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Abstract

Natural language processing (NLP) has experienced significant improvements with the devel-
opment of Transformer-based (Vaswani et al., 2017) models e.g. BERT (Devlin et al., 2019)
and GPT (Brown et al., 2020), which employ self-attention mechanism and pre-training strate-
gies. Although Transformer-based models have achieved significant accomplishments, they still
present several obstacles. A notable issue is their inability to encode structured data, e.g. graphs,
which is crucial for tasks involving structured knowledge processing, including syntactic and
semantic parsing, and information extraction. Additionally, the considerable size of pre-trained
Transformer-based models poses challenges for real-world deployment, prompting a growing
interest in applying compression techniques e.g. knowledge distillation, pruning, and quantisation.
Understanding the impact of compression requires examining several aspects including attention
patterns in compressed models for different languages, gender and semantic biases. In this
thesis, we present an approach for extending Transformer-based models to encode graphs in
the attention mechanism and examine the different behaviours of these models (including the
attention patterns) following compression.
Our first contribution is to propose Graph-to-Graph Transformer (G2GTr) architecture, which
modifies the self-attention mechanism of Transformer for conditioning on graph structures in
addition to the input sequences. This mechanism incorporates graph relations as continuous
embeddings rather than previous works that use a discrete model structure or pre-defined discrete
attention heads. An explicit representation of relations is supported by inputting these embeddings
into the self-attention mechanism, which is applied to every pair of tokens. In this way, each
attention head can easily learn to attend only to tokens in a given relation, while also having the
ability to learn additional structures in conjunction with other tokens. We then apply the G2GTr
model to encode the partially constructed graph in the transition-based dependency parsing task.
Our second contribution is to propose Recursive Non-autoregressive Graph-to-Graph Transformer
(RNGTr), a graph prediction model that exploits the complete graph-to-graph capabilities of
G2GTr model to recursively refine the output predicted graph. This model, despite predicting all
graph edges simultaneously and being non-autoregressive, is capable of capturing any between-
edge dependencies by conditioning on the prior predicted graph, similar to an auto-regressive
model. This proposed architecture comprises three modules. Firstly, an initialization parser is
used to generate an initial graph structure, which could be any model suited to the task, even
a trivial one. Secondly, a G2GTr model is used to encode the previously predicted graph and
computes the output distribution over the target graph. Thirdly, a decoding algorithm is utilized
to identify the optimal graph based on these edge scores.
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Abstract

Our third contribution is to propose Syntax-aware Graph-to-Graph Transformer (SynG2G-Tr)
architecture to encode the syntactic knowledge in the semantic role labelling task. It conditions
on the sentence’s dependency structure and predicts both span-based and dependency-based SRL
graphs at the same time. The modified self-attention function models the interaction of the graph
relations with both the query and key vectors of the self-attention mechanism, not just the query.
We also discover that omitting the interaction of the graph structure with the value vectors of
self-attention does not negatively impact the performance. We show empirically that our model
surpasses the performance of prior comparable models.
Our fourth contribution is to demonstrate the effects of compression methods on multilingual
Transformer-based NMT models, that have been pre-trained in a great number of languages in
different domains. We analyse different aspects of compressed models, including attention pat-
terns, gender and semantic biases. In this study, we concentrate on light compression techniques,
specifically post-training quantisation and magnitude pruning without any further fine-tuning.1

We exploit the recent and largest MNMT model, M2M-100 (Fan et al., 2020a), that encompasses
100 languages and contains nearly 12 billion parameters. We evaluate the impact of compression
on different language pairs using the FLORES-101 (Goyal et al., 2021b) benchmark, which covers
101 languages. We also consider MT-Gender (Stanovsky et al., 2019) and DiBiMT (Campolungo
et al., 2022) benchmarks allowing us to assess different types of biases that could be present in
the data and MNMT model.
Our fifth contribution is to propose SMaLL-100, a Shallow Multilingual Machine Translation
Model for Low-Resource Languages covering 100 languages, which is a distilled version of
M2M-100 (12B) (Fan et al., 2020a), the most recent and largest available multilingual NMT
model. We particularly focus on low and very low-resource language pairs, given the absence
of a reasonably-sized model that delivers satisfactory performance across a substantial number
of low-resource languages. We achieve this by training our model on a balanced dataset, where
each language direction has the same sampling probability, irrespective of their training data
size. While this leads to lower performance on the high-resource languages, we claim that
this loss is easily recoverable through further fine-tuning. We evaluate SMaLL-100 on various
low-resource benchmarks, such as FLORES-101 (Goyal et al., 2021b), Tatoeba (Tiedemann,
2020), and TICO-19 (Anastasopoulos et al., 2020).

Keywords: generalization, compression, graphs, parsing, semantic role labelling, machine
translation, multilinguality, fairness, low-resource.

1The reason is that fine-tuning MNMT models is extremely computationally demanding.
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Zusammenfassung

Die Verarbeitung natürlicher Sprache hat mit der Entwicklung Transformer-basierter (Vaswani
et al., 2017) Modelle, z. B. BERT (Devlin et al., 2019) und GPT (Brown et al., 2020), die Selbst-
aufmerksamkeitsmechanismen und Pre-Training-Strategien nutzen. Obwohl Transformer-basierte
Modelle erhebliche Erfolge erzielt haben, stellen sie immer noch einige Hindernisse dar. Ein
bemerkenswertes Problem ist ihre Unfähigkeit, strukturierte Daten zu kodieren, z. Diagramme,
was für Aufgaben mit strukturierter Wissensverarbeitung, einschließlich syntaktischer und seman-
tischer Analyse sowie Informationsextraktion, von entscheidender Bedeutung ist. Darüber hinaus
stellt die beträchtliche Größe vorab trainierter Transformer-basierter Modelle Herausforderungen
für den Einsatz in der Praxis dar und führt zu einem wachsenden Interesse an der Anwendung
von Komprimierungstechniken, z. B. Wissensdestillation, Beschneidung und Quantisierung. Um
die Auswirkungen der Komprimierung zu verstehen, müssen mehrere Aspekte untersucht wer-
den, darunter Aufmerksamkeitsmuster in komprimierten Modellen für verschiedene Sprachen,
Geschlecht und semantische Verzerrungen. In dieser Arbeit stellen wir einen Ansatz zur Erwei-
terung transformatorbasierter Modelle vor, um Graphen im Aufmerksamkeitsmechanismus zu
kodieren, und untersuchen das unterschiedliche Verhalten dieser Modelle (einschließlich der
Aufmerksamkeitsmuster) nach der Komprimierung.
Unser erster Beitrag besteht darin, eine Graph-to-Graph Transformer (G2GTr)-Architektur vorzu-
schlagen, die den Selbstaufmerksamkeitsmechanismus von Transformer für die Konditionierung
auf Graphstrukturen zusätzlich zu den Eingabesequenzen modifiziert. Dieser Mechanismus um-
fasst Graphbeziehungen als kontinuierliche Einbettungen und nicht frühere Arbeiten, die eine
diskrete Modellstruktur oder vordefinierte diskrete Aufmerksamkeitsköpfe verwenden. Eine
explizite Darstellung von Beziehungen wird durch die Eingabe dieser Einbettungen in den Selbst-
aufmerksamkeitsmechanismus unterstützt, der auf jedes Tokenpaar angewendet wird. Auf diese
Weise kann jeder Aufmerksamkeitskopf leicht lernen, sich nur auf Token in einer bestimmten
Beziehung zu konzentrieren, während er gleichzeitig die Fähigkeit hat, zusätzliche Strukturen
in Verbindung mit anderen Token zu lernen. Anschließend wenden wir das G2GTr-Modell an,
um den teilweise erstellten Graphen in der übergangsbasierten Abhängigkeitsanalyseaufgabe zu
kodieren.
Unser zweiter Beitrag besteht darin, den rekursiven nicht autoregressiven Graph-to-Graph-
Transformer (RNGTr) vorzuschlagen, ein Graph-Vorhersagemodell, das die vollständigen Graph-
to-Graph-Fähigkeiten des G2GTr-Modells nutzt, um den ausgegebenen vorhergesagten Graphen
rekursiv zu verfeinern. Obwohl dieses Modell alle Diagrammkanten gleichzeitig vorhersagt und
nicht autoregressiv ist, ist es in der Lage, alle Abhängigkeiten zwischen Kanten zu erfassen, indem
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Zusammenfassung

es auf das zuvor vorhergesagte Diagramm konditioniert wird, ähnlich einem autoregressiven
Modell. Diese vorgeschlagene Architektur umfasst drei Module. Zunächst wird ein Initialisie-
rungsparser verwendet, um eine anfängliche Diagrammstruktur zu generieren, bei der es sich um
jedes für die Aufgabe geeignete Modell handeln kann, auch um ein triviales. Zweitens wird ein
G2GTr-Modell verwendet, um den zuvor vorhergesagten Graphen zu kodieren und die Ausga-
beverteilung über den Zielgraphen zu berechnen. Drittens wird ein Dekodierungsalgorithmus
verwendet, um anhand dieser Kantenwerte den optimalen Graphen zu identifizieren.
Unser dritter Beitrag besteht darin, eine syntaxbewusste Graph-to-Graph Transformer (SynG2G-
Tr)-Architektur vorzuschlagen, um das syntaktische Wissen in der semantischen Rollenbezeich-
nungsaufgabe zu kodieren. Es richtet sich nach der Abhängigkeitsstruktur des Satzes und sagt
gleichzeitig sowohl spannenbasierte als auch abhängigkeitsbasierte SRL-Diagramme voraus. Die
modifizierte Selbstaufmerksamkeitsfunktion modelliert die Interaktion der Graphbeziehungen
sowohl mit der Abfrage als auch mit Schlüsselvektoren des Selbstaufmerksamkeitsmechanis-
mus, nicht nur mit der Abfrage. Wir entdecken auch, dass das Weglassen der Interaktion der
Diagrammstruktur mit den Wertvektoren der Selbstaufmerksamkeit keinen negativen Einfluss auf
die Leistung hat. Wir zeigen empirisch, dass unser Modell die Leistung früherer vergleichbarer
Modelle übertrifft.
Unser vierter Beitrag besteht darin, die Auswirkungen von Komprimierungsmethoden auf mehr-
sprachige Transformer-basierte NMT-Modelle zu demonstrieren, die in einer großen Anzahl
von Sprachen in verschiedenen Domänen vorab trainiert wurden. Wir analysieren verschiede-
ne Aspekte komprimierter Modelle, einschließlich Aufmerksamkeitsmuster, Geschlecht und
semantische Verzerrungen. In dieser Studie konzentrieren wir uns auf leichte Komprimierungs-
techniken, insbesondere auf Post-Training-Quantisierung und Größenbereinigung ohne weitere
Feinabstimmung.2 Wir nutzen das jüngste und größte MNMT-Modell, M2M-100 (Fan et al.,
2020a), das 100 Sprachen umfasst und fast 12 Milliarden Parameter enthält. Wir bewerten die
Auswirkung der Komprimierung auf verschiedene Sprachpaare mithilfe des FLORES-101 (Goyal
et al., 2021b)-Benchmarks, der 101 Sprachen abdeckt. Wir berücksichtigen auch die Benchmarks
MT-Gender (Stanovsky et al., 2019) und DiBiMT (Campolungo et al., 2022), die es uns ermögli-
chen, verschiedene Arten von Verzerrungen zu bewerten, die in den Daten und im MNMT-Modell
vorhanden sein könnten.
Unser fünfter Beitrag besteht darin, SMaLL-100 vorzuschlagen, ein Sheiliges Mmehrsprachiges
Machinesisches Übersetzungsmodell für Low-Resource LSprachen, das 100 Sprachen abdeckt
, eine destillierte Version von M2M-100 (12B) (Fan et al., 2020a), dem neuesten und größten
verfügbaren mehrsprachigen NMT-Modell. Wir konzentrieren uns insbesondere auf Sprachpaare
mit geringen und sehr geringen Ressourcen, da es kein Modell mit angemessener Größe gibt,
das eine zufriedenstellende Leistung für eine beträchtliche Anzahl von Sprachen mit geringen
Ressourcen liefert. Dies erreichen wir, indem wir unser Modell auf einem ausgewogenen Daten-
satz trainieren, bei dem jede Sprachrichtung unabhängig von der Größe ihrer Trainingsdaten die
gleiche Stichprobenwahrscheinlichkeit aufweist. Dies führt zwar zu einer geringeren Leistung
bei ressourcenintensiven Sprachen, wir behaupten jedoch, dass dieser Verlust durch weitere Fein-
abstimmung leicht ausgeglichen werden kann. Wir bewerten SMaLL-100 anhand verschiedener

2Der Grund dafür ist, dass die Feinabstimmung von MNMT-Modellen äußerst rechenintensiv ist.
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ressourcenarmer Benchmarks, wie FLORES-101 (Goyal et al., 2021b), Tatoeba (Tiedemann,
2020) und TICO-19 (Anastasopoulos et al., 2020).

Schlüsselwörter: Generalisierung, Komprimierung, Diagramme, Parsing, semantische Rollen-
bezeichnung, maschinelle Übersetzung, Mehrsprachigkeit, Fairness, geringe Ressourcen.
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1 Introduction & Background

Natural language processing (NLP) refers to the branch of artificial intelligence, concerned with
giving computers the ability to understand text and spoken words in much the same way human
beings can. In the early days of NLP, researchers focused on understanding the fundamental
elements of natural languages, such as syntax (Henderson, 2003; Chomsky, 2002; Henderson,
1990), semantics (Gesmundo et al., 2009; Carnap, 1947; Katz and Fodor, 1963), and pragmatics.
This led to the development of rule-based systems (Allen and Perrault, 1980; Wilks, 1975; Woods,
1970), where linguistic rules were manually crafted to facilitate language processing. However,
these systems were limited in their ability to scale and adapt to new linguistic phenomena, paving
the way for the introduction of statistical methods and machine learning techniques.

The introduction of word embeddings, such as Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), revolutionized NLP by enabling the representation of words as continuous
vectors in a high-dimensional space. These embeddings capture semantic and syntactic relation-
ships between words, allowing for more accurate language modelling and improved performance
across a wide range of NLP tasks. These representations, however, still fell short in capturing
context-dependent meanings and long-range dependencies between words in a sentence.
The emergence of Transformer architectures (Vaswani et al., 2017), such as the GPT (Generative
Pre-trained Transformer) (Brown et al., 2020) and BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019), addressed these limitations by employing self-attention
mechanisms and pre-training strategies. The self-attention mechanism allows Transformer to
effectively model long-range dependencies and capture contextual information, while pre-training
strategies, such as masked language modelling and next-sentence prediction, enable the models
to learn powerful contextual representations from vast amounts of unlabelled text data. These
advancements have led to significant improvements in NLP performance and have set new
benchmarks across various tasks, including generation (e.g. machine translation and question
answering) and classification (e.g. sentiment analysis and natural language inference). In recent
years, increasing the size of these models has become crucial for achieving top-notch performance
in natural language processing (OpenAI, 2023; Touvron et al., 2023; Scao et al., 2023; Zhang
et al., 2022), as it has been observed that certain abilities only manifest when models surpass a
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specific scale (Wei et al., 2022a). This is particularly evident in the domain of Neural Machine
Translation (NMT), where large-scale multilingual NMT models (NLLB et al., 2022; Zhang et al.,
2020a; Fan et al., 2020a; Tang et al., 2020; Aharoni et al., 2019) have showcased impressive
outcomes. These models are especially beneficial for languages with limited resources, as they
greatly profit from the transfer of knowledge.

Despite these successes, Transformer-based models also come with their own set of challenges.
One prominent issue is their inability to effectively encode structured data (e.g. graphs), which can
be critical for tasks that require reasoning over structured knowledge (e.g. syntactic and semantic
parsing, and information extraction). Another challenge faced by pre-trained Transformer-based
models is their substantial size, which makes them computationally expensive and difficult to
deploy in real-world applications with limited resources (Treviso et al., 2023). This has led to
a growing interest in model compression techniques, such as knowledge distillation (Li et al.,
2021a; Kim and Rush, 2016), pruning (Zhang et al., 2021a; Behnke and Heafield, 2020), and
quantisation (Dettmers et al., 2022; Tao et al., 2022; Yao et al., 2022), to reduce the size of
these models without sacrificing performance (Kim et al., 2021a; Sun et al., 2020; Jiao et al.,
2020; Wang et al., 2020a; Chen et al., 2020; Sanh et al., 2019; Lan et al., 2020; Voita et al.,
2019). During the compression process, it is crucial to investigate the attention patterns present in
compressed models and analyse them concerning diverse aspects, including gender and semantic
biases to reach a compact and fair model with reasonable performance across all languages.

1.1 Open Problems

In pursuit of a general Transformer architecture, capable of modelling both sequences and graphs,
several challenges must be addressed. This thesis looks at 1) effectively modelling structured data
in Transformer-based models. For the efficiency of Transformer-based models, this thesis aims to
2) analyse the biases (e.g. gender and semantic) and attention patterns of compressed models to
provide a compact and efficient multilingual model, that covers a great number of languages.

• Modelling structured data. There are several graph structures defined in the NLP area e.g.
syntactic and semantic graphs (Nivre et al., 2018; Henderson et al., 2013; Pradhan et al.,
2012; Hajič et al., 2009; Carreras and Màrquez, 2005), which require a general architecture
to model them. Previous work has shown different alternatives to encode graph structures,
such as adding a second graph encoder on top of the sequence encoder (Marcheggiani
and Titov, 2020; Ji et al., 2019; Marcheggiani and Titov, 2017) or defining pre-defined
discrete attention heads in Transformer-based encoders (Strubell et al., 2018). However,
these proposals are task-specific and add a hard bias toward graph structure. Proposing a
general Transformer-based architecture that can simultaneously encode both sequences and
graphs is an open problem and overcoming this challenge has the potential to significantly
enhance various natural language processing tasks. In this thesis, we consider three NLP
tasks which highly depend on modelling graph structures: 1. transition-based dependency
parsing, 2. graph-based dependency parsing, and 3. semantic role labelling.

2



1.2 Related Work & Background

• Analysis of biases and attention pattern of compressed generative models. Efficient
inference with very large models has become a crucial problem. This challenge can be
overcome through model compression, e.g. knowledge distillation (Wang et al., 2021;
Li et al., 2021a; Sanh et al., 2019; Kim and Rush, 2016), pruning (Zhang et al., 2021a;
Behnke and Heafield, 2020; Michael H. Zhu, 2018; Frankle and Carbin, 2019), and
quantisation (Yao et al., 2022; Yang et al., 2022; Tao et al., 2022; Kim et al., 2021a;
Bondarenko et al., 2021; Wu et al., 2020; Xu et al., 2018). These methods can be applied
with a little loss in top-line metrics while reducing the memory-footprint and enhancing
inference time. However, recent work (Ahia et al., 2021; Xu et al., 2021; Li et al., 2021a;
Renduchintala et al., 2021; Hooker et al., 2020) has demonstrated that under-represented
features can suffer from a drastic decrease in performance which is not necessarily reflected
by global (aggregated) metrics. Particularly in multilingual neural machine translation, the
overall metrics are often reported as an average across all the language pairs, where the
performance between individual language pairs can vary a lot. Therefore, it is even more
critical to understand what would be the exact impact of compression on different aspects
of these models including attention patterns in different languages, gender, and semantic
biases.

• Proposing a compact and efficient multilingual model, especially for low-resource lan-
guages. Over the past few years, previous work has proposed several approaches to improve
the quality of translations in low-resource languages, e.g., Multilingual Neural Machine
Translation (MNMT) models (Goyal et al., 2021b; Tang et al., 2021; Fan et al., 2020a;
Johnson et al., 2017), back-translation (Edunov et al., 2018; Sennrich et al., 2016) and
unsupervised machine translation (Garcia et al., 2021; Ko et al., 2021). Massively MNMT
models are particularly interesting for low-resource languages as they benefit the most
from knowledge transfer from related languages (Arivazhagan et al., 2019). However, it is
also seen that curse of multilinguality hurts the performance of high-resource languages.
So, previous work attempted to increase the model size to maintain the translation perfor-
mance in both high and low-resource languages. This makes the use of these massively
MNMT models challenging in real-world resource-constrained environments. Fairly com-
pressing these massively multilingual models by focusing on very-low and low-resource
language pairs is a critical issue, as there is no reasonable-size universal model that achieves
acceptable performance over a great number of low-resource languages.

1.2 Related Work & Background

1.2.1 Original Transformer

Transformer (Vaswani et al., 2017) is an encoder-decoder model, as shown in Figure 1.1. A
Transformer encoder (left side) computes an output embedding for each token in the input
sequence through stacked layers of Transformer block. Each Transformer block consists of a
multi-head self-attention and position-wise feed-forward networks. Each attention head takes its
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Figure 1.1: Transformer Architecture.

input vectors (x1, ..., xn) and computes its output attention vectors (z1, ..., zn). Each zi ∈ Rm is a
weighted sum of transformed input vectors x j ∈ Rm :

zi =
∑

j
αi j (x j W V ) (1.1)

with the attention weights αi j = exp(ei j )∑n
k=1 exp(ei k ) and

ei j =
(xi W Q )(x j W K )p

d
(1.2)

where W V ,W Q ,W K ∈ Rm×d are the trained value, query and key matrices, m is the embedding
size, and d is the attention head size. The output of multi-head self-attention module is the
input of residual connection with layer normalisation (Ba et al., 2016), then it goes through a
position-wise feed-forward network. The decoder (right side) is similar to the encoder module.
Additionally, the decoder inserts a third sub-layer, which performs multi-head attention over the
output vectors of the encoder.

1.2.2 Syntactic Parsing

Syntactic parsing is the process of analysing the grammatical structure of a sentence, including
identifying the subject, verb, and object. Syntactic dependency parsing is a critical component in
a variety of natural language understanding tasks, such as semantic role labelling (Marcheggiani
and Titov, 2020, 2017; Henderson et al., 2013), machine translation (Chen et al., 2017), relation
extraction (Zhang et al., 2018), and natural language inference (Pang et al., 2019).
It consists of two popular grammar styles; constituency parsing (i.e. phrase-structure pars-
ing) (Titov and Henderson, 2007a; Henderson, 2004, 2003; Manning and Schutze, 1999) and
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dependency parsing (Dyer et al., 2015; Nivre and McDonald, 2008; Carreras, 2007; Titov and
Henderson, 2007c; Nivre, 2003). The former one analyses the grammar structure of a sentence
by identifying the constituents or phrases in the sentence and their hierarchical relationships. The
prevalent strategies in constituent parsing include chart-based and transition-based architectures,
which are built by statistical and neural network models (Zhou et al., 2020a; Kitaev and Klein,
2018; Titov and Henderson, 2007a; Henderson, 2004; Hall et al., 2014). The later style (i.e.
dependency parsing) examines the syntactic dependencies between the words of a sentence to
generate a tree-style grammatical structure. There are two main approaches to compute the
dependency tree; transition-based and graph-based parsers. Transition-based parsers predict the
dependency graph one edge at a time through a sequence of parsing actions (Weiss et al., 2015;
Yazdani and Henderson, 2015; Yamada and Matsumoto, 2003; Nivre and Scholz, 2004; Titov
and Henderson, 2007c; Zhang and Nivre, 2011), and graph-based parsers (Zhou and Zhao, 2019;
Kuncoro et al., 2016; McDonald et al., 2005a; Koo and Collins, 2010) compute scores for every
possible dependency edge and then apply a decoding algorithm to find the highest scoring total
tree. In the following, we further describe these two approaches.

Transition-based Parser. The development of the transition-based approach to dependency
parsing was initiated by Yamada and Matsumoto (2003); Nivre (2003), drawing inspiration
from history-based parsing (Titov and Henderson, 2007b; Black et al., 1992) and data-driven
shift-reduce parsing (Veenstra and Daelemans, 2000). This approach simplifies the complex
parsing task by focusing on predicting the next parsing action and implementing parsing as a
greedy search for the optimal sequence of actions, making them highly efficient and often having
linear time complexity in terms of the length of the sentence.
For instance, arc-standard algorithm (Nivre, 2004) makes parsing decisions in bottom-up order.
The main data structures for representing the state of an arc-standard parser are a buffer of
words and a stack of partially constructed syntactic sub-trees. At each step, the parser chooses
between adding a leftward or rightward labelled arc between the top two words on the stack
(LEFT-ARC(l) or RIGHT-ARC(l), where l is a dependency label) or shifting a word from the
buffer onto the stack (SHIFT). To handle non-projective dependency trees, Nivre (2009) allow
the SWAP action, which shifts the second-from-top element of the stack to the front of the buffer,
resulting in the reordering of the top two elements of the stack. Modelling the parser state (i.e.
partially constructed dependency graph) is the main challenge in the transition-based methods.
Previous work addressed this challenge by feature engineering (Ballesteros and Bohnet, 2014;
Chen et al., 2014; Zhang and Nivre, 2011), and applying neural network models (Ballesteros et al.,
2017; Dyer et al., 2015; Chen and Manning, 2014). Specifically, Dyer et al. (2015) proposed
a composition function to model the partially constructed graph by passing the concatenated
vectors of head, dependent, and label of constructed relations to a non-linear function (tahn).

Graph-based Parser. These models (Zhou and Zhao, 2019; Ballesteros et al., 2016; Wang and
Chang, 2016; Kuncoro et al., 2016; McDonald et al., 2005a; Koo and Collins, 2010) generate
the dependency graph in a non-autoregressive manner as they calculate scores for all candidate
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Figure 1.2: Example of SRL graphs. The upper structure is in the span-based style, and the lower
one is in the dependency-based style.

dependency relations and then use a decoding method to reach the maximum scoring structure.
The primary challenge lies in devising methods to accurately model the interactions of dependency
edges without increasing the time complexity. There are several approaches to capture correlations
between dependency edges in graph-based models. In first-order models, such as Maximum
Spanning Tree (MST) (McDonald et al., 2005b; Edmonds, 1967; i Chu and Liu, 1965), the
score for an edge must be computed without being sure what other edges the model will choose.
The model itself only imposes the discrete tree constraint between edges. In higher-order
models (Tchernowitz et al., 2016; Zhang and McDonald, 2012; Ma and Zhao, 2012; Koo and
Collins, 2010; Carreras, 2007; McDonald and Pereira, 2006), they keep some between-edge
information, but require more decoding time.

1.2.3 Semantic Role Labelling

The semantic role labelling (SRL) task provides a shallow semantic representation of a sentence
and builds event properties and relations among relevant words, and is defined in both dependency-
based (Surdeanu et al., 2008) and span-based (Pradhan et al., 2012; Carreras and Màrquez, 2005)
styles, as shown in Figure 1.2. Semantic role labelling graphs enhance many NLP tasks including
question answering (Yih et al., 2016; Shen and Lapata, 2007), machine translation (Kazemi et al.,
2017; Wang et al., 2016), and natural language inference (Zhang et al., 2020c).
Traditionally, syntactic structure was regarded as a pre-requisite for SRL models (Henderson
et al., 2013; Punyakanok et al., 2008; Gildea and Palmer, 2002), but new models outperform
syntax-aware architectures by leveraging deep neural network architectures (Chen et al., 2019;
Cai et al., 2018; Tan et al., 2017; He et al., 2017; Marcheggiani et al., 2017) without explicitly
encoding syntactic structure. However, recent works (Zhou et al., 2020a; Marcheggiani and Titov,
2020; Strubell et al., 2018; He et al., 2017; Marcheggiani and Titov, 2017) claim that deep neural
network models could benefit from using syntactic information, rather than discarding it. Roth
and Lapata (2016) embed dependency paths, while some researchers (Fei et al., 2021; Munir et al.,
2021; Marcheggiani and Titov, 2017) use graph convolutional networks to encode the syntactic
structure. Strubell et al. (2018) incorporates a dependency graph by training one attention head of
Transformer to attend to syntactic parents for each token, in a multi-task setting. He et al. (2019,
2018b) use syntactic information to guide the argument pruning. Xia et al. (2019) exploit different
alternatives e.g. tree-structured GRU and graph features of dependency tree to encode syntactic
knowledge. Kasai et al. (2019) apply BiLSTM to tag the text with supertags extracted from
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dependency parses and feed them into SRL models. Xia et al. (2020) showed that incorporating
heterogeneous syntactic knowledge results in significant improvement. The question remains
open as to the most effective way to incorporate the auxiliary syntactic information into deep
learning architectures for SRL.

1.2.4 Compression of Pre-trained Multilingual Models

Multilingual NMT provides a single model to translate between any pair of languages, which
significantly improves performance on low-resource languages thanks to knowledge transfer (Had-
dow et al., 2021). Several works (Berard et al., 2021; Fan et al., 2020a; Platanios et al., 2018;
Firat et al., 2016; Dong et al., 2015) propose to include both language-specific, and language-
independent parameters in MNMT models. Recently, massively MNMT models (Fan et al.,
2020a; Zhang et al., 2020a; Arivazhagan et al., 2019; Aharoni et al., 2019; Neubig and Hu,
2018) have been proposed to translate between more than 100 languages. However, these models
usually contain a huge number of parameters to maintain performance in both high and low-
resource languages, and they demand significant memory and exhibit slow inference speeds. So,
compressing these massive multilingual NMT models is a critical problem. Previous research has
tackled this issue by employing various compression techniques, such as pruning, quantisation,
and knowledge distillation. In the subsequent section, a concise overview of M2M-100 (Fan
et al., 2020a), the top-performing and largest multilingual NMT model, along with common
compression methods, is presented.

M2M-100. is the best performing and the largest massively multilingual MT model, which covers
more than 10K language directions, including a great number of low and medium-resource
language pairs. M2M-100 is trained on large-scale multilingual corpora (Schwenk et al., 2021;
El-Kishky et al., 2020) with a novel data mining procedure, that uses language similarities. The
biggest model introduced consists of 24 encoder, and 24 decoder Transformer (Vaswani et al.,
2017) layers. Using several scaling techniques, it is trained with nearly 12 billion parameters. We
refer to Fan et al. (2020a) for more details.

Pruning. is a popular technique for both memory footprint reduction and inference speed-up.
It reduces the model size by removing redundant nodes that do not contribute to the resulting
performance. It usually achieves comparable results with state-of-the-art models with further fine-
tuning (Menghani, 2021; Ahia et al., 2021; Gale et al., 2019; Michael H. Zhu, 2018). In addition,
prior research (Wang et al., 2020b; Louizos et al., 2018) has suggested pruning techniques that
function as regularisers and can be employed during both pre-training and fine-tuning stages.
Some studies have explored pruning specifically during fine-tuning (Sanh et al., 2020; Han et al.,
2015) or in a dynamic manner during the inference process (Fan et al., 2020b). Additionally, there
are several works on structured pruning, which prunes a larger component of the network. These
methods encompass the elimination of attention heads (Voita et al., 2019; Michel et al., 2019),
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the removal of weak attention values (Qu et al., 2022; Ji et al., 2021), and even the complete
deletion of hidden layers (Sajjad et al., 2023; Dong et al., 2017).

Quantisation. Mapping high-precision data types to low-precision ones is referred to as quanti-
sation. Numerous studies have focused on specific precision levels, including integers (Kim et al.,
2021a), 8-bit representations (Dettmers et al., 2022; Prato et al., 2020; Quinn and Ballesteros,
2018), ternary formats (Zadeh et al., 2022; Zhang et al., 2020b), and even binary represen-
tations (Bai et al., 2021). Due to varying sensitivities of sub-networks to quantisation, some
works have focused on proposing mixed-precision quantization approaches. (Kim et al., 2021a;
Shen et al., 2020). Finally, recent work applies post-training, and training-aware quantisation to
pre-trained machine translation and language models (Wei et al., 2022b; Menghani, 2021; Liang
et al., 2021; Bondarenko et al., 2021; Wu et al., 2020), and achieves promising results while
lowering the inference latency, and the model size.

Knowledge Distillation. is a process in which a student model is trained using supervision signals
from a teacher model (Hinton et al., 2015). This often results in the student model outperforming
a comparably-sized model trained without such supervision. Early research primarily focused
on distilling task-specific models (Kim and Rush, 2016), while more recent studies have shifted
towards distilling pre-trained models that can be fine-tuned for specific downstream tasks (Gou
et al., 2021; Jiao et al., 2020; Sanh et al., 2019). However, the drawbacks of distillation include
the increased cost of tuning student hyper-parameters, as well as the potential for diminished
performance and generalisation capabilities (Stanton et al., 2021).

After the compression, recent work (Ahia et al., 2021; Xu et al., 2021; Li et al., 2021a; Ren-
duchintala et al., 2021; Hooker et al., 2020) has demonstrated that under-represented features
can suffer from a drastic decrease in performance which is not necessarily reflected by global
(aggregated) metrics. Specifically in multilingual NMT, the overall metrics are often reported as
an average across all the language pairs, where the performance between individual language
pairs can vary a lot. Therefore it is even more critical to understand what would be the exact
impact of compression on multilingual NMT models, beyond the aggregated metrics. Analysis
of the compression effect on different aspects (e.g. language-level performance, gender and
semantic biases) could be a starting point to bringing a comprehensive understanding between
fairness and compression in multilingual NMT models. This investigation may provide valuable
insights into developing fairer compression strategies for massively multilingual models, with a
particular focus on devising a fair and reasonable-size multilingual model tailored to low-resource
languages that currently lack suitably sized models capable of delivering acceptable performance
across a vast number of languages.
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1.3 Research Questions and Our Contributions

After examining the pertinent background information, we are prepared to explore the specific
research questions addressed in this thesis.

Research Question 1. Can a general Transformer-based model be developed that possesses the
ability to encode both sequences and graphs effectively?

In Chapter 2, we address this research question by proposing a version of the Transformer
architecture which combines this attention-based mechanism for conditioning on graphs with an
attention-like mechanism for predicting graphs and demonstrate its effectiveness on syntactic
dependency parsing. We call this architecture Graph-to-Graph Transformer (G2GTr). This
mechanism for conditioning on graphs differs from previous proposals in that it inputs graph
relations as continuous embeddings, instead of discrete model structure (e.g. (Dyer et al., 2015;
Henderson et al., 2013; Henderson, 2003)) or predefined discrete attention heads (e.g. (Ji et al.,
2019; Strubell et al., 2018)). An explicit representation of binary relations is supported by
inputting these relation embeddings to the attention functions, which are applied to every pair of
tokens. In this way, each attention head can easily learn to attend only to tokens in a given relation,
but it can also learn other structures in combination with other inputs. This gives a bias towards
attention weights which respects locality in the input graph but does not hard-code any specific
attention weights. In Chapter 2, we apply our architecture to transition-based dependency parsing,
as in auto-regressive structured prediction, after each edge of the graph has been predicted, the
model must condition on the partially specified graph to predict the next edge of the graph.

Research Question 2. Can we perform an iterative refinement on the graph-based dependency
parsing task without increasing the time complexity?

In Chapter 3, we propose a new graph prediction architecture which takes advantage of the
full graph-to-graph functionality of G2GTr to apply a G2GTr model to refine the output graph
recursively. This architecture predicts all edges of the graph in parallel, and is therefore non-
autoregressive, but can still capture any between-edge dependency by conditioning on the previous
version of the graph, like an auto-regressive model. This proposed Recursive Non-autoregressive
Graph-to-Graph Transformer (RNGTr) architecture has three components. First, an initialisation
model computes an initial graph, which can be any given model for the task, even a trivial one.
Second, a G2GTr model takes the previous graph as input and predicts each edge of the target
graph. Third, a decoding algorithm finds the best graph given these edge predictions. The second
and third components are applied recursively to do iterative refinement of the output graph until
some stopping criterion is met. The final output graph is the graph output by the final decoding
step. The RNG Transformer architecture can be applied to any task with a sequence or graph as
input and a graph over the same set of nodes as output.
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Research Question 3. Is syntax required for semantic role labelling? What is the best method of
encoding syntax for the semantic role labelling task?

In Chapter 4, we propose a novel method for encoding syntactic knowledge by introducing
Syntax-aware Graph-to-Graph Transformer (SynG2G-Tr) architecture. The model conditions on
the sentence’s dependency structure and jointly predicts both span-based and dependency-based
SRL structures. Inspired by G2GTr, the model inputs graph relations as embeddings incorporated
into the self-attention mechanism of Transformer (Vaswani et al., 2017). The self-attention
function models the interaction of the graph relations with both the query and key vectors of self-
attention mechanism, instead of just the query. We also find that excluding the interaction of graph
structure with the value vectors of self-attention does not harm the performance. Furthermore,
the architecture uses different types of graphs as the input and output. We show empirically that
our model outperforms previous comparable models.

Research Question 4. What do compressed multilingual machine translation models forget?

We addressed this research question in Chapter 5 by illustrating the impacts of applying compres-
sion methods to massively multilingual NMT models, that are pre-trained in a great number of
languages in several domains. To the best of our knowledge, this is the first attempt to analyse
how compression impacts massively multilingual models. In this study, we concentrate on light
compression techniques, specifically post-training quantisation and magnitude pruning without
any further fine-tuning.1 We exploit the recent and largest MNMT model, M2M-100 (Fan et al.,
2020a) that covers 100 languages and contains nearly 12B parameters and analyse the impact of
compression on different language pairs (based on attention patterns and BLEU performance)
evaluated on FLORES-101 benchmark (Goyal et al., 2021b) (covering 101 languages). We also
consider MT-Gender (Stanovsky et al., 2019) and DiBiMT (Campolungo et al., 2022) benchmarks
allowing us to assess different types of biases that could be present in the data and MNMT model.

Research Question 5. How can we develop a compact massively multilingual model, having a
reasonable performance particularly for low-resource languages?

In Chapter 6, we propose SMaLL-100, a Shallow Multilingual Machine Translation Model for
Low-Resource Languages covering 100 languages, which is a distilled alternative of M2M-
100 (12B) (Fan et al., 2020a), the most recent and biggest available multilingual NMT model. We
focus on very-low and low-resource language pairs as there is no reasonable-size universal model
that achieves acceptable performance over a great number of low-resource languages. We do so
by training SMaLL-100 on a perfectly balanced dataset.2 While this leads to lower performance
on the high-resource languages, we claim that this loss is easily recoverable through further
fine-tuning. We evaluate SMaLL-100 on different low-resource benchmarks, e.g., FLORES-

1The reason is that fine-tuning MNMT models is extremely computationally demanding.
2All language pairs have the same sampling probability, regardless of their training data size.
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101 (Goyal et al., 2021b), Tatoeba (Tiedemann, 2020), and TICO-19 (Anastasopoulos et al.,
2020).
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2 Graph-to-Graph Transformer for
Transition-based Dependency Parsing

In this chapter, we propose Graph-to-Graph Transformer architecture for conditioning on and
predicting arbitrary graphs, and apply it to the challenging task of transition-based dependency
parsing. After proposing two novel Transformer models of transition-based dependency parsing
as strong baselines, we show that adding the proposed mechanisms for conditioning on and pre-
dicting graphs of Graph-to-Graph Transformer results in significant improvements, both with and
without BERT pre-training. The novel baselines and their integration with Graph-to-Graph Trans-
former significantly outperform the state-of-the-art in traditional transition-based dependency
parsing on both English Penn Treebank, and 13 languages of Universal Dependencies Treebanks.
Graph-to-Graph Transformer can be integrated with many previous structured prediction methods,
making it easy to apply to a wide range of NLP tasks.

2.1 Introduction

In recent years, there has been a huge amount of research on applying self-attention models to
NLP tasks. Transformer (Vaswani et al., 2017) is the most common architecture, which can
capture long-range dependencies by using a self-attention mechanism over a set of vectors. To
encode the sequential structure of sentences, typically absolute position embeddings are input to
each vector in the set, but recently a mechanism has been proposed for inputting relative positions
(Shaw et al., 2018). For each pair of vectors, an embedding for their relative position is input
to the self-attention function. This mechanism can be generalised to input arbitrary graphs of
relations.

In this chapter, we propose a version of the Transformer architecture which combines this
attention-based mechanism for conditioning on graphs with an attention-like mechanism for
predicting graphs and demonstrate its effectiveness on syntactic dependency parsing. We call this
architecture Graph-to-Graph Transformer. This mechanism for conditioning on graphs differs
from previous proposals in that it inputs graph relations as continuous embeddings, instead of
discrete model structure (e.g. (Dyer et al., 2015; Henderson et al., 2013; Henderson, 2003))
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or predefined discrete attention heads (e.g. (Ji et al., 2019; Strubell et al., 2018)). An explicit
representation of binary relations is supported by inputting these relation embeddings to the
attention functions, which are applied to every pair of tokens. In this way, each attention head
can easily learn to attend only to tokens in a given relation, but it can also learn other structures
in combination with other inputs. This gives a bias towards attention weights which respects
locality in the input graph but does not hard-code any specific attention weights.

We focus our investigation on this novel graph input method and therefore limit our investigation
to models which predict the output graph one edge at a time, in an auto-regressive fashion.
In auto-regressive structured prediction, after each edge of the graph has been predicted, the
model must condition on the partially specified graph to predict the next edge of the graph.
Thus, our proposed Graph-to-Graph Transformer parser is a transition-based dependency parser.
At each step, the model predicts the next parsing decision, and thereby the next dependency
relation, by conditioning on the partial parse structure specified by the previous decisions. It
inputs embeddings for the previously specified dependency relations into the Graph-to-Graph
Transformer model via the self-attention mechanism. It predicts the next dependency relation
using only the vectors for the tokens involved in that relation.

To evaluate this architecture, we also propose two novel Transformer models of transition-based
dependency parsing, called Sentence Transformer, and State Transformer. Sentence Transformer
computes contextualised embeddings for each token of the input sentence and then uses the
current parser state to identify which tokens could be involved in the next valid parse transition
and uses their contextualised embeddings to choose the best transition. For State Transformer,
we directly use the current parser state as the input to the model, along with an encoding of the
partially constructed parse graph, and choose the best transition using the embeddings of the
tokens involved in that transition. Both baseline models achieve competitive or better results
than previous state-of-the-art traditional transition-based models, but we still get substantial
improvement by integrating Graph-to-Graph Transformer with them.

We also demonstrate that, despite the modified input mechanisms, this Graph-to-Graph Trans-
former architecture can be effectively initialised with standard pre-trained Transformer models.
Initialising the Graph-to-Graph Transformer parser with pre-trained BERT (Devlin et al., 2019)
parameters leads to substantial improvements. The resulting model significantly improves over
the state-of-the-art in traditional transition-based dependency parsing.

This success demonstrates the effectiveness of Graph-to-Graph Transformers for conditioning on
and predicting graph relations. This architecture can be easily applied to other NLP tasks that
have any graph as the input and need to predict a graph over the same set of nodes as output.

In summary, the contributions of this chapter are:

• We propose Graph-to-Graph Transformer for conditioning on and predicting graphs.
• We propose two novel Transformer models of transition-based dependency parsing.
• We successfully integrate pre-trained BERT initialisation in Graph-to-Graph Transformer.
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• We improve state-of-the-art accuracies for traditional transition-based dependency parsing.1

2.2 Transition-based Dependency Parsing

Our transition-based parser uses arc-standard parsing sequences (Nivre, 2004), which makes
parsing decisions in bottom-up order. The main data structures for representing the state of an
arc-standard parser are a buffer of words and a stack of partially constructed syntactic sub-trees.
At each step, the parser chooses between adding a leftward or rightward labelled arc between the
top two words on the stack (LEFT-ARC(l) or RIGHT-ARC(l), where l is a dependency label)
or shifting a word from the buffer onto the stack (SHIFT). To handle non-projective dependency
trees, we allow the SWAP action proposed in Nivre (2009), which shifts the second-from-top
element of the stack to the front of the buffer, resulting in the reordering of the top two elements
of the stack.

2.3 Graph-to-Graph Transformer

(Composition Model)

Input Embeddings

CLS SEPS1S2S3... ...B3B2B1 SEP ...D3D2D1

CLS SEPS1S2S3... ...B3B2B1 SEP ...D3D2D1

... ... ...

... ... ... ...

... ... ...
LSTM

ht-1
ct-1

History
Model ht

Graph Output Mechanism

Update State
Parser State

Prev. action Graph Input(G)

(a) StateTr+G2GTr.

Input Embeddings

Input Sentence:W1,W2,W3,...

CLS ROOT W1 W2 W3 ... SEP

CLS ROOT W1 W2 W3 ... SEP

... ...

... S2 S1 B1 B2 ...

Stack Buffer

Graph Output Mechanism

Graph Input(G)
Prev. action

Update State

(b) SentTr+G2GTr.

Figure 2.1: The State Transformer and Sentence Transformer parsers with Graph-to-Graph
Transformer integrated.

We propose a version of the Transformer which is designed for both conditioning on graphs and
predicting graphs, which we call Graph-to-Graph Transformer (G2GTr), and show how it can
be applied to transition-based dependency parsing. G2GTr supports arbitrary input graphs and
arbitrary edges in the output graph. But since the nodes of both these graphs are the input tokens,
the nodes of the output graph are limited to the set of nodes in the input graph.

Inspired by the relative position embeddings of Shaw et al. (2018), we use the attention mechanism
of Transformer to input arbitrary graph relations. By inputting the embedding for a relation
label into the attention functions for the related tokens, the model can more easily learn to pass

1Our implementation is available at: https://github.com/alirezamshi/G2GTr
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information between graph-local tokens, which gives the model an appropriate linguistic bias,
without imposing hard constraints.

Given that the attention function is being used to input graph relations, it is natural to assume that
graph relations can also be predicted with an attention-like function. We do not go so far as to
restrict the form of the prediction function, but we do restrict the vectors used to predict graph
relations to only the tokens involved in the relation.

