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Abstract

This thesis studies the origins and consequences of financial crises, and computational tech-

niques to solve continuous-time economic models that explain such crises.

The first chapter shows that financial recessions are typically characterized by a large risk

premium and a slow recovery. However, macro-finance models have trouble matching these

empirical features, especially when they are calibrated to match both the observed uncondi-

tional and conditional macroeconomic and asset-pricing moments simultaneously. In this

chapter, I build a macro-finance model that quantitatively explains the salient features of a

financial crisis, such as a large drop in output, a spike in the risk premium, reduced financial

intermediation, and a long duration of economic distress. The model has leveraged intermedi-

aries with stochastic productivity and a state-dependent exit rate that governs the transition

into and out of a crisis. A model without these two features suffers from a trade-off between

the amplification and persistence of a crisis. I show that my model resolves this tension and

generates realistic crisis dynamics.

In the second chapter, I develop a new computational framework called Actively Learned

and Informed Equilibrium Nets (ALIENs) to solve continuous time economic models with

endogenous state variables and highly non-linear policy functions. I employ neural networks

that are trained to solve supervised learning problems that respect the laws governed by the

economic system in the form of general parabolic partial differential equations. The sub-

domain of the high dimensional state space that carries the most economic information is

learned actively in an iterative loop, enforcing the random training points to be sampled from

areas that matter the most to ensure convergence. The method is applied to successfully

solve a model of macro-finance that is notoriously difficult to handle using traditional finite

difference schemes.

In the third chapter, I investigate the origins of bank failures, an important feature of financial

crises. I analyze a panel of bank holding companies and offer empirical evidence for the

franchise value to be associated with a higher probability of failure. The results indicate that

the changing scope of the banking industry with declining franchise value compared to the

pre-crisis period is worrisome, despite strong capital ratios.

Keywords: Macro-Finance; Financial intermediation; machine-learning; banking.
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Résumé

Cette thèse étudie les origines et les conséquences des crises financières, ainsi que les tech-

niques informatiques permettant de résoudre les modèles économiques en temps continu

qui expliquent ces crises.

Le premier chapitre montre que les récessions financières sont typiquement caractérisées

par une prime de risque importante et une reprise lente. Cependant, les modèles de macro-

finance ont du mal à correspondre à ces caractéristiques empiriques, en particulier lorsqu’ils

sont calibrés pour correspondre simultanément aux moments macroéconomiques et d’éva-

luation des actifs, inconditionnels et conditionnels, observés. Dans ce chapitre, je construis un

modèle de macro-finance qui explique quantitativement les principales caractéristiques d’une

crise financière, telles qu’une forte baisse de la production, un pic de la prime de risque, une

réduction de l’intermédiation financière et une longue période de dépression économique. Le

modèle comporte des intermédiaires à effet de levier avec une productivité stochastique et un

taux de sortie dépendant de l’état qui régit la transition vers et hors d’une crise. Un modèle

sans ces deux caractéristiques souffre d’un arbitrage entre l’amplification et la persistance

d’une crise. Je montre que mon modèle résout cette tension et génère une dynamique de crise

réaliste.

Dans le deuxième chapitre, je développe un nouveau cadre informatique appelé Actively

Learned and Informed Equilibrium Nets (ALIENs) pour résoudre des modèles économiques

en temps continu avec des variables d’état endogènes, et des fonctions modélisant les poli-

tiques économiques non linéaires. J’utilise des réseaux neuronaux entrainés pour résoudre des

problèmes d’apprentissage supervisé qui respectent les lois régies par le système économique

sous la forme d’équations différentielles partielles paraboliques générales. Les informations

économiques sont codées sous forme de régularisateurs qui disciplinent le réseau neuronal

profond dans le processus d’apprentissage. Le sous-domaine de l’espace d’état à haute di-

mension qui contient le plus d’informations économiques est appris activement dans une

boucle itérative, obligeant les points d’entraînement aléatoires à être échantillonnés dans les

domaines les plus importants pour garantir la convergence. La méthode est appliquée pour

résoudre avec succès un modèle de macro-finance qui est notoirement difficile à traiter à

l’aide de schémas traditionnels de différences finies.

Dans le troisième chapitre, j’étudie les origines des faillites bancaires, une caractéristique
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Résumé

importante des crises financières. J’analyse un panel de holdings bancaires et j’apporte des

preuves empiriques que la valeur de franchise est associée à une plus grande probabilité

de faillite. Les résultats indiquent que l’évolution du périmètre du secteur bancaire, avec

une valeur de franchise en baisse par rapport à la période précédant la crise, est inquiétante,

malgré des ratios de fonds propres solides.

Mots clés : Macro-Finance ; Intermédiation Financiaire ; machine-learning ; Secteur Bancaire.
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1 A Macro-Finance model with Realistic
Crisis Dynamics

1.1 Introduction

It is well known that recessions are marked by high equity risk premia, low investment rates,

and low output. The great recession of 2007-2008 emphasized the importance that financial

intermediaries play in propagating shocks to the real economy. Since then, there has been

a growing literature on the leverage of intermediaries as a key factor in moving asset prices

and the real economy.1 Recessions that feature a sharp decrease (increase) in the investment

rate and output (risk premium) also feature a sharp increase in the leverage of BHCs. While

the intermediaries take a central role in the recent macro-finance literature, the financial

constraints that they face are of particular importance (see, example, Brunnermeier and

Sannikov (2014a) (BS2014 henceforth), He and Krishnamurthy (2013), Di Tella (2017), etc.). In

these models, the financial constraints bind only at certain times which leads to non-linearity

in the asset prices. In normal times, financial markets facilitate capital allocation to the

most productive agents. In such states, intermediaries are sufficiently capitalized and the

premium on the risky asset is low. In bad times, financial constraints bind and the capital

gets misallocated to less productive agents, who do not value capital as much. This leads to

a deterioration of intermediary balance sheets and pushes the economy into a crisis where

the premium on the risky asset shoots up. These models explain a high risk premium in the

crisis periods but the contribution has largely been qualitative except Maxted (2020) and

Krishnamurthy and Li (2020).2

The contribution of this chapter is two-fold. First, I build an overlapping-generation incomplete-

market asset pricing model with stochastic productivity and state-dependent exit of the experts

that occasionally generates capital misallocation and fire sales. I solve the model using a novel

deep learning-based numerical method that encodes the economic information as regular-

1See, for example, Brunnermeier and Sannikov (2014a), He and Krishnamurthy (2013), Di Tella (2017), Adrian
et al. (2014), Phelan (2016), Moreira and Savov (2017), etc.

2Gertler et al. (2020) incorporates bank run into a standard New Keynesian model that explains financial crisis
quantitatively. However, they focus on matching a specific crisis episode- the great recession of 2008.
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Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

izers.3 This methodology, as shown in the second chapter, is scalable and can be applied

to similar high-dimensional problems. The fluctuating productivity of experts is a source

of dividend risk and is a crucial driver of systemic instability along with capital shocks. In

addition, I introduce state-dependent exit of experts as a parsimonious way of capturing bank

defaults. The data from Federal Deposit Insurance Corporation (FDIC) shows that a total

of 297 banks failed in the period 2009-2010 in the United States, which is a strikingly large

number compared to 25 bank failures in the 7 years that preceded the crisis, and 23 bank

failures between 2015-2020. Similarly, when measured by default volume, around 80% of the

Moody’s rated issuers’ defaults in the year 2008 came from the financial institutions.4 Figure

(1.1) shows the evolution of bank failures from 2001 till 2020. Both in terms of the count and

the default volume, bank failures during the Great Recession were far greater than the other

years. While a lot of non-financial institutions failed too during the Great recession, the fact

that 80% of Moody’s issuer defaults in terms of volume came from financial institutions alone

indicates that the intermediaries default to a large extent, particularly during financial crises. I

capture this empirical phenomenon through a an expert exit rate that is calibrated to observed

bank default rates.

The second contribution is the quantification of my model to dissect the mechanisms of the

financial crisis. To this end, I show that a simpler model with constant productivity and no exit

of experts, which reduces to Brunnermeier and Sannikov (2016a) (BS2016 henceforth), suffers

from a tension between the amplification and the persistence of financial crises. In particular,

there is a trade-off between the conditional risk premium and the duration of crisis.5 During

bad times, the premium on the risky asset shoots up due to capital misallocation and fire-sale.

The leveraged experts earn the higher conditional risk premium allowing them to rebuild

sufficient wealth and recover quickly from the crisis. Such a fast rebound is at odds with

the data since recessions are empirically long-lasting. Auxiliary features of the model that

generate longer crises necessarily attenuate the conditional risk premium (i.e., amplification

gets dampened). This is because crises tend to be long when the experts recapitalize slowly,

which can only happen when the risk premium that the experts earn is low in the model. To

give a concrete example, when the simpler model is calibrated to generate a realistic 18-month

duration of the crisis, the model implied conditional risk premium is 2%, which is much

lower than the empirically observed premium of 25%.6 On the other hand, when the model is

calibrated to generate a realistic conditional risk premium of 25%, the model-implied average

3Regularizer is a commonly used tool in machine learning to reduce overfitting. See Glorot and Bengio (2010)
for details.

4Source for bank failures: https://www.fdic.gov/bank/historical/bank/, and Moody’s Corporate Default and
Recovery Rates, 1920-2008. Financial institutions include Bank holding companies, Real estate, and insurance
companies. The list of banks includes only those that are insured by the FDIC. Failure of investment banks such as
Lehman Brothers in 2008 is not included.

5In this chapter, conditional risk premium refers to the premium on the risky asset in the crisis state. Another
interesting trade-off that emerges from this simpler model is between the unconditional risk premium and the
probability of a crisis. This is explored in detail in Section 1.3.

6See Table (1.6) in Section 1.3 for the estimated conditional risk premium. The average contraction period from
the NBER website is around 18 months. Source: https://www.nber.org/cycles.html. This is a conservative measure
compared to around 3 years peak to trough period reported in Muir (2017).

2
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1.1. Introduction

duration of crisis is 5 months, well short of 18-month crisis duration observed in the data.

The model with stochastic productivity and state-dependent exit rate resolves this tension

and provides reasonable crisis dynamics along three key dimensions: a) crisis likelihood,

which represents the occupation time of the economy in a crisis state, b) amplification, that

represents a large conditional risk premium and low output, and c) persistence, that represents

slow recovery from the crisis. When the economy is in a stochastic steady state, all capital

is held by the experts, and the risk premium is low. A negative shock to the level of capital

also decreases the productivity of experts, increasing the frequency of crisis since the experts

are more likely to fire-sell assets to the households and trigger the financial amplification

channel. The crisis state is characterized by a low output, depressed investment, and a large

risk premium. The model implies an 8% probability of a crisis, matching the empirical value

of 7% from Reinhart and Rogoff (2009). In a crisis state, the rate at which the experts exit

and become households is high, reflecting large empirical bank bankruptcies, reducing the

proportion of agents who manage capital more productively. This force has a dominating

impact on the experts’ wealth compared to the effect coming from increased risk premium

and pushes the economy deeper into crisis. The productivity eventually mean reverts, and

the economy reaches a point where the increased productivity dominates the exit effect,

helping the economy climb out of the crisis. The speed of mean reversion in productivity is

low, forcing the economy to spend a long amount of time in distress before the increase in

productivity ends the gloomy phase. The model implies a crisis duration of 17 months, close

to the empirical value of 18 months from the NBER recessionary cycle data. At normalcy, all

capital in the economy is held by experts again, and the financial amplification channel is

shut down, where the exit rate is small. Thus, the twin forces of stochastic productivity and

exit match the empirical moments in all three categories, bringing the model closer to data.

The model is solved using a deep learning-based numerical algorithm that takes advantage

of the universal approximation theorem by Hornik et al. (1989), which states that a neural

network with one hidden layer can approximate any Borel measurable function. This method

is scalable since it alleviates the curse of dimensionality that plagues the finite-difference

schemes in higher dimensions. The main difficulty that arises from grid-based solutions such

as finite-difference schemes is the combination of an explosion in the number of grid points

and the need for a reduced time step size as the dimensions grow large. My solution side-steps

these limitations since it is mesh-free.7 This algorithm dominates the finite-difference method

used in BS2016, Hansen et al. (2018), etc., since the presence of correlated state variables

makes it difficult to maintain the monotonicity of finite-difference schemes which is required

for convergence.8 The second chapter discusses the algorithm in detail and applies it to similar

problems with several dimensions as high as five.

The simpler benchmark model with constant productivity and no exit is similar in spirit to

7I rely on Tensor-flow, a deep learning library developed by Google Brain, that computes the numerical deriva-
tives efficiently.

8See D’Avernas and Vandeweyer (2019) and Phelan and Eslami (2022) for issues of monotonicity in finite-
difference schemes.

3



Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

Figure 1.1 – Bank failures

Note: The solid line indicates the number of bank failures and the dashed line indicates the default
volume. The shaded region represent the NBER recessionary period. Source: Federal Deposit Insurance
Corporation.

BS2016 but there is an overlapping generation of agents (OLG) with recursive preference.

The assumption of OLG offers a non-degenerate stationary distribution of the state variable

(Gârleanu and Panageas (2015)), while recursive preference helps with obtaining realistic asset

pricing moments.9 I quantify this benchmark model, similar in spirit to He and Krishnamurthy

(2019) (HK2019 henceforth) and Krishnamurthy and Li (2020) but with notable differences.

The model that I consider has both the households and the experts consuming by solving an

infinite horizon optimization problem, whereas, in HK2019 the experts do not consume and

solve a myopic optimization problem. Both models feature non-linear asset prices arising due

to occasionally binding financial intermediary constraints. However, the transition from the

normal to the crisis state is smooth in HK2019. On the contrary, the model that I consider,

similar to BS2016, features an endogenous jump in the risk prices that reflects the fact that

periods prior to financial crises are typically calm with an exceedingly low risk premium (Baron

and Xiong (2017)) and rises dramatically once the crisis period begins. The endogenous jump

in the model is caused by the fire-sale effect where the experts sell capital to households

that have a lower valuation of the capital due to their lower productivity rate. The effect of

fire sales on the asset markets is crucial in times of distress, as is emphasized in Kiyotaki

and Moore (1997), Shleifer and Vishny (2011), and Kurlat (2018). Importantly, due to the

endogenous jump, the point in the state space at which the financial crisis occurs is well-

defined. In models where the transition is smooth, one has to rely on an exogenously defined

threshold at which the system enters the crisis region. Krishnamurthy and Li (2020) considers

the model with an endogenous jump similar to this chapter but focuses on matching credit

9The OLG assumption provides a non-degenerate distribution even when there is no discount rate heterogeneity.
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1.1. Introduction

spreads across several financial crisis episodes with an emphasis on the pre-crisis froth in

credit markets. While the agents in their model have log utility with the capital subjected to

Brownian and Poisson shocks, I consider a recursive utility function and focus on matching a

broader set of both unconditional and conditional macroeconomic and asset pricing moments

such as the intermediary leverage patterns, the equity risk premium, the investment rate,

the GDP growth rate, and the probability and duration of crisis. The recursive utility has the

advantage of separating the risk aversion from the IES (Bansal and Yaron (2004)) and also helps

with obtaining better asset pricing moments. Maxted (2020) analyzes a quantitative model

of financial intermediation and sentiment, similar to Krishnamurthy and Li (2020) where

intermediaries do not consume and have mean-variance preferences over their reputation.

Models of intermediary asset pricing highlight the persistence and the amplification of shocks

caused by the leveraged agents. A measure of persistence and amplification is the duration of

the crisis and conditional risk premium, respectively. The quantification of the benchmark

model reveals two key trade-offs. First, there is tension between the unconditional risk

premium and the probability of a crisis. A high level of risk aversion is required to match the

large observed unconditional risk premium. When the experts earn a large premium in the

stochastic steady state, small negative shocks to the capital do not cause enough deterioration

in their net worth to hit the crisis boundary, thereby diminishing the probability of a crisis.

Second, conditional on being in crisis, there is a tension between the risk premium and the

duration of the crisis. This is because risk premium spikes as soon as the economy enters

a crisis state, enabling the experts to gain wealth quickly and revert to the normal regime

leading to fast recovery. With larger values of risk aversion, the experts build wealth even faster

through a higher risk premium, resulting in a quicker reversion to the normal state. This poses

a direct challenge to the heterogeneous agent models with leveraged agents that are calibrated

with high risk aversion since larger risk aversion levels mechanically imply a lower probability

and duration of crisis.10 The benchmark model has its strengths in capturing the non-linearity

of the asset prices, the output growth, and the leverage patterns of intermediaries. The biggest

weaknesses are the inability to jointly generate a realistic duration of crisis and risk premium,

and sufficient variation in the risk prices.11 The richer model with stochastic productivity and

state-dependent exit rate of the experts generates reasonable asset pricing and crisis moments.

Embedding these two features that have empirical support brings the model closer to the data

in important aspects.

Related Literature This chapter relates to several strands of the literature. On the modeling

front, it is most closely related to BS2016 which introduces a continuous time macro-finance

model based on capital misallocation and fire sales. It fits within a large body of intermediary

based asset pricing models such as BS2014, He and Krishnamurthy (2013), Di Tella (2017),

10It is common in asset pricing literature to assume a high risk aversion. See, for example Gârleanu and Panageas
(2015), who set risk aversion of leveraged agents equal to 10.

11Since the q-theory result tightly ties the investment rate to the capital price, a low model implied volatility of
price translates to a low variation in the investment rate too.
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Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

Adrian and Boyarchenko (2012), Moreira and Savov (2017), etc. While BS2014 assumes risk-

neutral agents with an exogenous interest rate, the agents in BS2016 are risk averse with CRRA

utility function, and the risk-free rate is endogenous. The capital misallocation in BS2016

occurs due to bad shocks and the subsequent fire-sale effect. Moll (2014) analyses a model

where the inability of the productive agents to lever up due to collateral constraints causes

capital misallocation.

The empirical evidence for intermediary-based asset pricing highlights the role that the banks

and the hedge funds play in pricing assets (He et al. (2017), and Adrian et al. (2014)). While

these papers provide a theory based on intermediary leverage as a motivation for empirical

findings, the literature that tightly tests the ability of general equilibrium asset pricing models

with financial frictions to match the data is sparse. Two related papers that attempt to fill the

gap are Muir (2017), and HK2019. However, the experts in their model do not consume and

solve a myopic optimization problem, whereas, in my model both the households and the

experts consume a fraction of the total output by solving an infinite horizon optimization

problem. While HK2019 focus on matching the non-linearity of their model with the data and

consider an exogenously defined probability of a crisis, the goal of this chapter goes beyond

matching just the non-linearity and deals with an endogenous crisis boundary- a slightly

more daunting task since there is one less degree of freedom. In this regard, this chapter

comes closer to Krishnamurthy and Li (2020) which attempts to match the pre-crisis froth

in the credit market through a Bayesian learning model. Muir (2017) analyses risk premia

during downturns for a large panel of countries and finds that financial crises are crucial in

understanding the variation in risk premium. Also, the intermediary-based asset pricing model

is shown to fare better compared to the consumption-based representative agent models

with long-run risk (Bansal and Yaron (2004)), habit (Campbell and Cochrane (1999)), and rare

disaster (Barro (2006)) features. This chapter also relates to Khorrami (2016), who shows that

the implied cost of entry to participate in the stock market is as large as 90% of the wealth

of the agents. Another interpretation of this result is that the costs of risk concentration are

unreasonably large to match the empirically observed level of risk premium. While he focuses

on a limited asset market participation model with costly entry, my model features capital

misallocation with stochastic productivity that is calibrated to match both the amplification as

well as the duration of crisis in the data. Bigio and D’Avernas (2021) build a risk capacity-based

model with information asymmetries to explain slow recovery from the financial crisis. The

state-dependent exit of experts in this chapter relates to Eisfeldt et al. (2017) who introduce

endogenous entry and exit of participants in complex asset markets.12 Ikeda and Kurozumi

(2019) analyze a DSGE model with financial shocks to generate slow recovery from financial

crisis. However, they study deviations from a steady-state, whereas, my model allows for

studying the global dynamics.

