
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Fairness and Explainability in Clustering Problems

Xinrui JIA

Thèse n° 9818

2023

Présentée le 11 août 2023

Prof. F. Eisenbrand, président du jury
Prof. O. N. A. Svensson, directeur de thèse
Dr V. Cohen-Addad, rapporteur
Prof. C. Sohler, rapporteur
Prof. M. Kapralov, rapporteur

Faculté informatique et communications
Laboratoire de théorie du calcul 2
Programme doctoral en informatique et communications 





The science of operations, as derived from mathematics more especially,

is a science of itself, and has its own abstract truth and value.

— Ada Lovelace

To my mom. . .





Acknowledgements

I would like to recognize the numerous people that have made my PhD journey possible —

without them, it just wouldn’t have been the same.

First and foremost, my advisor Ola Svensson has my gratitude and appreciation for being,

without any hyperbole, the best advisor I could have hoped for. He has been extremely

supportive and it is doubtless to me that I owe the successful completion of my PhD to him.

From Ola I learned the importance of asking questions, the importance of perseverance

to scientific research, and what it means to understand, really understand, a problem. His

approach to problem solving will inspire me for years to come.

I would like to thank the members of my thesis committee: Prof. Friedrich Eisenbrand, Prof.

Michael Kapralov, Dr. Vincent Cohen-Addad, and Prof. Christian Sohler, for reading my thesis

and their interesting questions during the defense.

I would like to thank Chantal Schneeberger, who worked tirelessly behind the scenes to make

day to day life in the lab run smoothly and also organized fun lab outings for special occasions.

This thesis would not have been possible without my coauthors: Kshiteej, Lars, Buddhima,

Adam, and Weiqiang. A special thanks goes to Etienne for supplying the French translation

of the abstract. I am grateful to the rest of the theory lab for informal discussions that I have

learned a lot from. They also provided support and camaraderie for navigating the PhD, as did

friends from other labs at EPFL. This part of the acknowledgement would not be complete

without mentioning Phillip, who always believed in me even when I didn’t believe in myself.

I would like to thank the professors from Waterloo who advised me on undertaking graduate

studies in computer science: Prof. Ian Goulden, Prof. Prabhakar Ragde, and Prof. Eric Blais. I

am also grateful for the opportunities to try research during my undergraduate studies, with

Dr. Alfonso Cevallos and Prof. David Jao.

The start of this academic journey really began in high school when I became interested in

mathematics. This is due to my teachers Mr. Ing and Mr. Mckenzie for always going above

and beyond in enriching their students’ education and generating excitement in mathematics

and technology, despite the challenges posed by the school board. Another teacher whom I

will never forget is Mr. White, who continued to be an inspiring educator into retirement and

whose teaching methods in mathematics are unparalleled.

i



Acknowledgements

Last but not least, I have my parents and my brother Max to thank for their unconditional love

and support. My parents gave up their careers and aspirations when starting their lives over

in a new world, so that their children would have the opportunities they never had. Without

their hard work and sacrifice, my life would look very different to what it is today.

Lausanne, June 27, 2023

ii



Abstract

In this thesis we present and analyze approximation algorithms for three different clustering

problems. The formulations of these problems are motivated by fairness and explainability

considerations, two issues that have recently received attention in the algorithms and machine

learning communities. In general, we are given a metric space and the task is to find a specified

number of clusters to minimize some objective involving the centers of the clusters.

Our first problem is the colorful k-center problem. In the classic k-center with outliers problem,

the objective is to minimize the maximum distance from any point to its nearest center, while

a given number of points can be omitted from contributing to the maximum. That is, these

points are not served by any center. Colorful k-center is a generalization of this problem.

Instead of only serving enough points, each point belongs to some color class and a certain

number of points of each color are required to be served in a solution. When this problem

was first introduced by [Ban+19], a pseudo-approximation using k +ω−1 centers was given

for general metric spaces where ω is the number of color classes. We give the first true

approximation algorithm with k centers that gives a 3-approximation for colorful k-center.

Next, we present our progress on the non-uniform k-center problem (NUkC or t-NUkC). In

NUkC, we are given pairs (ki ,ri ), 1 ≤ i ≤ t ,
∑t

i=1 ki = k, that represent ki balls of radius ri .

The objective is to find
∑t

i=1 ki centers so that balls of radius αri around ki of these centers

cover all the points and α is minimized. NUkC was introduced by [CGK16], who conjectured

that there exists a constant-factor approximation when t is constant. This is known as the

NUkC conjecture. In a subsequent work, [CN21] gave a constant-factor approximation for

t = 2 with outliers (robust 2-NUkC). We make progress on the NUkC conjecture by presenting

a simple reduction of t-NUkC to robust (t −1)-NUkC, which, in light of [CN21], gives the first

constant-factor approximation to 3-NUkC.

Finally, we look at explainable algorithms for the k-medians and k-means objectives. Small

decision trees are considered to be explainable models [Mur+19] for clustering, and in

particular, when each node of the binary tree is a threshold on a single feature. Work

by [Das+20] studied the theoretical guarantees obtainable from such a threshold tree, which

they called the price of explainability. That is, the cost of an explainable clustering is

compared to the cost of an optimal unrestricted clustering. We improve upon the results

of [Das+20] to give nearly tight bounds on the price of explainability of the k-medians and

k-means objectives, which also generalize to pth powers of ℓp norms.

iii



Abstract

Keywords: k-center clustering, k-medians clustering, k-means clustering, fairness,

interpretability, explainability, approximation algorithms.

iv



Résumé

Dans cette thèse nous présentons et analysons des algorithmes d’approximation pour trois

problèmes différents de partitionnement. Les formulations de ces problèmes sont motivées

par des considérations d’équité et d’explicabilité, deux questions qui ont récemment attiré

l’attention des communautés d’algorithmique et d’apprentissage automatique. En général,

nous disposons d’un espace métrique et la tâche consiste à trouver un nombre spécifié de

groupes pour minimiser un objectif avec les centres des groupes.

Notre premier problème est le problème k-centre coloré. Dans le problème k-centre classique

avec des données aberrantes, l’objectif est de minimiser la distance maximale de n’importe

quel point à son centre le plus proche, exceptés pour un certain nombre de points qui peuvent

être omis de contribuer au maximum. Autrement dit, ces points ne sont donc pas desservis

par un centre. Le problème du k-centre coloré est une généralisation de ce problème. Au lieu

de desservir suffisamment de points, chaque point appartient à une classe de couleur et un

certain nombre de points de chaque couleur doivent être desservis dans une solution. Lorsque

ce problème a été introduit pour la première fois par [Ban+19], une pseudo-approximation

en utilisant k +ω−1 centres a été donnée pour des espaces métriques généraux, où ω est

le nombre de classes de couleurs. Nous donnons le premier algorithme d’approximation

utilisant k centres avec un facteur d’approximation de 3 pour le problème du k-centre coloré.

Ensuite, nous présentons notre avancement sur le problème du k-centre non-uniforme (NUkC

ou t-NUkC). Dans le NUkC, on nous donne des paires (ki ,ri ),1 ≤ i ≤ t ,
∑t

i=1 ki = k, qui

représentent ki boules de rayon ri . L’objectif est de trouver
∑t

i=1 ki centres de sorte que les

boules de rayon αri autour de ki de ces centres couvrent tous les points et α est minimisé.

Le NUkC a été introduit par [CGK16], qui ont conjecturé qu’il existe une approximation de

facteur constant lorsque t est constant. Ce problème est connu sous le nom de la conjecture

NUkC. Un résultat ultérieur dû à [CN21] a donné une approximation de facteur constant pour

t = 2 avec des données aberrantes (2-NUkC robuste). Nous progressons sur la conjecture

NUkC en présentant une réduction simple de t-NUkC à (t −1)-NUkC robuste, qui, en raison

de [CN21], donne la première approximation de facteur constant pour le problème 3-NUkC.

Enfin, nous étudions les algorithmes explicables pour les objectifs des k-médianes et des

k-moyennes. Les petits arbres de décision sont considérés comme des modèles

explicables [Mur+19] pour le partitionnement, en particulier lorsque chaque nœud de l’arbre

binaire est une fonction seuil sur une seule caractéristique. Le travail de [Das+20] a étudié les

v



Résumé

garanties théoriques obtenues par ces arbres de seuil, ce qu’ils ont appelé le prix de

l’explicabilité. Autrement dit, le coût d’un partitionnement explicable est comparé au coût

d’un partitionnement optimal non restreint. Nous améliorons les résultats de [Das+20] pour

donner des bornes presque optimales sur le prix de l’explicabilité des objectifs des

k-médianes et des k-moyennes, qui se généralisent également aux puissances p-ièmes des

normes ℓp .

Mot-clés : partitionnement k-centre, partitionnement k-médianes, partitionnement

k-moyennes, équité, interprétabilité, explicabilité, algorithmes d’approximation.

vi



List of Figures
3.1 The linear programs used in the pseudo-approximation algorithm. . . . . . . . 18

3.2 The shaded regions are subsets of Gain(c,p), which contain the darkly shaded

regions that have > τ red points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Linear programs for ω color classes. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Integrality gap example for linear rounds of SoS . . . . . . . . . . . . . . . . . . . 29

3.5 k = 3, r = b = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Example of a contraction procedure to get Icontracted. v1, v2, v3, and v4 are points

of L2, and points inside the circle centered at vi make up Child(vi ). . . . . . . . 41

4.2 Example of a laminar instance with L1 = {v1, v2, v3} and C(vi ) = {ui ,1,ui ,2,ui ,3}

for all i ∈ {1,2,3} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Non-explainable clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Explainable clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Threshold tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Examples of an optimal non-explainable and a costlier explainable clustering

of the same set of points in R2, together with the threshold tree defining the

explainable clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 An optimal threshold tree for the k standard basis vectors in Rk . Any optimal

threshold tree on this data set has height k −1. . . . . . . . . . . . . . . . . . . . . 50

5.6 Intervals defined by projecting points onto a coordinate axis. . . . . . . . . . . . 64

vii





Contents
Acknowledgements i

Abstract (English/Français) iii

List of Figures vii

1 Introduction 1

1.1 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Colorful k-center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Non-uniform k-center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Explainable k-medians and k-means . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 7

2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Problems Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Colorful k-center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Non-uniform k-center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Explainable k-medians and k-means . . . . . . . . . . . . . . . . . . . . . 11

3 A Constant-factor Approximation for Colorful k-Center Clustering 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 A 3-Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 The pseudo-approximation algorithm . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Constant Number of Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Formal algorithm for ω colors . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 LP Integrality Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Sum-of-squares integrality gap . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Flow constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 The Non-Uniform k-Center Problem with Three Types of Radii 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Reducing t-NUkC to Robust (t −1)-NUkC . . . . . . . . . . . . . . . . . . . . . . 37

ix



Contents

4.3 A Bottom-up Algorithm for Robust 2-NUkC . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Algorithm for contracted instances . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Nearly Tight and Oblivious Algorithms for Explainable Clustering 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.3 Independent work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Explainable k-Medians Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Upper bounding cost by a factor of O(log2 k) . . . . . . . . . . . . . . . . . 57

5.3.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Explainable k-Means and General ℓp -norm Clustering . . . . . . . . . . . . . . . 63

5.4.1 The algorithm for ℓp -norms with p ≥ 1. . . . . . . . . . . . . . . . . . . . . 65

5.4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 The Minimum Cut Algorithm LosesΩ(k) Factor for k-Medians . . . . . . . . . . 74

6 Future Work 77

A Supplementary Material for Chapter 3 81

A.1 Dynamic Program for Dense Points . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 The Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Supplementary Material for Chapter 4 85

B.1 Dynamic Program for Laminar Instances . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 93

Curriculum Vitae 95

x



1 Introduction

Clustering is a prototypical problem in theoretical computer science that is also implemented

to solve practical problems in fields such as machine learning and operations research. In

essence, clustering is the process of partitioning a set of objects into different groups. It can

be seen as the process of splitting a data set based on similarity, or as a problem of picking

locations for service centers. As a theoretical problem clustering has been well-studied for

its interesting mathematical properties and yet there still remain open problems of technical

interest.

Two topics that have been of interest recently in the machine learning community, and also in

the algorithms community, are those of fairness and explainability. The aim in fair algorithms

is to first modify a problem in such a way that reduces biases that may exist in optimal

solutions to the original problem, and then find efficient solutions to the fair version of the

problem. Designing fair algorithms becomes more important as processes and decisions

become increasingly automated in modern society. For example, an algorithm that decides

who is eligible for parole or decides which applications are approved for a loan carries heavy

consequences for people. In this thesis, we look at two different clustering problems that can

model fairness using the k-center objective.

Let us consider two examples of the type of fairness that can be modelled by our problems.

For an application of colorful k-center, suppose a telecommunications company is choosing

locations to build cellular towers and they need to provide coverage to 90% of the population.

Some people live in dense urban regions and others live in sparse rural regions. It would be

cheaper to only provide coverage to the urban regions, but this would be unfair to the people

living in rural regions. Hence, coverage requirements for each individual group of clients in

problems where outliers are allowed ensures that each group receives comparable treatment.

In the second example, imagine that we have a certain number of facilities for ambulances

and medical helicopters. Suppose that helicopters travel at twice the speed of ambulances, so

that a client located at a certain distance from a helicopter actually receives service twice as

quickly as a client located at the same distance from an ambulance. To ensure that service

guarantees are fair, we can no longer measure the guarantee with the maximum distance

1



Chapter 1. Introduction

from a client to a facility, but rather the distance to facilities that represent helicopters should

be scaled by a factor of one-half. Representing different scaling of distances is the role that

non-uniform radii play in the k-center problem.

Explainable algorithms are algorithms that are understandable and interpretable to humans

by design. In order to trust the output of an algorithm, it may not be enough to rationalize

the result of a black-box procedure, but rather the procedure itself should be designed to be

explainable. This is important in applications where a high level of trust in the results is needed.

For example, classification algorithms have been demonstrated to be useful in the medical

field to assist in making diagnoses, which can improve efficiency and performance by making

decisions faster and better than human practitioners can. It is vital that the results of such

algorithms can also be understood and verified by humans. We study the price of explainability

for a particular model of explainable clustering induced by decision-trees with the k-medians

and k-means costs. That is, how much higher is the cost of this type of clustering compared to

an optimal unrestricted clustering?

To illustrate an example of an explainable algorithm, consider a system that classifies people

of being at risk of heart disease. A procedure that uses thresholds on single parameters such

as BMI, blood pressure, age, etc is more understandable to a person than an algorithm that

uses a linear combination of the features to make a classification. The algorithm that we study

does exactly the former - the membership of a data point to a cluster is defined by whether

each feature is above or below a threshold.

1.1 Overview of Contributions

In the remainder of this section, we summarize our contributions to each problem before

giving a brief outline of the organization of this thesis.

1.1.1 Colorful k-center

Fairness in clustering problems can be modelled in various ways. In many of these models,

each data point belongs to a particular group, and each group is represented by a color. Some

examples of fairness constraints include requiring that the solution set of centers contains

a certain number of points of each type, or that each cluster contains a certain proportion

of points of each type [KAM19; Chi+17]. In Chapter 3, we use the model introduced by

Bandyapadhyay, Inamdar, Pai, and Varadarajan [Ban+19] where we are given a certain number

of points of each color that can remain uncovered as outliers. This is called the colorful k-

center problem and represents a situation in which service is not guaranteed to everyone, but

we ensure that a certain number from each group receives service. It is NP-hard to approximate

to within a smaller factor than 2 since this is true of the original k-center problem [HN79].

In [Ban+19], a pseudo-approximation algorithm is given for colorful k-center in the general

case. That is, k +ω−1 centers of twice the optimal radius are opened, where ω is the number

2



1.1 Overview of Contributions

of color groups.

We study the colorful k-center problem to understand whether a pure approximation can be

obtained by an efficient algorithm. This is based on a joint work with Kshiteej Sheth and Ola

Svensson that was published in IPCO 2020 [JSS21a]. Our approach finds a way to eliminate

the extra centers opened in the pseudo-approximation algorithm of [Ban+19] to obtain a true

3-approximation. We also present some negative results on natural linear programming (LP)

strengthening techniques that fail to tighten the natural LP relaxation of the colorful k-center

problem. Concurrent work [Ane+20] obtaining a 4-approximation via a different method was

published at the same conference.

1.1.2 Non-uniform k-center

In the t-non-uniform k-center problem each of the k centers belongs to one of t different

sizes of radii, and the approximation factor is the largest ratio between a point to its center and

the specified radius. The objective is to cluster all the points with the least amount of radius

expansion as possible. That is, the cost of the clustering comes from the k-center objective but

the radii of the disks are not uniform. If we look at clustering from the lens of facility location

then this problem models a situation in which different facilities provide different speeds of

service. Hence, the quality of an approximation algorithm is the multiplicative expansion of

the different radii. It is conjectured by Chakrabarty, Goyal, and Krishnaswamy [CGK16] that

there is a constant-factor polynomial time approximation algorithm for constant t .

Chakrabarty et al. in [CGK16] give a bi-criteria approximation for NUkC which opens c ·ki

balls of radius αri , where c and α are constants, as well as a constant-factor approximation

for two different radii. Chakrabarty and Negahbani [CN21] advance the problem further by

finding a constant-factor approximation for two radii with outliers. The paper that makes up

Chapter 4, published in SOSA 2022 as joint work with Lars Rohwedder, Kshiteej Sheth, and

Ola Svensson, obtains a constant-factor approximation for three radii by giving a reduction

from t-NUkC to (t −1)-NUkC. In this paper we also describe the algorithm of [CN21] in a

“bottom-up” approach, rather than the “top-down” approach of [CN21]. We believe that the

resulting implementation is slightly simpler, since it avoids a nested ellipsoid algorithm.

Progress on NUkC has revealed unexpected connections to other k-center problems. In

particular, a constant-factor approximation algorithm for t = 4 is now known [IV22], and the

result makes use of colorful k-center clustering. Interestingly, the consideration of NUkC

by [CGK16] also gave a tight approximation to k-center with outliers, which had been open for

15 years [Cha+01]. Note that k-center with outliers is a special case of NUkC, where we are

given k balls of the optimal radius and m balls of radius 0, where m is the number of outliers

permitted.

3



Chapter 1. Introduction

1.1.3 Explainable k-medians and k-means

In a recent paper published in ICML, Dasgupta, Frost, Moshkovitz, and Rashtchian [Das+20]

study a model for explainable k-means and k-medians clustering from a theoretical point of

view. Under this model, a clustering is explainable if the clusters are represented by leaves

of a decision tree where each internal node of the tree is a split along an axis-aligned cut.

Then the inclusion of a point to its cluster can be explained by the value of at most k −1 of

the feature coordinates, depending on whether or not it is greater than the threshold cut

value. In particular, the question studied in the aforementioned theoretical work was the

price of explainability, that is, how much worse an explainable clustering is compared to an

optimal unrestricted clustering. In general, Dasgupta et al. give an O(k) approximation for the

k-medians problem and an O(k2) approximation to k-means, while also showing thatΩ(logk)

is a lower bound for both of these clustering problems

In a joint work with Buddhima Gamlath, Adam Polak, and Ola Svensson published in NeurIPS

2021, we provide a method of obtaining explainable clusterings with nearly tight guarantees.

That is, our algorithms give an O(log2 k) approximation for k-medians and O(k log2 k)

approximation for k-means. At the same time, we also improved the lower bound for k-means

toΩ(k). For higher p-powers of ℓp -norms, we have an O(kp−1 log2 k) approximation with an

Ω(kp−1) lower bound. Our methods are oblivious to the data points in the sense that the

algorithm only takes into account the position of the input centers of a general unrestricted

clustering, so that our running time is independent of the number of data points. This work is

presented in Chapter 5. Similar results were obtained around the same time by [MS21; CH22;

EMN22]. Another work [LM21] by Laber and Murtinho studies the explainability of k-medians

and k-means clustering in low dimensions, as well as two additional clustering objectives:

k-center and maximum spacing. When clustering for maximum spacing, the objective to be

maximized is the minimum distance between any two points that lie in different clusters.

1.2 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2 we present common notation

and concepts used throughout different sections, as well as formal definitions of the problems

considered. We also present some background information, including fundamental results

concerning the problems at hand.

We present the colorful k-center problem in Chapter 3. First, we describe the

pseudo-approximation of [Ban+19] which we use as a subroutine in our 3-approximation

algorithm. Then the main section of this chapter presents our algorithm, stated with two

colors for notational simplicity. This is followed by a section that summarizes the algorithm in

full generality. The last section discusses possibilities of natural ways of strengthening the

linear programming description of the colorful k-center problem. In particular, we show that

neither a constant number of rounds of the sum-of-squares hierarchy nor adding knapsack

constraints succeeds in reducing the integrality gap.

4



1.2 Outline of the Thesis

We discuss the non-uniform k-center problem in Chapter 4. The first section contains a

summary of the work of [CN21], followed by our reduction of t-NUkC to robust (t −1)-NUkC.

The last section describes our alternative version of of the algorithm of [CN21].

In Chapter 5, we present our results on explainable clustering. We start with our algorithm and

its analysis for explainable k-medians clustering, which also forms the intuition for general

pth powers of ℓp -norms. In the next section we explain how to modify this algorithm for pth

power of ℓp -norm clustering, which includes k-means. Finally, we present our lower-bound

construction for pth power of ℓp -norms, for any p ≥ 1.

Finally, in Chapter 6 we conclude with a discussion of future directions related to the work in

this thesis.

5





2 Preliminaries

2.1 Notation and Definitions

Metric spaces

In Chapter 4 of this thesis we use (X ,d) to denote a metric space where X is a set of n points

and d is a metric on X . That is, d is a function d : X ×X →R≥0 that satisfies

1. Non-negativity: d(x, y) = 0 if and only if x = y .

2. Symmetry: d(x, y) = d(y, x).

3. Triangle inequality: d(x, y)+d(y, z) ≥ d(x, z).

Definition 2.1.1. Let (X ,d) be a metric space and U ⊆ X . Then

BU (v,r ) := {x ∈U : d(x, v) ≤ r }.

By B(v,r ) we mean BX (v,r ) and we refer to it as the ball of radius r centered at v . In k-center

clustering problems, the cost of a solution is the maximum radius r of the balls that are used

to cover the points.

For explainable clustering problems in Chapter 5 we use the ℓp -norm. Let x = (x1, . . . , xn) and

p ≥ 1 an integer. Then

∥x∥p :=
(

n∑
i=1

|xi |p
)1/p

.

Note that the cost function in these problems is actually ∥x∥p
p . We work in high dimensional

Euclidean spaces, denoted Rd and here d denotes the dimension. We use boldface font to

emphasize that our points are Cartesian coordinates. We write [d ] := {1,2,3, . . . ,d}.

Center-based clustering

For k-center, k-medians, and k-means clustering, any set of centers defines a clustering. A

7



Chapter 2. Preliminaries

set of centers partitions the space into regions, where there is one region for each center

consisting of all the points that are closer to that center than any other center (breaking ties

arbitrarily). These regions are referred to in the literature as the Voronoi regions associated

with the centers. Formally, let C = {c1, . . . ,ck } denote the set of centers. Then the Voronoi

region Ri associated with ci is the set

Ri := {x ∈ X : d(x,ci ) ≤ d(x,c j ) for all i ̸= j }.

In explainable clustering problems we use µ to denote the individual centers to emphasize

that they are cartesian coordinates.

Approximation algorithms

All of the problems considered in this thesis are NP-hard to solve optimally so we work with

efficient approximation algorithms. That is, the algorithms run in time polynomial in the size

of the input given in binary representation. Furthermore, since all the problems considered

are minimization problems, an algorithm is an α-approximation if it is guaranteed to output a

feasible solution with objective function value no more than α times the objective function

value of an optimal solution. For some references on approximation algorithms see for

example [WS11; Vaz01].

2.2 Problems Background

2.2.1 Colorful k-center

In the colorful k-center problem, we are given a set of n points X in a metric space (X , d)

that are partitioned into ω color classes C1, . . . ,Cω with coverage requirements p1, . . . , pω. The

objective is to choose k of the points to be centers and |Ci |−pi of the points of Ci to be outliers

so that the maximum distance of a non-outlier point to its nearest center is minimized. A way

to visualize this is to draw balls of radius r around each center so that a total of pi points of Ci

are covered by the balls. The objective is to choose the centers so that r is minimized.

Note that although it is NP-hard (proof below) to find a solution with the optimal radius we

nevertheless can assume that the optimal radius is known to us. This is because there are

only O(n2), or more precisely, at most
(n

2

)
possible distances for the optimal radius, which are

the distances between every pair of points. So we can perform a binary search through all

the possible radii with an algorithm that assumes the optimal radius is known, and take the

smallest radius that produces a feasible solution.

Hardness of approximation

It has been known since 1979 that there does not exist an α-approximation algorithm for

k-center with α < 2, assuming P̸=NP [HN79]. It follows that finding a better-than-2

approximation algorithm for colorful k-center is also NP-hard. The hardness of k-center

8



2.2 Problems Background

follows from a reduction from the dominating set problem, a problem related to the

independent set problem, both of which are NP-complete [Kar72; GJ90]. A dominating set of a

graph is a set of vertices such that every vertex of the graph is either in the set or is

neighboring a vertex in the set. The dominating set problem asks whether there exists a

dominating set of a graph G of size less than or equal to k.

The reduction is as follows. Given a graph G = (V ,E) we create the following instance of the

k-center problem with X being the set of points to be clustered: For each vertex v ∈V we have

a point pv ∈ X . If (u, v) ∈ E then let pu , pv ∈ X be 1 unit apart, and if (u, v) ∉ E then let pu , pv

be 2 units apart. This forms a metric space since the distances satisfy the triangle inequality.

It is easy to see that our k-center instance has a solution with optimal radius 2 if and only if

G does not have a dominating set of size k. On the other hand, our k-center instance has a

solution with optimal radius 1 if and only if G has a dominating set of size k. If we can find a

solution to the k-center problem with approximation factor better than 2, then we can also

answer whether G has a dominating set of size k.

A 2-approximation for k-center

A greedy algorithm that gives a 2-approximation for the k-center problem by T. F.

Gonzalez [Gon85] has been known since 1985. This algorithm begins by selecting an arbitrary

point to be a center, and then as long as the set of centers chosen is smaller than k, iteratively

picks the point furthest away from any already chosen center to add to the set of centers. The

claim is that the distance of any point to a nearest center is no more than 2 times the furthest

such distance in an optimal solution.

To prove this, consider an optimal solution C∗ of centers, which induces a set of Voronoi

regions, V ∗
1 , . . . ,V ∗

k , that partition the whole space. Let r∗ denote the optimal radius. In the

greedy selection of centers, if the center selected is in a Voronoi region that does not yet have a

selected center, then all points in that Voronoi region are within 2r∗ of the greedily selected

center by the triangle inequality. Otherwise, consider the first time a greedy center is selected

to be in the same Voronoi region as a previously selected center. These two centers are also

within distance 2r∗ by the triangle inequality. However, this means that all remaining points

are also within distance 2r∗ to some previous center since the new center was selected to be

the point furthest away. This proves that this greedy algorithm gives a 2-approximation.

2.2.2 Non-uniform k-center

In the non-uniform k-center problem, we are given a set of n points X in a metric space along

with radii r1 ≥ r2 ≥ ·· · ≥ rt and positive integers k1,k2, . . . ,kt summing to k. The objective is

to select C1 ∪C2 ∪·· ·∪Ct centers, where |Ci | = ki , so that balls of radii αri around centers Ci

cover all of the points, and α is minimized. In this thesis we give an approximation algorithm

with constant α= 22 for t = 3. More generally, we show that t-NUkC can be reduced to robust

(t−1)-NUkC. It is conjectured that an efficient constant-factor approximation algorithm exists

for constant t [CGK16], which is also known as the NUkC conjecture or the CGK conjecture.

9



Chapter 2. Preliminaries

A 3-approximation for k-center with outliers

Here we discuss a generalization of the k-center problem that is frequently used in the

discussion of the NUkC problem, namely k-center with outliers. The NUkC problem with

outliers is sometimes referred to as the robust version of NUkC. In k-center with outliers, an

additional parameter is provided which indicates the total number of points that need to be

serviced by a center, and all other points are omitted from consideration in the objective

function. This models a situation in which it may be impractical to serve all points because an

attempt to do so would either lead to a much higher service cost or require many more

centers. This model was first introduced in [Cha+01] and the same paper provides a

3-approximation, which, similarly to the 2-approximation for k-center, also follows a greedy

procedure. We describe this 3-approximation in the following.