2.3.1 Original Transformer

Transformer (Vaswani et al., 2017) is an encoder-decoder model, of which we only use the
encoder component. A Transformer encoder computes an output embedding for each token in
the input sequence through stacked layers of multi-head self-attention. Each attention head takes
its input vectors (x1, ..., xn) and computes its output attention vectors (z1, ..., zn). Each zi ∈ Rm is
a weighted sum of transformed input vectors x j ∈ Rm :

zi =
∑

j
αi j (x j W V ) (2.1)

with the attention weights αi j = exp(ei j )∑n
k=1 exp(ei k ) and

ei j =
(xi W Q )(x j W K )p

d
(2.2)

where W V ,W Q ,W K ∈ Rm×d are the trained value, query and key matrices, m is the embedding
size, and d is the attention head size.

2.3.2 Graph Inputs

Graph-to-Graph Transformer extends the architecture of the Transformer to accept any arbitrary
graph as input. In particular, we input the dependency tree as its set of dependency relations.
Each labelled relation (xi , x j , l ′) is input by modifying Equation 2.2 as follows:

ei j =
(xi W Q )(x j W K +pi j W L

1 )p
d

(2.3)

where pi j ∈ {0,1}k is a one-hot vector which specifies the type l ′ of the relation between xi and
x j , discussed below, and W L

1 ∈ Rk×d is a matrix of learned parameters. We also modify Equation
2.1 to transmit information about relations to the output of the attention layer:

zi =
∑

j
αi j (x j W V +pi j W L

2 ) (2.4)

where W L
2 ∈ Rk×d are learned parameters.

In this chapter, we consider graph input for only unlabelled directed dependency relations l ′, so
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pi j has only three dimensions (k=3), for leftward, rightward and none. This choice was
made mostly to simplify our extension of the Transformer, as well as to limit the computational
cost of this extension. The dependency labels are input as label embeddings added to the input
token embeddings of the dependent word.

2.3.3 Graph Outputs

The graph output mechanism of Graph-to-Graph Transformer predicts each labelled edge of the
graph using the output embeddings of the tokens that are connected by that edge. Because in
this work we are investigating auto-regressive models, this prediction is done one edge at a time.
Chapter 3 provides an investigation of non-autoregressive models using the G2GTr architecture.

In this chapter, the graph edges are labelled dependency relations, which are predicted as part of
the actions of a transition-based dependency parser. In particular, the Relation classifier uses the
output embeddings of the top two elements on the stack and predicts the label of their dependency
relation, conditioned on its direction. There is also an Exist classifier, which uses the output
embeddings of the top two elements on the stack and the front of the buffer to predict the type of
parser action, SHIFT, SWAP, RIGHT-ARC, or LEFT-ARC.

at = Exist([g t
s2

, g t
s1

, g t
b1

])

l t = Relation([g t
s2

, g t
s1

] |at )
(2.5)

where g t
s2

, g t
s1

, and g t
b1

are the output embeddings of top two tokens in the stack and the front of
buffer, respectively. The Exist and Relation classifiers are MLPs with one hidden layer.

For the transition-based dependency parsing task, the chosen parser action and dependency label
are used both to update the current partial dependency structure and to update the parser state.

2.4 Parsing Models

In this section, we define two Transformer-based models for transition-based dependency parsing,
and integrate the Graph-to-Graph Transformer architecture with them, as illustrated in Figure 2.1.

2.4.1 State Transformer

We propose a novel attention-based architecture, called State Transformer (StateTr), which
computes a comprehensive representation for the parser state. Inspired by Dyer et al. (2015),
we directly use the parser state, meaning both the stack and buffer elements, as the input to the
Transformer model. We additionally incorporate components that have proved successful in Dyer
et al. (2015). In the remaining paragraphs, we describe each component in more detail.

17



Chapter 2. Graph-to-Graph Transformer for Transition-based Dependency Parsing

Input Embeddings

The Transformer architecture takes a sequence of input tokens and converts them into a sequence
of input embedding vectors, before computing its context-dependent token embeddings. For the
State Transformer model, the sequence of input tokens represents the current parser state, as
illustrated in Figure 2.1a.

Input Sequence. The input symbols include the words of the sentence Ω= (w1, w2, ..., wn) with
their associated part-of-speech tags (PoS) (α1,α2, ...,αn). Each of these words can appear in
the stack or buffer of the parser state. Besides, there is the ROOT symbol, for the root of the
dependency tree, which is always on the bottom of the stack. Inspired by the input representation
of BERT (Devlin et al., 2019), we also use two special symbols, CLS and SEP, which indicate
the different parts of the parser state.

The sequence of input tokens starts with the CLS symbol, then includes the tokens on the stack
from bottom to top. Then it has a SEP symbol, followed by the tokens on the buffer from front to
back so that they are in the same order in which they appeared in the sentence. Given this input
sequence, the model computes a sequence of vectors which are input to the Transformer network.
Each vector is the sum of several embeddings, which are defined below.

Input Token Embeddings. The embedding of each token (wi ) is calculated as:

Twi = Emb(wi )+Emb(αi ) (2.6)

where Emb(wi ),Emb(αi ) ∈ Rm are the word and PoS embeddings respectively. For the word
embeddings, we use the pre-trained word vectors of the BERT model. During training and
evaluation, we use the pre-trained embedding of first sub-word as the token representation of
each word and discard embeddings of non-first sub-words due to training efficiency.2 The PoS
embeddings are trained parameters.

Composition Model. As an alternative to our proposed graph input method, previous work has
shown that complex phrases can be input to a neural network by using recursive neural networks
to recursively compose the embeddings of sub-phrases (Socher et al., 2011, 2014, 2013; Hermann
and Blunsom, 2013; Tai et al., 2015). We extend the proposed composition model of Dyer et al.
(2015) by applying a one-layer feed-forward neural network as a composition model and adding
skip connections to each recursive step.3 Since a syntactic head may contain an arbitrary number
of dependents, we compute new token embeddings of head-dependent pairs one at a time as

2Using embeddings of first sub-word for each word results in better performance than using the last one or
averaging all of them as also shown in previous works (Kondratyuk and Straka, 2019; Kitaev et al., 2019).

3These skip connections help address the vanishing gradient problem, and preliminary experiments indicated that
they were necessary to integrate pre-trained BERT (Devlin et al., 2019) parameters with the model (discussed in
Section 2.4.4 and Appendix 2.8.1).
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Figure 2.2: An Example of Composition model.

they are specified by the parser, as shown in Figure 2.2. At each parser step t , we compute each
new token embedding C t

i of token i by inputting to the composition model, its previous token
embedding C t−1

j and the embedding of the most recent dependent with its associated dependency
label, where j is the position of token i in the previous parser state. At t = 0, C 0

i is set to the initial
token embedding Twi . More mathematical and implementation details are given in Appendix 2.9.

Position and Segment Embeddings. To distinguish the different positions and roles of words
in the parser state, we add their embeddings to the token embeddings. Position embeddings βi

encode the token’s position in the whole sequence.4 Segment embeddings γi encode that the
input sequence contains distinct segments (e.g. stack and buffer).

Total Input Embeddings. Finally, at each step t , we sum the outputs of the composition
model with the segment and position embeddings and consider them as the sequence of input
embeddings for our State Transformer model.

x t
i =C t

i +γi +βi (2.7)

History Model

We define a history model similar to Dyer et al. (2015), to capture the information about previously
specified transitions. The output ht of the history model is computed as follows:

ht , c t = LSTM((ht−1,c t−1), at + l t ) (2.8)
4Preliminary experiments showed that using position embeddings for the whole sequence achieves better perfor-

mance than applying separate position embeddings for each segment (More detail in Appendix 2.8.2).
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where at and l t are the previous transition and its associated dependency label, and ht−1 and
c t−1 are the previous output vector and cell state of the history model. The output of the history
model is input directly to the parser action classifiers in (2.5).

2.4.2 Sentence Transformer

We propose another attention-based architecture, called Sentence Transformer (SentTr), to
compute a representation for the parser state. This model first uses a Transformer to compute
context-dependent embeddings for the tokens in the input sentence. Similarly to Cross and Huang
(2016), a separate stack and buffer data structure is used to keep track of the parser state, as
shown in Figure 2.1b, and the context-dependent embeddings of the tokens that are involved in
the next parser action are used to predict the next transition. More specifically, the input sentence
tokens are computed with the BERT tokeniser (Devlin et al., 2019) and the next transition is
predicted from the embeddings of the first sub-words of the top two elements of the stack and the
front element of the buffer.5

In the baseline version of this model, the Transformer which computes the token embeddings
does not see the structure of the parser state nor the partial dependency structure.

In Sentence Transformer, the sequence of input tokens starts with a CLS token and ends with a
SEP token, as in the BERT (Devlin et al., 2019) input representation. It also includes the ROOT
symbol for the root of the dependency tree. The input embeddings are derived from input tokens
as:

xi = Emb(wi )+Emb(αi )+βi (2.9)

where xi is the input embedding for token wi , Emb(.) is defined as in Equation (2.6), and βi is
the positional embedding for the element at position i .

2.4.3 Integrating with G2G Transformer

We use the two proposed attention-based dependency parsers above as baselines, and evaluate
the effects of integrating them with the Graph-to-Graph Transformer architecture. We modify
the encoder component of each baseline model by adding the graph input mechanism defined in
Section 2.3.2. Then, we compute the new partially constructed graph as follows:

Z t = Gin(X ,G t )

G t+1 =G t ∪Gout(Select(Z t ,P t ))
(2.10)

where G t is the current partially specified graph, Z t is the encoder’s sequence of output token
embeddings, P t is the parser state, and G t+1 is the newly predicted partial graph. Gin, and Gout

5Predicting transitions with the embedding of first sub-word for each word results in better performance than using
the last one or all of them as also shown in previous works (Kondratyuk and Straka, 2019; Kitaev et al., 2019).
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are the graph input and graph output mechanisms defined in Sections 2.3.2 and 2.3.3. The Select

function selects from Z t , the token embeddings of the top two elements on the stack and the front
of the buffer, based on the parser state P t . More specifics about each baseline are given in the
following paragraphs.6

State Tr +G2GTr. To input all the dependency relations in the current partial parse, we add a
third segment to the parser state, called the Deleted list D, which includes words that have been
removed from the buffer and stack after having both their children and parent specified. The order
of words in D is the same as the input sentence. The current partial dependency structure is then
input with the graph input mechanism as relations between the words in this extended parser state.
To show the effectiveness of the graph input mechanism, we exclude the composition model from
the State Transformer model when integrated with the Graph-to-Graph Transformer architecture.
We will demonstrate the impact of this replacement in Section 2.6.

Sentence Tr +G2GTr. The current partial dependency structure is input with the graph input
mechanism as relations between the first sub-words of the head and dependent words of each
dependency relation. For the non-first subwords of each word, we define a new dependency
relation with these subwords dependent on their associated first sub-word.

2.4.4 Pre-Training with BERT

Initialising a Transformer model with the pre-trained parameters of BERT (Devlin et al., 2019),
and then fine-tuning on the target task, has demonstrated large improvements in many tasks. But
our version of the Transformer has novel inputs that were not present when BERT was trained,
namely the graph inputs to the attention mechanism and the composition embeddings (for State
Transformer). Also, the input sequence of State Transformer has a novel structure, which is only
partially similar to the input sentences which BERT was trained on. So it is not clear that BERT
pre-training will even work with this novel architecture. To evaluate whether BERT pre-training
works for our proposed architectures, we also initialise the weights of our models with the first n

layers of BERT, where n is the number of self-attention layers in the model.

2.5 Experimental Setup

2.5.1 Datasets

We evaluate our models on two types of datasets, WSJ Penn Treebank, and Universal Dependency
(UD) Treebanks. Following Kulmizev et al. (2019), for evaluation, we include punctuation for
UD treebanks and exclude it for the WSJ Penn Treebank (Nilsson and Nivre, 2008).7

6A worked example of both baseline models integrated with G2GTr is provided in Appendix 2.10.
7Description of Treebanks are provided in Appendix 2.11.
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WSJ Penn Treebank. We train our models on the Stanford dependency version of the English
Penn Treebank (Marcus et al., 1993). We use the same setting as defined in Dyer et al. (2015).
We additionally add section 24 to our development set to avoid over-fitting. For PoS tags, we use
Stanford PoS tagger (Toutanova et al., 2003).

Universal Dependency Treebanks We also train models on Universal Dependency Treebanks
(UD v2.3) (Nivre et al., 2018). We evaluate our models on the list of languages defined in
Kulmizev et al. (2019). This set of languages contains different scripts, various morphological
complexity and character set sizes, different training sizes, and non-projectivity ratios.

2.5.2 Models

As strong baselines from previous work, we compare our models to previous traditional transition-
based and Seq2Seq models. For a fair comparison with previous models, we consider “traditional”
transition-based parsers to be those that predict a fixed set of scores for each decoding step.8

To investigate the usefulness of each component of the proposed parsing models, we evaluate
several versions. For the State Transformer, we evaluate StateTr and StateTr+G2GTr models
both with and without BERT initialisation. To further analyse the impact of Graph-to-Graph
Transformer, we also compare to keeping the composition function of the StateTr model when
integrated with G2GTr (StateTr+G2GTr+C). To further demonstrate the impact of the graph
output mechanism, we compare to using the output embedding of the CLS token as the input
to the transition classifiers for both the baseline model (StateCLSTr) and its combined ver-
sion (StateTr+G2CLSTr). For Sentence Transformer, we evaluate the SentTr and SentTr+G2GTr
models with BERT initialisation. We also evaluate the best variations of each baseline on the UD
Treebanks.9

2.5.3 Details of Implementation

All hyper-parameter details are given in Appendix 2.13. Unless specified otherwise, all models
have 6 self-attention layers. We use the AdamW optimiser provided by Wolf et al. (2019) to
fine-tune model parameters. All our models use greedy decoding, meaning that at each step only
the highest scoring parser action is considered for continuation. This was done for simplicity,
although beam search could also be used. The pseudo-code for computing the elements of the
graph input matrix (pi j ) for each baseline is provided in Appendix 2.14.

8We do not consider the models of Ma et al. (2018); Fernández-González and Gómez-Rodríguez (2019) to be
comparable to traditional transition-based models like ours because they make decoding decisions between O(n)
alternatives. In this sense, they are in between the O(1) alternatives for transition-based models and the O(n2)
alternatives for graph-based models. Future work will investigate applying Graph-to-Graph Transformer to these types
of parsers as well.

9The number of parameters and average running times for each model are provided in Appendix 2.12.
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Dev Set Test Set

UAS LAS UAS LAS

Transition-based:
Dyer et al. (2015) 93.10 90.90
Weiss et al. (2015) 94.26 91.42
Cross and Huang (2016) 93.42 91.36
Ballesteros et al. (2016) 93.56 92.41
Andor et al. (2016) 94.61 92.79
Kiperwasser and Goldberg (2016) 93.90 91.90
Yang et al. (2017) 94.18 92.26
Seq2Seq-based:
Zhang et al. (2017) 93.71 91.60
Li et al. (2018) 94.11 92.08
StateTr 91.94 89.07 92.32 89.69
StateTr+G2GTr 92.53 90.16 93.07 91.08
BERT StateTr 94.66 91.94 95.18 92.73
BERT StateCLSTr 93.62 90.95 94.31 91.85
BERT StateTr+G2GTr 94.96 92.88 95.58 93.74
BERT StateTr+G2CLSTr 94.29 92.13 94.83 92.96
BERT StateTr+G2GTr+C 94.41 92.25 94.89 92.93
BERT SentTr 95.34 93.29 95.65 93.85
BERT SentTr+G2GTr 95.66 93.60 96.06 94.26
BERT SentTr+G2GTr-7 layer 95.78 93.74 96.11 94.33

Table 2.1: Comparisons to SoTA on English WSJ Treebank Stanford dependencies.

2.6 Results and Discussion

2.6.1 English Penn Treebank Result

In Table 2.1, we show several variations of our models, and previous state-of-the-art transition-
based and Seq2Seq parsers on WSJ Penn Treebank.10 For State Transformer, replacing the
composition model (StateTr) with our graph input mechanism (StateTr+G2GTr) results in
9.97% / 11.66% LAS relative error reduction (RER) without / with BERT initialisation, which
demonstrates its effectiveness. Comparing to the closest previous model for conditioning of the
parse graph, the StateTr+G2GTr model reaches better results than the StackLSTM model (Dyer
et al., 2015). Initialising our models with pre-trained BERT achieves 26.25% LAS RER for the
StateTr model, and 27.64% LAS RER for the StateTr+G2GTr model, thus confirming the compati-
bility of our G2GTr architecture with pre-trained Transformer models. The BERT StateTr+G2GTr
model outperforms previous state-of-the-art models. Removing the graph output mechanism
(StateCLSTr / StateTr+G2CLSTr) results in a 12.28% / 10.53% relative performance drop for
the StateTr and StateTr+G2GTr models, respectively, which demonstrates the importance of our
graph output mechanism. If we consider both the graph input and output mechanisms together,
adding them both (BERT StateTr+G2GTr) to BERT StateCLSTr achieves 21.33% LAS relative
error reduction, which shows the synergy of using both mechanisms together. But then adding the
composition model (BERT StateTr+G2GTr+C) results in an 8.84% relative drop in performance,

10Results are calculated with the official evaluation script provided in https://depparse.uvt.nl/.
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Language Kulmizev et al.
(2019)

BERT
StateTr+G2GTr

BERT
SentTr+G2GTr

Arabic 81.9 82.63 83.65
Basque 77.9 74.03 83.88
Chinese 83.7 85.91 87.49
English 87.8 89.21 90.35
Finnish 85.1 80.87 89.47
Hebrew 85.5 87.0 88.75
Hindi 89.5 93.13 93.12
Italian 92.0 92.6 93.99
Japanese 92.9 95.25 95.51
Korean 83.7 80.13 87.09
Russian 91.5 92.34 93.30
Swedish 87.6 88.36 90.40
Turkish 64.2 56.87 67.77
Average 84.87 84.48 88.06

Table 2.2: Labelled attachment score on 13 UD corpora for Kulmizev et al. (2019) with BERT
pre-training, BERT StateTr+G2GTr, and BERT SentTr+G2GTr models.

which demonstrates again that our proposed graph input method is a more effective way to model
the partial parse than recursive composition models.

For Sentence Transformer, the synergy between its encoder and BERT results in excellent
performance even for the baseline model (compared to Cross and Huang (2016)). Nonetheless,
adding G2GTr achieves significant improvement (4.62% LAS RER), which again demonstrates
the effectiveness of the Graph-to-Graph Transformer architecture. Finally, we also evaluate the
BERT SentTr+G2GTr model with 7 self-attention layers instead of 6, resulting in 2.19% LAS
RER, which motivates future work on larger Graph-to-Graph Transformer models.

2.6.2 UD Treebanks Results

In Table 2.2, we show LAS scores on 13 UD Treebanks11. As the baseline, we use scores of the
transition-based model proposed by Kulmizev et al. (2019), which uses the deep contextualized
word representations of BERT and ELMo (Peters et al., 2018) as an additional input to their
parsing models. Our BERT StateTr+G2GTr model outperforms the baseline on 9 languages, again
showing the power of the G2GTr architecture. But for morphology-rich languages such as Turkish
and Finish, the StateTr parser design choice of only inputting the first sub-word of each word
causes too much loss of information, resulting in lower results for our BERT StateTr+G2GTr
model than the baseline. This problem is resolved by our SentTr parser design because all
sub-words are input. The BERT SentTr+G2GTr model performs substantially better than the
baseline on all languages, which confirms the effectiveness of our Graph-to-Graph Transformer
architecture to capture a diversity of types of structure from a variety of corpus sizes.

11Unlabelled attachment scores, and results of development set are provided in the Appendix 2.15. Results are cal-
culated with the official UD evaluation script (https://universaldependencies.org/conll18/
evaluation.html).
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Figure 2.3: Error analysis of our models on the development set of the WSJ dataset.

2.6.3 Error Analysis

To analyse the effectiveness of the proposed graph input and output mechanisms in variations
of our StateTr model pre-trained with BERT, we follow McDonald and Nivre (2011) and mea-
sure their accuracy as a function of dependency length, distance to root, sentence length, and
dependency type, as shown in Figure 2.3 and Table 2.3.12. These results demonstrate that most of
the improvement of the StateTr+G2GTr model over other variations comes from the hard cases
which require a more global view of the sentence.

Dependency Length. The leftmost plot shows labelled F-scores on dependencies binned by
dependency lengths. The integrated G2GTr models outperform other models on the longer (more
difficult) dependencies, which demonstrates the benefit of adding the partial dependency tree to
the self-attention model, which provides a global view of the sentence when the model considers
long dependencies. Excluding the graph output mechanism also results in a drop in performance
particularly in long dependencies. Keeping the composition component in the StateTr+G2GTr
model doesn’t improve performance at any length.

Distance to Root. The middle plot shows the labelled F-score for dependencies binned by the
distance to the root, computed as the number of dependencies in the path from the dependent
to the root node. The StateTr+G2GTr models outperform baseline models on nodes that are of
middle depths, which tend to be neither near the root nor near the leaves, and thus require more
global information, as well as deeper nodes.

Sentence Length. The rightmost plot shows labelled attachment scores (LAS) for sentences with
different lengths. The relative stability of the StateTr+G2GTr model across different sentence
lengths again shows the effectiveness of the Graph-to-Graph Transformer model on the harder
cases. Not using the graph output method shows particularly bad performance on long sentences,
as does keeping the composition model.

12We use MaltEvalNilsson and Nivre (2008) tool for computing accuracies. Tables of results for the error analysis
in Figure 2.3, and Table 2.3 are in the Appendix 2.16.
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Type StateTr+G2GTr StateTr StateTr+G2CLSTr

rcmod 86.84 76.38 (-79.5%) 83.91 (-22.3%)

nsubjpass 95.49 92.70 (-61.9%) 94.08 (-31.1%)

ccomp 89.49 81.82 (-73.0%) 87.56 (-18.4%)

infmod 87.38 79.19 (-64.9%) 84.93 (-19.4%)

neg 95.75 94.84 (-21.4%) 93.78 (-46.2%)

csubj 76.94 67.93 (-39.0%) 70.83 (-26.5%)

cop 93.08 92.62 (-6.5%) 91.58 (-21.7%)

cc 90.90 90.45 (-4.9%) 88.80 (-23.1%)

Table 2.3: F-scores (and RER) of our full BERT model (StateTr+G2GTr), without graph inputs
(StateTr), and without graph outputs (StateTr+G2CLSTr) for some dependency types on the
development set of WSJ Treebank, ranked by total negative RER. Relative error reduction is
computed w.r.t. the StateTr+G2GTr scores.

Dependency Type. Table 2.3 shows F-scores of different dependency types. Excluding the graph
input (StateTr) or graph output (StateTr+G2CLSTr) mechanisms results in a substantial drop for
many dependency types, especially hard cases where accuracies are relatively low, and cases such
as ccomp which require a more global view of the sentence.

2.7 Conclusion

In this chapter, we proposed the Graph-to-Graph Transformer architecture, which inputs and
outputs arbitrary graphs through its attention mechanisms. Each graph relation is input as
a label embedding to each attention function involving the relation’s tokens, and each graph
relation is predicted from its token’s embeddings like an attention function. We demonstrate
the effectiveness of this architecture on transition-based dependency parsing, where the input
graph is the partial dependency structure specified by the parse history, and the output graph is
predicted one dependency at a time by the parser actions.

To establish strong baselines, we also propose two Transformer-based models for this task,
called State Transformer and Sentence Transformer. The former model incorporates history and
composition models, as proposed in previous work. Despite the competitive performance of
these extended-Transformer parsers, adding our graph input and output mechanisms results in
significant improvement. Also, the graph inputs are effective replacements for the composition
models. All these results are preserved with the incorporation of BERT pre-training, which results
in substantially improving the state-of-the-art in traditional transition-based dependency parsing.

As well as the generality of the graph input mechanism, the generality of the graph output
mechanism means that Graph-to-Graph Transformer can be integrated with a wide variety of
decoding algorithms. In Chapter 3, we apply it to non-autoregressive decoding, which addresses
the computational cost of running the G2GTr model once for every dependency edge. In Chapter 4,
we use G2GTr to encode the syntactic graph structure for improving the performance of semantic

26



2.7 Conclusion

role labelling (SRL) task. Graph-to-Graph Transformer can also easily be applied to a wide
variety of NLP tasks, which require encoding graph structures.

27





Appendix

2.8 Preliminary Experiments

2.8.1 Skip Connection

Skip connections of composition model help address the vanishing gradient problem, and follow-
ing experiments show that they are necessary to integrate pre-trained BERT (Devlin et al., 2019)
parameters with the model:

Model UAS LAS
BERT StateTr 94.78 92.06
BERT StateTr without skip 93.16 90.51

Table 2.4: Preliminary experiments on the development set of WSJ Penn Treebank for BERT
StateTr model with/without skip connections.

2.8.2 Position Embeddings

Following experiments show that using position embeddings for the whole sequence achieves
better performance than applying separate position embeddings for each segment:

Model UAS LAS
BERT StateTr 94.78 92.06
BERT StateTr with separate pos 93.10 90.39

Table 2.5: Preliminary experiments on the development set of WSJ Penn Treebank for BERT
StateTr model, and its variation with separate position embeddings for each section.

2.9 Composition Model

Previous work has shown that recursive neural networks are capable of inducing a representation
for complex phrases by recursively embedding sub-phrases (Socher et al., 2011, 2014, 2013;
Hermann and Blunsom, 2013). Dyer et al. (2015) showed that this is an effective technique for
embedding the partial parse subtrees specified by the parse history in transition-based dependency

29



Chapter 2. Graph-to-Graph Transformer for Transition-based Dependency Parsing

parsing. Since a word in a dependency tree can have a variable number of dependents, they
combined the dependency relations incrementally as they are specified by the parser.

We extend this idea by using a feed-forward neural network with Tanh as the activation function
and skip connections. For every token in position i on the stack or buffer, after deciding on step
t , the composition model computes a vector C t+1

a,i which is added to the input embedding for that
token:

C t+1
a,i = Comp((ψt

a,i ,ωt
a,i , l t

a,i ))+ψt
a,i

where:a ∈ {S,B}
(2.11)

where the Comp function is a one-layer feed forward neural network, and (ψt
a,i ,ωt

a,i , l t
a,i ) repre-

sents the most recent dependency relation with head ψt
a,i specified by the decision at step t for

element in position i in the stack or buffer. In arc-standard parsing, the only word which might
have received a new dependent by the previous decision is the word on the top of the stack, i=1.
This gives us the following definition of (ψt

a,i ,ωt
a,i , l t

a,i ):



RIGHT−ARC(l ) :

ψt
S,1=C t

S,2, ωt
S,1=C t

S,1, l t
S,1=l ,

ψt
S,i ̸=1=C t

S,i+1, ωt
S,i ̸=1=ωt

S,i+1, l t
S,i ̸=1=l t

S,i+1

ψt
B ,i=C t

B ,i

LEFT−ARC(l ) :

ψt
S,1=C t

S,1, ωt
S,1=C t

S,2, l t
S,1=l ,

ψt
S,i ̸=1=C t

S,i+1, ωt
S,i ̸=1=ωt

S,i+1, l t
S,i ̸=1=l t

S,i+1

ψt
B ,i=C t

B ,i

SHIFT :

ψt
S,1=C t

B ,1, ωt
S,1=ωt

B ,1, l t
S,1=l t

B ,1

ψt
S,i ̸=1=C t

S,i−1, ωt
S,i ̸=1=ωt

S,i−1, l t
S,i ̸=1=l t

S,i−1

ψt
B ,i=C t

B ,i+1, ωt
B ,i=ωt

B ,i+1, l t
B ,i=l t

B ,i+1

SWAP :

ψt
S,1=C t

S,1

ψt
S,i ̸=1=C t

S,i+1, ωt
S,i ̸=1=ωt

S,i+1, l t
S,i ̸=1=l t

S,i+1

ψt
B ,1=C t

S,2, ωt
B ,1=ωt

S,2, l t
B ,1=l t

S,2

ψt
B ,i ̸=1=C t

B ,i−1, ωt
B ,i ̸=1=ωt

B ,i−1, l t
B ,i ̸=1=l t

B ,i−1

(2.12)

where C t
S,1 and C t

S,2 are the embeddings of the top two elements of the stack at time step t , and
C t

B ,1 is the embedding of the word on the front of the buffer at time t . l t
a,i ∈ Rm is the label

embedding of the specified relation, including its direction. For all words which have not received
a new dependent, the composition is computed anyway with the most recent dependent and
label (with a [NULL] dependent and label of that position[L-NULL] if there is no dependency
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2.9 Composition Model

relation with element i as the head).13

At t = 0, C t
a,i is set to the initial token embedding Twi . The model then computes Equation 2.11

iteratively at each step t for each token on the stack or buffer.

There is a skip connection in Equation 2.11 to address the vanishing gradient problem. Also,
preliminary experiments showed that without this skip connection to bias the composition model
towards the initial token embeddings Twi , integrating pre-trained BERT (Devlin et al., 2019)
parameters into the model did not work.

13Preliminary experiments indicated that not updating the composition embedding for these cases resulted in worse
performance.
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2.10 Example of the Graph-to-Graph Transformer parsing
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(b) StateTr+G2G-Tr.

Figure 2.4: Example of Graph-to-Graph Transformer model integrated with SentTr and StateTr
on UD English Treebank (initial sentence: "Hey There .").

2.11 Description of Treebanks

2.11.1 English Penn Treebank Description

The dataset can be found here under LDC licence. Stanford PoS tagger and constituency converter
can be downloaded from here and here, respectively. Here is the detailed information of English
Penn Treebank:
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2.12 Running Details of Proposed Models

Language Version Non-projectivity ratio Train size(2-21) Development size(22,24) Test size(23)
English 3 0.1% 39’832 3’046 2’416

Table 2.6: Description of English Penn Treebank.

2.11.2 UD Treebanks Description

UD Treebanks v2.3 are provided in here. Pre-processing tools can be found here.

Language Family Treebank Order Train size Development size Test size Non-projectivity ratio
Arabic non-IE PADT VSO 6.1K 0.9K 0.68K 9.2%
Basque non-IE BDT SOV 5.4K 1.8K 1.8K 33.5%
Chinese non-IE GSD SVO 4K 0.5K 0.5K 0.6%
English IE EWT SVO 12.5K 2k 2.1K 5.3%
Finnish non-IE TDT SVO 12.2K 1.3K 1.5K 6.2%
Hebrew non-IE HTB SVO 5.2K 0.48K 0.49K 7.6%
Hindi IE HDTB SOV 13.3K 1.7K 1.7K 13.8%
Italian IE ISDT SVO 13.1K 0.56K 0.48K 1.9%

Japanese non-IE GSD SOV 7.1K 0.51K 0.55K 2.7%
Korean non-IE GSD SOV 4.4K 0.95K 0.99K 16.2%
Russian IE SynTagRus SVO 48.8K 6.5K 6.5K 8.0%
Swedish IE Talbanken SVO 4.3K 0.5K 1.2K 3.3%
Turkish non-IE IMST SOV 3.7K 0.97K 0.97K 11.1%

Table 2.7: Description of languages chosen from UD Treebanks v2.3.

2.12 Running Details of Proposed Models

We provide the number of parameters and average run times for each model. For a better
understanding, average run time is computed per transition (Second/transition). All experiments
are computed with graphics processing unit (GPU), specifically the NVIDIA V100 model. The
total number of transitions in the train and development sets are 79664 and 6092, respectively.

Model No. parameters Train (sec/transition) Evaluation (sec/transition) Evaluation (sent/sec) Evaluation (token/sec)
StateTr 90.33M 0.098 0.031 16.2 388.13
StateTr+G2GTr 105.78M 0.226 0.071 7.05 168.91
SentTr 63.23M 0.112 0.026 19.27 460.6
SentTr+G2GTr 63.27M 0.138 0.031 16.2 388.13

Table 2.8: Running details of our models on WSJ Penn Treebank.

2.13 Hyper-parameters for our parsing models

For hyper-parameter selection, we use manual tuning to find the best numbers. For BERT (Devlin
et al., 2019) hyper-parameters, we apply the same optimization strategy as suggested by Wolf
et al. (2019). For classifiers and composition model, we use a one-layer feed-forward neural
network for simplicity. Then, we pick hyper-parameters based on previous works (Devlin et al.,
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2019; Dyer et al., 2015). We use two separate optimisers for pre-trained parameters (BERT
here) and randomly initialised parameters for better convergence that is shown to be useful in
Kondratyuk and Straka (2019). Early stopping (based on LAS) is used during training. The only
tuning strategy that has been tried is to use one optimiser for all parameters or two different
optimisers for pre-trained parameters and randomly initialised ones. For the latter case, Learning
rate for randomly initialised parameters is set to 1e −4. Results of different variations on the
development set of WSJ Penn Treebank are as follows:

Model UAS LAS
BERT StateTr with one optimiser 94.66 91.94
BERT StateTr with two optimisers 94.24 91.67
Expected (Average) Performance 94.45 91.81
BERT StateTr+G2GTr with one optimiser 94.96 92.88
BERT StateTr+G2GTr with two optimisers 94.75 92.49
Expected (Average) Performance 94.86 92.69
BERT SentTr with one optimiser 95.34 93.29
BERT SentTr with two optimisers 95.49 93.29
Expected (Average) Performance 95.42 93.29
BERT SentTr+G2GTr with one optimiser 95.27 93.18
BERT SentTr+G2GTr with two optimisers 95.66 93.60
Expected (Average) Performance 95.47 93.40

Table 2.9: Results on the development set of WSJ Penn Treebank for different optimisation
strategy.

34



2.13 Hyper-parameters for our parsing models

Hyper-parameters for training our models are defined as 14:

Component Specification
Optimiser BertAdam

Learning Rate 1e-5
Base Learning Rate 1e-4
Adam Betas(b1,b2) (0.9,0.999)

Adam Epsilon 1e-6
Weight Decay 0.01

Max-Grad-Norm 1
Warm-up 0.01

Self-Attention
No. Layers(n) 6

No. Heads 12
Embedding size 768

Max Position Embedding 512
BERT model bert-base-uncased
Classifiers
No. Layers 2

Hidden size(Exist) 500
Hidden size(Relation) 100

Drop-out 0.05
Activation ReLU

History Model LSTM
No. Layers 2
Hidden Size 768

Composition Model
No. Layers 2
Hidden size 768

Epochs 12

Table 2.10: Hyper-parameters for training our
models.

14For UD Treebanks, we train our model for 20 epochs, and use "bert-multilingual-cased" for the initialisation. We
use pre-trained BERT models of https://github.com/google-research/bert.
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2.14 Pseudo-Code of Graph Input Mechanism

Algorithm 1 Pseudo-code of building graph
input matrix for StateTr+G2GTr model.

1: Graph Sentence(input of attention): P

2: Graph Input: G

3: Actions: A = (a1, ..., aT )

4: Input: (S,B ,D)

5: for k ← 1,T do
6: if ak = SHIFT or SWAP then
7: continue
8: else
9: new relation:i l−→ j

10: Gi , j = 1

11: G j ,i = 2

12: pop x j from stack
13: change mask of x j to one
14: add l to input embedding of x j

15: P :select G based on Input
(S,B ,D)

16: end if
17: end for

Algorithm 2 Pseudo-code of building graph
input matrix for SentTr+G2GTr model.

1: Graph Sentence(input of attention): P

2: Graph Input: G

3: Actions: A = (a1, ..., aT )

4: Input: initial tokens
5: for k ← 1,T do
6: if ak = SHIFT or SWAP then
7: continue
8: else
9: new relation:i l−→ j

10: Gi , j = 1

11: G j ,i = 2

12: add l to input embedding of j -th
word

13: P = G

14: end if
15: end for

2.15 UD Treebanks Results

BERT SentTr+G2GTr results:

Language Test set-UAS Dev set-UAS Dev set-LAS
Arabic 87.65 87.01 82.64
Basque 87.17 86.53 83.25
Chinese 89.74 88.36 85.79
English 92.05 93.05 91.3
Finnish 91.46 91.37 89.72
Hebrew 90.85 91.92 89.55
Hindi 95.77 95.86 93.17
Italian 95.15 95.22 93.9
Japanese 96.21 96.68 96.04
Korean 89.42 87.57 84.94
Russian 94.42 94.0 92.70
Swedish 92.49 87.26 85.39
Turkish 74.23 72.52 66.05
Average 90.51 89.80 87.27

Table 2.11: Dependency scores of BERT SentTr+G2GTr model on the development and test sets
of UD Treebanks.

BERT StateTr+G2GTr results:
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2.16 Error-Analysis

Language Test set-UAS Dev set-UAS Dev set-LAS
Arabic 86.85 86.41 81.73
Basque 80.91 80.01 73.2
Chinese 87.90 86.64 84.15
English 90.91 91.85 90.11
Finnish 84.35 82.91 78.73
Hebrew 89.51 90.36 87.85
Hindi 95.65 95.92 93.30
Italian 93.5 93.61 92.18
Japanese 95.99 96.18 95.58
Korean 84.35 82.13 77.78
Russian 93.87 93.41 92.09
Swedish 92.49 90.72 88.36
Turkish 65.99 65.92 56.96
Average 87.87 87.39 84.01

Table 2.12: Dependency scores of BERT StateTr+G2GTr model on the development and test sets
of UD Treebanks.

2.16 Error-Analysis

2.16.1 Dependency Length

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 96.40 94.30 93.15 91.00 87.80 85.19 82.80 81.25 80.49 82.54 84.82

BERT StateCLSTr 95.80 93.75 92.25 89.60 86.45 82.77 80.58 79.62 79.98 78.90 81.74
BERT StateTr+G2GTr 97.10 94.45 93.60 92.20 89.80 87.54 86.00 84.60 84.45 85.55 86.86

BERT StateTr+G2CLSTr 96.50 94.10 93.00 91.45 88.65 85.74 84.25 82.55 81.80 82.25 85.50
BERT StateTr+G2GTr+C 96.95 94.25 93.25 91.30 88.30 85.74 83.50 82.75 83.10 83.95 86.15

Table 2.13: labelled F-Score vs dependency relation length

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 3046 31245 14478 7565 4153 2461 1681 1185 933 808 5415

BERT StateCLSTr 3046 31409 14473 7553 4131 2406 1641 1153 923 832 5403
BERT StateTr+G2GTr 3047 31240 14457 7572 4171 2465 1688 1188 941 811 5390

BERT StateTr+G2CLSTr 3046 31249 14447 7537 4143 2453 1701 1193 953 814 5434
BERT StateTr+G2GTr+C 3047 31304 14430 7514 4137 2449 1693 1182 951 830 5433

Gold bins 3046 31126 14490 7551 4155 2508 1698 1195 953 821 5427

Table 2.14: Size of each bin based on dependency length
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2.16.2 Distance to Root

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 96.40 91.35 91.00 91.45 91.80 91.50 92.10 91.75 91.90 90.06 93.06

BERT StateCLSTr 95.80 90.55 90.20 90.25 90.70 90.65 91.10 89.95 89.20 88.24 87.69
BERT StateTr+G2GTr 97.10 92.70 92.10 92.40 92.05 92.05 92.55 91.99 92.39 90.49 94.54

BERT StateTr+G2CLSTr 96.50 91.60 91.30 91.55 91.65 91.55 92.10 91.90 91.10 89.93 93.48
BERT StateTr+G2GTr+C 96.95 92.10 91.45 91.55 91.70 91.45 92.35 91.75 92.59 89.50 91.77

Table 2.15: labelled F-Score vs distance to root

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 3046 16081 15965 12999 9301 6488 3964 2242 1343 740 801

BERT StateCLSTr 3046 15963 15798 12793 9222 6419 3974 2331 1358 827 1239
BERT StateTr+G2GTr 3047 16024 15889 12875 9415 6463 3995 2349 1347 743 823

BERT StateTr+G2CLSTr 3046 16064 15975 12971 9327 6488 3963 2279 1316 708 833
BERT StateTr+G2GTr+C 3047 16079 15947 13020 9419 6481 3930 2259 1274 701 813

Gold bins 3046 16002 16142 13064 9403 6411 3923 2298 1298 702 681

Table 2.16: Size of each bin based on distance to root

2.16.3 Sentence Length

Model 1-9 10-19 20-29 30-39 40-49 >= 50
BERT StateTr 96.1 95.6 95.0 94.4 93.9 90.2

BERT StateCLSTr 94.6 95.0 94.4 93.9 93.0 80.2
BERT StateTr+G2GTr 95.1 95.9 95.3 94.6 94.4 91.2

BERT StateTr+G2CLSTr 94.7 95.1 94.8 94.2 93.2 89.4
BERT StateTr+G2GTr+C 94.7 95.3 95.1 94.5 93.4 86.7

Table 2.17: LAS vs. sentence length
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2.16.4 Dependency Type Analysis

Type StateTr+G2GTr StateTr StateTr+G2CLSTr
acomp 68.62 58.60 (-31.9%) 66.04 (-8.2%)
advcl 82.75 70.68 (-70.0%) 81.85 (-5.2%)
advmod 83.85 84.40 (3.4%) 84.35 (3.1%)
amod 92.55 92.25 (-4.1%) 92.30 (-3.4%)
appos 87.85 84.94 (-23.9%) 83.25 (-37.8%)
aux 98.55 98.35 (-13.8%) 98.45 (-6.9%)

auxpass 96.65 96.04 (-18.0%) 95.84 (-24.0%)
cc 90.90 90.45 (-4.9%) 88.80 (-23.1%)

ccomp 89.49 81.82 (-73.0%) 87.56 (-18.4%)
conj 86.45 84.70 (-12.9%) 84.15 (-17.0%)
cop 93.08 92.62 (-6.5%) 91.58 (-21.7%)

csubj 76.94 67.93 (-39.0%) 70.83 (-26.5%)
dep 54.66 50.88 (-8.3%) 51.99 (-5.9%)
det 98.25 98.30 (2.9%) 98.00 (-14.3%)

discourse 15.40 15.40 (-0.0%) 28.60 (15.6%)
dobj 94.85 94.10 (-14.6%) 93.95 (-17.5%)
expl 96.39 94.99 (-38.8%) 96.39 (-0.0%)
infmod 87.38 79.19 (-64.9%) 84.93 (-19.4%)
iobj 88.01 90.66 (22.1%) 84.24 (-31.4%)
mark 95.04 95.19 (2.9%) 94.84 (-4.1%)
mwe 86.46 89.71 (24.0%) 88.36 (14.1%)
neg 95.75 94.84 (-21.4%) 93.78 (-46.2%)
nn 94.25 94.10 (-2.6%) 93.65 (-10.5%)

npadvmod 91.89 92.75 (10.5%) 90.64 (-15.5%)
nsubj 96.35 95.55 (-21.9%) 95.60 (-20.6%)

nsubjpass 95.49 92.70 (-61.9%) 94.08 (-31.1%)
num 95.25 94.89 (-7.4%) 95.15 (-2.0%)

number 92.50 90.65 (-24.6%) 92.10 (-5.3%)
parataxis 69.59 62.89 (-22.1%) 72.10 (8.2%)
partmod 82.11 72.82 (-52.0%) 79.74 (-13.3%)
pcomp 88.12 86.49 (-13.7%) 85.77 (-19.8%)
pobj 97.15 96.95 (-7.0%) 96.60 (-19.3%)
poss 97.60 97.15 (-18.7%) 97.70 (4.2%)

possessive 98.29 98.04 (-14.5%) 98.44 (8.9%)
preconj 85.71 84.65 (-7.5%) 84.65 (-7.5%)
predet 79.34 79.34 (-0.0%) 77.44 (-9.2%)
prep 90.25 89.90 (-3.6%) 89.50 (-7.7%)
prt 84.48 83.42 (-6.9%) 83.10 (-8.9%)

punct 88.45 88.05 (-3.5%) 87.65 (-6.9%)
quantmod 86.97 84.40 (-19.7%) 84.49 (-19.0%)
rcmod 86.84 76.38 (-79.5%) 83.91 (-22.3%)
root 97.15 96.40 (-26.3%) 96.50 (-22.8%)
tmod 86.02 86.38 (2.6%) 85.03 (-7.1%)
xcomp 90.75 84.44 (-68.2%) 89.75 (-10.8%)

Table 2.18: F-score of StateTr, StateTr+G2GTr, and StateTr+G2CLSTr models for the depen-
dency types on the development set of WSJ Treebank. Relative error reduction is computed by
considering StateTr+G2GTr scores as the reference.
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3 Recursive Non-Autoregressive Graph-
to-Graph Transformer for Depen-
dency Parsing with Iterative Refine-
ment
In this chapter, we introduce Recursive Non-autoregressive Graph-to-Graph Transformer archi-
tecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application
of a non-autoregressive Graph-to-Graph Transformer (defined in Chapter 2) and apply it to
syntactic dependency parsing. We demonstrate the power and effectiveness of RNGTr on sev-
eral dependency corpora, using a refinement model pre-trained with BERT. We also introduce
Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr
can improve the accuracy of a variety of initial parsers on 13 languages from the Universal
Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009
corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly
improving the state-of-the-art for all corpora tested.

3.1 Introduction

Self-attention models, such as Transformer (Vaswani et al., 2017), have been hugely successful
in a wide range of natural language processing (NLP) tasks, especially when combined with
language-model pre-training, such as BERT (Devlin et al., 2019). These architectures contain a
stack of self-attention layers which can capture long-range dependencies over the input sequence,
while still representing its sequential order using absolute position encodings. Alternatively,
Shaw et al. (2018) proposes to define sequential order with relative position encodings, which are
input to the self-attention functions. In Chapter 2, we extended this sequence input method to
the input of arbitrary graph relations via the self-attention mechanism, and combined it with an
attention-like function for graph relation prediction, resulting in Graph-to-Graph Transformer
architecture (G2GTr).

The G2GTr architecture could be used to predict all the edges of a graph in parallel, but such
predictions are non-autoregressive. They thus cannot fully model the interactions between edges.
For sequence prediction, this problem has been addressed with non-autoregressive iterative

41



Chapter 3. Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency
Parsing with Iterative Refinement

refinement (Awasthi et al., 2019; Lee et al., 2018b; Lichtarge et al., 2018; Novak et al., 2016).
Interactions between different positions in the string are modelled by conditioning on a previous
version of the same string.