Hansen et al. (2018) provide a framework that nests several models based on financial frictions.

Even though the frictions prevent the economy from achieving the first-best outcome, their

12In Eisfeldt et al. (2017), the decision to enter and exit is endogenous and hence the agents solve an optimal
stopping time problem. In this chapter, the exit rate is assumed to be state-dependent.
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1.1. Introduction

model features a dynamically complete market since the households can hedge their risk

exposures through the derivative market. Their contribution is largely to provide qualitative

insights by comparing different nested models, whereas, this chapter is guided by quantitative

analysis. While they consider a multi-dimensional problem with auxiliary shocks to the

volatility and long-run growth, my model has stochastic productivity and exit rate of experts.

More importantly, I conduct extensive simulations to test the model performance in matching

both unconditional and conditional macroeconomic and asset pricing moments. My model

assumes that the productivity of experts fluctuates with business cycle, which holds empirical

relevance (Hughes et al. (2001), Feng and Serletis (2010)). Dindo et al. (2022) shows that

the average intermediation cost for banks in the US is counter-cyclical, and builds a general

equilibrium model associating the cost with the business cycle. I consider a parsimonious

way to capture bank defaults through an exogenous exit rate of experts which complements a

large literature on endogenous bank runs and defaults (Gorton and Ordoñez (2014), Gertler

et al. (2020), Li (2020)).

Lastly, this chapter also relates to the literature on global solution methods for heterogeneous

agent models using continuous time machinery (see Achdou et al. (2014b) for an overview).

The assumption that the agents can consume and invest continuously in response to their

instantaneous change in wealth not only greatly simplifies the computation, but also reflects

the reality that people do not take these decisions only at the end of a quarter. Another ad-

vantage of the continuous-time method is the analytical tractability of equilibrium prices

up to a coupled or decoupled system of partial differential equations. Achdou et al. (2014a),

BS2016, and Fernández-Villaverde et al. (2020) offer a solution technique involving an implicit

scheme with up-winding to solve the PDEs that ensures faster convergence. D’Avernas and

Vandeweyer (2019) document that finite difference methods are difficult to implement in

higher dimensions not only because of the curse of dimensionality but also due to the diffi-

culty in preserving the monotonicity of the finite difference scheme. They offer a solution

method based on Bonnans et al. (2004) that involves rotating the state space and finding

the right direction to approximate the cross partial derivatives such that the monotonicity

of the scheme is preserved.13 Phelan and Eslami (2022) uses a finite-state Markov Chain

approximation method to overcome the monotonicity. With the advancements in machine

learning, recent papers have turned to neural networks to solve equilibrium models. Duarte

(2017) considers a method based on deep learning to solve asset pricing problems in high

dimensions. Fernández-Villaverde et al. (2020) solves for the high dimensional law of motion

of households using a deep neural network.14 The algorithm proposed in this chapter is similar

in spirit but also incorporates prior information from the crisis boundary as regularizers and

is particularly geared toward solving heterogeneous agent incomplete market problems with

capital misallocation and endogenous jump in prices. It also seeks inspiration from active

machine learning where the algorithm learns to sample points from the state space in an

13See Merkel (2020) for a similar technique used to solve a Macro-Finance model in two dimensions.
14There is a substantial literature on the deep-learning techniques to solve PDEs in Applied Mathematics, which

is covered in the second chapter. For the application of deep learning techniques to solve discrete-time DSGE
models, see Azinovic et al. (2019).
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Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

informed manner.

1.2 Model

In this section, I present a heterogeneous agent model with stochastic productivity and state-

dependent exit rate of experts. There is an infinite horizon economy with a continuum

of agents, who are of two types: households and experts. Let H and E denote the set of

households and experts, respectively. The aggregate capital in the economy is denoted by

Kt , where t ∈ [0,∞) denotes time. Within each group, the agents are identical and hence we

can index the representative household and the expert by h ∈H and e ∈ E respectively.15 The

experts can issue risk-free debt, and obtain a higher return to holding capital as they are more

productive than households. The friction is such that the experts have to retain at least some

amount of equity on their balance sheet. In the absence of this friction, the experts should

hold all capital as they are more productive users. Also, the agents are precluded from shorting

the risky capital. The production technology can be written as

y j ,t = a j ,t k j ,t j ∈ {e,h} (1.1)

where the capital evolves as16

dk j ,t

k j ,t
= (Φ(ι j ,t )−δ)d t +σd Z k

t (1.2)

with ι j ,t as the investment rate, and {Zt ∈R;Ft ,Ω} is the standard Brownian motions represent-

ing the aggregate uncertainty in (Ω,P,F ). The parameter σ denotes the exogenous volatility

of the capital process. The investment functionΦ(·) is concave and captures the decreasing

returns to scale, and δ is the depreciation rate of capital. As in BS2016, Φ(·) captures the

technological illiquidity. The depreciation rate is the same for both households and experts. I

assume that the investment cost function takes the logarithmic form17 Φ(ι) = log(κι+1)
κ where κ

is the adjustment cost parameter that controls the elasticity of the investment technology. I

assume that the productivity of the experts is governed by the following stochastic differential

equation

d ae,t =π(âe −ae,t )d t +ν (ae −ae,t )(ae,t −ae )︸ ︷︷ ︸
σae,t

d Z a
t (1.3)

where the Brownian shock d Z a
t has a correlation ϕd t with the Brownian shock d Z k

t with

ϕ> 0. That is, the expert productivity follows an Ornstein–Uhlenbeck process with stochastic

volatility such that it moves between a lower level ae and an upper level āe with a persistence

parameter π and mean âe ∈ (ae , āe ). Since ah < ae < āe , the productivity of the experts is

15This is due to the homogeneity of preferences. The mass of households and experts is time-varying due to
demographic changes and exit. Preferences and assumptions related to exit are explained later.

16Note that k j ,t is the capital held by agent j .
17This is a valid investment cost function sinceΦ(0) = 0,Φ′ > 0, andΦ′′ ≤ 0.
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1.2. Model

always higher than that of the households even though it fluctuates between ae and āe .18 The

capital price qt follows
d qt

qt
=µq

t d t +σq,k
t d Z k

t +σq,a
t d Z a

t

The return process for each type of agent is given by dR j ,t = d(qt k j ,t )
qt k j ,t

+ (a j ,t−ι j ,t )k j ,t

qt k j ,t
d t where the

first component of the R.H.S is capital gain, and the second component is the dividend yield.

Note that the dividends are agent-specific due to different productivity rates, and possibly

due to different investment rates.19 The time-varying productivity ae,t is a source of dividend

risk for the experts, and therefore Z a
t acts as a Financial shock in addition to the capital shock.

Applying Ito’s lemma, we get

dR j ,t =
(
µ

q
t +Φ(ι j ,t )−δ+σσq,k

t +ϕσσq,a
t + a j ,t − ι j ,t

qt︸ ︷︷ ︸
µR

j ,t

)
d t + (σq,k

t +σ)d Z k
t +σq,a

t d Z a
t (1.4)

The aggregate output in the economy is given by yt = At Kt , where Kt =
∫
E∪Hk j ,t d j , and At is

the aggregate dividend that satisfies

At =
∫
E∪H

a j ,t
k j ,t

Kt
d j

Let the capital share held by the expert sector be denoted by

ψt :=
∫
Ek j ,t d j∫

E∪Hk j ,t d j

The experts and the households trade capital and the experts face a skin-in-the-game con-

straint that forces them to retain at least a fraction χ ∈ [0,1] of the equity on their balance sheet.

The agents can also trade in the risk-free security that pays a return rt that is determined in

the equilibrium. The stochastic discount factor (SDF) process for each type of agent is given

by

dξ j ,t

ξ j ,t
=−rt d t −ζk

j ,t d Z k
t −ζa

j ,t d Z a
t (1.5)

where ζk
j ,t and ζa

j ,t are the prices of risk for the shocks d Z k
t and d Z a

t respectively.

18I denote (a j ,t ; j ∈ {e,h}) to have concise notation but it is to be understood that ah,t is just a constant ah ,
whereas ae,t follows equation (1.3).

19It turns out that the optimal investment rate is the same for both types of agent since it depends on the capital
price and the adjustment cost parameter κ. For now, I assume that the investment rate is agent-specific and show
later in (1.13) that it is the same for all agents.
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Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

Preferences and equilibriumI assume that the agents have recursive utility with IES=1. That

is, the utility is given by

U j ,t = Et

[∫ ∞

t
f (c j ,s ,U j ,s)d s

]
with

f (c j ,t ,U j ,t ) = (1−γ)ρU j ,t

(
log(c j ,t )− 1

1−γ log
(
(1−γ)U j ,t

))
(1.6)

where γ and ρ are the risk aversion and the discount rate coefficients respectively. Following

Gârleanu and Panageas (2015), I assume that some agents are born and die at each time

instant with a probability λd . Let z̄ and 1− z̄ denote the proportion of experts and households

that are born each instant respectively. The death risk is not measurable under the filtration

generated by the Brownian process Ft and the agents do not have bequest motives. Hence,

once the agents die, the wealth is pooled and distributed on a pro-rata basis. As a result of

the death risk, the rate of time preference parameter ρ can be thought of as inclusive of the

death rate λd . I abstract away from the insurance market to hedge the death risk, similar to

Hansen et al. (2018) for simplicity. I assume that at each time instant d t , a fraction τt d t of

experts become households, where τt is state-dependent. This transition will be taken into

consideration in the optimization problem of the agents.20 This assumption is a parsimonious

way to capture bank failures, which are particularly high during financial crises, as seen in

Figure (1.1). I assume that households do not have exit, and hence the inflow into the set E

is only through birth, whereas, the inflow into the set H is due to both birth and migration

of experts. Note that the mass of households and experts is time-varying as a result. The

experts optimize by maximizing their utility functions, subject to wealth constraints, starting

from some initial wealth we,0.21 Let τ′ denote the time at which the experts exit and become

households, that is exponentially distributed with the rate τt . They solve

Ue,t = sup
ce,t ,ke,t ,χe,t

Et

[∫ τ′

t
f (ce,s ,Ue,s)d s +Uh,τ′

]
(1.7)

s.t.
d we,t

we,t
= (

rt −
ce,t

we,t
+ qt ke,t

we,t
(µR

e,t − rt − (1−χe,t )εh,t )
)
d t

+σwe ,t
(
(σ+σq,k

t )d Z k
t +σq,a

t d Z a
t

)
where qt ke,t

we,t
and χe,t denote the fraction of wealth invested in capital, and the experts’ inside

equity share, respectively. The experts obtain a continuation utility of Uh,τ′ starting from the

time of transition into households. While the experts obtain an expected excess return of

µR
e,t−rt by investing in the risky asset, they have to pay the outside equity investors (1−χe,t )εh,t ,

where εh,t is the premium demanded by households defined in equation (1.12). Thus, the

20Gomez (2019) uses a similar assumption that applies to the leveraged wealthy households, and in Di Tella
(2017), a similar exit rate is applied to the intermediaries to generate a non-degenerate stationary distribution.
However, they do not model the exit rate as state-dependent. The functional form of τt is provided later in (1.22),
after constructing of the state space.

21Note that since all agents within the same group are identical, the wealth equation is presented for the
aggregated agents. For wealth dynamics of individual agent within the group, see Appendix A.1.1.
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1.2. Model

latter component is netted out from the total expected return on capital investment. The

skin-in-the game constraint implies that experts choose the inside equity share χe,t ∈ [χ,1].

On the other hand, households do not issue outside equity implying that χh,t = 1 always. I

write χe,t simply as χt for notational convenience henceforth. The households solve

Uh,t = sup
ch,t ,kh,t

Et

[∫ ∞

t
f (ch,s ,Uh,s)d s

]
(1.8)

s.t.
d wh,t

wh,t
= (

rt −
ch,t

wh,t
+ qt kh,t

wh,t
(µR

h,t − rt )
)
d t +σwh ,t

(
(σ+σq,k

t )d Z k
t +σq,a

t d Z a
t

)
The diffusion terms of the wealth equation are given by

σwe ,t =
qt ke,t

we,t
χt (1.9)

σwh ,t =
qt kh,t

wh,t
+ (1−χt )

qt ke,t

wh,t
(1.10)

The experts retain a fraction χt of risk in their balance sheet, and hence the fraction of capital

invested in the diffusion terms is multiplied by this quantity. The households receive the

remaining risk that enters into the second part of equation (1.10). The households face a

no-shorting constraint kh,t ≥ 0. I define

εe,t := ζk
e,t (σ+σq,k

t )+ζa
e,tσ

q,a
t +ϕ(ζa

e,t (σ+σq,k
t )+ζk

e,tσ
q,a
t ) (1.11)

εh,t := ζk
h,t (σ+σq,k

t )+ζa
h,tσ

q,a
t +ϕ(ζa

h,t (σ+σq,k
t )+ζk

h,tσ
q,a
t ) (1.12)

There are two prices of risk for each type of the agent: ζk
j ,t and ζa

j ,t , corresponding to the capital

shock and the productivity shock, respectively. That is, by borrowing in the risk free market

at a rate rt and investing in the risky capital, they obtain the prices of risk ζk
j ,t and ζa

j ,t . The

exit rate of experts does not enter into the individual wealth equation, but it appears in the

evolution of aggregated expert wealth as shown in Appendix A.1.1. In fact, there are an infinite

number of agents in the economy, but each individual in types E andH is identical, hence they

have the same preferences. Therefore, one can seek an equilibrium in which all agents in the

same group take the same policy decisions. For completeness, I present the full version of the

equilibrium first.

Definition 1.2.1. A competitive equilibrium is a set of aggregate stochastic processes adapted

to the filtration generated by the Brownian motions Z k
t and Z a

t . Given an initial distribution of

wealth between the experts and households, the processes are prices (qt ,rt ), policy functions

(c j ,t , ι j ,t ,ψt ; j ∈ {e,h}) and net worth (w j ,t ; j ∈ {e,h}), such that

• Capital market clears:
∫
H(1−ψt )Kt d j +∫

Eψt Kt d j = ∫
H∪Ek j ,t d j ∀t

• Goods market clear:
∫
H∪E c j ,t d j = ∫

H∪E(a j ,t − ι j ,t )k j ,t d j ∀t

•
∫
H∪Ew j ,t d j = ∫

H∪E qt k j ,t d j ∀t
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Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

Asset pricing conditionsThe agents choose the optimal rate of investment by maximizing

their return on holding capital. That is, ι j ,t solves22

max
ι j ,t

Φ(ι j ,t )− ι j ,t

qt

The optimal investment rate is obtained as

ι∗j ,t =
qt −1

κ
(1.13)

The investment rate is the same for both types of agents since it depends only on qt . This is

a standard ‘q-theory’ result, which implies a tight relation between the price of capital and

the investment rate. Thus, the growth rate of the economy is endogenously determined by

the investment rate through the capital price. A higher price increases investment and causes

output growth to accelerate (since Φ′(·) > 0). The asset pricing relationship for experts is given

by23

ae,t − ιt
qt

+Φ(ιt )−δ+µq
t +σσq,k

t +ϕσσq,a
t − rt =χtεe,t + (1−χt )εh,t (1.14)

where ε j ,t is defined in (1.11) and (1.12). The experts will issue the maximum allowed equity

(χt =χ) if the premium demanded by them is higher than that required by households. The

pricing condition of households is given by

ah − ιt
qt

+Φ(ιt )−δ+µq
t +σσq,k

t +ϕσσq,a
t − rt ≤ εh,t (1.15)

where the equality holds ifψt < 1. We can combine (1.14) and (1.15) and write the asset pricing

condition as

ae,t −ah

qt
≥χt (εe,t −εh,t ) (1.16)

min{χt −χ, εe,t −εh,t } = 0 (1.17)

Equation (1.16) holds with equality if ψt < 1. Equation (1.17) states that whenever the risk

premium of experts is larger than that of households, experts issue the maximum outside

equity (i.e., χt = χ). When experts are wealthy enough such that the constraint is no longer

binding, the risk premium becomes equal. I solve for the decentralized Markov equilibrium by

summarizing the system in terms of two state variables: wealth share of the experts denoted

by zt , and the productivity of the experts ae,t .24 The equilibrium conditions map the optimal

consumption, investment, capital share, and the capital price to the history of Brownian

shocks Z k
t and Z a

t through state variables (zt , ae,t ) which has a domain denoted by Ω. The

22Note that the only component in the expected return that contains investment rate isΦ(ι j ,t )− ι j ,t
qt

.
23This can be shown using a Martingale argument. See Appendix A.1.1 for the proof.
24All relevant objects scale with the capital Kt and hence we can summarize the economy in just two state

variables.
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wealth share is defined as

zt =
We,t

qt Kt
∈ (0,1)

where We,t =
∫
Ew j ,t d j . Moving forward, I write Xh,t and Xe,t to denote the aggregated quan-

tities
∫
H x j ,t d j and

∫
E x j ,t d j respectively and characterize the model with a representative

household and expert.25

Proposition 1. The law of motion of the wealth share of experts is given by

d zt

zt
=µz

t d t +σz,k
t d Z k

t +σz,a
t d Z a

t (1.18)

where

µz
t =

ae,t − ιt
qt

− Ce,t

We,t
+

(
χtψt

zt
−1

)(
(σ+σq,k

t )(ζ̂1
e,t − (σ+σq,k

t ))+σq,a
t (ζ̂2

e,t −σq,a
t )−2ϕ(σ+σq,k

t )σq,a
t

)
+ (1−χt )

(
(σ+σq,k

t )(ζ̂1
e,t − ζ̂1

h,t )+σq,a
t (ζ̂2

e,t − ζ̂2
h,t )

)+ λd

zt
(z̄ − zt )−τ(ae,t , zt )

ˆζ1
j ,t = ζk

j ,t +ϕζa
j ,t ; j ∈ {e,h}

ˆζ2
j ,t = ζa

j ,t +ϕζk
j ,t ; j ∈ {e,h}

σz,k
t =

(
χtψt

zt
−1

)
(σ+σq,k

t )

σz,a
t =

(
χtψt

zt
−1

)
σ

q,a
t

Proof: See Appendix A.1.1.

The parameters λd and z̄ denote the death rate and the mean proportion of experts in the

economy at each time instant, respectively. The exit rate τt , whose functional form is given in

the equation (1.22), enters the drift of the wealth share.

1.2.1 Model solution

The solution method is similar to value function iteration, with an inner static loop used to

solve the equilibrium quantities (χt ,ψt , qt ,σq,k
t ,σq,a

t ) using a Newton-Raphson method, and

an outer static loop to solve the value functions using a deep neural network architecture. The

first step solves for equilibrium policies from the value function, which is set to take an arbitrary

value at time T. This is analogous to ‘policy improvement’ in the reinforcement learning

literature. In the second step, the neural network solves for the value function at time T −∆t ,

taking policies computed in first step as given, which is then used to update policies in the

subsequent step. This corresponds to the ‘policy evaluation’ in the language of reinforcement

25That is, since each agent within their respective group are identical, solving for the aggregate agent policies are
enough.
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Chapter 1. A Macro-Finance model with Realistic Crisis Dynamics

learning.26 The two-step procedure is performed repeatedly until the value function converges.

I present and discuss the equilibrium policies, and relegate the methodological details to

Appendix A.1.1.

Static decisions and HJB equations: The value function is given by U j ,t and the HJB for opti-

mization problem (1.7) can be written as

sup
C j ,t ,K j ,t

f (C j ,t ,U j ,t )+E [dU j ,t ] = 0 (1.19)

Homothetic preferences imply that the value function is of the form

U j ,t =
(J j ,t (zt , ae,t )Kt )1−γ

1−γ

with the process for the stochastic opportunity set defined as

d J j ,t

J j ,t
=µJ

j ,t d t +σJ ,k
j ,t d Z k

t +σJ ,a
j ,t d Z a

t (1.20)

The aggregate wealth dynamics of experts is given by

dWe,t

We,t
=

(
rt −

Ce,t

We,t
+ qt Kt

We,t
εe,t −λd + z̄λd

zt
−τ(zt , ae,t )

)
d t

+χe,t
qt Kt

We,t
(σ+σq,k

t )d Z k
t +χe,t

qt Kt

We,t
σ

q,a
t d Z a

t (1.21)

The terms involving λd are due to the birth and death, and τ(zt , ae,t ) is the state dependent

exit rate. I assume the following function for the exit rate.