Algorithm

Let r be the optimal radius. Consider the disk of radius r around each point in the input and

add the point with the most number of points in its disk of radius r into the solution set of

centers. Now we expand the radius to 3r by removing all points within distance 3r from the

chosen center point (and assigning them to the chosen center). Repeat this process until

k centers are chosen. If fewer than the required number of points are chosen return False,

otherwise, True. Then we can perform a binary search on all possible inter-point distances to

find the smallest radius that returns a feasible solution.

Proof of correctness

We prove that if an optimal solution uses balls of radius r then the above procedure returns

True. Let v1, . . . , vk be the order of centers chosen by the algorithm and B(vi ,r ) and B(vi ,3r )

be the disks of radius r and 3r , respectively, around vi . Let o1, . . . ,ok be the centers in an

optimal solution, and B(oi ,r ) the ball of radius r around oi . The proof proceeds by induction

to show that there is an ordering of oi ’s such that each point covered by the first i balls of an

optimal solution can be charged to a unique point covered by the first i balls of radius 3r of

the solution of the algorithm.

To this end, suppose that points covered by the first i balls B(o1,r ), . . . ,B(oi ,r ) have already

been charged to unique points covered by B(v1,3r ), . . . ,B(vi ,3r ). Consider B(v1,r )∪B(v2,r )∪
·· ·∪B(vi+1,r ) intersected with the remaining optimal balls of radius r . If this intersection is

non-empty then let oi be an optimal center such that B(oi ,r ) has a non-empty intersection

with the first i +1 balls of radius r selected by the algorithm. By the triangle inequality the

first i +1 expanded balls of radius 3r picked by the algorithm cover B(oi ,r ) entirely. Hence,

charge these points to themselves and note that points can be charged to themselves this

way only once. If
(
B(v1,r )∪ ·· · ∪B(vi+1,r )

)
has an empty intersection with the remaining

optimal balls then let uncovered be the set of points in the instance that are not covered by(
B(v1,3r )∪·· ·∪B(vi ,3r )

)
. Let oi+1 be the center of the remaining optimal disks that cover

the most points in uncovered. Charge the points in B(oi+1,r )∩ (
B(v1,3r )∪ ·· · ∪B(vi ,3r )

)
to themselves. By the greedy procedure, B(vi+1,r ) covers as many points of uncovered as

B(oi+1,r ) does. Charge these uncovered points of B(vi+1,r ) to the points of B(oi+1,r ) in

10



2.2 Problems Background

uncovered. To conclude the proof it suffices to note that i) B(vi+1,r ) is disjoint from the

remaining optimal balls and ii) these points are no longer in uncovered of future iterations, so

these points will never be charged again.

A tight approximation for k-center with outliers

The 3-approximation described above was published in 2001 [Cha+01], and it is only recently

that a tight 2-approximate algorithm was given for the k-center with outliers problem [CGK16].

Note that k-center with outliers is a special case of non-uniform k-center with 2 radii where

the smaller radius is 0 and the number of balls of radius 0 is the number of outliers. In [CGK16],

the authors give a constant-factor approximation for 2 radii, which also gives the tight 2-

approximation in the case that the smaller radius is zero. In short, their algorithm opens k1

balls of radius 2(r1 + r2) and k2 balls of radius 2r2.

NUkC with 4 radii

Recently, Inamdar and Varadarajan [IV22] gave a constant-factor approximation for NUkC

with four radii, using an algorithm that makes use of a colorful version of the problem. More

details are given in Chapter 6.

2.2.3 Explainable k-medians and k-means

Here we work mainly with k-medians clustering and k-means clustering, although the latter

is extended in our work to give results for more general clustering costs using pth powers

of ℓp norms. In particular, a clustering of a set of points X in Rd is defined by its k centers

µ1,µ2, . . . ,µk and the set of points in the i th cluster C i are those that are closer to µi than to

any other center. The k-medians cost and k-means cost are, respectively,

cost1(C 1, . . . ,C k ) =
k∑

j=1

∑
x∈C j

∥x −µ j∥1

and

cost2(C 1, . . . ,C k ) =
k∑

j=1

∑
x∈C j

∥x −µ j∥2
2.

Higher p-norms are defined analogously.

In order to describe the model of explainability we are working with in this thesis we need the

definition of a threshold cut, which is given by a dimension i ∈ [d ] and threshold value θ ∈R.

This threshold cut on set X divides the set into two subsets X 1 and X 2 where x = [x1, x2, . . . , xd ]

is in X 1 if xi ≤ θ and x is in X 2 otherwise. A threshold tree is a decision tree that starts with

the entire data set at the root node, and the children of each node are the subsets given by

some threshold cut on the node. Finally, an explainable clustering is a clustering where the

k clusters are given by the leaves of a decision tree with k leaves. That is, the inclusion of a

point to a center is explained by the threshold cuts along the path from the root to the leaf

11



Chapter 2. Preliminaries

node representing the center.

Our results in Chapter 5 are concerned with the price of explainability, that is, the ratio of the

cost of an explainable clustering compared to an optimal unrestricted clustering of the same

data set. Actually, since we are not concerned with constant factors in the approximation, we

can compare the cost of our algorithm to any constant-factor clustering algorithm. Since there

exist constant-factor approximation algorithms for both k-medians and k-means clustering,

we can use as input a set of centers with cost that is a constant-factor of the optimal cost.

Besides comparing the performance of our algorithm with an optimal unrestricted clustering,

other possible objectives are discussed in Chapter 6 as part of future works.

Constant-factor approximations for k-medians and k-means

The first constant-factor approximation algorithm for the classic k-medians problem was

given in [Cha+02] and obtained a ratio of 6 2
3 . The best approximation ratio today in general

metric spaces is 2.675+ ϵ [Byr+15] and was obtained through sophisticated LP-rounding

techniques. Likewise, k-means also has a constant-factor approximation algorithm given

by [Kan+04]. This algorithm has an approximation factor of 9+ϵ and is based on local search.

Since the work of [Kan+04], the approximation factor for general k-means has been improved

to 6.357 [Ahm+20] and Euclidean k-means has been improved to 5.912 [Coh+22]. The same

work [Coh+22] also improved Euclidean k-medians to 2.406.

Explainable clustering algorithm of [Das+20]

Here we give a brief summary of the main result of Dasgupta, Frost, Moshkovitz, and

Rashtchian in [Das+20], which is an O(k) algorithm for general explainable k-medians (and

O(k2) for k-means). We only describe the algorithm in terms of k-medians, as the algorithm is

the same for k-means and the analysis is similar.

The input to explainable k-medians clustering is a data set X ⊆Rd . The first step is to obtain

a set of centers {µ1, . . . ,µk } from some standard constant-factor approximation algorithm

for k-medians, and assign each data point to its closest center. Then the algorithm builds a

decision tree top-down from the root node. At the beginning, all data points belong to the

root node. The threshold cut (i ,θ), where i ∈ [d ] is a dimension and θ ∈R, is chosen so that

the least number of points are split from their assigned centers and at least 2 centers are split.

That is, all points x with xi ≤ θ are assigned to the left child of the root and all other points

are assigned to the right child. This is repeated for all non-leaf nodes where the number of

wrongly assigned centers (mistakes) is only counted among the points that belong to that

node. A node is a leaf when it contains only a single center.

Main ingredients of the analysis

The analysis of the cost of the algorithm described above requires first rewriting the cost in

terms of the minimum number of points that are classified to the wrong center. The cost of

any clustering can also be related to the number of mistakes required by a clustering given

by threshold cuts. With these ingredients, the cost of the algorithm can be related to the cost

of an unrestricted clustering given by a set of centers. Intuitively, if the minimum number

12



2.2 Problems Background

of points classified to a wrong center by threshold cuts is high, then the cost of any optimal

clustering is also high.

Let cost
(
µ1, . . . ,µk

)
denote the cost of an unrestricted clustering given by the centers

{µ1, . . . ,µk }, where each point is assigned to its closest center. Let T be the tree produced by

the mistake-minimizing algorithm described above. Let u be any internal node of T , and B(u)

be the bounding box of centers that end up in u. That is, for every dimension i the box B(u) is

delimited by an edge defined by the endpoints minµ∈u{µi } and maxµ∈u{µi }. The diameter of

this box in the ℓ1-norm, denoted diam(B(u)), is just the sum of the side lengths of the box

over all d dimensions. In the following we will not reproduce the formal proofs from [Das+20]

but we will give a short explanation of how the proofs can be obtained.

Lemma 5.5 from [Das+20]. Let tu be the number of mistakes made at node u in tree T . Then

cost(T ) ≤ cost
(
µ1, . . . ,µk

)
+ ∑

u∈T
tu ·diam(B(u)).

To see why this is true, note that only points that are assigned to the wrong center in T incur

some cost additional to cost
(
µ1, . . . ,µk

)
. Indeed, this additional cost is no more than the

diameter of the bounding box B(u) where u is the node that the mistake for this point was

made. The other lemma we need is as follows.

Lemma 5.6 from [Das+20]. Let H be the height of T . We have∑
u∈T

tu ·diam(B(u)) ≤ 2H ·cost
(
µ1, . . . ,µk

)
.

To prove this lemma, fix some non-leaf node u, some dimension i , and project the centers

in u onto B(u) along the i th dimension. If u contained m centers, then the edge of B(u) in

dimension i is divided into m −1 segments by the projections of the centers. The inequality

above comes from considering how many times the length of each segment is included in

cost
(
µ1, . . . ,µk

)
. Since the cut is chosen to minimize the number of mistakes, it must be that

cost
(
µ1, . . . ,µk

)
includes the edges of B(u) at least tu times. The factor 2 comes from supposing

that cuts are only made at the midpoint of a segment, so that cost
(
µ1, . . . ,µk

)
contains at least

tu-many half-segments. Finally, note that the algorithm can incur this cost along every node

in a u-leaf path, so the total cost is multiplied by the height of the tree T .

With these two lemmas, we have that cost(T ) is O(k) since H can be linear in k: consider d +1

centers with a center at 0 and the d unit basis vectors as the remaining centers. Then each

cut can only split away one center at a time. The O(k) bound is therefore a barrier for the

algorithm of [Das+20]. We show in this thesis that, perhaps surprisingly, an algorithm that

uses random cuts can break this barrier.

13





3 A Constant-factor Approximation for
Colorful k-Center Clustering

This chapter is based on joint work with Kshiteej Sheth and Ola Svensson [JSS21b]. It has been

accepted to The 21st Conference on Integer Programming and Combinatorial Optimization

(IPCO 2020) under the title

Fair Colorful k-Center Clustering.

It has also been accepted to the journal of Mathematical Programming vol. 192 under the

same name.

3.1 Introduction

In the colorful k-center problem introduced in [Ban+19], we are given a set of n points X in

a metric space partitioned into a set R of red points and a set B of blue points, along with

parameters k, r , and b. The goal is to find a set of k centers C ⊆ P that minimizes α so

that balls of radius α around each point in C cover at least r red points and at least b blue

points. More generally, the points can be partitioned into ω color classes C1, . . . ,Cω, with

coverage requirements p1, . . . , pω. To keep the exposition of our ideas as clean as possible, we

concentrate the bulk of our discussion to the version with two colors. In Section 3.3 we show

how our algorithm can be generalized for ω color classes with an exponential dependence

on ω in the running time in a rather straightforward way, thus getting a polynomial time

algorithm for constant ω.

This generalization of the classic k-center problem has applications in situations where

fairness is a concern. For example, if a telecommunications company is required to provide

service to at least 90% of the people in a country, it would be cost effective to only provide

service in densely populated areas. This is at odds with the ideal that at least some people in

every community should receive service. In the absence of color classes, an approximation

algorithm could be “unfair" to some groups by completely considering them as outliers. The

inception of fairness in clustering can be found in the recent paper [CLV17] (see also [Bac+19;

15



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

Ana+19]), which uses a related but incomparable notion of fairness. Their notion of fairness

requires each individual cluster to have a balanced number of points from each color class,

which leads to very different algorithmic considerations and is motivated by other applications,

such as “feature engineering”.

The other motive for studying the colorful k-center problem derives from the algorithmic

challenges it poses. One can observe that it generalizes the k-center problem with outliers,

which is equivalent to only having red points and needing to cover at least r of them. This

outlier version is already more challenging than the classic k-center problem: only recent

results give tight 2-approximation algorithms [CGK16; Har+19], improving upon the

3-approximation guarantee of [Cha+01]. In contrast, such algorithms for the classic k-center

problem have been known since the ’80s [HS85; Gon85]. That the approximation guarantee of

2 is tight, even for classic k-center, was proved in [HN79].

At the same time, a subset-sum problem with polynomial-sized numbers is embedded within

the colorful k-center problem. To see this, consider n numbers a1, . . . , an and let A =∑n
i=1 ai .

Construct an instance of the colorful k-center problem with r = k ·A+A/2, b = k ·A−A/2, and

for every i ∈ {1, . . . ,n}, a ball of radius one containing A+ai red points and A−ai blue points.

These balls are assumed to be far apart so that any single ball that covers two of these balls

must have a very large radius. It is easy to see that the constructed colorful k-center instance

has a solution of radius one if and only if there is a size k subset of the n numbers whose sum

equals A/2.

We use this connection to subset-sum to show that the standard linear programming (LP)

relaxation of the colorful k-center problem has an unbounded integrality gap even after a

linear number of rounds of the powerful Lasserre/Sum-of-Squares hierarchy (see Section

3.4.1). We remark that the standard linear programming relaxation gives a 2-approximation

algorithm for the outliers version even without applying lift-and-project methods. Another

natural approach for strengthening the standard linear programming relaxation is to add

flow-based inequalities specially designed to solve subset-sum problems. However, in Section

3.4.2, we prove that they do not improve the integrality gap due to the clustering feature of the

problem. This shows that clustering and the subset-sum problem are intricately related in

colorful k-center. This interplay makes the problem more complex and prior to our work only

a randomized constant-factor approximation algorithm was known when the points are in R2

with an approximation guarantee greater than 6 [Ban+19].

Our main result overcomes these difficulties and we give a nearly tight approximation

guarantee:

Theorem 1. There is a 3-approximation algorithm for the colorful k-center problem.

As aforementioned, our techniques can be easily extended to a constant number of color

classes but we restrict the discussion here to two colors.

On a very high level, our algorithm manages to decouple the clustering and the subset-sum

16



3.1 Introduction

aspects. First, our algorithm guesses certain centers of the optimal solution that it then uses

to partition the point set into a “dense” part Xd and a “sparse” part Xs . The dense part is

clustered using a subset-sum instance while the sparse set is clustered using the techniques

of Bandyapadhyay, Inamdar, Pai, and Varadarajan [Ban+19] (see Section 3.2.1). Specifically,

we use the pseudo-approximation of [Ban+19] that satisfies the coverage requirements using

k +1 balls of at most twice the optimal radius.

While our approximation guarantee is nearly tight, it remains an interesting open problem to

give a 2-approximation algorithm or to show that the ratio 3 is tight. One possible direction

is to understand the strength of the relaxation obtained by combining the Lasserre/Sum-of-

Squares hierarchy with the flow constraints. While we show that individually they do not

improve the integrality gap, we believe that their combination can lead to a strong relaxation.

Independent work. Independently and concurrently to our work, authors in [Ane+20]

obtained a 4-approximation algorithm for the colorful k-center problem with ω=O(1) using

different techniques than the ones described in this work. Furthermore they show that,

assuming P ̸= N P , if ω is allowed to be unbounded then the colorful k-center problem admits

no algorithm guaranteeing a finite approximation. They also show that assuming the

Exponential Time Hypothesis, colorful k-center is inapproximable if ω grows faster than logn.

Organization. We begin by giving some notation and definitions and describing the pseudo-

approximation algorithm in [Ban+19]. In fact, we then describe a 2-approximation algorithm

on a certain class of instances that are well-separated, and the 3-approximation follows almost

immediately. This 2-approximation proceeds in two phases: the first is dedicated to the

guessing of certain centers, while the second processes the dense and sparse sets.

Section 3.3 explains the generalization to ω color classes. In Section 3.4 we present our

integrality gaps under the Sum-of-Squares hierarchy and additional constraints deriving from

a flow network to solve subset-sums.

17



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

LP1∑
i∈B( j )

xi ≥ z j , ∀ j ∈ X∑
i∈X

xi ≤ k∑
j∈R

z j ≥ r,∑
j∈B

z j ≥ b,

z j , xi ∈ [0,1], ∀i , j ∈ X .

LP2

maximize
∑
j∈S

r j y j

subject to
∑
j∈S

b j y j ≥ b,∑
j∈S

y j ≤ k,

y j ∈[0,1] ∀ j ∈ S.

Figure 3.1: The linear programs used in the pseudo-approximation algorithm.

3.2 A 3-Approximation Algorithm

In this section we present our 3-approximation algorithm. We briefly describe the pseudo-

approximation algorithm of Bandhyapadhyay et al. [Ban+19] since we use it as a subroutine in

our algorithm.

Notation: We assume that our problem instance is normalized to have an optimal radius of

one and we refer to the set of centers in an optimal solution as OPT . The set of all points at

distance at most α from a point j is denoted by B( j ,α) and we refer to this set as a ball of

radius α at j . We write B( j ) for B( j ,1). By a ball of OPT we mean B( j ) for some j ∈OPT .

3.2.1 The pseudo-approximation algorithm

The algorithm of Bandhyapadhyay et al. [Ban+19] first guesses the optimal radius for the

instance (there are at most O(n2) distinct values the optimal radius can take), which we assume

by normalization to be one, and considers the natural LP relaxation LP1 depicted on the left in

Figure 3.1. The variable xi indicates how much point i is fractionally opened as a center and

zi indicates the amount that i is covered by centers.

Given a fractional solution to LP1, the algorithm of [Ban+19] finds a clustering of the points.

The clusters that are produced are of radius two, and with a simple modification (details can

be found in Appendix A.2), can be made to have a special structure that we call a flower:

Definition 3.2.1. For j ∈ X , a flower centered at j is the set F ( j ) =∪i∈B( j )B(i ).

More specifically, given a fractional solution (x, z) to LP1, the clustering algorithm in [Ban+19]

produces a set of points S ⊆ X and a cluster C j ⊆ X for every j ∈ S such that:

1. The set S is a subset of the points { j ∈ X : z j > 0} with positive z-values.

18



3.2 A 3-Approximation Algorithm

2. For each j ∈ S, we have C j ⊆F ( j ) and the clusters {C j } j∈S are pairwise disjoint.

3. If we let r j = |C j ∩R| and b j = |C j ∩B | for j ∈ S, then the linear program LP2 (depicted

on the right in Figure 3.1) has a feasible solution y of value at least r .

As LP2 has only two non-trivial constraints, any extreme point will have at most two variables

attaining strictly fractional values. So at most k +1 variables of y are non-zero. The pseudo-

approximation of [Ban+19] now simply takes those non-zero points as centers. Since each

flower is of radius two, this gives a 2-approximation algorithm that opens at most k +1 centers.

(Note that, as the clusters {C j } j∈S are pairwise disjoint, at least b blue points are covered, and

at least r red points are covered since the value of the solution is at least r .)

Obtaining a constant-factor approximation algorithm that only opens k centers turns out

to be significantly more challenging. Nevertheless, the above techniques form an important

subroutine in our algorithm. Given a fractional solution (x, z) to LP1, we proceed as above

to find S and an extreme point to LP2 of value at least r . However, instead of selecting all

points with positive y-value, we, in the case of two fractional values, only select the one whose

cluster covers more blue points. This gives us a solution of at most k centers whose clusters

cover at least b blue points. Furthermore, the number of red points that are covered is at least

r −max j∈S r j since we disregarded at most one center. As S ⊆ { j : z j > 0} (see first property

above) and C j ⊆F ( j ) (see second property above), we have max j∈S r j ≤ max j :z j>0 |F ( j )∩R|.
We summarize the obtained properties in the following lemma.

Lemma 3.2.2. Given a fractional solution (x, z) to LP1, there is a polynomial-time algorithm

that outputs at most k clusters of radius two that cover at least b blue points and at least

r −max j :z j>0 |F ( j )∩R| red points.

We can thus find a 2-approximate solution that covers sufficiently many blue points but may

cover fewer red points than necessary. The idea now is that, if the number of red points in

any cluster is not too large, i.e., max j :z j>0 |F ( j )∩R| is “small”, then we can hope to meet

the coverage requirements for the red points by increasing the radius around some opened

centers. Our algorithm builds on this intuition to get a 2-approximation algorithm using at

most k centers for well-separated instances as defined below.

Definition 3.2.3. An instance of colorful k-center is well-separated if there does not exist a ball

of radius three that covers at least two balls of OPT .

Our main result of this section can now be stated as follows:

Theorem 2. There is a 2-approximation algorithm for well-separated instances.

The above theorem immediately implies Theorem 1, i.e., the 3-approximation algorithm for

general instances. Indeed, if the instance is not well-separated, we can find a ball of radius

19



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

three that covers at least two balls of OPT by trying all n points and running the pseudo-

approximation of [Ban+19] on the remaining uncovered points with k − 2 centers. In the

correct iteration, this gives us at most k −1 centers of radius two, which when combined with

the ball of radius three that covers two balls of OPT , is a 3-approximation.

Remark 3.2.4. We have an omission in the original submission in the case that some point that

is covered by the ball of radius three needs to be opened as a center in the pseudo-approximation.

The solution is to add x-variables for each point covered by the ball of radius three to the LP

used by the pseudo-approximation, as x-variables indicate the amount that a point is opened

as a center. We thank Chek-Manh Loi and Linda Kleist for pointing out this omission.

Our algorithm for well-separated instances now proceeds in two phases with the objective

of finding a subset of X on which the pseudo-approximation algorithm produces subsets of

flowers containing not too many red points. In addition, we maintain a partial solution set

of centers (some guessed in the first phase), so that we can expand the radius around these

centers to recover the deficit of red points from closing one of the fractional centers.

3.2.2 Phase I

In this phase we will guess some balls of OPT that can be used to construct a bound on

max j :z j>0 |R ∩F ( j )|. To achieve this, we define the notion of Gain(p, q) for any point p ∈ X

and q ∈ B(p).

Definition 3.2.5. For any p ∈ X and q ∈ B(p), let

Gain(p, q) := R ∩ (
F (q) \ B(p)

)
be the set of red points added to B(p) by forming a flower centered at q.

Our algorithm in this phase proceeds by guessing three centers c1,c2,c3 of the optimal solution

OPT :

For i = 1,2,3, guess the center ci in OPT and calculate the point qi ∈ B(ci ) such that

the number of red points in Gain(ci , qi )∩Xi is maximized over all possible ci , where

X1 = X

Xi = Xi−1 \F (qi−1) for 2 ≤ i ≤ 4.

The time it takes to guess c1,c2, and c3 is O(n3) and for each ci we find the qi ∈ B(ci ) such that

|Gain(ci , qi )∩Xi | is maximized by trying all points in B(ci ) (at most n many).

For notation, define Guess :=∪3
i=1B(ci ) and let

τ= |Gain(c3, q3)∩X3|.

20



3.2 A 3-Approximation Algorithm

The important properties guaranteed by the first phase is summarized in the following lemma.

Lemma 3.2.6. Assuming that c1,c2, and c3 are guessed correctly, we have that

1. the k −3 balls of radius one in OPT \{ci }3
i=1 are contained in X4 and cover b−|B ∩Guess|

blue points and r −|R ∩Guess| red points; and

2. the three clusters F (q1),F (q2), and F (q3) are contained in X \ X4 and cover at least

|B ∩Guess| blue points and at least |R ∩Guess|+3 ·τ red points.

Proof. 1) We claim that the intersection of any ball of OPT \{ci }3
i=1 with F (qi ) in X is empty, for

all 1 ≤ i ≤ 3. Then the k−3 balls in OPT \{ci }3
i=1 satisfy the statement of (1). To prove the claim,

suppose that there is p ∈OPT \{ci }3
i=1 such that B(p)∩F (qi ) ̸= ; for some 1 ≤ i ≤ 3. Note that

F (qi ) =∪i∈B(qi )B(i ), so this implies that B(p)∩B(q ′) ̸= ;, for some q ′ ∈ B(qi ). Hence, a ball

of radius three around q ′ covers both B(p) and B(ci ) as ci ∈ B(qi ), which contradicts that the

instance is well-separated.

2) Note that for 1 ≤ i ≤ 3, B(ci )∪Gain(ci , qi ) ⊆ F (qi ), and that B(ci ) and Gain(ci , qi ) are

disjoint. The balls B(ci ) cover at least |B ∩Guess| blue points and |R ∩Guess| red points, while∑3
i=1 |Gain(ci , qi )∩Xi | ≥ 3τ.

3.2.3 Phase II

Throughout this section we assume c1,c2, and c3 have been guessed correctly in Phase I so

that the properties of Lemma 3.2.6 hold. Furthermore, by the selection and the definition of τ,

we also have

|Gain(p, q)∩X4| ≤ τ for any p ∈ X4 ∩OPT and q ∈ B(p)∩X4. (3.1)

This implies that F (p) \ B(p) contains at most τ red points of X4. However, to apply Lemma

3.2.2 we need that the number of red points of X4 in the whole flower F (p) is bounded. To

deal with balls with many more than τ red points, we will iteratively remove dense sets from

X4 to obtain a subset Xs of sparse points.

Definition 3.2.7. When considering a subset of the points Xs ⊆ X , we say that a point j ∈ Xs is

dense if the ball B( j ) contains strictly more than 2 ·τ red points of Xs . For a dense point j , we

also let I j ⊆ Xs contain those points i ∈ Xs whose intersection B(i )∩B( j ) contains strictly more

than τ red points of Xs .

We remark that in the above definition, we have in particular that j ∈ I j for a dense point

j ∈ Xs . Our iterative procedure now works as follows:

21



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

cj p cj i p

(a) (b)

Figure 3.2: The shaded regions are subsets of Gain(c,p), which contain the darkly shaded
regions that have > τ red points.

Initially, let I =; and Xs = X4. While there is a dense point j ∈ Xs :

• Add I j to I and update Xs by removing the points D j =∪i∈I j B(i )∩Xs .

Let Xd = X4 \ Xs denote those points that were removed from X4. We will cluster the two sets

Xs and Xd of points separately. Indeed, the following lemma says that a center in OPT \{ci }3
i=1

either covers points in Xs or Xd but not points from both sets. Recall that D j denotes the set

of points that are removed from Xs in the iteration when j was selected and so Xd =∪ j D j .

Lemma 3.2.8. For any c ∈ OPT \ {ci }3
i=1 and any I j ∈ I , either c ∈ I j or B(c)∩D j =;.

Proof. Let c ∈ OPT \ {ci }3
i=1, I j ∈ I , and suppose c ∉ I j . If B(c)∩D j ̸= ;, there is a point p in

the intersection B(c)∩B(i ) for some i ∈ I j . Suppose first that B(c)∩B( j ) ̸= ;. Then, since

c ∉ I j , the intersection B(c)∩B( j ) contains fewer than τ red points from D j (recall that D j

contains the points of B( j ) in Xs at the time j was selected). But by the definition of dense

clients, B( j )∩D j has more than 2 ·τ red points, so (B( j ) \ B(c))∩D j has more than τ red

points. This region is a subset of Gain(c, p)∩ X4, which contradicts (3.1). This is shown in

Figure 3.2(a). Now consider the second case when B(c)∩B( j ) =; and there is a point p in the

intersection B(c)∩B(i ) for some i ∈ I j and i ̸= j . Then, by the definition of I j , B(i )∩B( j ) has

more than τ red points of D j . However, this is also a subset of Gain(c, p)∩X4 so we reach the

same contradiction. See Figure 3.2(b).