In this chapter, we propose a new graph prediction architecture which takes advantage of the
full graph-to-graph functionality of G2GTr to apply a G2GTr model to refine the output graph
recursively. This architecture predicts all edges of the graph in parallel, and is therefore non-
autoregressive, but can still capture any between-edge dependency by conditioning on the previous
version of the graph, like an auto-regressive model.

This proposed Recursive Non-autoregressive Graph-to-Graph Transformer (RNGTr) architecture
has three components. First, an initialisation model computes an initial graph, which can be any
given model for the task, even a trivial one. Second, a G2GTr model takes the previous graph
as input and predicts each edge of the target graph. Third, a decoding algorithm finds the best
graph given these edge predictions. The second and third components are applied recursively to
do iterative refinement of the output graph until some stopping criterion is met. The final output
graph is the graph output by the final decoding step.

The RNG Transformer architecture can be applied to any task with a sequence or graph as
input and a graph over the same set of nodes as output. We evaluate RNGTr on syntactic
dependency parsing because it is a difficult structured prediction task, state-of-the-art initial
parsers are extremely competitive, and there is little previous evidence that non-autoregressive
models (as in graph-based dependency parsers) are not sufficient for this task. We aim to show
that capturing correlations between dependencies with non-autoregressive iterative refinement
results in improvements, even in the challenging case of state-of-the-art dependency parsers.

The evaluation demonstrates improvements with several initial parsers, including previous state-
of-the-art dependency parsers, and the empty parse. We also introduce a strong Transformer-based
dependency parser pre-trained with BERT (Devlin et al., 2019), called Syntactic Transformer
(SynTr), using it both for our initial parser and as the basis of our refinement model. Results on 13
languages from the Universal Dependencies Treebanks (Nivre et al., 2018), English and Chinese
Penn Treebanks (Xue et al., 2002; Marcus et al., 1993), and German CoNLL 2009 corpus (Hajič
et al., 2009) show significant improvements over all initial parsers and the state-of-the-art.1

In this chapter, we make the following contributions:

• We propose a novel architecture for the iterative refinement of arbitrary graphs (RNGTr)
which combines non-autoregressive edge prediction with conditioning on the complete
graph.

• We propose a RNGTr model of syntactic dependency parsing.
• We demonstrate significant improvements over the previous state-of-the-art dependency

parsing results on Universal Dependency Treebanks, Penn Treebanks, and the German
CoNLL 2009 corpus.

1Our implementation is available at: https://github.com/idiap/g2g-transformer
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3.2 Dependency Parsing

Syntactic dependency parsing is a critical component in a variety of natural language un-
derstanding tasks, such as semantic role labelling (Marcheggiani and Titov, 2017), machine
translation (Chen et al., 2017), relation extraction (Zhang et al., 2018), and natural language
inference (Pang et al., 2019). There are several approaches to compute the dependency tree.
Transition-based parsers predict the dependency graph one edge at a time through a sequence of
parsing actions (Zhang and Nivre, 2011; Titov and Henderson, 2007c; Nivre and Scholz, 2004;
Yamada and Matsumoto, 2003). As in our approach, transformation-based (Satta and Brill, 1996)
and corrective modeling parsers use various methods (e.g. (Zheng, 2017; Hennig and Köhn, 2017;
Torres Martins et al., 2008; Attardi and Ciaramita, 2007; Knight and Graehl, 2005; Hall and
Novák, 2005)) to correct an initial parse. We take a graph-based approach to this correction.
Graph-based parsers (Koo and Collins, 2010; McDonald et al., 2005a; Eisner, 1996) compute
scores for every possible dependency edge and then apply a decoding algorithm to find the highest
scoring total tree. Typically neural graph-based models consist of two components: an encoder
which learns context-dependent vector representations for the nodes of the dependency graph,
and a decoder that computes the dependency scores for each pair of nodes and then applies a
decoding algorithm to find the highest-scoring dependency tree.

There are several approaches to capture correlations between dependency edges in graph-based
models. In first-order models, such as Maximum Spanning Tree (MST) (McDonald et al., 2005b;
i Chu and Liu, 1965; Edmonds, 1967), the score for an edge must be computed without being
sure what other edges the model will choose. The model itself only imposes the discrete tree
constraint between edges. In higher-order models (Tchernowitz et al., 2016; Ma and Zhao, 2012;
Zhang and McDonald, 2012; Carreras, 2007; Koo and Collins, 2010; McDonald and Pereira,
2006), they keep some between-edge information, but require more decoding time.

In this study, we apply first-order models, specifically the MST algorithm, and show that it is
possible to keep correlations between edges without increasing the time complexity by recursively
conditioning each edge score on a previous prediction of the complete dependency graph.

3.3 RNG Transformer

The RNG Transformer architecture is illustrated in Figure 3.1, in this case, applied to the depen-
dency parsing task. The input to a RNGTr model specifies the input nodes W = (w1, w2, . . . , wN )

(e.g. a sentence), and the output is the final graph GT (e.g. a parse tree) over this set of nodes.
The first step is to compute an initial graph of G0 over W , which can be done with any model.
Then each recursive iteration takes the previous graph G t−1 as input and predicts a new graph G t .

The RNGTr model predicts G t with a novel version of a Graph-to-Graph Transformer. Unlike
the proposed model in Chapter 2, this G2GTr model predicts every edge of the graph in a single
non-autoregressive step. As previously, the G2GTr first encodes the input graph G t−1 in a set of
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Figure 3.1: The Recursive Non-autoregressive Graph-to-Graph Transformer architecture.

contextualised vector representations Z = (z1, z2, . . . , zN ), with one vector for each node of the
graph. The decoder component then predicts the output graph G t by first computing scores for
each possible edge between each pair of nodes and then applying a decoding algorithm to output
the highest-scoring complete graph.

The RNGTr model can be formalised in terms of an encoder ERNG and a decoder DRNG:Z t = ERNG(W,P,G t−1)

G t = DRNG(Z t )
t = 1, . . . ,T (3.1)

where W = (w1, w2, , . . . , wN ) is the input sequence of tokens, P = (p1, p2, , . . . , pN ) is their associ-
ated properties, and T is the number of refinement iterations.

In the case of dependency parsing, W are the words and symbols, P are their part-of-speech tags,
and the predicted graph at iteration t is specified as:

G t = {(i , j , l ), j = 3, . . . , N−1}

where 2 ≤ i ≤ N−1, l ∈ L
(3.2)

Each word w j has one head (parent) wi with dependency label l from the label set L, where the
parent can also be the ROOT symbol w2 (see Section 3.3.1).

The following sections describe in more detail each element of the proposed RNGTr dependency
parsing model.
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ROOT How are you ?
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Self-Attention Mechanism

Figure 3.2: Example of inputting dependency graph to the self-attention mechanism.

3.3.1 Encoder

To compute the embeddings Z t for the nodes of the graph, we use the Graph-to-Graph Trans-
former architecture proposed in Chapter 2, including similar mechanism to input the previously
predicted dependency graph G t−1 to the attention mechanism. This graph input allows the node
embeddings to include both token-level and relation-level information.

Input Embeddings

The RNGTr model receives a sequence of input tokens (W ) with their associated properties (P)
and builds a sequence of input embeddings (X ). For compatibility with BERT’s input token
representation (Devlin et al., 2019), the sequence of input tokens starts with CLS and ends with
SEP symbols. For dependency parsing, it also adds the ROOT symbol to the front of the sentence
to represent the root of the dependency tree. To build token representation for a sequence of
input tokens, we sum several vectors. For the input words and symbols, we sum the token
embeddings of a pre-trained BERT model EMB(wi ), and learned representations EMB(pi ) of
their Part-of-Speech tags pi . To keep the order information of the initial sequence, we add
the position embeddings of pre-trained BERT Fi to our token embeddings. The final input
representations are the sum of the position embeddings and the token embeddings:

xi = Fi +EMB(wi )+EMB(pi ), i = 1,2, ..., N (3.3)

Self-Attention Mechanism

Conditioning on the previously predicted output graph G t−1 is made possible by inputting relation
embeddings to the self-attention mechanism. This edge input method was initially proposed by
Shaw et al. (2018) for relative position encoding, and extending to unlabelled dependency graphs
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in Chapter 2. We use it to input labelled dependency graphs, by adding relation label embeddings
to both the value function and the attention weight function.

Transformers have multiple layers of self-attention, each with multiple heads. The RNGTr
architecture uses the same architecture as BERT (Devlin et al., 2019) but changes the functions
used by each attention head. Given the token embeddings X at the previous layer and the input
graph G t−1, the values A=(a1, . . . , aN ) computed by an attention head are:

ai =
∑

j
αi j (x j W V + r t−1

i j W L
2 ) (3.4)

where r t−1
i j is a one-hot vector that represents the labelled dependency relation between i and

j in the graph G t−1. As shown in the matrix in Figure 3.2, each r t−1
i j specifies both the label

and the direction of the relation (i dlabel for i → j versus i dlabel +|L| for i ← j , where |L| is the
number of dependency labels), or specifies NONE (as 0). W L

2 ∈ R(2|L|+1)×d are the learned relation
embeddings. The attention weights αi j are a Softmax applied to the attention function:

αi j =
exp(ei j )∑

exp(ei j )

ei j =
(xi W Q )(x j W K +LN(r t−1

i j W L
1 ))

p
d

(3.5)

where W L
1 ∈ R(2|L|+1)×d are different learned relation embeddings. LN(·) is the layer normalisation

function, used for better convergence.

Equations (3.4) and (3.5) constitute the mechanism by which each iteration of refinement can
condition on the previous graph. Instead of the more common approach of hard-coding some
attention heads to represent a relation (e.g. Ji et al. (2019)), all attention heads can learn for
themselves how to use the information about relations.

3.3.2 Decoder

The decoder uses the token embeddings Z t produced by the encoder to predict the new graph G t .
It consists of two components, a scoring function, and a decoding algorithm. The graph found by
the decoding algorithm is the output graph G t of the decoder. Here we propose components for
dependency parsing.

Scoring Function

We first produce four distinct vectors for each token embedding z t
i from the encoder by passing it

through four feed-forward layers.
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z t ,(ar c−dep)
i = MLP(ar c−dep)(z t

i )

z t ,(ar c−head)
i = MLP(ar c−head)(z t

i )

z t ,(r el−dep)
i = MLP(r el−dep)(z t

i )

z t ,(r el−head)
i = MLP(r el−head)(z t

i )

(3.6)

where the MLP’s are all one-layer feed-forward networks with LeakyReLU activation functions.

These token embeddings are used to compute probabilities for every possible dependency relation,
both unlabelled and labelled, similarly to Dozat and Manning (2016). The distribution of the
unlabelled dependency graph is estimated using, for each token i , a Biaffine classifier over
possible heads j applied to z t ,(ar c−dep)

i and z t ,(ar c−head)
j . Then for each pair i , j , the distribution

over labels given an unlabelled dependency relation is estimated using a Biaffine classifier applied
to z t ,(r el−dep)

i and z t ,(r el−head)
j .

Decoding Algorithms

The scoring function estimates a distribution over graphs, but the RNGTr architecture requires the
decoder to output a single graph G t . Choosing this graph is complicated by the fact that the scoring
function is non-autoregressive. Thus the estimate consists of multiple independent components,
and thus there is no guarantee that every graph in this distribution is a valid dependency graph.

We take two approaches to this problem, one for intermediate parses G t and one for the final
dependency parse GT . To speed up each refinement iteration, we ignore this problem for interme-
diate dependency graphs. We build these graphs by simply applying argmax independently to
find the head of each node. This may result in graphs with loops, which are not trees, but this does
not seem to cause problems for later refinement iterations.2 For the final output dependency tree,
we use the maximum spanning tree algorithm, specifically the Chu-Liu/Edmonds algorithm (Chi,
1999; Edmonds, 1967), to find the highest scoring valid dependency tree. This is necessary to
avoid problems when running the evaluation scripts. The asymptotic complexity of the full model
is determined by the complexity of this algorithm.3

3.3.3 Training

The RNG Transformer model is trained separately on each refinement iteration. Standard gradient
descent techniques are used, with cross-entropy loss for each edge prediction. Error is not
backpropagated across iterations of refinement, because no continuous values are being passed
from one iteration to another, only a discrete dependency tree.

2We leave to future work the investigation of different decoding strategies that keep both speed and well-formedness
for the intermediate predicted graphs.

3The Tarjan variation (Karger et al., 1995) of Chu-Liu/Edmonds algorithm computes the highest-scoring tree in
O(n2) for dense graphs, which is the case here.
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Stopping Criterion. In the RNG Transformer architecture, the refinement of the predicted graph
can be done an arbitrary number of times, since the same encoder and decoder parameters are
used at each iteration. In the experiments below, we place a limit on the maximum number of
iterations. But sometimes the model converges to an output graph before this limit is reached,
simply copying this graph during later iterations. During training, to avoid multiple iterations
where the model is trained to simply copy the input graph, the refinement iterations are stopped if
the new predicted dependency graph is the same as the input graph. At test time, we also stop
computation in this case, but the output of the model is not affected.

3.4 Initial Parsers

The RNGTr architecture requires a graph G0 to initialise the iterative refinement. We consider
several initial parsers to produce this graph. To leverage previous work on dependency parsing
and provide a controlled comparison to the state-of-the-art, we use parsing models from the recent
literature as both baselines and initial parsers. To evaluate the importance of the initial parse, we
also consider a setting where the initial parse is empty, so the first complete dependency tree is
predicted by the RNGTr model itself. Finally, the success of our RNGTr dependency parsing
model leads us to propose an initial parsing model with the same design, so that we can control
for the parser design in measuring the importance of the RNG Transformer’s iterative refinement.

SynTr model. We call this initial parser the Syntactic Transformer (SynTr) model. It is the same
as one iteration of the RNGTr model shown in Figure 3.1 and defined in Section 3.3, except that
there is no graph input to the encoder. Analogously to (3.1), G0 is computed as:Z 0 = ESYNTR(W,P )

G0 = DSYNTR(Z 0)
(3.7)

where ESYNTR and DSYNTR are the SynTr encoder and decoder, respectively. For the encoder,
we use the Transformer architecture and initialise with pre-trained parameters of BERT. The
token embeddings of the final layer are used for Z 0. For the decoder, we use the same scoring
function as described in Section 3.3.2, and apply Chu-Liu/Edmonds decoding algorithm (Chi,
1999; Edmonds, 1967) to find the highest scoring tree.

This SynTr parsing model is very similar to the UDify parsing model proposed by Kondratyuk
and Straka (2019). One difference which seems to be important for the results reported in
Section 3.6.2 is in the way BERT token segmentation is handled. When BERT segments a
word into sub-words, UDify seems only to encode the first segment, whereas SynTr encodes all
segments and only decodes with the first segment, as discussed in Section 3.5.3. Also, UDify
decodes with an attention-based mixture of encoder layers, whereas SynTr only uses the last
layer.
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3.5 Experimental Setup

3.5.1 Datasets

To evaluate our models, we apply them on several kinds of datasets, namely Universal Dependency
(UD) Treebanks, Penn Treebanks, and the German CoNLL 2009 Treebank. For our evaluation on
Universal Dependency Treebanks (UD v2.3) (Nivre et al., 2018), we select languages based on the
criteria proposed in de Lhoneux et al. (2017), and adapted by Smith et al. (2018). This set contains
several languages with different language families, scripts, character set sizes, morphological
complexity, and training sizes and domains. For our evaluation of Penn Treebanks, we use the
English and Chinese Penn Treebanks (Xue et al., 2002; Marcus et al., 1993). For English, we
use the same setting as defined in Chapter 2. For Chinese, we apply the same setup as described
in Chen and Manning (2014), including the use of gold PoS tags. For our evaluation on the
German Treebank of the CoNLL 2009 shared task (Hajič et al., 2009), we apply the same setup
as defined in Kuncoro et al. (2016). Following Hajič et al. (2009); Nivre et al. (2018), we keep
punctuation for evaluation on the UD Treebanks and the German corpus and remove it for the
Penn Treebanks (Nilsson and Nivre, 2008).

3.5.2 Baseline Models

For UD Treebanks, we compare to several baseline parsing models. We use the monolingual
parser proposed by Kulmizev et al. (2019), which uses BERT (Devlin et al., 2019) and ELMo (Pe-
ters et al., 2018) embeddings as additional input features. In addition, we compare to the
multilingual multi-task models proposed by Kondratyuk and Straka (2019) and Straka (2018).
UDify (Kondratyuk and Straka, 2019) is a multilingual multi-task model. UDPipe (Straka, 2018)
is one of the winners of CoNLL 2018 Shared Task (Zeman et al., 2018). For a fair comparison,
we report the scores of UDPipe from Kondratyuk and Straka (2019) using gold segmentation.
UDify is on average the best performing of these baseline models, so we use it as one of our
initial parsers in the RNGTr model.

For Penn Treebanks and the German CoNLL 2009 corpus, we compare our models with previous
state-of-the-art transition-based, and graph-based models, including the Biaffine parser (Dozat
and Manning, 2016), which includes the same decoder as our model. We also use the Biaffine
parser as an initial parser for the RNGTr model.

3.5.3 Implementation Details

The encoder is initialised with pre-trained BERT (Devlin et al., 2019) models with 12 self-
attention layers. All hyper-parameters are provided in Appendix 3.8.

Since the wordpiece tokeniser (Wu et al., 2016) of BERT differs from that used in the dependency
corpora, we apply the BERT tokeniser to each corpus word and input all the resulting sub-words
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Model UAS LAS
SynTr 75.62 70.04
SynTr+RNGTr (T=1) 76.37 70.67
SynTr+RNGTr (T=3) w/o stop 76.33 70.61
SynTr+RNGTr (T=3) 76.29 70.84
UDify Kondratyuk and Straka (2019) 72.78 65.48
UDify+RNGTr (T=1) 74.13 68.60
UDify+RNGTr (T=3) w/o stop 75.68 70.32
UDify+RNGTr (T=3) 75.91 70.66

Table 3.1: Dependency parsing scores for different variations of the RNG Transformer model on
the development set of UD Turkish Treebank (IMST).

Language
Train Mono Multi Multi Multi+Mono Mono Mono Mono
Size [1] UDPipe UDify UDify+RNGTr SynTr SynTr+RNGTr Empty+RNGTr

Arabic 6.1K 81.8 82.94 82.88 85.93 (+17.81%) 86.23 86.31 (+0.58%) 86.05
Basque 5.4K 79.8 82.86 80.97 87.55 (+34.57%) 87.49 88.2 (+5.68%) 87.96
Chinese 4K 83.4 80.5 83.75 89.05 (+32.62%) 89.53 90.48 (+9.08%) 89.82
English 12.5K 87.6 86.97 88.5 91.23 (+23.74%) 91.41 91.52 (+1.28%) 91.23
Finnish 12.2K 83.9 87.46 82.03 91.87 (+54.76%) 91.80 91.92 (+1.46%) 91.78
Hebrew 5.2K 85.9 86.86 88.11 90.80 (+22.62%) 91.07 91.32 (+2.79%) 90.56
Hindi 13.3K 90.8 91.83 91.46 93.94 (+29.04%) 93.95 94.21 (+4.3%) 93.97
Italian 13.1K 91.7 91.54 93.69 94.65 (+15.21%) 95.08 95.16 (+1.62%) 94.96

Japanese 7.1K 92.1 93.73 92.08 95.41 (+42.06%) 95.66 95.71 (+1.16%) 95.56
Korean 4.4K 84.2 84.24 74.26 89.12 (+57.73%) 89.29 89.45 (+1.5%) 89.1
Russian 48.8K 91.0 92.32 93.13 94.51 (+20.09%) 94.60 94.47 (-2.4%) 94.31
Swedish 4.3K 86.9 86.61 89.03 92.02 (+27.26%) 92.03 92.46 (+5.4%) 92.40
Turkish 3.7K 64.9 67.56 67.44 72.07 (+14.22%) 72.52 73.08 (+2.04%) 71.99
Average - 84.9 85.81 85.18 89.86 90.05 90.33 89.98

Table 3.2: Labelled attachment scores on UD Treebanks for monolingual ([1] (Kulmizev et al.,
2019) and SynTr) and multilingual (UDPipe (Straka, 2018) and UDify (Kondratyuk and Straka,
2019)) baselines, and the refined models (+RNGTr) pre-trained with BERT (Devlin et al., 2019).
The relative error reduction from RNGTr refinement is shown in parentheses. Bold scores are not
significantly different from the best score in that row (with α= 0.01).

to the encoder. For the input of dependency relations, each dependency between two words
is specified as a relationship between their first sub-words. We also input a new relationship
between each non-first sub-word and its associated first sub-word as its head. For the prediction
of dependency relations, only the encoder embedding of the first sub-word of each word is used
by the decoder.4 The decoder predicts each dependency as a relation between the first sub-words
of the corresponding words. Finally, for proper evaluation, we map the predicted sub-word heads
and dependents to their original word positions in the corpus.

4In preliminary experiments, we found that predicting dependencies using the first sub-words achieves better or
similar results compared to using the last sub-word or all sub-words of each word.
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Model
English (PTB) Chinese (CTB) German (CoNLL)

Type UAS LAS UAS LAS UAS LAS
Chen and Manning (2014) T 91.8 89.6 83.9 82.4 - -

Dyer et al. (2015) T 93.1 90.9 87.2 85.7 - -
Ballesteros et al. (2016) T 93.56 91.42 87.65 86.21 88.83 86.10
Cross and Huang (2016) T 93.42 91.36 86.35 85.71 - -

Weiss et al. (2015) T 94.26 92.41 - - - -
Andor et al. (2016) T 94.61 92.79 - - 90.91 89.15

G2GTr (defined in Chapter 2) T 96.11 94.33 - - - -
Ma et al. (2018) T 95.87 94.19 90.59 89.29 93.65 92.11

Fernández-González and Gómez-Rodríguez (2019) T 96.04 94.43 - - - -
Kiperwasser and Goldberg (2016) G 93.1 91.0 86.6 85.1 - -

Wang and Chang (2016) G 94.08 91.82 87.55 86.23 - -
Cheng et al. (2016) G 94.10 91.49 88.1 85.7 - -

Kuncoro et al. (2016) G 94.26 92.06 88.87 87.30 91.60 89.24
Ma and Hovy (2017) G 94.88 92.98 89.05 87.74 92.58 90.54

Ji et al. (2019) G 95.97 94.31 - - - -
Li et al. (2020)+ELMo G 96.37 94.57 90.51 89.45 - -
Li et al. (2020)+BERT G 96.44 94.63 90.89 89.73 - -

Biaffine Dozat and Manning (2016) G 95.74 94.08 89.30 88.23 93.46 91.44
Biaffine+RNGTr G 96.44 94.71 91.85 90.12 94.68 93.30

SynTr G 96.60 94.94 92.42 90.67 95.11 93.98
SynTr+RNGTr G 96.66 95.01 92.98 91.18 95.28 94.02

Table 3.3: Comparison of our models to previous SOTA models on English (PTB) and Chinese
(CTB5.1) Penn Treebanks, and German CoNLL 2009 shared task treebank. "T" and "G" specify
"Transition-based" and "Graph-based" models. Bold scores are not significantly different from
the best score in that column (with α= 0.01).

3.6 Results and Discussion

After some initial experiments to determine the maximum number of refinement iterations, we
report the performance of the RNG Transformer model on the UD treebanks, Penn treebanks, and
German CoNLL 2009 treebank.5 The RNGTr models perform substantially better than previously
proposed models on every dataset, and RNGTr refinement improves over its initial parser for
almost every dataset. We also perform various analyses to understand these results better.

3.6.1 The Number of Refinement Iterations

Before conducting a large number of experiments, we investigate how many iterations of refine-
ment are useful, given the computational costs of additional iterations. We evaluate different
variations of our RNG Transformer model on the Turkish Treebank (Table 3.1).6 We use both
SynTr and UDify as initial parsers. The SynTr model significantly outperforms the UDify model,
so the errors are harder to correct by adding the RNGTr model (2.67% for SynTr versus 15.01%

5The number of parameters and run times of each model on the UD and Penn Treebanks are provided in
Appendix 3.9.

6We choose the Turkish Treebank because it is a low-resource Treebank and there are more errors in the initial
parse for RNGTr to correct.
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for UDify of relative error reduction in LAS after integration). In both cases, three iterations
of refinement achieve more improvement than one iteration, but not by a large enough margin
to suggest the need for additional iterations. The further analysis reported in Section 3.6.5
supports the conclusion that, in general, additional iteration would neither help nor hurt accuracy.
The results in Table 3.1 also show that it is better to include the stopping strategy described in
Section 3.3.3. In subsequent experiments, we use three refinement iterations with the stopping
strategy, unless mentioned otherwise.

3.6.2 UD Treebank Results

Results for the UD treebanks are reported in Table 3.2. We compare our models with previous
state-of-the-art results (both trained mono-lingually and multi-lingually), based on labelled
attachment score.7

The results with RNGTr refinement demonstrate the effectiveness of the RNGTr model at
refining an initial dependency graph. First, the UDify+RNGTr model achieves significantly
better LAS performance than the UDify model in all languages. Second, although the SynTr
model significantly outperforms previous state-of-the-art models on all these UD Treebanks,8 the
SynTr+RNGTr model achieves further significant improvement over SynTr in four languages, and
no significant degradation in any language. Of the nine languages where there is no significant
difference between SynTr and SynTr+RNGTr for the given test sets, RNGTr refinement results in
higher LAS in eight languages and lower LAS in only one (Russian).

The improvement of SynTr+RNGTr over SynTr is particularly interesting because it is a controlled
demonstration of the effectiveness of the graph refinement method of RNGTr. The only difference
between the SynTr model and the final iteration of the SynTr+RNGTr model is the graph inputs
from the previous iteration (Equations (3.7) versus (3.1)). By conditioning on the full dependency
graph, the SynTr+RNGTr model’s final RNGTr iteration can capture any kind of correlation in
the dependency graph, including both global and between-edge correlations both locally and
over long distances. This result also further demonstrates the generality and effectiveness of the
G2GTr architecture for conditioning on graphs (Equations (3.4) and (3.5)).

As expected, we get more improvement when combining the RNGTr model with UDify, because
UDify’s initial dependency graph contains more incorrect dependency relations for RNGTr to
correct. But after refinement, there is surprisingly little difference between the performance of the
UDify+RNGTr and SynTr+RNGTr models, suggesting that RNGTr is powerful enough to correct
any initial parse. To investigate the power of the RNGTr architecture to correct any initial parse,

7Unlabelled attachment scores are provided in Appendix 3.10. All results are computed with the official
CoNLL 2018 shared task evaluation script (https://universaldependencies.org/conll18/
evaluation.html).

8In particular, SynTr significantly outperforms UDify, even though they are very similar models. In addition to the
model differences discussed in Section 3.4, there are some differences in the way UDify and SynTr models are trained
that might explain this improvement, in particular, that UDify is a multi-lingual multi-task model, whereas SynTr is a
mono-lingual single-task model.
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we also show results for a model with an empty initial parse, Empty+RNGTr. For this model,
we run four iterations of refinement (T=4), so that the amount of computation is the same as for
SynTr+RNGTr. The Empty+RNGTr model achieves competitive results with the UDify+RNGTr
model (i.e. above the previous state-of-the-art), and close to the results for SynTr+RNGTr. This
accuracy is achieved despite the fact that the Empty+RNGTr model has half as many parameters
as the UDify+RNGtr model and the SynTr+RNGTr model since it has no separate initial parser.
These Empty+RNGTr results indicate that RNGTr architecture is a very powerful method for
graph refinement.

3.6.3 Penn Treebank and German corpus Results

UAS and LAS results for the Penn Treebanks and German CoNLL 2009 Treebank are reported
in Table 3.3. We compare to the results of previous state-of-the-art models and SynTr, and we
use the RNGTr model to refine both the Biaffine parser (Dozat and Manning, 2016) and SynTr,
on all Treebanks.9

Figure 3.3: Error analysis, on the concatenation of UD Treebanks, of initial parsers (UDify and
SynTr), their integration with the RNGTr model, and the Empty+RNGTr model.

Again, the SynTr model significantly outperforms previous state-of-the-art models, with a 5.78%,
9.15%, and 23.7% LAS relative error reduction in English, Chinese, and German, respectively.
Despite this level of accuracy, adding RNGTr refinement improves accuracy further under
both UAS and LAS. For the Chinese Treebank, this improvement is significant, with a 5.46%
LAS relative error reduction. When RNGTr refinement is applied to the output of the Biaffine
parser (Dozat and Manning, 2016), it achieves a LAS relative error reduction of 10.64% for the
English Treebank, 16.05% for the Chinese Treebank, and 27.72% for the German Treebank.
These improvements, even over such strong initial parsers, again demonstrate the effectiveness of
the RNGTr architecture for graph refinement.

3.6.4 Error Analysis

To better understand the distribution of errors for our models, we follow McDonald and Nivre
(2011) and plot labelled attachment scores as a function of dependency length, sentence length and

9Results are calculated with the official evaluation script: (https://depparse.uvt.nl/). For German,
we use https://ufal.mff.cuni.cz/conll2009-st/eval-data.html.
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distance to root.10 We compare the distributions of errors made by the UDify (Kondratyuk and
Straka, 2019), SynTr, and refined models (UDify+RNGTr, SynTr+RNGTr, and Empty+RNGTr).
Figure 3.3 shows the accuracies of the different models on the concatenation of all development
sets of UD Treebanks. Results show that applying RNGTr refinement to the UDify model results
in a substantial improvement in accuracy across the full range of values in all cases, and little
difference in the error profile between the better performing models. In all the plots, the gains
from RNGTr refinement are more pronounced for the more difficult cases, where a larger or more
global view of the structure is beneficial.

As shown in the leftmost plot of Figure 3.3, adding RNGTr refinement to UDify results in partic-
ular gains for the longer dependencies, which are more likely to interact with other dependencies.
The middle plot illustrates the accuracy of models as a function of the distance to the root of the
dependency tree, which is calculated as the number of dependency relations from the dependent
to the root. When we add RNGTr refinement to the UDify parser, we get particular gains for
the problematic middle depths, which are neither the root nor leaves. Here, SynTr+RNGTr is
also particularly strong on these high nodes, whereas SynTr is particularly strong on low nodes.
In the plot by sentence length, the larger improvements from adding RNGTr refinement (both
to UDify and SynTr) are for the shorter sentences, which are surprisingly difficult for UDify.
Presumably, these shorter sentences tend to be more idiosyncratic, which is better handled with a
global view of the structure. (See Figure 3.5 for an example.) In all these cases, the ability of
RNGTr to capture any kind of correlation in the dependency graph gives the model a larger and
more global view of the correct output structure.

Figure 3.4: Error analysis of SynTr and SynTr+RNGTr models on Chinese CTB Treebank.

To further analyse where RNGTr refinement is resulting in improvements, we compare the error
profiles of the SynTr and SynTr+RNGTr models on the Chinese Penn Treebank, where adding
RNGTr refinement to SynTr results in significant improvement (see Table 3.3). As shown in
Figure 3.4, RNGTr refinement results in particular improvement on longer dependencies (left
plot), and on middle and greater depth nodes (right plot), again showing that RNGTr does
particularly well on the difficult cases with more interactions with other dependencies.

10We use the MaltEval tool (Nilsson and Nivre, 2008) for calculating accuracies in all cases.
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ROOT How are you ?

root

punct

nsubj

cop

ROOT How are you ?

How are you ?

root

advmod nsubj

punct

Initial Parser

RNGTr

Figure 3.5: The shortest example corrected by UDify+RNGTr in the English UD Treebank.

Dataset Type t = 1 t = 2 t = 3
Low-Resource +13.62% +17.74% +0.16%
High-Resource +29.38% +0.81% +0.41%

Table 3.4: Refinement Analysis (LAS relative error reduction) of the UDify+RNGTr model for
different refinement steps on the development sets of UD Treebanks.

3.6.5 Refinement Analysis

To better understand how the RNG Transformer model is doing refinement, we perform several
analyses of the trained UDify+RNGTr model.11 An example of this refinement is shown in
Figure 3.5, where the UDify model predicts an incorrect dependency graph, but the RNGTr
model modifies it to build the gold dependency tree.

Refinements by Iteration. To measure the accuracy gained from refinement at different iterations,
we define the following metric:

RELt = RER(LASt−1,LASt ) (3.8)

where RER is relative error reduction, and t is the refinement iteration. LAS0 is the accuracy of
the initial parser, UDify in this case.

To illustrate the refinement procedure for different dataset types, we split UD Treebanks based on
their training set size into "Low-Resource" and "High-Resource" datasets.12 Table 3.4 shows the

11We choose UDify as the initial parser because the RNGTr model makes more changes to the parses of UDify
than SynTr, so we can more easily analyse these changes. Results with SynTr as the initial parser are provided in
Appendix 3.11.

12We consider languages that have training data more than 10k sentences as "High-Resource".
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Dependency Type t = 1 t = 2 t = 3
goeswith +57.83% +0.00% +2.61%
aux +66.04% +3.04% +3.12%
cop +48.17% +2.21% +3.01%
mark +44.97% +2.44% +0.00%
amod +45.58% +2.33% +0.00%
det +34.48% +0.00% +2.63%
acl +33.01% +0.89% +0.00%
xcomp +33.33% +0.80% +0.00%
nummod +28.50% +0.00% +1.43%
advcl +29.53% +1.26% +0.25%
dep +22.48% +2.02% +0.37%

Table 3.5: Relative F-score error reduction of a selection of dependency types for each refinement
step on the concatenation of UD Treebanks (with UDify as the initial parser).

Tree Type t = 1 t = 2 t = 3
Non-Projective +22.43% +3.92% +0.77%
Projective +29.6% +1.13% +0.0%

Table 3.6: Relative F-score error reduction of projective and non-projective trees on the concate-
nation of UD Treebanks (with UDify as the initial parser).

refinement metric (RELt ) after each refinement iteration of the UDify+RNGTr model on these
sets of UD Treebanks.13 Every refinement step achieves an increase in accuracy, on both low
and high resource languages. But the amount of improvement generally decreases for higher
refinement iterations. Interestingly, for languages with less training data, the model cannot learn
to make all corrections in a single step but can learn to make the remaining corrections in a
second step, resulting in approximately the same total percentage of errors corrected as for high
resource languages. In general, different numbers of iterations may be necessary for different
datasets, allowing efficiency gains by not performing unnecessary refinement iterations.

Dependency Type Refinement. Table 3.5 shows the relative improvement of different depen-
dency types for the UDify+RNGTr model at each refinement step, ranked and selected by the total
relative error reduction. A huge amount of improvements is achieved for all these dependency
types at the first iteration step, and then we have a considerable further improvement for many of
the remaining refinement steps. The later refinement steps are particularly useful for idiosyncratic
dependencies which require a more global view of the sentence, such as auxiliary (aux) and
copula (cop). A similar pattern of improvements is found when SynTr is used as the initial parser,
reported in Appendix 3.11.

13For these results we apply MST decoding after every iteration, to allow proper evaluation of the intermediate
graphs.
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Refinement by Projectivity. Table 3.6 shows the relative improvement of each refinement step
for projective and non-projective trees. Although the total gain is slightly higher for projective
trees, non-projective trees require more iterations to achieve the best results. Presumably, this is
because non-projective trees have more complex non-local interactions between dependencies,
which requires more refinement iterations to fix incorrect dependencies. This seems to contradict
the common belief that non-projective parsing is better done with factorised graph-based models,
which do not model these interactions.

3.7 Conclusion

In this chapter, we propose a novel model for structured prediction, Recursive Non-autoregressive
Graph-to-Graph Transformer (RNG Transformer), to iteratively refine arbitrary graphs. Given
an initial graph, RNG Transformer learns to predict a corrected graph over the same set of
nodes. Each iteration of refinement predicts the edges of the graph in a non-autoregressive
fashion, but conditions these predictions on the entire graph from the previous iteration. This
graph conditioning and prediction are made with the Graph-to-Graph Transformer architecture,
which can capture complex patterns of interdependencies between graph edges and can exploit
BERT (Devlin et al., 2019) pre-training.

We evaluate the RNG Transformer architecture by applying it to the problematic structured
prediction task of syntactic dependency parsing. In the process, we also propose a graph-based
dependency parser (SynTr), which is the same as one iteration of our RNG Transformer model
but without graph inputs. Evaluating on 13 languages of the Universal Dependencies Treebanks,
the English and Chinese Penn Treebanks, and the German CoNLL 2009 shared task treebank,
our SynTr model already significantly outperforms previous state-of-the-art models on all these
treebanks. Even with this powerful initial parser, RNG Transformer refinement almost always
improves accuracies, setting new state-of-the-art accuracies for all treebanks. RNG Transformer
consistently results in improvement regardless of the initial parser, reaching around the same level
of accuracy even when it is given an empty initial parse, demonstrating the power of this iterative
refinement method. Error analysis suggests that RNG Transformer refinement is particularly
useful for complex interdependencies in the output structure.

The RNG Transformer architecture is a very general and powerful method for structured pre-
diction, which could easily be applied to other NLP tasks. It would especially benefit tasks that
require capturing complex structured interdependencies between graph edges, without losing the
computational benefits of a non-autoregressive model.
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Appendix

3.8 Implementation Details

For better convergence, we use two different optimisers for pre-trained parameters and randomly
initialised parameters. We apply bucketed batching, grouping sentences by their lengths into
the same batch to speed up the training. Early stopping (based on LAS) is used during training.
We use "bert-multilingual-cased" for UD Treebanks.14 For English Penn Treebank, we use
"bert-base-uncased", and for Chinese Penn Treebank, we use "bert-base-chinese". We apply
pre-trained weights of "bert-base-german-cased" (Wolf et al., 2019) for German CoNLL shared
task 2009. Here is the list of hyper-parameters for RNG Transformer model:

Component Specification
Optimiser BertAdam

Base Learning rate 2e-3
BERT Learning rate 1e-5
Adam Betas(b1,b2) (0.9,0.999)

Adam Epsilon 1e-5
Weight Decay 0.01

Max-Grad-Norm 1
Warm-up 0.01

Self-Attention
No. Layers 12
No. Heads 12

Embedding size 768
Max Position Embedding 512

Component Specification
Feed-Forward layers (arc)

No. Layers 2
Hidden size 500

Drop-out 0.33
Negative Slope 0.1

Feed-Forward layers (rel)
No. Layers 2
Hidden size 100

Drop-out 0.33
Negative Slope 0.1

Epoch 200
Patience 100

Table 3.7: Hyper-parameters for training on all Treebanks. We stop training, if there is no
improvement in the current epoch, and the number of the current epoch is bigger than the
summation of last checkpoint and "Patience".

14https://github.com/google-research/bert. For Chinese and Japanese, we use pre-trained
"bert-base-chinese" and "bert-base-japanese" models (Wolf et al., 2019) respectively.
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3.9 Number of Parameters and Run Time Details:

We provide average run times and the number of parameters of each model on English Penn
Treebanks, and English UD Treebank. All experiments are computed with a graphics processing
unit (GPU), specifically the NVIDIA V100 model.

Model No. parameters Training time (HH:MM:SS) Evaluation time (seconds)
Biaffine (Dozat and Manning, 2016) 13.5M 4:39:18 3.1
RNGTr 206.3M 24:10:40 20.6
SynTr 206.2M 6:56:40 7.5

Table 3.8: Run time details of our models on English Penn Treebank.

Model Training time (HH:MM:SS) Evaluation time (seconds)
UDify (Kondratyuk and Straka, 2019) 2:22:47 4.0
RNGTr 8:14:26 13.6
SynTr 1:29:43 3.7

Table 3.9: Run time details of our models on English UD Treebank.

3.10 Unlabelled Attachment Scores for UD Treebanks

Language
Multi Multi Multi+Mono Mono Mono Mono

UDPipe UDify UDify+RNGTr SynTr SynTr+RNGTr Empty+RNGTr
Arabic 87.54 87.72 89.73(+16.37%) 89.89 89.94(+0.49%) 89.68
Basque 86.11 84.94 90.49(+36.85%) 90.46 90.90(+4.61%) 90.69
Chinese 84.64 87.93 91.04(+25.76%) 91.38 92.47(+12.64%) 91.81
English 89.63 90.96 92.81(+20.46%) 92.92 93.08(+2.26%) 92.77
Finnish 89.88 86.42 93.49(+52.06%) 93.52 93.55(+0.47%) 93.36
Hebrew 89.70 91.63 93.03(+16.73%) 93.36 93.36(0.0%) 92.80
Hindi 94.85 95.13 96.44(+26.9%) 96.33 96.56(+6.27%) 96.37
Italian 93.49 95.54 95.72(+4.04%) 96.03 96.10(+1.76%) 95.98

Japanese 95.06 94.37 96.25(+33.40%) 96.43 96.54(+3.08%) 96.37
Korean 87.70 82.74 91.32(+49.71%) 91.35 91.49(+1.62%) 91.28
Russian 93.80 94.83 95.54(+13.73%) 95.53 95.47(-1.34%) 95.38
Swedish 89.63 91.91 93.72(+22.37%) 93.79 94.14(+5,64%) 94.14
Turkish 74.19 74.56 77.74(+12.5%) 77.98 78.50(+2.37%) 77.49
Average 88.94 89.13 92.10 92.23 92.46 92.16

Table 3.10: Unlabelled attachment scores on UD Treebanks for monolingual (SynTr) and
multilingual (UDPipe (Straka, 2018) and UDify (Kondratyuk and Straka, 2019)) baselines, and
the refined models (+RNGTr), pre-trained with BERT (Devlin et al., 2019). Bold scores are not
significantly different from the best score in that row (with α= 0.01).
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3.11 SynTr Refinement Analysis

Dependency Type t = 1 t = 2 t = 3
clf +17.60% +0.00% +0.00%
discourse +9.70% +0.00% +0.00%
aux +3.57% +3.71% +0.00%
case +2.78% +2.86% +0.00%
root +2.27% +2.33% +0.00%
nummod +2.68% +1.38% +0.00%
acl +3.74% +0.29% +0.00%
orphan +1.98% +1.24% +0.00%
dep +1.99% +0.80% +0.00%
cop +1.55% +0.78% +0.00%
advcl +1.98% +0.25% +0.00%
nsubj +1.07% +0.54% +0.00%

Table 3.11: Relative F-score error reduction, when SynTr is the initial parser, of different
dependency types for each refinement step on the concatenation of UD Treebanks, ranked and
selected by the total relative error reduction.

Dataset Type t = 1 t = 2 t = 3
Low-Resource 2.46% 0.09% 0.08%
High-Resource 0.81% 0.80% 0.32%

(a)

Tree type t = 1 t = 2 t = 3
Non-Projective 5% 1.63% 0.13%
Projective 0.6% 0.61% 0.13%

(b)

Table 3.12: Refinement analysis of the SynTr+RNGTr model for different refinement steps. (a)
Relative LAS error reduction on the low-resource and high-resource subsets of UD Treebanks.
(b) Relative F-score error reduction of projective and non-projective trees on the concatenation of
UD Treebanks.
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4 Syntax-Aware Graph-to-Graph Trans-
former for Semantic Role Labelling

Recent models have shown that incorporating syntactic knowledge into the semantic role labelling
(SRL) task leads to a significant improvement. In this chapter, we propose Syntax-aware Graph-to-
Graph Transformer (SynG2G-Tr) model, which encodes the syntactic structure using a novel way
to input graph relations as embeddings, directly into the self-attention mechanism of Transformer.
This approach adds a soft bias towards attention patterns that follow the syntactic structure but
also allows the model to use this information to learn alternative patterns. We evaluate our model
on both span-based and dependency-based SRL datasets, and outperform previous alternative
methods in both in-domain and out-of-domain settings, on CoNLL 2005 and CoNLL 2009
datasets.

4.1 Introduction

The task of semantic role labelling (SRL) provides a shallow representation of the semantics in
a sentence, and constructs event properties and relations among relevant words. Traditionally,
a syntactic structure was considered a prerequisite for SRL models (Punyakanok et al., 2008;
Gildea and Palmer, 2002), but, newer models that leverage deep neural network architectures (Cai
et al., 2018; Tan et al., 2017; He et al., 2017; Marcheggiani et al., 2017) have outperformed
syntax-aware architectures, without the need for explicit encoding of syntactic structure.

However, recent studies (Zhou et al., 2020a; Strubell et al., 2018; Swayamdipta et al., 2018; He
et al., 2017; Marcheggiani and Titov, 2017) have proposed that deep neural network models
could benefit from using syntactic information, rather than disregarding it. These studies sug-
gest that incorporating syntax into the model can improve SRL prediction by jointly learning
both syntactic and semantic structures (Zhou et al., 2020a), training a self-attention head in
Transformer (Vaswani et al., 2017) to attend to each token’s syntactic parent (Strubell et al.,
2018), or encoding the syntactic structure using graph convolutional networks (Fei et al., 2021;
Marcheggiani and Titov, 2017).
In this chapter, we propose a novel method for encoding syntactic knowledge by introducing
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Syntax-aware Graph-to-Graph Transformer (SynG2G-Tr) architecture. The model conditions on
the sentence’s dependency structure and jointly predicts both span-based and dependency-based
SRL structures. Following Chapter 2 and Chapter 3, the model inputs graph relations as em-
beddings incorporated into the self-attention mechanism of Transformer (Vaswani et al., 2017).
Different from G2GTr and RNGTr, the self-attention function models the interaction of the graph
relations with both the query and key vectors of self-attention mechanism, instead of just the
query. We also find that excluding the interaction of graph structure with the value vectors of
self-attention does not harm the performance. Furthermore, the architecture uses different types
of graphs as the input and output.
We show empirically that our model outperforms previous comparable models. In the in-domain
setting, SynG2G-Tr model achieves 88.93 (87.57) F1 score on the CoNLL 2005 dataset, given
the predicate (end-to-end), and 91.23 (88.05) F1 on the CoNLL 2009 dataset, given the predi-
cate (end-to-end). In the out-of-domain setting, our model reaches 83.21 (80.53) F1 score on the
CoNLL 2005 dataset, given predicate (end-to-end), and 86.43 (81.93) F1 scores on the CoNLL
2009 dataset, given predicate (end-to-end). Our contributions of this chapter are:

• We propose SynG2G-Tr model for encoding the dependency parsing graph in the SRL.