τt = τn1Ωn (zt , ae,t )+τc 1Ωc (zt , ae,t ) (1.22)

where Ωc = {(zt , ae,t )|zt ≤ z∗(ae )} is the endogenous region in state space at which the capital

gets misallocated, and the economy is in crisis. That is, z∗(ae ) denotes the crisis boundary

at which experts find it optimal to fire-sell the capital to households, triggering the financial

amplification mechanism. The regionΩn = {(zt , ae,t )|zt > z∗(ae )} corresponds to the normal

regime with high output and low risk premium, andΩ=Ωc ∪Ωn . The parameters (τc , τn) are

26While there are similarities between the value function iteration and reinforcement learning, the state space in
my model is known ahead. A large part of the reinforcement learning deals with exploring new state space which
is not relevant for the setup considered in this paper.

14



1.2. Model

calibrated to the observed bank default rates. The HJB equation is written as27

ρ
[
log

C j ,t

W j ,t
− logJ j ,t + log(qt z j ,t )

]+ (
Φ(ι)−δ)− γ

2
σ2 +µJ

j ,t −
γ

2

(
(σJ ,k

j ,t )2 + (σJ ,a
j ,t )2 +2ϕσJ ,k

j ,t σ
J ,a
j ,t

)
+ (1−γ)(σσJ ,k

j ,t +ϕσσJ ,a
j ,t )+1 j∈E

τt

1−γ
((

J j ′,t

J j ,t

)1−γ
−1

)
= 0 (1.23)

where the last term on the left hand side is due to the exit.28

Proposition 2. The optimal consumption policy, and prices of risk are given by

Ĉ j ,t = ρ (1.24)

ζk
e,t =−(1−γ)σJ ,k

e,t +σz,k
t +σq,k

t +γσ (1.25)

ζa
e,t =−(1−γ)σJ ,a

e,t +σz,a
t +σq,a

t (1.26)

ζk
h,t =−(1−γ)σJ ,k

h,t −
zt

1− zt
σz,k

t +σq,k
t +γσ (1.27)

ζa
h,t =−(1−γ)σJ ,a

h,t −
zt

1− zt
σz,a

t +σq,a
t (1.28)

Proof: See Appendix A.1.1.

The consumption-wealth ratio Ĉ j ,t is constant and is equal to the discount rate because IES=1.

The optimal policies are given in terms of the other equilibrium quantities (J j ,t ,χt ,ψt , qt ,σq,k
t ,σq,a

t )

which are found by solving for a Markov equilibrium in the state spaceΩ := zt ∈ (0,1)×ae,t ∈ (ae, āe).

Definition 1.2.2. A Markov equilibrium inΩ is a set of adapted processes q(zt , ae,t ),r (zt , ae,t ),

Je (zt , ae,t ), Jh(zt , ae,t ), policy functions Ĉe (zt , ae,t ),Ĉh(zt , ae,t ),ψ(zt , ae,t ),χt (zt , ae,t ), ιt (zt , ae,t ),

and state variables {zt , ae,t } such that

• J j ,t solves the HJB equation and the corresponding policy functions

• Markets clear

(Ĉe,t zt + Ĉh,t (1− zt ))qt =ψt (ae,t − ιt )+ (1−ψt )(ah − ιt ) (1.29)

qt Ke,t

We,t
zt+

qt Kh,t

Wh,t
(1− zt ) = 1 (1.30)

• zt and ae,t satisfy (1.18) and (1.3) respectively

27The value function is conjectured to be a function of aggregate capital Kt , instead of the wealth using the

relation zt = We,t
qt Kt

. Hence, the capital share does not enter the HJB equation directly. See Appendix A.1.1 for further

details.
28The index j ′ refers to the other type of agent. That is, for the case of experts, j ′ refers to households. Note that

z j ,t equals zt in the case of experts and 1− zt in the case of households.
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Similar to BS2016, there are three regions in the state space that describe the mechanisms of

risk-sharing, except that the state space is two-dimensional. In the first region (Ωc ), where

zt is low, the risk premium of experts is high enough such that condition (1.16) holds with

equality. In this region, the experts issue maximum allowed equity 1−χ to households since

their risk premium is high. In the second region, the experts hold all capital in the economy.

This corresponds to the case when ψ= 1 but the risk premium of experts is still larger than

that of households. As a result, they issue the maximum allowed equity (i.e., χt = χ). In the

third reigon, experts still hold all the capital (i.e., ψ= 1) as before, but they now issue outside

equity such that εe,t = εh,t . This is the region where experts are wealthy enough such that

the skin-in-the game constraint is no longer binding, and the risk premium of experts and

households are equal. The second and third region together formΩn .

Proposition 3. The total return variance is given by

||σR
t ||2 := (σ+σq,k

t )2 + (σq,a
t )2 =

σ2 + (σ2
ae,t

qt

∂qt

∂ae,t

)2(
1− 1

qt

∂qt

∂zt
zt

(ψtχt

zt
−1

))2 (1.31)

Proof. See Appendix A.1.1.

The first term in the numerator on the R.H.S of equation (1.31) reflects the fundamental

volatility while the second term captures the contribution of productivity shocks. There are

two effects that drive the total volatility: (a) Since ∂qt

∂zt
> 0, and ψtχt

zt
≥ 1 in equilibrium29

in the crisis region, the denominator contributes towards a higher return volatility than

the fundamental volatility σ (b) Since ∂qt

∂ae,t
> 0, the second part in the numerator adds to

the amplification caused by (a). The equations (1.29), (1.31), and (1.16) are used to solve

for (qt ,σq,k
t ,σq,a

t ,χt ,ψt ). The remaining equilibrium objects can be obtained from these

quantities. Appendix A.1.1 explains the solution steps in detail.

1.2.2 Calibration

The calibration strategy follows the standard procedure in the literature where each model

parameter is identified with a moment. Table (1.1) presents the list of parameters with the

targeted moments.

RBC parameters: The investment cost parameter is calibrated to generate an investment-

capital ratio of 10%. The depreciation rate is chosen to match the average investment rate.30

The conditional risk premium in the model is determined by the productivity gap between

households and experts. The predictive regression results from (1.2) estimate the risk premium

29The quantity
ψtχt

zt
is the experts exposure to the investment in risky capital. This quantity is larger than 1

whenever the expected return of experts is greater than that of households, which is the case in crisis region.
30The average investment rate in the data is around 14%, with a volatility of 4.7% between the year 1975 to 2015

(He and Krishnamurthy (2019)).
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Table 1.1 – Calibrated parameters

Description Choice Target

Technology

Volatility of capital (σ) 0.06 Vol (Risk premium)
Discount rate (ρ) 0.05 Literature
Depreciation rate of capital (δ) 0.04 GDP growth
Investment cost (κ ) 3 Investment-capital ratio
Productivity gap (ae −ah) 0.08 Conditional risk premium
Correlation of shocks (ϕ) 0.5 Data

Utility
Risk aversion (γ) 7 Unconditional risk premium

Demographics
Mean proportion of experts (z̄) 0.10 Literature
Turnover (λd ) 0.03 Literature

Expert Productivity
Mean reversion rate (π) 0.01 Duration of crisis
Variance (ν) 12.5 Data
Upper level (āe ) 0.2 Probability of crisis

Exit rate
Normal state (τn) 0.055 Literature
Crisis state (τc ) 0.66 Data

Friction Equity retention (χ) 0.65 Literature

Note: All values are annualized.

conditional on crises to be around 25%. I choose the gap between expert productivity ae and

ah to target a 25% conditional risk premium. The correlation of shocks to the level of capital

and expert productivity is chosen to be 0.5. This is guided by a -0.48 empirical correlation

between bank efficiency ratio and log GDP in the period from 1996Q1 to 2020Q4.31

Preference parameters: The discount rate is taken to be 5% from the literature (closer to the

4% used in Gertler and Kiyotaki (2010) and Krishnamurthy and Li (2020)). The risk aversion

parameter γ is chosen to be 7, which targets an unconditional risk premium of 5%. A larger

risk aversion parameter implies a higher risk premium implied by the model, but too large a

value can reduce the probability of crisis. I find the value of 7 to be a good balance between

the unconditional risk premium and the crisis frequency. The death rate is chosen to be 3%,

meaning that experts live on average for 37 years. Gârleanu and Panageas (2015), and Hansen

et al. (2018) use a value of 2% which is comparable to the value of 3% used in this paper. The

fraction of new born agents designated as experts is calibrated to 0.1 following Hansen et al.

(2018).

Productivity parameters: The parameter π governs the persistence of productivity and is

chosen to target the duration of crisis. The empirical bank efficiency cycle is highly persistent

with an AR(1) correlation coefficient of 0.77. The parameter π is calibrated to generate a

persistent productivity process. The volatility parameter ν is calibrated such that the variance

of the simulated productivity process is approximately equal to the empirical bank efficiency

variance of 7%. The upper level of productivity āe is chosen to target the probability of crisis.

31Bank efficiency ratio is measured as the asset-weighted average of non-operating cost to income ratio for bank
holding companies in the US. The data is at quarterly frequency from 1984Q1 till 2020Q4. A higher ratio indicates
lower efficiency.
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Other parameters: Expert exit rates are parameterized by τn and τc ; these are important in

governing the transition into and out of crisis. The baseline rate τn is set to 5.5%, comparable to

the 6% rate in Krishnamurthy and Li (2020). Empirically, bank default volume is approximately

15 times larger compared to the periods outside of the crisis.32 Taking into account a recovery

rate of 20%, the exit rate during a crisis is around 12 times larger than during the normal

period, implying a τc of 66%. Finally, the equity retention threshold is set to be 0.65. This is

comparable to the value of 0.5 used in BS2016 and Hansen et al. (2018).

Figure (1.2) presents the equilibrium quantities obtained from the numerical solution. The

productivity level has a large effect on the capital price. A lower level of expert productivity

implies a lower capital price throughout the state space. The presence of productivity shocks

allows the return volatility to be higher than the fundamental volatility even in the normal

regime. When the wealth share of more productive experts is higher, capital is fully held by

them. They always operate with leverage in equilibrium and, therefore, when a negative shock

hits the capital, their net worth decreases disproportionately more than that of the households,

resulting in a deterioration of their wealth share. When it falls below a threshold {z∗(ae )}, the

system endogenously enters into the crisis region featuring depressed asset prices, and higher

asset volatility. The jump in prices occurs due to the fire sales. In the crisis zone, experts begin

selling capital to households, who always place a lower value on it. Hence, the capital price has

to fall enough for households to purchase it and clear the market. The fall in capital price is an

inefficiency caused by the failure to internalize the pecuniary externality by the agents. This

is because each individual in the economy takes prices as given in their respective decision-

making process. To be more concrete, whenever experts choose not to hold capital, they

fail to take into account the fact that households will be forced to hold it by market clearing.

Since households value capital less, they will demand a higher premium resulting in a fall

in the capital price. This feeds-back into the experts’ balance sheet since they are leveraged

and causes further inefficiency and misallocation of resources. There is a second externality

that the individual agents within the expert group do not take into consideration, which is

the increased exit rate when the system enters the crisis region.33 The pricing dynamics is

different from the heterogeneous risk aversion literature in complete markets (see Gârleanu

and Panageas (2015), for example). With homogeneous productivity and heterogeneous risk

aversion, experts will sell capital to household during periods of distress, who will demand a

higher premium (and lower price) due to their higher risk aversion. Although both models

feature a drop in prices during the crisis, the latter will be gradual.

The jump in prices due to the fire-sale effect can only be explained by the differences in

productivity rates in an incomplete market setting and no-shorting constraint. There will

be a state space where experts hold all the capital since the risk premium of households is

lower than that of experts. In such states, households would desire to hold a negative quantity

32This is based on historical data from the FDIC between the year 2001 till 2020. During the period 2008-2011,
the total bank default volume is approximately USD 667 billion, whereas outside this period, the total default
volume is USD 44 billion.

33The aggregate experts’ wealth is, however, affected by the exit, which can be seen in equation (1.21).
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of capital, but since shorting is disallowed, they will hold no capital at all. In contrast, if the

productivity of households is the same as experts, they will face the same risk premium as

experts. Therefore, even if their risk aversion were smaller, they would still desire to hold some

positive quantity of capital. This smooths the transition from the normal to the crisis regime.34

Figure 1.2 – Model solution

Note: Equilibrium values as functions of the state variable wealth share (zt ) for different values of expert
productivity (ae,t ).

1.3 Quantitative analysis

In this section, I consider a simpler model without stochastic productivity and exit rate of the

experts that will serve as a benchmark model for the quantitative analysis. Through simulation

34This dynamics is present in Gârleanu and Panageas (2015). Hansen et al. (2018) offer additional insights for the
case of heterogeneous productivity vs heterogeneous risk aversion.
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studies, I show that there is a trade-off between the amplification and the persistence of

financial crises in this simpler model. While there are many channels that generate this

tension, I focus on the risk aversion channel.

1.3.1 Benchmark model

I assume that the productivity rate of both experts and households is constant such that

ae > ah holds, and the exit rate is zero. With these two simplifications, the model reduces to

BS2016 augmented with recursive preference and OLG elements. While the agents have CRRA

utility function in BS2016, I assume that they have recursive preference so as to disentangle

the risk aversion and the inter-temporal elasticity of substitution. The rest of the assumptions

carry over from the stochastic productivity model in Section 1.2. That is, the output is given

by AK technology as in (1.1), with ae and ah as the productivity rates of the experts and the

households respectively. The evolution of capital is governed by (2.3) as before. Appendix

A.1.2 presents the model in detail along with the numerical procedure and the solution.

Comparative statics:Figure (1.3) depicts the risk premium of experts in the benchmark model,

as well as the stationary density of expert wealth share.35 The static comparison from the

left-hand side figure in (1.3) shows that as the risk aversion increases, so does the premium

on the risky capital for experts. The other equilibrium objects, such as capital price, return

volatility, capital share of experts, drift of wealth share, and volatility of wealth share are solved

similar to the high-dimensional model in the previous section. The endogenous risk is higher

in the crisis region when the risk aversion is lower, but it features a smaller crisis region. Also,

changes in the market price of risk induced by varying risk aversion lead to vast differences in

the drift of wealth share. This has an impact on how the system transitions into and out of the

crisis region.

Stationary distribution:While the left panel in Figure (1.3) gives us a qualitative description of

the economy, the stationary distribution of the wealth share is required to confront the model

with the data. The stationary distribution represents the average location of the state variable

zt in the interval [0,1] as t →∞ for any given starting point z0. I obtain this distribution by

numerically simulating the model for 5000 years at a monthly frequency. The simulation

maps the Brownian shocks Z k
t to state variable zt , which is solved for similarly to the two-

dimensional model. I repeat the procedure 1000 times and ignore the first 1000 years so that

the distribution is not sensitive to the arbitrarily chosen initial value z0. I annualize the result

and repeat the procedure for different initial values to ensure that the economy has converged.

I assess how well the model captures the salient empirical features of financial crises in the

35The parameters used for calibration are shown in Table (A.1) in Appendix A.1.
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data. I define the crisis moments as follows

Figure 1.3 – Risk premium and stationary distribution

Note: Left panel presents a static comparison of experts risk premium for three different levels of risk
aversion. Right panel presents the stationary distribution of expert wealth share for three levels of risk
aversion.

1. Crisis event is defined as a state where the capital is misallocated to households, and

the skin-in-the game constraint is binding. In this state, the risk premium is high, and

GDP growth is low, reflecting the empirical nature of the financial crisis. This definition

is similar to Maxted (2020), who defines crises as states where the capacity constraint

is binding. The amplification in my model refers to the moments computed when the

economy is in a crisis state.

2. Probability of crisis: The proportion of time that the economy spends in a crisis state.

Analyzing a large set of advanced economies over several years, Reinhart and Rogoff

(2009) estimate this value to be 7% empirically. They define a crisis as a recession

accompanied by severe banking panic.

3. Duration of crisis: The average amount of months required to recover and revert to

normalcy after entering the crisis state. The average length of contraction cycle from

NBER recessionary data is around 18 months. The simulated mean duration of the crisis

is taken to be the model-implied persistence.

The right panel of Figure (1.3) plots the stationary distribution of the wealth share for three

different risk aversion levels. As risk aversion increases, the mass of wealth share that lies in

the crisis zone diminishes. It shrinks rather quickly, and this result also holds if I allow for

heterogeneous risk aversion, with the experts being less risk-averse. The stationary distri-

bution gives us additional insights that one cannot obtain from studying the comparative

static plots. Looking at the left panel of Figure (1.3), it appears as if increasing risk aversion

will not have a drastic impact on the frequency of a crisis since the boundary z∗, the point

at which the risk premium jumps and the investment rate falls, moves only slightly to the
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right.36 However, higher risk aversion increases the drift of wealth share a lot and pushes

the stationary distribution away from the crisis region to a greater extent. Since the experts

operate with leverage, a higher price of risk will have a positive effect on their wealth share.

The crisis boundary z∗ is far from the stochastic steady state ẑ for higher levels of risk aversion,

which means that a much longer sequence of negative shocks is required to push the system

into the crisis region.37

Comparison to Data:While the crisis is well defined and endogenously determined in the

model, defining the crisis episodes in the data is a challenge. Reinhart and Rogoff (2009)

determine the frequency of crisis states to be around 7% for the advanced economy. This

figure is much lower than the 29% of percentage NBER recessionary periods from the year

1874 till today.38 The stark difference in the frequency between Reinhart and Rogoff (2009) and

NBER data is due to the fact that in the former, recessionary periods need to feature severe

banking panic to qualify as financial crises. This relates to the findings by Muir (2017) and

Gorton and Ordoñez (2020) that not all recessions are financial crisis episodes. Muir (2017)

finds that the risk premium is higher during financial crises than during recessions, where

a financial crisis occurs when the wealth share of intermediaries deteriorates sufficiently,

just like in the model considered in this paper. HK2019 argue that the past decade in the US

featured roughly three financial crisis periods. I take the probability of being in the crisis period

as 7% for the purpose of quantitative calibration. For each zt simulated from the discretized

version of its dynamics, the equilibrium quantities are computed using the mapping given by

the equilibrium functions. Following this, various model-implied moments are computed and

compared to the data, as will be explained. Since the empirical risk premium is not observed,

I estimate its mean and volatility using return forecasting regression (1.32).

Re
t+1 = a +β∗D t /Pt +βr ec ∗1Rec ∗D t /Pt +β f i n ∗1 f i n ∗D t /Pt +εt (1.32)

I split the NBER recessionary periods into crisis (financial recession) and non-crisis (non-

financial recession) periods based on the definition of Reinhart and Rogoff (2009). I then run

predictive regressions with dividend yield (D t /Pt ) as the regressor and 1-year ahead stock

returns as the dependent variable. In Table (1.2), regression (I) uses only the dividend yield as

a regressor, whereas regressions (II) and (III) include a dummy for non-financial recession and

financial crisis, respectively. The dividend yield and stock return data are from Robert Shiller’s

website. I use a monthly frequency from the years 1945 to 2021. The indicator functions

1Rec , and 1 f i n take a value of 1 in months of NBER non-financial recession and financial

recession, respectively. The dummy variable corresponding to the financial crisis is positive

36The point z∗ denotes the point at which the experts start fire selling the capital to the households, and is
defined to be the crisis boundary. Formally, z∗ = sup{zt | ψt < 1} where ψt is the share of capital held by the
experts.

37The stochastic steady state can be defined as ẑ := {zt :µz
t (zt ) = 0}.

