittle 2.616 0.734 7.152 0.800 0.133 0.115 0.563 0.981
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TABLE XII. (μ1, α1, β1) = (0.4, 0.6, 0.5) for ‖PT ‖ = 20.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.283 0.064 0.136 0.071 0.096 0.074 0.616 0.041
(I) Order statistics 0.297 0.061 0.131 0.068 0.093 0.072 0.666 0.035
(II) Expectation 0.314 0.060 0.136 0.069 0.097 0.073 0.709 0.028
(III) Exact 0.297 0.061 0.131 0.069 0.093 0.072 0.666 0.037
(IV) Offspring 0.304 0.060 0.131 0.068 0.093 0.072 0.688 0.032
BH-EM 0.283 0.060 0.134 0.068 0.094 0.071 0.621 0.033
INAR 0.787 0.213 1.086 0.140 0.726 0.126 0.550 0.318
Whittle 2.110 2.756 1.858 0.985 0.307 0.209 4.164 4.666

TABLE XIII. (μ2, α2, β2) = (0.4, 0.6, 1.5) for ‖PT ‖ = 20.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.384 2.415 0.126 0.066 0.088 0.070 0.937 4.182
(I) Order statistics 0.401 3.445 0.124 0.062 0.087 0.066 0.993 5.966
(II) Expectation 0.399 2.416 0.132 0.065 0.094 0.069 0.972 4.184
(III) Exact 0.401 3.599 0.120 0.061 0.085 0.065 0.998 6.233
(IV) Offspring 0.374 0.909 0.125 0.061 0.089 0.065 0.908 1.572
BH-EM 0.352 0.055 0.120 0.061 0.084 0.065 0.853 0.035
INAR 0.887 0.207 1.186 0.130 0.794 0.112 0.682 0.314
Whittle 2.320 4.418 3.355 1.485 0.390 0.216 3.216 7.503

TABLE XIV. (μ3, α3, β3) = (0.1, 0.9, 0.5) for ‖PT ‖ = 20.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.213 0.038 0.190 0.023 0.035 0.040 0.414 0.047
(I) Order statistics 0.196 0.046 0.197 0.024 0.033 0.036 0.358 0.067
(II) Expectation 0.201 0.038 0.176 0.022 0.033 0.038 0.395 0.049
(III) Exact 0.174 0.047 0.213 0.024 0.038 0.041 0.269 0.066
(IV) Offspring 0.190 0.040 0.191 0.023 0.036 0.039 0.344 0.052
BH-EM 0.208 0.035 0.180 0.022 0.034 0.038 0.411 0.041
INAR 1.776 0.232 4.261 0.170 0.501 0.166 0.566 0.324
Whittle 2.114 0.629 5.586 0.783 0.117 0.116 0.641 0.749

TABLE XV. (μ4, α4, β4) = (0.1, 0.9, 1.5) for ‖PT ‖ = 20.

ēθ ēμ ēα ēβ

Method mean stdev mean stdev mean stdev mean stdev

Uniform 0.311 0.058 0.205 0.021 0.035 0.036 0.692 0.091
(I) Order statistics 0.294 0.087 0.213 0.022 0.033 0.033 0.635 0.144
(II) Expectation 0.286 0.072 0.161 0.020 0.032 0.035 0.665 0.118
(III) Exact 0.276 0.093 0.205 0.022 0.036 0.037 0.587 0.156
(IV) Offspring 0.287 0.076 0.185 0.021 0.035 0.037 0.640 0.124
BH-EM 0.306 0.053 0.189 0.020 0.034 0.035 0.695 0.082
INAR 2.784 0.256 6.885 0.265 0.782 0.155 0.686 0.319
Whittle 6.019 4.521 15.705 2.417 0.201 0.139 2.152 7.447
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FIG. 34. MAPE ēθ for an observation horizon T ∈ {1000, 2000, 4000, 8000}.

2. Expected average arrival rate

For an even comparison of Hawkes processes generated
by different parameter vectors θ = (μ, α, β ), the expected
number of events over the given observation interval should be
constant, at least approximately. Thus, consider the expected
number of arrivals E[N (T )] for a given horizon T > 0, which
can be written in the form

E[N (T )] = E

[∫ T

0
λ(t ) dt

]
=

∫ T

0
E[λ(t )] dt = λ̄T T,

where λ̄T = (1/T )
∫ T

0 E[λ(t )] dt is the expected average ar-
rival rate on the interval (0, T ]. To compute the expected
arrival rate we follow Chen et al. [55] using the Laplace
transform.42 Indeed, denoting ϕ(t ) = E[λ(t )], for t � 0, we
retrieve the Laplace transform ϕ̃(s) from Eq. (1) for s ∈ C,
with the exponential kernel specified in Eq. (2), by first taking
the expectation43 and then the Laplace transform, so

ϕ̃(s) =
∫ ∞

0
e−st

[
μ + αβ

∫ t

0
e−β(t−ϑ )ϕ(ϑ ) dϑ

]
dt, s ∈ C.

Recalling that a convolution in the Laplace domain becomes
a multiplication in the time domain, one obtains

ϕ̃(s) = μ

s
+

(
αβ

s + β

)
ϕ̃(s), s ∈ C.

42For details on the derivation of moments for Hawkes processes,
see Cui et al. [56].

43An alternative expression for Eq. (1) is λ(t |Ht ) = μ + ∫ t
0 φ(t −

ϑ ) dN (ϑ ) for t � 0, where the counting process N (t ) = ∫ t
0 dN (ϑ )

is induced by the sample-path realization Ht . Thus, E[N (t )] =∫ t
0 ϕ(ϑ ) dϑ .

This implies, via partial fraction decomposition,

ϕ̃(s) = μ

s
· s + β

s + (1 − α)β

= μ

1 − α

(
1

s
− α

s + (1 − α)β

)
, s ∈ C.

Taking the inverse Laplace transform of the preceding expres-
sion yields

ϕ(t ) = E[λ(t )] = μ

1 − α
(1 − α e−(1−α)β t ), t � 0,

whence, via integration, we obtain the expected average ar-
rival rate on (0, T ]:

λ̄T = 1

T

∫ T

0
ϕ(t ) dt

= μ

1 − α

(
1 − 1

T

α

(1 − α)β
(1 − e−(1−α)βt )

)
, T > 0.

Thus, for a sufficiently large observation horizon T , the
expected average arrival rate on (0, T ], approximates the long-
run expected average arrival rate λ̄:

λ̄T ≈ λ̄ = lim
T →∞

λ̄T = lim
T →∞

E[N (T )]

T
= μ

1 − α
.

As a result, different processes HP(θ), with exponential kernel
parameter vectors θ = (μ, α, β ), can be expected to produce
a comparable number of events per observation, as long as
μ/(1 − α) remains constant, consistent with our choice of the
process parameters θ0, . . . , θ4 (cf. Table I in Sec. III B).
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