• We evaluate our model on CoNLL 2005 and CoNLL 2009 datasets and outperforms
previous comparable models in both in-domain and out-of-domain sets.

4.2 Syntax-aware Graph-to-Graph Transformer

The architecture of the SynG2G-Tr model is illustrated in Figure 4.1. The input to the model is
the tokenised text (W = (w1, w2, ..., wN )), which are the nodes of the input and output graphs, and
N is the length of tokenised input. The outputs are the dependency-based (Gdep ) and span-based
(Gspan) SRL graphs. The SynG2G-Tr model can be formalised in terms of an encoder E sg 2g and
decoder D sg 2g : Z = Esg2g(W,P,Gs yn)

Gspan ,Gdep = Dsg2g(Z )
(4.1)

Initially, a syntactic parser predicts the dependency graph (Gs yn), and Part-of-Speech (PoS) tags
(P = (p1, p2, ..., pN )). Then the encoder of SynG2G-Tr (E sg 2g ) encodes both sequences (W,P)
and the dependency graph (Gs yn) into contextualised representations of graph nodes (Z ). This
representation (Z ) is then used by the decoder (D sg 2g ) to jointly predict SRL graphs. For the
decoder, we follow the same unified scorer and decoder as defined in Zhou et al. (2020a). Further
explanation of SRL scorer and decoding mechanism is provided in Appendix 4.6.

The encoder employs an enhanced way of inputting graph relations into the self-attention mecha-
nism of Transformer (Vaswani et al., 2017). Unlike the proposed Graph-to-Graph Transformer (de-
fined in Chapter 2), we modify the self-attention mechanism to have a more comprehensive
interaction between graph relations, queries and keys. We also find that excluding the interaction
of graph relations with value vectors retains good performance.
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4.2 Syntax-aware Graph-to-Graph Transformer
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Figure 4.1: The architecture of SynG2G-Tr.

Specifically, given the output of an intermediate embedding layer X = (x1, ..., xN ), we define the
attention mechanism of each head in each layer to take the dependency graph as input. These
attention scores (αi j ) are calculated as a Softmax function over ei j values:

(4.2)

ei j = 1p
d

[
xi W Q (x j W K )T +xi W Q (ri j W R )T

+ri j W R (x j W K )T
]

where W Q ,W K ∈Rdx×d are learned query and key matrices. ri j ∈ R is a one-hot vector specifying
both the label and direction of the dependency relation between token i and token j . 1R is the
matrix of graph relations, derived from the syntactic graph (Gs yn). W R ∈ R(2|Ls yn |+1)×d is a
matrix of learned relation embeddings. d is the attention head size, and dx is the hidden size. A
sample computation of R matrix from Gs yn is provided in Appendix 4.7. The second and third
terms in Equation 4.2 incorporate the graph information into the self-attention mechanism of
Transformer with a soft bias, while the model can still learn other structures, using this encoded
graph information. For better efficiency, we share the relation embeddings across multiple
attention heads in each layer.
The output of the attention function is the value embedding (vi ), which is calculated as:

vi =
∑

j
αi j (x j W V ) (4.3)

which, in our model, does not use the graph, and W V ∈Rdx×d is the learned value matrix.

Syntactic Parser. The dependency parser jointly predicts a sequence of PoS tags and the de-
pendency graph. Specifically, we apply the BERT-based syntactic parser defined in Zhou et al.

1i dl abel if i → j , i dl abel +|Ls yn | if j ← i , or NONE; where |Ls yn | is the label set size.
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(2020a), which uses a joint scorer and decoder for dependency and constituency graphs based
on Head-driven Phrase Structure Grammar (HPSG) (Zhou and Zhao, 2019). This method has
achieved state-of-the-art results in the dependency parsing task. More details can be found in
Zhou et al. (2020a).

4.3 Related Work

Several approaches have been proposed to improve the performance of SRL models using syntac-
tic information. Roth and Lapata (2016) embed dependency paths, while some researchers (Fei
et al., 2021; Munir et al., 2021; Marcheggiani and Titov, 2017) use graph convolutional networks
to encode the syntactic structure. Strubell et al. (2018) incorporates a dependency graph by
training one attention head of Transformer to attend to syntactic parents for each token, in a
multi-task setting. He et al. (2019, 2018b) use syntactic information to guide the argument
pruning. Xia et al. (2019) exploit different alternatives e.g. tree-structured GRU and graph
features of dependency tree to encode syntactic knowledge. Kasai et al. (2019) apply BiLSTM to
tag the text with supertags extracted from dependency parses and feed them into SRL models. Xia
et al. (2020) showed that incorporating heterogeneous syntactic knowledge results in significant
improvement. Some other work focus on joint learning of both SRL and syntax (Zhou et al.,
2020a,b; Cai and Lapata, 2019a,b). Additionally, some approaches discarded the syntax, but
achieve impressive results (Shi and Lin, 2019; Peters et al., 2018; He et al., 2018a; Marcheggiani
et al., 2017; He et al., 2017; Tan et al., 2017; Zhou and Xu, 2015). Our work is different from
previous work since we encode the syntactic graph by directly inputting it as embeddings into the
attention mechanism of Transformer, which provides a soft bias. Moreover, both sequences (e.g.
tokens and PoS tags) and syntactic graph can be encoded in one general model.

4.4 Results and Discussion

Experimental Setup. Our models are evaluated on CoNLL 2005 (Carreras and Màrquez, 2005)
and CoNLL 2009 (Hajič et al., 2009).2 For predicate disambiguation, we follow previous
work (Marcheggiani and Titov, 2017), and use an off-the-shelf disambiguator from Roth and
Lapata (2016). As in previous work, we evaluate in both end-to-end, and given predicate
settings. For a more accurate comparison, we train SynG2G-Tr both with and without BERT
initialisation (SynG2G-Tr w/o BERT). The discrepancy between BERT tokenisation and the
tokenisation used in the SRL corpora is handled as in Chapter 2. 3 For the syntactic parser,
we use the same hyper-parameters as defined in Zhou et al. (2020a). The performance of the
syntactic parser is provided in Appendix 4.10.

2Implementation details of datasets and SynG2G-Tr model are provided in Appendices 4.8 and 4.9.
3For inputting the dependency graph, the relation between two sub-words of different words is defined as the same

dependency relation between their corresponding words in the sentence. This means that the relation (i , j , li n) is
repeated for each sub-word of word xi , and word x j . The same strategy is applied to predicted PoS tags.
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4.4 Results and Discussion

Model SA
WSJ (in-domain) Brown (out-of-domain)
P R F1 P R F1

end-to-end
He et al. (2017) ✗ 85.0 84.3 84.6 74.9 72.4 73.6
He et al. (2018a) ✗ 81.2 83.9 82.5 69.7 71.9 70.8
Strubell et al. (2018) ✓ 85.53 84.45 84.99 75.8 73.54 74.66
Li et al. (2019) ✗ - - 83.0 - - -
Xia et al. (2019) ✓ 84.3 83.8 84.1 73.7 72.0 72.9
Xia et al. (2020) ✓ 83.05 84.49 84.49 73.47 74.92 74.19
SynG2G-Tr (w/o BERT) ✓ 84.48 86.46 85.45 73.92 76.65 75.26
+pre-training
He et al. (2018a) ✗ 84.8 87.2 86.0 73.9 78.4 76.1
Strubell et al. (2018)† ✓ 87.13 86.67 86.9 79.02 77.49 78.25
Li et al. (2019) ✗ 85.2 87.5 86.3 74.7 78.1 76.4
SynG2G-Tr ✓ 86.86 88.3 87.57 80.01 81.07 80.53

given predicate
Tan et al. (2017) ✗ 84.5 85.2 84.8 73.5 74.6 74.1
He et al. (2018a) ✗ - - 83.9 - - 73.7
Strubell et al. (2018)† ✓ 86.02 86.05 86.04 76.65 76.44 76.54
Ouchi et al. (2018) ✗ 84.7 82.3 83.5 76.0 70.4 73.1
Xia et al. (2020) ✓ 85.12 85.0 85.06 76.3 75.42 75.86
SynG2G-Tr (w/o BERT) ✓ 86.46 86.56 86.50 77.73 77.18 77.45
+pre-training
He et al. (2018a) ✗ - - 87.4 - - 80.4
Ouchi et al. (2018) ✗ 88.2 87.0 87.6 79.9 77.5 78.7
Li et al. (2019) ✗ 87.9 87.5 87.7 80.6 80.4 80.5
Jindal et al. (2020) ✗ 87.70 88.15 87.93 81.52 81.36 81.44
Zhang et al. (2021b) ✗ 88.70 88.00 87.90 80.30 80.10 80.20
Jia et al. (2022) ✗ - - 88.25 - - 81.90
SynG2G-Tr ✓ 89.11 88.74 88.93 83.93 82.50 83.21

Table 4.1: Comparing our SynG2G-Tr with previous comparable models on CoNLL 2005 test
sets. ‘SA’ means a syntax-aware model. Scores being boldfaced means that they are significantly
better than the second best model, specified by the underline marker.

CoNLL 2005 Results.4 The results for span-based SRL are shown in Table 4.1.5 Without BERT
initialisation, our SynG2G-Tr model outperforms Strubell et al. (2018) (the second best model)
in both end-to-end and given-predicate settings. This highlights the benefit of injecting the
graph information into the self-attention mechanism using a soft bias, instead of hard-coding one
attention head to attend to the syntactic parent of each token, as used in Strubell et al. (2018).
The main reason for this improvement is that the model can still learn other attention patterns
in combination with the graph information, which will be described later in this section. When
adding BERT initialisation, our SynG2G-Tr model outperforms best previous work by 5.4%/8.8%
F1 relative error reduction (RER) on average in both in-domain and out-of-domain evaluation sets,
which demonstrates the compatibility of the modified self-attention mechanism of SynG2G-Tr

4Results are calculated with official evaluation scripts of CoNLL 2005 (https://www.cs.upc.edu/
~srlconll).

5For a fair comparison, we excluded Li et al. (2021b); Zhou et al. (2020a), as they use information from the
constituency graph additional to the dependency tree. Also, to better understand the effect of syntactic information, we
exclude Fernández-González (2023); Zhou et al. (2022); Conia and Navigli (2020), as they exploited different scorer
and training mechanism for SRL graphs. However, the best setting of SynG2G-Tr model still shows competitive or
better results when compared to aforementioned excluded works.
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Model SA
WSJ (in-domain) Brown (out-of-domain)
P R F1 P R F1

end-to-end
He et al. (2018b) ✓ 83.9 82.7 83.3 - - -
Cai et al. (2018) ✗ 84.7 85.2 85.0 - - 72.5
Li et al. (2019) ✗ - - 85.1 - - -
SynG2G-Tr (w/o BERT) ✓ 84.10 87.07 85.59 73.66 72.56 73.11
+pre-training
Li et al. (2019) ✗ 84.5 86.1 85.3 74.6 73.8 74.2
SynG2G-Tr ✓ 86.38 89.78 88.05 80.35 83.57 81.93

given predicate
Marcheggiani et al. (2017) ✗ 88.7 86.8 87.7 79.4 76.2 77.7
M&T. 2017 ✓ 89.1 86.8 88.0 78.5 75.9 77.2
He et al. (2018b) ✓ 89.7 89.3 89.5 81.9 76.9 79.3
Cai et al. (2018) ✗ 89.9 89.2 89.6 79.8 78.3 79.0
Cai and Lapata (2019b) ✓ 90.5 88.6 89.6 80.5 78.2 79.4
Kasai et al. (2019) ✓ 89.0 88.2 88.6 78.0 77.2 77.6
SynG2G-Tr (w/o BERT) ✓ 89.78 90.28 90.03 81.32 82.15 81.73
+pre-training
Li et al. (2019) ✗ 89.6 91.2 90.4 81.7 81.4 81.5
Kasai et al. (2019) ✓ 90.3 90.0 90.2 81.0 80.5 80.8
Lyu et al. (2019) ✗ - - 90.99 - - 82.18
Chen et al. (2019) ✗ 90.74 91.38 91.06 82.66 82.78 82.72
He et al. (2019) ✓ 90.41 91.32 90.86 86.15 86.70 86.42
Cai and Lapata (2019a) ✓ 91.1 90.4 90.7 82.1 81.3 81.6
Munir et al. (2021) ✓ 91.2 90.6 90.9 83.1 82.6 82.8
SynG2G-Tr ✓ 91.31 91.16 91.23 86.40 86.47 86.43
gold syntax
Fei et al. (2021) ✓ 92.5 92.5 92.5 85.6 85.3 85.4
SynG2G-Tr+Gold ✓ 92.71 93.37 93.03 88.27 88.31 88.29

Table 4.2: Comparing our SynG2G-Tr with previous comparable models on CoNLL 2009 test
sets. ‘SA’ means a syntax-aware model. Scores being boldfaced means that they are significantly
better than the second best model, specified by the underline marker.

with BERT (Devlin et al., 2019) initialisation.

CoNLL 2009 Results.6

Table 4.2 illustrates the results of dependency-based SRL on the test set of CoNLL 2009 dataset.
Without BERT initialisation, SynG2G-Tr significantly outperforms previous work in in-domain
and out-of-domain settings. With BERT initialisation, our model significantly outperforms
previous work in all settings (except in-domain, given-predicate) with 10.3%/25.7% F1 RER
in both in-domain and out-of-domain evaluation sets. For a better comparison with Fei et al.
(2021) (last setting of Table 4.2), we also employ the gold dependency tree for training and
use the predicted dependency graph at the inference time. Our model significantly outperforms
Fei et al. (2021), especially on out-of-domain dataset. This shows the benefit of encoding the
dependency graph by modifying the self-attention mechanism of Transformer (Vaswani et al.,
2017) compared to using graph convolutional network, as in Fei et al. (2021).

6Scores are calculated with CoNLL 2009 shared task script (https://ufal.mff.cuni.cz/
conll2009-st/).
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4.5 Conclusion

Further Analysis. We also analyse the self-attention matrix of SynG2G-Tr model for different
heads and layers. Figure 4.3 in Appendix 4.11 demonstrates that the self-attention mechanism
of SynG2G-Tr ignores the dependency graph information in the first few layers, and only uses
the context-dependent information. However, as it progresses to upper layers, it begins to utilise
the graph relation information, as shown in the attention matrix. This highlights the benefit of
encoding the dependency graph with a soft bias as the model can still learn different structures in
different layers, given this encoded graph information. Furthermore, in Appendix 4.12, we show
that removing the interaction of graph embeddings with key vectors results in a performance
drop. Additionally, ignoring the interaction of graph relations with both key and query vectors 7

results in a significant drop as well. However, integrating the graph information into Equation 4.3
as stated in Chapter 2 does not improve the performance, and we remove it for better efficiency.

4.5 Conclusion

In this chapter, we propose the Syntax-aware Graph-to-Graph Transformer architecture, which
effectively incorporates syntactic information by inputting the syntactic dependency graph into
the self-attention mechanism of Transformer. The mechanism for inputting graph relation
embeddings differs from the original Graph-to-Graph Transformer (defined in Chapter 2 and
Chapter 3) in that it models the complete interaction between the dependency relation, query
vector and key vector. It also excludes the graph interaction with value vectors while maintaining
good performance. We have evaluated our model on CoNLL 2005 and CoNLL 2009 SRL datasets
and outperformed previous comparable models. Future studies can apply our model to any NLP
task which might benefit from conditioning on the syntactic structure or other graphs.

7This leads to a BERT-based syntax-agnostic model, similar to Shi and Lin (2019).
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Appendix

4.6 SRL Scorer and Decoder Details

Scorer. Inspired by Zhou et al. (2020a), we first define span representation (si j ) as the difference
between right and left end-points of the span:

si j = s⃗r j − ⃗sli (4.4)

where s⃗r j is defined as [ ⃗z j+1; z⃗ j ], and ⃗sli is calculated as [ ⃗zi ; ⃗zi+1]. ⃗zi is computed by dividing
the output representation of Transformer (zi ) in half.
Argument (ai j ) and predicate (vk) representations are defined as:

ai j = ReLU(W 1
sr l si j +b1

sr l )

vk = zk

(4.5)

where W 1
sr l and b1

sr l are learned parameters and ReLU(.) is the Rectified Linear Unit (Nair and
Hinton, 2010) function.
We predict semantic roles as defined in Zhou et al. (2020a):

Φl (v, a) =W 3
sr l (LN(W 2

sr l [ai j ; vk ]+b2
sr l ))+b3

sr l (4.6)

where LN(.) is the layer normalisation (Ba et al., 2016) function, and W 2
sr l , W 3

sr l , b2
sr l , and b3

sr l
are learned parameters. The semantic role score for a specific label lout is defined as:

Φl (v, a, lout ) = [Φl (v, a)]lout
(4.7)

Since the number of predicate-argument pairs is O(n3), we apply the pruning method proposed
in Li et al. (2019); He et al. (2018a) by defining separate scorers for argument and predicate
candidates (Φa and Φv ), and pruning all but the top-ranked arguments and predicates based on
their corresponding scores.

Training. The model is trained to optimise the probability P (ŷ |W,P,Gs yn) of predicate-argument
pairs, conditioned on input sequence (W ), PoS tags (P ), and predicated dependency graph (Gs yn).
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This objective can be factorised as:

J (θ) = ∑
y∈Γ

−log Pθ(y |W,P,Gs yn)

= ∑
〈v,a,lout 〉∈Γ

−log
exp(Φ(v, a, lout ))∑
l̂∈Lsr l

exp(Φ(v, a, l̂ ))

(4.8)

where Φ(v, a, lout ) is defined as Φv (v)+Φa(a)+Φl (v, a, lout ), and θ is model parameters. Γ is
the set of predicate-argument-relation tuples for all possible predicate-argument pairs and either
the correct relation or NONE.

Decoders. Following Zhou et al. (2020a), we apply a single dynamic programming decoder
according to the uniform score following the non-overlapping constraints (Punyakanok et al.,
2008).

4.7 Sample Computation of Matrix of Graph Relations

Figure 4.2 illustrates an example of creating the matrix of graph relations (R), which is then fed
to SynG2G-Tr model.
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Figure 4.2: A sample computation of R matrix for the sentence "Mr John plays soccer.".

4.8 Implementation Details and Pre-processing Steps

CoNLL 2005. In this shared task (Carreras and Màrquez, 2005) (under LDC license), the focus
was on verbal predicates in English. The training data includes sections 2-21 of the Wall Street
Journal (WSJ) dataset. Section 24 is considered as the development set, while section 23 is used
as the in-domain test set. Three sections of the Brown corpus are used for the out-of-domain
dataset. The dataset can be downloaded from here, and pre-processing steps are provided in here.

CoNLL 2009. This shared task Hajič et al. (2009) (under LDC license) focused on dependency-
based SRL and was created by merging PropBank and NomBank treebanks. We evaluate our
models on the English dataset with the same split as the CoNLL 2005 dataset. The dataset
and pre-processing steps can be found at here and here. The number of sentences in train and
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4.9 Hyper-parameters Setting

evaluation sets is as follows:

Train Dev Test-WSJ Test-Brown
39’832 1’334 2’399 425

Table 4.3: The number of sentences for each split of CoNLL 2005 and CoNLL 2009 datasets.

4.9 Hyper-parameters Setting

We use bert-large-whole-word-masking8 (345M parameters) for the initialisation of encoder
in SynG2G-Tr model. We apply separate optimisers for pre-trained parameters and randomly
initialised ones. We use bucket batching, grouping sentences by their lengths to the same batch to
speed up the model. Early stopping is used to mitigate over-fitting. In a pre-defined predicate
setting, we use different dynamic programming decoders to find SRL graphs, since predicates
are not necessarily the same in dependency-based and span-based SRL graphs. For choosing the
best hyper-parameters, we use manual tuning to find the base learning rate and BERT learning
rate. For other hyper-parameters, we follow previous work (Zhou et al., 2020a). The base
learning rate is selected from {1e −2,1e −3,1.5e −3}, and the BERT learning rate is chosen from
{1e −5,1.5e −5,2e −5}. So, we train our models with 9 different learning rates to find the best
performing model based on the summation of F1 scores of span-based and dependency-based
SRL graphs. We use NVIDIA GeForce GTX 1080 Ti for training and evaluating our models. 9

For the dependency parser, we apply the same hyper-parameters as Zhou et al. (2020a). We
use the base learning rate of 2e −3, and the BERT learning rate of 1.5e −5. Here is the list of
hyper-parameters for the SynG2G-Tr model:

Component Specification
Optimiser BertAdam

Base Learning rate 1.5e-3
BERT Learning rate 1e-5
Adam Betas(b1,b2) (0.9,0.999)

Adam Epsilon 1e-5
Weight Decay 0.01

Max-Grad-Norm 1
Warm-up 0.001

Self-Attention
No. Layers 24
No. Heads 16

Embedding size 1024
Max Position Embedding 512

Component Specification
Feed-Forward layers (SRL)

Span Hidden size 512
Label Hidden size 250

Feed-Forward layers (PoS)
Hidden size 250

Pruning (SRL)
λver b 0.6
λspan 0.6

Max No. Span 300
Max No. Verb 30

Epoch 100

Table 4.4: Hyper-parameters for training SynG2G-Tr.

8https://github.com/google-research/bert. Apache License 2.0.
9The training time of SynG2G-Tr model is 0h20m40s, and the evaluation time is 0h02m24s.
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4.10 Performance of Syntactic Parser

Section UAS LAS PoS

Development 96.72 94.83 96.81
Test 96.85 95.24 97.41

Table 4.5: Labelled and unlabelled attachment scores (LAS/UAS) and PoS accuracy. Sections
22&23 of WSJ Penn Treebanks are used as evaluation and test sets.

4.11 Attention Visualisation

Figure 4.3 shows the attention weights for different layers of self-attention in the SynG2G-
Tr model (Figure 4.3b-4.3d), alongside the dependency relation matrix (Figure 4.3a). The
self-attention matrix includes four patterns. The first layer of the SynG2G-Tr model (Fig-
ure 4.3b) ignores the graph relations and learns string-local context information. For the middle
layer (Figure 4.3c), attention weights partially use the graph relation pattern. Then, in the last
layer (Figure 4.3d), the dependency graph relations are evident in the attention pattern. This
demonstrates the benefit of adding the graph information with a soft bias, allowing the model
to learn different structures using both local context and graph information. Furthermore, it
can be inferred that the last layers of the self-attention mechanism require a global view and
between-edge information, while the first few layers learn local context information. More
examples are provided in Figures 4.4-4.5-4.6.
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Figure 4.3: The attention weights for the CoNLL 2009 example "[CLS] The most troublesome
report may be the August merchandise trade deficit due out tomorrow . [SEP]". The first figure
shows the dependency graph matrix.
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Figure 4.4: The attention weights for a specific example "[CLS] The consensus view expects a
0.4 % increase in the September CPI after a flat reading in August . [SEP]" on CoNLL 2009
dataset. The first figure shows the dependency graph matrix.

4.12 Ablation Study

In Table 4.6, we analyse the interaction of the dependency graph with key and query vectors in
the attention mechanism, as defined in Equation 4.2. Excluding the key interaction results in
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1

(a) Graph Relation Matrix (b) First Layer

1
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1
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Figure 4.5: The attention weights for a specific example "[CLS] Candid Comment [SEP]" on
CoNLL 2009 dataset. The first figure shows the dependency graph matrix.

1

2

(a) Graph Relation Matrix (b) First Layer

1

2

(c) Middle Layer

1

2

(d) Last Layer

Figure 4.6: The attention weights for a specific example "[CLS] Let ’s make that 1929 , just to be
sure . [SEP]" on CoNLL 2009 dataset. The first figure shows the dependency graph matrix.

a similar attention mechanism as defined in Chapter 2. This SynG2G-Tr-key model achieves
similar results compared to the SynG2G-Tr model on the WSJ test dataset given the predicate, but
the SynG2G-Tr model outperforms it on all other settings, including both types of out-of-domain
datasets, confirming that key interaction is a critical part of the SynG2G-Tr model.
When both key and query interactions are excluded from the SynG2G-Tr model (SynG2G-Tr-
key-query), it has significantly lower performance than the SynG2G-Tr model in all settings.
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4.12 Ablation Study

This demonstrates the impact of encoding the graph relation embeddings in the self-attention
mechanism of Transformer (Vaswani et al., 2017) model.
We also evaluate adding the interaction of graph relations with value vectors to the SynG2G-Tr
model, as defined in Chapter 2. The SynG2G-Tr+value model achieves similar or worse results
compared to the SynG2G-Tr model. So, we exclude this interaction to speed up the modified
attention mechanism.

Model
CoNLL 2005 CoNLL 2009

Dev WSJ Brown Dev WSJ Brown

end-to-end
SynG2G-Tr -key -query 86.65 87.08 79.40 86.40 87.26 81.12
SynG2G-Tr -key 86.82 87.27 80.33 86.85 87.50 81.51
SynG2G-Tr 87.08 87.57 80.53 87.13 88.05 81.93
SynG2G-Tr +value 87.17 87.45 80.40 86.92 87.95 82.03
given predicate
SynG2G-Tr -key -query 87.93 88.52 82.56 90.16 90.68 85.72
SynG2G-Tr -key 88.03 88.91 82.90 90.31 91.22 86.28
SynG2G-Tr 88.17 88.93 83.21 90.66 91.23 86.43
SynG2G-Tr +value 88.15 88.78 83.10 90.48 91.15 86.41

Table 4.6: Model comparison of SynG2G-Tr and other variants, by F1 score on CoNLL 2005
and CoNLL 2009 datasets. The SynG2G-Tr-key-query model is the same as the syntax-agnostic
BERT model.
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5 What Do Compressed Multilingual
Machine Translation Models Forget?

Recently, very large pre-trained models achieve state-of-the-art results in various natural language
processing (NLP) tasks, but their size makes it more challenging to apply them in resource-
constrained environments. Compression techniques allow to drastically reduce the size of the
models and therefore their inference time with negligible impact on top-tier metrics. However,
the general performance averaged across multiple tasks and/or languages may hide a drastic
performance drop on under-represented features, which could result in the amplification of
biases encoded by the models. In this chapter, we assess the impact of compression methods on
Multilingual Neural Machine Translation models (MNMT) for various language groups, gender,
and semantic biases by extensive analysis of compressed models on different machine translation
benchmarks, i.e. FLORES-101, MT-Gender, and DiBiMT. We show that the performance of
under-represented languages drops significantly, while the average BLEU metric only slightly de-
creases. Interestingly, the removal of noisy memorisation with compression leads to a significant
improvement for some medium-resource languages. Finally, we demonstrate that compression
amplifies intrinsic gender and semantic biases, even in high-resource languages.1

5.1 Introduction

Over the recent years, pre-trained Transformer (Vaswani et al., 2017) models have reached
a substantial improvement in a variety of Natural Language Processing (NLP) tasks. This
improvement mostly comes from increasing their parameter size (Zhang et al., 2022; Brown
et al., 2020; Fan et al., 2020a; Devlin et al., 2019) which escalates the cost of training (Patterson
et al., 2021; Strubell et al., 2019; Yang et al., 2019), and hurts the memory footprint and latency
at inference (Wang et al., 2022; Fan et al., 2020a; Dai et al., 2019). Specially in Neural
Machine Translation (NMT) task, massively MNMT models (Zhang et al., 2020a; Aharoni et al.,
2019; Fan et al., 2020a; Tang et al., 2020) demonstrated promising results. They have been
shown particularly interesting for low-resource languages which benefit a lot from knowledge

1We release our implementation at https://github.com/alirezamshi/
bias-compressedMT.
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transfer. On the other hand, it has also been observed that the curse of multilinguality may hurt the
performance in high-resource languages. The strategy employed to overcome this problem (Goyal
et al., 2021a; Aharoni et al., 2019; Fan et al., 2020a) is to scale up the number of parameters, thus
attaining state-of-the-art performance in both high and low-resource languages.

Consequently, efficient inference with these very large models has become a crucial problem.
This challenge can be overcome through model compression, e.g. knowledge distillation (Li
et al., 2021a; Wang et al., 2021; Sanh et al., 2019; Kim and Rush, 2016), pruning (Zhang et al.,
2021a; Behnke and Heafield, 2020; Michael H. Zhu, 2018; Frankle and Carbin, 2019), and
quantisation (Yao et al., 2022; Yang et al., 2022; Tao et al., 2022; Bondarenko et al., 2021; Kim
et al., 2021a; Wu et al., 2020; Xu et al., 2018). These methods can be applied with a little loss in
top-line metrics, while reducing the memory-footprint, and enhancing inference time. However,
recent work (Ahia et al., 2021; Xu et al., 2021; Li et al., 2021a; Renduchintala et al., 2021;
Hooker et al., 2020) has demonstrated that under-represented features can suffer from a drastic
decrease in performance which is not necessarily reflected by global (aggregated) metrics. In
multilingual NMT, the overall metrics are often reported as an average across all the language
pairs, where the performance between individual language pairs can vary a lot. Therefore it is
even more critical to understand what would be the exact impact of compression on multilingual
NMT models, beyond the aggregated metrics.

In this chapter, we illustrate the impacts of applying compression methods to massively multilin-
gual NMT models, that are pre-trained in a great number of languages in several domains. To the
best of our knowledge, this is the first attempt to analyze how compression impacts massively
multilingual models. We hope it could be a starting point to bringing a comprehensive understand-
ing between fairness and compression in multilingual NMT models. In this study, we concentrate
on light compression techniques, specifically post-training quantisation and magnitude pruning
without any further fine-tuning.2 We exploit the recent and largest MNMT model, M2M-100 (Fan
et al., 2020a) that covers 100 languages and contains nearly 12B parameters and analyse the
impact of compression on different language pairs evaluated on FLORES-101 benchmark (Goyal
et al., 2021b) (covering 101 languages). We also consider MT-Gender (Stanovsky et al., 2019)
and DiBiMT (Campolungo et al., 2022) benchmarks allowing us to assess different types of
biases that could be present in the data and MNMT model. To sum up, our contributions of this
chapter are as follows:

• We conduct extensive analysis on the effects of light compression methods for massively
multilingual NMT models.

• On FLORES-101 (Goyal et al., 2021b), we discover that while the overall performance is
barely impacted by the compression, a subset of language pairs corresponding to under-
represented languages during training suffers an extreme drop in performance.

• Also, we observe an important improvement for some language pairs after the compression.

2The reason is that fine-tuning MNMT models is extremely computationally demanding.
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5.2 Model and Compression Techniques

We hypothesize that this is due to the removal of noisy memorisation.

• We show that the compression amplifies gender and semantic biases, hidden in MNMT
models across several high-resource languages by evaluating on MT-Gender, and DiBiMT
benchmarks.

In section 5.2, we describe light compression methods we rely on, and MNMT model. Section 5.3
presents our experimental setup and evaluation benchmarks. Section 5.4 shows the analysis of
the impact of the compression for NMT benchmarks.

5.2 Model and Compression Techniques

5.2.1 M2M-100 Model

We assume that potential biases, discovered after the compression are mostly related to the
training data, than the model architecture, as previous work (Hooker et al., 2020) demonstrated
for the image classification task.
So, we use M2M-100 (Fan et al., 2020a), as it is the best performing and the largest massively
multilingual MT model, which covers more than 10K language directions, including a great
number of low and medium-resource language pairs. Other previous work (Tang et al., 2020;
Aharoni et al., 2019) cover fewer languages, especially from low and medium-resource languages,
and have worse results compared to M2M-100.
M2M-100 is trained on large-scale multilingual corpora (Schwenk et al., 2021; El-Kishky et al.,
2020) with a novel data mining procedure, that uses language similarities. The biggest model
introduced consists of 24 encoder, and 24 decoder Transformer (Vaswani et al., 2017) layers.
Using several scaling techniques, it is trained with nearly 12B parameters. We refer to Fan et al.
(2020a) for more details. In all our experiments, we exploit the largest M2M-100 model.

5.2.2 Light Compression Techniques

Compression techniques without any further fine-tuning are defined as light compression methods.
We do not fine-tune the compressed models due to the massive computation cost, as we have to
fine-tune the model for all language pairs to provide a fair comparison. 3 We discuss our methods
in the following paragraphs.

Magnitude Pruning. is a popular technique for both memory footprint reduction and inference
speed-up. It reduces the model size by removing redundant nodes that do not contribute to the
resulting performance. It usually achieves comparable results with state-of-the-art models with
further fine-tuning (Menghani, 2021; Ahia et al., 2021; Michael H. Zhu, 2018; Gale et al., 2019).

3Additionally, the exact and original training data is required to alleviate the additional bias added by fine-tuning,
but M2M-100 authors do not provide the exact data e.g. back-translation.
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The doctor asked the nurse to help her in the procedure.

Reference

main entity pronoun

(a) MT-Gender example: for a correct translation, system will have to link English pronoun ’her’ to
’doctor’.

He poured  a shot  of whiskey

small drink of
liqour

trago

chupito

Injektion

Schlag
GermanSpanish

(b) DiBiMT Example. German instance contains wrong word senses, while Spanish one is correct.

Figure 5.1: Samples of MT-Gender (Stanovsky et al., 2019) and DiBiMT (Campolungo et al.,
2022) benchmarks.

In this work, we apply post-training magnitude pruning for each layer of Transformer (including
Embedding layers). Given Θl as the parameters of Transformer layer l and p as the sparsity ratio,
the output of the pruning function is Θ′

l where p percentage of weights sets to zero.4

Post-Training Quantisation. Recent work applies post-training, and training-aware quantisation
to pre-trained machine translation and language models (Wei et al., 2022b; Menghani, 2021;
Liang et al., 2021; Bondarenko et al., 2021; Wu et al., 2020), and achieves promising results while
lowering the inference latency, and the model size. In this work, we exploit the post-training
quantisation method proposed by Wu et al. (2020), converting all weights and activations from
32-bit floating-point values to an 8-bit fixed-point integer. Specifically, it quantises linear layers
input and weights, matrix multiplications, and the residual summations for Transformer (Vaswani
et al., 2017).

5.3 Experimental Setup

5.3.1 Evaluation Benchmarks

We analyse our compressed models on three different NMT benchmarks. We exploit FLORES-
101 (Goyal et al., 2021b) to study the model behaviour based on the amount of available resources
for each language. MT-Gender (Stanovsky et al., 2019) is used to study the impact of compression
on gender bias. Finally, we evaluate on DiBiMT (Campolungo et al., 2022) to illustrate the
compression effect on semantic biases.

4Preliminary experiments showed that pruning based on Transformer layer results in a better performance than
other alternatives e.g. separate pruning of self-attention and feed-forward layers. The comparison is provided in
Appendix 5.7.
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5.3 Experimental Setup

FLORES-101. is a many-to-many NMT evaluation benchmark, including sentences extracted
from English Wikipedia. It is translated into 101 languages by human translators, enabling
10,100 language directions to be evaluated. We evaluate our models on devtest subset of the
FLORES-101 (Goyal et al., 2021b) benchmark. This benchmark provides test sets comparable
across all the language pairs, and thus allows us to assess to what extent each language pair gets
impacted by the compression techniques.

MT-Gender. (Stanovsky et al., 2019) is an English-centric multilingual NMT benchmark for
evaluating gender bias in multiple target languages: Arabic, Ukrainian, Hebrew, Russian, Italian,
French, Spanish, and German. The method relies on automatic alignment and morphologi-
cal analysis, without the need for gold translations.5 An example is shown in Figure 5.1a.
Later, Kocmi et al. (2020) extends the benchmark by adding Czech and Polish languages. We
choose MT-Gender as it covers more languages compared to other existing MT gender bias
benchmarks (Savoldi et al., 2022; Renduchintala et al., 2021; Bentivogli et al., 2020).

DiBiMT. is the first fully manually-crafted NMT benchmark for evaluating word sense disam-
biguation on five high-resource languages: Chinese, German, Italian, Russian, and Spanish (Cam-
polungo et al., 2022), where the source language is English. Besides, they propose several
bias evaluation metrics to compare different models (defined in Section 5.4.3). As shown in
Figure 5.1b, given English source sentence, specific word (wi ) with associated synset (σ), and
language L, set of GOOD, and BAD translation candidates include sentences that do and do not
contain set of correct translation of σ in language L, respectively. More details can be found in
Campolungo et al. (2022).

5.3.2 Implementation Details

We use pre-trained M2M-100 12B model.6 For quantisation, we use Mean Squared Error (MSE)
calibration. For weights, we use default per-channel calibration. In FLORES-101, we use Senten-
cePiece BLEU (spBLEU) score7 for the evaluation, as it is shown to be fair for the multilingual
comparison (Goyal et al., 2021b). Additionally, we use character n-gram F-score (ChrF) (Popović,
2015) 8 metric to compare compressed models with M2M-100 model. We evaluate our com-
pressed models on language pairs in which M2M-100 12B model (Fan et al., 2020a) has reason-
able9 performance. This leaves us with 3,763 language directions. All experiments are computed
on 2 NVIDIA A100-40GB GPUs.

5For each instance, the main entity is attached to a pronoun, and the side entity attempts to distort the translation.
With the use of automatic alignment and morphological analysis, the translated gender is extracted.

6https://github.com/pytorch/fairseq/tree/main/examples/m2m_100
7It uses SentencePiece tokeniser with 256K tokens and then BLEU is computed: https://github.com/

facebookresearch/flores
8sacrebleu 1.5.1 (Post, 2018) with ChrF3.
9Specifically, we choose language pairs, in which M2M-100 12B model has a spBLEU score higher than 12. More

details are provided in Appendix 5.8.
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Resource Type Criterion No. Languages
Very-Low |L| ≤ 100k 16
Low 100k < |L| ≤ 1M 40
Medium 1M < |L| ≤ 100M 38
High 100M < |L| 7

Table 5.1: Distribution of lang. in FLORES-101 based on amount of available data to/from
English (|L|).

Figure 5.2: Average spBLEU score for different sparsity ratios on 9 FLORES-101 language
pairs, selected from all pairwise combinations of "low", "medium", and "high" language resource
categories.

5.4 Results and Discussion

5.4.1 Compression Impact Across Languages

Language Resource Type. The true amount of available training data for a language is difficult
to estimate, as it relies both on the quality and quantity of the data. Inspired by Goyal et al.
(2021b), we classify languages into four categories, based on the amount of available data to/from
English. The distribution of language resource types is illustrated in Table 5.1.

Magnitude pruning: Sparsity Ratio (p) Selection. Figure 5.2 shows the average spBLEU score
of different sparsity ratios for a subset of language pairs.10 Based on this preliminary analysis,
we decide to analyse the model behaviour for two sparsity ratios, 30% which is the maximum
sparsity ratio for which the compressed model mostly keeps the performance, and 45% for which
the performance starts to drop drastically. Therefore, we evaluate the pruned models on sparsity
ratios of 30%, and 45% for further experiments.

10We choose nine language pairs covering all pairwise combinations of "low", "medium", and "high" language
categories. A list of this subset is provided in Appendix 5.9.
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(a) Pruned 30% Model

0 50 100 150 200 250 300
Bitext Data for Language Pairs (1M)

100

75

50

25

0

25

50

75

R
el

at
iv

e 
sp

B
LE

U
 D

iff
er

en
ce

 (%
)

(b) Pruned 45% Model
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(c) Quantised Model

Figure 5.3: Relative spBLEU difference (%) between the compressed models and M2M-100
model based on the amount of available Bitext data with English (ρx,y ). Green points ("×") are
language pairs with significant improvement. Red points ("+") correspond to language pairs with
a drastic performance drop.

Model Memory size Avg spBLEU drop(%)
M2M-100 1× 22.44 -
Pruned 30% M2M-100 0.7× 20.95 6.6
Pruned 45% M2M-100 0.55× 15.12 32.6
Quantised M2M-100 0.25× 22.31 0.6

Table 5.2: Memory size and average spBLEU score of M2M-100, and compressed models on
FLORES-101.

Main Results

Table 5.211 illustrates memory footprint and spBLEU scores on FLORES-101 dataset averaged
over 3.7k language pairs retained for analysis. Pruned 30% model suffers from a slight drop
in performance, while quantisation mostly preserves the same average spBLEU score. Both
quantised and pruned 30% models reduce the memory footprint by 75% and 30%, respectively.
The performance of 45% pruned model drops significantly. In what follows, we check the
behavior of each language pair after compression along different criteria.

Amount of Bitext Data. Figure 5.3 shows the relative spBLEU performance of compressed
models for each language pair (x, y) compared to the M2M-100. The X-axis corresponds to the
amount of bitext data with English defined as ρx,y = mi n(ρx ,ρy ) where ρx is the amount of Bitext
data with English for language x. For pruned 30% model, while the average spBLEU score drops

11We did not report actual inference time as implementation of compression techniques is highly dependent on the
device.
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Figure 5.4: Relative spBLEU difference (%) between the compressed models and M2M-100
model grouped by the resource type of language pairs.

by 6.63% (shown in Table 5.2), there is a subset of language pairs that drops drastically (shown
as "+"). Interestingly, there is a subset of language pairs that get significantly improved after
compression (shown as "×"). For pruned 45% model, there is also a subset of languages with
more than 50% drop in performance, while the average spBLEU degradation is 32.62%. For the
quantised model which preserves almost the same average spBLEU, we see that there is also a
set of languages suffering from a significant drop, and others being significantly improved. The
behaviour of compressed models in these specific language pairs is further studied in Section 5.4.1
and 5.4.1, respectively.

Resource Type. We study the performance of the compressed models based on the resource
category of language pairs, which is defined as the category of ρx,y for a pair x → y . Figure 5.4
demonstrates the relative spBLEU drop for each category of the compressed models. For pruning
30%, the relative spBLEU drop is inversely proportional to the amount of training data for
different categories, which confirms that pruning disproportionately impacts the performance of
under-represented language pairs, while the average performance is near to the base M2M-100
model (as shown in Table 5.2). For quantisation, we see a much smaller decrease in all language
categories. Furthermore, we show that the resource type of the target language is more crucial
than the source language,12 meaning that the performance of language pairs with "low" and
"very-low" target languages drops drastically after the compression.

12Results are provided in Appendix 5.10.
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Model Off-T(%) base Off-T(%) comp Total No.
Pruned 30% 5.9 13.7(+7.8) 1,521
Pruned 45% 6.4 30.3(+23.9) 10,314
Quantised 5.2 17.5(+12.3) 268

Table 5.3: Percentage of off-target translations for M2M-100 (base), and compressed mod-
els (comp). Last column is the total number of losing sentences (both on- and off-targets) for
each compressed model.

Winning
Sentences

Losing
Sentences

Figure 5.5: Absolute number of sentences in each language pair category for different ∆ bins.

ChrF Difference. For more fine-grained analysis, we perform sentence-level ChrF (Popović,
2015)13 evaluation. We define ∆ = ChrFcomp −ChrFbase where ChrFcomp and ChrFbase corre-
spond to ChrF of compressed and baseline models, respectively. Sentences with ∆ close to zero
are less impacted by compression, while those further away from zero are the most impacted
(either positively or negatively) by compression. We define Losing Pairs as a set of instances
where ∆<−0.5, and Winning Pairs as a set of instances where ∆> 0.5. Thus, identified samples
could be seen as an adaptation of Compression-Identified Exemplars introduced by (Hooker et al.,
2019) for the case of translation. Figure 5.514 plots the distribution of sentences from different
language pair groups along with the different ∆ bins for these two subsets. 15

13ChrF demonstrates better correlation with human judgements at sentence-level.
14The normalised distribution by the number of instances in each language pair category is provided in Ap-

pendix 5.11.
15Figure 5.5 belongs to Pruned 30% model. Complete ChrF calculation (including −0.5 <∆< 0.5) of compressed

models for different bins are provided in Appendix 5.11.
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(b) Compressed Model

Reference To better represent traffic flow, relationships
have been established between the three main
characteristics: (1) flow, (2) density, and (3)
velocity.

M2M-100 To better represent the flow of traffic, relation-
ships have been established between three main
characteristics: (1) flow, (2) density, and (3)
speed.

Compressed It is believed to have been one of the earliest
inhabitants of this place, and it is believed to be
one of the oldest inhabitants of this place.

(c) Reference and output translations of M2M-100, and compressed
models.

Figure 5.6: Cross-attention matrices of an on-target losing sentence for the M2M-100 model, and
pruned 30% model. Output translations show the hallucination for the compressed model. Source
language is Asturian.

In the following, we comprehensively analyse the behaviour of the model for Losing Pairs, and
Winning Pairs.16

Analysis of Losing Pairs

As shown in Figure 5.5 (left side), losing pairs belong to very-low, low, and medium-resource
languages, that are mostly under-represented subsets during training.17 We manually inspected
some of the translations from the losing pairs sets and we have identified two main reasons for the
drop in performance which are off-target translations (translation in the wrong target language)
and hallucinations. In what follows we attempt to quantify these two phenomena.

16During the preliminary analysis we have identified languages for which M2M-100 training data contains two
different scripts (e.g. Cyrillic and Latin), while FLORES-101 dataset provides one script for the evaluation. To fairly
analyse the effect of compression, we exclude sentences that refer to these languages. A list of them is provided in
Appendix 5.12.

17Normalised distribution in Appendix 5.11 follows same trend.
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S
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(a) M2M-100 Model

So
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ce

Target

(b) Compressed Model

Reference Crossties were introduced fairly early
to hold the tracks in place. Gradually,
however, it was realised that tracks
would be more efficient if they had a
stip of iron on the top.