38The percentage of NBER recessionary periods since the beginning of Federal Reserve (1914) is around 20%.
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and statistically significant as seen in Table (1.2).39 The R-squared value is also higher when

controlling for recession and financial crises, indicating better predictive power. This confirms

the finding in Muir (2017) that the risk premium is much higher during financial crises and

the predictive power is improved by conditioning on the recessionary periods. I take the fitted

value from regression (I I I ) in Table (1.2) and compute the standard deviation to obtain the

volatility of the risk premium.

Table 1.2 – Risk premium estimation

(I ) (I I ) (I I I )

const -0.02 0.00 0.00
(0.00) (0.01) (0.03)

D t /Pt 2.13*** 1.17** 1.15**
(3.52) (1.87) (0.53)

1Rec 2.21*** 1.82***
(4.15) (0.60)

1 f i n 2.18***
(2.99)

No. of obs. 906 906 906
Adj. R2 0.02 0.04 0.05

Note: The variables 1Rec and 1 f i n represents recessionary and financial crisis episodes respectively.
Recessionary episodes are taken from NBER, and financial crisis periods are taken form Reinhart and
Rogoff (2009). The dividend yield and stock return data are from Robert Shiller’s website. I use a
monthly frequency from the years 1945 to 2021. Model (I ) excludes both dummy variables to zero.
Model (I I ) excludes financial crisis dummy but includes recession dummy. Model (I I I ) includes both
dummy variables.

Other moments: Table (1.3) presents the data moments that the model aims to match with

the methodology to compute them. The benchmark model delivers an unconditional average

GDP growth rate of around 2.3% and an investment rate of 7%. An important measure of

model success is its ability to capture the observed non-linearity in the data. The GDP growth

rate conditional on being in a crisis is around -8%. The empirical annualized GDP growth

rate during the third quarter of 2008 was -8.2%. In this respect, the model captures the non-

linearity quite well. However, the drop in investment rate implied by the model during the

crisis is not sufficient to reconcile with the data. The private investment rate fell by 8% during

the third quarter of 2008, whereas the model implied investment rate conditional on being in

the crisis is 5.6%. Note that even though the output of experts and households individually

moves in sync with the capital due to the assumption of AK technology, the aggregate output

depends on the aggregate dividend, which is a function of the capital share. During the crisis

39This finding is robust to using different time periods such as 1871-2021 (time since Shiller’s data is available),
and 1914-2021 (since the start of Federal Reserve).
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period, less productive households hold capital, and hence the aggregate dividend drops

to a large extent, and this causes the output to drop a lot as well. On the other hand, the

investment rate is determined by capital prices alone. A drop in the capital price during

the crisis period is not large enough to generate the observed drop in the investment rate.40

The volatility of investment rate implied by the model is close to zero. Overall, the model

captures non-linearity in output growth but misses non-linearity in the mean and volatility

of investment rates. This result is comparable to HK2019, which has a realistic consumption

volatility but an excessively low investment volatility. This calls for future work to match both

output and investment dynamics. The mean leverage of the expert sector implied by the

model with unitary risk aversion is 3.5, comparable to the empirical leverage of 3.77.41 The

model also features counter-cyclical leverage. Even though the experts fire sell the assets to

the households in periods of distress, the price of capital also drops, which depresses the

experts’ equity. Since the experts operate with leverage in equilibrium, the drop in expert

equity is more than the drop in assets, which results in rising leverage. Table (A.2) shows that

the correlation between the shock and the leverage ranges from -19% to -26% for different risk

aversion levels. This matches the empirical correlation of -18% quite well. Overall, for lower

risk aversion levels, the model seems to do well in matching the leverage patterns. Lastly, the

model does not generate an excessive asset return volatility (Shiller (1981)). The unconditional

return volatility is more or less the same as the exogenous capital volatility of 6%, even though

the conditional return volatility is large. This is because the endogenous risk σq
t becomes zero

in the normal regime. The conditional volatility, albeit high, is not large enough to make the

unconditional one match the data.

Table 1.3 – Data moments and methodology

Mean Std dev Data source

Risk premium* (%) 5.5 4.7 Predictive regression
Risk free rate* (%) 4.0 0.9 Amit Goyal’s website
GDP growth*(%) 3.3 3.9 FRED
Investment rate (%) 14 4.7 He and Krishnamurthy (2019)
BHC Leverage 3.77 - He and Krishnamurthy (2019)
Corr(BHC Leverage, GDP cycle) -0.18 - He et al. (2017)
Probability of Crisis (%) 7 - Reinhart and Rogoff (2009)
Duration of Crisis 18-months - NBER cycle

Note: The Table presents unconditional mean and standard deviation of key variables in the data along
with the methodology to compute the variables. The variables marked with asterisk are estimated using
quarterly frequency data between 1950Q1 till 2021Q1. All percentage values are annualized.

Table (1.4) summarizes the ability of the benchmark model to succeed in different aspects. By

40The result is not much quantitatively different if one assumes a quadratic functional form instead of logarithmic
for the capital adjustment costsΦ(·).

41This number is taken from HK2019.
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Table 1.4 – Model success summary

Quantity of interest Success level Comments

Macroeconomic
GDP/Output growth High
Investment rate Low Low variation and

not enough drop in
crisis

Experts
Leverage High
Cyclicality of leverage High

Crisis

Probability of crisis Moderate Matching prob. of
crisis attenuates
crisis dynamics

Duration of crisis Low Matching duration
attenuates crisis
dynamics

Asset price

Conditional risk premium High
Unconditional risk premium Low Matching un-

conditional risk
premium atten-
uates prob. of
crisis

Std. of risk premium Moderate -
Conditional volatility High
Unconditional volatility Low Shiller puzzle

Note: The model implied moments and probability of crisis is computed by simulating the model at
monthly freqnency for 5000 years. All values are annualized.

far, matching the intermediary leverage pattern and the non-linearity in output growth seem

to be the strongest suits of the model. For any reasonable parameters in calibration, the model

cannot resolve the tension between unconditional risk premium, conditional risk premium,

and crisis persistence. The focus of the next section is to provide a resolution to this problem.

1.4 Resolution of the tension between amplification and persistence

of crises

In this section, I quantify the model with stochastic productivity and exit of experts, and

show that it resolves the tension between persistence and amplification of financial crises and

provides reasonable time variation in the prices. The definition of a crisis event, probability,

and duration of crisis is similar to the benchmark model.42 Figure (1.4) plots the stationary

42Note that in this two-dimensional model, the crisis boundary is a function of expert productivity. The simula-
tion results show that the economy enters crisis mostly when the productivity is well below its mean. This can also
be verified by inspecting the joint density shown in Figure (1.6).
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Figure 1.4 – Stationary density of wealth share

Note: The figure displays stationary marginal density of endogenous wealth share obtained from
simulating the model for 5000 years at monthly frequency. The observations are annualized.

marginal distribution of the wealth share obtained through simulation.43 Table (1.5) presents

the average duration of crisis in the benchmark model and the stochastic productivity model

and compares them against the data. There is a substantial controversy in the literature

regarding the duration of crises (Reinhart and Rogoff (2009)). The NBER reports that the

Great Recession started in December 2007 and ended in June 2009, indicating an 18 month

duration.44 To facilitate comparisons, I adjust the parameters to generate a comparable

probability of the crisis in the range of 7-8% across the the benchmark and my model. The

numbers in Table (1.5) can be thought of as the ability of the models to generate the stated

duration for a reasonable crisis probability of 7-8%. Both of the benchmark models deliver a

duration of crisis that is much lower than observed in the data. The mean duration from my

model matches the data quite well although the 10th and 50th percentile values are lower. The

parameters used for calibrating my model are shown in Table (1.1).

Figure (1.5) plots the stationary distribution of the wealth share of experts during the time the

43The simulation method is similar to the benchmark model except that the equilibrium objects are two-
dimensional.

44The average duration of recession in the past 33 cycles from year 1854 to 2020 is around 18 months. Source:
https://www.nber.org/cycles.html.
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Table 1.5 – Duration of crisis

Data
(NBER)

Benchmark model
(RA=1, IES = 1)

Benchmark model
(RA=2, IES = 1)

My model
(RA=5, IES=1)

10th percentile 8.0 1.0 1.0 1.0
50th percentile 13.5 2.0 2.0 3.0
90th percentile 31.2 13.0 16.0 49.0
Mean 17.5 6.0 6.5 17.0

Note: Data for computing the empirical duration of crisis is from NBER website. The last three columns
presents the model implied duration percentiles obtained from simulating each of the benchmark
models for 5000 years at monthly frequency.

system spends in the crisis region. In the benchmark model (left panel), a lot of the mass lies

near the crisis boundary of 0.125 compared to the interior region where the wealth share is

close to zero. The reason for this is that the benchmark model has only one i.i.d Brownian

shock. After a series of negative shocks hit the economy, the system enters a crisis, leading to a

sharp increase in the risk premium. Since experts are always leveraged in equilibrium, the risk

premium loads positively on the drift of wealth share of experts. Moreover, the assumption

of i.i.d Brownian shock implies that a series of negative shocks is often followed by a positive

shock. Thus, the experts recapitalize quickly by capturing the high risk premium, leading

to short-lived crises. In contrast, the frequency distribution of the wealth share in the crisis

region in my model, as shown in the right panel in Figure (1.5), features fatter tails. The

economic mechanisms that generate this result rest on three forces. Firstly, negative shocks

to the capital impair the net worth of the experts just like in the benchmark model. This is

the financial amplification channel that is widely covered in the literature. The second force

comes from stochastic productivity. The aggregate banking sector productivity is lower during

a crisis state. The key comparative advantage of the experts in my model is that they have a

higher productivity rate of operating capital. During bad times, this comparative advantage

diminishes.45 A realistic crisis frequency is obtained even for higher risk aversion levels due

to stochastic productivity. With a constant productivity as in the baseline model, the risk-

averse experts will always remain wealthy by earning a large premium. Negative shocks to

the capital in the stochastic steady state will not be enough to generate realistic crisis events.

In my model, negative shocks to the capital also push the experts productivity down, which

negatively impacts the risk premium. Hence, a series of negative shocks reduces the premium

earned in the normal region and will put downward pressure on the drift of wealth share,

eventually causing sufficient deterioration in the net worth of experts to generate crisis events.

The third force is the exit rate of experts, which is higher during bad times. While the over-

lapping generations capture the demographic changes relating to natural birth and death of

45Simulation shows that the crisis zone features both a lower wealth share and a lower productivity of experts as
seen in the right panel of Figure (1.6).
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agents, the exit rate captures the retirement of the experts. In normal times, experts retire at a

rate of 5.5%. When they retire, they don’t consume all of their wealth immediately. Instead,

they transition into households until death. While the crisis is endogenously determined in

my model, as soon as the crisis boundary is hit, the exit rate shoots up from 5.5% to 66%. A

higher exit rate during a crisis parsimoniously captures the strikingly large number of bank

failures during a financial crisis, as evident in Figure (1.1). The fact that a large fraction of

the experts retire and become households means that the proportion of the agents who op-

erate capital more productively is lower in times of distress than in normal times. This has a

dominating effect on the drift of wealth share and pushes the economy deeper into the crisis

since the drift is negatively affected by exit. The only way for the economy to break out of

the crisis is for a remaining smaller proportion of the experts to be more productive again,

since higher productivity pushes up the risk premium, enabling the experts to rebuild their

wealth.46 However, the rate at which expert productivity reverts to its mean is low, and this

sluggish reversion means that the economy spends a long amount of time in a state of distress

until the productivity increases and has a dominant effect on the drift of wealth share. This

leads to delayed recovery from the crisis. Once the system is back to normalcy, all capital in

the economy is held by the experts, and the financial amplification is shut down.

Table (1.7) compares the moments of key asset pricing and macroeconomic variables between

my model and the benchmark model. The unconditional risk premium of 5.0% is comparable

to the empirical value of 5.5%, whereas, the benchmark model generates a mere 1.7% premium.

Importantly, my model allows for reasonable crisis dynamics by simultaneously generating a

high conditional risk premium of 18.2% and long a duration of crisis of 17 months without

compromising on the other dimensions. That is, the unconditional mean leverage, GDP

growth rate, investment-capital ratio, and correlation between expert leverage and capital

shock are comparable to the data.

To further understand the individual roles of stochastic productivity and exit rate in delivering

quantitative results, I compare my model against two other benchmark models: a) Model B1,

which considers stochastic productivity but without exit, and b) Model B2, which considers

constant productivity and state-dependent exit. The trade-offs analyzed in the benchmark

model also carry over to model B1. While stochastic productivity helps in generating more

time variation in the risk premium compared to the benchmark model, the duration of crisis

implied is lower compared to the data, as seen in Table (1.7). Without state-dependent exit, the

proportion of experts who recapitalize their balance sheets by earning a large risk premium is

high, and the economy recovers quickly from a crisis as a result. Hence, features related to the

bankruptcy of intermediaries or bank runs are crucial in explaining the slow recovery from

a crisis. This relates to Gertler et al. (2020) who build a quantitative macroeconomic model

with bank runs as the main driver behind the 2008 financial crisis. However, incorporating

bankruptcy without stochastic productivity is not sufficient to generate realistic crisis dynam-

46The consumption-wealth ratio of the agents is constant due to the assumption of a unitary IES. For a non-
unitary IES, the consumption-wealth ratio may also also increase due to increased productivity of the experts and
contribute positively towards the wealth share of experts.
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ics. Table (1.7) presents the results of model B2 that includes state-dependent exit but with

constant productivity. When the exit rate is calibrated to empirical default rates, the model

B2 leads to a dystopian economy with perennial recession. During bad times, a higher exit

rate of experts pushes the economy into crisis. Without the offsetting force of mean-reverting

productivity, the effect of the exit rate continues to dominate the drift of wealth share, trapping

the economy in a distressed state around 91% of the time.

My model generates a larger drop in the investment rate in the crisis period but falls short of

the negative investment rate observed in the data. During the last quarter of 2008, private

domestic investment in the United States fell by approximately 8%. The q-theory result in the

model ties the investment rate tightly to the capital price. Hence, the capital price needs to fall

drastically to generate a fall in the investment rate to the extent that is observed in the data. My

model is certainly an improvement over the benchmark in this regard, but more work needs to

be done in jointly matching the investment and output dynamics.47 Lastly, the model implied

unconditional volatility of the risk premium is 4.8%, well in line with the empirical value of

4.7% reported in Table (1.6). Overall, my model does a good job of balancing the persistence

and the amplification, and delivers a reasonable time variation in the prices.

Table 1.6 – Risk premium moments and probability of crisis

Data
Benchmark Model

(RA=1)
Benchmark Model

(RA = 20)

All Recession Crisis All Crisis All Crisis

E(Risk premium) 5.5 12.8 25.0 1.7 13.4 5.5 -
Std(Risk premium) 4.7 6.7 7.5 3.1 1.3 0 -

Prob. of Crisis 7.0 6.8 0

Note: Empirical risk premium moments are computed from the predictive regression (1.32). Probability
of crisis is taken from Reinhart and Rogoff (2009). The model implied moments and probability of crisis
is computed by simulating the model at monthly freqnency for 5000 years. All values are annualized.

47Note that I have assumed a simple logarithmic form to model technological illiquidity following Brunnermeier
and Sannikov (2016a). Using other functional forms, for example, as found in Di Tella (2017), also fails to generate
a large drop in the investment during crisis periods.
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Figure 1.5 – Left tail of the marginal stationary density

Note: Left panel: Tail of experts wealth share distribution from the benchmark model. Right panel: Tail
of experts wealth share distribution from the model with stochastic productivity.

Figure 1.6 – Joint density of state varaibles

Note: Left panel displays the joint density of wealth share and productivity of experts along with
respective marginals in the entire state space. Right panel displays the joint density of wealth share and
productivity of experts along with respective marginals in crisis region.

1.5 Conclusion

A financial crisis is characterized by a spike in the risk premium, and a sluggish recovery.

Macro-finance models with leveraged intermediaries have trouble explaining these two fea-

tures simultaneously, especially when they are calibrated to match both conditional and un-

conditional moments in the data. As a resolution to this puzzle, I have built a macro-finance

asset pricing model with intermediaries facing productivity shocks and a state-dependent

exit rate. A series of negative capital shocks reduces expert productivity, reflecting the experts’

diminishing comparative advantage over households in terms of productivity differential. A

simpler model with constant expert productivity and no exit rate cannot simultaneously gen-
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Table 1.7 – Summary of key moments

Data My model Benchmark B1 B2

All All Crisis All Crisis All Crisis All Crisis
Risk premium (% mean) 5.5 5.0 18.2 1.7 13.4 1.9 14.1 12.7 13.4
Risk premium (% sd) 4.7 4.8 5.2 3.1 2.4 3.5 3.7 2.7 2.9
Investment-capital ratio (% mean) 14 8.7 4.3 7.0 5.6 8.2 7.5 5.5 5.0
BHC Leverage 3.77 4.5 8.8 3.5 5.8 2.7 3.2 3.2 3.5
GDP growth (% mean) 3.2 2.5 -7.1 2.3 -8.0 3.1 -8.2 -6.3 -7.9
Corr(BHC Leverage, GDP) -0.18 -0.19 -0.01 -0.17 -0.01 -0.15 -0.03 -0.28 -0.05

Probability of Crisis (%) 7.0 8.0 6.8 6.3 90.8
Duration of Crisis (months) 18.0 17.0 4.0 5.0 13.0

Note: Comparison of model implied moments. The % values are annualized. The calibrated parameter
for my model is given in Table (1.1). The benchmark model does not feature stochastic productivity or
exit. The model B1 considers a stochastic productivity but without exit. The model B2 has constant
productivity but the experts have a state-dependent exit rate. The calibrated parameters for the
benchmark models are given in Table (A.1).

erate amplified and persistent financial crises. There is a trade-off between the risk premium

and the probability and duration of crises. I show that auxiliary model features that improve

the financial amplification channel dampen the persistence of the crisis.

The richer model with stochastic productivity and a state-dependent exit rate of the experts

resolves this tension and quantitatively generates a high risk premium, a large drop in output,

decreased financial intermediation, and prolonged distress periods. The twin forces of state-

dependent exit and stochastic productivity are at the core of improved dynamics in my model.

In particular, a higher exit rate and lower productivity of experts in bad times forces the

economy to dip deeper into recession, which eventually revives once productivity mean

reverts. The model also generates a large time variation in the risk prices due to the stochastic

nature of expert productivity, which is absent in the benchmark model. An interesting avenue

for future research is to build a model that endogenously causes variation in the expert

productivity, which is an exogenous force in my model. I have utilized a novel method of

solving the model based on active machine learning that encodes the economic information

as regularizers in a deep neural network. The algorithm is scalable and has the potential to

solve high-dimensional problems with less effort in the numerical setup, opening up new

avenues to model asset prices with frictions in potentially large dimensions.
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2 ALIENs and Continuous-Time
Economies

2.1 Introduction

The past decade has seen a surge in macroeconomic and asset pricing models to capture

non-linear global dynamics. Models in continuous time offer the ability to capture complex

interactions due to their tractability. While the continuous time models characterizing the

global dynamics is certainly an improvement to models with linearized solutions, most of

the papers resort to smaller state spaces due to computational bottlenecks. The difficulty is

amplified when the state variables are endogenous, correlated, and equilibrium quantities

exhibit stark non-linearities. For example, D’Avernas and Vandeweyer (2019) show that even

in the case of two space dimensions, the standard finite difference method breaks down since

it is difficult to preserve the monotonicity of finite difference schemes. Prior literature has

addressed this problem by applying an up-winding scheme to the finite difference method,

a technique that is borrowed from fluids dynamics, but it is not guaranteed to work in the

presence of correlated state variables.1 Moreover, finite difference methods are not easily

scalable, especially when an implicit scheme is employed. This is because an implicit scheme

results in a large linear system to be solved, which quickly becomes computationally infeasible

when the state space dimension grows.