Our algorithm now proceeds by guessing the number kd of balls of OPT \ {ci }3
i=1 contained in

Xd . We also guess the numbers rd and bd of red and blue points, respectively, that these balls

cover in Xd . Note that after guessing kd , we know that the number of balls in OPT \ {ci }3
i=1

contained in Xs equals ks = k−3−kd . Furthermore, by the first property of Lemma 3.2.6, these

balls cover at least bs = b−|B∩Guess|−bd blue points in Xs and at least rs = r −|R∩Guess|−rd

red points in Xs . As there are O(n3) possible values of kd ,bd , and rd (each can take a value

between 0 and n) we can try all possibilities by increasing the running time by a multiplicative

factor of O(n3). Henceforth, we therefore assume that we have guessed those parameters

correctly. In that case, we show that we can recover an equally good solution for Xd and a

solution for Xs that covers bs blue points and almost rs red points:

Lemma 3.2.9. There exist two polynomial-time algorithms Ad and As such that if kd ,rd , and

bd are guessed correctly then

22



3.2 A 3-Approximation Algorithm

• Ad returns kd balls of radius one that cover bd blue points of Xd and rd red points of Xd ;

• As returns ks balls of radius two that cover at least bs blue points of Xs and at least rs−3·τ
red points of Xs .

Proof. We first describe and analyze the algorithm Ad followed by As .

The algorithm Ad for the dense point set Xd .By Lemma 3.2.8, we have that all kd balls in

OPT \ {ci }3
i=1 that cover points in Xd are centered at points in ∪ j I j . Furthermore, we have

that each I j contains at most one center of OPT . This is because every i ∈ I j is such that

B(i )∩B( j ) ̸= ; and so, by the triangle inequality, B( j ,3) contains all balls {B(i )}i∈I j . Hence, by

the assumption that the instance is well-separated, the set I j contains at most one center of

OPT .

We now reduce our problem to a 3-dimensional subset-sum problem. For each I j ∈ I , form

a group consisting of an item for each p ∈ I j . The item corresponding to p ∈ I j has the

3-dimensional value vector (1, |B(p)∩D j ∩B |, |B(p)∩D j ∩R|). Our goal is to find kd items

such that at most one item per group is selected and their 3-dimensional vectors sum up to

(kd ,bd ,rd ). Such a solution, if it exists, can be found by standard dynamic programming that

has a table of size O(n4). For completeness, we provide the recurrence and precise details of

this standard technique in Appendix A.1. Furthermore, since the D j ’s are disjoint by definition,

this gives kd centers that cover bd blue points and rd red points in Xd , as required in the

statement of the lemma.

It remains to show that such a solution exists. Let o1,o2, . . . ,okd denote the centers of the balls

in OPT \ {ci }3
i=1 that cover points in Xd . Furthermore, let I j1 , . . . , I jkd

be the sets in I such that

oi ∈ I ji for i ∈ {1, . . . ,kd }. Notice that by Lemma 3.2.8 we have that B(oi )∩Xd is disjoint from

Xd \ D ji and contained in D ji . It follows that the 3-dimensional vector corresponding to an

OPT center oi equals (1, |B(p)∩Xd ∩B |, |B(p)∩Xd ∩R|). Therefore, the sum of these vectors

corresponding to o1, . . . ,okd results in the vector (kd ,bd ,rd ), where we used that our guesses

of kd ,bd , and rd were correct.

The algorithm As for the sparse point set Xs .Assuming that the guesses are correct we have

that OPT \ {ci }3
i=1 contains ks balls that cover bs blue points of Xs and rs red points of Xs .

Hence, LP1 has a feasible solution (x, z) to the instance defined by the point set Xs , the number

of balls ks , and the constraints bs and rs on the number of blue and red points to be covered,

respectively. Lemma 3.2.2 then says that we can in polynomial-time find ks balls of radius two

such that at least bs blue balls of Xs are covered and at least

rs − max
j :z j>0

|F ( j )∩R|

red points of Xs are covered. Here, F ( j ) refers to the flower restricted to the point set Xs .

23



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

To prove the the second part of Lemma 3.2.9, it is thus sufficient to show that LP1 has a feasible

solution where z j = 0 for all j ∈ Xs such that |F ( j )∩R| > 3 ·τ. In turn, this follows by showing

that, for any such j ∈ Xs with |F ( j )∩R| > 3 ·τ, no point in B( j ) is in OPT (since then z j = 0 in

the integral solution corresponding to OPT ). Such a feasible solution can be found by adding

xi = 0 ∀i ∈ B( j ) for all such j to LP1.

To see why this holds, suppose towards a contradiction that there is a c ∈ OPT such that

c ∈ B( j ). First, since there are no dense points in Xs , we have that the number of red points in

B(c)∩Xs is at most 2 ·τ. Therefore the number of red points of Xs in F ( j )\B(c) is strictly more

than τ. In other words, we have τ< |Gain(c, j )∩Xs | ≤ |Gain(c, j )∩X4| which contradicts (3.1).

Equipped with the above lemma we are now ready to finalize the proof of Theorem 2.

Proof of Theorem 2. Our algorithm guesses the optimal radius and the centers c1,c2,c3 in

Phase I, and kd ,rd ,bd in Phase II. There are at most
(n

2

)
choices of the optimal radius, n

choices for each ci , and n + 1 choices of kd ,rd ,bd (ranging from 0 to n). We can thus try

all these possibilities in polynomial time and, since all other steps in our algorithm run in

polynomial time, the total running time will be polynomial. The algorithm tries all these

guesses and outputs the best solution found over all choices. For the correct guesses, we

output a solution with 3+kd +ks = k balls of radius at most two. Furthermore, by the second

property of Lemma 3.2.6 and the two properties of Lemma 3.2.9, we have that

• the number of blue points covered is at least |B ∩Guess|+bd +bs = b; and

• the number of red points covered is at least |R ∩Guess|+3τ+ rd + rs −3τ= r .

We have thus given a polynomial-time algorithm that returns a solution where the balls are of

radius at most twice the optimal radius.

3.3 Constant Number of Colors

Our algorithm extends easily to a constant number ω of color classes C1, . . . ,Cω with coverage

requirements p1, . . . , pω. We use the LPs in Fig. 3.3 for a general number of colors, where p j ,i

in LP2(ω) indicates the number of points of color class i in cluster j ∈ S. S is the set of cluster

centers obtained from modified clustering algorithm in Appendix A.2 to instances with ω

color classes. LP2(ω) has only ω non-trivial constraints, so any extreme point has at most ω

variables attaining strictly fractional values, and a feasible solution attaining objective value at

least p1 will have at most k +ω−1 positive values. By rounding up to 1 the fractional value

of the center that contains the most number of points of Cω, we can cover pω points of Cω.

We would like to be able to close the remaining fractional centers, so we apply an analogous

procedure to the case with just two colors.

24



3.3 Constant Number of Colors

LP1(ω)∑
m∈B(i )

xm ≥ zi , ∀i ∈ X∑
i∈X

xi ≤ k∑
i∈C j

zi ≥ p j , ∀1 ≤ j ≤ω

zi , xi ∈ [0,1], ∀i ∈ X .

LP2(ω)

maximize
∑
i∈S

p1,i yi

subject to
∑
i∈S

p j ,i yi ≥ p j , ∀2 ≤ j ≤ω∑
i∈S

yi ≤ k,

yi ∈[0,1] ∀i ∈ S.

Figure 3.3: Linear programs for ω color classes.

We can guess 3(ω−1) centers of OPT for each of theω−1 colors whose coverage requirements

are to be satisfied. Then we bound the number of points of each color that may be found in a

cluster, by removing dense sets that contain too many points of any one color and running

a dynamic program on the removed sets. The final step is to run the clustering algorithm of

[Ban+19] on the remaining points, and rounding to one the fractional center with the most

number of points of C1, and closing all other fractional centers.

In particular, we get a running time with a factor of nO(ω2). The remainder of this section gives

a formal description of the algorithm for ω color classes.

3.3.1 Formal algorithm forω colors

The following is a natural generalization of Lemma 3.2.2 and summarizes the main properties

of the clustering algorithm of Appendix A.2 for instances with ω color classes.

Lemma 3.2.2′. Given a fractional solution (x, z) to LP1(ω), there is a polynomial-time algorithm

that outputs at most k clusters of radius two that cover at least pω points of Cω, and at least

pi − (ω−1)max j :z j>0 |F ( j )∩Ci | for 2 ≤ i ≤ω.

Since we may not meet the coverage requirements for ω−1 color classes, it is necessary to

guess some balls of OPT for each of those colors, and for each fractional center. In total we

guess 3(ω−1)2 points of OPT as follows:

For j = 2, . . . ,ω, for i = 1,2, . . . ,3(ω−1) guess the center c j ,i in OPT and calculate the

point q j ,i ∈ B(c j ,i ) such that |C j ∩Gain(c j ,i , q j ,i )∩X j ,i | is maximized over all possible

c j ,i , where

X j ,1 = X

X j ,i = X j ,i−1 \
(
Ci ∩F (q j ,i−1)

)
for 2 ≤ i ≤ 3(ω−1)+1.

25



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

This guessing takes O(n3(ω−1)2
) rounds. It is possible that some c j ,i coincide, but this does

not affect the correctness of the algorithm. In fact, this can only improve the solution, in the

sense that the coverage requirements will be met with fewer than k centers. Let kc denote the

number of distinct c j ,i obtained in the correct guess. For notation, define

Guess : =∪ωj=2 ∪3(ω−1)
i=1 B(c j ,i )

τ j =
∣∣C j ∩Gain(c j ,3(ω−1), q j ,3(ω−1))∩X j ,3(ω−1)

∣∣.
To be consistent with previous notation, let

X4 := X \∪ωj=2 ∪3(ω−1)
i=1 F (q j ,i ).

The important properties guaranteed by the first phase can be summarized in the following

lemma whose proof is the natural extension of Lemma 3.2.6.

Lemma 3.2.6′. Assuming that c j ,i are guessed correctly, we have that

1. the k −3(ω−1)2 balls of radius one in OPT \∪ωj=2 ∪3(ω−1)
i=1 {c j ,i } are contained in X4 and

cover pω−|Cω∩Guess| of points in Cω and p j −|C j ∩Guess| points of C j for j = 2, . . . ,ω;

and

2. the clusters F (q j ,i ) are contained in X \ X3(ω−1)+1 and cover at least |Cω∩Guess| points

of Cω and at least |C j ∩Guess|+3(ω−1) ·τ j points of C j .

Now we need to remove points which contain many points from any one of the color classes

to partition the instance into dense and sparse parts which leads to the following generalized

definition of dense points.

Definition 3.2.7′. When considering a subset of the points Xs ⊆ X , we say that a point p ∈ Xs is

j -dense if |C j ∩B(p)∩Xs | > 2τ j . For a j -dense point p, we also let Ip ⊆ Xs contain those points

i ∈ Xs such that |C j ∩B(i )∩B(p)∩Xs | > τ j , for every 2 ≤ j ≤ω.

Now we perform a similar iterative procedure as for two colors:

Initially, let I =; and Xs = X3(ω−1). While there is a j -dense point p ∈ Xs for any 2 ≤ j ≤ω:

• Add Ip to I and update Xs by removing the points Dp =∪i∈Ip B(i )∩Xs .

As in the case of two colors, set Xd = X3(ω−1) \ Xs . By naturally extending Lemma 3.2.8 and

its proof, we can ensure that any ball of OPT \∪ωj=2 ∪3(ω−1)
i=1 {c j ,i } is completely contained in

either Xd or Xs . We guess the number kd of such balls of OPT contained in Xd , and guess

the numbers d1, . . . ,dω of points of C1, . . . ,Cω covered by these balls in Xd . There are O(nω+1)

possible values of kd ,d1, . . . ,dω and all the possibilities can be tried by increasing the running

26



3.4 LP Integrality Gaps

time by a multiplicative factor. The number of balls of OPT \∪ωj=2 ∪3(ω−1)
i=1 {c j ,i } contained in

Xs is given by ks = k−kc −kd and these balls cover at least s j = p j −|C j ∩Guessal l |−d j points

of C j in Xs , 1 ≤ j ≤ω.

Assuming that the parameters are guessed correctly we can show, similar to Lemma 3.2.9, that

the following holds.

Lemma 3.2.9′. There exist two polynomial-time algorithms A ′
d and A ′

s such that if

kd ,d1, . . .dω are guessed correctly then

• A ′
d returns kd balls of radius one that cover d1, . . . ,dω points of C1, . . . ,Cω of Xd ;

• A ′
s returns ks balls of radius two that cover at least s1 points of C1 of Xs and at least

s j −3(ω−1) ·τ j points of C j of Xs , 2 ≤ j ≤ω.

The algorithm A ′
d proceeds as did Ad , with the modification that the dynamic program is

now (ω+1)-dimensional. Algorithm A ′
s , is also similar to As , because LP1 has a feasible

solution where zp = 0 for all p ∈ Xs such that |F (p)∩C j | > 3τ j holds for any 2 ≤ j ≤ω. Hence,

we output a solution with kc +kd +ks = k balls of radius at most two, and

• the number of points of C1 covered is at least |C1 ∩Guess|+d1 + s1 = p1; and

• the number of points of C j covered is at least |C j ∩Guess|+3(ω−1)τ j +d j + s j −3(ω−
1)τ j = p j , for all j = 2, . . . ,ω.

This is a polynomial-time algorithm for colorful k-center with a constant number of color

classes.

3.4 LP Integrality Gaps

In this section, we present two natural ways to strengthen LP1 and show that they both fail to

close the integrality gap, providing evidence that clustering and knapsack feasibility cannot be

decoupled in the colorful k-center problem. On one hand, the Sum-of-Squares hierarchy is

ineffective for knapsack problems, while on the other hand, adding knapsack constraints to

LP1 is also insufficient due to the clustering aspect of this problem.

3.4.1 Sum-of-squares integrality gap

The Sum-of-Squares hierarchy (equivalently Lasserre [Las01a; Las01b]) is a method of

strengthening linear programs that has been used in constraint satisfaction problems,

set-cover, and graph coloring, to just name a few examples [AG11; CFG12; Tul09]. We use the

same notation for the Sum-of-Squares hierarchy, abbreviated as SoS, as in Karlin et al.

27



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

[KMN11]. For a set V of variables, P (V ) are the power sets of V and P t (V ) are the subsets of

V of size at most t . Their succinct definition of the hierarchy makes use of the shift operator:

for two vectors x, y ∈RP (V ) the shift operator is the vector x ∗ y ∈RP (V ) such that

(x ∗ y)I =
∑

J⊆V
x J yI∪J .

Analogously, for a polynomial g (x) = ∑
I⊆V aI

∏
i∈I xi we have (g ∗ y)I = ∑

J⊆V a J yI∪J . In

particular, we work with the linear inequalities g1, . . . , gm so that the polytope to be lifted is

K = {x ∈ [0,1]n : gℓ(x) ≥ 0 for ℓ= 1, . . . ,m}.

Let T be a collection of subsets of V and y a vector in RT . The matrix MT (y) is indexed by

elements of T such that

(MT (y))I ,J = yI∪J .

We can now define the t-th SoS lifted polytope.

Definition 3.4.1. For any 1 ≤ t ≤ n, the t-th SoS lifted polytope SoS t (K ) is the set of vectors

y ∈ [0,1]P2t (V ) such that y; = 1, MP t (V )(y) ⪰ 0, and MP t−1(V )(gℓ∗ y) ⪰ 0 for all ℓ.

A point x ∈ [0,1]n belongs to the t-th SoS polytope SoS t (K ) if there exists y ∈ SoS t (K ) such that

y{i } = xi for all i ∈V .

We use a reduction from Grigoriev’s SoS lower bound for knapsack [Gri01] to show that the

following instance has a fractional solution with small radius that is valid for a linear number

of rounds of SoS.

Theorem 3 (Grigoriev). At least min{2⌊min{k/2,n −k/2}⌋+3,n} rounds of SoS are required to

recognize that the following polytope contains no integral solution for k ∈Z odd.

n∑
i=1

2wi = k

wi ∈ [0,1] ∀i .

Consider an instance of colorful k-center with two colors, 8n points, k = n, and r = b = 2n

where n is odd. Points {4i −3,4i −2,4i −1,4i }∀i ∈ [2n] belong to cluster Ci of radius one. For

odd i , Ci has three red points and one blue point and for even i , Ci has one red point and

three blue points. A picture is shown in Figure 3.4. In an optimal integer solution, one center

needs to cover at least 2 of these clusters while a fractional solution satisfying LP1 can open a

center of 1/2 around each cluster of radius 1. Hence, LP1 has an unbounded integrality gap

since the clusters can be arbitrarily far apart. This instance takes an odd number of copies of

the integrality gap example given in [Ban+19].

28



3.4 LP Integrality Gaps

n

Figure 3.4: Integrality gap example for linear rounds of SoS

We can do a simple mapping from a feasible solution for the t th round of SoS on the system of

equations in Theorem 3 to our variables in the t th round of SoS on LP1 for this instance to

demonstrate that the infeasibility of balls of radius one is not recognized. More precisely, we

assign a variable wi to each pair of clusters of radius one as shown in Figure 3.4, corresponding

to opening each cluster in the pair by wi amount. Then a fractional opening of balls of radius

one can be mapped to variables that satisfy the polytope in Theorem 3. The remainder of this

subsection is dedicated to formally describing the reduction from Theorem 3.

Let W denote the set of variables used in the polytope defined in Theorem 3. Let w be in the

t-th round of SoS applied to the system in Theorem 3 so that w is indexed by subsets of W

of size at most t . Let V = Vx ∪Vz , where Vx = {x1, . . . , x8n} and Vz = {z1, . . . , z8n}, be the set of

variables used in LP1 for the instance shown in Figure 3.4. We define vector y with entries

indexed by subsets of V , and show that y is in the t-th SoS lifting of LP1. In each ball we pick

a representative xi , i ≡ 1 mod 4, to indicate how much the ball is opened, so we set yI = 0 if

x j ∈ I , j ̸≡ 1 mod 4. Otherwise, we set yI = wπ(I ) where

π(I ) = {wi : x8i−3 or x8i−7 or z8i− j ∈ I , for some i ∈ [n], j ∈ [7]}.

We have MP t (W )(w) ⪰ 0, and for g1 =−n+∑n
i=1 2xi and g2 = n−∑n

i=1 2xi , MP t−1(W )(gℓ∗w) ⪰ 0

for ℓ= 1,2 since w satisfies the t-th round of SoS. This implies that MP t−1(W )(gℓ ∗w) is the

zero matrix.

To show that MP t (V )(y) ⪰ 0, we start with MP t (W )(w) and construct a sequence of matrices

such that the semidefiniteness of one implies the semidefiniteness of the next, until we arrive

at a matrix that is MP t (V )(y) with rows and columns permuted, i.e. MP t (V )(y) multiplied on

the left and right by a permutation matrix and its transpose. Since the eigenvalues of a matrix

are invariant under this operation, MP t (W )(w) ⪰ 0 implies that MP t (V )(y) ⪰ 0.

Lemma 3.4.2. There exists a sequence of square matrices MP t (W )(w) := M0, M1, M2, . . . , Mp ,

such that the rank of Mi is the same as the rank of Mi+1, Mi is the leading principal submatrix

of Mi+1 of dimension one less, and Mp is MP t (V )(y) with rows and columns permuted.

29



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

Proof. We claim that this sequence of matrices exists with the following description. Firstly,

the matrix Mi+1 has one extra row and column than Mi , and is the same on the leading

principal submatrix of size Mi . Then there are two possibilities:

(a) The last row and column of Mi+1 are all zeroes, or

(b) for some j , the last row of Mi+1 is a copy of the j th row of Mi , the last column is a copy

of the j th column of Mi , and the last entry is (Mi ) j , j .

Either way, the rank of Mi+1 would be the same as the rank of Mi .

To prove this claim, it suffices to consider a sequence of indices of the matrix MP t (V )(y). The

matrix M0 in our sequence will be the submatrix of MP t (V )(y) indexed by the first k indices,

where k is the dimension of MP t (W )(w), i.e. the number of subsets of W of size at most t . Each

subsequent matrix Mi will be the submatrix of MP t (V )(y) indexed by the first k + i indices.

Note that the rows/columns of MP t (V )(y) can be considered to be indexed by all the subsets of

V of size at most t . With this in mind, consider a sequence of subsets of V of size at most t

with the following properties:

1. All subsets of {x8i−7 : i ∈ [n]} of size at most t form a prefix of our sequence.

2. Each set index after the first has exactly one more element than some set index that

came earlier in the sequence.

It is clear that it is possible to arrange all the subsets of V of size at most t in a sequence

to satisfy these properties. It only remains to show that this sequence produces the desired

construction for M0, M1, . . . , Mp .

We have (
MP t (y)

)
I ,J = yI∪J = wπ(I∪J ) = wπ(I ),π(J )

so property (1) guarantees that we begin with M0 being MP t (W )(w), up to the correct

permutation of subsets of {x8i−7 : i ∈ [n]}. Now consider some k ′th index in the sequence,

k ′ > k where k is the dimension of MP t (W )(w). By property (2), it is of the form J ∪ {x}, where J

is one of the first k ′−1 indices, and x ∈V . There are two cases:

• If x is some xi with i ̸≡ 1 mod 4, then yIℓ∪J = 0 for all ℓ≤ k ′.

• Otherwise, π(J ∪ {x}) =π(J ).

In the first case, the matrix constructed from the first k ′ indices will have property (a), and

in the second, property (b). Finally, it is clear that at each step the dimension of the matrices

30



3.4 LP Integrality Gaps

increases by one, and that it is the leading principal submatrix of the following matrix in the

sequence, until we end up with MP t (V )(y) (up to some permutation of its rows and columns).

By the rank-nullity theorem, Mi+1 has one more 0-eigenvalue than Mi , so we can apply the

following theorem.

Theorem 4 (Cauchy’s Interlace Theorem). Let A be a symmetric n ×n matrix and B be a

principal submatrix of A of dimension (n −1)× (n −1). If the eigenvalues of A are α1 ≥ ·· · ≥αn

and the eigenvalues of B are β1 ≥ ·· · ≥βn−1 then α1 ≥β1 ≥α2 ≥β2 ≥ ·· · ≥αn−1 ≥βn−1 ≥αn .

With Mi+1 = A and Mi = B as in Theorem 4 we have that αn = 0 (since Mi+1 and Mi have the

same eigenvalues but the dimension of the zero eigenspace of Mi+1 is one greater than that

of Mi ). Hence, Mi+1 has no negative eigenvalues if Mi has no negative eigenvalues. This is

sufficient to show that each matrix in the sequence constructed is positive semidefinite, and

concludes the proof that MP t (V )(y) ⪰ 0.

It remains to show that the matrices arising from the shift operator between y and the linear

constraints of our polytope are positive semidefinite. Let hi denote the linear inequalities in

LP1. In essence, the corresponding moment matrices MP t−1(V )(hi ∗ y) are zero matrices since

all hi are tight for the example in Figure 3.4. Formally, we have

Lemma 3.4.3. Matrices MP t−1(V )(hℓ ∗ y) are the zero matrix, for each hℓ a linear constraint

from LP1.

Proof. Let h1, j be the linear polynomial that corresponds to the first inequality of LP1 for

j ∈ X . First, if i ̸≡ 1 mod 4, then yI∪{xi } = 0 for any I ⊆V . Otherwise, we have

(MP t−1 (h1 j ∗ y))I ,J =
( ∑

i∈B( j ,1)
yI∪J∪{xi }

)
− yI∪J∪{z j }

= wπ(I∪J )∪π(xi ) −wπ(I∪J )∪π(z j ) = 0

since π({xi }) = π(z j ) for i ∈ B( j ,1), i ≡ 1 mod 4. For the remaining inequalities of LP1: h2,

h3, and h4, we have that MP t−1(V )(hℓ ∗ y) is the zero matrix because of how we defined the

projection onto w :

(MP t−1 (h2 ∗ y))I ,J = nyI∪J −
∑

x j∈Vx

yI∪J∪{x j }

= nwπ(I∪J ) −
n∑

j=1
2wπ(I∪J∪{w j })

= (MP t−1 (g2 ∗w))π(I ),π(J ) = 0

MP t−1 (h3 ∗ y))I ,J = MP t−1 (h4 ∗ y))I ,J

31



Chapter 3. A Constant-factor Approximation for Colorful k-Center Clustering

=
(∑

j∈R
yI∪J∪{z j }

)
−2nyI∪J

=
(

n∑
i=1

4wπ(I∪J )∪{wi }

)
−2nwπ(I∪J )

= 2(MP t−1 (g1 ∗w))π(I ),π(J ) = 0.

This concludes the formal proof of the following theorem.

Theorem 5. The integrality gap of LP1 with 8n points persists up toΩ(n) rounds of Sum-of-

Squares. □

3.4.2 Flow constraints

In this section we add additional constraints based on standard techniques to LP1. These

incorporate knapsack constraints for the fractional centers produced in the hope of obtaining

a better clustering and show that this fails to reduce the integrality gap.

We define an instance of a knapsack problem with multiple objectives. Each point p ∈ X

corresponds to an item with three dimensions: a dimension of size one to restrict the number

of centers, |B ∩B(p)|, and |R ∩B(p)|. We set up a flow network with an (n +1)×n ×n ×k grid

of nodes and we name the nodes with the coordinate (w, x, y, z) of its position. The source s is

located at (0,0,0,0) and we add an extra node t for the sink. Assign an arbitrary order to the

points in X . For the item corresponding to i ∈ X , for each x ∈ [n], y ∈ [n], z ∈ [k]:

1. Add an edge from (i , x, y, z) to (i +1, x, y, z) with flow variable ei ,x,y,z .

2. With bi := |B ∩B(i )| and ri := |R ∩B(i )|, if z < k add an edge from (i , x, y, z) to (i +
1,min{x +bi ,n},min{y +bi ,n}, z +1) with flow variable fi ,x,y,z .

For each x ∈ [b,n], y ∈ [r,n]:

3. Add an edge from (n +1, x, y,k) to t with flow variable gx,y .

Set the capacities of all edges to one. In addition to the usual flow constraints, add to LP1 the

constraints

xi =
∑

x,y∈[n],z∈[k]
fi ,x,y,z for all i ∈ X (3.2)

1−xi =
∑

x,y∈[n],z∈[k]
ei ,x,y,z for all i ∈ X . (3.3)

32



3.4 LP Integrality Gaps

Flow 2

Flow 1

Figure 3.5: k = 3, r = b = 8

We refer to the resulting linear program as LP3. Notice that an integral solution to LP1 defines

a path from s to t through which one unit of flow can be sent; hence LP3 is a valid relaxation.

On the other hand, any path P from s to t defines a set CP of at most k centers by taking those

points c for which fc,x,y,z ∈ P for some x, y , and z. Moreover, as t can only be reached from

a coordinate with x ≥ b and y ≥ r we have that
∑

c∈CP
|B(c)∩B | ≥ b and

∑
c∈CP

|B(c)∩R| ≥ r .

It follows that CP forms a solution to the problem of radius one if the balls are disjoint. In

particular, our integrality gap instances for the Sum-of-Squares hierarchy do not fool LP3.

The example in Figure 3.5 shows that in an instance where balls overlap, the integrality gap

remains large. Here, the fractional assignment of open centers is 1/2 for each of the six balls

and this gives a fractional covering of 8 red and 8 blue points as required. This assignment also

satisfies the flow constraints because the three balls at the top of the diagram define a path

disjoint from the three at the bottom. By double counting the five points in the intersection of

two balls we cover 8 red and 8 blue points with each set of three balls. Hence, we can send flow

along each path. However, this does not give a feasible integral solution with three centers

as any set of three clusters does not contain enough points. In fact, the four clusters can be

placed arbitrarily far from each other and in this way we have an unbounded integrality gap

since one ball needs to cover two clusters.

33





4 The Non-Uniform k-Center Problem
with Three Types of Radii

This chapter is based on joint work with Lars Rohwedder, Kshiteej Sheth, and Ola

Svensson [Jia+22]. It has been accepted to the SIAM Symposium on Simplicity in Algorithms

(SOSA 2022) under the title

Towards Non-Uniform k-Center with Constant Types of Radii.

4.1 Introduction

Clustering is a classic topic in algorithms and theoretical computer science. The k-center

problem [Gon85; HS85] is a well-studied formulation of clustering, where one wants to cover

points in a metric space with balls of minimum radius around k of them. This problem

has been investigated under multiple generalizations such as with outliers [Cha+01] and

multiple color classes [Ban+19; JSS21a; Ane+21]. From the viewpoint of k-center being a

location and routing problem, classic k-center represents minimizing the maximum service

time, assuming the speed of service is uniform at all locations. Chakrabarty, Goyal, and

Krishnaswamy (CGK) [CGK16] introduce the non-uniform k-center problem to capture varying

speeds at different locations. In other words, the k balls come with radii of varying sizes. The

formal definition is as follows.