M2M-100 Cucumbers Zucchini Summer Squash
Carrots Kale Radishes Broccoli Rose-
mary Basil Pole Beans Peas Arugula
Bibb Lettuce Cutting Lettuces Pota-
toes

Compressed Crossbars were inserted fairly early
in order to keep the tracks in place.
Gradually, however, it was realized
that the tracks would be more effec-
tive if there were an iron strip at the
top.

(c) Reference and output translations of M2M-100, and
compressed models.

Figure 5.7: Cross-attention matrices of a winning sentence for the M2M-100 model, and pruned
30% model. Output translations show the hallucination for M2M-100 model. Source language is
Afrikaans.

Off-Target. We use FastText language identifier (Joulin et al., 2016a,b) to predict the languages
of reference and the translated sentences. Table 5.3 shows the total number of losing sentences
and percentage of off-target translations for both baseline and compressed models.18 As the
sparsity increases, the compressed model predicts more off-target translations (7.8% and 23.9%

increase from baseline). Quantisation also increases the percentage of off-target translation by
12.3%.

Hallucinations. It refers to the case, in which a model generates an output unrelated to the source
sentence. Lee et al. (2018a) have shown that the cases of hallucinations have different cross-
attention matrices. Figure 5.6 shows an example of cross-attention matrices for a losing sentence,

18We exclude sentences where the predicted reference language ids are not matched with gold reference languages.
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Model λ No. On-Target sents
Pruned 30% 2.95 1,312
Pruned 45% 3.01 7,192
Quantised 1.96 221

Table 5.4: Total number of on-target (excluding off-target translations) sentences and relative
alignment (λ) metric on losing pair subset.

where the translation of the compressed model is considered as a hallucination. As expected,
translated tokens ignore the alignment with the source sequence. To quantitatively analyse the
hallucination effect on all on-target losing sentences (excluding off-target translations), we define
the relative alignment metric as:

λ= varcomp

varbase
(5.1)

where var is defined as: var = 1
|I |.|J |

∑
i∈I

∑
j∈J αi , j (µi − j )2

µi =∑
j∈J j .αi , j

(5.2)

where I and J correspond to sequences of source and target languages, respectively; αi , j is
the attention weight, where we use the average attention over all layers and all attention heads.
Inspired by Kim et al. (2021b); Vig and Belinkov (2019), the variance (var) is high for cases
where the target sequence pays attention to a very small subset of source tokens (hallucination),
while it is low when the cross-attention matrix is near to the diagonal matrix (approximation
of perfect alignment matrix). Table 5.4 displays the relative alignment (λ) metric for different
compressed models. As the metric is higher than "1" for compressed models, it confirms that
target translations of compressed models contain more hallucinated sentences. Lastly, we provide
a list of the most affected language pairs in Appendix 5.13 for further studies.

Analysis of Winning Pairs

When manually inspecting some examples from the translation of winning pairs, we realize that
a lot of them are matching cases where the baseline model generates hallucinations, while the
compressed model generates acceptable translations, as shown in Figure 5.7. We recall that in
Figure 5.5, most of the winning pairs (right side) belong to medium-resource languages19, which
include a moderate amount of training instances, and could contain some poorly aligned parallel
sentences. Raunak et al. (2021) connects the phenomenon of hallucination to the corpus-level
noise and suggests that it could also be amplified by back-translation (used for data augmentation
to training M2M-100 model). Therefore, the compression seems to remove the memorisation of
noisy samples, which is more important for medium-resource languages, thus fixing some of the

19Normalised distribution in Appendix 5.11 shows the same behaviour.
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5.4 Results and Discussion

Model λ Total No.
Pruned 30% M2M-100 0.42 863
Pruned 45% M2M-100 0.15 1,455
Quantised M2M-100 0.52 308

Table 5.5: The relative alignment (λ) metric for different compressed models on winning pairs
subset.
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Figure 5.8: Number of sentences in winning pairs, added to each language category after
increasing the sparsity from 30% to 45%.

cases of hallucination. In Table 5.5, we compute the total number of winning sentences, and the
relative alignment metric (λ) for compressed models and M2M-100 model. As λ is lower than "1",
it confirms that the compression removes the noisy memorisation of medium-resource languages,
and benefits the generalisation of the model. Ahia et al. (2021) made a similar observation in
the case of bilingual MT models. Interestingly, the number of winning sentences increases as
the model gets sparser (1,455 vs. 863). Figure 5.8 shows that new sentences mostly belong
to medium-resource languages. Finally, a list of most winning language pairs is provided in
Appendix 5.13.

5.4.2 Gender Bias Analysis

We evaluate M2M-100 and our compressed models on MT-Gender benchmark (Kocmi et al.,
2020; Stanovsky et al., 2019). Inspired by Boito et al. (2022), we use a fairness metric to compare
the behavior of compressed models on male and female subsets:

ψ= fm − f f

fm + f f
(5.3)
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Model ψ (%) ψ∗ (%)
Original M2M-100 17.36 16.51
Pruned 30% M2M-100 21.65 (+24.7) 19.52 (+18.25)
Pruned 45% M2M-100 29.03 (+67.2) 20.8 (+25.9)
Quantised M2M-100 18.24 (+5.1) 15.53 (-5.8)

Table 5.6: Average fairness metrics over languages of MT-Gender (Stanovsky et al., 2019).
Numbers in parentheses are the relative score differences between a specific compressed model
and M2M-100 model.

where fm , and f f refer to F1 scores of male and female, respectively. if ψ is near zero, then the
model is not biased toward any gender, however, ψ values of +1 or -1 mean that the model is
highly biased toward male or female, respectively. We extend the fairness metric to pro- and
anti-stereotypical subsets as follows:20:

ψ∗ = |ψanti −ψpr o | (5.4)

where ψpr o , and ψanti belong to the fairness metric of pro- and anti-stereotypical sections.
Intuitively, if the model has different behaviors in pro- and anti-stereotypical subsets, then it
results in increasing the absolute difference of ψanti and ψpr o .21 Average fairness metrics over
10 languages are illustrated in Table 5.6. Increasing the sparsity ratio results in a more biased
model as both ψ and ψ∗ relatively increase +67.2%, and +25.9%. Quantisation has less effect on
the gender bias as both ψ and ψ∗ negligibly change after applying it. Detailed results for each
language are provided in Appendix 5.15. Interestingly, pruning 30% highly increases the gender
bias even for high-resource languages e.g. French and German, while spBLEU is almost the
same after the compression.

5.4.3 Word Sense Disambiguation Benchmark

In this section, we analyze the impact of the compression on semantic biases by evaluating our
models on a multilingual word sense disambiguation benchmark. We first detail metrics used in
Campolungo et al. (2022) to measure semantic biases.
Notation. Given a specific word (wi ), lwi is defined as (lemmatisation, Part-of-Speech tag) pair.
ΠL(lwi ) = {σ1, ...,σn} is the ordered list of synsets according to WordNet’s sense frequency (Miller
et al., 1990) in language L. For instance, it is built as {the act of firing, photograph, drink, ...} for
noun shot in English. Clwi

(σ) is the index of synset (σ) in ΠL(lwi ).
SFII. is calculated as the error rate averaged over Clwi

(σ) for different positions and words
wi . Intuitively, it measures the sensitivity of the model when predicting a sense concerning its
corresponding index in ΠL(lwi ).

20Pro-stereotypical sentences refer to samples that context and occupation match (e.g. The carpenter stopped the
housekeeper and helped her.) while anti-stereotypical subset contains sentences that context and occupation do not
match.

21Proposed metrics are different than simple absolute score difference of Kocmi et al. (2020), more details in
Appendix 5.14.
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5.5 Related Work

Model SFII SPDI MFS MFS+ AVG
Baseline 77.6 71.6 52.8 87.6 72.4
Pruned 30% 76.4 72.2 52.9 87.8 72.4
Pruned 45% 80.2 74.8 53.4 87.8 74.1
Quantised 79.5 74 53.7 88.8 74

Table 5.7: The average semantic bias metrics over languages of DiBiMT (Campolungo et al.,
2022). Last column is the average score of bias metrics for each model.

SPDI. is computed as the average error rate based on polysemy degrees of synsets.
MFS. measures how often the model chooses more frequent senses than the correct one. Given
Clwi

(σ) for a synset, it is increased once the model predicts a synset (σ′) with Clwi
(σ′) <Clwi

(σ).
MFS+. It is similar to the MFS metric, but it increases when Clwi

(σ′) equals to 1. Since metrics
are based on the error rate, the lower values show that the model is less biased.
Table 5.7 demonstrates the semantic bias scores, averaged over all languages in DiBiMT (Cam-
polungo et al., 2022).22 The last column is the average of semantic bias metrics for each model.
According to the average bias score, quantised and pruned 45% models amplify the bias metric
by 1.6, and 1.7 points on average, compared to M2M-100, respectively. It confirms that the
compression amplifies the semantic bias while keeping almost the same BLEU performance,
especially for the quantisation (average BLEU scores are shown in Table 5.2).

5.5 Related Work

The first connection between compression and bias amplification has been made by Hooker et al.
(2019, 2020) in the case of image classification. The same authors proposed an approach to find
a subset of the dataset which contains samples that have disproportionately high errors after the
compression. There is also recent work that analyses the effect of compression on pre-trained
language models (Ogueji et al., 2022; Xu et al., 2021; Lauscher et al., 2021; Li et al., 2021a).
Notably, de Vassimon Manela et al. (2021) demonstrated a higher gender bias in compressed
pre-trained language models. Concerning NMT, Renduchintala et al. (2021) demonstrated that
optimisation of inference speed up may result in gender bias amplification. To the best of our
knowledge, this work is the first in-depth study of the impact of compression on massively
multilingual models. We hope our findings would encourage further research on this topic.

5.6 Conclusion

We demonstrate the impacts of applying compression methods to the massively Multilingual
Machine Translation models by evaluating compressed models on FLORES-101 (Goyal et al.,
2021b), gender bias benchmark (Stanovsky et al., 2019), and word sense disambiguation bench-
mark (Campolungo et al., 2022). We show that while average BLEU drops negligibly, the
performance of under-represented language pairs drops drastically. By analysing the attention

22Detailed results are provided in Appendix 5.16.
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patterns, we showed that sparsity improves the performance of some medium-resource language
pairs by removing the noisy memorisation, resulting in less hallucinations in the target trans-
lations. By evaluating our compressed models on gender bias and word sense disambiguation
benchmarks, we show that the compression amplifies the intrinsic gender and semantic biases,
even in high-resource language pairs. We hope our findings could be a starting point to consider
the fairness aspects when compressing multilingual models.
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Appendix

5.7 Magnitude Pruning Strategy

Figure 5.9 shows the performance of pruned models with different pruning strategies. Results
illustrate that pruning based on Transformer-layer is slightly better than pruning based on each
module of the model, and separate pruning for self-attention and feed-forward Transformer
layers.

0 10 20 30 40 50
Global Sparsity(%)

0

5

10

15

20

25

30

35

Av
g 

sp
B

LE
U

Transformer-Layer Wise
Module
Self-Attn+FFN

Figure 5.9: Average spBLEU score of different magnitude pruning strategies on 9 FLORES-101
language pairs, defined in Appendix 5.9.

5.8 Selection of Language Pairs in FLORES-101

Figure 5.10 shows the distribution of different language pair categories (defined in Table 6.1)
based on spBLEU score of M2M-100 12B model (Fan et al., 2020a). We use 12 spBLEU as the
threshold, which is approximately the average score over the median of different language pair
categories.

Table 5.8 illustrates the number of language pairs in each category after the filtering.
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Figure 5.10: Histogram of number of language pairs based on spBLEU score for different
language pair categories.

Source
Target

Very-Low Low Medium High

Very-Low 10 51 157 33
Low 58 164 643 143

Medium 108 440 1,277 257
High 23 103 252 39

Table 5.8: Number of language pairs in each category after the filtering.

5.9 Language Pairs for Selection of Sparsity Ratio

Language Pair Resource-Type M2M-100 spBLEU
Bosnian-Afrikaans low-to-low 29.9
Afrikaans-Bulgarian low-to-medium 37.3
Afrikaans-French low-to-high 41.5
Catalan-Asturian medium-to-low 29.7
Danish-Bulgarian medium-to-medium 37.8
Swedish-Spanish medium-to-high 27.5
French-Afrikaans high-to-low 30.9
Spanish-Swedish high-to-medium 27.5
English-French high-to-high 51.3

Table 5.9: Subset of language pairs used to compute average spBLEU score of Figure 5.2. M2M-
100 model achieves reasonable performance for all selected pairs as shown in the last column.
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5.10 Relative spBLEU based on Resource Type of Target and Source

5.10 Relative spBLEU based on Resource Type of Target and Source
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Figure 5.11: Relative spBLEU difference (%) between compressed models and M2M-100 model
grouped by the resource type of source or target languages.
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5.11 ChrF Difference Analysis

5.11.1 Pruned 30% Model
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(c) Normalised distribution of sentences in each bin for different categories.

Figure 5.12: ChrF analysis of pruned 30% M2M-100 model.
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5.11 ChrF Difference Analysis

5.11.2 Pruned 45% Model
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(c) Normalised distribution of sentences in each bin for different categories.

Figure 5.13: ChrF analysis of pruned 45% M2M-100 model.
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5.11.3 Quantised Model
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(c) Normalised distribution of sentences in each bin for different categories.

Figure 5.14: ChrF analysis of quantised M2M-100 model.

5.12 Languages with Two Scripts in M2M-100 Training
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5.13 Most Affected Language Pairs After Compression

ISO Language
sr Serbian
cy Welsh
az Azerbaijani
uz Uzbek
ja Japanese
bn Bengali
lo Lao
zh Chinese

Table 5.10: Languages for which M2M-100 training data contains two scripts, while FLORES-
101 provides one script for the evaluation.

5.13 Most Affected Language Pairs After Compression

Language pairs are selected, if both quantisation and pruning have significant effect on them (based
on spBLEU performance shown in Figure 5.3).

Source Target
Catalan Cebuano
Latvian Igbo
Arabic Igbo
Danish Xhosa
French Zulu

(a) Most losing language pairs

Source Target
Latvian Vietnamese
Bulgarian Latvian
Arabic Urdu
Thai Vietnamese
Latvian Italian

(b) Most winning language pairs

Table 5.11: Most affected language pairs after the compression.

5.14 Proposed Metrics for MT-Gender Benchmark

Equation 5.3 considers the range of F1 scores for female and male subsets, while the simple
difference between F1 scores does not reflect the range of F1 scores. The range is crucial since a
model with the same F1 score difference but higher individual F1 scores should have a lower
fairness score, as lied in Equation 5.3.
We also believe equation 5.4 is a better metric than the simple difference between accuracies of
the model in pro-stereotypical and anti-stereotypical subsets since it again considers the range
of scores, and ignores missed translations and wrongly aligned genders. Additionally, it exactly
reflects the difference in the behavior of the model in these two subsets. If the compressed model
has a contrary performance in pro- and anti-stereotypical subsets, e.g. amplifying the bias in the
anti-stereotypical subset more than the pro-stereotypical one or decreasing the bias more in one
subset, then ψ∗ becomes higher. We suggest using Equation 5.3 and Equation 5.4 for comparing
models on MT-Gender benchmark (Kocmi et al., 2020; Stanovsky et al., 2019).
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5.15 MT-Gender Results per Language

Model ψ (%) ψ∗ (%)
Original M2M-100 21.01 15.09
Pruned 30% M2M-100 20.71 16.87
Pruned 45% M2M-100 28.58 17.33
Quantised M2M-100 18.07 12.55

(a) Arabic

Model ψ (%) ψ∗ (%)
Original M2M-100 39.02 11.39
Pruned 30% M2M-100 45.19 7.15
Pruned 45% M2M-100 45.56 18.54
Quantised M2M-100 40.93 2.54

(b) Ukrainian

Model ψ (%) ψ∗ (%)
Original M2M-100 7.98 20.09
Pruned 30% M2M-100 10.38 16.30
Pruned 45% M2M-100 8.89 2.75
Quantised M2M-100 10.39 21.26

(c) Hebrew

Model ψ (%) ψ∗ (%)
Original M2M-100 29.06 3.93
Pruned 30% M2M-100 29.10 2.30
Pruned 45% M2M-100 30.28 8.08
Quantised M2M-100 32.65 8.74

(d) Russian

Model ψ (%) ψ∗ (%)
Original M2M-100 22.46 2.03
Pruned 30% M2M-100 30.17 13.81
Pruned 45% M2M-100 48.59 4.61
Quantised M2M-100 24.71 2.6

(e) Italian

Model ψ (%) ψ∗ (%)
Original M2M-100 13.86 28.71
Pruned 30% M2M-100 29.03 40.20
Pruned 45% M2M-100 38.44 32.83
Quantised M2M-100 15.43 25.86

(f) French

Model ψ (%) ψ∗ (%)
Original M2M-100 5.77 15.72
Pruned 30% M2M-100 4.89 14.62
Pruned 45% M2M-100 22.53 34.01
Quantised M2M-100 6.01 15.11

(g) Spanish

Model ψ (%) ψ∗ (%)
Original M2M-100 6.48 16.93
Pruned 30% M2M-100 13.16 26.83
Pruned 45% M2M-100 22.14 18.12
Quantised M2M-100 6.23 14.96

(h) German

Model ψ (%) ψ∗ (%)
Original M2M-100 18.20 39.01
Pruned 30% M2M-100 21.82 42.60
Pruned 45% M2M-100 25.95 45.01
Quantised M2M-100 18.24 38.42

(i) Polish

Model ψ (%) ψ∗ (%)
Original M2M-100 7.91 12.14
Pruned 30% M2M-100 11.65 14.43
Pruned 45% M2M-100 19.31 27.23
Quantised M2M-100 9.78 13.26

(j) Czech

Table 5.12: MT-Gender (Stanovsky et al., 2019; Kocmi et al., 2020) results for M2M-100
12B (Fan et al., 2020a), and compressed models.
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5.16 Detailed DiBiMT Results

5.16 Detailed DiBiMT Results

Model SFII SPDI MFS MFS+ Avg
Original M2M-100 89.14 80.59 41.8 92.59 76.03
Pruned 30% M2M-100 87.32 80.56 39.55 93.04 75.11
Pruned 45% M2M-100 86.78 82.9 39.93 92.41 75.50
Quantised M2M-100 88.86 81.26 43.32 92.51 76.48

(a) Chinese

Model SFII SPDI MFS MFS+ Avg
Original M2M-100 80 71.61 60.63 89.76 75.5
Pruned 30% M2M-100 78.96 73.79 61.44 88.56 75.68
Pruned 45% M2M-100 81.28 77.05 62.5 91.67 78.12
Quantised M2M-100 82.32 74.42 61.07 91.22 77.25

(b) German

Model SFII SPDI MFS MFS+ Avg
Original M2M-100 75.99 70.53 61.23 88.41 74.04
Pruned 30% M2M-100 75.91 71.86 60.92 87.74 74.10
Pruned 45% M2M-100 83.38 75.08 62.22 86.67 76.83
Quantised M2M-100 81.73 75.81 63.33 88.33 77.3

(c) Italian

Model SFII SPDI MFS MFS+ Avg
Original M2M-100 68.16 66.42 47.06 83.82 66.36
Pruned 30% M2M-100 68.2 64.73 48.21 87.18 67.08
Pruned 45% M2M-100 70.92 66.41 50 85.29 68.15
Quantised M2M-100 68.16 69.03 44.19 86.51 66.97

(d) Russian

Model SFII SPDI MFS MFS+ Avg
Original M2M-100 75.08 68.92 53.44 83.61 70.26
Pruned 30% M2M-100 71.58 70.26 54.58 82.71 69.78
Pruned 45% M2M-100 78.39 72.46 52.33 83.15 71.58
Quantised M2M-100 76.45 69.72 56.88 85.63 72.17

(e) Spanish

Table 5.13: DiBiMT (Campolungo et al., 2022) evaluation for M2M-100 12B (Fan et al., 2020a),
and compressed models.
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6 SMaLL-100: Introducing Shallow
Multilingual Machine Translation
Model for Low-Resource Languages

In recent years, multilingual machine translation models have achieved promising performance
on low-resource language pairs by sharing information between similar languages, thus enabling
zero-shot translation. To overcome the "curse of multilinguality", these models often opt for
scaling up the number of parameters, which makes their use in resource-constrained environments
challenging. In this chapter, we introduce SMaLL-100, a distilled version of the M2M-100 (12B)
model, a massively multilingual machine translation model covering 100 languages. We train
SMaLL-100 with uniform sampling across all language pairs and therefore focus on preserving
the performance of low-resource languages. We evaluate SMaLL-100 on different low-resource
benchmarks: FLORES-101, Tatoeba, and TICO-19 and demonstrate that it outperforms previous
massively multilingual models of comparable sizes (200-600M) while improving inference
latency and memory usage. Additionally, our model achieves comparable results to M2M-
100 (1.2B), while being 3.6× smaller and 4.3× faster at inference.1

6.1 Introduction

Neural Machine Translation (NMT) systems are usually trained on datasets consisting of millions
of parallel sentences, thus still performing poorly on low-resource languages, i.e., languages
without a large amount of training data. Over the past few years, previous work has proposed
several approaches to improve the quality of translations in low-resource languages, e.g., Mul-
tilingual Neural Machine Translation (MNMT) models (Tang et al., 2021; Goyal et al., 2021b;
Fan et al., 2020a; Johnson et al., 2017), back-translation (Edunov et al., 2018; Sennrich et al.,
2016) and unsupervised machine translation (Garcia et al., 2021; Ko et al., 2021). Massively
MNMT models are particularly interesting for low-resource languages as they benefit the most
from knowledge transfer from related languages (Arivazhagan et al., 2019). However, it is
also seen that curse of multilinguality hurts the performance of high-resource languages. So,
previous work attempted to increase the model size to maintain the translation performance in

1The code and pre-trained SMaLL-100 model is available at https://github.com/alirezamshi/
small100.
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both high and low-resource languages. This makes the use of these massively MNMT models
challenging in real-world resource-constrained environments. To overcome this problem, we
propose SMaLL-100, a Shallow Multilingual Machine Translation Model for Low-Resource
Languages covering 100 languages, which is a distilled alternative of M2M-100 (12B) (Fan et al.,
2020a), the most recent and biggest available multilingual NMT model. We focus on very-low
and low-resource language pairs as there is no reasonable-size universal model that achieves
acceptable performance over a great number of low-resource languages. We do so by training
SMaLL-100 on a perfectly balanced dataset.2 While this leads to lower performance on the
high-resource languages, we claim that this loss is easily recoverable through further fine-tuning.
We evaluate SMaLL-100 on different low-resource benchmarks, e.g., FLORES-101 (Goyal et al.,
2021b), Tatoeba (Tiedemann, 2020), and TICO-19 (Anastasopoulos et al., 2020). To summarise,
the contributions of this chapter are as follows:

• We propose SMaLL-100, a shallow multilingual NMT model, focusing on low-resource
language pairs.

• We evaluate SMaLL-100 on several low-resource NMT benchmarks.

• We show that our model significantly outperforms previous multilingual models of compa-
rable size while being faster at inference. Additionally, it achieves comparable results with
M2M-100 (1.2B) model, with 4.3× faster inference and a 3.6× smaller size.

• While SMaLL-100 reaches 87.2% performance of the 12B teacher model, we show that this
gap can be closed with a few fine-tuning steps both for low and high-resource languages.

6.2 Model and Training

6.2.1 SMaLL-100 Architecture

It has been shown by Kasai et al. (2021) that deep encoder / shallow decoder architectures can
achieve good translation quality while being significantly faster at inference. Berard et al. (2021)
have confirmed that this is also valid for multilingual NMT. Here, we use a 12-layer Transformer
encoder (Vaswani et al., 2017) and 3-layer decoder. Table 6.8 in the Appendix 6.8 reports further
details of the SMaLL-100 architecture. Different from M2M-100 model, we use language codes
in the encoder side, as it is shown to perform better with shallow decoder architectures (Berard
et al., 2021).

6.2.2 Training Strategy

SMaLL-100 is trained with a combination of two loss functions: a standard Cross Entropy
loss (CE) and a Knowledge Distillation loss (KD). Given source sequence X and gold target

2All language pairs have the same sampling probability, regardless of their training data size.
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translation Y = (y0, ..., ym), the CE loss is calculated as:

Lce =−
m∑

j=0

|K |∑
z=1

1{y j = z} log p(y j = z|y< j , X ,θS) (6.1)

where |K | is the target vocabulary size, 1 is the indicator function, and θS is the model parameters.
p() is the conditional probability function.
We additionally use a word-level distillation loss, which is the Kullback–Leibler divergence
between the output distributions of the student and teacher models (Hu et al., 2018). Specifically,
it is calculated as:

Lkd =−
m∑

j=0

|K |∑
z=1

q(y j = z|y< j , X ,θT )

× log p(y j = z|y< j , X ,θS)

(6.2)

where θT is parameters of the teacher model. q() is the conditional probability of the teacher
model. The total loss is computed as:

Ltot al =Lce +αLkd (6.3)

where α is a trainable parameter.

6.2.3 Training Data

Our training data includes sentences from CCMatrix (Schwenk et al., 2021) and CCAligned (El-
Kishky et al., 2020) datasets, which are part of the training data used by Fan et al. (2020a) to train
the M2M-100 models. As our goal is to maintain the performance of low-resource languages, we
balance the training data across all language pairs; specifically, 100K sentence pairs are sampled
for each language pair.3 As a result, our training data contains nearly 456M parallel sentences,
which is less than 6% of the original data on which M2M-100 (Fan et al., 2020a) was trained. We
use the same languages as M2M-100.

6.3 Experimental Setup

6.3.1 Evaluation Benchmarks

FLORES-101. is a multilingual NMT benchmark, containing 3,001 sentences from different
domains, that are derived from English Wikipedia. Sentences are translated into 101 languages by
human translators (Goyal et al., 2021b). It mostly includes low and medium-resource languages.
We use devtest subset for the evaluation.

3For language pairs with less than 100K sentence pairs, we repeat their data. We randomly select 100K sentences
for language pairs with more than 100K training sentences.
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Resource Type Criteria

Very-Low |K | ≤ 100K
Low 100K < |K | ≤ 1M
Medium 1M < |K | ≤ 100M
High 100M < |K |

Table 6.1: The criteria to split languages into different resource categories. |K | is the amount of
training data to/from English.

Tatoeba. is a crowd-sourced collection of user-provided translations in different languages (Tiede-
mann, 2020). We choose a subset of languages from test set of Tatoeba Challenge,4 which are
covered by M2M-100.

TICO-19. was created during the COVID-19 pandemic (Anastasopoulos et al., 2020). It contains
sentences from 36 languages in the medical domain, including 26 low-resource languages. We
evaluate on languages which are covered by M2M-100 (Fan et al., 2020a).

Inspired by Goyal et al. (2021b), we split the languages based on the amount of available
training sentences aligned with English into 4 different categories: Very-Low (VL), Low (L),
Medium (M), and High-resource (H). As the true amount of training data is both dependent
on quality and quantity of parallel sentences, Goyal et al. (2021b) suggested to estimate it by
computing the number of bitext data aligned with English, that is calculated from statistics of
OPUS corpora (Tiedemann, 2012). Table 6.1 illustrates the criteria for choosing the category
of different languages. More details about the distribution of language pair categories in each
benchmark are provided in Appendix 6.7.

6.3.2 Baselines

M2M-100. is a recent many-to-many NMT model covering 100 languages. Fan et al. (2020a)
provide 3 variants with respectively 418M, 1.2B, and 12B parameters. We compare against these
3 variants.
FLORES-124. is an extension of M2M-100, covering additional 24 languages. Training data of
the additional languages is derived from OPUS (Tiedemann, 2012). Goyal et al. (2021b) provide
two models with 175M and 615M parameters. We use both models as baselines.
FineTuned-100. uses the same architecture as defined in Section 6.2, but KD loss (Lkd ) is not
used for training. For a fair comparison, it is trained for the same number of steps as SMaLL-100
model.

4https://github.com/Helsinki-NLP/Tatoeba-Challenge
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Language Direction

Model params Speed VL2VL VL2L VL2M VL2H L2VL L2L L2M L2H M2VL M2L H2VL H2L AVG

FLORES-101
FLORES-124 175M 5.3× 3.3 3.4 6.0 7.8 3.7 3.1 6.9 8.8 6.9 5.2 8.1 6.0 5.8
M2M-100 418M 3.1× 4.3 3.7 7.8 9.4 5.4 3.4 9.1 11.3 9.9 5.8 11.4 6.6 7.3
FLORES-124 615M 2.9× 5.1 5.1 9.2 11.2 5.8 4.7 10.6 13.1 10.3 7.6 11.5 8.5 8.6
Finetuned-100 330M 7.8× 6.1 5.4 8.7 11.3 5.7 4.1 9.0 11.8 10.4 6.8 13.0 8.0 8.4
SMaLL-100 330M 7.8× 7.9 7.0 10.3 12.6 8.4 6.1 11.6 14.3 13.7 9.0 16.7 10.2 10.7

M2M-100 1.2B 1.8× 6.7 6.1 10.8 12.8 8.7 6.1 13.0 15.9 13.6 8.8 15.4 9.7 10.6
M2M-100 12B 1× 8.7 8.8 11.9 13.7 11.7 9.7 15.4 18.2 16.5 12.6 18.7 13.9 13.3

Tatoeba
FLORES-124 175M 5.3× - 7.6 15.7 10.1 4.6 5.3 11.5 10.8 14.0 10.2 6.4 7.5 9.4
M2M-100 418M 3.1× - 7.4 19.7 12.3 5.9 5.3 13.8 13.2 14.9 11.7 7.7 9.0 10.9
FLORES-124 615M 2.9× - 9.1 19.4 11.4 6.9 7.6 12.7 13.7 14.4 13.3 8.0 9.7 11.4
Finetuned-100 330M 7.8× - 4.0 21.1 14.4 7.7 5.2 15.3 14.2 14.0 12.1 8.9 8.3 11.4
SMaLL-100 330M 7.8× - 4.6 22.1 16.4 8.7 7.0 16.7 15.8 16.3 14.5 10.6 11.2 13.1

M2M-100 1.2B 1.8× - 8.8 19.5 13.1 8.7 7.2 16.3 17.0 17.2 13.4 10.7 11.1 13.0
M2M-100 12B 1× - 8.6 23.5 13.1 9.8 10.2 17.8 17.9 18.5 15.2 10.7 13.2 14.4

TICO-19
FLORES-124 175M 5.3× 4.6 5.5 8.1 11.5 4.4 5.6 9.7 12.2 3.9 8.0 4.2 8.7 7.2
M2M-100 418M 3.1× 4.0 5.5 9.8 13.7 4.2 5.7 11.6 14.9 4.1 8.8 5.3 9.4 8.1
FLORES-124 615M 2.9× 4.6 7.4 11.5 16.4 4.8 7.6 12.9 16.7 4.4 10.7 4.4 11.5 9.4
Finetuned-100 330M 7.8× 6.1 7.2 11.9 17.4 5.5 6.1 12.1 15.2 6.4 9.0 9.5 10.3 9.7
SMaLL-100 330M 7.8× 7.8 8.8 13.3 19.0 8.0 8.5 14.3 17.8 8.3 11.5 11.3 12.7 11.8

M2M-100 1.2B 1.8× 5.4 8.2 13.2 18.9 6.0 8.7 14.0 19.2 5.2 11.5 6.1 12.5 10.8
M2M-100 12B 1× 6.4 10.9 15.4 20.6 7.8 11.9 16.6 21.4 6.4 15.4 8.7 16.4 13.1

Table 6.2: Average spBLEU performance on FLORES-101, Tatoeba, and TICO-19 benchmarks
for different language pair categories, defined in Appendix 6.7. FLORES-101 results are com-
puted on language pairs where M2M-100 12B has spBLEU scores higher than 3 to avoid polluting
the analysis with meaningless scores. The first and second columns give the model size and
speed-up ratios compared to M2M-100 (12B). Last column is the average spBLEU performance
over all mentioned language directions. The best scores are shown in bold, and the second best
results are shown with underline.

6.3.3 Implementation Details

SMaLL-100 contains nearly 330M parameters with 12 encoder and 3 decoder Transformer
layers.5 It is trained for 30 days on 16 TESLA V100-32GB GPUs,6 with a batch size of 1K
tokens and accumulated gradients over 9 batches. We implement our model using fairseq
repository.7 We use last-checkpoint8 of M2M-100 (12B) for the teacher model. For
decoding, the beam search of 5 is applied. All hyper-parameters regarding the architecture and
optimisation strategy are provided in Appendix 6.8.
For a faster convergence, we first fine-tune SMaLL-100 for 150k steps without distillation (Lkd ).
Then, it is trained with both losses for 756K steps (nearly 1 epoch). For evaluation, we use
SentencePiece BLEU (spBLEU), as it is shown to be a fair metric in multilingual settings (Goyal

5It is initialised with M2M-100 (418M), using its first 3 decoder layers for the initialisation of the student’s decoder.
64 GPUs are used for the training of the student model. 12 GPUs are utilised to do the model parallelism of the

teacher model.
7https://github.com/facebookresearch/fairseq
8https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_
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109

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_100
https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_100


Chapter 6. SMaLL-100: Introducing Shallow Multilingual Machine Translation Model for
Low-Resource Languages

et al., 2021b).9 We use the same tokeniser and dictionary as M2M-100.

6.4 Results and Discussion

6.4.1 Low-Resource NMT Benchmarks

Table 6.2 shows the average spBLEU performance on FLORES-101, Tatoeba, and TICO-19 test
sets for different categories of language directions.10 SMaLL-100 outperforms all the models
with comparable sizes while being smaller and faster at inference. Specifically, it outperforms
M2M-100 418M both in terms of performance (+3.1 spBLEU) and inference speed (2.5× faster).
We believe that Finetuned-100 outperforms M2M-100 418M for low-resource languages thanks
to finetuning on the balanced dataset. The higher performance of SMaLL-100 compared to
Finetuned-100 across all benchmarks shows the benefit of KD loss which allows to distill
knowledge from the teacher model. Additionally, SMaLL-100 achieves competitive results with
M2M-100 (1.2B), while being 3.6× smaller and 4.3× faster at inference. Compared to the biggest
M2M-100 model (12B), SMaLL-100 loses nearly 1.7 spBLEU but is 36× smaller and 7.8× faster.
Regarding medium and high-resource language pairs (as shown in Appendix 6.9.1), SMaLL-100
achieves better or similar performance compared to M2M-100 (418M) and FLORES-124 (615M),
while it contains fewer parameters and is faster at the evaluation time. It under-performs for
some medium and high-resource language pairs compared to the teacher model (M2M-100 12B),
which could be easily recovered, as we describe in the remaining section.

6.4.2 Recovering Teacher Model Performance

To go further, we demonstrate that SMaLL-100 can easily recover the performance of the teacher
model with just a few fine-tuning steps, both for low and high-resource language pairs. For
comparison, we fine-tune M2M-100 (418M) model with the same number of steps.
Table 6.3 reports spBLEU performance for several language pairs, alongside the number of fine-
tuning steps, required by SMaLL-100 model to reach M2M-100 (12B) performance.11 We see
that SMaLL-100 achieves better performance than M2M-100 (12B) after a few training steps on
low-resource language pairs. For high-resource language pairs, SMaLL-100 is fine-tuned for 20K
steps to reach the performance of M2M-100 (12B) model. Additionally, fine-tuned SMaLL-100
significantly outperforms fine-tuned M2M-100 (418M) model on low and medium-resource
languages. This confirms that SMaLL-100 could be a powerful and lightweight initialisation
model for training on different language pairs.

9It utilises a SentencePiece tokeniser with 256K tokens: https://github.com/
facebookresearch/flores

10Complete spBLEU calculations of different language pairs on tested NMT benchmarks are provided in Ap-
pendix 6.9. Speed is calculated on 2 TESLA V100-32GB GPUs with a batch size of 1 sentence over a subset of
FLORES-101 devtest, containing nearly 10K sentences from all language pairs.

11More dataset and implementation details of these fine-tuning experiments are provided in Appendix 6.10.
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Fine-tuned

Language pair Language Type M2M-100 (418M) SMaLL-100 steps M2M-100 (12B)

Cebuano-English Low 18.6 29.8 0.5K 27.7
English-Igbo Low 9.2 15.7 1.5K 14.9
English-Malayalam Low 16.7 20.8 3K 20.6
Georgian-Russian Medium 6.9 13.1 0.5K 10.1
English-Italian High 33.3 33.4 20K 33.5
French-Italian High 31.3 31.5 20K 32.0
Italian-Spanish High 26.6 26.8 20K 27.0

Table 6.3: spBLEU performance of fine-tuned SMaLL-100 and M2M-100 (418M) for the
specified step, and M2M-100 (12B) on FLORES-101 devtest. The "step" column is the number
of training steps required to reach M2M-100 (12B) performance. The type of each language pair
is defined as the minimum of source and target language categories.

6.5 Related Work

Compression and Distillation. Over the past few years, pre-trained models lead to significant
improvement by increasing the parameter size (Zhang et al., 2022; Fan et al., 2020a; Raffel et al.,
2019), which makes it challenging to use them in the resource-constraint environment. Previous
work use several compression techniques e.g. knowledge distillation (Li et al., 2021a; Kim and
Rush, 2016), pruning (Zhang et al., 2021a; Behnke and Heafield, 2020), and quantisation (Tao
et al., 2022; Yao et al., 2022) to provide a reasonable-size model, while keeping the performance.

Multilingual NMT. It provides a single model to translate between any pair of languages,
which significantly improves performance on low-resource languages thanks to knowledge
transfer (Haddow et al., 2021). Several works (Berard et al., 2021; Fan et al., 2020a; Platanios
et al., 2018; Firat et al., 2016; Dong et al., 2015) propose to include both language-specific, and
language-independent parameters in MNMT models. Recently, massively MNMT models (Zhang
et al., 2020a; Fan et al., 2020a; Neubig and Hu, 2018; Arivazhagan et al., 2019; Aharoni et al.,
2019) have been proposed to translate between more than 100 languages. However, these
models usually contain a huge number of parameters to maintain performance in both high and
low-resource languages. Different from the previous work, we introduce SMaLL-100, which
outperforms previous models with comparable size in low-resource language directions, while
achieving better speed and being smaller.

6.6 Conclusion

In this chapter, we presented SMaLL-100 model, a shallow multilingual NMT model, focusing
on low-resource languages. We evaluated our model on different NMT benchmarks. SMaLL-100
significantly outperforms multilingual models of comparable size on all of the tested benchmarks
(FLORES-101, Tatoeba, TICO-19) and is much faster at inference. It also achieves competitive

111



Chapter 6. SMaLL-100: Introducing Shallow Multilingual Machine Translation Model for
Low-Resource Languages

results with M2M-100 1.2B (Fan et al., 2020a), while being 4.3× faster at inference and 3.6×
smaller. Compared to M2M-100 (12B), the biggest available MNMT model, SMaLL-100 loses
nearly 1.7 spBLEU on average but it is significantly faster (7.8×) and smaller (36×), which
makes it a good fit for resource-constrained settings. Additionally, we show that SMaLL-100 can
achieve similar performance as M2M-100 (12B) with just a few steps of fine-tuning on specific
language pairs.
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Appendix

6.7 Details of Evaluation benchmarks

6.7.1 Resource-type of Languages in Evaluated Datasets

af Low lg Very-Low lt Medium sn Low gl Medium

am Low ka Medium luo Low sd Very-Low gd Low

ar Medium de High lb Medium sk Medium ht Low

hy Low el Medium mk Medium sl Medium su Low

as Very-Low gu Low ms Low so Low ln Very-Low

ast Low ha Low ml Low ku Low ilo Low

az Low he Medium mt Medium es High mg Medium

be Very-Low hi Medium mr Low sw Low tn Very-Low

bn Medium hu Medium mi Low sv Medium br Medium

bs Low is Medium mn Low tg Low ns Very-Low

bg Medium ig Low ne Very-Low ta Low si Medium

my Low id Medium nso Very-Low te Low yi Low

ca Medium ga Low no Medium th Medium fy Medium

ceb Low it High ny Low tr Medium sq Medium

zh Medium ja Medium oc Very-Low uk Medium ss Very-Low

hr Very-Low jv Medium or Very-Low umb Low fr High

cs Medium kea Very-Low om Low ur Low ff Very-Low

da Medium kam Very-Low ps Low uz Very-Low lo Low

nl Medium kn Low fa Medium vi Medium lv Medium

en High kk Low pl Medium cy Low ru High

et Medium km Low pt High wo Very-Low sr Medium

tl Very-Low ko Medium pa Low xh Low zu Low

fi Medium ky Low ro Medium yo Low ba Low

Table 6.4: ISO-639 code and resource type of languages used in evaluated NMT benchmarks.

6.7.2 FLORES-101

We use devtest subset of FLORES-101 for the evaluation. To better compare different models,
we exclude evaluation of language pairs, in which the spBLEU performance of M2M-100
12B (Fan et al., 2020a) model is below 3. This gives 5,934 language directions for the comparison.
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Table 6.5 shows the distribution of different categories of language pairs.

VL2VL VL2L VL2M VL2H L2VL L2L L2M L2H M2VL M2L M2M M2H H2VL H2L H2M H2H

No. lang. pairs 44 200 388 81 144 645 960 186 181 992 1330 259 35 190 257 42

Table 6.5: Distribution of resource categories for different language directions on FLORES-
101 (Goyal et al., 2021b).

6.7.3 Tatoeba Challenge

We use the test subset data, provided by Tiedemann (2020)12 to evaluate all models. We choose
a subset of dataset that includes languages which are covered by M2M-100 (Fan et al., 2020a)
model. This brings 1,844 language pairs for the evaluation. The distribution of different language
pair categories is shown in Table 6.6.

VL2L VL2M VL2H L2VL L2L L2M L2H M2VL M2L M2M M2H H2VL H2L H2M H2H

No. lang. pairs 7 30 37 7 34 144 113 30 144 632 237 37 113 237 42

Table 6.6: Distribution of resource categories for different language directions on Tatoeba
Challenge.

6.7.4 TICO-19

We use the evaluation benchmark provided by Anastasopoulos et al. (2020)13 to compare all
models in multilingual medical domain. We utilise language pairs that are included in M2M-
100 (Fan et al., 2020a) model. This gives us 650 language pairs for the evaluation. Table 6.7
shows the number of language pairs in different resource types of language directions.

VL2VL VL2L VL2M VL2H L2VL L2L L2M L2H M2VL M2L M2M M2H H2VL H2L H2M H2H

No. lang. pairs 12 48 24 16 48 132 72 48 24 72 30 24 16 48 24 12

Table 6.7: Number of language pairs for different categories of language directions on TICO-19.

6.8 Hyper-Parameters for Architecture and Optimisation

12https://github.com/Helsinki-NLP/Tatoeba-Challenge
13https://tico-19.github.io/
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6.9 spBLEU Results

Hyper-Parameter Specification Hyper-Parameter Specification

Encoder Layer 12 Scheduler inverse-sqrt
Decoder Layer 3 Optimizer Adam
Encoder Emb dim. 1024 Clip Norm 1.0
Decoder Emb dim 1024 Learning Rate 1e-4
Encoder FFN Emb dim. 4096 Warmup init LR 1e-07
Decoder FFN Emb dim. 4096 Warmup Updates 40K
Number of attn heads 16 Adam Betas 0.9,0.98
Attention Dropout 0.1 Adam eps 1e-6
Share Encoder/Decoder Emb. True Label Smoothing 0.1
FP16 True Dropout 0.1
Loss Scalar 2.0 Max Tokens (per GPU) 1,000

Table 6.8: List of hyper-parameters used for the architecture, and optimisation.