In this chapter, I propose a distributed deep-learning based technique called Actively Learned

and Informed Equilibrium Nets (ALIENs), which can be used to solve a large class of continu-

ous time models in financial economics featuring highly non-linear equilibrium policies and

endogenous and correlated state variables with heterogeneous agents. The contribution of the

chapter is two-fold. First, I present a general setup of a heterogeneous agent portfolio choice

problem and demonstrate how one can solve the model by approximating the Hamilton-

Jacobi-Bellman equation using neural networks. I prove that ALIENs with at least one hidden

layer offer theoretical convergence to the resulting PDEs when the number of neurons in the

hidden layer is large. This result can be thought of as a universal approximation theorem for

1See Brunnermeier and Sannikov (2016b),Achdou et al. (2014b),Gomez (2019) etc., for the application of
up-winding scheme.
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quasi-linear parabolic PDEs that are ubiquitous in continuous time finance and macroeco-

nomic models. Second, I solve two models that feature heterogeneous agents and endogenous

state variables. The first model is inspired by Brunnermeier and Sannikov (2016b). It serves

as a benchmark to test the neural network approach. I show that the equilibrium policies

obtained from a finite difference scheme with up-winding match the solution obtained from

ALIENs. The second model adds more shocks to the benchmark model in the spirit of Hansen

et al. (2018) and shows how active learning plays a crucial role in ensuring convergence.

The models demonstrated in this chapter feature endogenous jumps in return volatilities and

risk prices, and are canonical examples of a macro-finance model with financial frictions that

have received substantial attention in the literature. In both the benchmark model and the

richer model, the wealth share of the intermediary sector is an endogenous state variable.

The value function and other equilibrium policies are a function of the wealth share, which

moves endogenously with respect to the underlying shocks in the economy. Many of the

heterogeneous agent asset pricing models have a similar structure where the model boils

down to solving a system of elliptical PDEs. These PDEs are typically highly non-linear and

introduce instabilities when solved using standard methods like the finite difference scheme.

Even seemingly small errors get propagated over time and the equilibrium policy functions end

up with instabilities similar to ‘Gibbs phenomenon’ in the spectral theory literature, especially

when the policies have jumps.2 To tackle this problem, it is standard in the literature to convert

them into a system of quasi-linear parabolic PDEs by adding a pseudo time dimension. This

practice, otherwise known as ‘false-transient’ method, transforms an elliptical PDE into a

parabolic PDE and enables a marching solution (Mallinson and de Vahl Davis (1973)). While

most of the asset pricing literature in the past have dealt with parabolic PDEs in one or two

space dimensions, solving such PDEs in higher dimensions, remain an open challenge. There

is a large literature in the applied mathematics area that deals with PDEs in high dimensions

but most of them deal with simple problems that do not feature endogenous state variables

with highly non-linear functions as PDE coefficients, that in turn endogenously depend on

the policy and the value functions.

Recent applications of deep learning in economics aim to directly approximate the equilibrium

functions by simulating the ergodic density. For example, Azinovic et al. (2019) solve discrete

time overlapping generations problems by training a deep neural network on simulated data,

thereby side-stepping the need for labeled points. They argue that in most cases, the ergodic

distribution of state variables lies in a small subspace of the entire state space, and hence one

can solve for the equilibrium functions in this small subspace without spending resources and

time on part of the state space that does not matter. Simulating from the ergodic density is

computationally cheap if a closed form solution for the distribution exists. However, in the

cases where state variables are endogenous and depend on the policy and value functions,

these functions have to be approximated first before simulating the state variables through a

Monte-Carlo procedure. In continuous time macro-finance models, the transformation of

2Gibbs phenomenon refers to the instability at jump discontinuous points when Fourier series is used to
approximate a function with jump discontinuity. See Kelly (1996) for a nice exposition.
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elliptical PDEs into parabolic PDEs already introduces some degree of error. A Monte-Carlo

type simulation of state variables using approximated policy and value functions adds further

approximation errors. Secondly, typical problems in asset pricing and macro-finance are

characterized by high non-linearities in recessionary periods, which are rare occurrences.

Therefore, one has to simulate an extraordinarily large number of points in order to have a

realistic mass in the state space corresponding to recessions in order to better approximate

the equilibrium functions in that subspace and avoid instabilities in future iterations. The

framework that I propose takes a different approach. Sparse training points are sampled

throughout the state space, but the active learning enforces the sampling to come from the

regions with a low tolerance for approximation error from the neural networks. Such a smart-

sampling procedure minimizes the error in the initial time iterations so that instabilities in the

future iterations are prevented.

I take advantage of recent advancements in high performance computing and offer a paral-

lelized solution using an open-source library developed by Uber called Horovod (see Sergeev

and Balso (2018)). Horovod provides a framework for data parallelism where the input is split

into mini-batches and transmitted across several nodes, where each node is accompanied by

many GPUs and/or CPUs. The model in each node is the same but receives different inputs

for training the neural network. Using a Message Passing Interface (MPI) that enables com-

munication across the nodes, the output from each node is averaged using a ring-Allreduce

operation. This procedure significantly speeds up the computation time and is similar in

spirit to the parallelization scheme in Azinovic et al. (2019). The examples that I have chosen

in this chapter come from macro-finance, but the framework can be applied to a variety of

problems in finance. For example, a continuous time version of Bansal and Yaron (2004) with

mean-reverting long run growth yields a parabolic PDE for the price-dividend ratio. Other

problems in asset pricing where this framework is applicable include Wachter (2013), Gârleanu

and Panageas (2015), Haddad (2012), Di Tella (2017), Gomez (2019), Di Tella (2019) among

others. In macroeconomic models where constraints play an important role, ALIENs offer the

possibility to easily encode the economic information from the constraints as regularizers.

Importantly, if there are multiple constraints, the framework allows to attach different weights

to them depending on their importance in the economic problems. Models where constraints

play an important role and can be solved using ALIENs are Achdou et al. (2017), Bolton et al.

(2011) etc., among others. While most of these papers are restricted to smaller state spaces due

to the curse of dimensionality, ALIENs provides scalability that can be leveraged to solve prob-

lems in larger dimensions. For example, Gopalakrishna (2020) shows that a two-dimensional

macro-finance model can jointly explain various macroeconomic and asset pricing moments.

2.2 Literature Review

This chapter relates mainly to two strands of literature. First, there has been an explosion

of macroeconomic models with financial frictions to characterize the global dynamics after

the financial crisis of 2008. The older literature in this area can be traced to Kiyotaki and
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Moore (1997) and Bernanke et al. (1998) who study the problem of financial acceleration

in a discrete time setting. In the past decade, seminal contributions in this area have come

from Brunnermeier and Sannikov (2014a), He and Krishnamurthy (2013), Di Tella (2017),

He and Krishnamurthy (2019), and Adrian and Boyarchenko (2012) using continuous time

machinery since setting up problems in continuous time offers some degree of tractability that

the discrete time models fail to provide. Other related papers in the asset pricing area such as

Basak and Cuoco (1998), Basak and Shapiro (2001), Gromb and Vayanos (2002), Gârleanu and

Pedersen (2011) etc. study an endowment economy. Given the potential offered by continuous

time framework, a second wave of papers emerged capturing more complex dynamics of

macroeconomic and financial sector. Drechsler et al. (2018), Di Tella (2017), and Silva (2020)

analyze the impact of monetary policy, and Adrian and Boyarchenko (2012), Caballero and

Simsek (2017) study macro-prudential policies. Often times, continuous time macro-finance

models do not admit full fledged closed form solutions and typically involve solving for a

system of partial differential equations (PDEs) to obtain the policy functions.

Hansen et al. (2018) and D’Avernas and Vandeweyer (2019) provide robust solutions to solve

the PDEs using some variations of finite difference schemes. Hansen et al. (2018) proposes an

implicit finite difference scheme with up-winding and employ parallelization techniques to

tackle the problem of solving large linear systems. The technique proposed in this chapter

dominates their approach since it offers the advantage of ease in setting up the numerical

scheme in two ways. Firstly, my approach allows to accommodate different types of HJB

equations with relative ease. For instance, adding a jump term to the capital process will alter

the HJB equation and requires setting up a different linear system to solve in the case of an

implicit finite difference scheme. This process can be painful depending on the nature of the

problem. On the contrary, adding a jump term in my approach requires simply augmenting the

regularizer by adding a derivative term, which can easily be accomplished through automatic

differentiation. Secondly, adding more features to the existing model and scaling up the

dimension again requires setting up a new linear system to solve in the case of an implicit

finite difference scheme, whereas, this can be accomplished by simply adding the required

higher order partial derivatives to the regularizers in my approach. Moreover, my approach

works for any arbitrary time step, whereas, the method in Hansen et al. (2018) suffers from the

problem of using appropriate guess for the time step and space dimension step, as they are

tightly linked to guarantee convergence. Experimentation shows that for problems with capital

misallocation, the time step that needs to be set is very small which significantly decreases the

speed of convergence. D’Avernas and Vandeweyer (2019) explores a similar macro-finance

model and demonstrate the difficulty in maintaining the monotonicity of finite difference

schemes in solving PDEs, and offer a robust solution technique based on Bonnans et al. (2004).

The technique involves solving for the right direction to approximate the finite differences

so as to preserve the monotonicity which is a necessary condition for convergence. However,

the approach that they offer is specific to two space dimensions. On the contrary, ALIENs are

easily scalable with minimal effort in coding.

The second related strand of literature is application of machine learning to solve equilibrium
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models in economics and finance. The papers that are closer are Duarte (2017) and Fernández-

Villaverde et al. (2020) since they also consider equilibrium problems in continuous time.

Duarte (2017) encodes policy and value functions with neural networks and performs policy

evaluation and policy update in the spirit of reinforcement learning. While Duarte (2017)

focusses on representative agent asset pricing models that admit analytical solutions, the

problems that I consider are heterogeneous agent macro-finance models with endogenous

state variables and jumps in policy functions. These problems do not have closed form

solutions and are more complex to solve. Fernández-Villaverde et al. (2020) also employs

neural networks to solve a model based on Krusell and Smith (1998) in continuous time.

However, it is the law of motion of the aggregate wealth that is solved using neural networks.

The value function in their model is solved using traditional finite difference method which

is in contrast to ALIENs. Azinovic et al. (2019) considers discrete time economic problems

and solves for the equilibrium policy functions using neural networks. They also parallelize

their algorithm using Horovod to speed up the performance. While their method is based

on simulating from the ergodic density, I consider sparse grid padded with active points for

training.

There is a substantial literature in computational physics and applied mathematics to ap-

proximate PDEs and HJBs using neural network, starting from Sirignano and Spiliopoulos

(2018a) and Raissi et al. (2017). Sirignano and Spiliopoulos (2018a) proposes deep galerkin

method to solve PDEs in high dimensions and incorporates monte carlo methods to compute

second order derivatives to speed up computation. Raissi et al. (2017) solves canonical two

space dimensional problems in computational physics such as Naiver-Stokes and Burgers

equations. Han et al. (2018) represents quasi-linear PDEs in the form of forward backward

stochastic differential equations and then applies deep neural networks to solve the PDEs.

They find that this strategy enables efficient computation of gradients in terms of speed an

accuracy. While Raissi et al. (2017), Raissi et al. (2019) etc. use feed-forward neural networks,

Sirignano and Spiliopoulos (2018a) finds that advanced architectures like LSTMs offer im-

proved performance. More novel architectures like convolution networks, which are mostly

used in image recognition, have also been found to be useful in solving PDEs (Tompson et al.

(2017)). In contrast to these papers, the framework that I propose is suited to solve problems

in economic and finance. For instance, many problems in macro-finance and asset pricing

come with endogenous state variables that are often correlated- a feature that the models in

applied mathematics does not typically deal with. Moreover, the non-linearity of the PDEs

in the economic models come from the fact that the advection, diffusion, linear, and cross

term coefficients of the PDE are endogenously dependent on the equilibrium policy functions.

For example, these coefficients in Brunnermeier and Sannikov (2016b) are solved for using

a separate Newton-Raphson method since one needs to solve for an algebraic first order

differential equation to get these coefficients. These kinds of complications do not arise in

the models considered in applied mathematics where more often the coefficients are known

constants or simple exogenous functions.3 Thus, one cannot simply apply the deep learning

3The nature of coefficients play an important role in finite difference methods. For example, see Brunner-

37



Chapter 2. ALIENs and Continuous-Time Economies

tools developed in other areas and hope to solve models in financial economics. Lastly, the

usage of sparse and active points in this chapter relates to the literature on adaptive sparse

grids that are concerned with a systematic way of generating the state space grid. For example,

Brumm and Scheidegger (2017) uses adaptive sparse grids to solve dynamic economic models,

whereas Bungartz et al. (2012) solves option pricing models using finite element method.4

2.3 General Set-up

In this section, I present a general set-up of a portfolio choice problem with a continuum of

agents indexed by j , who have a lifetime recursive utility given by

U j ,t = Et
[∫ ∞

t
f (c j ,s ,U j ,s)d s

]
(2.1)

with

f (c j ,t ,U j ,t ) = 1−γ
1− 1

%

U j ,t

[(
c j ,t(

(1−γ)U j ,t
)1/(1−γ)

)1− 1
%

−ρ
]

(2.2)

where ρ, γ, and % are the discount rate, the risk aversion, and the inter-temporal elasticity of

substitution (IES) of the agents. I assume that these parameters are the same for all agents in

the economy but this is purely for simplicity and can be easily relaxed to introduce further

heterogeneity. The agents trade a risky asset, a claim to the dividend denoted by yt , where

t ∈ [0,∞], that follows an exogenous process

d yt

yt
= g d t +σd Zt (2.3)

where Zt is the standard Brownian motion representing the aggregate uncertainty in Ft , g is

the growth rate, and σ is the volatility. The agents also trade in a risk-free security that pays a

return rt that will be determined in the equilibrium. The price of the risky asset qt is governed

by
d qt

qt
=µt d t +σR

t d Zt (2.4)

where the drift µt and the volatility σR
t are endogenous objects to be determined in the

equilibrium. The return on the risky asset is given by dRt = a j (yt )
qt

d t + d qt

qt
, where a j is an agent

specific dividend. The net worth of the agents evolve as

d w j ,t

w j ,t
= (rt +θ j ,tζ j ,t − ĉ j ,t )d t +θ j ,tσ

R
t d Zt (2.5)

meier and Sannikov (2016b), who use an up-winding scheme in order to deal with the case where the advection
coefficients have different signs in different parts of the state space.

4These papers propose a systematic way of refining grid, for example by modifying the basis functions as in
Brumm and Scheidegger (2017). On the contrary, I use a random sample from the mesh that are padded with
active points for training the neural network.
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where rt is the risk-free rate, σR
t is the volatility of the return on the risky asset, θ j ,t is the

portfolio weight on the risky asset, and ĉ j ,t is the consumption-wealth ratio. The quantity

a j (yt ) is an agent specific function of the dividends,5 and ζ j ,t is the price of risk, which may

differ across agents due to different dividends. The agents maximize the utility (2.1) subject

to the wealth dynamics (2.5). Shorting of the capital by the agents is disallowed. The HJB

equation for the optimization problem can be written as

sup
ĉ j ,tθ j ,t

f (c j ,t ,U j ,t )+Et (dU j ,t ) = 0 (2.6)

Due to homothetic preferences, the value function takes the form

U j ,t =
(J j ,t w j ,t )1−γ

1−γ (2.7)

where the stochastic opportunity set J j ,t follows the process

d J j ,t

J j ,t
=µJ

j ,t d t +σJ
j ,t d Zt (2.8)

The equilibrium objects (µJ
j ,t ,σJ

j ,t ) need to be solved. Applying Ito’s lemma to J j ,t , the HJB

equation can be written as

ρ

1−1/%
= sup

ĉ j ,t ,θ j ,t

ĉ1−1/%
j ,t

1−1/%
ρ J 1/%−1

j ,t + (rt +θ j ,tζ j ,t − ĉ j ,t )

+µJ
j ,t −

γ

2
(θ2

j ,t (σR
t )2 + (σJ

j ,t )2))− (1−γ)θ j ,tσ
R
t σ

J
j ,t (2.9)

The optimal quantities (ĉ j ,t ,θ j ,t ) can be found by maximizing the HJB equation. It then

remains to solve for the function J j ,t which depends on the state variables x ∈Ω. Assuming

that the number of state variables is d , applying Ito’s lemma to J j ,t , and equating the drift

terms,6 we have

µJ J =
d∑

i=1
µxi (x)

∂J

∂xi
+

d∑
i , j=1

bi , j (x)
∂2 J

∂xi∂x j
(2.10)

where µxi (x) is the drift of the state variable xi ∈ x and bi , j (x) = 1
2σ

xi (x)σx j (x) is the scaled

product of volatility of the state variables {xi , x j } ∈ x . The state variables can be endogenous

in which case their drift and the volatility may depend on J . Moreover, the PDE (2.10) is

non-linear because the term µJ depends on J in a highly non-linear fashion. To see that, note

that the function µJ can be obtained from the HJB equation (2.9) after plugging in the optimal

5For instance, agents may have a different tax treatment of dividends in which case the net dividend earned will
depend on the investor type. In a production economy, some agents may have a lower productivity rate which
gives them a lower dividend like in Brunnermeier and Sannikov (2016b).

6I drop the agent and the time index in order to avoid cluttering of notations.
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ĉ j ,t ,θ j ,t . That is, we have

µJ = ρ

1−1/%
−

ĉ∗1−1/%
j ,t

1−1/%
ρ J 1/%−1

j ,t − (rt +θ∗j ,tζ j ,t − ĉ∗j ,t )

+µJ
j ,t −

γ

2
(θ∗2

j ,t (σR
t )2 + (σJ

j ,t )2))− (1−γ)θ∗j ,tσ
R
t σ

J
j ,t (2.11)

where ĉ∗ and θ∗ are the optimal consumption-wealth ratio and portfolio choice respectively.

Non-linear PDEs are in general difficult to solve and the literature addresses this issue by

converting the equation (2.10) into a quasi-linear parabolic PDE by introducing an artificial

time derivative. That is, the functionµJ is assumed to be a coefficient whose value is computed

based on the value of J from the previous time step. This is similar to Brunnermeier and

Sannikov (2016b), who solve for the equilibrium quantities in the static inner loop given the

value function, which then gets updated in the outer time loop. This also means that µxi and

σxi do not depend on J and t but only depend on the equilibrium quantities and the state

variables themselves. This two-step method, which is standard in the literature, has relevance

to the reinforcement learning where the inner static step is called as ‘policy evaluation’, and

the outer time step is called as ‘policy update’. Following the tradition, I add a false time

derivative to the PDE (2.10) and rewrite it in a general quasi-linear parabolic form at the k-th

time iteration as

G [J ] := ∂J

∂t
+ A

(
x , J ,

∂J

∂x

)
+1

2
tr

[
B

(
x , J̃ ,

∂ J̃

∂x

)
∂2 J

∂x2 B

(
x , J̃ ,

∂ J̃

∂x

)T ]
= 0 (2.12)

(t , x) ∈ [T −k∆t ,T − (k −1)∆t ]×Ω (2.13)

with the boundary conditions

J (t , x) = J̃ ; ∀(t , x) ∈ (T − (k −1)∆t )×Ω (2.14)

∂J (t , x)

∂x
= 0; ∀(t , x) ∈ (T − (k −1)∆t )×∂Ω (2.15)

where in this case, A

(
x , J , ∂J

∂x

)
=∑d

i=1µ
xi ( J̃ ) ∂J

∂xi
−µJ J and B

(
x , J̃ , ∂J

∂x

)
=σxi ( J̃ ). The first bound-

ary condition contains J̃ which is the value obtained in previous time iteration. For example,

in kth time step, we solve for the function J(T −k∆t , x) and J̃ in this case denotes the value

J(T − (k −1)∆t , x). The PDE (2.12) occurs widely in the macro-finance and asset pricing lit-

erature including Brunnermeier and Sannikov (2016b), Hansen et al. (2018), Kurlat (2018),

Di Tella (2017), Di Tella (2019), Drechsler et al. (2018), Gomez (2019), Krishnamurthy and

Li (2020), Li (2020), He and Krishnamurthy (2013), D’Avernas et al. (2019), among others.