Definition 4.1.1 (The t-non-uniform k-center problem (t-NUkC)). The input is a metric

space (X ,d) and radii r1 ≥ r2 ≥ ·· · ≥ rt with ki balls of radius ri . The objective is to find ki

centers Ci ⊆ X , i = 1, . . . , t , so that balls of radius αri around Ci , i = 1, . . . , t , cover all of the

points in X and α is minimized.

The robust t-NUkC problem is a generalization of t-NUkC to incorporate the case of outliers,

i.e. where one needs to cover only a certain number of points.

Definition 4.1.2 (Robust t-NUkC). This problem is the same as the t-NUkC problem except

for an extra parameter m and one needs to cover only m many of the points in X .

35



Chapter 4. The Non-Uniform k-Center Problem with Three Types of Radii

It is easy to observe that robust (t −1)-NUkC is a special case of t-NUkC with |X |−m balls

of radius 0. In [CGK16], the authors gave a (1+p
5)-approximation for 2-NUkC and a 2-

approximation for robust 1-NUkC. They also showed that no constant-factor approximation

is possible when t is part of the input, assuming P ̸= NP. Further, the authors conjectured an

O(1)-approximation to be possible when t =O(1). Recently, Chakrabarty and Negahbani (CN)

[CN21] obtained an important result making progress towards this conjecture. They obtained

a 10-approximation for robust 2-NUkC, which is a special case of 3-NUkC. However, their

techniques do not seem to extend for 3-NUkC and they state in their paper that new ideas

would be needed to make further progress. We show a simple reduction in this paper from

t-NUkC to robust (t −1)-NUkC for all t that loses only a constant factor in the approximation

guarantee. This together with the algorithm of [CN21] for robust 2-NUkC implies a simple

constant-approximation for 3-NUkC.

Theorem 6. If there is an α-approximation for robust (t −1)-NUkC, then there is a (2α+2)-

approximation for t-NUkC.

Thus, the 10-approximate algorithm of [CN21] for robust 2-NUkC implies a 22-approximate

algorithm for 3-NUkC. Since no constant approximation was known when t ≥ 3, this makes

further progress on the conjecture of [CGK16]. We also note that using the 2-approximation

algorithm of [CGK16] or [Ban+19] for k-center with outliers, Theorem 6 also gives a simpler

alternate 6-approximation algorithm for 2-NUkC as compared to the algorithm of [CGK16].

Comparison of previous work and our approach. We briefly describe the approach of [CN21]

and compare it with ours. The 10-approximation algorithm of [CN21] for robust 2-NUkC uses

a connection to the firefighter on trees problem initially developed in [CGK16] and employs a

multi-layered round-or-cut procedure using the ellipsoid algorithm. Given a fractional

solution x to an instance of robust 2-NUkC, [CN21] obtains an instance of a 2-layered

firefighter problem with a corresponding fractional solution y . This firefighter instance has

the property that an integral solution to it would imply an approximate solution to the initial

robust 2-NUkC instance. The top layer in the firefighter instance corresponds to potential

centers for balls of the larger radius and the bottom layer corresponds to potential centers for

balls of the smaller radius. They show that if y does not put too much mass on vertices of the

top layer then one can easily obtain an integral solution to the firefighter instance, which in

turn gives an approximate solution for the original robust 2-NUkC instance. In the other case,

they show that if there is an integral solution that puts a lot of mass on the top layer, then one

can reduce the original instance to a well-separated instance with respect to to balls of the

larger radii, that is, balls of the larger radii are only allowed to be placed on a specified set of

points that have large pairwise distance. If this instance is infeasible, then it implies that every

integral solution of the original instance does not put too much mass on the top layer of the

firefighter instance. This can be used to obtain a linear inequality violated by x but satisfied by

every integral solution of the original instance, which is then fed back to the ellipsoid

algorithm in the round-or-cut framework. [CN21] then designs an algorithm that either

returns an approximate solution for a well-separated instance with respect to the larger radius

36



4.2 Reducing t-NUkC to Robust (t −1)-NUkC

or proves that the instance is infeasible, by exploiting the fact that balls of the larger radius do

not intersect and interact as they are only allowed to be centered on points that have large

pairwise distance. This algorithm is again based on the round-or-cut framework.

The algorithm of [CN21] proceeds in a top-down fashion in the following sense: They first

reduce a general instance to a well-separated one with respect to the larger radius and then

proceed by solving such an instance. On the contrary, our reduction that gives Theorem 6 is

bottom-up. Given an instance of t-NUkC, we greedily partition the metric space into clusters

of radius two times the smallest radius. These clusters are disjoint and thus the centers of these

clusters are well-separated with respect to the smaller radius. This allows us to throw away

information about the smallest radius and all points except the centers of these clusters to

obtain an instance of robust (t −1)-NUkC, i.e., one type of radius is eliminated. In Section 4.3,

we show how we can also obtain a 10-approximation for robust 2-NUkC that works in a

bottom-up fashion as compared to the top-down approach of [CN21]. We also use a multi-

layered round-or-cut approach. In our outer layer of the round-or-cut framework using the

ellipsoid algorithm we reduce a general instance to an instance where balls of the smaller

radius do not interact. Then using another layer of round-or-cut we reduce such a structured

instance to a well-separated instance with respect to the larger radius. We observe that such an

extremely structured instance is a laminar instance that can be solved using standard dynamic

programming techniques. Our approach can be viewed as a bottom-up implementation of the

algorithm of [CN21] with a simpler analysis. In particular, we do not need to prove Lemma 4 in

[CN21], which essentially argues that if the firefighter instance obtained from a well-separated

robust 2-NUkC instance with respect to the larger radius does not have an integral solution,

then a certain linear inequality serves as a separating inequality.

Using the bottom-up view rather than a top-down one, we are able to obtain a simple reduction

from t-NUkC to robust (t −1)-NUkC which in turn implies a simple constant approximation

for 3-NUkC, thus making progress on the conjecture of [CGK16]. Secondly, with this view we

are also able to design a bottom-up implementation of the 10-approximation algorithm of

[CN21] for robust 2-NUkC that has a simpler analysis.

Preliminaries and Notation. For any vector x ∈ R|X | and set S ⊆ X we write x(S) = ∑
v∈S xv .

We will work with the approximate feasibility versions of the problems defined in Definitions

4.1.1 and 4.1.2. Our algorithms for these problems will either output that the input instance

is infeasible, that is there is no solution with α= 1, or output a feasible solution with some

α ≤ α∗. Using binary search, such an algorithm would imply an α∗-approximation for the

t-NUkC and robust (t −1)-NUkC. Thus in this paper, by a feasible instance of t-NUkC and

robust (t −1)-NUkC we mean an instance that has a feasible solution with α= 1.

4.2 Reducing t-NUkC to Robust (t −1)-NUkC

In this section we present our simple reduction of t-NUkC to robust (t −1)-NUkC and its

analysis, which will imply Theorem 6. Using Theorem 6 and the recent 10-approximation

37



Chapter 4. The Non-Uniform k-Center Problem with Three Types of Radii

algorithm for robust 2-NUkC obtained in [CN21], we obtain the following corollary.

Theorem 7. There is a 22-approximation algorithm for 3-NUkC.

We first present the algorithm for performing the reduction and then follow it with the main

statement of the reduction. Then we show how to prove Theorem 6 using the reduction and

we conclude the section by proving correctness of the reduction.

Algorithm 1: RadiiCompression

1 Input: I = ((X ,d), (k1,r1), . . . , (kt ,rt )) ,r1 ≥ . . . ≥ rt ;

2 Init: Set L =;, U = X ;

3 while U ̸= ; do

4 Let v be an arbitrary point in U ;

5 L ← L∪ {v};

6 Child(v) :=BU (v,2rt );

7 U ←U \BU (v,2rt );

8 end

9 Return: (L, {Child(v)}v∈L)

The crucial property of the reduction is summarized in the following lemma.

Lemma 4.2.1. Given a feasible instance I = ((X ,d), (k1,r1), . . . , (kt ,rt )) of t-NUkC,

RadiiCompression(I ) returns (L, {Child(v)}v∈L) where L ⊆ X and {Child(v)}v∈L partitions X

such that

• if |L| ≤ kt , then kt balls of radius 2rt around points in L cover X ,

• otherwise, Ir educed = ((L,d), (k1,2r1), . . . , (kt−1,2rt−1),m = |L|−kt ) is a feasible instance

of robust (t −1)-NUkC.

Before we prove this lemma, let us see how it implies Theorem 6.

Proof of Theorem 6. We can solve the original feasible t-NUkC instance I as follows. We first

run RadiiCompression(I ) to obtain (L, {Child(v)}v∈L). Then by applying Lemma 4.2.1 we

either obtain a 2-approximation to I (if |L| ≤ kt ) or a feasible instance Ir educed of robust

(t −1)-NUkC which then is solved using the α-approximation algorithm assumed to exist. The

algorithm returns an α-approximate solution, i.e. sets C1, . . . ,Ct−1 ⊆ L with |Ci | ≤ ki such that

ki balls of radius 2αri around points in Ci for all 1 ≤ i ≤ t −1 cover at least |L|−kt points of L.

We increase the radius of each of these balls from 2αri to 2αri +2rt . We also open at most kt

balls of radius 2rt around the points in L not covered. Since each point in X is at distance at

most 2rt from some point in L and every point in L is either an open center or is at distance

38



4.3 A Bottom-up Algorithm for Robust 2-NUkC

at most 2αri from an open center in Ci for some 1 ≤ i ≤ t −1, by the triangle inequality all

points in X are covered. We used at most ki balls of radius 2αri +2rt ≤ (2α+2)ri for each

1 ≤ i ≤ t −1 and at most kt balls of radius 2rt . Thus, we get a (2α+2)-approximation algorithm

for t-NUkC, assuming there is an α-approximation algorithm for robust (t −1)-NUkC.

Now we present the proof of Lemma 4.2.1.

Proof of Lemma 4.2.1. Clearly {Child(v)}v∈L partitions X , as otherwise the while loop would

not have terminated. If |L| ≤ kt , then since {Child(v)}v∈L partitions X and every point in

Child(v) is at distance at most 2rt from v for all v ∈ L, we can open |L| ≤ kt balls of radius 2rt

around points in L and cover all points in X .

For the rest of the proof we assume that |L| > kt . Consider a feasible solution C1, . . . ,Ct ⊆ X

where |Ci | ≤ ki for all 1 ≤ i ≤ t of I , i.e. ki balls of radius ri around points in Ci for all 1 ≤ i ≤ t

cover X . Let Li ⊆ L be the points of L that are covered by Ci . If a point is covered by Ci and C j

where i < j then we only include it in Li . Since each point in L is covered, {Li }t
i=1 partitions

L. Note that each ball of radius rt can cover at most one point in Lt as the pairwise distance

between any two points in Lt ⊆ L is strictly more than 2rt . Hence, |Lt | ≤ |Ct | ≤ kt .

By “slightly" moving the centers C1, . . . ,Ct−1 we will exhibit a solution that covers all points in

L \ Lt . To this end, consider some ball of radius ri centered at a point p ∈Ci that covers a point

v ∈ Li . Then for all u ∈ Li also covered by the ball around p we have d(u, v) ≤ d(u, p)+d(p, v) ≤
2ri . Thus if we move this ball to be centered at v instead of p and increase the radius to 2ri ,

it will cover all the points in Li that were covered by it previously when it was centered at

p. Repeating this procedure for every p ∈Ci and every 1 ≤ i ≤ t −1, we obtain new centers

C ′
1 ⊆ L1, . . . ,C ′

t−1 ⊆ Lt−1. It follows that balls of radius 2ri around the centers in C ′
i , 1 ≤ i ≤ t −1,

cover at least
∑t−1

i=1 |Li | = |L|− |Lt | ≥ |L|−kt points of L. This exhibits feasibility of the robust

(t −1)-NUkC instance Ir educed .

4.3 A Bottom-up Algorithm for Robust 2-NUkC

The main result in [CN21] is a 10-approximation for robust 2-NUkC. In this section we present

an alternative, bottom-up implementation of the algorithm of [CN21] as briefly discussed in

Section 1. The main theorem we will show in this section is the following.

Theorem 8. There is a 10-approximation for robust 2-NUkC.

Linear programming relaxation. The input consists of an instance I = ((X ,d),

(k1,r1), (k2,r2),m) of robust 2-NUkC with r1 ≥ r2. We will be working with the following natural

39



Chapter 4. The Non-Uniform k-Center Problem with Three Types of Radii

LP formulation for the problem that we refer to as LP1.

cov1(v) ≤ ∑
u∈B(v,r1)

xu,1 ∀v ∈ X

cov2(v) ≤ ∑
u∈B(v,r2)

xu,2 ∀v ∈ X

cov(v) :=cov1(v)+cov2(v) ≤ 1 ∀v ∈ X∑
v∈X

xv,1 ≤ k1,
∑

v∈X
xv,2 ≤ k2∑

v∈X
cov(v) ≥ m

xv,i ≥ 0, ∀v ∈ X , i ∈ {1,2}.

covi (v) ≥ 0, ∀v ∈ X , i ∈ {1,2}.

For every v ∈ X , covi (v) denotes the (fractional) amount that v is covered by balls of radius

ri and xv,i denotes the (fractional) amount that a ball of radius ri centered at v is open, for

i ∈ {1,2}. For the instance I , we denote by PI the convex hull of all possible integral coverages

{(cov1(v),cov2(v))}v∈X induced by integral feasible solutions of I .

We now proceed to the proof of Theorem 8. We will use the round-or-cut method on PI via the

ellipsoid algorithm to solve this problem. This method was first used in [Car+00] in the context

of the minimum knapsack problem and later had been used as a successful technique in

designing approximation algorithms for other problems such as clustering [ASS17; Li17; Li16;

CN19; Ane+21] and network design [Cha+15]. We now explain the round-or-cut method in our

context. In this iterative method, we are given fractional coverages {(cov1(v),cov2(v))}v∈X in

each iteration. Using these coverages we will either generate a 10-approximate solution to I ,

or find a linear inequality violated by these coverages but satisfied by each point in PI . This

inequality is then fed back to the ellipsoid algorithm, which computes a new fractional solution

to be used in the next iteration. The separating hyperplanes we output will have encoding

length bounded by a polynomial in |X |, so this procedure will terminate in a polynomial

number of iterations and output an approximate solution along the way or prove that the

instance is infeasible.

Recall that cov(v) = cov1(v)+ cov2(v) for all v ∈ X . First we check if
∑

v∈X cov(v) ≥ m as

otherwise this inequality itself acts as a separating inequality. Now given these fractional

coverages, we run the classic Hochbaum and Shmoys (HS) subroutine [HS85] on I . This

subroutine greedily partitions X into clusters of radius r specified in the input. This is done by

picking the point with the highest fractional coverage, removing a ball of radius r around it,

and repeating. A pseudocode description of this can be found in Algorithm 2. We set

(L2, {Child2(v)}v∈L2 ) = HS((X ,d), {cov(v)}v∈X ,2r2),

where {Child(v)}v∈L2 partitions X and Child(v) has radius 2r2 for all v ∈ L2. Let

w(v) = |Child(v)|. The HS subroutine guarantees that cov(v) ≥ cov(u) for all

40



4.3 A Bottom-up Algorithm for Robust 2-NUkC

v1 v2 v3 v4

Contraction

v1 v2 v3 v4

Figure 4.1: Example of a contraction procedure to get Icontracted. v1, v2, v3, and v4 are points
of L2, and points inside the circle centered at vi make up Child(vi ).

v ∈ L2,u ∈ Child(v). Hence the coverages satisfy∑
v∈L2

w(v)cov(v) = ∑
v∈L2

∑
u∈Child(v)

cov(v) ≥ ∑
v∈L2

∑
u∈Child(v)

cov(u) = ∑
v∈X

cov(v) ≥ m.

Algorithm 2: HS

10 Input: (X ,d), {cov(v)}v∈X , r ;
11 Let L =;, U = X ;
12 while U ̸= ; do
13 Let v = argmax

u∈U
cov(u);

14 L ← L∪ {v};
15 Child(v) =BU (v,r );
16 U ←U \BU (v,r );

17 end
18 Return (L, {Child(v)}v∈L)

We will now show that if there is an integral solution satisfying
∑

v∈L2
w(v)cov(v) ≥ m, we can

reduce the problem to a more structured instance

Icontracted = ((X ′,d ′), (k1,2r1), (k2,0),m).

The metric (X ′,d ′) is obtained by contracting each Child(v), i.e. by co-locating each point

in Child(v) with v , for all v ∈ L2. Thus, the number of points co-located with each v ∈ L2 is

w(v) = |Child(v)|. We refer the reader to Figure 4.1 for an illustration of this contraction.

Remark 4.3.1. Note that we will use the convention that a ball of radius 0 around any point v

covers all points co-located with v while solving Icontracted.

41



Chapter 4. The Non-Uniform k-Center Problem with Three Types of Radii

We now state the formal lemmas about the feasibility of Icontracted and about approximately

solving Icontracted or determining its infeasibility.

Lemma 4.3.2. Either the robust 2-NUkC instance Icontracted is feasible, or the inequality∑
v∈L2

w(v)cov(v) < m separates {(cov1(v),cov2(v))}v∈X from PI .

We summarize the key properties of Icontracted in the following definition.

Definition 4.3.3. An instance I = ((X ,d), (k1,r1), (k2,r2),m) of robust 2-NUkC is called a

contracted instance if we are given an additional set L ⊆ X in the input and I and L satisfy the

following properties.

1. r2 = 0.

2. For every point u ∈ X there is a point v ∈ L such that d(u, v) = 0. Furthermore, d(v, v ′) > 0

for every v, v ′ ∈ L.

Lemma 4.3.4. There is a polynomial time 4-approximation algorithm for contracted instances.

Before we prove these lemmas, let us see how they imply Theorem 8. In the current iteration

of round-or-cut we have constructed Icontracted using the fractional coverages as described

above. Then we apply Lemma 4.3.4 to Icontracted as it is a contracted instance with L = L2: If we

obtain a 4-approximate solution C ′ for Icontracted then we can increase the radius of each ball

in C ′ by 2r2 and get a solution for I that covers at least m points. This is because the radius

of Child(v) for any v ∈ L2 was 2r2 before the contraction procedure. Thus, we use k1 balls of

radius 4 ·2r1 +2r2 ≤ 10r1 and k2 balls of radius 0+2r2 = 2r2 to cover at least m points. This

results in a 10-approximate solution for I . Otherwise, the algorithm of Lemma 4.3.4 outputs

that Icontracted is infeasible, and by Lemma 4.3.2 we know that
∑

v∈L2
w(v)cov(v) < m acts as a

separating inequality which is then fed back to the ellipsoid algorithm. This concludes the

proof of Theorem 8.

Now we present the proof of Lemma 4.3.2. In the next subsection we present the algorithm of

Lemma 4.3.4 and its analysis.

Proof of Lemma 4.3.2. We know that {(cov1(v),cov2(v))}v∈X satisfies
∑

v∈L2
w(v)cov(v) ≥ m.

If {(cov1(v),cov2(v))}v∈X is in PI then there must be an integral solution C = (C1,C2) of I ,

i.e. ki balls of radius ri around points in Ci for all 1 ≤ i ≤ 2 cover m points of X , satisfying∑
v∈L2

w(v)1{v covered by C } ≥ m. We construct a solution for Icontracted as follows: Move each

ball of radius r1 centered at some point in C1 to be centered at any point in L2 that it covers

and increase its radius to 2r1. Thus, each such ball still covers all the points of L2 it covered

before. Let C ′
1 ⊆ L2 be the set of centers of balls of radius 2r1 obtained by this procedure.

Similarly, we obtain C ′
2 ⊆ L2 by applying this procedure to C2. However, since the pairwise

distance between points of L2 was strictly more than 2r2, each such ball of radius r2 can cover

42



4.3 A Bottom-up Algorithm for Robust 2-NUkC

at most one point of L2. We can decrease its radius to 0 and it still covers all the points of

L2 it covered before. Let C ′ = (C ′
1,C ′

2). From the construction it follows that since C satisfies∑
v∈L2

w(v)1{v covered by C } ≥ m, C ′ also satisfies
∑

v∈L2
w(v)1{v covered by C ′} ≥ m. Thus, k1 balls

of radius 2r1 around points in C ′
1 and k2 balls of radius 0 around points in C ′

2 cover at least m

points in the instance Icontracted, as for any v ∈ L2, all the w(v) = |Child(v)| -many points are

co-located with v in Icontracted. This finishes the proof of the lemma.

4.3.1 Algorithm for contracted instances

We now present the proof of Lemma 4.3.4.

Proof of Lemma 4.3.4. Recall that we are given a contracted instance of robust 2-NUkC I =
((X ,d), (k1,r1), (k2,r2),m) and a set L ⊆ X that satisfy the following properties.

1. r2 = 0.

2. For every point u ∈ X there is a point v ∈ L such that d(u, v) = 0. Furthermore, d(v, v ′) > 0

for every v, v ′ ∈ L.

We again use the round-or-cut method on PI using the ellipsoid algorithm. This time, when

we are given fractional coverages {(cov1(v),cov2(v))}v∈X in each round we either generate a

4-approximate solution to I , or we find an inequality separating these coverages from PI

which is then fed back to the ellipsoid algorithm.

The algorithm in [CN21], as well as our method, uses a standard greedy partitioning scheme

I called CGK [CGK16], which is just the HS procedure applied twice. Since this is a standard

technique, we will not present the proofs associated with it but rather just state its guarantees

in the form of a lemma that will be useful for our algorithm. CGK uses the fractional coverages

{(cov1(v),cov2(v))}v∈X to obtain a tree-structured instance with properties summarized as

follows.

Lemma 4.3.5 ([CGK16; CN21]). Given an instance I = ((X ,d), (k1,r1), (k2,r2),m) of robust

2-NUkC, parameters α1,α2 ≥ 2 and {(cov1(v),cov2(v)}v∈X satisfying
∑

v∈X cov(v) ≥ m, there is

a polynomial time algorithm (CGK) that returns the following:

1. sets L1,L2 ⊆ X that satisfy d(v, v ′) >αi ri for all v, v ′ ∈ Li for i ∈ {1,2}; and

2. sets Child1(v) ⊆ L2 for all v ∈ L1 that partition L2. Furthermore, d(u, v) ≤ α1r1 for all

u ∈ Child1(v) and v ∈ L1; and

3. sets Child2(v) ⊆ X for all v ∈ L2 that partition X . Furthermore, d(u, v) ≤ α2r2 for all

u ∈ Child2(v) and v ∈ L2.

43



Chapter 4. The Non-Uniform k-Center Problem with Three Types of Radii

4. If
∑

v∈L1
cov1(v) ≤ k1 − x for some x ≥ 0 and

∑
v∈L2

cov2(v) ≤ k2 , then one can obtain a

solution for I that uses k1 +2−x balls of radius (α1 +α2)r1 and k2 balls of radius α2r2.

Furthermore, if {(cov1(v),cov2(v))}v∈X is feasible for LP1 then
∑

v∈Li
covi (v) ≤ ki is satisfied for

i ∈ {1,2}.

First, we check whether
∑

v∈X cov(v) ≥ m. If this is not true, then this inequality itself serves

as a separating inequality. Next, we run CGK on I using these coverages with α1 = 4 and

α2 = 2 to obtain L1,L2, and {Child1(v)}v∈L1 , {Child2(v)}v∈L2 . We check if
∑

v∈Li
covi (v) ≤ ki

for i ∈ {1,2}. If not, then by Lemma 4.3.5 these coverages are not feasible for LP1 and thus

whichever inequality is violated will serve as a separating inequality. Now we branch into two

cases. First, assume that
∑

v∈L1
cov1(v) ≤ k1 −2. In this case we can apply (4) of Lemma 4.3.5

to get a solution for I that opens k1 balls of radius α1r1 +α2r2 = 4r1 and k2 balls of radius

α2r2 = 0, which is a 4-approximate solution to I .

For the remainder of the proof we will assume that
∑

v∈L1
cov1(v) > k1 −2. If the fractional

coverages {(cov1(v),cov2(v))}v∈X are in PI , then there must be an integral solution (C1,C2) of

I such that balls of radius r1 centered around points of S1 cover at least k1 −1 points of L1.

Moreover, since the pairwise distance between points of L1 is strictly more than α1r1 = 4r1,

each ball of radius r1 of C1 can cover at most one point in L1. Thus, there is at most one

ball centered at some point v1 ∈C1 that does not cover a point of L1 and we can guess v1 by

enumerating over all possibilities. By opening balls of radius 2r1 around points of L1 covered

by balls centered at points in C1, and a ball of radius r1 around v1, we can cover all points that

are covered by balls centered at points in C1. We remove the ball of radius r1 around v1 from

the metric X , update m by subtracting the number of points in this ball around v1, and reduce

k1 by 1. For simplicity of notation, we still refer to these updated quantities as X , m and k1.

This now implies there is a feasible solution to the following question: Is it possible to open k1

balls of radius 2r1 only centered at points in L1, and k2 balls of radius 0 only centered at points

of L (this is without loss of generality as every point in X is co-located with a point in L by the

definition of a contracted instance) to cover at least m points. We claim that this is a laminar

instance according to the following definition.

Definition 4.3.6. An instance of robust 2-NUkC, I = ((X ,d), (k1,r1), (k2,r2),m) is said to be

laminar if we are given sets L1,L2 ⊆ X such that the following are satisfied.

1. The ki balls of radius ri are only allowed to be centered at points in Li , i ∈ {1,2};

2. B(u,ri )∩B(v,ri ) =; for all u, v ∈ Li , i ∈ {1,2};

3. C (v)∩C (v ′) =; for all v, v ′ ∈ L1, where C (v) = {u ∈ L2 : B(v,r1)∩B(u,r2) ̸= ;} are the

children of v .

We refer the reader to Figure 4.2 for an illustration of a laminar instance. Due to this laminar

44



4.3 A Bottom-up Algorithm for Robust 2-NUkC

v1 v2 v3
u1,1

u1,2

u1,3 u2,1

u2,2

u2,3
u3,1

u3,2

u3,3

Figure 4.2: Example of a laminar instance with L1 = {v1, v2, v3} and C(vi ) = {ui ,1,ui ,2,ui ,3} for
all i ∈ {1,2,3}

structure, we can easily solve laminar instances using standard dynamic programming

techniques.

Lemma 4.3.7. There is a polynomial time algorithm based on dynamic programming that

exactly solves a given laminar robust 2-NUkC instance I = ((X ,d), (k1,r1), (k2,r2),m) with sets

of candidate centers L1,L2.

The precise details of the dynamic programming algorithm and the proof of Lemma 4.3.7 are

given in Appendix A. Equipped with this definition and Lemma 4.3.7, we now formally show

why our updated contracted instance is laminar, and also how to solve it.

Claim 4.3.8. The updated instance ((X ,d), (k1,2r1), (k2,r2),m) where r2 = 0 with sets L1 and L

of candidate centers for balls of radius 2r1 and 0 respectively, is a laminar instance.

Proof. For every v ∈ L1, let C (v) = {p ∈ L2 : B(v,2r1)∩B(p,0) ̸= ;}. We claim that for any

u, v ∈ L1, C (v)∩C (u) = ;. Suppose for a contradiction that there are u, v ∈ L̂1 such that

C (v)∩C (u) ̸= ; and let p be a point in the intersection. Then d(u, v) ≤ d(u, p)+d(p, v) ≤ 4r1

by triangle inequality, but we know that the pairwise distance of points in L1 is strictly more

than 4r1, a contradiction. This also shows that B(u,2r1)∩B(v,2r1) =; ∀u, v ∈ L1. Also, since

d(u, v) > 0, B(u,0)∩B(v,0) =; for any u, v ∈ L as per the definition of a contracted instance.

We add all points p in L that do not appear in C (v) for any v ∈ L1 to the set C (v) of an arbitrary

v ∈ L1.

Thus, we can find a solution to this instance using Lemma 4.3.7. A solution to this problem

will either result in a 2-approximation for I , or, if the algorithm of Lemma 4.3.7 returns

infeasible for each guess of v1, then it implies that there is no integral solution to I in which

balls of radius r1 cover at least k1 −1 points of L1. Hence,
∑

v∈L1
cov1(v) ≤ k1 −2 separates

{(cov1(v),cov2(v))}v∈X from PI which is then fed back to the ellipsoid algorithm. This finishes

the proof of Lemma 4.3.4.