6.9 spBLEU Results

6.9.1 spBLEU of Remaining Language Directions

Language Direction

Model params Speed M2M M2H H2M H2H

FLORES-101

FLORES-124 175M 5.3× 13.7 18.0 16.8 23.0
M2M-100 418M 3.1× 18.1 23.0 21.6 27.8
FLORES-124 615M 2.9× 19.3 24.1 22.7 28.9
Finetuned-100 330M 7.8× 16.4 21.2 19.7 26.0
SMaLL-100 330M 7.8× 19.3 24.2 22.6 28.8

M2M-100 1.2B 1.8× 22.3 28 25.8 32.7
M2M-100 12B 1× 23.9 29.5 27.6 34.3

Tatoeba

FLORES-124 175M 5.3× 25.2 28.1 24.5 35.3
M2M-100 418M 3.1× 29.6 34.0 29.6 41.6
FLORES-124 615M 2.9× 31.7 35.5 31.0 43.0
Finetuned-100 330M 7.8× 28.3 34.2 28.1 39.2
SMaLL-100 330M 7.8× 31.9 36.3 31.1 42.4

M2M-100 1.2B 1.8× 33.8 39.0 34.2 47.4
M2M-100 12B 1× 33.1 39.0 34.2 48.7

TICO19

FLORES-124 175M 5.3× 15.1 20.3 17.7 28.1
M2M-100 418M 3.1× 20.6 26.6 23.6 33.1
FLORES-124 615M 2.9× 20.2 27.0 23.3 33.9
Finetuned-100 330M 7.8× 19.7 24.4 23.4 31
SMaLL-100 330M 7.8× 21.7 27.4 25.2 33.7

M2M-100 1.2B 1.8× 21.1 30.2 24.8 37.7
M2M-100 12B 1× 24.8 33.1 28.3 39.4

Table 6.9: Average spBLEU performance of different models on FLORES-101, Tatoeba, and
TICO-19 benchmarks for medium and high-resource language pair categories, defined in Sec-
tion 6.4. The FLORES-101 results are computed on language pairs where M2M-100 12B has
spBLEU scores higher than 3 to avoid polluting the analysis with meaningless scores. The first
and second columns give the model size and speed-up ratios compared to M2M-100 (12B).
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6.9.2 FLORES-101

src
tgt

afr amh ara hye asm ast azj bel ben bos bul mya cat ceb zho hrv ces dan nld eng est tgl fin fra ful glg lug kat deu ell guj hau heb hin hun isl ibo ind gle ita jpn jav kea kam kan kaz khm kor kir lao lav lin lit luo ltz mkd msa mal mlt mri mar mon npi nso nob nya oci ory orm pus fas pol por pan ron rus srp sna snd slk slv som ckb spa swh swe tgk tam tel tha tur ukr umb urd uzb vie cym wol xho yor zul

afr -1 8.9 20.7 10.6 -1 22.2 7.2 10.9 22.4 24.2 30.8 2.1 32.8 14.1 15.7 23.4 25.5 34.3 24.5 49.2 23.2 20.6 19.1 34 -1 27.1 -1 7.2 27.9 22.8 4 9 22.6 26.1 22.4 16 10.9 31.2 -1 23.9 18.9 17.8 -1 -1 1.8 7.8 8.7 15 -1 7.9 11.1 -1 22.9 -1 18.4 28.8 28.7 15 -1 -1 11.3 2.9 -1 -1 27 -1 24.4 -1 -1 6.3 21.6 17.9 34.4 7.4 29.9 22.7 26.4 -1 6.1 26.6 24.1 1.2 -1 22.5 26.2 32 -1 7.4 -1 4.5 23.2 23.4 -1 13.7 -1 30.3 6 -1 3.8 -1 6.5
amh 9.9 -1 4.7 4.8 -1 6.7 2.9 2.3 12.7 9 12.8 -1 14.6 2.3 6.5 8.2 9 11.5 8.8 16.3 10.4 5.4 8.2 13.9 -1 10.3 -1 1.6 8.9 11.1 2.7 3.9 9.2 13.7 9.7 7.2 2.7 8.5 -1 10 7.3 4.9 -1 -1 -1 2.3 1.7 7.3 -1 2.8 8.7 -1 10.6 -1 3 12.3 9.8 9.3 -1 -1 5.9 1.8 3.1 -1 9.3 -1 7.9 -1 -1 3.5 10.6 7.1 12.6 4.8 11.3 8.2 9.9 -1 3.5 10.5 10.3 -1 -1 9.8 10.5 10.3 -1 4.9 -1 2.4 8.5 9.4 -1 8.7 -1 13.1 1.8 -1 1.5 -1 1.1
ara 21.3 8.4 -1 10.3 -1 18 6.3 -1 19.8 20.2 26.1 0.7 27.4 7.4 14.4 20.1 21.2 25.3 18.8 30.8 19.6 2.8 16.1 28 -1 21.9 -1 -1 21.3 21.3 -1 6.7 20.8 23.2 18.9 13.1 7.3 24.6 -1 20.6 17.4 14 -1 -1 -1 -1 6.4 14.8 -1 5.5 15.5 -1 20.4 -1 13.5 25.1 21.9 8.1 -1 -1 5.3 2.3 -1 -1 19.4 -1 19.6 -1 -1 4.8 21 15.6 27.6 5.5 25 19.6 21.8 -1 5.8 22.3 20.9 -1 -1 19.1 21.2 23.3 -1 -1 -1 3.6 18.8 20.2 -1 12.7 -1 26.2 3.2 -1 0.8 -1 0.6
hye 16 6.2 12.1 -1 -1 11.5 4.6 4.5 15.4 14.7 20.3 -1 20.8 -1 9.1 14 15.9 18.6 13.2 23.3 15.9 9.9 12.8 21.4 -1 16 -1 3.7 15 15.9 2.1 4.8 14.3 18.1 14.4 10 4.1 14.2 -1 14.9 9.3 8.5 -1 -1 -1 3.5 3.4 9 -1 3.8 13.1 -1 16.5 -1 7.6 19.5 14.1 9.5 -1 -1 7.7 1.9 3.5 -1 13.7 -1 13.4 -1 -1 4.5 14.7 11.4 19.9 5 18.4 15.2 17.3 -1 4 16.3 15.6 -1 -1 13.7 15.3 16.8 -1 4.5 -1 2.8 13.1 15.6 -1 10.5 -1 17.7 2 -1 1.3 -1 1.1
asm -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ast 22.7 7.1 18 8.5 -1 -1 6.2 7.4 19.1 21.1 27.3 -1 34 11 14.4 20.9 21.8 26.9 20.8 33.7 20.3 18 17.3 31.2 -1 29.9 -1 -1 23.2 21.3 -1 7.6 19.8 21.6 19.9 13.6 7 26.2 -1 23 18 15.2 -1 -1 -1 5.8 6.5 13.4 -1 4.1 14.5 -1 21.1 -1 15.1 26.6 23.1 11.9 -1 -1 9 2.3 -1 -1 21.5 -1 22.9 -1 -1 5 19.5 17.1 32.3 4.9 25.6 20.4 22.7 -1 4.1 22.8 21.6 -1 -1 23.9 20.6 25.3 -1 -1 -1 3.7 19.5 20.5 -1 11.2 -1 26.5 5.6 -1 2.7 -1 3.3
azj 9.6 4.7 -1 -1 -1 -1 -1 -1 11.5 10.6 14 -1 15.5 -1 6.6 9.8 10.4 12.8 9.9 15.2 11.7 5.2 9.9 15.6 -1 11.6 -1 -1 10.9 12.6 1.7 3.5 10 12.9 11.3 7.7 3.2 5.7 -1 12 7.8 5 -1 -1 -1 -1 2.1 7.4 -1 2.6 9.8 -1 12.7 -1 4.2 13.9 8.7 6.6 -1 -1 4.5 1.9 -1 -1 10.4 -1 8.3 -1 -1 3.4 11.5 8.8 13.7 3.5 13 6.7 10.5 -1 2.9 12.2 12 -1 -1 11.5 10.4 11.5 -1 -1 -1 2.2 14.4 9.6 -1 6.8 -1 15.7 2.3 -1 1.4 -1 1.1
bel 12.7 6.4 12 7.8 -1 11.3 5.6 -1 14.9 13 9.8 0.6 18.6 9.1 10.1 13.5 10.9 15.2 13.7 15.6 14.3 12.1 11.9 18.9 -1 15.7 -1 5.4 14.4 15.7 2.9 4.3 12.9 16.1 13.7 9.1 7 13.4 -1 15.6 12.8 9.2 -1 -1 -1 6.1 5.6 10 -1 4.7 5.1 -1 16.5 -1 11.2 18 12.8 10.5 -1 -1 7.5 2.4 6.3 -1 12.6 -1 13.7 -1 -1 4.1 12.9 11 16.7 4.9 16.2 17.6 11.7 -1 4.1 6.6 8.6 -1 -1 15.4 13.5 14.1 -1 -1 -1 2.2 5.5 13.3 -1 9 -1 16.4 3.2 -1 1.8 -1 3.2
ben 17.3 8.4 15.2 9 -1 14.1 5.9 8.6 -1 15.6 21.1 0.9 22.6 8.2 12.4 15.4 16.6 20.3 15.5 25.4 16.8 15.4 13.4 23 -1 17.7 -1 4.9 16.8 16.3 6 6.1 16.1 23.4 15.8 11.2 7.6 20.4 -1 16.2 16.5 11.8 -1 -1 2.7 6 6.3 13 -1 5.4 12.5 -1 16.4 -1 12.1 20.5 19.3 15.4 -1 -1 12.1 2.6 -1 -1 15.8 -1 15.9 -1 -1 5.3 17.4 12.6 21.4 8.7 19.9 15.7 18.3 -1 6.5 17.4 16.4 0.4 -1 15.6 18.5 18.7 -1 9.2 -1 3.3 16.1 16 -1 13.7 -1 22.1 4.1 -1 2.1 -1 3.2
bos 25.6 8.6 20.6 11.5 -1 21.7 7.8 10.9 21.7 -1 32.8 1.6 31.5 13.4 16.6 33.5 28.1 31.2 23 36.9 24.9 18.2 20.6 33.6 -1 26.8 -1 7.6 27.1 23.7 3.8 8.2 22.8 25.4 23.4 15.5 9.7 29 -1 24.8 19.7 17 -1 -1 1.6 8.1 7.9 16.2 -1 7 9.2 -1 26 -1 17.5 33.8 25.1 14.2 -1 -1 10.9 3.1 4.7 -1 24.3 -1 22.4 -1 -1 5.7 22.2 20.6 32.6 7 29.8 24.2 31.8 -1 6 29.4 29.1 0.9 -1 23.2 24.4 29 -1 5.1 -1 4.5 22.7 25.7 -1 13.9 -1 29.5 5.4 -1 3.1 -1 5.4
bul 23.8 9.1 20.6 11.5 -1 20.3 7.4 1.5 21.4 24.2 -1 1.2 30.5 11.6 16.2 23.8 25.3 29.1 21.9 34.9 23.3 18 18.9 31.9 -1 25.4 -1 7.5 25.4 23.6 3.9 7.2 22.9 25 22 14.3 9.3 26 -1 24.2 19.4 15 -1 -1 1.6 8.6 7.6 15.8 -1 6.4 9.8 -1 24.2 -1 16.6 32.1 23.2 14.6 -1 -1 11.1 3.1 -1 -1 22.2 -1 21.8 -1 -1 5.5 22.4 19.2 30.7 6.8 28.7 24.9 27.4 -1 6.1 25.9 24.6 0.6 -1 22.1 23 27.6 -1 -1 -1 3.8 20.4 24.9 -1 14.1 -1 27.7 4.9 -1 1.7 -1 4.2
mya 8.6 4.2 4.3 -1 -1 -1 -1 -1 9.6 5.9 9.1 -1 11.1 -1 5.2 5.4 6.2 9 7.1 12 7.3 8.1 5.8 10.6 -1 8 -1 -1 6.9 7.2 1.5 3.5 5.4 10.4 6.7 6.1 2.9 8.4 -1 7.6 7.3 6.5 -1 -1 -1 -1 2.6 5.3 -1 2.2 6.5 -1 7.1 -1 6.1 9.3 9.2 7.8 -1 -1 5.2 1 3.6 -1 6.8 -1 7.8 -1 -1 2.8 7.1 5.4 8.8 2.6 8.6 6 7.6 -1 2.2 7.2 7.4 -1 -1 7.4 9.9 7.4 -1 -1 -1 1.9 5.4 6.1 -1 6.4 -1 11.2 2.1 -1 1.4 -1 1.7
cat 26 8.7 20.7 10.5 -1 28.5 7.4 11.6 21.9 24.3 31.7 2.4 -1 14.7 15.9 24 25.2 32.2 23.2 40.2 23.6 20 20.6 37 -1 33.8 -1 6.9 27.2 23.8 4.5 8.8 22.4 24.5 22.4 15.4 10.8 29.9 -1 27.8 19.5 17 -1 -1 1.9 8.2 8.7 15.3 -1 7.5 14.8 -1 23.1 -1 18 29.8 26.4 14.7 -1 -1 11 2.6 -1 -1 24.6 -1 27.8 -1 -1 5.8 21.8 19.4 37.6 7.1 31.3 23.1 26.6 -1 6 26.2 24.8 0.8 -1 26.8 25.3 29.5 -1 -1 -1 4.6 22.9 23.8 -1 13.8 -1 29.6 6.5 -1 3.1 -1 5
ceb 17.6 6.2 8.6 5.9 -1 14.7 4.6 5.8 14.8 14.4 16.8 1.7 22.3 -1 10.1 14.1 14.4 18.8 14.8 27.3 14 21.6 11.5 21.3 -1 18.1 -1 4.1 15.5 14.3 3.2 8.2 9.9 15.8 14 10.6 7.9 21.1 -1 16.4 11 15.1 -1 -1 1.4 5.7 6.2 9.6 -1 5.8 10.2 -1 13.6 -1 12.3 17.6 16.5 8.6 -1 -1 7.6 2.4 6 -1 15.4 -1 16.7 -1 -1 4.6 11.1 11 22.2 5.3 17.9 13.6 14.8 -1 3.9 14.3 14 1 -1 15.7 17.8 17.5 -1 3.3 -1 3.4 12.3 12.9 -1 8.3 -1 19.4 6.1 -1 5.4 -1 5.8
zho 16.1 7.1 15.3 8.5 -1 14.3 6 8.8 18 15.8 21.1 1.4 22.2 8.4 -1 15.9 17.2 19.7 16.3 21.7 16.3 14.1 14.7 22.4 -1 17.7 -1 5.1 16.6 16.7 3.2 5.4 15 19.4 16.8 11 7.4 20.6 -1 17.1 18 11.8 -1 -1 1.6 5.7 6.4 14.6 -1 5.1 7 -1 18.2 -1 10.8 20 18.4 11.8 -1 -1 8.7 2.4 -1 -1 15.7 -1 14.9 -1 -1 4.4 17.3 13.7 21.4 5.3 19.6 15.9 16.6 -1 4.8 17.6 17 -1 -1 16.2 17.6 18 -1 -1 -1 3.5 16.7 15.5 -1 11 -1 24.7 4 -1 1.7 -1 3.9
hrv 23.4 8.5 19.2 10.3 -1 20.7 7 11.7 21.1 30.5 30.2 1.5 30 13.1 16.1 -1 26.3 28.8 22.6 33 23.4 16.9 20.1 31.3 -1 25.4 -1 6.9 25.5 22.6 3.3 7.8 21.6 23.6 22.4 14.8 9.2 27.3 -1 24.4 19 15.5 -1 -1 1.4 7.7 7.6 15.4 -1 6.5 8.5 -1 24.7 -1 16.7 30.9 23.6 13.8 -1 -1 10.5 2.7 -1 -1 22.8 -1 21.1 -1 -1 5.5 20.9 19.6 30.2 6.4 28.2 23.3 27.7 -1 5.5 27.7 27.4 0.7 -1 22.3 22.5 27.3 -1 -1 -1 4.2 21.3 23.9 -1 13.2 -1 27.8 5.2 -1 3.1 -1 5.1
ces 24 8.3 19.3 10.5 -1 20.2 7.1 -1 20.9 24.9 30 1.4 29.5 12.4 16.1 25.5 -1 28.8 22.2 34.3 23.9 18.2 20.3 31.9 -1 25.5 -1 6.9 25.9 22.5 3.4 7.9 21.2 24.2 23.3 15.1 9.5 27.3 -1 23.8 19 15.3 -1 -1 1.5 7.9 8.1 15.5 -1 6.9 10.1 -1 24.6 -1 17 29 24 13.7 -1 -1 10.5 2.9 -1 -1 22.9 -1 21.1 -1 -1 5.5 21.2 20.3 30.5 6.6 28.8 23.4 26 -1 5.5 32.9 26.3 1.1 -1 22.1 23.3 27.2 -1 -1 -1 4.3 21 23.9 -1 13.2 -1 28.3 5.3 -1 2.2 -1 4.1
dan 29.2 8.7 21.1 10.8 -1 22.2 7.4 12.1 22.3 25.7 32.3 2.3 33.8 13.8 16.4 25.4 26.9 -1 25.2 43.1 25.4 20.3 22.5 36 -1 27.5 -1 7.4 29.9 23.5 4 9 23.6 25.8 23.9 17.4 11.1 31.6 -1 26.2 20.2 17.9 -1 -1 1.7 8.1 9.1 16.2 -1 7.7 14.4 -1 24.7 -1 19.6 30.3 27.6 15.1 -1 -1 11.5 3.1 -1 -1 30.5 -1 23.6 -1 -1 6 22.7 19.2 34.7 7.4 31.1 23 27.8 -1 6.2 28.3 25.8 1.1 -1 23.6 25.9 37 -1 6.1 -1 4.8 24.2 24.9 -1 14.1 -1 30.7 6.2 -1 2.7 -1 6.5
nld 21.2 7.6 16.5 8.8 -1 17.8 6.5 10.6 18.4 18.9 24.5 1.8 26.1 10.4 14.1 19.6 20.3 25.6 -1 29.5 19.4 16 17 27.6 -1 21.4 -1 6.3 22.1 18.5 3.2 7.1 17.3 20.3 19.9 13.1 8.7 23.3 -1 21.2 17.4 13.2 -1 -1 1.4 7 7.4 13.4 -1 6.2 7.1 -1 19.9 -1 14.8 22.9 20.2 12.7 -1 -1 9.5 2.5 -1 -1 20.7 -1 18.4 -1 -1 5.1 18 16 25.9 6.3 23.3 18 19.9 -1 4.8 21.3 20.5 1.2 -1 19.7 19.5 24.1 -1 -1 -1 4 18.8 18.9 -1 11.6 -1 24.1 4.6 -1 2.1 -1 5.4
eng 38 10 26.1 12.2 -1 26.4 8.3 13.2 26.6 29.4 38.7 4.4 40.8 15.5 18.6 29 30.7 42.5 27.4 -1 28.5 24.4 24.1 43.2 -1 33.3 -1 8.1 33.6 27.4 5.2 10.1 28.3 32.1 27 18.5 12 40.4 -1 29.9 22.4 21.5 -1 -1 1.9 9 10.6 19.1 -1 8.9 21.8 -1 28.1 -1 16.2 35.8 35.4 18.1 -1 -1 13.7 3.2 -1 -1 33.5 -1 30.6 -1 -1 7.1 27.4 21.8 44.4 8.3 37.2 27.4 31.7 -1 6.7 32.4 29 1.5 -1 26.7 32 40.4 -1 -1 -1 5.4 28.4 28.7 -1 16.9 -1 36 9 -1 3.9 3.2 8.6
est 22.5 8.1 18.2 10.5 -1 19.4 7.1 11.7 20.9 22.6 28.3 1.5 28.6 12.3 15.6 22.7 23.7 27.8 21.6 31.8 -1 17.7 21.7 30.1 -1 24 -1 7.3 24.4 20.6 3.6 7.7 20.2 23.3 22 14.7 8.9 26 -1 22.6 19.1 15.6 -1 -1 1.6 7.6 7.8 15 -1 6.7 17.7 -1 23.7 -1 15.7 26.5 22.8 14.1 -1 -1 10.5 2.9 -1 -1 21.9 -1 19.8 -1 -1 5.6 20.6 18.4 29.2 6.8 26.8 22 24.3 -1 5.8 24.9 24.1 0.9 -1 20.9 21.5 26 -1 -1 -1 4.1 21.1 22.4 -1 13.1 -1 27.5 5.3 -1 2.1 -1 3.4
tgl 22.1 7.9 12.4 8.9 -1 18.2 6 8.8 18.7 18.3 23.5 2.2 26.8 20.6 12.3 18.5 19.1 24.5 18 33.5 18.6 -1 14.8 26.9 -1 21.8 -1 5.4 20 18.1 4.1 9.3 13.7 21.1 17.6 13.4 10.4 26.4 -1 19.6 16 17.4 -1 -1 1.7 7 8 11.9 -1 7.6 14.4 -1 18 -1 14.7 23 24.2 12.8 -1 -1 9.9 2.9 -1 -1 19.2 -1 20.2 -1 -1 5.9 15.7 14.7 27.1 7.1 23 16.6 20.8 -1 5.3 19.9 18.7 0.8 -1 18.7 22.3 21.9 -1 4.8 -1 4.2 18 18.7 -1 12.1 -1 26.2 6.7 -1 5.2 -1 6.4
fin 20.2 7.6 17.3 9.7 -1 17.9 6.8 10.4 18.9 20.5 25.7 1.1 26.8 10.1 14.6 21.1 21.6 26.1 20.7 28.5 23.3 13 -1 28.3 -1 22.3 -1 6.4 22.1 19.8 3 7 18.3 21.3 20.4 14 7.8 23.7 -1 21.7 17.9 13.6 -1 -1 1.4 7 7 14 -1 6.2 15.9 -1 22.1 -1 14.9 24 20.5 12.3 -1 -1 9.3 2.4 -1 -1 19.7 -1 18.1 -1 -1 5.1 18.6 17.1 26.7 6 24.5 19.7 22 -1 5.2 23 22.6 0.7 -1 19.6 19.5 25.1 -1 -1 -1 3.8 19.2 20.1 -1 11.9 -1 25.6 4.5 -1 1.5 -1 1.7
fra 25.9 8.1 20.9 10.8 -1 23.7 7.2 11.4 21.1 23.9 31.3 1.9 35.7 12.9 16.1 23.9 25.6 31.7 23.6 39.3 23.3 19.7 20.4 -1 -1 29.7 -1 6.7 27 24.1 3.8 8.3 22.8 24.9 22.7 15.3 10 30.1 -1 28.3 19.9 16.9 -1 -1 1.6 7.9 8.3 15.8 -1 7.1 17.5 -1 24.5 -1 17.3 29.2 25.8 14.4 -1 -1 9.9 2.7 -1 -1 24.7 -1 28.7 -1 -1 5.7 22.1 19.5 36.4 6.8 32 23.4 25.9 -1 5.7 27.2 24.6 0.9 -1 24.8 22.7 29.5 -1 -1 -1 4.4 22.6 23.6 -1 13.5 -1 29.5 6.1 -1 1.9 -1 4.8
ful 2.2 -1 -1 -1 -1 -1 -1 -1 1.9 -1 2.3 -1 3.1 -1 -1 -1 -1 2.1 -1 3.5 -1 -1 -1 2.2 -1 2.4 -1 -1 -1 2.2 -1 -1 -1 1.9 1.8 -1 -1 -1 -1 2.3 1.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.5 -1 -1 -1 -1 -1 1.8 -1 2.1 -1 -1 -1 -1 -1 -1 -1 -1 2.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.1 -1 -1 -1 -1 -1
glg 24.6 8.3 19.7 10.2 -1 26.7 7.1 11.4 20.6 23.2 29.8 1.5 36.4 13.9 15.9 23.5 24.4 30.1 22.5 36.6 22.7 19.1 19.7 35.2 -1 -1 -1 -1 26.1 23.1 3.6 8.5 22 23.6 21.9 15.3 9.7 28.2 -1 27.1 19 16.2 -1 -1 -1 8 8.1 15.2 -1 6.3 16.4 -1 23.6 -1 17.3 28.4 24.7 13.7 -1 -1 9.4 2.6 -1 -1 23.8 -1 25.6 -1 -1 5.7 21.2 18.8 34.5 6.5 30.2 22.3 24.5 -1 5.5 25.5 23.8 0.9 -1 27.1 22.1 27.8 -1 -1 -1 4.4 21.7 22.6 -1 12.7 -1 28.6 6.1 -1 2.6 -1 2.9
lug 3.3 -1 -1 -1 -1 -1 -1 -1 2.5 2.6 3.3 -1 4.3 3.7 1.7 2.4 2.3 2.9 3.2 5.8 3 3.8 2.5 3.8 -1 3.1 -1 -1 2 3.1 -1 -1 1.4 2.3 2.7 3 1.3 3.5 -1 3.4 2 2.9 -1 -1 -1 -1 -1 1.2 -1 -1 1.9 -1 2.2 -1 3.2 3 3.1 1.4 -1 -1 -1 -1 -1 -1 3.6 -1 4 -1 -1 -1 1.5 2.9 2.8 -1 3.5 2.4 1.9 -1 -1 2.6 2.8 -1 -1 3.8 4 2.9 -1 -1 -1 0.5 1.9 1.9 -1 -1 -1 1.8 2.6 -1 1.8 -1 2
kat 12.7 5.8 8 5.7 -1 9.7 2.2 4 14.1 9.7 14.1 -1 17.8 -1 6.3 9.1 10 12 10 16.5 12.8 5.3 9.7 17.5 -1 13.6 -1 -1 9.6 12.9 2 3.9 10.9 15 11.8 7.6 3.3 11.7 -1 12 7.7 8.3 -1 -1 -1 -1 4.2 4.9 -1 3 10.6 -1 13.5 -1 8.2 14.5 12 9.5 -1 -1 6.5 1.5 -1 -1 10.3 -1 11.2 -1 -1 4.1 11.9 9 15.8 3.9 12.3 11.2 10.2 -1 3.6 9.8 9.4 -1 -1 12.5 12.6 9.8 -1 4.1 -1 2.2 9.7 11.5 -1 9 -1 15.8 2.4 -1 1.4 -1 1
deu 26.1 8.6 20.1 10.6 -1 21.3 7.2 11.5 21.3 24.7 30.8 1.8 31.8 13.2 16.3 24.4 26.3 33.3 25.2 38.2 24.3 19.4 20.7 33.3 -1 26.9 -1 7.4 -1 23 3.7 8 22.3 24.9 23.6 16.2 9.4 28.9 -1 25.5 19.5 15.7 -1 -1 1.5 7.7 8.6 16 -1 7 9.3 -1 24.2 -1 19.5 29.1 25.1 14.3 -1 -1 10.8 2.8 -1 -1 25.4 -1 22.5 -1 -1 5.9 22 19.7 32.1 6.7 29.7 23.2 26.2 -1 5.9 28 25.6 1 -1 22.9 23.9 31.5 -1 5.1 -1 4.4 23.1 23.8 -1 13.6 -1 29.1 5.4 -1 1.8 -1 5.1
ell 20.9 8.3 18.3 10.6 -1 19.1 6.5 -1 19.3 20.5 26.8 0.9 27.7 10.7 14.3 20.6 21.5 24.8 19.3 29.5 20 13.4 16.7 28.9 -1 22.8 -1 6.2 21.8 -1 3.2 6.9 19.5 21.5 19.1 13.1 8.7 23.9 -1 22 17.6 13.9 -1 -1 1.4 6.9 7.3 14.1 -1 5.5 15.7 -1 20.5 -1 14.7 25.6 20.7 12.2 -1 -1 9.8 2.7 -1 -1 19.7 -1 19.9 -1 -1 5.1 19.8 16.3 27.4 6.2 25.9 19.4 22.6 -1 5.8 22.3 21.6 0.5 -1 20.4 20.1 23 -1 -1 -1 3.8 18.7 20.1 -1 12.5 -1 25 4.1 -1 1.2 -1 1.2
guj -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
hau 9.9 3.5 4 3.7 -1 6.1 2.4 3.5 6.3 8.4 9.4 0.5 11.8 5.4 3.9 7.5 6.4 9.3 6.7 14.1 8.4 9.6 6.6 10.7 -1 9.3 -1 1.7 6.8 8.1 1.4 -1 6.3 8.5 7.4 7.2 3.9 9.5 -1 8.3 3.5 7.5 -1 -1 0.8 2.4 3.2 3.7 -1 4 6.7 -1 7.2 -1 4.9 9.6 8.7 3.8 -1 -1 3.6 1.3 2.4 -1 8.5 -1 8.2 -1 -1 2.5 6.5 6.2 9.8 2.4 9.7 6.6 8.1 -1 2.1 7.9 7.7 0.8 -1 8.3 11.3 9.4 -1 2.3 -1 2.3 4.8 6.8 -1 4.7 -1 11.2 3.8 -1 3.1 -1 3
heb 22.7 8.4 19.7 10.7 -1 19.2 6.2 -1 19.8 21.5 28.3 1 29.6 8.4 14.3 21.7 23.1 27.4 19.9 33.3 21.5 3.2 17.3 30.8 -1 23.6 -1 6.2 23 22.1 3.7 7.1 -1 23.3 19.5 14 9.1 26.2 -1 21.6 17.3 15 -1 -1 -1 -1 7.4 14.6 -1 6.4 16.3 -1 21.6 -1 14.7 27.5 22.9 10.1 -1 -1 4.3 2.5 -1 -1 21.4 -1 20.9 -1 -1 5.3 21.4 16.7 28.9 6.3 26.5 20.5 24.2 -1 5.9 24 22.2 0.4 -1 20.2 21 25.3 -1 -1 -1 3.6 19.5 22 -1 12.1 -1 26.9 4.2 -1 1.1 -1 0.8
hin 20.7 9 17 10.1 -1 16.4 6.6 9.5 23.7 18 24.6 1.3 25.5 7.4 13.9 18.1 19.6 23.4 17.7 31.8 19 16.9 14.9 25.9 -1 20.1 -1 5.8 19.8 18.5 7 7 17.9 -1 17.8 12.1 8.8 22.9 -1 18.7 17.9 12.7 -1 -1 2.8 6.6 7.4 13.9 -1 5.9 14.5 -1 18.6 -1 12.9 23.2 21 16.6 -1 -1 14.7 2.8 -1 -1 18.6 -1 18 -1 -1 6 19.9 14.6 25.4 10.2 23 17.6 21.5 -1 7.3 20.2 19 0.5 -1 17.5 20.5 21.5 -1 10.4 -1 3.4 18.6 18.6 -1 17 -1 24.8 4.3 -1 2.3 -1 3.6
hun 21.5 8 17.5 9.6 -1 18.7 7.2 10.7 19.6 21 27.2 1.2 27.2 12.3 15.2 21.3 22.7 26.6 20.8 30.4 22.2 15.6 19.2 28.6 -1 22.8 -1 6.5 22.9 20 3.6 7.5 19.3 21.8 -1 14 8.1 25.4 -1 22.2 18.7 14.7 -1 -1 1.6 7.6 7.3 14.7 -1 6.4 15.9 -1 22.2 -1 15.4 24.9 22.3 13.1 -1 -1 9.9 2.9 -1 -1 20.9 -1 19.3 -1 -1 5.6 19.4 17.3 27.8 6.2 25.8 20.1 22.9 -1 5.7 23.7 22 0.8 -1 20.5 20.3 24.5 -1 -1 -1 4.1 20.4 20.4 -1 12.6 -1 26.6 5.2 -1 1.4 -1 1.3
isl 19 7 14.2 8.6 -1 15.5 5.9 9.6 16.6 16.8 20.8 1.4 23.1 10.2 11.4 17.1 17.7 23.7 16.7 26.1 17.7 15.6 15.1 24.1 -1 18.5 -1 5.2 18.4 15.7 3.1 7.5 15.5 18.2 16.4 -1 8.8 21.5 -1 17.3 15.4 13.2 -1 -1 1.5 5.9 7.2 11.8 -1 6.3 12.1 -1 17.3 -1 13.3 20.3 19.3 11 -1 -1 8.5 2.2 -1 -1 18.1 -1 16.6 -1 -1 4.9 15.8 14.2 22.5 5.5 21 15.5 18.4 -1 4.9 18.8 18.1 1 -1 16.5 19.1 21.3 -1 5.4 -1 3.8 16.2 16.6 -1 10.4 -1 23 5.1 -1 2.8 -1 3.4
ibo 9.2 2.9 4 3.5 -1 6.4 2.8 3.1 7 7.7 8.6 0.9 11 7.9 4.2 6.7 6.1 8.3 6.7 12.9 7.7 9.3 5.8 9.5 -1 8.5 -1 1.9 6.2 7.4 1.9 6 5.6 7.4 6.5 6.7 -1 10.5 -1 8.3 4.2 8.1 -1 -1 0.9 2.6 3.5 4 -1 4.4 6 -1 6.5 -1 6.9 8.9 8.7 4.2 -1 -1 3.8 1.5 3.5 -1 8 -1 8.3 -1 -1 2.5 5.4 6.1 9 2.6 9.4 6.5 7.5 -1 2.1 7.3 7 0.9 -1 8 10.2 8.5 -1 2.9 -1 2.2 5.2 6.2 -1 4.1 -1 9.9 4.2 -1 3.5 -1 3.9
ind 23.5 8 19.4 9.8 -1 19.5 5.6 10.4 21.7 21.7 27.7 1.8 28.9 11 16 21.9 22.9 28.3 21.2 36.5 21.9 13.9 17.9 30 -1 23.7 -1 6.2 23.5 20.9 3.9 9 20.6 24.3 20.8 15.3 11.1 -1 -1 22 19.3 21.4 -1 -1 1.5 6.8 8.6 15.9 -1 7.2 16.2 -1 21.9 -1 14.8 26.9 30.2 11.5 -1 -1 6.1 2.7 -1 -1 22.4 -1 20.5 -1 -1 6 21.2 17.4 30 6.1 27.1 20.2 23.1 -1 5.6 24.1 22.4 1.2 -1 20.3 24.3 26.4 -1 2.5 -1 4.8 21.7 21.4 -1 13.3 -1 31.1 6.2 -1 2.9 -1 4.3
gle -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ita 21.5 8.2 18.4 9.7 -1 20.9 7 10.7 19.7 20.8 28.2 2.2 31.3 13.6 14.7 21.6 22.2 26.7 21.8 30.5 20.9 17.8 18.3 32.8 -1 26.5 -1 -1 23.5 21.7 4 7.7 19.7 22.3 21 13.9 9.2 24.9 -1 -1 18.9 14.6 -1 -1 1.5 7.4 7.7 14.6 -1 6.8 8.3 -1 21.3 -1 15.7 26.4 22.3 13.8 -1 -1 10 2.7 -1 -1 21.3 -1 20.8 -1 -1 5.5 19.7 17.9 30.8 6.5 27.5 20.6 22.4 -1 5.4 23.5 22.5 1 -1 23.9 21.4 24.8 -1 -1 -1 4 20.7 21 -1 12.1 -1 26.4 5.4 -1 2.5 -1 5.8
jpn 14.5 7.6 14.1 8.1 -1 12.7 5.5 6.7 17.3 14.1 19 1 20.5 7.4 14.4 14.5 15.2 18.1 15 20.1 15.6 13.4 13.1 20.2 -1 16.1 -1 4.5 15.4 16.3 3.3 5.1 14.3 19 15.1 10.4 6.3 18.5 -1 15.8 -1 10.3 -1 -1 1.6 5.7 5.9 16.6 -1 4.9 6.3 -1 16.3 -1 10.7 18.5 16.4 12.2 -1 -1 8.7 2.5 -1 -1 14.3 -1 13.7 -1 -1 4.2 15.6 12.6 19 5.6 18.1 14.1 16.2 -1 4.7 15.5 15.3 -1 -1 14.8 16.2 16.3 -1 5.4 -1 2.8 14.9 14.8 -1 10.4 -1 21.2 3.3 -1 1.3 -1 2.4
jav 17.9 6.6 12.3 6.9 -1 13.9 4.5 7.6 16 15.3 18 1.9 21.2 14.3 11 14.5 15.9 19.7 14.9 26.7 14.7 16.3 12.1 21.4 -1 17.4 -1 4.5 15.6 15.2 3.5 8.5 13.9 16.9 14.6 11.3 9.5 26.5 -1 15.4 12.8 -1 -1 -1 1.5 5.6 7.1 10.6 -1 6.2 11.3 -1 14.9 -1 12.2 18.7 22 10.8 -1 -1 7.6 2.4 1.2 -1 16.3 -1 16.7 -1 -1 5.2 14.7 11.9 21.3 5.4 19.3 14 16.4 -1 4.5 16.1 15.5 1.3 -1 15 19.4 18.2 -1 4.1 -1 3.8 15.3 14.5 -1 9.3 -1 22.4 6.3 -1 4.6 -1 5.7
kea 11.7 -1 7.6 -1 -1 9.3 -1 -1 10.4 8.3 11.5 -1 14.8 8.1 -1 8.8 10.1 12.2 10.5 18.5 9.7 7.7 8 15.1 -1 12.8 -1 -1 10.3 10.8 -1 -1 9.5 10.8 10.3 7.5 3.2 12.5 -1 11.5 8.9 7.9 -1 -1 -1 -1 2.6 -1 -1 2.3 6.4 -1 9.2 -1 6.8 11.9 11.9 -1 -1 -1 -1 -1 -1 -1 11.3 -1 12.2 -1 -1 -1 9.1 8.5 17.7 -1 11 9.4 8.6 -1 -1 9.8 9.7 -1 -1 11.2 11.9 11.8 -1 -1 -1 -1 9.9 8.5 -1 -1 -1 12.8 3.1 -1 -1 -1 -1
kam -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
kan -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
kaz 9.7 5 4.7 5.5 -1 7.3 4.6 3.9 10.3 10.1 12.9 -1 13.9 4.3 6 9.2 8.6 10.7 7.8 -1 10.5 8.8 8.8 12.4 -1 11 -1 1.7 8.1 10.8 2.2 4.4 7.6 12.2 10.3 6.7 3.3 5.1 -1 11 6.5 6.9 -1 -1 1.1 -1 2.3 6.1 -1 2.9 9.2 -1 11 -1 5.8 13 8.2 6.1 -1 -1 5.4 2.9 2.8 -1 9.1 -1 8.6 -1 -1 3.2 8.5 7.8 11 3.9 11.2 8.5 10.4 -1 2.6 9.8 9.2 -1 -1 10.7 9.6 9.9 -1 2.9 -1 2.1 8.5 9.7 -1 6.4 -1 10.8 2.9 -1 2 -1 1.9
khm 13.9 5.3 8.2 5 -1 9.4 2.4 4.9 12.8 11.7 15 -1 17 5.5 8.6 11.2 12.5 15.9 11.5 19.2 12.2 11.1 9.8 17.1 -1 13.8 -1 2.6 11.9 11.5 2.1 6.4 10.3 14.5 12 9.4 5.7 16.2 -1 12.2 8.6 11.2 -1 -1 1 2.1 -1 7.6 -1 5.2 9.5 -1 11.9 -1 7.5 14.6 15.6 8.6 -1 -1 6.2 1.6 4.3 -1 11.8 -1 11.5 -1 -1 3.8 11.7 9.6 16.5 3 15.4 11.1 12.6 -1 3.6 12.5 12.3 0.4 -1 11.9 15 13.6 -1 5.1 -1 3.8 9.3 11.7 -1 7.8 -1 18.6 3.7 -1 3 -1 3
kor 15.5 7.6 14.7 8 -1 13.8 5.8 7.3 18.2 15.4 20.4 0.8 20.9 6.7 14.4 15.9 16 19.2 15.3 21.7 16.5 11.8 14.2 22.2 -1 16.7 -1 4.7 16.2 16.4 3.5 5.7 14.7 19.8 16 11.1 6.9 20.3 -1 16.3 20.4 11.1 -1 -1 1.7 5.7 6 -1 -1 4.6 6 -1 17.3 -1 10.4 19.7 17.8 12.5 -1 -1 9 2.5 -1 -1 15 -1 13.9 -1 -1 4.4 16.6 12.8 20.5 6 19 14.8 17 -1 4.9 16.7 16.6 -1 -1 15.3 17.3 17.1 -1 6.3 -1 3.3 16.8 15.5 -1 11.1 -1 22.6 3.4 -1 1.7 -1 2.9
kir -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
lao 12.3 3.9 6.7 4.1 -1 7.7 1.7 3.6 10.6 9.9 11.7 0.5 13.6 5.5 7.4 8.9 9.4 12.1 9.7 16.7 9.8 11.2 7.7 14.1 -1 11.7 -1 2.3 9.2 9.1 1.5 -1 8.6 12.2 9.5 8.7 4.4 11.2 -1 10.6 7.1 11 -1 -1 1 2.2 6.4 6.5 -1 -1 7.6 -1 8.8 -1 7.7 11.7 14.3 7.2 -1 -1 4.9 1.3 4.4 -1 10.5 -1 11 -1 -1 3 9 8 13 2.2 13 8.8 10.2 -1 2.9 10.4 9.8 -1 -1 10.3 12.8 11.5 -1 4.8 -1 4.4 7.3 8.8 -1 6.1 -1 16.5 3.9 -1 3.2 -1 3.3
lav 19.2 7.2 16.1 8.8 -1 16.4 6.2 1.4 18.5 9.8 16.3 1.1 25.1 7.7 8.5 6 14.9 18.6 11.3 28.2 21.1 15.5 16.9 26.5 -1 20.5 -1 6.2 15.1 19.3 1.9 5.9 17.5 21 18 12 7.1 22.2 -1 15.7 14.2 12.6 -1 -1 -1 4 6.6 6.5 -1 4.3 -1 -1 22.8 -1 11.8 21 19.5 11.1 -1 -1 8.8 2.3 -1 -1 16.7 -1 15.4 -1 -1 4.8 18.3 14.7 25 5.6 11.8 16.1 6.9 -1 3.8 11.6 9.9 -1 -1 18.4 20.2 13.3 -1 -1 -1 3.5 17.5 15.6 -1 11.4 -1 16.9 3 -1 1.7 -1 1.8
lin 4 -1 1.7 -1 -1 -1 -1 1.4 3 3 4.1 -1 5.6 4.1 2.3 3.3 3 4 4.7 5.8 3.5 4.2 3.3 5.8 -1 4.8 -1 -1 3.1 4.4 0.8 2.9 2.2 2.9 3.8 4.2 1.3 4.8 -1 4.7 2.6 3.2 -1 -1 -1 1.9 0.9 1.5 -1 -1 2.3 -1 3.1 -1 3.7 3.9 4.2 1.7 -1 -1 1.7 -1 0.8 -1 4.7 -1 4.9 -1 -1 -1 2.3 3.7 4.2 1.1 4.6 3.2 2.8 -1 -1 3.1 3.4 -1 -1 5.3 4.3 3.9 -1 -1 -1 0.5 2.5 2.8 -1 -1 -1 3.2 2.6 -1 2.1 -1 2
lit 19.9 7.7 17.6 10.3 -1 17.9 7.1 12.5 18.4 20.5 26.8 1.1 26.2 10.6 14.7 21.3 22.6 24.5 19.8 28.2 22 16.2 18.3 28.2 -1 22 -1 6.7 21.4 20.2 3.5 7.2 18.7 21.6 20.2 13.3 8.1 23.8 -1 21.3 18.1 13.6 -1 -1 1.6 7.6 7 14.1 -1 6 17.8 -1 -1 -1 14.3 25.4 20.4 12.4 -1 -1 9.7 2.8 -1 -1 19.4 -1 18.3 -1 -1 5.2 18.9 18.3 26.5 5.8 24.5 21.4 22.6 -1 5.3 23.1 22.4 0.7 -1 19.2 19.1 23.1 -1 2.1 -1 3.7 18.9 21.3 -1 12.2 -1 24.8 4.8 -1 1.6 -1 2.1
luo -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ltz 24.1 7.3 15.9 8.9 -1 18 5.8 9.5 18.7 21.1 25.4 1.2 28.4 14.4 12.7 20.3 21.6 29.2 22 33.8 20.6 17.5 17.4 30.6 -1 23.9 -1 6.4 30 19.3 3.1 7.3 18.5 21.5 20.2 13.6 8 24 -1 21.8 15.4 15 -1 -1 1.3 6.6 7.4 12.5 -1 5.9 6.1 -1 19.8 -1 -1 24.5 21.3 12.4 -1 -1 9.4 2.4 9.2 -1 23 -1 21.4 -1 -1 5.4 18.5 15.2 28.6 5.4 25.6 19.3 23 -1 5 23.1 21.2 1 -1 19.5 20.5 26.9 -1 5.5 -1 3.9 17.9 19.4 -1 11.4 -1 24.5 5.3 -1 4 -1 5.5
mkd 24.6 9.1 20.6 11.7 -1 21.6 7.3 2.5 21.8 27.4 33.9 1.4 32 12.2 16.1 26.6 25.5 29.4 22.5 36 23.1 18.6 19.1 32.4 -1 26.4 -1 7.3 25.1 23.9 4 7.5 23.1 25.2 22.2 14.9 10.1 27.5 -1 24.2 19.3 15.6 -1 -1 1.7 8.3 7.9 15.8 -1 6.7 9.7 -1 23.8 -1 16.5 -1 23.8 14.7 -1 -1 11.3 3.2 -1 -1 23.1 -1 22 -1 -1 5.3 22.5 19.3 31.6 6.9 29.2 23.7 30.1 -1 6.3 26.8 25.8 0.5 -1 22.3 23.4 27.7 -1 7.2 -1 3.8 20.3 25 -1 13.9 -1 28.2 4.9 -1 2.3 -1 4.7
msa 24.2 8.1 18.5 9.5 -1 19.1 5.6 10.3 21.2 21 26.7 1.8 28.1 10.5 14.9 20.6 22.3 27.7 20.1 36.1 20.9 18.1 16.9 29.3 -1 22.9 -1 6.1 22.6 20.1 4.2 9.2 19.2 24 20 14.5 11.6 32.3 -1 21.1 18.9 19.2 -1 -1 1.6 6.9 8.6 14.8 -1 7.7 15.5 -1 20.8 -1 14.3 25.5 -1 13.4 -1 -1 7.9 2.9 -1 -1 22.1 -1 20.5 -1 -1 6 20.2 16.5 28.9 6.5 26.3 19.3 22.4 -1 5.6 22.6 21.4 1.1 -1 19.9 24.5 26 -1 4.8 -1 4.9 20.8 20.1 -1 13 -1 29.7 6.7 -1 3.5 -1 4.9
mal 15.8 8.3 13 8.3 -1 12.7 5.4 7.7 19 13 18.6 0.8 20.2 9 10.6 13.1 14.3 17.6 13.6 22.6 14.6 13.6 11.6 20.5 -1 15.6 -1 4.3 14.9 14.5 5.3 5.5 13.8 20.7 13.2 9.7 6.8 17.2 -1 14.1 14.3 10.5 -1 -1 2.6 5.3 6.4 11.2 -1 5.3 11 -1 14.5 -1 11.1 17.4 16 -1 -1 -1 10.7 2.4 -1 -1 14.1 -1 14.6 -1 -1 4.7 14.8 10.8 18.8 7.4 17.3 13.1 16 -1 5.8 14.8 14.5 0.3 -1 13.6 16.5 16.4 -1 11 -1 3 14.1 14.1 -1 12.2 -1 20 3.4 -1 2.3 -1 3.2
mlt -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mri -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mar 15.7 8 11.9 8.3 -1 11.8 5.6 7.1 19.6 13.6 17.9 1 19.4 8.1 10.6 13.4 13.8 17.1 13.3 22.6 14.2 14 11.5 18.9 -1 15.4 -1 4.4 14.4 14.2 6.2 6 13.1 23.1 13 10.1 7.1 17.1 -1 14.3 14.5 10.9 -1 -1 2.6 6 6 11.1 -1 4.9 11.3 -1 14 -1 10.7 17.7 16.6 14.6 -1 -1 -1 2.7 -1 -1 13.8 -1 14.2 -1 -1 5.3 14.8 10.8 18.1 8.1 16.4 13.3 16.2 -1 6.2 14.5 14.1 0.5 -1 13.8 15.6 15.8 -1 9.2 -1 2.9 13.9 14.2 -1 13 -1 19.6 4 -1 2.4 -1 3.3
mon 7.2 4 3.1 4.1 -1 5 2.8 3 8.1 6.1 9.1 0.2 9.7 3.1 4.2 5.7 5.5 7.4 5.6 10.4 7.4 7.8 5.9 9 -1 7.4 -1 1.1 5.6 8 1.7 3.3 5.3 8.8 7.3 5.4 2.2 5.2 -1 7.4 5.3 4.9 -1 -1 0.9 3.7 2 4.8 -1 2.3 6.1 -1 7.1 -1 4.6 8.6 6.1 5.3 -1 -1 3.9 -1 3 -1 6.7 -1 6.3 -1 -1 2.2 6.1 5.4 7.5 2.9 7.9 6.5 7.2 -1 2.2 6.7 6.3 0.3 -1 7 7.8 7 -1 3.1 -1 1.4 4.6 7 -1 4.8 -1 6.8 2.1 -1 1.5 -1 1.5
npi 14 6.1 3.9 5.9 -1 9.7 3.9 3.6 18 12.4 10.2 0.8 18.3 6.5 8.1 11 10.6 14.7 11.7 23.4 12.7 11.9 9.6 16 -1 13.6 -1 3 11.9 12.1 4.9 5.1 4.7 23.3 10.9 8.3 5.1 7.8 -1 13.2 8.6 8.8 -1 -1 2.1 4 3.9 9.3 -1 4.2 8.6 -1 11.8 -1 8.9 15.4 13.9 11.8 -1 -1 11.6 2.3 -1 -1 12.1 -1 11.9 -1 -1 4.9 5.5 8.2 13.9 7.6 14.5 9.7 11 -1 4.7 9.3 8.7 -1 -1 11.4 14.2 13.5 -1 5.3 -1 2.7 4.4 8.7 -1 11.8 -1 12.2 3.5 -1 2.3 -1 2.9
nso -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
nob 25.5 8.5 19.2 9.9 -1 19.9 7 11.2 20.6 22.7 29 2.1 29.7 11.7 15.4 21.9 23.3 33.3 22.9 39.1 22.3 17.9 19.3 31.9 -1 24.4 -1 7.1 26.3 21.4 3.6 8.3 21.2 24.2 21.4 15.9 10.3 28.3 -1 23.2 18.9 16.2 -1 -1 -1 7.5 8.1 14.5 -1 7.4 13.1 -1 22.1 -1 16.8 27.6 24.9 13.6 -1 -1 10.5 2.8 -1 -1 -1 -1 21.4 -1 -1 5.6 20.5 17.6 31.1 6.7 27.4 20.7 23.8 -1 5.7 25 23 1.1 -1 21.6 23.5 31.9 -1 -1 -1 4.5 21.4 21.9 -1 12.9 -1 28.5 5.9 -1 2.5 -1 5.6
nya -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
oci 27.4 8.5 20.7 10.4 -1 25.4 7.2 10.5 21.3 24.2 31.1 1.1 38 16.4 15.6 23.6 25 32.5 23.1 43.5 23.4 20.7 20 40.5 -1 30.9 -1 6.8 26.9 23.9 3.5 9.2 22.8 25.1 22.7 15.6 10.3 31.2 -1 26.2 18.8 18.3 -1 -1 -1 7.6 8.3 15 -1 6.7 16.1 -1 23.1 -1 19.1 29.7 27.4 14.4 -1 -1 10.8 2.5 -1 -1 25.4 -1 -1 -1 -1 5.8 21.8 18.9 37.9 6.7 31.2 22.7 26 -1 5.9 26.3 24.3 0.9 -1 24.3 25.7 30.6 -1 -1 -1 4.3 21.9 23.3 -1 13.5 -1 30 6.3 -1 3.2 -1 4.9
ory -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
orm -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
pus 12.6 6.1 9.7 6.4 -1 9.3 4.2 5.2 13.2 9.8 13.4 0.8 15.6 7.6 7.5 9.9 10.7 13.1 10.9 16.9 11 10.2 8.7 15.5 -1 11.9 -1 3.6 10.8 11.1 3.4 5.1 9.1 15.3 11.3 7.9 4.3 12.4 -1 11.1 10 8.8 -1 -1 1.8 4.1 4.9 7.7 -1 4.5 8.6 -1 10.7 -1 9 13.6 12.1 9.9 -1 -1 7.2 1.6 6.2 -1 10.6 -1 11.1 -1 -1 -1 12.1 8.1 14.3 5.7 12.3 9.4 11.5 -1 5.2 11.1 10.5 0.5 -1 10.7 12.4 11.7 -1 6.1 -1 2.4 11.1 10 -1 10.4 -1 15.9 3 -1 2.7 -1 2.9
fas 20.1 8.3 19.1 10.2 -1 17.2 6.5 -1 20.1 19.1 25.2 1 26.3 7.3 14.3 19.2 20.5 23.9 18.2 28.7 19.4 5 16 27.3 -1 20.9 -1 5.2 20.5 20.4 -1 6.4 19.1 23.1 18.4 12.7 7.5 23.5 -1 20.4 17.5 13.4 -1 -1 -1 -1 7 14.5 -1 5.6 15.4 -1 19.8 -1 13 24.1 21.5 11 -1 -1 5.4 2.3 -1 -1 19.1 -1 18.4 -1 -1 5.5 -1 15.5 26.3 5.6 24 18.1 21.1 -1 5.8 21.5 20.3 -1 -1 18.6 20.7 21.7 -1 -1 -1 3.9 19 19.3 -1 13.4 -1 26.1 3.5 -1 1.3 -1 1.6
pol 18.8 7.5 16.6 9.3 -1 17.9 6.9 -1 18.9 18.8 25.9 1.2 26.1 10.2 14.1 19.6 22.2 23 19.5 25.8 19.7 16 17.2 26.9 -1 21.8 -1 6.1 21.1 19.3 3.1 7 17.9 20.2 19.5 12.6 8 22.3 -1 21.4 17.6 13.2 -1 -1 1.3 7 6.9 13.2 -1 6 10.4 -1 22 -1 13.9 24.4 19.6 12 -1 -1 9.5 2.7 -1 -1 18.6 -1 17.8 -1 -1 4.8 17.6 -1 24.8 5.8 23.5 20.1 19.8 -1 5 22.7 21.4 -1 -1 20.1 19.2 21.9 -1 -1 -1 3.7 17.9 19.9 -1 11.4 -1 23.8 4.9 -1 2 -1 4.1
por 27.3 8.6 21.4 11 -1 26 7.8 11.6 21.6 25 31.9 2 37.6 13.3 16.2 25.1 26.1 32.9 23.7 43.3 24 19.6 20.9 38.2 -1 31.1 -1 6.8 27.5 24.4 4 9.1 23.6 25.7 23.6 15.8 10.7 31.2 -1 27.8 19.7 18 -1 -1 1.4 8 8.7 16.3 -1 7.1 17.7 -1 24.6 -1 18 30.1 27.4 14.3 -1 -1 9.1 2.8 -1 -1 25.7 -1 28.4 -1 -1 5.9 22.7 19.2 -1 6.5 33.1 23.6 27.1 -1 5.9 27.1 25.3 1 -1 26.6 24.5 30.2 -1 -1 -1 4.6 23.7 24.3 -1 13.5 -1 30.5 6.3 -1 2.2 -1 4.4
pan 10.7 4.3 3 3.9 -1 -1 1.7 1.9 13.2 8.1 10.2 0.4 13.4 2.4 3.2 6.5 5.9 9 6.7 15.7 9.6 8.5 7.6 12 -1 9.1 -1 1.6 4.9 9.5 3.6 -1 6.1 20.5 8.3 6.6 2.6 4.1 -1 8.8 3.7 4.4 -1 -1 1.6 1.2 2.1 3.5 -1 2.3 8.7 -1 9.4 -1 3.4 11.7 7.9 8.6 -1 -1 6.6 1.4 3.7 -1 9.1 -1 8 -1 -1 3.7 7.4 5.6 8.3 -1 10.3 6 8.6 -1 3.4 7.9 8.3 -1 -1 8.3 10.8 8.9 -1 4.4 -1 1.9 4.7 6.2 -1 10.6 -1 10.1 2.3 -1 1.7 -1 1.6
ron 26.1 8.9 20.8 10.9 -1 22.9 7.6 12.4 21.5 25.3 32.6 1.7 34.7 14 16.8 25.7 27.2 31.5 23.4 38.7 24.3 19.7 20.7 36.9 -1 29.2 -1 6.8 27.3 24.2 3.8 8.6 22.9 24.8 23.7 15.5 10.7 30 -1 27.4 20.1 17.2 -1 -1 1.6 7.8 8.3 16 -1 6.9 8.7 -1 24.8 -1 17.7 30.8 26.2 14.7 -1 -1 10.8 2.8 -1 -1 24.8 -1 25.2 -1 -1 5.8 22.3 20.6 36.2 6.5 -1 24 27 -1 6 27.6 25.3 1 -1 24.9 25.1 29.5 -1 5.4 -1 4.4 23.3 24.3 -1 13.3 -1 30.3 5.8 -1 2.8 -1 5.4
rus 20.7 8.3 18.4 11.3 -1 18.3 7.3 6.3 19.8 21.6 29.9 0.9 27.9 10.7 15.5 22.5 22.9 25.2 19.5 29.3 22.1 17 18.3 29.5 -1 23.4 -1 7.2 22.3 21.5 3.6 6.4 20.1 22.4 20.3 13.2 8.1 23.9 -1 21.9 18.8 13.7 -1 -1 1.6 8.7 7.4 14.6 -1 5.7 11 -1 23.8 -1 15 27.2 21.1 13.5 -1 -1 10.2 3 -1 -1 20.1 -1 19.5 -1 -1 4.8 20.1 18.7 28 6.1 25.9 -1 24.3 -1 5.6 24.1 23.2 0.5 -1 20.8 20.8 23.5 -1 -1 -1 3.5 17.5 29.5 -1 12.8 -1 26.2 4.5 -1 1.3 -1 4.2
srp 25.3 9.1 20.8 11.8 -1 21.1 7.3 3.4 22.4 30.9 33.5 1.6 31.6 15.1 16.3 29.3 26.8 30.6 22 36.5 24.5 19 19.7 33.5 -1 26.2 -1 7.7 26.4 23.8 4.6 7.4 22.8 25.2 23 14.5 10.7 28.1 -1 24.3 19.8 16.2 -1 -1 1.8 8.5 8.1 16.2 -1 6.9 7.7 -1 25.4 -1 17.2 34.5 24.3 15 -1 -1 11.3 3.2 -1 -1 23.2 -1 23.1 -1 -1 5.7 22.6 19.7 32.3 7.7 29.5 24.8 -1 -1 6.4 28.3 27.6 0.5 -1 22.5 24.4 28.4 -1 7.7 -1 3.8 21.8 26.1 -1 14.2 -1 28.7 5 -1 2.9 -1 5.9
sna -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
snd 4.6 -1 -1 -1 -1 -1 -1 -1 4.5 -1 5.1 -1 5.8 -1 -1 3.1 3 4.3 2.9 5.2 4.6 3.2 4.4 5.2 -1 3.8 -1 -1 2.8 5.2 -1 2.4 -1 9.5 3.8 3.3 1.8 2.6 -1 3.9 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 5.6 -1 5.2 -1 -1 5.4 -1 2.4 -1 -1 1.9 0.8 -1 -1 4 -1 3.6 -1 -1 2.1 4.3 2.5 3.8 3.6 4.2 3 3.2 -1 -1 4.1 4.2 -1 -1 3.7 4.8 3.9 -1 -1 -1 1.1 2.1 2.5 -1 5 -1 3.5 1.1 -1 0.6 -1 0.6
slk 23.5 8.3 19.4 10.4 -1 19.8 7.2 1.3 20.6 25.1 30.1 1.7 30 13.9 15.7 25.5 32.3 29.4 22.8 33.7 24 17.9 20.5 32.4 -1 25.4 -1 7.3 25.8 22.1 3.4 7.9 20.6 23.6 22.8 15.4 10.1 27.3 -1 24.2 18.9 15.6 -1 -1 1.5 7.6 8.2 15.5 -1 7.2 8.9 -1 24.5 -1 17.2 28.2 23.7 13.7 -1 -1 10.6 2.8 -1 -1 23 -1 20.9 -1 -1 5.7 21.2 20.3 31 6.7 28.6 23.3 26.7 -1 5.7 -1 26.8 0.8 -1 22.3 22.9 27.7 -1 -1 -1 4.4 21.7 23.9 -1 13.1 -1 28 5.7 -1 2.1 -1 4.9
slv 22.2 8.2 18.1 10.4 -1 19.3 7 1.6 20.3 24.8 28.4 1.5 29.2 13.3 15.5 25.6 25.1 27.5 21.7 30.7 23.3 17 19.7 30.3 -1 24.2 -1 6.7 24.4 20.6 3.5 7.6 19.9 23 21.8 14.3 9.2 25.6 -1 23.6 18.9 14.9 -1 -1 1.6 7.5 7.7 14.8 -1 6.7 7.7 -1 24 -1 16.4 28.4 22 13.5 -1 -1 10.2 2.7 -1 -1 21.6 -1 19.7 -1 -1 5.4 20 19.1 28.6 6.4 26.7 22.2 26 -1 5.4 26.7 -1 0.9 -1 21.6 21.7 26 -1 5.7 -1 3.9 20.8 22.7 -1 12.7 -1 26.7 5.1 -1 2.4 -1 5.1
som 2.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.9 -1 2.4 0.8 -1 -1 -1 -1 -1 1.4 -1 2.2 -1 0.9 -1 1.4 -1 -1 -1 1.6 -1 -1 -1 -1 1.4 -1 -1 -1 -1 0.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.2 -1 -1 -1 -1 -1 0.8 -1 1.1 -1 -1 -1 -1 -1 -1 -1 -1 1.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.9 -1 -1 -1 -1 -1
ckb -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
spa 19.6 7.3 17.5 9.1 -1 20.3 6.6 10.2 18.8 19.3 26 1.6 28.7 10.7 14.1 19.7 20.2 25.2 19.9 27.6 19.7 16.2 17.2 29 -1 25.5 -1 -1 21.2 20.5 3.4 7.1 18.7 21 19.4 13.2 8.2 23.5 -1 23.8 17.4 13.4 -1 -1 -1 6.9 7.1 13.6 -1 5.9 14.8 -1 20.1 -1 13.5 24.5 20.5 12.6 -1 -1 7.5 2.6 -1 -1 20.5 -1 20.1 -1 -1 4.8 18.5 17.5 28.5 5.5 25 18.9 20.6 -1 4.9 21.7 20.5 0.8 -1 -1 19.1 22.8 -1 -1 -1 3.7 19 19.2 -1 11.1 -1 24.8 5.3 -1 1.5 -1 3
swh 21.5 7.8 15.8 9.2 -1 17.7 5.7 9.4 18.5 18.5 24.1 1.5 25.7 10.1 12.5 17.9 19.8 24.2 17.8 32.1 18.5 16.1 15.3 26.1 -1 20.6 -1 5 19.6 17.8 3.5 9.2 17.2 21.7 16.6 13.8 9.4 25.7 -1 18.6 16 16.3 -1 -1 1.5 5.8 8.1 12.1 -1 6.9 15.3 -1 19 -1 13.6 22.3 24.3 13 -1 -1 9 2.6 -1 -1 19.2 -1 19.7 -1 -1 5.9 18.5 14.7 25.8 5.3 23.6 17.4 21.2 -1 5.6 20.1 19.1 -1 -1 17 -1 22.3 -1 4.7 -1 4.2 17.8 18.6 -1 12.3 -1 25.5 5.6 -1 4.9 -1 2.2
swe 28.2 8.5 20.3 10.7 -1 21.9 7 11.8 22.1 24.6 31.8 2.4 33.1 13.8 16 25.1 25.8 37.8 24.9 42.1 25.1 19.4 22.9 35.4 -1 27.3 -1 7.1 29.1 22.8 4.1 8.9 22.6 25.2 23.4 17 11.1 31 -1 25.4 19.7 17.4 -1 -1 1.7 7.9 8.9 16 -1 7.5 11.1 -1 24.1 -1 19 29.5 26.9 15 -1 -1 11.4 2.7 -1 -1 29.9 -1 23.2 -1 -1 5.7 21.8 18.7 34 7.2 30.4 22.8 27.1 -1 6 27.5 25.5 1.3 -1 22.9 25.1 -1 -1 5.8 -1 4.7 23 24.3 -1 13.6 -1 30.3 5.9 -1 2.8 -1 6.2
tgk -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
tam 10 5.3 4.3 4.7 -1 5.4 2.9 2.1 12.2 8.6 11.2 -1 12.8 -1 4.9 7.8 8 10.9 7.6 16.2 9.2 7.2 6.1 10.1 -1 9.4 -1 -1 8.1 8.5 2.8 4.2 6.9 14.3 7.4 6.8 3.5 9.1 -1 8.7 5.1 4.6 -1 -1 -1 -1 2.8 6.1 -1 3.3 7.5 -1 8.6 -1 3.9 11.1 9.1 11.1 -1 -1 6.7 1.7 -1 -1 8.7 -1 7.5 -1 -1 3.6 8 6.2 9.3 5.1 10.3 7.1 9.2 -1 4 9.1 9.4 -1 -1 7.3 10.1 10 -1 -1 -1 2.5 7.3 7 -1 8.6 -1 11.2 2.2 -1 1.3 -1 1.2
tel -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
tha 12.3 6.2 11 6.9 -1 9.9 4.5 6.7 14.4 11.4 15.3 0.8 16.5 6.7 9.6 11.7 12.3 14.8 12.4 16.4 12.5 7.5 9.9 16.9 -1 13 -1 3.4 11.8 11.9 3 5.5 10.5 15.4 11.8 9.5 6.5 16.1 -1 12.3 11.9 10.6 -1 -1 1.4 4 6.5 9.7 -1 5.9 8.5 -1 12.5 -1 9.6 14.3 14.9 10.7 -1 -1 6.3 1.6 1.8 -1 11.4 -1 12.2 -1 -1 3.9 12.7 9.9 15.7 4.4 14.9 11.4 12.9 -1 4.6 12.7 12.7 0.4 -1 12.1 14.2 13.2 -1 6.1 -1 -1 11.8 11.6 -1 9.5 -1 19.4 3 -1 2.2 -1 2
tur 21.2 8.6 18 10 -1 18.5 9.1 -1 20.2 20.1 25.6 -1 28 10.5 14.7 20.9 20.9 26.5 20.2 31.3 20.9 10.8 17.4 29 -1 22.7 -1 5.4 22.1 19.7 3.7 7.7 19.4 22.7 20.5 13.8 8.6 25.7 -1 21.8 18.3 15 -1 -1 -1 -1 7.3 14.8 -1 5.9 15.4 -1 21.1 -1 14.4 24.8 22.6 12.7 -1 -1 7.5 2.8 -1 -1 20.3 -1 19 -1 -1 5.7 20.6 17 28.4 5.9 25.3 18.1 22.2 -1 6 22.7 21.7 0.9 -1 20.2 21.8 23.8 -1 2.7 -1 4.1 -1 19.3 -1 12.9 -1 26.9 5.3 -1 1.9 -1 3.6
ukr 22.2 8.8 19.8 11.5 -1 18.9 7.3 2.4 21.1 22.7 31 1 28.8 12.8 15.7 23.5 25.1 27.4 20.9 32.3 22.6 18 18.9 30.8 -1 24.1 -1 7.2 24 22.2 4.2 7 21.7 23.6 20.7 14.3 9.9 26.1 -1 22.8 19 15.2 -1 -1 1.7 8.6 7.6 15.3 -1 6.7 10.1 -1 24.5 -1 16.2 29.2 22.3 14.3 -1 -1 10.8 3.4 -1 -1 21 -1 21.3 -1 -1 5.3 21.2 19.4 29.5 7.1 27.5 30.1 26.3 -1 5.9 25.8 24.2 0.5 -1 21.4 22.3 25.2 -1 5.7 -1 3.6 19.5 -1 -1 13.4 -1 27.1 4.9 -1 1.8 -1 4.6
umb -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
urd 15 6.8 12.9 7.9 -1 11.6 4.9 5.9 18.4 13.2 17.7 0.5 19.6 4.1 9.9 13.2 14.6 17.7 12.9 21.7 14.2 12.7 11.4 19.5 -1 14.5 -1 3.2 14.3 14 4.5 5.1 13 22.4 13.7 9.5 4.9 16.3 -1 14.1 13 8.6 -1 -1 1.9 3.9 3.9 10.6 -1 3.8 11.2 -1 14.7 -1 8.3 17.4 15.4 13.1 -1 -1 10.2 1.8 -1 -1 13.6 -1 12.5 -1 -1 5.3 15.3 10.2 18.2 8 16.9 12.9 15.2 -1 6.6 15 14.5 -1 -1 12.9 16.1 15.7 -1 7.5 -1 2.9 13.6 13.6 -1 -1 -1 19.5 2.5 -1 1.6 -1 1.7
uzb 2.4 -1 -1 -1 -1 -1 -1 -1 3 -1 3.1 -1 4.2 -1 -1 -1 -1 2.6 -1 -1 2.9 2.8 2.2 3.1 -1 3 -1 -1 1.6 3 -1 -1 -1 3 2.5 2.5 -1 -1 -1 2.9 1.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.5 -1 2.1 -1 3 3.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3.1 -1 -1 -1 -1 -1 2.3 1.4 2.9 1 2.3 -1 -1 2.3 2.3 -1 -1 3.2 -1 -1 -1 -1 -1 0.4 -1 -1 -1 -1 -1 1.4 1.5 -1 -1 -1 -1
vie 20.3 7.5 17.1 8.7 -1 17.4 6.6 10.1 19.2 19.4 24.7 1.4 26.1 11 15.8 19.4 20.1 25 18.9 29.7 19.6 11.5 16.7 27 -1 21.9 -1 5.1 20.3 18.8 3.4 8.6 18 21.6 19.1 14.2 10.6 26.9 -1 20.2 18.8 16.5 -1 -1 1.6 6.6 8.1 14.6 -1 6.9 7.1 -1 19.9 -1 13.6 23.6 23.7 10.6 -1 -1 6.8 2.7 -1 -1 19.9 -1 18.7 -1 -1 5.5 19.4 15.7 26 5.8 24 18.9 20.4 -1 5.4 21.1 19.8 1 -1 18.5 21.8 22.8 -1 -1 -1 4.6 19.3 18.9 -1 11.9 -1 -1 5.9 -1 2.3 -1 3.6
cym 11 3.5 2.8 2.9 -1 7 2.2 2.7 6.4 7.8 7.4 0.6 12.1 8.3 3.3 6.6 5.7 9.5 6.5 19.1 8.2 10.9 6.4 11 -1 9.5 -1 1.6 5.3 8 1.8 5.4 4.4 6.5 7.2 6.2 4.5 7 -1 8.8 3.4 8.9 -1 -1 1 2.8 3.4 3.3 -1 3 5.9 -1 6.3 -1 8.3 8.5 7.9 3.9 -1 -1 3.3 1.1 3 -1 8.9 -1 10.5 -1 -1 2.1 4.1 5.2 8.6 2.4 10.2 5 6.6 -1 1.7 6.6 6.3 0.9 -1 8.6 10.4 9.6 -1 2.3 -1 1.5 3.8 4.5 -1 3.6 -1 6.8 -1 -1 2.6 -1 2.4
wol 3.4 1.2 1.1 -1 -1 -1 -1 0.9 3 2.7 3.6 -1 4.7 3.8 1.6 2.6 2.4 3.2 3.5 5.3 3.3 4 2.7 3.7 -1 4 -1 -1 2.1 3.4 0.8 -1 1.7 2.7 3 2.6 1.4 4.1 -1 3.5 2.6 3 -1 -1 -1 -1 -1 1.3 -1 -1 1.7 -1 2.5 -1 3.2 3.3 3.3 1.5 -1 -1 2.1 -1 1 -1 4 -1 3.8 -1 -1 -1 1.9 2.9 3 -1 3.6 2.3 2 -1 -1 2.8 3 -1 -1 4.5 4 3.2 -1 -1 -1 0.5 2.3 2.2 -1 -1 -1 1.8 2.6 -1 1.8 -1 1.8
xho 9.7 3.4 4.1 3.4 -1 7.1 2.3 4 6.7 7.7 9.2 0.8 12 7.2 4.1 6.8 6.5 8.9 6.7 16.6 7.9 10.6 5.9 10.5 -1 9.3 -1 1.9 5.9 8.5 1.9 5.5 5.7 7.2 7.2 7.2 4.1 8.5 -1 8.6 3.8 8 -1 -1 1.2 2.8 3.7 4 -1 3.7 6.3 -1 7.3 -1 6.1 9.3 7.9 4.2 -1 -1 3.9 1.5 2.9 -1 8.4 -1 8.7 -1 -1 2.3 5.4 6.1 9.5 2.7 9.7 6.1 7.2 -1 2.2 7.3 7.5 0.4 -1 8.4 10.6 8.7 -1 2.4 -1 2.3 4.7 6.3 -1 4.2 -1 9.2 4 -1 -1 -1 8.6
yor 3.8 -1 -1 -1 -1 -1 -1 -1 3.4 3.6 4.5 -1 5.6 4.2 1.7 3.5 2.9 3.7 3.8 7.1 3.6 5 2.6 4.6 -1 4.5 -1 -1 2.7 4.2 -1 3.9 -1 3.3 3 2.9 2.5 4.6 -1 4 2.8 3.1 -1 -1 -1 -1 -1 -1 -1 -1 1.9 -1 2.8 -1 3.6 3.8 3.8 -1 -1 -1 -1 -1 -1 -1 4.4 -1 4.8 -1 -1 -1 2.6 3.1 3.7 -1 4.3 3.2 2.9 -1 -1 3.5 3.1 -1 -1 4.8 4.5 3.8 -1 -1 -1 0.8 -1 2.5 -1 -1 -1 2 2.5 -1 2.3 -1 2.6
zul 11.5 4.4 5.2 4.4 -1 8.5 2.5 4.6 8.2 9 11.5 0.8 14.1 7.6 4.9 8.1 8.6 11.6 8.1 18.1 9 12.5 6.7 12.7 -1 11.5 -1 2.2 7.4 9.1 1.7 6.2 7.3 8.5 8.2 8.1 4.6 9.8 -1 10.1 4.1 9.8 -1 -1 1.1 2.9 4.6 5 -1 4.3 7.9 -1 8.6 -1 7 11.3 9.9 5.2 -1 -1 4.1 1.5 2.8 -1 10.2 -1 10 -1 -1 2.8 7.1 7 11.9 3.1 11.8 8 9.6 -1 2.4 9.5 9.1 0.4 -1 9.8 13.4 10.9 -1 2.5 -1 2.5 5.7 8.3 -1 5.3 -1 12.5 3.8 -1 5.4 -1 -1