These papers address different economic problems in varied ways but all of them boil down

to solving the PDE (2.12) subjected to some boundary conditions. In general, a closed-form

solution to such PDEs do not exist. The literature has so far used finite difference method with

up-winding, which works well in smaller dimensions but becomes infeasible as d grows large

due to the curse of dimensionality and the difficulty in preserving the monotonicity of the
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finite difference scheme.

2.3.1 Neural network for PDEs

The approximation of function J using a feed-forward deep neural network is done by random

sampling of points from the state space making it a mesh-free procedure. This empowers

the approach with scalability by alleviating the curse of dimensionality in the PDE time

step. Moreover, since the neural network can approximate any type of quasi-linear parabolic

PDE, one doesn’t need to worry about approximating the derivatives in the right spatial

dimensions to preserve monotonicity as in the grid-based finite difference method (D’Avernas

and Vandeweyer (2019)).

Feed-forward network:I present a brief introduction to the simple feed-forward neural net-

works from which the informed neural network is built to solve the PDE (2.12). A single-layer

neural network that can approximate J is given by

Ĵ (x |Θ) = g

(
W x +b

)
(2.16)

where W ,b ∈ Θ are the parameters called weights and biases respectively,7 and g (·) is the

activation function which maps the input to the output in a non-linear fashion. The universal

approximation theorem (Hornik (1991)) states that any Borel measurable function can be

approximated by a feed-forward neural network with a single hidden layer. That is, for any

ε > 0 and any function J (x) with state variables x ∈ Id , where Id is the d-dimensional unit

hypercube, the approximation (2.16) satisfies8

| Ĵ (x |||Θ)− J (x)| < ε ∀x ∈ Id

The activation functions can be thought of basis functions but they have very simple functional

forms as opposed to complex forms such as Chebychev and Legendre polynomials that

are commonly used in the projection methods. One minor shortcoming of the universal

approximation theorem is that it does not specify the exact number of neurons required to

achieve convergence. That is guided entirely by the empirical procedure. It turns out that a

single hidden layer network may not provide a good approximation for the function J and

hence it requires to stack multiple hidden layers on top of one another to construct a deep

7Bias is a terrible terminology that is unfortunately commonplace in the deep learning literature. We can think
of b more as a shift parameter.

8This activation function g (·) is not dependent on J and has a natural relation with the Galerkin method if we
compare (2.16) and (2.33).
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neural network. Then, we have

z1 =W1x +b1

h1 = g (z1)

z2 =W2h1 +b2

h2 = g (z2)

...

zl =Wl hl−1 +bl

Ĵ =σ(Wl+1zl +bl+1)

where l is the number of hidden layers and g (·) are the activation functions that remain

the same in each hidden layer. The commonly used activation functions in deep-learning

literature are Rectified Linear Unit (ReLu), tanh, sigmoid, and shifted-ReLu. I consider tanh

activation function for the hidden layers and a sigmoid activation function in the output layer

based on superior performance for solving the PDEs. The activation function in hidden layer

takes the form

g (z) = t anh(z) = ez −e−z

ez +e−z (2.17)

The sigmoid function is given by

σ(x) = 1

1+e−x (2.18)

Note that the sigmoid function gives values in the range (0,1). This works for the problems

considered in this chapter since the stochastic opportunity set J in equilibrium is equal to

the consumption-wealth ratio, which lies in the range between 0 and 1. If the opportunity set

takes values in the range (−∞,+∞), then a linear output layer is recommended. The output

from the feed-forward deep neural network Ĵ(x|Θ) forms the basis for solving the equation

(2.12).

Informed neural nets:The approximation from simple feed-forward network will clearly be

poor because it does not encode any information from the PDE. The next logical step is to

transform the simple feed-forward network into a more informed network by encoding the

economic information into it. I build customized loss-functions that act as regularizers in the

neural network optimization. Consider the PDE residual from9 (2.12)

f := ∂ Ĵ (Θ)

∂t
+ A

(
x , Ĵ (Θ),

∂ Ĵ (Θ)

∂x

)
+ 1

2
tr

[
B

(
x , J̃ ,

∂ J̃

∂x

)
∂2 Ĵ (Θ)

∂x2 B

(
x , J̃ ,

∂ J̃

∂x

)T ]
(2.19)

9I denote Ĵ (t , x |Θ) as Ĵ (Θ) for brevity.
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where J̃ denotes the value obtained from the previous time iteration.10 Starting from a simple

feed-forward neural network Ĵ (x |Θ) that is parameterized by an arbitrary Θ, the goal is to find

the optimal Θ∗ that ensures | Ĵ(t , x |Θ)− J | < ε for all ε> 0. Towards this goal, I minimize the

loss function that encodes the economic information from the PDE and the inner static loop.

The loss function is given by

L =λ f L f +λ j L j +λbLb +λ1
cL

1
c +λ2

cL
2
c (2.20)

where

PDE loss L f =
1

N f

N f∑
i=1

| f (x i
f , t i

f )|2 (2.21)

Bounding loss-1 L j = 1

N j

N j∑
i=1

| Ĵ (x i
j , t i

j )− J̃ i |2 (2.22)

Bounding loss-2 L b = 1

Nb

Nb∑
i=1

∣∣∣∣∣ ∂ Ĵ

∂x i
b

∣∣∣∣∣
2

(2.23)

Active loss-1 L 1
c = 1

Nc

Nc∑
i=1

| Ĵ (x i
c , t i

c )− J̃ i |2 (2.24)

Active loss-2 L 2
c = 1

Nc

Nc∑
i=1

| f (x i
c , t i

c )|2 (2.25)

The points (x i
j , J̃ i )

N j

i=1 and (x i
j )Nb

i=1 denote the training sample from the two boundary condi-

tions, (x i
c , J̃ i )Nc

i=1 are the training sample from the active loss region, and (x i
f )

N f

i=1, and (x i
c )Nc

i=1

correspond to the training samples used to compute the PDE residuals. The loss function is

customized to take into account the economic problem at hand. Figure (2.1) presents the

architecture of this network. In the appendix (A.2), I prove a convergence theorem along the

lines of Sirignano and Spiliopoulos (2018b), related to the neural network approximation of

quasi-linear parabolic PDEs of the form (2.12). The L2 loss L from (2.20) is a measure of how

well the neural network Ĵ (t , x |Θ) approximates the function J that solves the PDE (2.12). The

goal is to make this loss close to zero.

Theorem 2.3.1. Assume that there exists a unique solution to the PDE (2.19). Suppose we

have a generic, infinitely wide neural network that is trained by a gradient decent algorithm to

approximate J . Then, this solution also approximately solves the PDE.

Proof: See Appendix A.2.

10Note that the volatility and advection coefficient terms are computed based on the value of J from the previous
time iteration. Thus, they are simply considered as coefficients.
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Figure 2.1 – Network architecture

Under the hood

The training samples in this method come entirely from the boundary conditions. Unlike the

traditional machine learning paradigm where the model is trained on the training set, cross-

validated on the validation test, and tested for accuracy on the test set, the method used in this

chapter does not really have training samples in the same sense. The inputs from boundary

conditions can be thought of as pseudo-training samples that are used to approximate the

function J . As a result, the problem of overfitting, which is ubiquitous in the machine learning

paradigm is less relevant here. Moreover, only a fraction of data points are sampled in each

PDE step iteration and hence any minor concerns of overfitting is eliminated.11 The feed-

forward architecture shown in Figure (2.1) is simple compared to the more complex ones such

as GANs, Autoencoders, and LSTMs used in the asset pricing literature (see Gu et al. (2020),

Chen et al. (2019) etc). This raises the question what makes the algorithm succeed in learning

the function J in a high dimensional space. The answer lies in the encoding of economic

information through customized loss functions that makes the simple feed-forward network

more informed. The PDE loss function dictates the neural networks to satisfy the HJB equation

such that the residual from the HJB is close to zero in a mean-squared sense. At the same

time, the neural networks are also forced to obey the initial/boundary conditions through

the bounding loss functions. The goal is then to optimize for the parametersΘ such that the

neural network approximation Ĵ (x |Θ) minimizes the total loss function. In this optimization

problem, the customized loss functions act as regularizers.

11This is similar to using mini-batches in deep learning to reduce overfitting.
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Automatic differentiation: The success of deep learning is largely due to automatic dif-

ferentiation, which is a computationally efficient way to compute derivatives of potentially

non-linear functions. The neural network approximator works by receiving the input x and

computing the output Ĵ(x |Θ) that is a composition of simple functions. The derivative of

Ĵ with respect to the inputs x can be obtained analytically by repeated applications of the

chain rule. The backpropogation algorithm traverses the graph, computes the derivatives of

symbolic variables and stores these operations into new nodes in the graph for later use. To

compute a higher order derivative, one can simply run the backpropogation again through the

extended graph and obtain it easily. While the deep learning literature uses the automatic dif-

ferentiation in computing the derivatives of loss function with respect to the parameters such

as weights and biases, I use it explicitly to take derivatives with respect to the space and time

dimensions. This is illustrated in the PDE network in Figure (2.1). The derivatives of function

Ĵ with respect to each space and time dimensions are stored as separate nodes in the graph,

which are used to compute higher order derivatives through backpropagation. Formally, the

cost of computing ∂J
∂x is O (d)×cost(J), which is the same as the cost of computing ∂2 J

∂2x since

the backpropagation takes advantage of the first order derivatives stored in the computational

graph when applying the chain rule. Thus, the explicit use of automatic differentiation to

compute derivatives with respect to the space dimension allows fast computation even in

high dimensions. On the contrary, computing such higher order derivatives bears a cost

O (d 2)×cost(J ) in finite-difference methods, imposing a bottleneck when d is potentially large.

Lastly, the separation of the fundamental neural network and the more informed PDE and

bounding network allows us to witness the automatic differentiation fully at action, which is

the main driver of the learning process.

Optimization: The total loss function is the weighted sum of the loss from PDE, boundary,

and crisis network. I use a combination of adaptive momentum (ADAM) and Limited memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) optimizers to solve for Θ∗. While the fun-

damental network has only four hidden layers, the PDE network adds more layers since it

involves gradient computations with respect to the state variables. Hence, the overall network

is quite deep, with a highly complex and non-convex loss function. While ADAM optimizer,

which is the standard algorithm in deep learning models, is based on first order derivative,

L-BFGS-B is a second order method and is empirically found to be effective in solving the

problems considered in this chapter. The implementation details are relegated to Appendix

A.2.4. The generic algorithm of ALIENs is given in the pseudo-code (1).

Active learning: When the equilibrium policy functions have stark non-linearities, a smart

sampling procedure is required to ensure faster convergence. In the case of a regime changing

policy function, a subdomain in the state space captures the region where the regime shifts.

In such cases, it is crucial to have a better approximation of equilibrium functions in this

subdomain so as to avoid instabilities in the future time iterations. If the modeler possesses a

prior knowledge of the location of this subdomain, then one can obtain a better approximation

45



Chapter 2. ALIENs and Continuous-Time Economies

Algorithm 1

1: procedure ALIENS

2: Initialize function J , set tolerance level tol
3: while er r or > tol do
4: Compute policy functions taking as given J
5: Construct a neural network approximation Ĵ (Θ)
6: Construct boundary training points
7: Construct active training points
8: Compute aggregated loss L

9: for epoch=1 to maxEpochs do
10: Create a mini-batch from training points .Optional
11: Minimize loss using ADAM optimizer, . Learning rate = 0.001

12: Minimize loss using L-BFGS-F until convergence, updateΘ∗

13: Compute er r or := max | Ĵ (Θ∗)− J |
14: Update J ← Ĵ (Θ∗)
15: Stop if er r or < tol

by sampling sufficiently large number of training points from this subdomain. However, this

information is often not known prior and only gets revealed after the equilibrium policy

functions are solved in the first time iteration. Moreover, this subdomain may change from

one iteration to next as the policies are evaluated and updated. To tackle this problem, I endow

the neural network with an active learning which tracks this subdomain in each iteration by

inspecting the equilibrium policy functions. The neural network takes advantage of the fact

that the static step precedes the outer time step in an iterative fashion, and actively seeks

information about the subdomain at every iteration. Once this subdomain is revealed, active

training points are created through random sampling of grid points from this subdomain to

construct the loss functions L 1
c and L 2

c in (2.20). The practice of seeking new data points

to label in supervised learning is called as active machine learning, a budding area in the

artificial intelligence literature where the model seeks out new inputs to improve the learning

in subsequent iterations. In the context of reinforcement learning, the model learns about

new state space by actively interacting with the environment. In the models considered in this

chapter, the state space is well defined but new grid points are sampled to be used for training

the neural network. In doing so, the regularizers L 1
c and L 2

c forces the model to learn better in

the subdomain since it is costly to have errors in regions of regime shift as they get propagated

and amplified in the subsequent iterations. The proposed active learning algorithm alleviates

these problems and ensures convergence. The relative weights (λ f ,λ j ,λb ,λ1
c ,λ2

c ) control for

the importance that each of the components carries in the aggregated loss function.

Let us take a concrete example to understand how active learning works. Consider a two

space-dimensional model that generates a capital price as shown in Figure (2.2). For now, we

can abstract away from the details of the model which will be explained in Section 2.5 and

focus on how active learning is applied. The two state variables are the wealth share (z) and the

productivity (a) of expert sector in the economy. The model features non-linear equilibrium
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policy where the capital price is high and almost linear when the wealth share of experts is

high, and falls as the wealth share drops. The full state space grid shown in Fig (2.2) contains

tightly packed points in the wealth share dimension since it is the primary driver of price

dynamics in the model. The panels (c) and (d) displays the sparse grid used in training the

neural networks. The blue points span throughout the state space while the green points span

the neighborhood of sharp transition. One can notice that this neighborhood changes from

iteration 1 in panel (c) to iteration 15 in panel (d). As non-linearities are slowly introduced into

the parabolic PDEs, the dynamics of the equilibrium prices change and the non-linearities

in policy functions occur in different parts of the state space. Not only that, the shape of the

subdomain may also change, as it does in the example demonstrated. By actively tracking

the subdomain and sampling points from the neighbourhood of this subdomain, the sparse

training sample is guaranteed to have points from the state space that matter the most to

avoid instabilities in future iterations. While it it not costly to use the entire grid when the

dimension is small, such a smart sampling method is required in higher dimensions where it

is infeasible to use the entire grid to train the neural network.

Distributed learning: The deep learning model in this chapter is much simpler compared

to the state-of-the-art models such as GPT-3 model12. Having a lighter model allows us to

utilize data parallelism instead of model parallelism, where in the former case, the chief

worker13 in the cluster splits the data and distributes it to several workers that share the same

model. Once training is completed, the result is averaged across workers and sent to the

chief worker that updates the model with the optimal parameters. In cases where the model

is too large to store in a single worker, model parallelism is applicable where each worker

trains a piece of the model but with the same data. One challenge in data parallelism is that

since each worker shares the same model, the parameters need to be synchronized. I utilize

Horovod14, a popular distributed machine learning framework that manages the internal

working of gradient aggregation across the workers through ring-AllReduce operation. In

some sense, Horovod works like a wrapper around the Message Passing Interface that enables

communication across different workers. While data parallelism employed in this chapter

speeds up computation significantly, it also lends itself nicely to another advantage. As the

academic profession moves more towards an open source style research, the data parallelism

allows the users to employ big data on models developed by other users. Often, quantitative

analysis of economic models requires extensive simulation studies to dissect and understand

the underlying mechanisms of the model.15 Appendix A.2.4 provides the details of Horovod

12This is a language model by Brown et al. (2020) from OpenAI that recently gained substantial attention. The
model has a total of 175 billion parameters to train.

13A worker refers to a node in the cluster that is made up of a number of computer nodes.
14See Sergeev and Balso (2018) for details.
15See, for example, Gopalakrishna (2020) who uses simulation studies to perform dissection of a macro-finance

model.
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along with sample code to demonstrate the simplicity in usage and deployment.

Figure 2.2 – Panel (a) shows Equilibrium capital price. Panel (b) shows full grid with 1000
points in wealth share and 40 points productivity dimension respectively. Panels (c) and (d)
shows sparse grid used for learning where points in green represent neighborhood of regime
change in the 1st and 15th iteration respectively.

2.4 Benchmark Model

In this section, I consider a one space-dimensional model based on Brunnermeier and San-

nikov (2016b) augmented with recursive preferences that will serve as the benchmark. I

solve this model using the proposed neural network method with active learning and show

that the solution matches the numerical solution obtained from an up-winding finite differ-

ence scheme. Since the closed-form solution to the benchmark model is not available, the

comparison of the neural network solution is made against the finite difference solution.

2.4.1 Model

I consider a heterogeneous agent economy populated by households (h) and experts (e) who

form a set H and E respectively. The aggregate capital in the economy is denoted by Kt where

t ∈ [0,∞) denotes time. Due to homogeneity of preferences, which will be explained later, we

can consider a representative household h and expert e for the rest of the model. Both the

households and the experts are allowed to hold capital with a no shorting constraint but the

households obtain a lower productivity rate (ah) compared to the experts (ae ) from investing
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in the capital. The constraint in the model is such that experts have to retain at least a fraction

of the equity in their balance sheet. This is the skin-in-the game constraint that precludes the

economy from achieving perfect risk-sharing. The production technology is given by

y j ,t = a j k j ,t , j ∈ {e,h}

where k j ,t is the capital held by agent j whose process is governed by

dk j ,t

k j ,t
= (Φ(ι j ,t )−δ)d t +σd Z k

t (2.26)

where ι j ,t is the investment rate, δ is the depreciation rate of capital, σ is the volatility of the

capital, and {Z k
t ∈ R;Ft ,Ω} are the standard Brownian motions representing the aggregate

uncertainty in (Ω,P,F ). The quantity Φ(·) is the investment cost function that is concave and

has decreasing returns to scale. The aggregate capital in the economy is denoted by Kt . That

is, Kt =
∫
Ek j ,t d j +∫

Hk j ,t d j .

Preferences:Each agent has a continuous-time Duffie-Epstein utility given by

U j ,t = Et

[∫ ∞

t
f (c j ,s ,U j ,s)d s

]
(2.27)

where the aggregator takes the form

f (c j ,s ,U j ,s) = (1−γ)ρU j ,t

(
log(c j ,t )− 1

1−γ log
(
(1−γ)U j ,t

))
(2.28)

The parameter γ captures the risk aversion of agent j , and the inter-temporal elasticity of

substitution (IES) is assumed to be 1. The aggregator (2.28) is a limiting case of (A.22).16 I

relegate rest of the model and equilibrium computation to Appendix A.2.3 and go straight to

the solution technique. Given the homotheticity of preferences, we can conjecture that the

value function is of the form

U j ,t =
(J j ,t Kt )1−γ

1−γ (2.29)

where Kt is the aggregate capital, and the stochastic opportunity set J j ,t follows the SDE

d J j ,t

J j ,t
=µJ

j ,t d t +σJ
j ,t d Z k

t (2.30)

where the equilibrium objects µJ
j ,t and σJ

j ,t will have to be determined. The endogenous state

variable of the model is the wealth share of experts defined by

zt =
We,t

qt Kt

16This is for simplicity and can be easily relaxed to the case of non-unitary IES.
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where We,t is the aggregated wealth of all experts in the economy. For convenience, the utility

(2.29) is written as a function of capital Kt but they could also be written as a function of W j ,t .

By applying Ito’s lemma to J j ,t (zt ) and equating the drift terms, we have

µ j ,t J j ,t =
d J j ,t

d zt
µz

t +
1

2

d 2 J j ,t

d z2
t

(σz
t )2 (2.31)

where the function µJ
j ,t can be obtained from the HJB equation similar to the general setup in

Section 2.3. The solution method involves solving for the equilibrium quantities (χt ,k j ,t , qt ,σq
t )

using a Newton-Rhaphson method, similar to Brunnermeier and Sannikov (2016b), and then

updating the value function J j ,t which requires solving (2.31). This equation, when augmented

with an artificial time derivative, resembles the quasi-linear parabolic PDE introduced in (2.12).