45



Chapter 4. The Non-Uniform k-Center Problem with Three Types of Radii

4.4 Conclusion

In this paper we developed a bottom-up framework for NUkC that allowed us to reduce

from t-NUkC to robust (t − 1)-NUkC. A constant approximation for 3-NUkC follows as a

corollary from the work of CN [CN21]. This bottom-up approach when applied to robust 2-

NUkC a gives an alternate presentation of the algorithm of [CN21] with the same guarantees

but has a simpler analysis. Thus, further progress is made towards obtaining a constant

approximation for t-NUkC when t is a constant. We believe that this bottom-up approach is a

promising approach for proving this conjecture in full generality, which remains an exciting

open problem.

46



5 Nearly Tight and Oblivious
Algorithms for Explainable Clustering

This chapter is based on joint work with Buddhima Gamlath, Adam Polak, and Ola

Svensson [Gam+21]. It has been accepted to The 35th Conference on Neural Information

Processing Systems (NeurIPS 2021) under the title

Nearly Tight and Oblivious Algorithms for Explainable Clustering.

5.1 Introduction

An important topic in current machine learning research is understanding how models actually

make their decisions. For a recent overview on the subject of explainability and interpretability,

see, e.g., [Mol19; Mur+19]. Many good methods exist (e.g. [RSG16]) for interpreting black-box

models, so called post-modeling explainability, but this approach has been criticized [Rud19]

for providing little insight into the data. Currently, there is a shift towards designing models

that are interpretable by design.

Clustering is a fundamental problem in unsupervised learning. A common approach to

clustering is to minimize the k-medians or k-means objectives, e.g., with the celebrated

Lloyd’s [Llo82] or k-means++ [AV07] algorithms. Both objectives are also widely studied

from a theoretical perspective, and, in particular, they admit constant-factor approximation

algorithms running in polynomial time [Cha+02; Byr+15; Kan+04; Ahm+20].

In their recent paper [Das+20], Dasgupta et al. were the first to study provable guarantees for

explainable clustering. They define a k-clustering to be explainable if it is given by a decision

tree, where each internal node splits data points with a threshold cut in a single dimension

(feature), and each of the k leaves corresponds to a cluster (see Figure 5.4).

This definition is motivated by the desire to have a concise and easy-to-explain reasoning

behind how the model chooses data points that form a cluster. See the original paper [Das+20]

for an extensive discussion of motivations and a survey of previous (empirical) approaches to

explainable clustering.

47



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

Figure 5.1: Non-explainable
clustering

Figure 5.2: Explainable
clustering

x1 ≤ 0.4

x2 ≤ 0.6

Figure 5.3: Threshold tree

Figure 5.4: Examples of an optimal non-explainable and a costlier explainable clustering of the
same set of points in R2, together with the threshold tree defining the explainable clustering.

The central question to study in this setting is that of the price of explainability: How much

do we have to lose—in terms of a given objective, e.g., k-medians or k-means—compared to

an optimal unconstrained clustering, if we insist on an explainable clustering, and can we

efficiently construct such a clustering?

Dasgupta et al. [Das+20] proposed an algorithm that, given an unconstrained

(non-explainable) reference clustering 1, produces an explainable clustering losing at most a

multiplicative factor of O(k) for the k-medians objective and O(k2) for k-means, compared to

the reference clustering. They also gave a lower bound showing that an Ω(logk) loss is

unavoidable, both for the k-medians and k-means objective. Later, Laber and

Murtinho [LM21] improved over the upper bounds in a low-dimensional regime d ≤ k/log(k),

giving an O(d logk)-approximation algorithm for explainable k-medians and an

O(dk logk)-approximation algorithm for explainable k-means.

5.1.1 Our contributions

Improved clustering cost. We present a randomized algorithm that, given k centers defining

a reference clustering and a number p ≥ 1, constructs a threshold tree that defines an

explainable clustering that is, in expectation, worse than the reference clustering by at most a

factor of O(kp−1 log2 k) for the objective given by the ℓp -norm. That is O(log2 k) for

k-medians and O(k log2 k) for k-means.

Simple and oblivious algorithm. Our algorithm is remarkably simple. It samples threshold

cuts uniformly at random (for k-medians; k-means and higher ℓp -norms need slightly fancier

distributions) until all centers are separated from each other. In particular, the input to the

algorithm includes only the centers of a reference clustering and not the data points.

1A reference clustering can be obtained, e.g., by running a constant-factor approximation algorithm for a
given objective function. Then, the asymptotic upper bounds of the explainable clustering cost compared to the
reference clustering translate identically to the bounds when compared to an optimal clustering.

48



5.1 Introduction

Table 5.1: Algorithms and lower bounds for explainable k-clustering in Rd . For a given
objective function, how large a multiplicative factor do we have to lose, compared to an
optimal unconstrained clustering, if we insist on an explainable clustering?

k-medians k-means ℓp -norm

A
lg

o
ri

th
m

s

O(k) O(k2) Dasgupta et al. [Das+20]

O(d logk) O(kd logk) Laber and Murtinho [LM21]

O(log2 k) O(k log2 k) O(kp−1 log2 k) This paper

O(logk loglogk) O(k logk loglogk) Makarychev and Shan [MS21]

O(logk loglogk) O(k logk) Esfandiari et al. [EMN22]

O(d log2 d) Esfandiari et al. [EMN22]

O(k1−2/d polylogk) Charikar and Hu [CH22]

Lo
w

er
b

o
u

n
d

s Ω(logk) Ω(logk) Dasgupta et al. [Das+20]

Ω(k) Ω(kp−1) This paper

Ω(k/logk) Makarychev and Shan [MS21]

Ω(min(d , logk)) Ω(k) Esfandiari et al. [EMN22]

Ω(k1−2/d /polylogk) Charikar and Hu [CH22]

As a consequence, the algorithm cannot overfit the data (any more than the reference

clustering possibly already does), and the same expected cost guarantees hold for any future

data points not known at the time of the clustering construction. Besides, the algorithm is

fast; its running time does not depend on the number of data points n. A naive

implementation runs in time O(dk2), and in Section 5.3.3, we show how to improve it to

O(dk log2 k) time, which is near-linear in the input size dk of the k reference centers.

Nearly-tight bounds. We complement our results with a lower bound. We show how to

construct instances of the clustering problem such that any explainable clustering must be at

leastΩ(kp−1) times worse than an optimal clustering for the ℓp -norm objective. In particular,

this improves the previousΩ(logk) lower bound for k-means [Das+20] toΩ(k) .

In consequence, we give a nearly-tight answer to the question of the price of explainability.

We leave a log(k) gap for k-medians, and a log2(k) gap for k-means and higher ℓp -norm

objectives. See Table 5.1 for a summary of the upper and lower bounds discussed above and

recent independent works discussed in Section 5.1.3.

5.1.2 Technical overview

The theoretical guarantees obtained by Dasgupta et al. [Das+20] depend on the number of

clusters k and the height of the threshold tree obtained H . Their algorithm loses, compared

49



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

to the input reference clustering, an O(H) factor for the k-medians cost and O(Hk) for k-

means. These approximations are achieved by selecting a threshold cut that separates some

two centers and minimizes the number of points that get separated from their centers in the

reference clustering. This creates two children of a tree node, and the threshold tree is created

by recursing on each of the children. The height of the tree H may need to be k−1. For example,

consider the data set inRk consisting of the k standard basis vectors (see Figure 5.5). Laber and

Murtinho [LM21] replace the dependence on H with d , the dimension of the data set, by first

constructing optimal search trees for each dimension and then carefully using them to guide

the construction of the threshold tree. In our work, we obtain improved guarantees by using

randomized cuts that are oblivious to the data points and depend only on the reference centers,

x1 ≤ 0.5

x2 ≤ 0.5

· · ·

xk−1 ≤ 0.5

ek ek−1

· · ·

e2

e1

Figure 5.5: An optimal threshold tree
for the k standard basis vectors in Rk .
Any optimal threshold tree on this
data set has height k −1.

in contrast to the above-mentioned two prior

approaches, which selected cuts based on the data

points.

There are two components to achieving our improved

guarantees that correspond with two aspects of the

minimum cut algorithm of [Das+20]: the use of the

minimum cut, and the height of the threshold tree

produced. The first observation is that, for the ℓ1-

norm, we do not lose in the analysis by taking a cut

uniformly at random compared to always using the

minimum cut. (The corresponding distribution for

higher ℓp -norms is proportional to the p-th power of

the distance to the closest center.) Indeed, using a random cut makes us robust against

specifically engineered examples, such as the one that fools the minimum cut algorithm

of [Das+20] (see Section 5.6) In that example we add dimensions in which a cut is minimum,

but these minimum cuts produce a tree of heightΩ(k) whose cost isΩ(k) times larger than

the optimum.

However, threshold trees of heightΩ(k) are unavoidable in certain instances as seen in the

example with k standard basis vectors (Figure 5.5). This leads to our second observation

that it is necessary to use a tighter upper bound on the cost of reassigning a point since any

height k −1 threshold tree produced on this example is actually optimal. Using the diameter

definition in [Das+20], the cost of each cut is upper bounded by k while the actual distance

between any two centers is at most 2, which is also a valid upper bound for the reassignment

cost. Hence, we use the maximum distance between any two centers to upper bound the cost

of misclassifying a point.

Limitations and further work.

Remark 5.1.1. The conjecture made below has recently been resolved in the positive. See

Chapter 6.

We conjecture that our k-medians algorithm is asymptotically optimal. In particular, we

50



5.1 Introduction

believe the actual approximation ratio of our algorithm is 1+ Hk−1, where Hn is the n-th

harmonic number (recall that ln(n) ≤ Hn ≤ 1+ ln(n)). There are two potential barriers in our

current analysis that prevent us from demonstrating this optimality. The first is that our upper

bound on the cost increase of assigning a single point to a wrong center is not tight, and

secondly, our analysis may include the cost of the same point multiple times. Despite the

further developments mentioned in Section 5.1.3, it still remains to fully resolve the correct

asymptotic price of explainability.

Some potential directions to expanding our work include parallelizations, generalizing the

notion of explainability, and defining natural clusterability assumptions under which the price

of explainability is reduced. Constructing a threshold tree seems inherently sequential; it

would be interesting to explore parallelizations for faster implementation. Another direction

would be to allow each node to be a hyperplane in a chosen number of dimensions instead

of only splitting along one feature. Finally, it seems a non-trivial question to find a right

clusterability assumption on the data points distribution—that would allow us to overcome

the existing lower bounds—because these lower bounds are in fact very “clusterable” instances,

in the traditional usage of this notion.

5.1.3 Independent work

We note independent further developments by Makarychev and Shan [MS21]; Esfandiari,

Mirrokni, and Narayanan [EMN22]; and Charikar and Hu [CH22].

Makarychev and Shan [MS21] showed O(logk loglogk) and O(k logk loglogk) upper bounds

for k-medians and k-means, respectively, thus improving over our bounds by a factor of
logk/loglogk. Their k-medians algorithm is essentially the same as our modified Algorithm 3

(see Section 5.3.2), but they provide a tighter analysis. Their k-means upper bound follows

from combining their k-medians algorithm with their insightful reduction from k-means to

k-medians that loses a factor of O(k). However, the k-means algorithm resulting from that

combination is essentially the same as our Algorithm 4. They also provide anΩ(k/logk) lower

bound for k-means, which is slightly worse than ours. Finally, they study the explainable

k-medoids problem (i.e., k-medians with ℓ2 norm), and provide an O(log
3/2 k) upper bound

and anΩ(logk) lower bound.

Esfandiari, Mirrokni, and Narayanan [EMN22] also give an O(logk loglogk) upper bound for

k-medians. Their algorithm is essentially the same as our (unmodified) Algorithm 3, and,

again, they provide a tighter analysis. They also give an O(k logk) upper bound for k-means,

improving over the result of Makarychev and Shan by a factor of loglogk. Their k-means

algorithm is similar to our Algorithm 4 but samples cuts from a different distribution. They

also match ourΩ(k) lower bound for k-means, and improve the k-medians lower bound of

Dasgupta et al. [Das+20] toΩ(min(d , logk)).

Charikar and Hu [CH22] focus on explainable k-means and present an

51



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

O(k1−2/d poly(d logk))-approximation algorithm, which is better than any previous algorithm

when d = O(logk/loglogk) (in particular, for any constant dimension d). Resorting to an

O(k polylogk)-approximation algorithm (e.g., [MS21]) when this is not the case, they obtain

an O(k1−2/d polylogk) upper bound. They match it with anΩ(k1−2/d /polylogk) lower bound,

which is tight up to polylogarithmic factors.

5.2 Preliminaries

Following the notation of [Das+20], we use bold variables for vector values and corresponding

non-bold indexed variables for scalar coordinates. Intuitively, a clustering is explainable

because the inclusion of a data point x = [x1, . . . , xd ] to a particular cluster is “easily explained”

by whether or not x satisfies a series of inequalities of the form xi ≤ θ. These inequalities

are called threshold cuts, defined by a coordinate i ∈ [d ] (denoting the set {1,2, . . . ,d}) and a

threshold θ ∈R. More precisely, a threshold tree is a binary tree where each non-leaf node is a

threshold cut (i ,θ) which assigns the point x of that node into the left child if xi ≤ θ and the

right child otherwise. A clustering is explainable if the clusters are in bijection to the leaves of

a threshold tree with exactly k leaves that started with all the data points at the root.

Given a set of points X = {x1, x2, . . . , xn} ⊆Rd and its clustering {C 1, . . . ,C k },
⋃k

j=1 C j =X , the

k-medians cost of the clustering is defined in [Das+20] as

cost1(C 1, . . . ,C k ) =
k∑

j=1
min
µ∈Rd

∑
x∈C j

∥x −µ∥1 =
k∑

j=1

∑
x∈C j

∥x −median(C j )∥1.

The k-means cost is defined analogously with the square of the ℓ2 distance of every point to

mean(C j ).

For a set of centers U = {µ1, . . . ,µk } ⊆ Rd , a non-explainable clustering {C̃ 1, . . . ,C̃ k } of X is

given by C̃ j = {x ∈ X | µ j = argminµ∈U ∥x −µ∥1}, and we write cost1(U ) = cost1(C̃ 1, . . . ,C̃ k ).

Note that cost1(U ) =∑
x∈X minµ∈U ∥x −µ∥1.

Given a threshold tree T , the leaves of T induce an explainable clustering {Ĉ 1, . . . ,Ĉ k }, and we

write cost1(T ) = cost1(Ĉ 1, . . . ,Ĉ k ). In the analyses, however, we often upper bound the cost of

each explainable cluster Ĉ j using the corresponding reference center µ j :

cost1(T ) ≤
k∑

j=1

∑
x∈Ĉ j

∥x −µ j∥1.

These may not be optimal center locations, yet we are still able to obtain guarantees that are

polylog away from being tight.

52



5.3 Explainable k-Medians Clustering

We generalize the above to higher ℓp -norms, p ≥ 1, as follows

costp (C 1, . . . ,C k ) =
k∑

j=1
min
µ∈Rd

∑
x∈C j

∥x −µ∥p
p , costp (T ) ≤

k∑
j=1

∑
x∈Ĉ j

∥x −µ j∥p
p .

5.3 Explainable k-Medians Clustering

In this section we present our algorithm for explainable k-medians and its analysis. Recall that

our algorithm is oblivious to the data points: It determines the threshold tree using only the

center locations. The algorithm simply samples a sequence of cuts until it defines a threshold

tree with each center belonging to exactly one leaf. In what follows, we elaborate on this

process in detail.

The algorithm’s input is a set of centers U = {µ1,µ2, . . . ,µk } ⊂ Rd . We consider cuts that

intersect the bounding box of U . Letting Ii = [min j∈[k]µ
j
i ,max j∈[k]µ

j
i ] be the interval between

the minimum and maximum i -coordinate of centers, the set of all possible cuts that intersect

the bounding box of U is AllCuts = {(i ,θ) : i ∈ [d ],θ ∈ Ii } . Our algorithm uses a stream of

independent uniformly random cuts from AllCuts. In particular, the probability density

function of (i ,θ) ∈ AllCuts is 1/L where L = ∑
i∈[d ] |Ii | is the sum of the side lengths of the

bounding box of U .

The algorithm simply takes cuts from this stream until it produces a threshold tree. To this end,

it maintains a tentative set of tree leaves, each identified by a subset of centers, and continues

until it has k leaves of singleton sets. We say a cut splits a leaf if the cut properly intersects

with the bounding box of the corresponding subset of centers. In other words, a cut (i ,θ)

splits a leaf B if and only if the two sets B− = {µ ∈ B :µi ≤ θ} and B+ = {µ ∈ B :µi > θ} are both

non-empty. At the beginning, the algorithm starts with a single leaf identified by U , the set

of all centers. It then samples a cut (i ,θ) and checks if it splits any existing leaf. If so, it saves

the cut, and for each leaf B that gets split by the cut into B− and B+, adds B− and B+ as two

new leaves rooted at B . These saved cuts define the output threshold tree. We present the

pseudo-code as Algorithm 3.

Algorithm 3: Explainable k-medians algorithm.

19 Input: A collection of k centers U = {µ1,µ2, . . . ,µk } ⊂Rd .
20 Output: A threshold tree with k leaves.
21 Leaves ← {U }
22 while |Leaves | < k do
23 Sample (i ,θ) uniformly at random from AllCuts.
24 for each B ∈ Leaves that are split by (i ,θ) do
25 Split B into B− and B+ and add them as left and right children of B .
26 Update Leaves.

27 return the threshold tree defined by all cuts that separated some B .

53



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

5.3.1 Cost analysis

We show that Algorithm 3 satisfies the following guarantees.

Theorem 9. Given reference centers U = {µ1,µ2, . . . ,µk }, Algorithm 3 outputs a threshold tree T

whose expected cost satisfies

E[cost1(T )] ≤O(log(k) · (1+ log(cmax/cmin))) ·cost1(U ) ,

where cmax and cmin denote the maximum and minimum pairwise distance between two

centers in U , respectively. Furthermore, with probability at least 1−1/k, Algorithm 3 outputs a

threshold tree T from a distribution with E[cost1(T )] ≤O(log2 k) ·cost1(U ).

The (more involved) proof of the furthermore statement is given in Section 5.3.2. We remark

that the success probability 1−1/k can be made larger by only slightly increasing the hidden

constant in the cost guarantee. Furthermore, in Section 5.3.2, we give a slight adaptation of

the above algorithm that has an expected cost bounded by O(log2 k) ·cost1(U ). The remaining

part of this section is devoted to proving the upper bound on the expected cost of Algorithm 3.

Proof outline. First, in Lemma 5.3.1, we show that a random cut in expectation separates

cost1(U )/L points from their closest centers. Indeed, note that the probability of separating a

point x from its center π(x) is at most ∥x − π(x)∥1/L, and on the other hand,

cost1(U ) = ∑
x∈X ∥x −π(x)∥1, hence the bound follows from linearity of expectation. Each

such separated point incurs a cost of at most cmax. Next, in Lemma 5.3.2, we show that with

good probability O(log(k) · L/cmax) random cuts separate all pairs of centers that are at

distance at least cmax/2 from each other. Morally, the cost of halving cmax, which we will need

to perform 1+ log(cmax/cmin) many times, is therefore cost1(U )/L · cmax ·O(log(k) ·L/cmax)

=O(log(k)) ·cost1(U ), and the bound follows (see Lemma 5.3.3).

Formal analysis of the expected cost. We first bound the number of points that are separated

from their closest center by a random cut. This quantity is important as it upper bounds the

number of points whose cost is increased in the final tree due to the considered cut. Recall

that L =∑d
i=1 |Ii | denotes the total side lengths of the bounding box of the input centers U .

We also let fi (θ) be the number of points separated from their closest center by the cut (i ,θ).

Lemma 5.3.1. We have E(i ,θ)[ fi (θ)] ≤ cost1(U )/L where the expectation is over a uniformly

random threshold cut (i ,θ) ∈ AllCuts.

Proof. For a point x ∈X let π(x) denote the closest center in U . Then by definition,

cost1(U ) = ∑
x∈X

∥x −π(x)∥1 =
d∑

i=1

∑
x∈X

|xi −π(x)i | .

Moreover, if we let fi (θ) be the number of points separated from their closest center by the cut

54



5.3 Explainable k-Medians Clustering

(i ,θ), we can rewrite the cost of a fixed dimension i as follows:

∑
x∈X

|xi −π(x)i | =
∑

x∈X

∫ ∞

−∞
1[θ between xi and π(x)i ]dθ =

∫ ∞

−∞
fi (θ)dθ .

We thus have cost1(U ) =∑d
i=1

∫ ∞
−∞ fi (θ)dθ.

At the same time, if we let [ai ,bi ] denote the interval Ii , then 1
|Ii |

∫ bi
ai

fi (θ)dθ equals the number

of points separated from their closest center by a uniformly random threshold cut (i ,θ) : θ ∈ Ii

along dimension i . Thus the expected number of points separated from their closest center by

a uniformly random threshold cut in AllCuts is

d∑
i=1

|Ii |
L

· 1

|Ii |
∫ bi

ai

fi (θ)dθ = 1

L

d∑
i=1

∫ bi

ai

fi (θ)dθ ≤ 1

L

d∑
i=1

∫ ∞

−∞
fi (θ)dθ = cost1(U )/L ,

where we used fi (θ) ≥ 0 for the inequality.

The above lemma upper bounds the expected number of points whose cost increases from

a uniformly random threshold cut. We proceed to analyze how much this increase is, in

expectation. Let Leaves(t) denote the state of Leaves at the beginning of the t-th iteration

of the while loop of Algorithm 3 and let cmax(t ) = maxB∈Leaves(t ) maxµi ,µ j∈B ∥µi −µ j∥1 denote

the maximum distance between two centers that belong to the same leaf at the beginning

of the t-th iteration. With this notation we have that Leaves(1) = {U } and that cmax(1) equals

the cmax in the statement of Theorem 9. Observe that cmax(t) ≥ cmax(t +1) and cmax(t) = 0

if |Leaves | = k (i.e., when each leaf contains exactly one center). Understanding the rate

at which cmax(t) decreases is crucial for our analysis because of the following observation:

Consider a leaf B ∈ Leaves(t ) and a point x ∈X that has not yet been separated from its closest

center π(x) ∈ B . If the threshold cut selected in the t-th iteration separates x from π(x) then

the cost of x in the final threshold tree is upper bounded by maxµ∈B ∥x −µ∥1, which, by the

triangle inequality, is at most

max
µ∈B

∥x −π(x)∥1 +∥π(x)−µ∥1 ≤ ∥x −π(x)∥1 + cmax(t ) . (5.1)

In other words, a point that is first separated from its closest center by the threshold cut

selected in the t-th iteration has a cost increase of at most cmax(t ).

Lemma 5.3.2. Fix the the threshold cuts selected by Algorithm 3 during the first t −1 iterations

(this determines the random variable Leaves(t ) and thus cmax(t )). Let M = 3ln(k) ·2L/cmax(t ).

Then

Pr[cmax(t +M) ≤ cmax(t )/2] ≥ 1−1/k ,

where the probability is over the random cuts selected in iterations t , t +1, . . . , t +M −1.

Proof. Consider two centers µi and µ j that belong to the same leaf in Leaves(t). The

probability that a uniformly random threshold cut from AllCuts separates these two centers

55



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

equals ∥µi −µ j∥1/L. Thus if the centers are at distance at least cmax(t )/2, the probability that

they are not separated by any of M independently chosen cuts is at most(
1− cmax(t )/2

L

)M

=
(
1− cmax(t )

2L

)3ln(k)·2L/cmax(t )

≤ (1/e)3ln(k) = 1/k3 .

There are at most
(k

2

)
pairs of centers in the leaves of Leaves(t) at distance at least cmax(t)/2.

By the union bound, we thus have, with probability at least 1−1/k, that each of these pairs

are separated by at least one of the cuts selected in iterations t , t +1, . . . , t +M −1. In that case,

any two centers in the same leaf of Leaves(t +M) are at distance at most cmax(t)/2 and so

cmax(t +M) ≤ cmax(t )/2.

Equipped with the above lemmas we are ready to analyze the expected cost of the tree output

by Algorithm 3. Let (it ,θt ) denote the cut selected by Algorithm 3 in the t-th iteration. As

argued above in (5.1), cmax(t ) upper bounds the cost increase of the points first separated from

their closest center by the t-th threshold cut. Hence,

E [cost1(T )] ≤ cost1(U )+E
[∑

t
cmax(t ) fi t (θt )

]
,

where the sum is over the iterations of Algorithm 3 (and recall that fi (θ) denotes the number

of points separated from their closest center by the cut (i ,θ)). We remark that the right-hand

side is an upper bound (and not an exact formula of the cost) for two reasons: first, not every

separated point may experience a cost increase of cmax(t), and second, the right-hand side

adds a cost increase every time a cut separates a point from its closest center and not only the

first time. Nevertheless, we show that this upper bound yields the stated guarantee. We do so

by analyzing the expected cost increase of the cuts until cmax(t ) has halved. Specifically, let

cost-increase(r ) = ∑
t :cmax(t )∈(cmax/2r+1,cmax/2r ]

cmax(t ) fi t (θt )

be the random variable that upper bounds the cost increase caused by the cuts selected during

the iterations t when cmax/2r+1 < cmax(t ) ≤ cmax/2r . Then

E[cost1(T )] ≤ cost1(U )+∑
r
E[cost-increase(r )] ,

where the sum is over r from 0 to 1+⌊log2(cmax/cmin)⌋. The bound on the expected cost

therefore follows from the following lemma.

Lemma 5.3.3. For every r , E[cost-increase(r )] ≤ 12ln(k) ·cost1(U ).

Proof. First, Let M = 3ln(k) ·2L/cmax(t ) as in Lemma 5.3.2. Using Lemma 5.3.1, one can upper

bound the expected cost of M uniformly random cuts in iterations t , t +1, . . . , t +M −1 by

6ln(k) ·cost1(U ) and M cuts is very likely to halve cmax(t ) as in Lemma 5.3.2. Intuitively, it is

thus very likely that the cost of these M cuts upper bounds cost-increase(r ). The additional

56



5.3 Explainable k-Medians Clustering

constant factor of 2 in the statement of the lemma arises by considering the small “failure”

probability of such a trial.

For a formal proof, let t be the first iteration when cmax(t) ≤ cmax/2r and let M = 3ln(k) ·
2L/cmax(t ) as in Lemma 5.3.2. In the following, we use costM to denote the random variable

that equals the cost increase caused by adding M uniformly random cuts after the t-th iteration.

Then

E[costM ] ≤ M · cmax(t ) ·E(i ,θ)[ fi (θ)] ≤ M · cmax(t ) ·cost1(U )/L = 6ln(k) ·cost1(U ) ,

where the first inequality holds because cmax(t ) is monotonically decreasing and the second

inequality is by Lemma 5.3.1. At the same time, if we let H denote the event that cmax(t ) has

halved after adding these M cuts, i.e., that cmax(t +M) ≤ cmax(t)/2, then Pr[H ] ≥ 1−1/k by

Lemma 5.3.2. We now upper bound the expectation of cost-increase(r ) by considering “trials”

of M cuts until one of these succeeds in halving cmax(t ). Indeed, split the sequence of random

cuts selected by the algorithm after iteration t into such trials A1, . . . , Aℓ where each A j consist

of M cuts, and Aℓ is the first successful trial in the sense that selecting (only) those cuts after

iteration t would cause cmax(t ) to halve. Then we must have that cmax(t ) has halved also after

adding all the cuts in the ℓ trials. It follows that cost-increase(r ) is upper bounded by the cost

increase caused by the cuts in A1, A2, . . . , Aℓ. We can thus upper bound E[cost-increase(r )] by

the expected cost of these trials until one succeeds:

∞∑
i=0

Pr[H ] ·Pr[¬H ]i · (E [costM | H ]+ i ·E [costM | ¬H ]) ,

where we use E[costM | H ] and E[costM | ¬H ] for the expected costs of a successful and

unsuccessful trials, respectively. By standard calculations (as for the geometric distribution),

this upper bound simplifies to E [costM | H ] + Pr[¬H ]
Pr[H ] E [costM | ¬H ]. This can be further

rewritten as

1

Pr[H ]
· (Pr[H ] ·E[costM | H ]+Pr[¬H ] ·E[costM | ¬H ]) = E[costM ]

Pr[H ]
≤ 12ln(k) ·cost1(U ) ,

where we used that Pr[H ] ≥ 1−1/k ≥ 1/2.