Table 6.10: spBLEU performance of last checkpoint of SMaLL-100 model on language pairs of
FLORES-101.

6.9.3 Tatoeba

src
tgt

af am ar ast ba be bg bn br ca ceb cs cy da de el en es et fa ff fi fr fy ga gd gl gu ha he hi ht hu hy ig ilo is it ja jv ka kk km kn ko lb lg ln lo lt lv mg mk ml mn mr ms my nl oc pa pl ps pt ro ru sd si sl so sq su sv ta th tl tn tr uk ur vi wo xh yi yo zh zu

af -1 -1 6.9 -1 -1 -1 -1 -1 -1 -1 -1 12 -1 78.3 41.9 -1 47.3 48.9 19.9 -1 -1 -1 47.8 12.4 -1 -1 -1 -1 -1 23.6 -1 -1 -1 -1 -1 -1 48.1 54.3 39.7 -1 -1 -1 -1 -1 -1 5.2 -1 -1 -1 -1 -1 -1 16.7 -1 -1 -1 16.1 -1 51.3 -1 -1 60.5 -1 43.2 41.7 34.3 -1 -1 -1 -1 -1 -1 89.1 -1 -1 -1 1.8 36.6 33.4 -1 85.8 -1 1.8 4.9 -1 21.5 4
am -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 35.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ar 100 -1 -1 -1 0.4 -1 15 -1 -1 100 -1 63.1 -1 45.2 34.6 33.8 32.7 37 -1 28.3 -1 28.5 30 11.5 -1 -1 36.6 -1 -1 33.4 -1 -1 22.1 -1 -1 -1 -1 40.7 17.2 -1 -1 8.1 -1 -1 18.5 16.8 -1 -1 -1 48.1 43.5 -1 44.7 -1 -1 -1 19.9 -1 37.9 -1 -1 32.2 -1 51.5 46.9 31.3 -1 -1 -1 -1 -1 -1 14 -1 -1 -1 -1 28.4 25 52.9 -1 -1 -1 2.3 -1 17.2 -1
ast -1 -1 -1 -1 -1 -1 -1 -1 -1 59.1 -1 -1 -1 -1 22.9 -1 26.6 42.6 -1 -1 -1 -1 28 -1 -1 -1 81.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 100 -1 -1 -1 -1 50.4 -1 35.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ba -1 -1 0.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.6 -1 12.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8.1 -1 -1 -1 -1 -1 -1 -1 4.8 6.9 -1 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8.9 -1 -1 -1 -1 -1 -1 3.7 -1 -1 -1 -1 2.7 -1 -1 -1 -1 -1 0.8 -1 -1 -1
be -1 -1 -1 -1 -1 -1 63.2 -1 -1 -1 -1 28.1 5.9 14.5 30.2 -1 28.7 32.3 13.4 -1 -1 -1 27 -1 -1 -1 -1 -1 -1 24.6 -1 -1 72.7 -1 -1 -1 -1 32.2 22.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 37.8 -1 -1 -1 1.8 -1 29 -1 -1 32.3 -1 86 11.1 41.4 -1 -1 4.5 -1 -1 -1 -1 -1 -1 -1 -1 16.3 33.6 -1 69.3 -1 -1 1.3 -1 15.2 -1
bg -1 -1 27.1 -1 -1 20.5 -1 -1 -1 -1 -1 15.1 -1 100 41.7 33.6 39.6 40.2 -1 31.5 -1 38.6 40.4 -1 -1 -1 -1 -1 -1 48.9 -1 -1 31.1 -1 -1 -1 -1 32.3 15.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 46.9 -1 -1 -1 11.7 -1 45.4 -1 -1 39.6 -1 37.1 100 35.3 -1 -1 2.2 -1 -1 -1 100 -1 -1 -1 -1 30.8 39.6 -1 -1 -1 -1 1.5 -1 18.5 -1
bn -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 35.1 -1 41.2 44.8 -1 -1 -1 -1 44.1 -1 -1 -1 -1 -1 -1 -1 7.9 -1 -1 -1 -1 -1 -1 60 23.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.8 6.9 -1 -1 -1 -1 36.6 -1
br -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.7 5.5 -1 1.2 -1 3.2 -1 -1 -1 -1 -1 1.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.3 4.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.5 -1 2.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.4 -1 -1 -1 -1 -1 -1 -1 -1 -1
ca -1 -1 11.7 25.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 38.3 28 46.2 62.2 -1 -1 -1 68.6 43.1 -1 -1 -1 54.5 -1 -1 48.4 -1 -1 32.4 -1 -1 -1 -1 45.7 16.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 22.8 -1 -1 -1 -1 -1 -1 -1 -1 44 -1 -1 26.9 -1 49.9 100 39.4 -1 -1 -1 -1 -1 -1 89.4 -1 -1 -1 -1 33 35.8 -1 -1 -1 -1 2.8 -1 18.6 -1
ceb -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.1 -1 5.7 5.9 -1 -1 -1 -1 2.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.9 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.8 -1 5.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
cs 30.7 -1 36.2 -1 -1 25.6 79.3 -1 1 -1 -1 -1 -1 100 41.4 37.4 40.4 43.9 -1 65.3 -1 56.9 44 6.8 -1 -1 -1 -1 -1 28.7 -1 -1 39.3 -1 -1 -1 -1 38.4 18.1 -1 23.1 -1 -1 -1 32.2 45.1 -1 -1 -1 12.7 -1 -1 57 -1 -1 -1 5.9 -1 43.7 -1 -1 41.9 -1 48.8 22.3 40.8 -1 -1 5.3 -1 -1 -1 79.4 -1 -1 7.2 -1 36.6 40.8 -1 32.5 -1 -1 1 -1 17.9 -1
cy -1 -1 -1 -1 -1 9.3 -1 -1 5.5 -1 -1 -1 -1 -1 4.6 -1 13.1 18.1 -1 -1 -1 -1 4.7 -1 0.6 3.4 -1 -1 -1 4.2 -1 -1 -1 -1 -1 -1 -1 3.9 0.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.8 -1 -1 -1 -1 4.3 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.8 -1 5.2 -1
da 44.4 -1 43.3 -1 -1 11.3 100 -1 -1 -1 -1 57.5 -1 -1 46.7 9.2 48.9 46.2 -1 36.6 -1 31.7 48.6 13 -1 -1 -1 -1 -1 36.2 -1 -1 21.7 -1 -1 -1 43.3 50.2 28.9 -1 -1 -1 -1 -1 -1 75.1 -1 -1 -1 -1 83.6 -1 -1 -1 -1 -1 -1 -1 58.3 -1 -1 39.8 -1 55.9 100 37.8 -1 -1 5.3 -1 -1 -1 62 -1 -1 -1 -1 35.5 35.2 24.8 -1 -1 -1 2.3 -1 26 -1
de 46.2 -1 24.7 14.9 -1 27.2 39.6 40.1 0.4 35.4 2.4 35.5 5.5 49.3 -1 41.2 37.9 42.3 50.5 27.3 -1 33.9 39.6 15.7 0.3 0.5 36.7 -1 -1 32.8 27.1 -1 25.3 10.4 -1 2.8 36.1 41.6 18.2 12.7 11 4.4 12.7 -1 15.9 18 -1 -1 -1 36.9 24.4 -1 33 -1 2.5 -1 20.2 -1 47.5 9.9 -1 36.1 -1 38.9 39.7 34.2 -1 -1 11.3 -1 43.5 -1 48.9 -1 2.9 12.3 2 31.9 34.3 20.8 22 2.5 1.2 1.6 -1 20.6 -1
el -1 -1 27.8 -1 -1 -1 42.3 -1 -1 31.5 -1 31.3 -1 39.7 42.5 -1 50.8 41.2 -1 26.1 -1 -1 46 35 -1 -1 16.5 -1 -1 65.8 -1 -1 -1 -1 -1 -1 -1 47.9 13.2 -1 -1 -1 -1 -1 -1 36.1 -1 -1 -1 -1 -1 -1 29.8 -1 -1 -1 6.8 -1 38.7 -1 -1 49.3 -1 45 -1 42.9 -1 -1 -1 -1 -1 -1 47.8 -1 -1 -1 -1 36.5 39.8 -1 -1 -1 -1 1.6 -1 29.1 -1
en 50.3 9.9 20.1 16.3 0.2 22.5 36 29.7 0.3 41.6 2.3 35.2 8.2 48.6 34 41.7 -1 44.6 41.5 25.2 0.3 30.7 40.1 16.5 0.1 1.3 36.2 2.6 4.3 32 30.7 18.3 26.7 14.3 1.6 3.7 30.8 42.4 16 3.1 11.6 10 8.7 0.2 19.3 14.5 1.5 0.2 6.5 38.7 30.1 25.3 30 22.1 2.7 0.2 19.3 0.8 45.4 8.6 2.5 35.8 1.4 45.3 42.2 32 17 12.5 14 1.3 41.9 5.4 49.1 11 8.8 12.1 0.3 32.4 31.7 16.6 33 1.3 1.3 1.9 3.1 14.3 2.2
es 51.2 -1 28.4 26 -1 26.3 36.9 39.5 -1 54.2 2.5 36.3 9.3 48.4 39.8 38.9 45.4 -1 33.1 24.3 0.7 36 43.5 17.9 0.2 1.6 47.8 5.5 -1 37 26.6 12.7 33.8 17.1 -1 -1 36.6 50.9 19 4 -1 9.2 5.2 -1 17.2 13.1 -1 1.1 -1 41.2 29.3 -1 33.5 -1 0.8 -1 21.2 1.4 43.1 16.6 -1 37.7 -1 52.5 42.9 35.4 -1 -1 10 -1 16.5 -1 49 19.7 4.5 10.6 -1 36.8 34 -1 29 1.1 -1 1.8 -1 21.1 -1
et 27.3 -1 -1 -1 4.3 1.9 -1 -1 -1 -1 -1 -1 -1 -1 45.2 -1 42.4 36.4 -1 -1 -1 44.8 36.6 18.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 33.5 11.3 -1 -1 23 -1 -1 8.5 -1 -1 -1 -1 18.9 16.9 -1 16.1 -1 -1 -1 -1 -1 51.4 -1 -1 20.3 -1 -1 5.8 38.4 -1 -1 7.2 -1 -1 -1 -1 -1 -1 -1 -1 37.5 37.6 -1 -1 -1 -1 2.1 -1 -1 -1
fa -1 -1 20.3 -1 -1 -1 17.1 -1 -1 -1 -1 8.4 -1 32.6 31.5 21.4 33 32.4 -1 -1 -1 -1 29.9 -1 -1 -1 -1 -1 -1 30.4 -1 -1 8.1 -1 -1 -1 -1 31.6 14.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15.4 -1 -1 -1 -1 -1 -1 21.5 -1 74.9 -1 -1 20.6 -1 30.7 41.1 44.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 34.4 18.4 -1 -1 -1 -1 1.7 -1 19.1 -1
ff -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.6 2.4 -1 -1 -1 -1 4.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
fi -1 -1 14.9 -1 -1 -1 44.9 -1 -1 72.1 -1 50.2 -1 42.9 36.6 -1 38.2 39.8 50.7 -1 -1 -1 37.5 3.6 -1 -1 -1 -1 -1 28.2 -1 -1 39.7 -1 -1 -1 49.3 38.1 16.5 -1 -1 -1 19.2 -1 17.3 18.9 -1 -1 -1 30.9 -1 -1 -1 -1 -1 -1 15.2 -1 54.1 15.3 -1 39.3 -1 51.6 45 32.8 -1 -1 28.6 -1 -1 -1 42.2 -1 3.6 -1 -1 27.4 37.1 -1 23.8 -1 -1 1.9 -1 20.7 -1
fr 54.9 -1 21.4 29.2 -1 23.6 37.2 44.6 0.6 37.4 0.7 40.9 4.6 57 40.4 46.8 44.4 46.5 41.9 24.7 1.6 37.2 -1 15.9 0.3 2 35.7 -1 -1 33.7 24.6 10.7 33.4 11.5 -1 3.7 29.2 44.6 16.1 -1 1.6 6.7 6.8 -1 15.9 9.4 -1 0.4 1.9 35.3 35 3.7 34.5 19.8 0.9 -1 20.9 -1 41.1 11.8 -1 34.9 -1 45.7 41.2 33.3 -1 -1 5.8 22.1 52.5 -1 53.6 -1 2.1 11.5 -1 30.4 33.5 19.6 30.5 0.3 2.6 2 -1 18.4 -1
fy 12.7 -1 31.9 -1 -1 -1 -1 -1 -1 -1 -1 5.8 -1 2.4 26.4 8.6 18.7 34 5.7 -1 -1 25.8 24.8 -1 -1 -1 -1 -1 -1 13.2 -1 -1 42.7 -1 -1 -1 -1 28.5 41.9 -1 -1 -1 -1 -1 -1 26.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.8 2.4 -1 33.5 -1 -1 20.2 -1 15.4 -1 21.7 -1 -1 -1 -1 -1 -1 43.7 -1 -1 -1 -1 12.5 17 -1 100 -1 -1 3.1 -1 24.6 -1
ga -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.3 -1 0.5 -1 1.4 1.8 -1 -1 -1 -1 0.8 -1 -1 -1 -1 -1 -1 2.1 -1 -1 7.1 -1 -1 -1 -1 -1 2.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.3 -1 -1 -1 -1 -1 10.7 1.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.4 -1 -1 -1 -1 -1 1.6 -1 -1 -1
gd -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 1 -1 0.9 0.7 -1 -1 -1 -1 2.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 -1 2.1 -1 1.5 -1 2.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.4 -1 -1 -1 -1 -1 -1 -1 16.4 -1
gl -1 -1 9.4 58.2 -1 -1 -1 -1 -1 58.7 -1 -1 -1 -1 41.1 35.3 44.6 57 -1 -1 -1 -1 40.4 -1 -1 -1 -1 -1 -1 26.3 -1 -1 -1 -1 -1 -1 -1 44.6 10.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 22.8 -1 -1 -1 -1 -1 -1 -1 -1 45.7 -1 -1 60.9 -1 55.9 -1 30.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 34.6 -1 -1 -1 -1 -1 1.1 -1 19.8 -1
gu -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7.1 18.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 28.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ha -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
he 35 -1 28.1 -1 -1 22.7 26.3 -1 -1 49.6 -1 29.4 2.8 40.3 36.3 63.7 36.5 40.2 -1 27 -1 31.1 36 8.2 0.7 -1 37.7 -1 -1 -1 -1 -1 24.2 -1 -1 -1 24.4 36.8 15.6 -1 -1 18.2 -1 -1 -1 15.9 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 22.4 -1 30.6 -1 -1 32.1 -1 41.2 58.6 28.8 -1 -1 46.5 -1 -1 -1 51.7 -1 -1 5.5 -1 38.1 29 -1 0 -1 -1 1.6 -1 19 -1
hi -1 -1 -1 -1 -1 -1 -1 17.7 -1 -1 -1 -1 -1 -1 31.4 -1 39.7 31.5 -1 -1 -1 -1 33.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 100 23.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.7 -1 -1 -1 -1 15.9 -1 18.7 -1 30 -1 -1 12.7 -1 -1 -1 100 -1 -1 -1 -1 21.9 -1 24.6 -1 -1 -1 -1 -1 16.5 -1
ht -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 32.8 14.2 -1 -1 -1 -1 14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8.7 -1 -1 -1
hu -1 -1 19.6 -1 -1 29.4 33.6 -1 -1 16.6 -1 39.3 -1 28.5 30.7 -1 34.2 41.4 -1 100 -1 44.3 36.6 19.4 0.9 -1 -1 -1 -1 28.9 -1 -1 -1 -1 -1 -1 -1 42.1 14.4 -1 -1 7.8 -1 -1 21.4 4.9 -1 -1 -1 53.7 -1 -1 70.2 -1 -1 -1 21.2 -1 42.4 -1 -1 37.1 -1 36.9 38.4 31.6 -1 -1 1.6 -1 -1 -1 38.1 -1 -1 -1 -1 30.3 34.6 31.9 29.8 -1 -1 1.7 -1 16.5 -1
hy -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 38.1 -1 25.8 29.2 -1 -1 -1 -1 24.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 37.7 -1 -1 -1 -1 -1 -1 23.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61.9 -1 -1 -1 -1 -1 -1 -1 16.2 -1
ig -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ilo -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.2 -1 4.4 -1 -1 -1 -1 -1 25.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.6 -1
is 44.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61.9 38.7 -1 39.4 37.5 -1 -1 -1 13.8 31.5 -1 -1 -1 -1 -1 -1 29.6 -1 -1 -1 -1 -1 -1 -1 40.7 17.8 -1 10.9 8.2 -1 -1 -1 -1 -1 -1 -1 -1 100 -1 -1 -1 -1 -1 21.7 -1 -1 -1 -1 30.1 -1 40.5 -1 27.8 -1 -1 -1 -1 -1 -1 53.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 21.9 -1
it 58.6 -1 26.8 -1 -1 28.4 34.1 55.2 0.4 46.3 7 34.4 2.5 48.5 41.2 47.9 51.3 53.8 39.1 28.4 1.1 36.6 48.8 9.1 -1 1.8 36.7 -1 -1 33.6 70.7 -1 39 -1 -1 -1 35.2 -1 16.3 -1 -1 5.1 -1 -1 18.9 5.1 -1 -1 -1 40.4 33.4 -1 -1 -1 -1 -1 20.1 -1 49.4 17.3 -1 36.6 -1 49.4 48.8 32.2 -1 -1 19.5 -1 45.3 -1 46.5 -1 4.9 14.1 -1 16.7 36.7 6.3 34.7 0 2.8 2.3 -1 21.7 -1
ja 47.5 -1 22.4 33.8 -1 21.9 21.7 18.8 0.8 22.3 2.1 24.6 3.2 44.3 21.4 31.8 24.6 27.1 9.6 16.8 -1 17.1 24.3 2.8 0.1 -1 24 1.6 -1 22.1 20.8 -1 17.8 23.5 -1 3.6 26.1 21.6 -1 -1 1.8 -1 3.8 -1 20.3 2.4 -1 -1 3.3 23.7 14.2 -1 -1 2.7 2.3 -1 12 0.6 30.4 7.6 -1 19.1 -1 24.3 23.5 21.7 -1 -1 4.7 -1 40.4 -1 21.9 -1 2 8.8 -1 19.2 24.5 42.2 21.7 -1 2.6 1.1 -1 15.1 -1
jv -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 53.7 -1 7.6 7.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ka -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 40.1 -1 -1 19.3 -1 36.5 -1 -1 -1 -1 -1 2.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 100 -1 12.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9.5 -1 -1 -1 -1 -1 -1 -1 -1 13.7 -1 -1 20.6 -1 -1 -1 31.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 28.5 14.7 -1 16 -1 -1 -1 -1 2.6 -1
kk -1 -1 100 -1 0.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.1 -1 21.5 14.5 38.5 -1 -1 -1 16.4 -1 -1 -1 -1 -1 -1 29.5 -1 -1 27.5 -1 -1 -1 13.1 8.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 26.3 27.5 -1 -1 -1 -1 -1 16.8 -1 -1 -1 -1 5.8 -1 -1 -1 5.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.1 14.4 -1 -1 -1 -1 6.6 -1 7.1 -1
km -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 14 -1 21.1 14.5 -1 -1 -1 27.1 9.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 20.9 -1 -1 -1 -1 31 -1 -1 -1 12.1 -1 -1 -1 -1 -1 -1 -1 -1 9.7 -1 -1 -1 -1 -1 24.4 -1 -1 -1 -1 20.1 -1
kn -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ko -1 -1 17.3 -1 -1 -1 -1 -1 -1 -1 -1 36.9 -1 -1 22.7 -1 31.1 25.4 39.6 -1 -1 25.2 24.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 24.7 -1 -1 -1 -1 30.6 23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13.7 1.5 -1 -1 -1 1.2 -1 23.3 -1 33.6 -1 -1 23.9 -1 31.7 7.1 24.7 -1 -1 17.2 -1 -1 -1 -1 -1 -1 -1 -1 28.1 32.2 -1 23.5 -1 -1 -1 -1 13.5 -1
lb 35.7 -1 9 -1 -1 -1 -1 -1 -1 -1 -1 38.7 -1 77.5 23.9 57.1 27.7 18.7 -1 -1 -1 13.3 23.3 35.1 -1 -1 -1 -1 -1 20.7 -1 -1 25 -1 -1 -1 -1 15.7 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.7 -1 -1 29 -1 -1 -1 -1 31 -1 23.1 -1 -1 -1 -1 -1 -1 31.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.6 -1 38.9 -1
lg -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
ln -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.6 4.7 -1 -1 -1 -1 0.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10.7 -1
lo -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 16.8 -1 -1 -1 -1 -1 2.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 33.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10.3 -1
lt -1 -1 16.8 -1 0.6 -1 -1 -1 -1 31.2 -1 10.7 -1 -1 39.4 -1 47.5 43.5 42.2 22.2 -1 37.7 39 -1 -1 -1 33 -1 -1 10.1 -1 -1 30.2 -1 -1 -1 -1 37.6 17.8 -1 9.5 23 -1 -1 21 -1 -1 -1 -1 -1 22.7 -1 18.1 -1 -1 -1 5.3 -1 83.4 -1 -1 47.8 -1 42.4 -1 39.1 -1 -1 1.9 -1 -1 -1 100 -1 3.6 -1 -1 33.8 52.1 -1 -1 -1 -1 1 -1 8.5 -1
lv -1 -1 14.5 -1 3.4 -1 -1 -1 -1 -1 -1 -1 -1 70.5 42.8 -1 42 42.3 41.2 -1 -1 -1 41.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 64.8 32.4 7.8 -1 -1 23 -1 -1 2.8 -1 -1 -1 -1 19.9 -1 -1 11.7 -1 -1 -1 -1 -1 61.3 -1 -1 28.5 -1 -1 -1 36.3 -1 -1 2.1 -1 -1 -1 1.9 -1 -1 -1 -1 49.3 16.3 -1 -1 -1 -1 -1 -1 20.9 -1
mg -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 37.5 -1 -1 -1 -1 -1 2.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mk 100 -1 37.1 -1 1.8 20.5 51.1 -1 -1 -1 -1 44.6 -1 -1 42.7 100 36.6 47.4 39.1 -1 -1 -1 31.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 65.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 30 7.2 -1 -1 -1 -1 -1 10.4 -1 100 -1 -1 46.8 -1 54.5 24.4 53.7 -1 -1 1 -1 -1 -1 19.3 -1 -1 -1 -1 -1 44.9 -1 -1 -1 -1 2 -1 -1 -1
ml -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 38.1 -1 -1 -1 -1 -1 24.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mn -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.4 -1 12 6.3 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6.3 -1 -1 -1 -1 -1 3.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3.8 -1
mr -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.6 -1 -1 -1 -1 -1 -1 5.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3.3 -1 -1 -1 -1 -1 -1 -1 -1 -1
ms 21.8 -1 22.2 -1 -1 10.1 8.8 -1 0.8 -1 -1 15.5 4.6 -1 34 11.9 36.4 35.2 -1 23.4 -1 29 33.9 1.1 -1 -1 -1 -1 -1 32.9 11.1 -1 25.9 -1 -1 -1 14.5 34.6 17.6 3.2 -1 2.5 7.9 -1 12.5 -1 -1 -1 -1 5.5 -1 -1 4.4 -1 -1 -1 -1 -1 33.9 -1 -1 18.9 -1 32.4 14.7 26.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 32.5 -1 28 29.8 16 47.3 -1 -1 -1 -1 8.9 -1
my -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.5 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3.4 -1
nl 52.4 -1 21.9 22.1 -1 24.1 46.7 -1 0.5 41 -1 39.9 -1 57.8 44.9 36 46.9 43.9 49.2 14.4 -1 49.5 40.4 24.3 1.2 3 41.5 -1 -1 28.5 -1 13.5 35.4 14 -1 -1 -1 45.6 21 -1 4.3 -1 -1 -1 18.7 18.9 -1 -1 -1 70.7 2.3 -1 16.7 -1 -1 2.6 23.4 -1 -1 14.6 -1 36.9 -1 45.5 40.6 36.3 -1 -1 2.9 -1 57.1 -1 70.5 -1 -1 -1 -1 28.6 34.6 -1 35.9 -1 -1 2.4 -1 11.5 -1
oc -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 16.1 -1 19 24.8 -1 -1 -1 11.7 22.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 29.2 5.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 22.8 -1 -1 14 -1 -1 -1 16.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12.1 -1 -1 -1 -1 -1 10.8 -1 11.2 -1
pa -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
pl 50.6 -1 24.6 -1 -1 26.2 38 -1 -1 30.3 -1 39.4 2.2 49.9 38.9 36.1 39.8 40.5 16.5 18.5 -1 34.5 36.4 6.8 -1 8.1 18.2 -1 -1 32.4 15.3 -1 34.9 -1 -1 -1 31.3 38.8 13.5 -1 12.3 11 5.6 -1 14.6 -1 -1 -1 -1 41.7 22.7 -1 70.2 -1 -1 -1 20.2 -1 42.3 14 -1 -1 -1 39.6 42.2 41.4 -1 -1 8.3 -1 -1 -1 45.6 -1 -1 28.9 -1 32.9 38.6 25.7 27.7 -1 -1 0.9 -1 13.7 -1
ps -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12.7 -1 -1 -1 -1 -1 -1 -1 -1 -1
pt 52.4 -1 11.9 56.2 -1 35.7 44.2 -1 -1 45.8 2.3 42.4 -1 59.6 40.5 46.3 49 55.4 -1 23.5 -1 49.5 47 14.1 -1 1.4 48.7 -1 -1 37.5 13.4 -1 33.7 -1 -1 -1 34 50.6 18.7 -1 -1 -1 -1 -1 20.7 5.8 -1 -1 -1 36.3 -1 -1 69.6 -1 -1 -1 27.5 -1 46.1 -1 -1 37.6 -1 -1 48.1 35.7 -1 -1 5.9 -1 45 -1 55.5 -1 -1 14.8 -1 36 36.1 -1 23.8 -1 -1 2 -1 24.8 -1
ro 77.4 -1 19.2 -1 -1 42.8 32.5 -1 -1 30.2 -1 39.3 -1 100 41.6 -1 44.9 48.5 26.2 100 -1 46.9 41.2 -1 0.6 -1 -1 -1 -1 39.6 -1 -1 27.8 -1 -1 -1 -1 45.5 21.3 -1 -1 -1 -1 -1 16.3 -1 -1 -1 -1 -1 -1 -1 32.2 -1 -1 -1 22.7 -1 41.8 -1 -1 40 -1 48.9 -1 39.6 -1 -1 100 -1 -1 -1 100 -1 -1 -1 -1 32.3 76 -1 100 -1 -1 5.6 0.7 25.6 -1
ru 42.4 -1 24 100 1.6 27.4 41.4 -1 -1 41.8 6.4 42.2 5.2 46.7 39.1 43 39.5 41.5 47.6 32.3 2.1 35.4 35.9 11.9 1.1 2.4 33.1 -1 -1 31.5 23.1 -1 31.6 15.8 -1 -1 25.2 34.1 18.9 -1 10.8 7.6 3.3 -1 17.5 35.7 -1 -1 -1 38.4 30.5 -1 64.5 -1 -1 -1 17.2 -1 42.1 11.9 -1 42.6 -1 38.5 41.2 -1 -1 -1 18.4 -1 -1 -1 44.3 -1 -1 15.1 -1 25 51.3 9.2 16.3 -1 1.2 1.7 0.5 13.6 -1
sd -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 38.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
si -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 33 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
sl -1 -1 -1 -1 -1 20.7 31.8 -1 -1 -1 -1 60.3 -1 51.3 54.2 -1 46.5 51.5 47.9 -1 -1 37.1 39.6 -1 -1 -1 -1 -1 -1 23.5 19.4 -1 36.1 -1 -1 -1 -1 42.9 17.1 -1 -1 -1 -1 -1 11.2 -1 -1 -1 -1 26.9 1.4 -1 39.1 -1 -1 -1 -1 -1 51.3 -1 -1 50.4 -1 80.9 53.7 41.9 -1 -1 -1 -1 -1 -1 27.4 -1 -1 -1 -1 49.5 39.6 -1 32.6 -1 -1 0.5 -1 25.6 -1
so -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.8 -1 -1 -1 -1 -1 36.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.4 -1 -1 -1 -1 -1 -1 -1 -1 -1
sq -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 45.5 -1 48.2 37.3 -1 -1 -1 -1 45 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 42.6 30.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 36.8 -1 -1 -1 -1 51.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 65.8 -1 -1 -1 -1 -1 -1 -1 12.3 -1
su -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 28.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
sv 73.4 -1 5.4 -1 1.2 -1 32.5 -1 -1 50.1 -1 63.2 -1 62 45.8 47.1 48.8 46.7 -1 -1 -1 37.9 44.7 17.1 -1 -1 -1 -1 -1 55.3 30.4 -1 30 -1 -1 -1 49.1 44.3 17.1 -1 -1 -1 -1 -1 -1 14.2 -1 -1 -1 61.5 100 -1 16.7 -1 -1 -1 -1 -1 73.4 -1 -1 35.6 -1 48.7 100 35 -1 -1 78.6 -1 -1 -1 -1 -1 -1 -1 -1 32.4 10.8 -1 -1 -1 -1 1.8 -1 22.2 -1
ta -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 24.4 13.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
th -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19.9 -1 24.9 16.2 -1 -1 -1 3.4 18.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.7 5.7 -1 -1 -1 1.1 -1 -1 -1 -1 -1 -1 16.1 -1 -1 -1 -1 -1 -1 -1 0.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19.1 -1 -1 0 -1 -1 -1 -1 14.5 -1
tl -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 23.8 -1 -1 14.1 -1 16.5 14.4 -1 -1 -1 -1 15.2 -1 -1 -1 -1 -1 -1 5.6 -1 -1 -1 -1 -1 -1 -1 16.1 9 -1 1.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9.7 -1 -1 -1 -1 29.8 -1 17.4 -1 9.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8.2 -1 -1 -1 -1 -1 -1 -1 9.6 -1
tn 2.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.1 -1 0.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.7 -1 -1 -1 -1
tr 43.4 -1 22.6 -1 0.9 22.1 32.7 -1 0.2 33.9 -1 46.8 -1 44.9 36.3 39.6 38 44.1 55.7 36.2 -1 28.5 32.9 2.6 0.1 3.2 36.6 -1 -1 36.9 25.9 -1 29.2 24.2 -1 -1 -1 19.3 18.5 -1 11.7 4.4 -1 -1 22.7 -1 -1 -1 -1 33.5 29 -1 -1 -1 -1 2.7 17.2 -1 35.8 8.2 -1 32.7 11.5 40.1 38.9 25.9 -1 -1 26.1 0.4 54.1 -1 40.1 -1 4.6 15.1 -1 -1 33.6 11.9 25 -1 -1 1.2 -1 23.9 -1
uk 54.1 -1 24.7 -1 -1 24.7 46.4 -1 -1 42.7 -1 45 -1 48.9 41.8 41.8 40 41.5 33.8 22.2 -1 42.9 36.8 10.1 -1 -1 -1 -1 -1 34.7 -1 -1 35 -1 -1 -1 -1 39.5 19 -1 3.6 15.1 -1 -1 21.9 -1 -1 -1 -1 39.1 1.3 -1 55.2 -1 -1 -1 19.7 -1 44.8 -1 -1 45.7 -1 40.5 74.5 54.3 -1 -1 12 -1 -1 -1 6.7 -1 -1 -1 -1 34.1 -1 -1 36.3 -1 -1 2.7 -1 20.4 -1
ur -1 -1 37.2 -1 -1 -1 -1 9.3 -1 -1 -1 -1 -1 12.3 31.2 -1 26.1 -1 -1 -1 -1 -1 30.5 -1 -1 -1 -1 -1 -1 -1 32.1 -1 7.6 -1 -1 -1 -1 5.5 26.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 16 -1 -1 -1 -1 41.1 -1 -1 -1 17.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6.9 -1 -1 -1 -1 -1 -1 -1 -1 -1
vi 75.5 -1 -1 -1 -1 2.9 -1 40.3 -1 -1 -1 13.2 -1 -1 23.3 -1 34.1 27.9 -1 -1 -1 61.9 29.2 6.7 -1 -1 -1 -1 -1 0 -1 -1 17.1 -1 -1 -1 -1 30 15.7 -1 16 -1 3.3 -1 15.9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 35.3 -1 39.2 -1 -1 27 -1 25.6 80 12.1 -1 -1 2.7 -1 -1 -1 -1 -1 0 -1 -1 23.3 38.8 -1 -1 -1 -1 -1 -1 14.8 -1
wo -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6.4 -1 2 1.5 -1 -1 -1 -1 0.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 16 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
xh 12.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.6 -1 15.5 -1 -1 -1 -1 -1 11.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.2 4.5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 9.1
yi 4.2 -1 0.3 -1 0.3 1.2 2.5 -1 -1 3.3 -1 1.9 2 1.2 1.1 1.7 2 2.6 0.9 0.8 -1 2.7 2.5 4.9 0.3 -1 1.7 -1 -1 2 -1 6.6 1 -1 -1 -1 -1 4.4 1.3 -1 -1 6.6 -1 -1 -1 1.1 -1 -1 -1 0.4 -1 -1 1.8 -1 -1 -1 -1 -1 3.5 3.4 -1 0.6 -1 3.8 3.9 1.3 -1 -1 1 -1 -1 -1 3.6 -1 -1 -1 -1 1.4 4.3 -1 -1 -1 -1 -1 -1 1.3 -1
yo -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
zh 27.9 -1 15 -1 -1 17 25.6 17.8 -1 20.4 -1 30.2 2.8 45.9 26.6 38.2 27.5 36.1 -1 17.8 -1 33.2 26.3 5.7 -1 5.5 48 -1 -1 24.1 15.7 -1 22.3 10.6 -1 2.4 21.4 28.1 17.6 -1 3.1 8.1 5.4 -1 14.2 40.6 -1 5.7 8 15.7 18.7 -1 -1 -1 0.9 -1 13.8 0.3 29 10.3 -1 23 -1 34.7 27.7 18.9 -1 -1 3.2 -1 18.2 -1 36.5 -1 6.7 14 -1 30 24 -1 23.4 -1 -1 2.4 -1 -1 -1
zu 10.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 18.7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.5 -1 -1 -1 -1