I relegate the details of the Newton-Rhaphson method used to solve for equilibrium quantities

to the Appendix and present the methodology to solving (2.31) in the main text.

2.4.2 Traditional methods

The literature has used finite difference method extensively (see Brunnermeier and Sannikov

(2016b), Di Tella (2017), Di Tella (2019), Gomez (2019), Hansen et al. (2018), D’Avernas and

Vandeweyer (2019) etc.) to solve (2.31). The method works by approximating the derivatives

in PDE by discretizing the state space and then solving the discretized problem using an

explicit or implicit method with up-winding scheme. I briefly discuss the methodology before

presenting the solution. Consider a discretized version of the PDE in (2.12)

Ji , j+1 = Ji , j +∆ j

{
A

(
x, Ji , j+1,

∂̂Ji , j+1

∂̂x

)
+ 1

2
tr

[
B

(
x, Ji , j ,

∂Ji , j

∂x

)
∂̂2 Ji , j+1

∂̂x2
B

(
x, Ji , j ,

∂Ji , j

∂x

)′]}
where {i }Nz

1 , { j }Nt
1 denote the space and time dimension grid points respectively, and the

derivatives of J are approximated using

∂̂Ji , j

∂̂z
= (µx

j )+
Ji+1, j − Ji , j

∆i
+ (µx

j )−
Ji , j − Ji−1, j

∆i

∂̂2 Ji , j

∂̂z2
= Ji+1, j −2Ji , j + Ji−1, j

∆2
i

∂̂Ji , j

∂̂t
= Ji , j+1 − Ji , j

∆ j

where (µx
j )+ =

µx
t , j if µx

t , j > 0

0 if otherwise
(µx

j )− =
µx

t , j if µx
t , j < 0

0 if otherwise
(2.32)

The first derivative of J with respect to space dimension is approximated using a forward

difference if the advection coefficient is positive, and using a backward difference if the co-

efficient is negative, as shown in (2.32). This ensures monotonicity of the finite difference
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scheme. The method is implicit since Ji , j+1 is on both the L.H.S and R.H.S of the discretized

PDE equation. This presents a system of linear equations that can be solved using traditional

methods such as Richardson method. There are two issues that arise when applying a finite

difference method in high dimensions. The first is the well-known curse of dimensionality.

With d space dimensions and 1 time dimension, the mesh size in finite difference method is

Od+1 which becomes infeasible to handle if d is large. Moreover, along with the explosion of

the mesh size, there arises a need for reduced time step size. The second problem that has

received relatively less attention in the literature is the need to preserve monotonicity of the

elliptical operator when the state space is large and potentially correlated. In the case of a

one-dimensional state space, the monotonicity can be preserved using an up-winding scheme

given in (2.32) which approximates the derivatives in the right spatial direction. However, as

documented in D’Avernas and Vandeweyer (2019), it is not trivial to preserve monotonicity

using an up-winding scheme even in a two space dimensional case since the right direction in

which derivatives should be approximated may fall outside the grid.

The second method that is commonly used is a projection method (Judd (1992)) where the

function J in (2.12) is approximated using Chebychev polynomials as basis functions. A related

technique used extensively in computational engineering is the Galerkin method that finds a

linear combination of basis functions that best approximates the PDE. To be precise, suppose

the goal is to solve for the PDE H (J ) = 0. The approximation for J can be obtained from

J̃ =
n∑

i=1
αiφi (2.33)

where {φi } is bases for J . The residual after plugging in the approximation is denoted as

R(· |α) =H ( J̃ )

The coefficients α satisfy the inner product for j = 1, ...,n〈
R(· |α),φi

〉= 0

One has to choose the basis functions carefully since the computation of inner product can be

computationally expensive.

2.4.3 Model Solution

I calibrate the benchmark model with parameters in Table (2.1). The goal is to demonstrate

that neural network approximation is close to the finite difference approximation, and hence I

mostly choose the parameters based on prior literature. The discount rate and depreciation

rate of capital is taken from Hansen et al. (2018). The volatility is chosen to be 6% so as to

achieve a reasonable variation in the risk prices. Risk aversion parameter for the agents is set

to 2, and the IES is set to 1. Productivity parameters, and the equity retention rate are close to
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Description Symbol Value

Technology/Preferences

Volatility of output σ 0.06
Discount rate (experts) ρ 0.05
Depreciation rate of capital δ 0.05
Investment cost κ 10
Productivity (experts) ae 0.15
Productivity (households) ah 0.03

Utility Risk aversion γ 2
Friction Equity retention χ 0.5

Table 2.1 – Calibrated parameters for the benchmark model. All values are annualized.

Value

No. of hidden layers 4
Hidden units [30,30,30,30]
Activation function Tanh (hidden), Sigmoid (output)
Optimizer ADAM + L-BFGS-B
Learning rate 0.001
Loss function weights(λ f ,λ j ,λb ,λ1

c ,λ2
c ) {1,1,0.001,1,1}

Batch size Full batch

Table 2.2 – Network hyperparameters and architecture.

Brunnermeier and Sannikov (2016b). The network architecture and hyperparameters used to

solve the de-coupled system of PDEs (2.31) are provided in the Table (2.2). I use four hidden

layers with 30 neurons in each layer. In principle, one could use one hidden layer and more

neurons but experimentation shows that it is better to have a deep network instead of a wide

network.17 The total number of points in the inner static step is 1,000 and the total training

sample size to solve the PDE is 300. Figure (2.4) present the solution obtained using the finite

difference method and the neural network method. They not only look qualitatively the same,

but they also match upto the order 1e-3. Figure (2.3) shows the absolute error in value function

over time. A comparison with finite difference scheme shows that the neural network method

has a larger error drop in each iteration leading to convergence in 20 time steps. Note that the

neural network error curve is not as smooth as the finite difference one due to the random

sampling from the state space before every PDE time step. However, convergence is achieved

in 20 iterations while it takes around 70 iterations for the finite difference method.

17It is a common practice in the deep learning literature to have deeper layers instead of wider layers since they
have superior performance for a wide range of problems.
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2.4. Benchmark Model

Figure 2.3 – Comparison of value function error in finite difference and neural network method.

Figure 2.4 – Comparison of equilibrium quantities using finite difference and neural network
in the benchmark model. Last two plots correspond to absolute error in functions Ĵh and Ĵe .53
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2.5 Brunnermeier-Sannikov meets Bansal-Yaron

This section considers a heterogeneous agent model similar to the benchmark case but with

more complexity. Specifically, I combine the model of Brunnermeier and Sannikov (2016b)

and Bansal and Yaron (2004) in continuous time. The economy features heterogeneous agents

with experts facing shocks to their productivity and the capital. In addition, the long run

growth rate and volatility of capital are subjected to independent Brownian shocks. The state

space becomes four dimensional and the PDEs to be solved in the outer time step has five

dimensions including the artificial time dimension. I explain the model first and then discuss

the results.

2.5.1 Model

There are two types of agents and the aggregate capital is denoted by Kt with t ∈ [0,∞). The

capital process is governed by

dk j ,t

kt
= (Φ(ι j ,t )+ g t −δ)d t +σpst d Z k

t (2.34)

where ι j ,t is the investment rate, Φ(·) is the investment cost function, g t is the time varying

growth rate of capital, and σ
p

st is the time varying volatility of capital. The production

technology is given by

y j ,t = a j ,t k j ,t (2.35)

where k j ,t is the capital held by agent type j . I assume that the productivity of experts is time

varying and is governed by the process

d ae,t =λa(âe −ae,t )d t +σa(ae,t )d Z a
t (2.36)

where λa is the mean reversion rate. For simplicity, I assume that the productivity of house-

holds is constant ah,t = ah . The growth rate and volatility of capital follows the exogenous

processes

d g t =λg (ĝ − g t )d t +σg (g t )d Z g
t (2.37)

d st =λs(ŝ − st )d t +σs(st )d Z s
t (2.38)

where λg ,λs are the mean reversion rates of growth rate and capital processes respectively. I

assume that the functions (σi (·); i ∈ {g , s, a}) take the form

σg (·) = (ḡ − g t )(g t − g ) (2.39)

σs(·) = (s̄ − st )(st − s) (2.40)

σa(·) = (āe −ae,t )(ae,t −ae ) (2.41)

54



2.5. Brunnermeier-Sannikov meets Bansal-Yaron

The assumed functional form above is for convenience in computation and can be modified to

resemble a Feller square-root process or an Ornstein-Uhlenbeck process. I impose āe > ae >
ah so that experts productivity is always higher than that of households even thought it is time

varying. The Brownian shocks {d Z k
t ,d Z g

t ,d Z s
t ,d Z a

t } have zero cross-correlation for simplicity.

Overall, the model can be thought of as a combination of Brunnermeier and Sannikov (2016b)

and Bansal and Yaron (2004) with additional productivity shocks. The agents trade the capital

which has a price process given by

d qt

qt
=µq

t d t + (σq
t )T d Zt (2.42)

where the vectors (σq )T =
[
σq,k σq,g σq,s σq,a

]
and d Zt =

[
d Z k

t d Z g
t d Z s

t d Z s
t

]T
.

The agents can also trade in the risk free security that pays a return rt . The agents cannot write

contracts on the aggregate state of the economy. That is, the investment in capital and the

exposure to aggregate shocks Zt are intertwined. This is for simplicity and can be extended

to including a derivative market to hedge the aggregate shocks. This will have an impact on

the equilibrium policies and prices but the numerical method to solve the HJB equations

will remain the same. Thus, I intertwine the capital holding decisions and the exposure to

the aggregate shocks to ease computation of equilibrium policies in the static loop. Since

the dividend yield from each unit of the capital held is different for the households and the

experts18, the agent-specific return process follows19

dR j ,t =
(

a j ,t − ι j ,t

qt
+µq

t +Φ(ι)−δ+σpstσ
q,k
t + g t

)
d t + (σR

t )T d Zt (2.43)

where the vector (σR
t )T =

[
σ

q,k
t +σpst σ

q,g
t σ

q,s
t σ

q,a
t

]
, and d Zt is as before. The aggre-

gate output in the economy is yt = At Kt where the aggregate dividend is given by

At =
∫
H

ah
k j ,t

Kt
d j +

∫
E

ae,t
k j ,t

Kt
d j

where Kt =
∫
H∪Ek j ,t d j denotes the aggregate capital. Let the share of aggregate capital held

by the experts be denoted by ψt . That is,

ψt :=
∫
Ek j ,t d j∫

H∪Ek j ,t d j

The experts are constrained in issuing equity to the households such that they have to retain

a fraction χ ∈ [0,1] of the equity in their balance sheet. They are free to issue the remaining

equity to the households who may desire to hold it in equilibrium. The stochastic discount

18The investment rate can also be different between the agents, but it turns out that in equilibrium, the optimal
investment is tightly linked to the capital price. Since the price is unique, the investment rate ι j ,t is the same for all
agents.

19The return for agent j is dR j ,t =
(a j ,t−ι j ,t )k j ,t

qt k j ,t
d t + d(qt k j ,t )

qt k j ,t
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factor (SDF) process for each type of agent is given by

∂ξ j ,t

ξ j ,t
= rt d t −ζT

j ,t d Zt (2.44)

where the vector ζT
j ,t =

[
ζk

j ,t ζ
g
j ,t ζs

j ,t ζa
j ,t

]
captures the market prices of risk for each

Brownian shock in d Zt . Since both agents trade in the risk-free market, they receive the same

return rt . Following Gopalakrishna (2020), I assume that the experts are subjected to Poisson

shocks that will force them to exit the economy and become households. That is, at each time

instant d t , a fraction τt d t of the experts transition into households.

Equilibrium:The optimization problem for each agent type j is given by

U j ,t = sup
c j ,t ,k j ,t

Et

[∫ T j

t
f (c j ,s ,U j ,s)d s +1 j∈EUh,τ′

]
(2.45)

s.t.
d w j ,t

w j ,t
= (

rt −
c j ,t

w j ,t
+ qt k j ,t

w j ,t
((µR

j ,t − rt )− (1−χ j ,t )ε̄ j ′,t )
)
d t +σw j ,t (σR

t )T d Zt j ∈ {e,h}

where ε̄ j ,t = ζT
j ,tσ

R
t , T j = τ′ for experts and T j = ∞ for households, and τ′ is the time of

transition. The agent j earns µ j ,t − rt from borrowing in the risk free market and investing

in the risky capital, but have to pay the outside equity holders a compensation for their risk.

Households do not issue outside equity (i.e., χh,t = 1) and I denote χe,t as χt for simplicity of

notation. The volatility terms in wealth is given by

σwe ,t =
qt ke,t

we,t
χt (2.46)

σwh ,t =
qt kh,t

wh,t
+ (1−χt )

qt we,t

wh,t
(2.47)

The experts retain the fraction χt of risk in their balance sheet and offload the remaining to

the households. The agents solve for the optimal consumption c j ,t and portfolio holdings

k j ,t by maximizing the objective function (2.45). The optimal investment rate ι j ,t is found by

maximizing the expected return on risky capital. The competitive equilibrium is defined as

Definition 2.5.1. A competitive equilibrium is a set of aggregate stochastic processes adapted

to the filtration generated by the Brownian motion Zt . Given an initial distribution of wealth

between the experts and the households, the processes are prices (qt ,rt ), policy functions

(c j ,t , ι j ,t ,k j ,t ; j ∈ {e,h}), and net worth (w j ,t ; j ∈ {e,h}), such that

• Capital market clears:
∫
H(1−ψt )Kt d j +∫

Eψt Kt d j = ∫
H∪Ek j ,t d j ∀t

• Goods market clear:
∫
H∪E c j ,t d j = ∫

H∪E(a j ,t − ι j ,t )k j ,t d j ∀t

•
∫
H∪Ew j ,t d j = ∫

H∪E qt k j ,t d j ∀t
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I seek a Markov equilibrium where each agents within the same type compute the optimal

policies. Let the wealth share experts be defined by

zt =
We,t

qt Kt
∈ (0,1)

where We,t =
∫
Ew j ,t d j and Kt =

∫
Ek j ,t d j +∫

Hk j ,t d j . The wealth share zt is the endogenous

state variable in the model which moves in response to the other equilibrium objects. The set

of exogenous state variables is given by {g t , st , ae,t }. These four state variables characterize the

whole system. The stochastic processes for the exogenous state variables are given in (2.37),

(2.38), and (2.36) respectively. The proposition below provides the process for the endogenous

state variable.

Proposition 4. The law of motion of the wealth share of experts is given by

d zt

zt
=µz

t d t + (σz
t )T d Zt (2.48)

where

µz
t =

ae,t − ιe,t

qt
− Ce,t

We,t
+ χtψt

zt
(ζ̃T

e,tσ
R
t )+ (1−χt )(ζT

e,t −ζT
h,t )σR

t −τt

(σz
t ) :=

[
σz,k

t σ
z,g
t σz,s

t σz,a
t

]T = (
χtψt

zt
−1)σR

t

ζ̃T
e,t := (σR

t )T (ζe,t −σR
t )

Proof: See Appendix A.2.4.

Note that the exit rate τt enters the drift of the wealth share.

Asset pricing conditions:The agents maximize the return on capital to obtain the optimal

investment rate. That is, they solve

max
ι j ,t

Φ(ι j ,t )− ι j ,t

qt

I assume a simple investment cost function given byΦ(ι) = log(κι+1)
κ . Then, ι∗j ,t is given by

ι∗j ,t =
qt −1

κ
(2.49)

where κ is an investment cost parameter. Since the optimal investment rate depends only on

the capital price, it is not agent-specific. This is a reflection of q-theory result which ties the

investment rate and capital price tightly. The asset pricing condition for the experts is given
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by20

ae,t − ιt
qt

+Φ(ιt )−δ+ g t +µq
t +σpstσ

q,k
t − rt =χt ε̄e,t + (1−χt )ε̄h,t (2.50)

where ε̄ j ,t = ζT
j ,tσ

R
t and χt is the share of inside equity chosen by the experts. For the house-

holds, the condition is given by

ah − ιt
qt

+Φ(ιt )−δ+ g t +µq
t +σpstσ

q,k
t − rt ≤ ε̄h,t (2.51)

with equality when ψt < 1. We can combine the asset pricing condition for experts and

households to get

ae,t −ah

qt
≥χt (ε̄e,t − ε̄h,t ) (2.52)

max{χ−χt , ε̄e,t − ε̄h,t } = 0 (2.53)

where (2.52) holds with equality if risk premia of experts is larger than that of the households.

In regions of the state space where wealth share is sufficiently large, χt is chosen to satisfy

ε̄e,t = ε̄h,t .

HJB equations:The HJB problem for agent type j can be written as

sup
c j ,t ,k j ,t

f (c j ,t ,U j ,t )+E [dU j ,t ] = 0 (2.54)

The conjecture for value function is of the form

U j ,t =
(J j ,t (zt , g t , st , ae,t )Kt )1−γ

1−γ

where J j ,t (·) captures the stochastic investment opportunity set. The process for J j ,t is given

by
∂J j ,t

J j ,t
=µJ

j ,t d t +σJ
j ,t d Zt

where the quantities µJ
j ,t and σJ

j ,t =
[
σk

j ,t σ
g
j ,t σs

j ,t σa
j ,t

]
are to be solved in equilibrium.

Proposition 5. The optimal policies are given by

ĉ j ,t = ρ (2.55)

ζk
j ,t =−σJ ,k

t +σz,k
j ,t +σ

q,k
t +γσpst (2.56)

ζi
j ,t =−σJ ,i

j ,t +σz,i
j ,t +σ

q,i
t i ∈ {g , s, a} (2.57)

Proof: See Appendix.

20This can be derived using a martingale argument as shown in Appendix A.2.4.
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Since the IES is set to 1, the consumption-wealth ratio (ĉ j ,t ) is equal to the discount rate ρ.

The market prices of risk are given up to the other equilibrium objects (µJ
j ,t ,σJ

j ,t ,σR
t , qt ,ψt )

which are solved in the state space xT
t =

[
zt g t st ae,t

]
.

Definition 2.5.2. A Markov equilibrium in (zt ∈ (0,1),gt ∈ (g, ḡ),st ∈ (s, s̄),ae,t ∈ (ae, āe)) is a set

of adapted processes q(xt ),r (xt ), Je (xt ), Jh(xt ), policy functions ĉe (xt ), ĉh(xt ),ψ(xt ), and state

variables xt such that

• J j ,t solves the HJB equations and corresponding policy functions ĉ j ,t ,ψt

• Markets clear

(ĉe,t zt + ĉh,t (1− zt ))qt =ψt (ae,t − ιt )+ (1−ψt )(ah − ιt )

we,t zt +wh,t (1− zt ) = 1

• The state variables xt satisfy (2.37), (2.38), (2.36), and (A.75).

2.5.2 Numerical method

The model is solved numerically that involves two blocks. The first block is the static inner

step that takes J j ,t as given and solves for the equilibrium quantities (qt ,χt ,ψt ,σR
t ). The other

equilibrium objects are computed using these quantities. The second block is the outer time

step that takes the equilibrium quantities as given and updates the values of J j ,t by solving a

de-coupled system of PDEs- one for the expert and one for the household. The inner block is

solved using a Newton-Rhaphson method that is computationally fast, and the outer block is

solved using ALIENs to overcome the curse of dimensionality problem.