5.3.2 Upper bounding cost by a factor of O(log2 k)

Observe that our analysis of Algorithm 3 implies that the expected cost of the output tree is at

most O(log2(k) ·cost1(U )) whenever cmax and cmin do not differ by more than a polynomial

factor in k. However, our current techniques fail to upper bound this expectation by a factor

o(k) for general cmax and cmin. To illustrate this point, consider the k-dimensional instance

with a single point x at the origin and k centers where the i -th center µi is located at the i -th

standard basis vector scaled by the factor 2i . In our analysis, we upper bound the cost of x with

its maximum distance to those centers that remain in the same leaf whenever x is separated

from its closest center µ1. This yields the following upper bound on the expected cost of x in

57



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

the final tree

k∑
i=2

2i Pr[x is separated from µ1 and µi is the farthest remaining center] .

Due to the exponentially increasing distances, this is lower bounded by

k∑
i=2

2i−1 Pr[x is separated from µ1 and µi is a remaining center].

Now note that the probability in this last sum equals

Pr[x is separated from µ1 before x is separated from µi ] = 2/(2+2i ).

It follows that any analysis of Algorithm 3 that simply upper bounds the reassignment cost of

a point with the maximum distance to a remaining center cannot do better than a factor of

Ω(k).

We overcome this obstacle by analyzing a slight modification of Algorithm 3 that avoids these

problematic cuts that separate very close centers. Recall the notation used in the previous

section: Leaves(t) denotes the state of Leaves at the beginning of the t-th iteration of the

while loop and cmax(t ) = maxB∈Leaves(t ) maxµi ,µ j∈B ∥µi −µ j∥1 denotes the maximum distance

between two centers that belong to the same leaf at the beginning of the t-th iteration. We

now modify Algorithm 3 by replacing Line 5 “Sample (i ,θ) uniformly at random from AllCuts”

by

Sample (i ,θ) uniformly at random from those cuts in AllCuts that do not separate

two centers that are within distance at most cmax(t )/k4.

This modification allows us to prove a nearly tight guarantee on the expected cost.

Theorem 10. Given reference centers U = {µ1,µ2, . . . ,µk }, modified Algorithm 3 outputs a

threshold tree T whose expected cost satisfies E[cost1(T )] ≤O(log2 k) ·cost1(U ).

Before we give the proof of the above theorem, we explain how it implies the furthermore

statement of Theorem 9. Recall that the difference between Algorithm 3 and the modified

version is that Algorithm 3 samples cuts uniformly at random whereas the modified version

only adds a random cut if it does not separate two centers that are within distance cmax(t )/k4.

Algorithm 3 adds k −1 cuts to its tree. We now argue that these k −1 cuts are with probability

at least 1−1/k sampled from the same distribution as the k −1 cuts added by the modified

version. This then implies the furthermore statement of Theorem 9 since Theorem 10 says

that the expected cost of the modified algorithm is O(log2 k) ·cost1(U ). To this end, consider

the i -th such cut and let t be the iteration when the (i −1)-th cut was added to the tree. Then

when the i -th cut is added there must be two centers in the same leaf at distance cmax(t).

58



5.3 Explainable k-Medians Clustering

So the probability that two centers within distance cmax(t)/k4 are separated by the i -th cut

(which is a uniformly random cut among all cuts that would separate at least two centers in

the same leaf) is at most 1/k4. There can be at most
(k

2

)
such pairs and so by the union bound,

we can conclude that, with probability at least 1−1/k2, the i -th cut of Algorithm 3 does not

separate any such nearby centers. We can thus view the distribution from which Algorithm 3

samples the i -th cut as follows: With probability p ≤ 1/k2 it samples a uniformly random

cut that separates two centers within distance cmax(t)/k4 and with remaining probability it

samples a uniformly random cut that does not separate any such centers, i.e., from the same

distribution that the modified algorithm samples the i -th cut from. Applying the union bound

over the k−1 cuts then yields the furthermore statement of Theorem 9. Finally, we remark that

the same arguments imply a larger success probability if applied to the modified algorithm

that only adds cut that do not separate centers within distance cmax(t )/kℓ for some ℓ≥ 4.

In the remainder of this section, we prove Theorem 10, i.e., that modified Algorithm 3 returns

a threshold tree whose expected cost is O(log2 k) ·cost1(U ). The proof is similar to the cost

analysis in Section 5.3.1 with the main difference being that here we are more careful in

bounding the cost when considering different “rounds” of the algorithm. In the analysis it will

be convenient to take the following viewpoint of the modified algorithm: it samples a uniformly

random cut and then discards it if it separates two centers within distance cmax(t )/k4. While

the number of iterations may increase with this viewpoint, the output distribution is the same

as the modified algorithm in that, in each iteration, a cut is sampled uniformly at random

among those that do not separate any centers within distance cmax(t )/k4. In the following, we

refer to this as the sample-discard algorithm and we prove Theorem 10 by showing that the

sample-discard algorithm outputs a tree whose expected cost is O(log2 k) ·cost1(U ).

Let (it ,θt ) denote the (uniformly random) cut selected in the t-th iteration of the sample-

discard algorithm and recall the following notation: Leaves(t ) denotes the state of Leaves at the

beginning of the t-th iteration of the while-loop and cmax(t ) = maxB∈Leaves(t ) maxµi ,µ j∈B ∥µi −
µ j∥1 denotes the maximum distance between two centers that belong to the same leaf at the

beginning of the t-th iteration. We start by observing that Lemma 5.3.2 readily generalizes to

the modified version.

Lemma 5.3.4. Fix the the threshold cuts selected by the sample-discard algorithm during the

first t − 1 iterations (this determines the random variable Leaves(t) and thus cmax(t)). Let

M = 3ln(k) ·4L/cmax(t ). Then

Pr[cmax(t +M) ≤ cmax(t )/2] ≥ 1−1/k ,

where the probability is over the random cuts selected in iterations t , t +1, . . . , t +M −1.

Proof. The proof is similar to that of Lemma 5.3.2 but some care has to be taken as certain

cuts are now discarded.

Consider two centersµi andµ j that belong to the same leaf in Leaves(t ). Further suppose that

59



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

cmax(t )/2 ≤ ∥µp −µq∥1 ≤ cmax(t ). We have that any cut (i ,θ) that separates these two centers

is considered (i.e., not discarded) by the sample-discard algorithm after the t-th iteration

unless (i ,θ) also separates two centers within distance cmax(t )/k4. Here we used that cmax(·) is

monotonically decreasing and so the set of cuts that are discarded if sampled is only decreasing

in later iterations. We can thus obtain the lower bound cmax(t )/(4L) on the probability that a

uniformly random cut separates µp and µq by subtracting

1

L

d∑
i=1

∫ ∞

−∞
1

[
θ separates two centers within distance cmax(t )/k4] dθ ≤ 1

L

(
k

2

)
cmax(t )

k4

from
1

L

d∑
i=1

∫ ∞

−∞
1[θ between µp

i and µq
i ]dθ ≥ 1

L
cmax(t )/2.

The proof now proceeds in the exact same way as that of Lemma 5.3.2. Indeed, if the centers

are at distance at least cmax(t)/2, the probability that they are not separated by any of M

independently chosen cuts is at most(
1− cmax(t )

4L

)M

=
(
1− cmax(t )

4L

)3ln(k)·4L/cmax(t )

≤ (1/e)3ln(k) = 1/k3 .

There are at most
(k

2

)
pairs of centers in the leaves of Leaves(t) at distance at least cmax(t)/2.

By the union bound, we thus have, with probability at least 1−1/k, that each of these pairs

are separated by at least one of the cuts selected in iterations t , t +1, . . . , t +M −1. In that case,

any two centers in the same leaf of Leaves(t +M) are at distance at most cmax(t)/2 and so

cmax(t +M) ≤ cmax(t )/2.

Now, similar to Section 5.3.1, we can upper bound the expected cost of the constructed

threshold tree T by

E [cost1(T )] ≤ cost1(U )+E
[∑

t
cmax(t ) fi t (θt )1[(it ,θt ) was added to the tree]

]
,

where the sum is over the iterations. We remark that, in contrast to Section 5.3.1, we have

strengthened the upper bound by only considering those cuts that were actually added to

the threshold tree by the modified algorithm. This refinement is necessary for obtaining

the improved guarantee. We now analyze the sum in the expectation by partitioning it into

1+⌊log2(cmax/cmin)⌋ rounds. Specifically for r ∈ {0,1 . . . ,⌊log2(cmax/cmin)⌋}, we let

cost-increase′(r ) = ∑
t :cmax(t )∈(cmax/2r+1,cmax/2r ]

cmax(t ) fi t (θt )1[(it ,θt ) was added to the tree]

be the cost of the cuts selected during the iterations t when cmax/2r+1 < cmax(t ) ≤ cmax/2r .

To upper bound E[cost-increase′(r )] we use activer (i ,θ) ∈ {0,1} to denote the indicator variable

of those cuts that separate two centers within distance cmax/2r and do not separate any two

60



5.3 Explainable k-Medians Clustering

centers within distance cmax/(2r+1k4).

Lemma 5.3.5. For a round r ,

E[cost-increase′(r )] ≤ 24ln(k) ·
d∑

i=1

∫ ∞

−∞
fi (θ)activer (i ,θ)dθ .

Before giving the proof of this lemma, let us see how it implies Theorem 10. For this, note

that a cut (i ,θ) only has activer (i ,θ) = 1 for at most O(log(k4)) many values of r . Indeed, let c

be the distance between the closest centers that (i ,θ) separates. Then any round r for which

activer (i ,θ) = 1 must satisfy cmax /(2r+1k4) ≤ c ≤ cmax /2r . Hence, we have

cost1(T ) ≤ cost1(U )+∑
r
E[cost-increase′(r )]

≤ cost1(U )+∑
r

24ln(k) ·
d∑

i=1

∫ ∞

−∞
fi (θ)activer (i ,θ)dθ

≤ cost1(U )+O(log2 k) ·
d∑

i=1

∫ ∞

−∞
fi (θ)dθ

=O(log2 k) ·cost1(U ) .

In other words, we proved that the sample-discard algorithm outputs a tree T with

E[cost1(T )] ≤O(log2 k) ·cost1(U ), which implies Theorem 10 since modifed Algorithm 3 and

the sample-discard algorithm have the same output distribution. It remains to prove the

lemma.

Proof of Lemma 5.3.5. Consider the first iteration t such that cmax(t) ≤ cmax/2r . Further

suppose that cmax(t) > cmax/2r+1 since otherwise cost-increase′(r ) = 0 and the statement is

trivial. We proceed to upper bound E[cost-increase′(r )] as follows. First note that the cost of a

random cut sampled in an iteration t ′ such that cmax/2r+1 ≤ cmax(t ′) ≤ cmax(t ) equals

cmax(t ′)
L

d∑
i=1

∫ ∞

−∞
fi (θ)1[(i ,θ) was added to the tree]dθ .

The cut (i ,θ) can be added to the tree only if it does not separate any centers within distance

cmax(t ′)/k4 ≥ cmax/(2r+1k4) and it must separate two centers within distance at most cmax(t ′) ≤
cmax/2r . In other words, any cut that is added to the tree must have activer (i ,θ) = 1. We can

thus upper bound the above cost of a single cut by

cmax(t )

L

d∑
i=1

∫ ∞

−∞
fi (θ)activer (i ,θ)dθ , (5.2)

where we also used that cmax(t ′) ≤ cmax(t ).

61



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

The proof now follows arguments that are again similar to those in Section 5.3.1. Select

M = 12ln(k) ·L/cmax(t) as in Lemma 5.3.4. We upper bound E[cost-increase(r )] by adding

“trials” of M cuts until cmax(·) goes below cmax/2r+1. (Strictly speaking this may not happen

after a multiple of M cuts but considering more cuts may only increase the cost of our upper

bound.) Let H be the event that the following M cuts causes cmax(·) to drop below cmax/2r+1.

By Lemma 5.3.4, Pr[H ] ≥ 1−1/k. Furthemore, the expected cost of M cuts is M times (5.2)

which equals

12ln(k) ·
d∑

i=1

∫ ∞

−∞
fi (θ)activer (i ,θ)dθ .

The statement now follows from the same “geometric distribution” calculations as in the proof

of Lemma 5.3.3.

5.3.3 Implementation details

Since we only use cuts that split at least one leaf, the algorithm in fact only needs to sample

cuts conditioned on this event. Note that if we sample only the cuts that split at least one leaf,

the while loop in Line 22 of Algorithm 3 runs for at most k −1 iterations. We now explain how

to efficiently sample cuts (Line 23), find the leaves split by a given cut (Line 24), and implement

the split operation (Lines 25–26).

We first show how to efficiently implement the split operation. For a cut (i ,θ) that splits a given

leaf B into B− and B+, the split operation can be implemented in O(d ·min(|B−|, |B+|) · log |B |)
time as follows: In each leaf B , we maintain d binary search trees T B

1 , . . . ,T B
d where T B

i stores

the i -th coordinate of the centers in B . Now, given a cut (i ,θ) and a leaf B that gets split by (i ,θ),

we can find the number of centers in B that have a smaller or equal i -th coordinate than θ using

T B
i in O(log |B |) time. Let b− be this number, and let b+ = |B |−b−. Suppose that b− ≤ b+. For

the other case, the implementation is analogous. In this case, we construct B− by initializing it

with d empty binary search trees and inserting the centers whose i -th coordinate is at most

θ to each of them. This takes O(d ·b− · log |B |) time. For B+, we just reuse the binary search

trees of B after removing the centers that belong to B−. This also takes O(d ·b− · log |B |) time.

Let τ(k) denote the running time of all splitting operations performed by the algorithm when

starting with a single leaf with k leaves. Then, τ(k) = τ(k−k ′)+τ(k ′)+O(d ·min(k−k ′,k ′)·logk)

and by induction, we conclude that τ(k) =O(dk log2 k).

To find the leaves that get separated by a cut, we employ the following data structure. For

each dimension i , we maintain a balanced interval tree T int
i . For each tentative leaf node with

centers B , we store the interval indicating the range of the i -th coordinate of B in T int
i . We

update the corresponding interval trees after each split operation, which amounts to removing

at most one interval and adding at most two intervals per node that gets split. Note that

the added and removed intervals for a single split operation for a fixed dimension can be

computed in O(logk) time using the previously described node binary search trees. Moreover,

adding and removing intervals to and from an interval tree with at most k intervals also takes

62



5.4 Explainable k-Means and General ℓp -norm Clustering

O(logk) time. As we have O(k) split operations in total, the time to maintain the interval trees

is O(dk logk). Now, given a cut (i ,θ), we can retrieve all the leaves that get separated by (i ,θ)

in O(log(k1)+k2) time where k1 is the number of tentative leaves and k2 is the number of

tentative leaves that get separated by the cut. To retrieve such leaves, we query the i -th interval

tree to find all intervals that contain the value θ. Since we sample at most k −1 cuts from the

conditioned distribution, the total time for this operation over all cuts and all dimensions is

O(dk logk).

What remains is to show that we can efficiently sample a uniform cut conditioned on the

event that it splits at least one leaf. To this end, in the interval trees described above, we also

maintain the lengths of the unions of intervals in each subtree. This length information can

be updated in O(logk ′) time where k ′ ≤ k is the number of intervals in an interval tree. Then

in O(d) time, one can sample a dimension i and in O(logk ′) time, sample a suitable θ value.

5.4 Explainable k-Means and General ℓp-norm Clustering

In this section, we generalize Theorem 10 to the explainable k-clustering problems with

assignment cost defined in terms of the ℓp -norm, which includes the explainable k-means

(p = 2) problem.

Recall that in Section 5.3, we sample cuts from the uniform distribution over AllCuts, and

consequently, the probability that a point x ∈X is separated from its closest center π(x) is

proportional to the ℓ1 distance between x and π(x). However, selecting cuts according to the

uniform distribution can be arbitrarily bad for higher p-norms even in one-dimensional space.

For example, consider the k-means (i.e. p = 2) problem with d = 1 where the cost of assigning

a point x to a center µ is defined as ∥x −µ∥2
2. Suppose we have two centers µ1 = −1 and

µ2 = D > 1, and fix one data point x = 0. The closest center to x is µ1 and hence the original

cost is 1. However, the expected cost of a uniformly random cut is ((D ·12 +1 ·D2)/(1+D) = D

which can be arbitrarily large.

To avoid such drastic costs, we sample cuts from a generalized distribution. Ideally, we

would like to sample cuts analogously to the case of k-medians so that the probability that

we separate a point x from its closest center π(x) is proportional to ∥x −π(x)∥p
p . However,

sampling from such a distribution seems very complicated if at all possible. Instead, we sample

from a slightly different distribution: Namely, for a p-norm where the cost of assigning a point

x to a center y is ∥x − y∥p
p , we sample cuts (i ,θ) from the distribution where the probability

density function of (i ,θ) is proportional to min j∈[k] |µ j
i −θ|p−1, the (p −1)-th power of the

minimum distance to a center along the i -th dimension. We call this distribution Dp .

Using samples from Dp with a modified version of Algorithm 3 yields Theorem 11.

Theorem 11. For every p ≥ 1, there exists a randomized algorithm that when given input

63



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

centers U = {µ1,µ2, . . . ,µk }, outputs a threshold tree T whose expected cost satisfies

E[costp (T )] ≤O(kp−1 log2 k) ·costp (U ).

Proof. To prove this, we consider a generalized version of Algorithm 3 where we sample

threshold cuts from the distribution Dp introduced in Section 5.4. Recall that Dp is defined

such that the p.d.f. of a cut (i ,θ) is proportional to the (p − 1)-th power of the minimum

distance from θ to a projection of a center in the i -th dimension.

We start by introducing some notation and making the definition of Dp precise. For a

dimension i ∈ [d ], let µ−
i = min j∈[k]µ

j
i and µ+

i = max j∈[k]µ
j
i . For a dimension i ∈ [d ] and two

coordinates x, y ∈R, let Ii (x, y) be the set of consecutive intervals along the i -th dimension

delimited by the coordinates x and y themselves and the projections of the centers in U that

lie between x and y . For example, consider the 2-dimensional instance with four centers

µ1, . . . ,µ4 shown in Figure 5.6. On the horizontal axis, two coordinates x and y are marked

along with the projections of the four centers µ1
1,µ2

1,µ3
1, and µ4

1. Here, I1(x, y) consists of the

three consecutive intervals [x,µ4
1], [µ4

1,µ2
1], and [µ2

1, y].

2

1x yµ4
1 µ2

1µ1
1 µ3

1

µ1

µ4

µ2
µ3

Figure 5.6: Intervals defined by projecting points onto a coordinate axis.

Observe that, by the definition of Ii (x, y), we have |x − y | =∑
[a,b]∈Ii (x,y) |b −a|.

Let

Iall =
⋃

i∈[d ]

{
(i , [a,b]) : [a,b] ∈Ii (µ−

i ,µ+
i )

}
denote the collection of all dimension–interval pairs that are delimited by the projections of

the centers onto the respective dimensions. We define

Lp = ∑
(i ,[a,b])∈Iall

|b −a|p .

With the introduced notation, the distribution Dp can be formally described as follows: We

first select a dimension i and an interval [a,b] ∈Ii (µ−
i ,µ+

i ) along with dimension i (i.e., we

64



5.4 Explainable k-Means and General ℓp -norm Clustering

select a dimension–interval pair (i , [a,b]) ∈Iall) with probability |b −a|p /Lp . Then we pick

θ ∈ [a,b] randomly such that the p.d.f. θ is

Pa,b(θ) := p ·2p−1

(b −a)p min(θ−a,b −θ)p−1.

Another key component of the design and analysis of the generalized algorithm is a pseudo-

distance function. For two points x , y ∈Rd , Let

I (x , y) = ⋃
i∈[d ]

{(i , [a,b]) : [a,b] ∈Ii (xi , yi )}.

We then define the pseudo-distance between x and y as

dp (x , y) = ∑
(i ,[a,b])∈I (x ,y)

|b −a|p .

Note that the p-th power of the ℓp distance, ∥x − y∥p
p , between two points x and y is defined

as
∑

i∈[d ] |xi − yi |p . It is easy to see that ∥x − y∥p
p ≥ dp (x , y) since

|xi − yi |p =
( ∑

[a,b]∈Ii (xi ,yi )
|a −b|

)p

≥ ∑
[a,b]∈Ii (xi ,yi )

|a −b|p

for each dimension i . For p = 1, we have equality.

A key observation now is that, if we sample a cut from Dp , the probability that it separates two

centers µg and µh is proportional to their pseudo-distance dp (µg ,µh).

5.4.1 The algorithm for ℓp -norms with p ≥ 1.

We now present the generalized algorithm. The only difference from the modified version

of Algorithm 3 is how we sample random cuts at Line 23. Recall from Section 5.3 that we

defined Leaves(t ) to denote the state of Leaves at the beginning of the t-th iteration. We define

c ′p,max(t ) as the maximum pseudo-distance between any pair of centers in a leaf in Leaves(t ).

Formally, c ′p,max(t ) = maxB∈Leaves(t ) maxµi ,µ j∈B dp (µi ,µ j ). Let c ′p,max = c ′p,max(1).

Now, in the sampling step (Line 32), we draw samples from Dp . However, we discard the cut

if it separates any two centers in a leaf whose pseudo-distance is at most c ′p,max(t)/k4. Note

that this is a generalization of the sample-discard algorithm from the proof of Theorem 10. We

present the pseudo-code in Algorithm 4.

Following the lines of the proof of Theorem 10, we now upper bound the expected cost of

Algorithm 4.

65



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

Algorithm 4: Generalized explainable clustering algorithm for higher ℓp -norms.

28 Input: A collection of k centers U = {µ1,µ2, . . . ,µk } ⊂Rd .
29 Output: A threshold tree with k-leaves.
30 Leaves ← {U }
31 while |Leaves | < k do
32 Sample a cut (i ,θ) from Dp

33 if (i ,θ) separates two centers that are closer than c ′p,max(·)/k4 in pseudo-distance

then
34 Discard the cut.

35 else
36 for each B ∈ Leaves that are split by (i ,θ) do
37 Split B into B− and B+ and add them as left and right children of B .
38 Update Leaves.

39 return the threshold tree defined by all cuts that separated some B .

Lemma 5.4.1. Fix the threshold cuts selected by Algorithm 4 during the first t −1 iterations. Let

M = 3 ·4 · ln(k) ·Lp /c ′p,max (t ). Then

Pr[c ′p,max(t +M) ≤ c ′p,max(t )/2] ≥ 1−1/k,

where the probability is over the random cuts selected in iterations t , t +1, . . . , t +M −1.

Proof. We begin by introducing a few more notations that are useful in the analysis. For

an iteration t , let TooClose(t) be the set of pairs of centers (µg ,µh) that satisfy dp (µg ,µh) ≤
c ′p,max(t)/k4. In other words, TooClose(t) contains pairs of centers that the algorithm is not

allowed to separate at the t-th iteration. Note that for any (µg ,µh) ∈ TooClose(t ), both µg and

µh will be in the same leaf in Leaves(t ). Let

Ibad(t ) = ⋃
(µg ,µh )∈TooClose(t )

I (µg ,µh)

be the set of dimension–interval pairs (i , [a,b]) such that making a cut in interval [a,b] along

dimension i will separate a pair of centers in TooClose. Observe that a cut that is made outside

of Ibad(t ) will not separate any pair of centers in TooClose.

Consider a leaf B ∈ Leaves(t) and two centers µg and µh in B such that

c ′p,max(t )/2 ≤ dp (µg ,µh) ≤ c ′p,max(t ).

Note that ∑
[a,b]∈Ibad(t )

|b −a|p ≤ ∑
(µg ′ ,µh′ )∈TooClose(t )

∑
(i ,[a,b])∈I (µg ′ ,µh′ )

|b −a|p

66



5.4 Explainable k-Means and General ℓp -norm Clustering

= ∑
(i ,[a,b])∈I (µg ′ ,µh′ )

dp (µg ′
,µh′

)

≤
(

k

2

)
c ′p,max(t )

k4 ≤
c ′p,max(t )

4
.

In the last inequality, we use that k ≥ 2.

Hence, the probability that a cut selected at the t-th iteration separates µg and µh is at least

dp (µg ,µh)

Lp
−

∑
[a,b]∈Ibad(t ) |b −a|p

Lp
≥

c ′p,max(t )

2Lp
−

c ′p,max(t )

4Lp
≥

c ′p,max(t )

4Lp
.

The proof now follows by replacing cmax(t ) with c ′p,max(t ) and L with Lp in the remaining part

of the proof of Lemma 5.3.4.

In the following analysis, we use the Hölder’s inequality stated below:

Lemma 5.4.2 (Hölder’s inequality). For two real numbers u and v such that 1/u +1/v = 1 and

two positive real number sequences y1, . . . , ym and z1, . . . , zm , it holds that

∑
i∈[m]

yi zi ≤
( ∑

i∈[m]
yu

i

)1/u ( ∑
i∈[m]

zv
i

)1/v

.

In particular, setting y1 = y2 = ·· · = ym = 1, u = p/(p −1) and v = p for some p, and taking the

p-th power on both sides, it holds that( ∑
i∈[m]

zi

)p

≤ mp−1
∑

i∈[m]
zp

i .

We now upper bound the expected cost. Recall that π(x) denotes the closest center in U to a

point x ∈X and that costp (U ) is defined as

costp (U ) = ∑
x∈X

∥x −π(x)∥p
p = ∑

x∈X

∑
i∈[d ]

|xi −π(x)i |p .

To bound the cost of the output clustering in the k-medians setting, we used the triangle

inequality. For general p-th power of p-norms, we use the following generalized triangle

inequality:

Lemma 5.4.3. Consider three points x , y , z ∈Rd . We have ∥z−x∥p
p ≤ 2p−1

(∥z − y∥p
p +∥y −x∥p

p
)
.

Proof. Expanding ∥ · ∥p
p as a summation over d dimensions, it is sufficient to prove that for

any three real numbers x, y, z ∈R, |z −x|p ≤ 2p−1(|z − y |p +|y −x|p ). Without loss of generality,

assume that z ≥ x. If y ≤ x or y ≥ z, the proof follows trivially because we have |z −x| ≤ |z − y |

67



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

or |z −x| ≤ |y − z|, respectively. Now suppose that x ≤ y ≤ z. Let a = y −x and b = z − y . Since

a+b = z−x, we simply need to prove that (a+b)p ≤ 2p−1(ap +bp ) which follows from Hölder’s

inequality.

Recall that we defined c ′p,max(t ) and c ′p,max earlier using the pseudo-distance function dp . We

now define cp,max(t) and cp,max similarly, but using the p-th power of the ℓp -norm: Namely,

cp,max(t ) = maxB∈Leaves(t ) maxµi ,µ j∈B ∥µi −µ j∥p
p and cp,max = cp,max(1). We again use (it ,θt ) to

denote the cut selected by 4 in the t-th iteration and fi (θ) to denote the number of points

x ∈X that are separated from π(x) by a cut (i ,θ).

For a point x ∈X , suppose that it is assigned to some center µ in the final threshold tree. If

µ=π(x), the cost contribution of x in the final clustering is the same as that in the original

clustering. Suppose µ ̸=π(x) and suppose that x was separated from π(x) at iteration t . Then,

using Lemma 5.4.3, we conclude that the cost of assigning x to µ, i.e., ∥x −µ∥p
p , is upper

bounded by

2p−1 (∥x −π(x)∥p
p +∥π(x)−µ∥p

p
)≤ 2p−1 (∥x −π(x)∥p

p + cp,max(t )
)

.

Let UsedCuts be the set of cuts used to split some leaf in Line 37 of Algorithm 4. Now using

the above observation, we can upper bound the expected cost of the output tree, E[costp (T )],

by

costp (T ) ≤ 2p−1
(
costp (U )+

∞∑
r=0

E[cost-increase(r )]

)
where

cost-increase(r ) = ∑
t :

c′p,max

2r+1 ≤c ′
p,max(t )≤ c′p,max

2r

cp,max(t ) · fi t (θt ) ·1[(it ,θt ) ∈ UsedCuts].