Table 6.11: spBLEU performance of last checkpoint of SMaLL-100 model on language pairs of
Tatoeba.
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6.10 Details of Fine-Tuning on Low-Resource Language Pairs

6.9.4 TICO19

src
tgt

am ar bn my zh en tl fr lg ha hi id km ln ms mr ne ps fa ru so es sw ta ur zu

am -1 7.5 12.7 1.5 7.6 18.3 11.3 13.7 2.4 6.9 16.2 14.2 5.5 2.4 14.4 5.9 6.1 7.3 11.8 10.6 0.5 15.7 13.7 6 10.4 5.2
ar 7.8 -1 16.8 1.5 12.3 29.9 3.8 23.6 1.5 7.4 24.9 26 9.8 1.8 23.9 4.2 0.3 6.4 20.5 18.8 0.4 29.5 21.3 1.7 13.3 2.5
bn 9.7 15.5 -1 4.4 13.8 33.8 23.9 21.6 3.9 10.7 31.1 27.9 12.6 4.4 27.3 11.3 16.4 10.4 21.1 19.4 1.6 27.9 22.7 9.9 18.3 9.9
my 6.7 6.3 11.4 -1 7.9 16.6 14.2 11.2 3.2 7.9 14.7 14.3 7.9 2.8 14.8 5.6 8 7.9 11.5 10.2 1.3 14.4 13.7 6.1 11 7.1
zh 8.6 15.6 18.3 4 -1 27.5 20.6 20.9 3.6 9.3 24.3 26.5 10.6 4 24.5 8.5 6.8 9.2 19.9 19 1.4 26.6 20.9 5.3 15.2 9
en 11.1 25.2 26.8 7 19.6 -1 35.6 36.3 5.6 15.4 39.3 47 17.9 3.6 44.7 12.1 19 11.8 29.9 29.7 2.1 47.5 32.4 9.3 20.8 15.7
tl 10.1 15.2 21.4 6 14.6 45.4 -1 26.1 5.7 14 28.5 33.9 14.7 6 33.2 10.1 14.6 10.6 21.9 22.5 1.6 33.3 26.2 7 17 14.6
fr 8.5 18.4 17.8 3.8 13.9 35.1 22.3 -1 3.5 9.7 26.1 30.7 11.6 3.9 27.6 8.3 2.6 7.9 20.8 22.5 1.1 34.3 21.3 1.7 14.3 8.8
lg 4.1 3.1 6.5 2.6 4.2 14.1 10.8 8.5 -1 7.4 7.2 10.2 3.9 4.6 9.8 3.9 4.5 4 5.7 8.7 1.5 11.3 9.7 2.4 5.2 6.8
ha 5.9 6.4 10.3 3.2 6.4 20.7 16.8 12.6 3.9 -1 13.5 16.2 8.1 4.8 16 5 6.8 7.2 11.7 11.7 1.4 16.6 14.7 4.3 9.8 8.3
hi 10.5 18 25.4 4.6 15.3 40.8 26.3 25 4.2 11.4 -1 31.9 13.5 4.5 31 13.5 20.4 11 23.6 22.1 1.6 32.6 25.5 10.4 21.4 10.5
id 9.7 19.5 22.2 4.8 17.4 43 22.9 28.6 4.7 12.7 30.2 -1 14.3 5.4 39.1 7.4 0.7 10.3 25.6 25 1.9 36.5 27.5 3.9 17.5 11.7
km 7.6 10.8 14.6 3.2 10 25 19.4 17 3.8 10.4 20 22.5 -1 4.1 22.2 6.8 9.4 8.8 15.9 14.7 1 21.5 18.9 6.6 13.1 8.6
ln 3.6 3.4 5.9 2.1 4.2 12 9.2 8.1 4.2 6.1 6.8 10.9 3 -1 10.1 3.4 3.4 4.3 5.9 8.2 1.2 10.7 9.4 2 5.2 6.3
ms 10.1 19.2 22.6 5 16.3 44.2 28 27.6 4.8 13.2 30.8 41.4 14.7 5.5 -1 8.9 1.1 10.6 25.2 23.8 1.9 35.2 28.2 6.6 17.8 12.4
mr 7.9 10.8 17.7 2.6 9.8 23.9 18.3 16.4 2.6 8.2 24.1 19.2 9.5 2.8 19.7 -1 12.3 8 15.8 14.1 0.9 20.4 16.4 8 14.9 7.3
ne 9.5 8.6 21.9 4 12.2 33.1 22.1 19.1 3.9 9.9 31.7 20.8 11.1 4.3 24.9 11.4 -1 10.5 14.8 17.3 1.7 25.1 20.4 8.4 17.4 9.5
ps 8 10.9 16.2 3.4 9.9 23.4 18.3 15.5 3.4 8.9 20.7 19.4 10 3.8 19.2 7.8 11.7 -1 17.1 13.9 1.4 20.1 17.1 7.6 14.7 8
fa 8.8 18.2 19.3 3.3 14.6 32 10.8 23.5 3.6 10.1 26 29 11.8 4 26.8 6.2 0.9 9.5 -1 20.9 1.2 29.7 22.6 3.5 15.8 7
ru 9.1 18.2 20.2 3.6 15.7 33.1 23 25.9 4 10.5 26.4 30 11.8 4.6 26.8 9.4 12.9 9.3 22 -1 1.4 32.7 22.6 4.6 15.9 10.5
so 1.1 0.2 1.1 0.9 0.3 2.1 3.4 1 1.6 3.3 1.8 1.2 1.4 1.5 1.5 0.8 0.8 2.4 0.6 0.3 -1 2.2 3.4 0.6 1.2 3
es 9.7 22.2 22.4 4.8 17.6 45.6 27.3 33.7 4.2 12.2 31.8 38 13.5 5.1 33.5 9.3 3.5 9.7 26 27.7 1.7 -1 26.5 2.4 17.7 9.8
sw 9.2 15.3 18.9 4.9 13 33.5 24.1 22.4 4.8 12.8 24.9 29.2 13.5 5.9 29.3 8.4 6.6 10.1 20.8 19.7 1.4 28.4 -1 6.3 16.1 8.1
ta 6 6.6 12 1.2 6.3 18.1 12.4 10.5 1.5 6.4 16.8 13.3 5.5 2.2 13.4 5.9 5.8 6.8 11 9.4 0.5 13.8 12.4 -1 10.9 4.3
ur 8.7 12.8 19.4 3.1 11.6 26.6 20 18 3.3 9.6 26.7 22.5 9.4 3.6 22.2 9.4 12.4 10 18.6 15.9 1.4 23.2 19.6 8.4 -1 7.5
zu 7.3 9.4 13.8 4.3 9.3 27.3 21.9 15.9 4.7 11.3 17.3 20.8 10.3 5.3 20.7 7 9.3 8.5 15.4 14.9 1.2 21.5 18.3 5.6 12.4 -1

Table 6.12: spBLEU performance of last checkpoint of SMaLL-100 model on language pairs of
TICO19.

6.10 Details of Fine-Tuning on Low-Resource Language Pairs

For further fine-tuning of SMaLL-100 and M2M-100 (418M) models on selected language pairs,
we use bilingual data provided by Tiedemann (2020) (release 2021.08.07)14 as its training data is
less noisy. We evaluate fine-tuned models on devtest subset of FLORES-101 (Goyal et al.,
2021b) benchmark with spBLEU metric (Goyal et al., 2021b). We use the same hyper-parameters,
as defined in Appendix 6.8. We train each model on 2 TESLA V100-32GB GPUs.

14https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/
data/README-v2021-08-07.md
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7 Conclusions and Future Work

7.1 General Conclusions

In this thesis, we addressed two main problems of Transformer-based architectures including
the inability to encode structured data (e.g. graphs) and the computational efficiency. Particu-
larly, we focus on encoding syntactic and semantic graphs into the self-attention mechanism of
Transformers. Additionally, we concentrate on the impacts of applying compression techniques
to pre-trained Transformer-based multilingual NMT models. In the following, we demonstrate
our main conclusions.

In Chapter 2, we proposed the Graph-to-Graph Transformer (G2GTr) architecture, which inputs
and outputs arbitrary graphs through its attention mechanisms. Each graph relation is modelled
as a label embedding to each attention function involving the relation’s tokens, and each graph
relation is predicted from its token’s embeddings like an attention function. We demonstrate the
effectiveness of this architecture on transition-based dependency parsing, where the input graph
is the partial dependency structure specified by the parse history, and the output graph is predicted
one dependency at a time by the parser actions. Incorporating BERT (Brown et al., 2020)
pre-training results in substantially improving the state-of-the-art in traditional transition-based
dependency parsing.

In Chapter 3, we propose a novel model for structured prediction, Recursive Non-autoregressive
Graph-to-Graph Transformer (RNG Transformer), to iteratively refine arbitrary graphs. Given an
initial graph, RNG Transformer learns to predict a corrected graph over the same set of nodes.
Each iteration of refinement predicts the edges of the graph in a non-autoregressive fashion,
but conditions these predictions on the entire graph from the previous iteration. This graph
conditioning and prediction are made with the G2GTr architecture, which can capture complex
patterns of inter-dependencies between graph edges. Evaluating on 13 languages of the Universal
Dependencies Treebanks, the English and Chinese Penn Treebanks, and the German CoNLL
2009 shared task treebank, our RNG Transformer model (integrated with different initial parsers)
significantly outperforms previous state-of-the-art models on all these treebanks.
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Chapter 7. Conclusions and Future Work

In Chapter 4, we propose the Syntax-aware Graph-to-Graph Transformer architecture, which
effectively incorporates syntactic information by inputting the syntactic dependency graph into
the self-attention mechanism of Transformer. The mechanism for inputting graph relation
embeddings differs from the original Graph-to-Graph Transformer (defined in Chapter 2 and
Chapter 3) in that it models the complete interaction between the dependency relation, query
vector and key vector. It also excludes the graph interaction with value vectors while maintaining
good performance. We have evaluated our model on CoNLL 2005 and CoNLL 2009 SRL datasets
and outperformed previous comparable models.

In Chapter 5, we demonstrated the impacts of applying compression methods to the mas-
sively Multilingual Machine Translation models by evaluating compressed models on FLORES-
101 (Goyal et al., 2021b), gender bias benchmark (Stanovsky et al., 2019), and word sense
disambiguation benchmark (Campolungo et al., 2022). We showed that while average BLEU
drops negligibly, the performance of under-represented language pairs drops drastically. By
analysing the attention patterns, we showed that sparsity improves the performance of some
medium-resource language pairs by removing the noisy memorisation, resulting in less hallucina-
tions in the target translations. By evaluating our compressed models on gender bias and word
sense disambiguation benchmarks, we showed that the compression amplifies the intrinsic gender
and semantic biases, even in high-resource language pairs.

In Chpater 6, we presented SMaLL-100 model, a shallow multilingual NMT model, focusing on
low-resource languages. We evaluated our model on different NMT benchmarks. SMaLL-100
significantly outperforms multilingual models of comparable size on all of the tested benchmarks
(FLORES-101, Tatoeba, TICO-19) and is much faster at inference. It also achieves competitive
results with M2M-100 1.2B (Fan et al., 2020a), while being 4.3× faster at inference and 3.6×
smaller. Compared to M2M-100 (12B), the biggest available MNMT model, SMaLL-100 loses
nearly 1.7 spBLEU on average but it is significantly faster (7.8×) and smaller (36×), which
makes it a good fit for resource-constrained settings. Additionally, we show that SMaLL-100 can
achieve similar performance as M2M-100 (12B) with just a few steps of fine-tuning on specific
language pairs.

7.2 Future Work

While the research demonstrated in this thesis shows significant improvement in the generality
and efficiency of Transformer-based models, there is a vast scope for additional refinement.
Below, we outline some potential research directions for future work.

• Regarding our Graph-to-Graph Transformer architecture, it can easily be applied to a wide
variety of NLP tasks, which require encoding graph structures, including other seman-
tic (e.g. AMR parsing) and syntactic (e.g. constituency graph) graphs, and knowledge
graphs. Additionally, future studies can integrate our Graph-to-Graph Transformer model
with efficient Transformer architectures (Katharopoulos et al., 2020; Wang et al., 2020a;
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7.2 Future Work

Ainslie et al., 2020).

• The RNG Transformer architecture is a very general and powerful method for structured
prediction, which could easily be applied to other NLP tasks. It would especially benefit
tasks that require capturing complex structured inter-dependencies between graph edges,
without losing the computational benefits of a non-autoregressive model.

• Regarding the impacts of compression on Transformer-based models, we hope our findings
could be a starting point to consider the fairness aspects when compressing multilingual
models. Additionally, our SMaLL-100 model can be used as a compact and efficient NMT
model for a great number of languages, including low and very-low language directions.
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Popović, M. (2015). chrF: character n-gram F-score for automatic MT evaluation. In Proceedings
of the Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal.
Association for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Brussels, Belgium.
Association for Computational Linguistics.

Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., and Zhang, Y. (2012). CoNLL-2012 shared
task: Modeling multilingual unrestricted coreference in OntoNotes. In Joint Conference

139



Bibliography

on EMNLP and CoNLL - Shared Task, pages 1–40, Jeju Island, Korea. Association for
Computational Linguistics.

Prato, G., Charlaix, E., and Rezagholizadeh, M. (2020). Fully quantized transformer for machine
translation. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
1–14, Online. Association for Computational Linguistics.

Punyakanok, V., Roth, D., and Yih, W.-t. (2008). The importance of syntactic parsing and
inference in semantic role labeling. Computational Linguistics, 34(2):257–287.

Qu, Z., Liu, L., Tu, F., Chen, Z., Ding, Y., and Xie, Y. (2022). Dota: Detect and omit weak
attentions for scalable transformer acceleration. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’22, page 14–26, New York, NY, USA. Association for Computing Machinery.

Quinn, J. and Ballesteros, M. (2018). Pieces of eight: 8-bit neural machine translation. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers), pages
114–120, New Orleans - Louisiana. Association for Computational Linguistics.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text transformer.

Raunak, V., Menezes, A., and Junczys-Dowmunt, M. (2021). The curious case of hallucinations
in neural machine translation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 1172–1183, Online. Association for Computational Linguistics.

Renduchintala, A., Diaz, D., Heafield, K., Li, X., and Diab, M. (2021). Gender bias amplification
during speed-quality optimization in neural machine translation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 99–109,
Online. Association for Computational Linguistics.

Roth, M. and Lapata, M. (2016). Neural semantic role labeling with dependency path embeddings.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1192–1202, Berlin, Germany. Association for Computational
Linguistics.

Sajjad, H., Dalvi, F., Durrani, N., and Nakov, P. (2023). On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter.

Sanh, V., Wolf, T., and Rush, A. M. (2020). Movement pruning: Adaptive sparsity by fine-
tuning. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA. Curran Associates Inc.

140



Bibliography

Satta, G. and Brill, E. (1996). Efficient transformation-based parsing. In 34th Annual Meeting of
the Association for Computational Linguistics, pages 255–262, Santa Cruz, California, USA.
Association for Computational Linguistics.

Savoldi, B., Gaido, M., Bentivogli, L., Negri, M., and Turchi, M. (2022). Under the morphosyn-
tactic lens: A multifaceted evaluation of gender bias in speech translation. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1807–1824, Dublin, Ireland. Association for Computational Linguistics.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S.,
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E., Mielke, S. J., Lee, W. Y., Sharma, A., Santilli, A., Chaffin, A., Stiegler, A., Datta, D.,
Szczechla, E., Chhablani, G., Wang, H., Pandey, H., Strobelt, H., Fries, J. A., Rozen, J., Gao,
L., Sutawika, L., Bari, M. S., Al-shaibani, M. S., Manica, M., Nayak, N., Teehan, R., Albanie,
S., Shen, S., Ben-David, S., Bach, S. H., Kim, T., Bers, T., Fevry, T., Neeraj, T., Thakker,
U., Raunak, V., Tang, X., Yong, Z.-X., Sun, Z., Brody, S., Uri, Y., Tojarieh, H., Roberts, A.,
Chung, H. W., Tae, J., Phang, J., Press, O., Li, C., Narayanan, D., Bourfoune, H., Casper, J.,
Rasley, J., Ryabinin, M., Mishra, M., Zhang, M., Shoeybi, M., Peyrounette, M., Patry, N., Tazi,
N., Sanseviero, O., von Platen, P., Cornette, P., Lavallée, P. F., Lacroix, R., Rajbhandari, S.,
Gandhi, S., Smith, S., Requena, S., Patil, S., Dettmers, T., Baruwa, A., Singh, A., Cheveleva,
A., Ligozat, A.-L., Subramonian, A., Névéol, A., Lovering, C., Garrette, D., Tunuguntla, D.,
Reiter, E., Taktasheva, E., Voloshina, E., Bogdanov, E., Winata, G. I., Schoelkopf, H., Kalo,
J.-C., Novikova, J., Forde, J. Z., Clive, J., Kasai, J., Kawamura, K., Hazan, L., Carpuat, M.,
Clinciu, M., Kim, N., Cheng, N., Serikov, O., Antverg, O., van der Wal, O., Zhang, R., Zhang,
R., Gehrmann, S., Mirkin, S., Pais, S., Shavrina, T., Scialom, T., Yun, T., Limisiewicz, T.,
Rieser, V., Protasov, V., Mikhailov, V., Pruksachatkun, Y., Belinkov, Y., Bamberger, Z., Kasner,
Z., Rueda, A., Pestana, A., Feizpour, A., Khan, A., Faranak, A., Santos, A., Hevia, A., Unldreaj,

141



Bibliography

A., Aghagol, A., Abdollahi, A., Tammour, A., HajiHosseini, A., Behroozi, B., Ajibade, B.,
Saxena, B., Ferrandis, C. M., Contractor, D., Lansky, D., David, D., Kiela, D., Nguyen, D. A.,
Tan, E., Baylor, E., Ozoani, E., Mirza, F., Ononiwu, F., Rezanejad, H., Jones, H., Bhattacharya,
I., Solaiman, I., Sedenko, I., Nejadgholi, I., Passmore, J., Seltzer, J., Sanz, J. B., Dutra, L.,
Samagaio, M., Elbadri, M., Mieskes, M., Gerchick, M., Akinlolu, M., McKenna, M., Qiu,
M., Ghauri, M., Burynok, M., Abrar, N., Rajani, N., Elkott, N., Fahmy, N., Samuel, O., An,
R., Kromann, R., Hao, R., Alizadeh, S., Shubber, S., Wang, S., Roy, S., Viguier, S., Le, T.,
Oyebade, T., Le, T., Yang, Y., Nguyen, Z., Kashyap, A. R., Palasciano, A., Callahan, A.,
Shukla, A., Miranda-Escalada, A., Singh, A., Beilharz, B., Wang, B., Brito, C., Zhou, C.,
Jain, C., Xu, C., Fourrier, C., Periñán, D. L., Molano, D., Yu, D., Manjavacas, E., Barth, F.,
Fuhrimann, F., Altay, G., Bayrak, G., Burns, G., Vrabec, H. U., Bello, I., Dash, I., Kang,
J., Giorgi, J., Golde, J., Posada, J. D., Sivaraman, K. R., Bulchandani, L., Liu, L., Shinzato,
L., de Bykhovetz, M. H., Takeuchi, M., Pàmies, M., Castillo, M. A., Nezhurina, M., Sänger,
M., Samwald, M., Cullan, M., Weinberg, M., Wolf, M. D., Mihaljcic, M., Liu, M., Freidank,
M., Kang, M., Seelam, N., Dahlberg, N., Broad, N. M., Muellner, N., Fung, P., Haller, P.,
Chandrasekhar, R., Eisenberg, R., Martin, R., Canalli, R., Su, R., Su, R., Cahyawijaya, S.,
Garda, S., Deshmukh, S. S., Mishra, S., Kiblawi, S., Ott, S., Sang-aroonsiri, S., Kumar, S.,
Schweter, S., Bharati, S., Laud, T., Gigant, T., Kainuma, T., Kusa, W., Labrak, Y., Bajaj, Y. S.,
Venkatraman, Y., Xu, Y., Xu, Y., Xu, Y., Tan, Z., Xie, Z., Ye, Z., Bras, M., Belkada, Y., and
Wolf, T. (2023). Bloom: A 176b-parameter open-access multilingual language model.

Schwenk, H., Wenzek, G., Edunov, S., Grave, E., Joulin, A., and Fan, A. (2021). CCMatrix:
Mining billions of high-quality parallel sentences on the web. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 6490–6500,
Online. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Improving neural machine translation models
with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany. Association
for Computational Linguistics.

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),
pages 464–468, New Orleans, Louisiana. Association for Computational Linguistics.

Shen, D. and Lapata, M. (2007). Using semantic roles to improve question answering. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 12–21, Prague, Czech
Republic. Association for Computational Linguistics.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M. W., and Keutzer, K.
(2020). Q-bert: Hessian based ultra low precision quantization of bert. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(05):8815–8821.

142



Bibliography

Shi, P. and Lin, J. (2019). Simple bert models for relation extraction and semantic role labeling.

Smith, A., de Lhoneux, M., Stymne, S., and Nivre, J. (2018). An investigation of the interactions
between pre-trained word embeddings, character models and POS tags in dependency parsing.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2711–2720, Brussels, Belgium. Association for Computational Linguistics.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., and Ng, A. Y. (2011). Dynamic pooling and
unfolding recursive autoencoders for paraphrase detection. In Advances in neural information
processing systems, pages 801–809.

Socher, R., Karpathy, A., Le, Q. V., Manning, C. D., and Ng, A. Y. (2014). Grounded com-
positional semantics for finding and describing images with sentences. Transactions of the
Association for Computational Linguistics, 2:207–218.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013).
Recursive deep models for semantic compositionality over a sentiment treebank. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Stanovsky, G., Smith, N. A., and Zettlemoyer, L. (2019). Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 1679–1684, Florence, Italy. Association for Computational Linguistics.

Stanton, S. D., Izmailov, P., Kirichenko, P., Alemi, A. A., and Wilson, A. G. (2021). Does
knowledge distillation really work? In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W., editors, Advances in Neural Information Processing Systems.

Straka, M. (2018). UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pages 197–207, Brussels, Belgium. Association for Computational Linguistics.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3645–3650, Florence, Italy. Association for Computational
Linguistics.

Strubell, E., Verga, P., Andor, D., Weiss, D., and McCallum, A. (2018). Linguistically-informed
self-attention for semantic role labeling. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 5027–5038, Brussels, Belgium. Association
for Computational Linguistics.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D. (2020). MobileBERT: a compact
task-agnostic BERT for resource-limited devices. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 2158–2170, Online. Association for
Computational Linguistics.

143



Bibliography

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., and Nivre, J. (2008). The CoNLL
2008 shared task on joint parsing of syntactic and semantic dependencies. In CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Language Learning, pages
159–177, Manchester, England. Coling 2008 Organizing Committee.

Swayamdipta, S., Thomson, S., Lee, K., Zettlemoyer, L., Dyer, C., and Smith, N. A. (2018).
Syntactic scaffolds for semantic structures. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3772–3782, Brussels, Belgium. Association
for Computational Linguistics.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from
tree-structured long short-term memory networks.

Tan, Z., Wang, M., Xie, J., Chen, Y., and Shi, X. (2017). Deep semantic role labeling with
self-attention.

Tang, Y., Tran, C., Li, X., Chen, P.-J., Goyal, N., Chaudhary, V., Gu, J., and Fan, A. (2020).
Multilingual translation with extensible multilingual pretraining and finetuning.

Tang, Y., Tran, C., Li, X., Chen, P.-J., Goyal, N., Chaudhary, V., Gu, J., and Fan, A. (2021).
Multilingual translation from denoising pre-training. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages 3450–3466, Online. Association for
Computational Linguistics.

Tao, C., Hou, L., Zhang, W., Shang, L., Jiang, X., Liu, Q., Luo, P., and Wong, N. (2022).
Compression of generative pre-trained language models via quantization. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 4821–4836, Dublin, Ireland. Association for Computational Linguistics.

Tchernowitz, I., Yedidsion, L., and Reichart, R. (2016). Effective greedy inference for graph-
based non-projective dependency parsing. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 711–720, Austin, Texas. Association for
Computational Linguistics.

Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Proceedings of the
Eighth International Conference on Language Resources and Evaluation (LREC’12), pages
2214–2218, Istanbul, Turkey. European Language Resources Association (ELRA).

Tiedemann, J. (2020). The tatoeba translation challenge – realistic data sets for low resource
and multilingual MT. In Proceedings of the Fifth Conference on Machine Translation, pages
1174–1182, Online. Association for Computational Linguistics.

Titov, I. and Henderson, J. (2007a). Constituent parsing with incremental sigmoid belief networks.
In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,
pages 632–639, Prague, Czech Republic. Association for Computational Linguistics.

144



Bibliography

Titov, I. and Henderson, J. (2007b). Fast and robust multilingual dependency parsing with a
generative latent variable model. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 947–951, Prague, Czech Republic. Association for Computational
Linguistics.

Titov, I. and Henderson, J. (2007c). A latent variable model for generative dependency parsing.
In Proceedings of the Tenth International Conference on Parsing Technologies, pages 144–155,
Prague, Czech Republic. Association for Computational Linguistics.

Torres Martins, A. F., Das, D., Smith, N. A., and Xing, E. P. (2008). Stacking dependency parsers.
In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,
pages 157–166, Honolulu, Hawaii. Association for Computational Linguistics.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Human Language
Technology Conference of the North American Chapter of the Association for Computational
Linguistics, pages 252–259.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. (2023).
Llama: Open and efficient foundation language models.

Treviso, M., Lee, J.-U., Ji, T., van Aken, B., Cao, Q., Ciosici, M. R., Hassid, M., Heafield, K.,
Hooker, S., Raffel, C., Martins, P. H., Martins, A. F. T., Forde, J. Z., Milder, P., Simpson, E.,
Slonim, N., Dodge, J., Strubell, E., Balasubramanian, N., Derczynski, L., Gurevych, I., and
Schwartz, R. (2023). Efficient methods for natural language processing: A survey.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

Veenstra, J. and Daelemans, W. (2000). A memory-based alternative for connectionist shift-reduce
parsing. CiteSeer.

Vig, J. and Belinkov, Y. (2019). Analyzing the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pages 63–76, Florence, Italy. Association for Computational
Linguistics.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I. (2019). Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 5797–5808,
Florence, Italy. Association for Computational Linguistics.

145



Bibliography

Wang, F., Yan, J., Meng, F., and Zhou, J. (2021). Selective knowledge distillation for neural
machine translation. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6456–6466, Online. Association for Computational
Linguistics.

Wang, H., Ma, S., Dong, L., Huang, S., Zhang, D., and Wei, F. (2022). Deepnet: Scaling
transformers to 1,000 layers.

Wang, R., Zhao, H., Ploux, S., Lu, B.-L., and Utiyama, M. (2016). A bilingual graph-based
semantic model for statistical machine translation. In Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence, IJCAI’16, page 2950–2956. AAAI
Press.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020a). Linformer: Self-attention with
linear complexity.

Wang, W. and Chang, B. (2016). Graph-based dependency parsing with bidirectional LSTM.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2306–2315, Berlin, Germany. Association for Computational
Linguistics.

Wang, Z., Wohlwend, J., and Lei, T. (2020b). Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 6151–6162, Online. Association for Computational Linguistics.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M.,
Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., and Fedus,
W. (2022a). Emergent abilities of large language models. Transactions on Machine Learning
Research. Survey Certification.

Wei, X., Gong, R., Li, Y., Liu, X., and Yu, F. (2022b). Qdrop: Randomly dropping quantization
for extremely low-bit post-training quantization.

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for neural net-
work transition-based parsing. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 323–333, Beijing, China. Association for
Computational Linguistics.

Wilks, Y. (1975). A preferential, pattern-seeking, semantics for natural language inference.
Artificial Intelligence, 6(1):53–74.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., and Brew, J. (2019). Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

146



Bibliography

Woods, W. A. (1970). Transition network grammars for natural language analysis. Commun.
ACM, 13(10):591–606.

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius, P. (2020). Integer quantization for deep
learning inference: Principles and empirical evaluation.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao,
Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144.

Xia, Q., Li, Z., Zhang, M., Zhang, M., Fu, G., Wang, R., and Si, L. (2019). Syntax-aware
neural semantic role labeling. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):7305–7313.

Xia, Q., Wang, R., Li, Z., Zhang, Y., and Zhang, M. (2020). Semantic role labeling with
heterogeneous syntactic knowledge. In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2979–2990, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Xu, C., Yao, J., Lin, Z., Ou, W., Cao, Y., Wang, Z., and Zha, H. (2018). Alternating multi-bit
quantization for recurrent neural networks.

Xu, C., Zhou, W., Ge, T., Xu, K., McAuley, J., and Wei, F. (2021). Beyond preserved accuracy:
Evaluating loyalty and robustness of BERT compression. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing, pages 10653–10659, Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics.

Xue, N., Chiou, F.-D., and Palmer, M. (2002). Building a large-scale annotated Chinese corpus.
In COLING 2002: The 19th International Conference on Computational Linguistics.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support vector
machines. In Proceedings of the Eighth International Conference on Parsing Technologies,
pages 195–206, Nancy, France.

Yang, L., Zhang, M., Liu, Y., Yu, N., Sun, M., and Fu, G. (2017). Joint pos tagging and
dependency parsing with transition-based neural networks.

Yang, Z., Cui, Y., and Chen, Z. (2022). Textpruner: A model pruning toolkit for pre-trained
language models.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). Xlnet:
Generalized autoregressive pretraining for language understanding. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and He, Y. (2022). Zeroquant: Efficient
and affordable post-training quantization for large-scale transformers.

147



Bibliography

Yazdani, M. and Henderson, J. (2015). Incremental recurrent neural network dependency parser
with search-based discriminative training. In Proceedings of the Nineteenth Conference on
Computational Natural Language Learning, pages 142–152, Beijing, China. Association for
Computational Linguistics.

Yih, W.-t., Richardson, M., Meek, C., Chang, M.-W., and Suh, J. (2016). The value of semantic
parse labeling for knowledge base question answering. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
201–206, Berlin, Germany. Association for Computational Linguistics.

Zadeh, A. H., Mahmoud, M., Abdelhadi, A., and Moshovos, A. (2022). Mokey: Enabling narrow
fixed-point inference for out-of-the-box floating-point transformer models. In Proceedings of
the 49th Annual International Symposium on Computer Architecture, ISCA ’22, page 888–901,
New York, NY, USA. Association for Computing Machinery.
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