Note that in the last expression, the summed terms use cp,max(t ) whereas the condition of the

summation uses c ′p,max(t ). Note that

cost-increase(r ) ≤ ∑
t :

c′p,max

2r+1 ≤c ′
p,max(t )≤ c′p,max

2r

kp−1c ′p,max(t ) · fi t (θt ) ·1[(it ,θt ) ∈ UsedCuts]

≤ kp−1
c ′p,max

2r · ∑
t :

c′p,max

2r+1 ≤c ′
p,max(t )≤ c′p,max

2r

fi t (θt ) ·1[(it ,θt ) ∈ UsedCuts].

The first inequality is by Hölder’s inequality (applied independently in each dimension in

the computation of respective dp and ∥ · ∥p
p values). The second inequality simply uses the

condition of the summation.

We now upper bound the expected value of cost-increase(r ). Let Iact(r ) be the set of

dimension–interval pairs in I that do not separate any pair of centers that are closer than

c ′p,max/(k42r+1) in pseudo-distance but separate at least one pair of centers that are closer

68



5.4 Explainable k-Means and General ℓp -norm Clustering

than c ′p,max/2r in pseudo-distance. We prove the following lemma which is analogous to

Lemma 5.3.5 in the proof of Theorem 10.

Lemma 5.4.4. For a round r , E[cost-increase(r )] is

O
(
kp−1 · logk

) ·( ∑
(i ,[a,b])∈Iact(r )

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ

)
.

Proof. We consider “trials” of M consecutive iterations in round r where

M = 12 ·2r+1 ln(k) ·Lp /c ′p,max .

We perform independent trials until c ′p,max(·) at the end of a trial goes below c ′p,max/2r+1.

Consider one trial and let s be the starting iteration of the trial. Note that we have

M ≥ 3 ·4 · ln(k) ·Lp /c ′p,max(s)

since c ′p,max(s) ≥ c ′p,max/2r+1. Thus, by Lemma 5.4.1, after M iterations, round r ends with

probability at least 1−1/k ≥ 1/2. (Note that round r may end before all M iterations of a trial

are completed. In such trials, we assume that we discard the additional cuts that are made

after the round ends.)

Let UBℓ =
∑t ′+M−1

s=t ′ fis (θs) ·1[(is ,θs) ∈ UsedCuts] and observe that

cost-increase(r ) ≤ kp−1
c ′p,max

2r ·∑
ℓ

UBℓ (5.3)

where the sum is over all trials we perform in round r .

We first upper bound each term UBℓ and then use the expectation of a geometric random

variable to upper bound the expected value of
∑
ℓUBℓ. We have

E[UBℓ] ≤
t ′+M−1∑

s=t ′
E
[

fis (θs) ·1[(is ,θs) ∈ UsedCuts]
]

≤
t ′+M−1∑

s=t ′

1

Lp

∑
(i ,[a,b])∈Iact(r )

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ. (5.4)

Note that we only sum over dimension–interval pairs in Iact(r ) as cuts made outside of this

set will be discarded. To elaborate, the dimension–interval pair in which a cut (i ,θ) is made

can be outside of Iact(r ) for two reasons:

1. Because it separates two centers that are closer than c ′p,max/(k42r+1) ≤ c ′p,max(t ′)/k4.

Then it will get discarded in Line 34.

69



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

2. Because it does not separate two centers that are closer than c ′p,max/2r . Such a cut will

not split any leaves in Line 36.

Consequently, for all (is ,θs) ∈ UsedCuts, we have θs ∈ [a,b] for some interval [a,b] such that

(is , [a,b]) ∈Iact(r ).

Now, since the summed terms in (5.4) no longer depend on the summed index s, we now have

E[UBℓ] ≤ M

Lp

∑
(i ,[a,b])∈Iact

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ

= 12 ·2r+1 ln(k)

c ′p,max

∑
(i ,[a,b])∈Iact

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ.

Now, considering that round r ends after a trial with probability at least 1/2, using the expected

value of a geometric distribution, we conclude that

E

[∑
ℓ

UBℓ

]
≤ 24 ·2r+1 ln(k)

c ′p,max

∑
(i ,[a,b])∈Iact(r )

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ.

The proof of the lemma then follows by combining this with the bound in (5.3).

With Lemma 5.4.4 in hand, we now prove Theorem 11.

Proof of Theorem 11. Using Lemma 5.4.4, we can upper bound
∑∞

r=0E[cost-increase(r )] as

follows:

∞∑
r=0

E[cost-increase(r )]

=O
(
kp−1 · logk

) · ∞∑
r=0

∑
(i ,[a,b])∈Iact(r )

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ

=O
(
kp−1 · logk

) · ∑
(i ,[a,b])∈I

∞∑
r=0

1[(i , [a,b]) ∈Iact(r )] ·
(
|b −a|p

∫ b

a
Pa,b (θ) fi (θ)dθ

)
=O

(
kp−1 · logk

) · ∑
(i ,[a,b])∈I

|b −a|p
∫ b

a
Pa,b (θ) fi (θ)dθ ·

( ∞∑
r=0

1[(i , [a,b]) ∈Iact(r )]

)
.

We now claim that for any dimension–interval pair in (i , [a,b]) ∈I

∞∑
r=0

1[(i , [a,b]) ∈Iact(r )] = ∣∣{r : (i , [a,b]) ∈Iact(r )}
∣∣=O(logk). (5.5)

Namely, fix some dimension–interval pair (i , [a,b]) ∈I . Let c be the smallest pseudo-distance

between any pair of centers that are separated if a cut (i ,θ) such that θ ∈ [a,b] is made. Then

(i , [a,b]) is in Iact(r ) only if c ≤ c ′p,max/2r and c ′p,max/2r+1 ≤ k4c, or equivalently,

70



5.4 Explainable k-Means and General ℓp -norm Clustering

log(c ′p,max/2ck4) ≤ r ≤ log(c ′p,max/c) which yields (5.5). Thus we have

∞∑
r=0
E[cost-increase(r )]

=O
(
kp−1 · log2 k

) · ∑
(i ,[a,b])∈I

(
|b −a|p

∫ b

a
Pa,b (θ) fi (θ)dθ

)
=O

(
kp−1 · log2 k

) · ∑
(i ,[a,b])∈I

(
|b −a|p

∫ b

a
p2p−1 min(θ−a,b −θ)p−1

|b −a|p fi (θ)dθ

)
=O

(
kp−1 · log2 k

) · (p2p−1) · ∑
(i ,[a,b])∈I

∫ b

a
min(θ−a,b −θ)p−1 fi (θ)dθ. (5.6)

Now to conclude the proof of Theorem 11, let cost′p (U ) =∑
x∈X dp (x ,π(x)) which is the cost

of U defined in terms of the pseudo-distances. Recall that ∥x − y∥p
p ≥ dp (x , y) and hence we

have costp (U ) ≥ cost′p (U ) where the equality holds if p = 1. We then have

costp (U ) ≥ cost′p (U ) = ∑
x∈X

dp (x ,π(x)) = ∑
x∈X

∑
i∈[d ]

∑
[a,b]∈Ii (xi ,π(x)i )

|a −b|p

= ∑
x∈X

∑
i∈[d ]

∑
[a,b]∈Ii (xi ,π(x)i )

∫ b

a
p(θ−a)p−1dθ

≥ ∑
x∈X

∑
(i ,[a,b])∈I

∫ b

a
p ·min(θ−a,b −θ)p−1 ·1[θ is between xi and π(x)i ]dθ (5.7)

= p
∑

(i ,[a,b])∈I

∫ b

a
min(θ−a,b −θ)p−1 fi (θ)dθ. (5.8)

The inequality in (5.7) above needs an explanation. First notice that, by the definition of

I , summing over (i , [a,b]) ∈ I is the same as summing over i ∈ [d ] and [a,b] ∈ Ii (µ−
i ,µ+

i ) .

Fix some point x and dimension i , and w.l.o.g. assume that xi ≤ π(x)i . Then each interval

[a,b] ∈Ii (µ−
i ,µ+

i ) falls into one of the following categories:

1. b ≤ xi or π(x))i ≤ a. The contribution from such intervals are zero in both sides of the

inequality in (5.7).

2. xi ≤ a ≤ b ≤π(x)i . The contribution from such intervals to the left hand side of (5.7) is

at least as the contribution to the right hand side because of the min function.

3. a < xi < b. Note that
∫ b

a (θ − a)p−1dθ = ∫ b
a (b − θ)p−1dθ. Hence, in this case, the

contributions to both sides of (5.7) are equal if xi ≥ (a + b)/2. Otherwise, the

contribution to the L.H.S. is higher.

4. a <π(x) < b. This case is analogous to Item 3.

The inequality in (5.7) follows by applying this observation to each interval in I and each

71



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

point in X .

The theorem statement then follows by combining bounds (5.6) and (5.8).

5.4.2 Implementation details

Note that Algorithm 4 differs from Algorithm 3 in the sampling step and the new sample

discarding step. Recall that the implementation details of Algorithm 3 are presented in

Section 5.3.3. In this section, assuming that we can sample a θ ∈ [a,b] with p.d.f. Pa,b(θ) from

a given interval [a,b] inΘ(1) time, we show how to efficiently implement the sampling step of

Algorithm 4. In particular, we show how to select the dimension–interval pair (i , [a,b]) with

probability proportional to |b − a|p . Once the cut is sampled, the discarding step can be

implemented by simulating the splitting operation and ignoring the cut if it separates two

centers that are too close.

Suppose that for each dimension i , we maintain a data structure Si that stores the intervals

in Ii (µ−
i ,µ+

i ) that are not yet split by a cut. There are k −1 disjoint intervals in Ii (µ−
i ,µ+

i ),

and we assume they are ordered by the left coordinate and indexed [a1,b1], . . . , [ak−1,bk−1].

Additionally, each Si supports the following operations:

1. Initialize with all intervals in Ii (µ−
i ,µ+

i ) in O(k logk) time.

2. Remove an interval in Ii (µ−
i ,µ+

i ) in O(logk) time.

3. Given two indices ℓ,r ∈ [k −1], answer the query for
∑r

j=ℓ |b j − a j |p1[(a j ,b j ) ∈ Si ] in

O(logk) time.

We can implement Si as a segment tree.

Now we can sample an interval from S1, . . . ,Sd as follows in O(d logk) time: We first query

(1,k −1) in each tree, aggregate the results, and pick a dimension i with the correct probability.

Then we select an interval from Si with the correct probability by employing a binary-search

like algorithm. To elaborate, we first query it for (1,⌊(k −1)/2⌋) and (⌊(k −1)/2⌋)+1,k −1)

and use the results to randomly decide if the index of the sampled interval should be in the

sub-range {1, . . . ,⌊(k −1)/2⌋} or {⌊(k −1)/2⌋)+1, . . . ,k −1}. Then we recursively apply the same

procedure on the selected sub-range of indices until we end up with only one interval. A crude

runtime analysis gives O(log2 k) running time for the recursive sampling as there are O(logk)

queries and each query takes O(logk) time. However we can modify the segment tree such

that the partial sums maintained in the segment tree coincide with our queries so that each

query can be answered in constant time.

72



5.5 Lower Bound

5.5 Lower Bound

In this section we show how to construct an instance of the clustering problem such that any

explainable clustering has cost at leastΩ(kp−1) times larger than the optimal non-explainable

clustering for the objective function given by the ℓp -norm, for every p ≥ 1. In particular, for

p = 2, this entails anΩ(k) lower bound for (explainable) k-means.

Let m be a prime. Our hard instance is in Rd for d = m · (m −1) and the set of dimensions

corresponds to the set of all linear functions overZm with non-zero slope. That is, we associate

the i -th dimension with the function fi : x 7→ (ai x +bi ) mod m, where ai = 1+⌊i /m⌋ and

bi = i mod m. Consider k = m centers µ1, . . . ,µk such that the i -th coordinate of the j -th

center is given by µ j
i = fi ( j ). For each center µ j we create a set of 2d points B j , each point

differing from the center in exactly one dimension by either −1 or +1, i.e., B j = {µ j +c ·e i | c ∈
{−1,1}, i ∈ [d ]}, where e i denotes the standard basis vector in the i -th dimension. Then, our

hard instance is just
⋃

j∈[k] B j .

Since every point is at distance exactly 1 from its closest center, the cost of the optimal

clustering OPT is equal to the total number of points n = 2dk (regardless of the ℓp -norm). We

will prove that:

Claim 1. Any two centers are at the same distance δ=Θ(d 1/p k) from each other.

Claim 2. Any nontrivial threshold cut, i.e., one that separates some two centers, separates also

some two points from the same B j .

It follows that, in any explainable clustering, already the first threshold cut (from the decision

tree’s root) forces some two points from the same set B j to eventually end up in two different

leaves, and hence at least one of the k leaves has to contain two points from two different B j ’s.

The distance between these two points, by the triangle inequality, is at least δ−2, and therefore

the cost of the explainable clustering is at leastΩ(δp ) =Ω(dkp ), which isΩ(kp−1) ·OPT.

Proof of Claim 1. Fix two different centers µ j1 , µ j2 , j1 ̸= j2. Their distance δ satisfies

δp = ∑
i∈[d ]

∣∣ fi ( j1)− fi ( j2)
∣∣p =

m−1∑
a=1

m−1∑
b=0

∣∣(a j1 +b) mod m − (a j2 +b) mod m
∣∣p .

For a ∈ {1, . . . , p −1}, let x(a) = (a j1 −a j2) mod m. Observe that∣∣(a j1 +b) mod m − (a j2 +b) mod m
∣∣ ∈ {x(a),m −x(a)},

and whether it is x(a) or m −x(a) depends on b, with it being x(a) for exactly m −x(a) values

of b and m −x(a) for the remaining x(a) values of b. Hence,

δp =
m−1∑
a=1

(m −x(a)) · x(a)p +x(a) · (m −x(a))p .

73



Chapter 5. Nearly Tight and Oblivious Algorithms for Explainable Clustering

Since j1 ̸≡ j2 (mod m), we have
{

x(a) | a ∈ {1, . . . ,m −1}
}= {1, . . . ,m −1}, and

δp =
m−1∑
i=1

(m − i ) · i p + i · (m − i )p = 2 ·
m−1∑
i=1

(m − i ) · i p =Θ(mp+2) =Θ(dkp ).

Proof of Claim 2. Let the cut be (i ,θ). It must be that 0 ≤ θ < m −1, because otherwise the cut

would not separate any two centers. Note that there exists a center µ j with µ j
i = ⌊θ⌋. Indeed,

consider j = (⌊θ⌋−bi ) ·a−1
i mod m, using the fact that ai and m are coprime. To finish the

proof observe that the cut separates point (µ j +e i ) ∈ B j from all other points in B j .

5.6 The Minimum Cut Algorithm LosesΩ(k) Factor for k-Medians

We give an example where the minimum cut algorithm of [Das+20] produces a threshold tree

with costΩ(k) times the cost of an optimal clustering in the ℓ1-norm. The idea is to start with

the lower bound example in Section 5.5 since any two centers are “far apart”. By adding a

dimension for each center in which fewer edges are cut, the minimum cut will make linearly

many cuts that split only one center. Combined with the large distance to reassign a point

to the wrong center, the result is the minimum cut algorithm losing an Ω(k) factor. In the

ℓ1-norm, it suffices to map half of the coordinate values to -1 and the other half to +1 and

still maintain the “large” distance between centers. The remainder of this section is a formal

description of the instance.

Take the lower bound example from Section 5.5 and increase the dimension by k. Now

the points are in Rd+k with d +k coordinates (recall that d = m(m −1) and k = m with m

prime). First, we describe the k centers U ′ = {µ′′′1, . . . ,µ′′′k } as a mapping from the centers

U = {µ1, . . . ,µk } in Section 5.5. For the first d coordinates, µ′ j
i = µ

j
i mod 2. For the last k

coordinates, center µ′′′ j has a 0 in every coordinate d + i , 1 ≤ i ≤ k, except coordinate d + j

which is a 1.

The reasoning behind this mapping is that the family of functions fi in Section 5.5 is the

standard construction of a family of pairwise independent hash functions [FKS84]. In

particular, if fa,b(x) = (ax + b) mod m and ha,b(x) = fa,b(x) mod 2, then for x ̸= y ,

ha,b(x) = ha,b(y) with probability at most 1/2 when a and b are chosen uniformly at random

from {0,1, . . . ,m −1}, a ̸= 0. Recall that fi (x) = (ai x +bi ) mod m where ai , bi range over all

elements in {1,2, . . . ,m −1}, {0, . . . ,m −1}, respectively, and µ j
i = fi ( j ). Fix any pair of centers

µ j1 ,µ j2 where j1 ̸= j2. Note that picking i ∈ [d ] uniformly at random is equivalent to picking

ai ,bi ∈ {0,1, . . . ,m −1}, a ̸= 0, uniformly at random due to the definition of ai ,bi . We have

µ
′ j1

i = (µ j1

i mod 2) = (µ j2

i mod 2) = µ
′ j2

i with probability at most 1/2 over the uniformly

random choice of i , so any pair of centers are the same on at most 1/2 of the coordinates.

Hence, our new centers U ′ are at pairwise distanceΘ(d).

74



5.6 The Minimum Cut Algorithm LosesΩ(k) Factor for k-Medians

Now we define the remaining points. Let e i be the standard (d +k)-dimensional i -th basis

vector. Similar to Section 5.5, we have a set B ′
j for each center µ′ j with 2d points where each

point differs from µ′ j on one of the first d coordinates by ±1. Additionally, we want (k −1)/2

points to differ on one of the last k coordinates. To this end, define B ′
j = {µ′′′ j + c · e i | c ∈

{−1,1}, i ∈ [d ]}∪ {µ′′′ j − ed+ j }(k−1)/2, where {µ′′′ j − ed+ j }(k−1)/2 denotes a multiset of (k −1)/2

copies of the point µ′′′ j −ed+ j .

In particular, our construction has the following properties:

1. The distance between any pair of centers isΘ(d).

2. A cut (i ,θ) in any dimension i , 1 ≤ i ≤ d , and θ ∈ (0,1) splits some two centers and the

number of points separated is equal to the number of centers.

3. A cut (i ,θ) in any dimension i , d +1 ≤ i ≤ d +k, and θ ∈ (0,1) splits some two centers

and separates ≈ k/2 points.

Property (2) holds because for any dimension 1 ≤ i ≤ d and for each center c , ci is either 1, in

which case there is exactly one point at c −e i , or 0, in which case there is exactly one point at

c +e i . Note that this further implies that, when (after separating some centers) x centers are

remaining, the number of points separated by a cut of type (2) will be equal to x. Then the

cuts in (3) will be minimum for ≈ k/2 cuts of all minimum cuts required to separate all centers

since each cut in (3) separates exactly one center from the remaining centers. Hence we have

that the minimum cut algorithm of [Das+20] will construct a threshold tree withΩ(k) height

by making someΩ(k) cuts in dimensions d +1 through d +k.

To see that the minimum cut algorithm loses aΩ(k) factor, note that the optimal clustering

has a value of 2dk + (k −1)k/2 =Θ(k3). The first term in the sum is because each of 2d points

in each cluster differs from the center by ±1 in exactly one of the first d coordinates and the

second term is because (k −1)/2 of the points in each cluster differ by −1 from the center in

one of the last k coordinates. On the other hand, an algorithm that always makes a minimum

cut incurs a cost ofΘ(dk2) to reassign ≈ k/2 points to the wrong center for ≈ k/2 centers, just

for those cuts of type (2). This gives an overall cost ofΩ(dk2) for the threshold tree produced.

Since d =Θ(k2) we have that the minimum cut algorithm is Ω(k) away from the cost of an

optimal clustering.

75





6 Future Work

In spite of its simple mathematical formulation, clustering is a classic problem that has

produced many algorithmic techniques. Moreover, it is a problem relevant to practical

applications in statistics, machine learning, and operations research. In this thesis we

presented some theoretical frameworks for studying clustering problems that were motivated

by fairness and explainability. Here, we discuss some open questions related to the problems

we have explored and possible avenues for making progress. We also briefly summarize

related follow-up works that were completed after the publication of the manuscripts

contained in this thesis.

Colorful k-Center Clustering

In Chapter 3 we described a 3-approximation for colorful k-center clustering. In fact, it is

actually a 2-approximation except in instances that are not well-separated; that is, when there

exists a ball of radius three times the optimal radius that can cover two balls in an optimal

solution. An obvious open question is whether it is possible to obtain a 2-approximation for

colorful k-center in all instances, as such an approximation exists for k-center and k-center

with outliers. On the other hand, any reduction proving that a 3-approximation is tight for

colorful k-center with two colors would need to start with a problem that is no longer hard

when the parameter corresponding to k is increased to k +1. This is in light of the result

in [Ban+19] that gives a solution using at most k +ω−1 centers with radius twice that of the

optimal solution for ω colors.

Let us now discuss what may be required to obtain a 2-approximation for the colorful k-center

problem, should such a solution be possible. Although it may appear that we are not too

far from such an approximation, our 2-approximation algorithm in well-separated instances

relies crucially on our definition of well-separated and the structure that such an instance

presents. In particular, we do not know how many extra points can be obtained through

radius expansion if the balls of an optimal solution are not well-separated. Expanding to

gain more points is the main idea that allows us to remove the extra centers from the pseudo-

approximation. It is possible that significantly different ideas will be needed here, comparable

77



Chapter 6. Future Work

to how the 2-approximation of k-center with outliers was obtained through considering

non-uniform k-center [IV22].

Non-Uniform k-Center Clustering

In Chapter 4 we presented a constant-factor approximation for 3-NUkC. However, the

conjecture in [CGK16] that there exists a constant-factor approximation for t-NUkC when t is

a constant remains wide open. A recent publication by Inamdar and Varadarajan [IV22] gave a

constant-factor approximation for four different types of radii. Interestingly, they make use of

colorful k-center (with two color classes) in order to “remove” the smallest radius type.

Essentially, an instance of (t +1)-NUkC with outliers can be reduced to O(n) instances of

colorful t-NUkC where n is the number of points in the instance. By finding a constant-factor

approximation to the colorful version of 2-NUkC, a constant-factor approximation can then

be obtained for robust 3-NUkC and finally 4-NUkC. Here we give a brief summary of the

reduction from robust (t +1)-NUkC to colorful t-NUkC.

Let us begin with an instance of well-separated robust t-NUkC since reducing from (t +1)-

NUkC to such an instance was an approach already used in [CN21] and [Jia+22]. The first step

is to use the greedy clustering algorithm from [Cha+01] to reduce the smallest radius to zero,

while increasing the other radii by a constant. The result is that points in this new instance are

weighted since multiple points can be clustered to be co-located at a single point, and this

gives an ordering of the points by non-increasing weight. The x heaviest points are colored red

while the remaining are colored blue and the O(n) instances are created by guessing the value

of 0 ≤ x ≤ n. Finally, the weight of the colored points and the coverage requirements are set in

such a way that there is a feasible solution for at least one value of x. Given such a solution, it

is then possible to obtain a feasible solution for the original robust t-NUkC instance.

It remains to approximate the colorful 2-NUkC problem to obtain an approximation for 4-

NUkC. First, a colorful t-NUkC problem can be reduced to one in which the smallest radius is

0, and this can be done for any number of radii. However, a constant-factor approximation is

only known for the version of this problem with just two radii (recall that an algorithm exists

to reduce the smallest radius to 0). This is because when the larger radius balls satisfy the

well-separated condition and the smaller radius is 0, the clusters form a laminar family so a

solution can be found using dynamic programming.

At this point, however, we may have reached the limits of what this technique can do. For

example, we do not know if we can use more than two colors to further reduce the number of

radii in robust t-NUkC. The reason we can reduce the number of radii by one is as follows. If

we consider all the (multi-)points ordered in non-increasing order by weight, we can greedily

move the points covered by the smallest radius, which has been reduced to zero, to a prefix

of the heaviest points that are either outliers or covered by the smallest radius in an optimal

solution. This is the meaning of the coloring—we ensure that there is a solution where balls of

the smallest radius in robust t-NUkC are only placed at red points. If we naively try to apply

the same technique to more than one radius we immediately run into a problem since we do

78



not know how to color the points so that a correct number is allocated to each radius. In effect,

this paper develops many clever techniques to extract a solution for an additional radius, but

we do not yet have enough techniques to fully resolve the NUkC conjecture.

The non-uniform k-center problem has been a fruitful line of research. Many connections

between different problems have been discovered while designing a constant-factor

approximation for small values of t . For example, the paper [CGK16] that defined the original

problem discussed connections to the firefighter problem on trees and also gave a tight

approximation factor of 2 for k-center with outliers. A 3-approximate algorithm was known

since 2001 [Cha+01] but it was only fifteen years later that [CGK16] obtained a tight

2-approximation while looking at a far more general version of the clustering problem. It is

possible that a tight approximation algorithm for colorful k center would also require looking

at the problem from a significantly different point of view.

Explainable Clustering

In the main chapter following colorful k-center we presented nearly-tight approximation

algorithms for explainable clustering that were oblivious to the data points. Our lower bound

for k-means (and higher pth power of ℓp -norms) also only leaves a polylogarithmic gap from

the guarantees of the approximation algorithm. One problem left open by our work was a

tight lower bound on the price of explainability for the ℓ1-norm. Very recent results [Gup+23;

MS23] resolve this question and show that the price of explainability for the ℓ1-norm is at most

1+Hk−1 and that the algorithm presented in this thesis that takes random cuts achieves this

approximation factor. Furthermore, [Gup+23] showed that no polynomial time algorithm can

approximate explainable k-medians (and also k-means) better than (1/2−o(1)) lnk unless

P = N P . The upper bound for the price of explainability for k-means was also improved to

O(k lnlnk), but the tight approximation factor is still open as the lower bound isΩ(k).

Markarychev and Shan published a work [MS22] that gives an Õ(1/δ log2 k) bi-criteria

approximation for k-means clustering that opens (1+δ)k clusters. The motivation behind

opening more centers was the observation that while there exists an O(log2 k) algorithm for

explainable k-medians, the lower bound for explainable k-means is Ω(k), which is

exponentially worse. For large data sets this can be a quite poor approximation. However,

experiments indicate that the approximations are much better in practice. This bi-criteria

approximation provides an explanation to this phenomenon since for a fixed data set and for

larger values of k, the optimal clustering with k +1 centers is not much better than an optimal

k-clustering. We can also interpret this result as relaxing the explainability requirement

because the resulting clustering is not entirely split along axis-aligned cuts, but rather some

points of some clusters can lie on the other side of a cut.

Another direction to pursue with explainable clustering also involves relaxing the explainability

condition: removing the restriction that cuts must be axis-aligned and instead allowing general

hyperplane cuts. For a slightly more constrained problem we can require the number of

dimensions used for each hyperplane to be fixed or upper bounded. More data features can

79



Chapter 6. Future Work

be incorporated into an “explanation” by using general hyperplane cuts. This is in contrast to

the original formulation of explainability where there can be at most k −1 nodes from a leaf to

the root, and hence every cluster is explained by at most k −1 features. It would be interesting

to develop other explainable clustering methods that incorporate more than k −1 features.

So far, in all of these problems, we have only discussed the price of explainability, that is, the

approximation factor when comparing to the best general clustering. It is also an interesting

problem to consider efficient approximation algorithms that are compared to the best possible

explainable clustering.

80



A Supplementary Material for Chapter 3

A.1 Dynamic Program for Dense Points

In this section we describe the dynamic programming algorithm discussed in Lemma 3.2.9.

As stated in the proof of Lemma 3.2.9, given I = ∪ j I j and correct guesses for kd ,bd ,rd , we

need to find kd balls of radius one centered at points in I covering bd blue and rd red points

with at most one point from each I j ∈ I picked as a center. To do this, we first order the sets

in I arbitrarily as I = {I j1 , . . . , I jm },m = |I |. We create a 4-dimensional table T of dimension

(m,bd ,rd ,kd ). T [m′,b′,r ′,k ′] stores whether there is a set of k ′ balls in the first m′ sets of I

covering b′ blue and r ′ red points. The recurrence relation for T is

T [0,0,0,0] = True

T [0,b′,r ′,k ′] = False, for any b′,r ′,k ′ ̸= 0

T [m′,b′,r ′,k ′] =



True if T [m′−1,b′,r ′,k ′] = True

True if ∃c ∈ I jm′ s.t. T [m′−1,b′′,r ′′,k ′−1] = True, for

b′′ = b′−|B(c)∩B |,r ′′ = r ′−|B(c)∩R|
False otherwise

.

The table T has size O((m +1) · (n +1) · (n +1) · (n +1)) =O(n4) since the first parameter has

range from 0 to m, and the other parameters can have value 0 up to at most n. Moreover,

since |I j | ≤ n for all I j ∈ I , we can compute the the whole table in time O(n5) using e.g. the

bottom-up approach. We can also remember the choices in a separate table and so we can

find a solution in time O(n5) if it exists.

A.2 The Clustering Algorithm

In this section we present the clustering algorithm used in [Ban+19] with a simple modification.

The algorithm is described in pseudo-code in Algorithm 5.

81



Appendix A. Supplementary Material for Chapter 3

Algorithm 5: Clustering Algorithm

40 S ←;, X ′ ← X

41 while X ′ ̸= ; and max
j∈X ′ z j > 0 do

42 j ∈ X ′ be a point with maximum z j : let S ← S ∪ { j }

43 y j ← min{1,
∑

i∈B( j ) xi }; z̃ j ← y j

44 C j ←F ( j )∩X ′

45 For all j ′ ̸= j ∈C j , set y j ′ ← 0, z̃ j ′ ← z̃ j

46 X ′ ← X ′ \C j

47 end

Now we state the theorem which states the properties of this clustering algorithm used in

Section 3.2.1.

Theorem 12. Given a feasible fractional solution (x, z) to LP1, the set of points S ⊆ X and

clusters C j ⊆ X for every j ∈ S produced by Algorithm 5 satisfy:

1. The set S is a subset of the points { j ∈ X : z j > 0} with positive z-values.

2. For each j ∈ S, we have C j ⊆F ( j ) and the clusters {C j } j∈S are pairwise disjoint.

Moreover, if we let R j =C j ∩R and B j =C j ∩B with r j = |R j | and b j = |B j | for j ∈ S, then y is a

feasible solution to LP2 (depicted on the right in Fig.3.1) with objective value at least r .

Proof. The proof of the first statement is clear from the condition in the while loop of the

algorithm.

For the second statement, observe that, by the definition of C j as stated in the algorithm,

C j ⊆⋃
i∈B( j ) B(i ) =F ( j ). Since in each iteration, the cluster is removed from X ′, the clusters

are clearly disjoint.

In order to prove that y is feasible this we first state some useful observations.

• First, for any i ∈ X there is at most one j ∈ S such that d(i , j ) ≤ 1. This is true because if

there were j , j ′ ∈ S such that both j , j ′ ∈ B( j ) then, assuming w.l.o.g. j was considered

before in the while loop, j ′ ∈C j and thus j ′ cannot be in S which is a contradiction.

• Second, note that for any j1 ∈ X such that j1 ∈C j for some j , then z̃ j = z̃ j1 ≥ z j1 . This

is trivially true if z̃ j = 1, otherwise z̃ j = ∑
i∈B( j ) xi ≥ z j ≥ z j1 where the first inequality

follows from LP1 constraints and second inequality from the fact that when C j was

removed, z j had the highest z value.

Now we show that y is feasible for LP2 with objective value at least r . First, we show that

82



A.2 The Clustering Algorithm

∑
j∈S r j y j ≥ r . To see this,∑

j∈S
r j y j =

∑
j∈S

|R j |y j

= ∑
j∈S

∑
j ′∈R j

z̃ j (y j = z̃ j for any j ∈ S)

≥ ∑
j∈S

∑
j ′∈R j

z j ′ (from second observation, z̃ j ≥ z j ′ for any j ′ ∈C j )

= ∑
j ′∈R:z j ′>0

z j ′ (since C j ’s are disjoint and contain all j s.t. z j > 0)

= ∑
j ′∈R

z j ′ ≥ r (since z satisfies LP1))

Similarly
∑

j∈S b j y j ≥ b. Finally we will show that
∑

j∈S y j ≤ k,∑
j∈S

y j ≤
∑
j∈S

∑
j ′∈B( j )

x j ′ (since y j ≤
∑

j ′∈B( j )
x j ′)

≤ ∑
j ′∈X

x j ′ (from the first observation)

≤ k (since x satisfies LP1)

This concludes the proof of the claim that y is a feasible solution to LP2 with objective value at

least r .

83





B Supplementary Material for Chapter 4

B.1 Dynamic Program for Laminar Instances

In this section we describe the details of the dynamic programming algorithm that can be

used to solve a laminar robust 2-NUkC instance. Recall that a robust 2-NUkC instance

I = ((X ,d), (k1,r1), (k2,r2),m) is said to be laminar if we are given sets L1,L2 ⊆ X such that

the following are satisfied.

1. The ki balls of radius ri are only allowed to be centered at points in Li , i ∈ {1,2};

2. B(u,ri )∩B(v,ri ) =; for all u, v ∈ Li , i ∈ {1,2};

3. C (v)∩C (v ′) =; for all v, v ′ ∈ L1, where C (v) = {u ∈ L2 : B(v,r1)∩B(u,r2) ̸= ;}.

For any v ∈ L1 we refer to the set C (v) as the children of v . Let v1, v2, . . . , v|L1| be an enumeration

of points in L1, and for each vi let u1,i ,u2,i , . . . ,u|C (vi )|,i be an enumeration of the points in

C (vi ). See Figure 4.2 for an illustration of a laminar instance. In our dynamic programming

algorithm, we will have a local table and a global table. Since the sub-instance B(vi ,r1)∪
(∪|C (vi )|

j=1 B(u j ,i ,r2)) is completely disjoint from the rest of the instance for all i , we will have a

local table that computes solutions to this sub instance. The global table will then be used to

combine solutions to these sub instances.

The local table LOCAL will be indexed by i ,bi t , j ,k ′
2,m′. We set LOCAL[i ,bi t , j ,k ′

2,m′] = 1 if

and only if there is a solution that opens k ′
2 balls of radius r2 centered at points in {u1,i , . . . ,u j ,i }

and these balls cover at least m′ points, assuming a ball of radius r1 is open at vi if and only

if bi t = 1. We will compute this table bottom-up from j = 1 to |C (vi )| for a fixed i and bi t ,

each time computing the table entry for all values of k ′
2,m′ for each j . Now by laminarity of

the instance, balls of radius r2 centered at points in C (vi ) are disjoint. Thus we can express

LOCAL[i ,bi t , j , . . .] in terms of LOCAL[i ,bi t , j −1, . . .] easily by enumerating whether there is a

ball of radius r2 open at u j ,i or not, and if yes then reducing the budget of points needed to be

covered by the amount we gain by a ball of radius r2 centered at u j ,i . We formalize this and

85



Appendix B. Supplementary Material for Chapter 4

state the recurrence with the base cases below.

LOCAL[i ,bi t ,0,0,0] = 1

LOCAL[i ,bi t ,0,k ′
2,m′] = 0, for any other m′,k ′

2 ̸= 0

LOCAL[i ,bi t , j ,k ′
2,m′] =



LOCAL[i ,bi t , j −1,k ′
2,m′] if u j ,i not taken,

LOCAL[i ,1, j −1,k ′
2 −1,m′−|(B(u j ,i ,r2) \B(vi ,r1)|

if bi t = 1 and u j ,i taken,

LOCAL[i ,0, j −1,k ′
2 −1,m′−|B(u j ,i ,r2)|]

if bi t = 0 and u j ,i taken.

The recurrence for the global table GLOBAL is described next. This table is indexed by

i ,k ′
1,k ′

2,m′ as follows. GLOBAL[i ,k ′
1,k ′

2,m′] = 1 if there is a solution that opens k ′
1 balls of

radius r1 centered at points in {v j }i
j=1 and k ′

2 balls of radius r2 centered at points in ∪i
j=1C (v j )

and covers m′ points.

Now by laminarity of the instance, balls of radius r1 around points in L1 are disjoint, C (v) for all

v ∈ L1 are disjoint, and balls of radius r2 around points in ∪i
j=1C (v j ) are disjoint as well. Thus

we can express GLOBAL[i ,k ′
1,k ′

2,m′] in terms of GLOBAL[i −1, . . .] and LOCAL[vi , |C (vi )|, . . .] by

enumerating how many balls out of k ′
1 are open in {v j }i−1

j=1, how many in vi , and similarly

enumerate how the other parameters k ′
2,m′ are divided. Formally, we set GLOBAL[i ,k ′

1,k ′
2,m′]

to 1 if any one of the following are 1, otherwise we set it to 0.

• LOCAL[v1,1, |C (vi )|,k ′
2,m′−|B(vi ,r1)|] if i = 1 and k ′

1 = 1

• LOCAL[v1,0, |C (vi )|,k ′
2,m′] if i = 1 and k ′

1 = 0

•
∨

k ′′
2 ,m′′

[
GLOBAL[i −1,k ′

1−1,k ′
2−k ′′

2 ,m′−m′′]∧ LOCAL[vi ,1, |C (vi )|,k ′′
2 ,m′′−|B(vi ,r1)|]

]
(vi taken)

•
∨

k ′′
2 ,m′′

[
GLOBAL[i −1,k ′

1,k ′
2 −k ′′

2 ,m′−m′′]∧ LOCAL[vi ,0, |C (vi )|,k ′′
2 ,m′′]

]
(vi not taken)

After we have computed the LOCAL table for all parameter values, we can compute the GLOBAL

table in a bottom-up fashion from i = 1 to |L1|, each time computing GLOBAL[i , . . .] for all

values of the other parameters. If the instance is feasible then consider a feasible solution of

the problem. Let k1i ,k2i be the number of balls of radius r1 and r2 in this solution centered

at points in {v j }i
j=1 and ∪i

j=1C (v j ) respectively and let mi be the number of points covered

by them. Then the global table value GLOBAL[i ,k1i ,k2i ,mi ] will be feasible and set to 1 for

all 1 ≤ i ≤ |L|. Thus GLOBAL[|L1|,k1,k2,m] will be set to 1. We can also remember the choices

86



B.1 Dynamic Program for Laminar Instances

made while computing both the local and global tables bottom-up to also find a solution to

the problem, if it exists.

87





Bibliography

[AG11] S. Arora and R. Ge. “New tools for graph coloring”. In: Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques.

Springer, 2011, pp. 1–12.

[Ahm+20] S. Ahmadian et al. “Better Guarantees for k-Means and Euclidean k-Median by

Primal-Dual Algorithms”. In: SIAM Journal on Computing 49.4 (2020). DOI: 10.

1137/18M1171321.

[Ana+19] A. Anagnostopoulos et al. “Principal Fairness: Removing Bias via Projections”. In:

CoRR abs/1905.13651 (2019).

[Ane+20] G. Anegg et al. “A Technique for Obtaining True Approximations for k-Center with

Covering Constraints”. In: International Conference on Integer Programming and

Combinatorial Optimization (IPCO). 2020, pp. 52–65.

[Ane+21] G. Anegg et al. “A technique for obtaining true approximations for k-center with

covering constraints”. In: Mathematical Programming (2021), pp. 1–25.

[ASS17] H.-C. An, M. Singh, and O. Svensson. “LP-based algorithms for capacitated facility

location”. In: SIAM Journal on Computing 46.1 (2017), pp. 272–306.

[AV07] D. Arthur and S. Vassilvitskii. “k-means++: the advantages of careful seeding”. In:

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2007. SIAM, 2007, pp. 1027–1035.

[Bac+19] A. Backurs et al. “Scalable Fair Clustering”. In: Proceedings of the 36th

International Conference on Machine Learning, ICML. 2019, pp. 405–413.

[Ban+19] S. Bandyapadhyay et al. “A Constant Approximation for Colorful k-Center”. In:

27th Annual European Symposium on Algorithms, ESA. 2019, 12:1–12:14.

[Byr+15] J. Byrka et al. “An Improved Approximation for k-median, and Positive

Correlation in Budgeted Optimization”. In: Proceedings of the 2015 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA). 2015, pp. 737–756. DOI:

10.1137/1.9781611973730.50.

[Car+00] R. D. Carr et al. “Strengthening Integrality Gaps for Capacitated Network Design

and Covering Problems”. In: Proceedings of the Eleventh Annual ACM-SIAM

Symposium on Discrete Algorithms. SODA ’00. San Francisco, California, USA:

Society for Industrial and Applied Mathematics, 2000, pp. 106–115.

89

https://doi.org/10.1137/18M1171321
https://doi.org/10.1137/18M1171321
https://doi.org/10.1137/1.9781611973730.50


Bibliography

[CFG12] E. Chlamtac, Z. Friggstad, and K. Georgiou. “Understanding Set Cover:

Sub-exponential Time Approximations and Lift-and-Project Methods”. In: CoRR

abs/1204.5489 (2012).

[CGK16] D. Chakrabarty, P. Goyal, and R. Krishnaswamy. “The Non-Uniform k-Center

Problem”. In: 43rd International Colloquium on Automata, Languages, and

Programming (ICALP 2016). Vol. 55. 2016, p. 67.

[CH22] M. Charikar and L. Hu. “Near-Optimal Explainable k-Means for All Dimensions”.

In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA

2022. To appear. SIAM, 2022.

[Cha+01] M. Charikar et al. “Algorithms for Facility Location Problems with Outliers”. In:

Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms.

SODA ’01. Washington, D.C., USA: Society for Industrial and Applied Mathematics,

2001, pp. 642–651.

[Cha+02] M. Charikar et al. “A Constant-Factor Approximation Algorithm for the k-Median

Problem”. In: Journal of Computer and System Sciences 65.1 (2002), pp. 129–149.

DOI: 10.1006/jcss.2002.1882.

[Cha+15] D. Chakrabarty et al. “Approximability of capacitated network design”. In:

Algorithmica 72.2 (2015), pp. 493–514.

[Chi+17] F. Chierichetti et al. “Fair Clustering Through Fairlets”. In: Advances in Neural

Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,

Inc., 2017.

[CLV17] R. Chierichetti F.and Kumar, S. Lattanzi, and S. Vassilvitskii. “Fair clustering

through fairlets”. In: Advances in Neural Information Processing Systems (NIPS).

2017, pp. 5029–5037.

[CN19] D. Chakrabarty and M. Negahbani. “Generalized center problems with outliers”.

In: ACM Transactions on Algorithms (TALG) 15.3 (2019), pp. 1–14.

[CN21] D. Chakrabarty and M. Negahbani. “Robust k-Center with Two Types of Radii”. In:

International Conference on Integer Programming and Combinatorial

Optimization. Springer, 2021, pp. 268–282.

[Coh+22] V. Cohen-Addad et al. “Improved Approximations for Euclidean K-Means and

k-Median, via Nested Quasi-Independent Sets”. In: Proceedings of the 54th

Annual ACM SIGACT Symposium on Theory of Computing. STOC 2022. Rome,

Italy: Association for Computing Machinery, 2022, pp. 1621–1628. DOI:

10.1145/3519935.3520011.

[Das+20] S. Dasgupta et al. “Explainable k-Means and k-Medians Clustering”. In:

Proceedings of the 37th International Conference on Machine Learning, ICML

2020. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020,

pp. 7055–7065.

90

https://doi.org/10.1006/jcss.2002.1882
https://doi.org/10.1145/3519935.3520011


Bibliography

[EMN22] H. Esfandiari, V. Mirrokni, and S. Narayanan. “Almost Tight Approximation

Algorithms for Explainable Clustering”. In: Proceedings of the 2022 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2022. To appear. SIAM, 2022.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. “Storing a Sparse Table with O(1)

Worst Case Access Time”. In: Journal of the ACM 31.3 (1984), pp. 538–544. DOI:

10.1145/828.1884.

[Gam+21] B. Gamlath et al. “Nearly-Tight and Oblivious Algorithms for Explainable

Clustering”. In: Thirty-Fifth Conference on Neural Information Processing Systems

(2021).

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory

of NP-Completeness. USA: W. H. Freeman & Co., 1990.

[Gon85] T. F. Gonzalez. “Clustering to minimize the maximum intercluster distance”. In:

Theoretical Computer Science 38 (1985), pp. 293–306.

[Gri01] D. Grigoriev. “Complexity of Positivstellensatz proofs for the knapsack”. In:

Computational Complexity 10.2 (2001), pp. 139–154.

[Gup+23] A. Gupta et al. The Price of Explainability for Clustering.

https://arxiv.org/abs/2304.09743, 2023.

[Har+19] D. G. Harris et al. “A Lottery Model for Center-Type Problems With Outliers”. In:

ACM Trans. Algorithms 15.3 (2019), 36:1–36:25.

[HN79] W.-L. Hsu and G. L. Nemhauser. “Easy and hard bottleneck location problems”.

In: Discrete Applied Mathematics 1.3 (1979), pp. 209–215.

[HS85] D. S. Hochbaum and D. B. Shmoys. “A best possible heuristic for the k-center

problem”. In: Mathematics of operations research 10.2 (1985), pp. 180–184.

[IV22] T. Inamdar and K. R. Varadarajan. “Non-Uniform k-Center and Greedy Clustering”.

In: SWAT. 2022.

[Jia+22] X. Jia et al. “Towards Non-Uniform k-Center with Constant Types of Radii”. In: Jan.

2022, pp. 228–237. DOI: 10.1137/1.9781611977066.16.

[JSS21a] X. Jia, K. Sheth, and O. Svensson. “Fair colorful k-center clustering”. In:

Mathematical Programming (2021), pp. 1–22.

[JSS21b] X. Jia, K. Sheth, and O. Svensson. “Fair colorful k-center clustering”. In:

Mathematical Programming 192 (July 2021), pp. 1–22. DOI:

10.1007/s10107-021-01674-7.

[KAM19] M. Kleindessner, P. Awasthi, and J. Morgenstern. Fair k-Center Clustering for Data

Summarization. 2019.

[Kan+04] T. Kanungo et al. “A local search approximation algorithm for k-means

clustering”. In: Computational Geometry 28.2 (2004). Special Issue on the 18th

Annual Symposium on Computational Geometry - SoCG2002, pp. 89–112. DOI:

https://doi.org/10.1016/j.comgeo.2004.03.003.

91

https://doi.org/10.1145/828.1884
https://doi.org/10.1137/1.9781611977066.16
https://doi.org/10.1007/s10107-021-01674-7
https://doi.org/https://doi.org/10.1016/j.comgeo.2004.03.003


Bibliography

[Kar72] R. M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of

Computer Computations: Proceedings of a symposium on the Complexity of

Computer Computations. Ed. by R. E. Miller, J. W. Thatcher, and J. D. Bohlinger.

Boston, MA: Springer US, 1972, pp. 85–103. DOI: 10.1007/978-1-4684-2001-2_9.

[KMN11] A. R. Karlin, C. Mathieu, and C. T. Nguyen. “Integrality Gaps of Linear and Semi-

Definite Programming Relaxations for Knapsack”. In: Integer Programming and

Combinatoral Optimization IPCO. 2011, pp. 301–314.

[Las01a] J. B. Lasserre. “An explicit exact SDP relaxation for nonlinear 0-1 programs”. In:

International Conference on Integer Programming and Combinatorial

Optimization (IPCO). 2001, pp. 293–303.

[Las01b] J. B. Lasserre. “Global optimization with polynomials and the problem of

moments”. In: SIAM Journal on optimization 11.3 (2001), pp. 796–817.

[Li16] S. Li. “Approximating capacitated k-median with (1+ε) k open facilities”. In:

Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete

algorithms. SIAM. 2016, pp. 786–796.

[Li17] S. Li. “On uniform capacitated k-median beyond the natural LP relaxation”. In:

ACM Transactions on Algorithms (TALG) 13.2 (2017), pp. 1–18.

[Llo82] S. P. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on

Information Theory 28.2 (1982), pp. 129–136. DOI: 10.1109/TIT.1982.1056489.

[LM21] E. S. Laber and L. Murtinho. “On the price of explainability for some clustering

problems”. In: Proceedings of the 38th International Conference on Machine

Learning, ICML 2021. Vol. 139. Proceedings of Machine Learning Research. PMLR,

2021, pp. 5915–5925.

[Mol19] C. Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models

Explainable. https://christophm.github.io/interpretable-ml-book/. 2019.

[MS21] K. Makarychev and L. Shan. “Near-Optimal Algorithms for Explainable k-Medians

and k-Means”. In: Proceedings of the 38th International Conference on Machine

Learning, ICML 2021. Vol. 139. Proceedings of Machine Learning Research. PMLR,

2021, pp. 7358–7367.

[MS22] K. Makarychev and L. Shan. “Explainable K-Means: Don’t Be Greedy, Plant Bigger

Trees!” In: STOC 2022. Rome, Italy: Association for Computing Machinery, 2022,

pp. 1629–1642.

[MS23] K. Makarychev and L. Shan. Random Cuts are Optimal for Explainable k-Medians.

https://arxiv.org/abs/2304.09743, 2023.

[Mur+19] W. J. Murdoch et al. “Definitions, methods, and applications in interpretable

machine learning”. In: Proceedings of the National Academy of Sciences 116.44

(Oct. 2019), pp. 22071–22080. DOI: 10.1073/pnas.1900654116.

92

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/TIT.1982.1056489
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1073/pnas.1900654116


Bibliography

[RSG16] M. T. Ribeiro, S. Singh, and C. Guestrin. “"Why Should I Trust You?": Explaining

the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2016. ACM,

2016, pp. 1135–1144. DOI: 10.1145/2939672.2939778.

[Rud19] C. Rudin. “Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead”. In: Nature Machine Intelligence

1.5 (2019), pp. 206–215. DOI: 10.1038/s42256-019-0048-x.

[Tul09] M. Tulsiani. “CSP gaps and reductions in the lasserre hierarchy”. In: Proceedings

of the 41st Annual ACM Symposium on Theory of Computing, STOC. 2009,

pp. 303–312.

[Vaz01] V. V. Vazirani. Approximation Algorithms. Springer Berlin, Heidelberg, 2001. DOI:

10.1007/978-3-662-04565-7.

[WS11] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, 2011. DOI: 10.1017/CBO9780511921735.

93

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1017/CBO9780511921735




Xinrui JIA

# xinrui.321@gmail.com � xinruij.github.io
I +41 78 334 23 63 + Avenue du Temple 6, 1020 Renens VD, CH

(shin-ray)

EDUCATION

École Polytechnique Fédérale de Lausanne (EPFL) 09.2018 - Present
PhD in Computer Science Lausanne, Switzerland
Theory of Computation Lab, research area: algorithms

University of Waterloo 09.2014 - 06.2018
Bachelor’s in Mathematics with Distinction - Dean’s Honours List Waterloo, Canada
Majors: Combinatorics and Optimization, Pure Mathematics

RESEARCH INTERESTS

Combinatorial optimization, discrete algorithms, operations research.

SKILLS

Programming: Experience with Python, SQL, C/C++, Java, Matlab, Gurobi.
Optimization: Discrete optimization, algorithm design, modelling and problem solving.

PROFESSIONAL EXPERIENCE

Apple Inc., Optimization Intern 06.2021 - 12.2021
Conducted applied research in AI/ML team. Designed techniques for Zurich, Switzerland
optimization of system-wide operations and implemented methods
in Python. Details proprietary.

Private Tutor, Self-employed 06.2020 - 05.2021
Tutored University of Waterloo classes over video conferences: Analysis, Remote
Intro to Optimization, Intro to Combinatorics, Graph Theory.

Grand River School, Math Class Teacher 09.2016 - 04.2018
Designed and taught competition math class to students at non-profit Waterloo, Canada
organization.

University of Waterloo, Residence Advisor 09.2016 - 04.2017
Organized and advertised residence activities, mediated conflicts, and Waterloo, Canada
assisted in emergencies.

HAA Analytics, Backend Application Developer 05.2015 - 08.2015
Used Python, NumPy, Pandas, SQL to build reinsurance analytics web Toronto, Canada
app at start-up. Collaborated with team of 6 programmers in every
part of software development cycle. Product successfully demoed 3
months into internship.

ACADEMIC EXPERIENCE

Simons Institute at UC Berkeley, Visiting Student Researcher 08.2022 - 09.2022
Participated in program Data-Driven Decision Processes. Berkeley, USA

EPFL, Teaching Assistant 02.2019 - 12.2022
Conducted exercise sessions for the classes Theory of Computation and Lausanne, Switzerland
Algorithms. Experience as head TA, responsible for coordinating
teaching duties and communication between professor and team of
student TAs.

95



University of Waterloo, Teaching Assistant 09.2016 - 04.2018
Tutored classes in calculus, algebra, and linear algebra in residence Waterloo, Canada
tutorial center.

EPFL Discrete Optimization Lab, Research Intern 01.2017 - 04.2017
Proved guarantees for two algorithms for max dispersion problem and Lausanne, Switzerland
explored applications to image recognition. Presented results with
visualizations in PyGame.

University of Waterloo, Research Intern 05.2016 - 08.2016
Implemented key-exchange protocol using C++ and SageMath. Waterloo, Canada
Developed cryptanalysis attack for proposed post-quantum Diffie-
Hellman key-exchange protocol.

LANGUAGES

English: Native
French: Intermediate
German: Beginner

COMPETITIONS AND AWARDS

University of Waterloo Mathematics Scholarships ($31 000 cad) 2014 - 2018
Highline Family Scholarship ($8 000 cad) 2014 - 2017
Ontario Music Festivals (provincial competition, grade 10 violin) 2013
Windsor Symphony Youth Orchestra (concertmaster) 2012-2013
Canada National Math Camp (invitation only top 21 students nationally) 2012
Western University High School Debate Competition (quarter finalist) 2012

ACTIVITIES AND HOBBIES

Rock climbing, hiking, violin, chamber music, choir.

CONFERENCE REVIEWING

Contributed as a reviewer/sub-reviewer in the following

• conferences: ICALP, SODA, ISAAC

• journals: Algorithmica, Theoretical Computer Science, Computer and System Sciences, Ma-
chine Learning Research

PUBLICATIONS

1. Xinrui Jia, Ola Svensson, and Weiqiang Yuan. The Exact Bipartite Matching Polytope Has Expo-
nential Extension Complexity. In Symposium on Discrete Algorithms (SODA 2023).

2. Xinrui Jia, Lars Rohwedder, Kshiteej Sheth, and Ola Svensson. Towards Non-Uniform k-Center
with Constant Types of Radii. In Symposium on Simplicity in Algorithms (SOSA 2022).

3. Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. Nearly-tight and Oblivious Al-
gorithms for Explainable Clustering. In Conference on Neural Information Processing Systems
(NeurIPS 2021).

4. Xinrui Jia, Kshiteej Sheth, and Ola Svensson. Fair Colorful k-Center Clustering. In Proceedings of
the 21st International Conference on Integer Programming and Combinatorial Optimization (IPCO
2020).

96


	Acknowledgements
	Abstract (English/Français)
	List of Figures
	Contents
	Introduction
	Overview of Contributions
	Colorful k-center
	Non-uniform k-center
	Explainable k-medians and k-means

	Outline of the Thesis

	Preliminaries
	Notation and Definitions
	Problems Background
	Colorful k-center
	Non-uniform k-center
	Explainable k-medians and k-means


	A Constant-factor Approximation for Colorful k-Center Clustering
	Introduction
	A 3-Approximation Algorithm
	The pseudo-approximation algorithm
	Phase I
	Phase II

	Constant Number of Colors
	Formal algorithm for  colors

	LP Integrality Gaps
	Sum-of-squares integrality gap
	Flow constraints


	The Non-Uniform k-Center Problem with Three Types of Radii
	Introduction
	Reducing t-NUkC to Robust (t-1)-NUkC
	A Bottom-up Algorithm for Robust 2-NUkC
	Algorithm for contracted instances

	Conclusion

	Nearly Tight and Oblivious Algorithms for Explainable Clustering
	Introduction
	Our contributions
	Technical overview
	Independent work

	Preliminaries
	Explainable k-Medians Clustering
	Cost analysis
	Upper bounding cost by a factor of O(log^2 k)
	Implementation details

	Explainable k-Means and General lp-norm Clustering
	The algorithm for lp-norms with p >= 1.
	Implementation details

	Lower Bound
	The Minimum Cut Algorithm Loses Ω(k) Factor for k-Medians

	Future Work
	Supplementary Material for Chapter 3
	Dynamic Program for Dense Points
	The Clustering Algorithm

	Supplementary Material for Chapter 4
	Dynamic Program for Laminar Instances

	Bibliography
	Curriculum Vitae