Proposition 6. The equilibrium objects (ψt , qt ,σq,k
t ,σq,g ,σq,s ,σq,a) are found by solving the

differential-algebraic system of equations given by

0 = ae,t −ah

qt
−χt

(
(1−γ)

(
1

Jh,t

∂Jh,t

∂zt
− 1

Je,t

∂Je,t

∂zt

)
+ 1

zt (1− zt )

)
(χtψt − zt )[||σR ||2]

− ∑
i∈{g ,s,a}

χt (1−γ)

(
1

Jh,t

∂Jh,t

∂it
− 1

Je,t

∂Je,t

∂it
σiσq,i

)
if ψt < 1 (2.58)

0 = (ρe zt + (1− zt )ρh)qt −ψt (ae,t − ιt )+ (1−ψt )(ah − ιt ) (2.59)

0 =σq,k
t +σpst −

σ
p

st

1− 1
qt

∂qt

∂zt
(χtψt − zt )

(2.60)

0 =σq,i
t −

1
qt

∂qt

∂i t

1− 1
qt

∂qt

∂zt
(χtψt − zt )

i ∈ {g , s, a} (2.61)

Proof: See Appendix.
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The first equation is obtained from the differences in risk premium of the experts and the

households from equations (2.50) and (2.51). The second equation comes from the goods

market clearing condition and the remaining equations are obtained from writing return

volatility objects in terms of other equilibrium quantities. I employ a Newton-Rhaphson

method that is computationally fast even in high dimensions. The Newton method is highly

sensitive to the initial values provided. To avoid errors, I provide as inputs the equilibrium

values from prior points in the grid. I relegate further details to the Appendix. Once the six

quantities are found, the other other equilibrium objects (ζe,t ,ζh,t ,µz
t ,σz

t ,µJ
e,t ,µJ

h,t ,σJ
e,t ,σJ

h,t )

are easily computed since they are a function of the state variables and the other variables

found in the static step.

Proposition 7. The stochastic opportunity set J is characterized by the PDE21

0 = ∂J

∂t
+ A

(
x , J ,

∂J

∂x

)
+ 1

2
tr

[
B

(
x , J ,

∂J

∂x

)
∂2 J

∂x2 B

(
x , J ,

∂J

∂x

)T ]
(2.62)

with the boundary conditions

J (x , t ) = J̃ (2.63)

∂J (x0, t ) = ∂J (x1, t ) = 0 (2.64)

where22

A

(
x , J ,

∂J

∂x

)
= J

(
ρ
(

logρ− log J + log(qz)
)+Φ(ιt )+ g t −δ

)
− J

(
(γ−1)σσJ ,k + γ

2
||σJ ||2 −1 j∈E

τt

1−γ
((

J j ,t

J j ′,t

)1−γ
−1

))
+

[
∂J
∂z

∂J
∂g

∂J
∂s

∂J
∂ae

][
zµz µg µs µa

]T

B

(
x , J ,

∂J

∂x

)
=

[
σz σg σs σa

]
∂2 J

∂x2 =
[
∂2 J
∂z2

∂2 J
∂g 2

∂2 J
∂s2

∂2 J
∂a2

e

]
x0 = {(0, g , s, a), (z, g , s, a), (z, g , s, a), (z, g , s, ae )}

x1 = {(1, g , s, a), (z, ḡ , s, a), (z, g , s̄, a), (z, g , s, āe )}

Proof: See Appendix.

Once the static step is completed, it remains to solve the partial differential equations given in

(2.62). The coefficients of the PDE are computed using the solution form static step. Hence,

taking the coefficients as given, the task is to find the function J that solves the above PDE.

21I write J j ,t simply as J to avoid clustering of notations.
22The index j ′ refers to the other type of agent.
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2.5.3 Solution

Figure (2.5) presents the equilibrium quantities for different values of volatility. A higher

volatility st leads to lower capital price throughout the state space since it reflects an increased

macroeconomic uncertainty. Interestingly, a lower volatility decreases the endogenous return

volatility in the normal region but increases the return volatility in the crisis region. In Brunner-

meier and Sannikov (2014a), the volatility is constant but a static comparison leads to similar

result, which they call as the ‘volatility paradox’. The paradox refers to the fact that a decrease

in exogenous fundamental volatility leads to an increase in endogenous price volatility during

crises. This paradox carries over to a more general model of stochastic volatility as well. The

volatility has a decreasing effect on the drift of the wealth share. A higher volatility reduces

the risk premium and capital price and therefore leads to a lower drift. This has important

implications on how the system transitions in and out of crises. A larger volatility means that

the system spends longer in crises since the experts rebuild their wealth slowly due to reduced

risk premium. In the normal region where experts are wealthy, a higher volatility increases the
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risk premium and hence the drift of wealth share is larger.

Figure 2.5 – Equilibrium quantities for different volatility values (st ). Growth rate (g t ) and
productivity (ae,t ) are fixed at respective average values.

Figure (2.6) presents the equilibrium quantities for different values of expert productivity ae,t .

The time variation induced by productivity on the risk prices are higher than that induced by

volatility, since the former directly affects the capital price through the goods market clearing

condition. When experts are more productive, the capital price is larger since the aggregate

dividend is increasing in the proportion of capital held by the more productive experts. When

productivity drops towards the lowest level of 10%, the risk premium goes down decreasing the

drift of the wealth share. Hence, less productive experts force the system to spend a longer time

in crises. As productivity revers to its upper level of 20%, the drift of the wealth share increases

and pushes the system out of crises. Gopalakrishna (2020) shows a similar phenomenon where
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2.6. Conclusion

the twin forces of stochastic productivity and regime-dependent transition rate of experts help

quantitatively explain the crisis dynamics.

Figure 2.6 – Equilibrium quantities for different productivity values (ae,t ). Growth rate (g t )
and volatility (st ) are fixed at respective average values.

2.6 Conclusion

I have developed a new computational technique called Actively Learned and Informed Equi-

librium Nets (ALIENs) to solve continuous time economic models featuring heterogeneous

agents, occasionally binding constraints, endogenous jumps, and highly non-linear policy

functions. The technique relies on solving a system of parabolic differential equations using a

collection of deep neural networks by converting them into a sequence of supervised learn-
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ing problems. The HJB equation from the agents’ optimization problem takes the form of

a non-linear elliptical PDE, which is converted into a quasi-linear parabolic type by adding

an artificial time derivative and treating the PDE coefficients as known constants. The value

function that solves the PDE is approximated using a neural network and is forced to obey

the laws that are governed by the economic system. The architecture is split into i) a PDE

network that is responsible for the fitted value function to satisfy the partial differential equa-

tion, ii) a boundary network that strives to fit the boundary condition of the PDE, and iii) an

active network that ensures a better fit in the state space with most economic information. I

utilize data parallelism that leverages the computing hardware to significantly speed up the

computational time.

I have applied the method to solve a macro-finance benchmark model with an endogenous

state variable, non-linear policy functions, and showed that the neural network solution

matches the finite difference solution. The second application is to a similar model with capital

misallocation, endogenous jumps, and endogenous state variables but in a higher dimension.

The value function in this problem is challenging to solve using a traditional finite difference

scheme, since endogenous PDE coefficients lead to difficulty in maintaining the monotonicity

of the scheme. In addition, the high dimensionality of PDE creates a massive computational

bottleneck. ALIENs successfully sidesteps these limitations and ensures convergence by

actively tracking the subdomain with most economic information to create informed sample

points for training the neural network. Lots of problems in continuous time are formulated

in a small dimensional state space due to computational bottlenecks. The ease with which

ALIENs can be implemented opens up opportunities in fields as diverse as macroeconomics,

asset pricing, and dynamic corporate finance. Moreover, the fact that ALIENs are powered

with data parallelism through minimal effort opens up new avenues to perform extensive

quantitative analysis that requires experimentation and repeatedly solving models several

times.
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It is widely understood that financial crises stem from disruptions in the credit intermediation

activity, and feature a sharp increase in the risk premium of assets. The distress quickly spills

over to the real economy causing a downfall in the investment and GDP, as evident during the

Global Financial Crisis of 2008. As pointed out by Gertler et al. (2020), all major investment

banking activity failed, and the money market fund in the US faced a run during the peak

of the crisis. Equity risk premium rose to 17%, private investment rate fell by 10%, and GDP

contracted by 8% going into the year 2009 from the last quarter of 2008 in the US. Importantly,

there was no big exogenous shock that triggered the crisis. The most common theoretical

explanation for this phenomenon is that financial frictions make the intermediary sector

fragile, thereby amplifying the shocks to the real economy (See Gertler and Kiyotaki (2010),

Brunnermeier and Sannikov (2014b), He and Krishnamurthy (2013), Di Tella (2017), etc.).

In this stream of literature, the wealth share of the intermediary sector or the leverage is

the key state variable that moves the asset price and the real economy. In good state of the

world, intermediary wealth share in the economy is high, and a small shock does not create

crisis. However, when the intermediary wealth share is low, a shock of similar magnitude

triggers the amplification channel, sending the economy down a path of depressed asset

prices, investment, and the GDP. Intermediation activity regains in a sluggish fashion, leading

to prolonged recession.

Due to a wave of regulatory measures post 2008 financial crisis, the banks have improved

capital ratios compared to the pre-crisis period (Yellen (2017)).1 Theoretical models of financial

intermediation would predict that the systemic risk in the economy is reduced as a result of

improved capital ratios making the banking sector safer. However, the empirical evidence

in the literature does not fully support this explanation. Sarin and Summers (2016) finds

that major banks in the US and around the globe have a higher credit risk than pre-crisis

levels, despite having low leverage.2 If bank leverage alone is sufficient to determine its

1The regulatory measures include Dodd Frank legislation, higher capital requirement, and increased stress-
testing requirements among others.

2Denis Beau, the First Deputy Governor of the Bank of France raises similar concerns at a Central Bank speech
on October 2019: “...is the financial system now safe enough? In view of the development of the sources of
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likelihood of failure, then banking sector should be safer compared to pre-crisis period given

the empirically observed higher capital adequacy ratios. A safer banking sector would imply

that the probability of financial crisis is lower compared to the pre-crisis period. However,

the odds of bank equity to be wiped out by a magnitude of shock observed during the Global

Financial Crisis remains large today despite the high capital ratios of financial institutions

(Atkeson et al. (2018)). This calls for a re-examination of the origins of bank failures so as to

allow policymakers to set-up preventive measures to avoid financial crisis induced by a weak

banking sector.

In this chapter, I empirically investigate the sources of bank failures and find the franchise

value of Bank Holding Companies (BHCs) in the US to be a significant determinant of its default

probability, in addition to the leverage. Specifically, a higher franchise value is associated with

a larger z-score, lower probability of bankruptcy, and lower probabiltiy of seeking assistance

from the FDIC to continue operations. This relationship is robust to the inclusion of various

control variables that represent size, business model, and capital adequacy ratios of the BHCs.

The franchise value captures the present value of future profits that the banks aim to generate

as a going concern. It is derived from either the external forces such as regulatory laws, or from

the bank-specific factors such as the business model, market power, cost and profit efficiency

etc. Figure (3.1) presents the franchise value of BHCs in the US between the year 1996 and

2020. The time series pattern reveals that the franchise value was high during the 1990s and

the 2000s until the Global Financial Crisis. This is in part due to anti-competitive legislation

by the regulatory authorities such as branching laws that lasted until late 1990s giving banks

market power to derive rents from depository activities. Moreover, there is a substantial cross-

sectional dispersion in franchise value among the BHCs as seen in Figure (3.1), especially after

abolishing the branching laws in the late 1990s. Figure (3.2) contrasts the franchise value for

banks that failed during the time period 2002 to 2020, against the franchise value of surviving

banks. Strikingly, the failed banks had a lower franchise value in every year compared to the

surviving banks.3 The difference was large in the 1990s and 2000s, narrowing down during

the Great Financial Crisis, and then going back up again in the post-crisis period. The stark

difference in franchise value between the failed and surviving banks begs the question how

does a bank derive the franchise value? I empirically find that the sources of franchise value

lie in intermediation cost efficiency, business model such as depository service and degree

of domestic presence, rents derived from deposit market power, and rents from government

guarantees such as underpriced deposit insurance. In particular, there exists a predictive

relationship between intermediation cost efficiency and franchise value: one basis point

increase in the intermediation cost leads to a statistically significant drop of around 55 basis

points of franchise value. The intermediation cost, which is measured as non-operating

expense plus operating expense less deposit rate scaled by total assets, is counter-cyclical and

highly persistent. The cyclical component of the cost has a -30% correlation with GDP cycle

vulnerabilities in the financial system, it does not seem to me to be a given that the strengthening we have observed
is sufficient and efforts therefore need to be pursued."

3Failed banks correspond to those that filed for bankruptcy or required assistance from FDIC to continue its
banking operations at any given point during the time sample considered.
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between the years 1986 and 2020 that increased in magnitude to -57% in the period 2001 to

2020, with a one quarter lag auto-regressive coefficient of 0.6. Apart from its relation to the

franchise value, the intermediation cost is important in its own right since it represents the

component of net worth of banks that is unrelated to the core operations. Since the profit from

core banking activities and credit provision would likely be low in bad states of the economy,

the counter-cyclical nature of intermediation cost is particularly concerning since it would

further reduce the net worth of financial institutions.

Figure 3.1 – Franchise value of BHCs in the US between pe-
riod 2002Q1 and 2020Q4. Franchise value is computed as
Market value of equity + Book value of liabilities - (Book value of asset - Goodwill) scaled
by (Book value of assets - Goodwill). The data is at quarterly frequency and winsorized at 1%
level. The data source is given in Table (3.1).

3.1 Empirical study

In this section, I provide motivating evidence related to the intermediation cost and franchise

value of BHCs in the US.

3.1.1 Data

I use a number of data sources for the empirical analysis. The balance sheet and income

statement data for the banks are taken from Federal Reserve FR Y-9C reports that are available

at quarterly frequency for all BHCs in the US. Table (3.1) shows the variable list pertaining

to the FR Y-9C data. Each bank is identified by a unique regulatory identification number
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Figure 3.2 – Franchise value of BHCs in the US. Blue bars correspond to banks that did
not file for bankruptcy or receive assistance from FDIC, and red bars correspond to the
banks that filed for bankruptcy during the sample period. Franchise value is computed as
Market value of equity + Book value of liabilities - (Book value of asset - Goodwill) scaled by
(Book value of assets - Goodwill). The data is at quarterly frequency. The data source is given
in Table (3.1).

(RSSD ID). I merge this with the CRSP universe that contains the market value information for

all firms in the US using the PERMCO-RSSD link.4 The market value is used to calculate the

franchise value of banks. List of bank failures are taken from FDIC that includes banks that

received assistance transaction from the FDIC.5 The final data sample is an unbalanced panel

of 1,671 publicly traded banks at the Bank Holding Company level at a quarterly frequency

from the year 1976 till 2020. Since the data to compute deposit rate is available only from the

year 2001 till 2018, I restrict the empirical analysis to this time period. Table (3.2) presents the

summary statistics of the variables used in the study. The data to estimate equity risk premium

is taken from Welch and Goyal (2008) and Robert Shiller’s website.6

3.1.2 Franchise Value

Franchise value refers to the present value of future profits that the banks are expected to earn

as a going concern. Banks can derive franchise value due to external factors such as the anti-

4Source: https://www.newyorkfed.org/research/banking_research/datasets.html.
5Source: https://www.fdic.gov/resources/resolutions/bank-failures/failed-bank-list.
6Source: http://www.econ.yale.edu/ shiller/data.htm.
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Variable Description Time coverage

RCON2170 Total Assets 197603- 202012
RCON2200 Total Deposits 197603- 202012
RCON2948 Total Liabilities 197603- 202012
RCFD2146/RCFD3545 Trading assets 198403-202012
RIAD4073 Interest expense 198403-202012
RIAD4093 Non interest expense 198403- 202012
RIAD4000 Operating income 198403-202012
RIAD4074 Interest income 198403- 202012
RCON3163 Goodwill 200103 -201812
RIAD4135 Salaries and employee benefits 200203- 201812
RIAD4217 Premises, furniture etc. 200203- 201812
RIADC232 Amortization and impairment expenses 200203- 201812
RIADC216 Goodwill impairment 200203- 201812
UBPRD488 Risk weighted capital to asset ratio 200103- 202012
RIAD0093 Interest expense savings deposit 200103- 202012
RCONB563 Quarterly average savings deposit 200103- 202012

Table 3.1 – Description of variables and coverage. All variables are taken from FFIEC CDR Call
reports except for Risk weighted capital to asset ratio which is taken from FFIEC CDR UBPR
Ratios Capital Analysis report.

competitive measures imposed by the regulators. For example, the Douglas Amendment Act of

1956 prohibited banks from acquiring other banks that operated out of the state. Regulation Q

allowed banks to maintain a low deposit rate regardless of the movement in the Fed funds rate,

until it was repealed in last 1970s (Drechsler et al. (2021)). In addition, regulatory laws such

as inter-state and intra-state branching restrictions gave banks market power that allowed

them to charger lower deposit rates on their liabilities. These restrictions remained in place

until late 1990s. The pass-through of market rates to the deposit rates is shown to be about

0.4, far from the value of 1 that one would expect if the markets were perfectly competitive

(Drechsler et al. (2021)). As these regulatory restrictions were gradually lifted, the franchise

value of banks started to decline (Demsetz et al. (1996)).

Banks can also derive franchise value by possessing superior technology, labor, and capital.

Jayaratne and Strahan (1998) document that while the franchise value of all banks declined

after anti-competitive measures were removed by the regulators, better-managed banks grew

more at the expense of poorly managed banks. To capture the bank-specific factors, I define

franchise value as the difference between the market value and the replacement cost following

Demsetz et al. (1996). I restrict the sample to banks that are publicly traded and whose share

price and number of common equity shares outstanding are available in CRSP database to

obtain the market value of equity. I add to this the book value of liabilities from Compustat to

obtain a proxy for the market value of banks. The replacement cost is proxied by the difference
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All periods 2001-2018

mean std min max mean std min max

Total Assets (Millions) 0.25 0.76 0.00 6.12 6.12 23.01 0.02 184.93
Deposit/Total assets 0.33 0.12 0.01 0.68 0.39 0.16 0.00 0.74
Trading assets/Total assets 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04
Operating income/assets (%) 8.22 2.60 3.13 16.94 6.41 2.43 1.84 21.18
Operating expense/Total assets (%) 3.23 1.95 0.12 7.53 1.62 1.09 0.00 4.36
Non-operating expense/Total assets (%) 3.36 1.47 1.19 11.09 3.06 1.84 0.13 16.10
Leverage 0.91 0.05 0.71 1.06 0.90 0.08 0.29 1.05
CIR (%) 0.37 0.17 0.03 0.69 0.25 0.14 0.01 0.61
Deposit rate (%) 1.10 0.99 0.04 4.40 1.16 1.02 0.01 4.43
ROA (%) 0.82 1.30 -6.23 3.73 0.84 1.29 -6.69 4.50
log(z-score) 4.42 1.04 1.30 6.44 4.81 1.03 1.59 6.63

Table 3.2 – Descriptive Statistics of key variables. All periods refer to time period for which
coverage is available, as described in Table (3.1). All variables are winsorized at 1% level. The
variables in percentages denote annualized figures.

between book value of assets and goodwill.7. To facilitate comparison across banks, I scale the

proxy by asset value less goodwill. Figure (A.1) shows the histogram of franchise value pooled

across all banks and across all years. The distribution is skewed to the right, with an average

value of 5%. From Figure (3.2) that plots the time series average, we see that the franchise value

was high until the late 1990s, consistent with the explanation that anti-competitive regulatory

measures enabled the banks to use their market power and extract rents from deposits. From

the year 1996 till the Global Financial Crisis of 2008, the franchise value of BHCs averaged

at 10%, and decreased to an average of 2.7% in the period 2009-2020. Strikingly, the banks

that failed or sought assistance from FDIC have a lower franchise value than those that did

not, and this pattern is consistent every year from 2001 till 2020 as seen in Figure (3.2). In

fact, after the year 2008, the failed banks had a negative franchise value on average until the

year 2016. Even during the Great Financial Crisis, the surviving banks managed to have a

positive franchise value on average, albeit close to zero. This calls for further investigation on

the origins of franchise value and its impact on bank default, which I address next.

3.1.3 Intermediation cost

I define intermediation cost to consist of all non-operating expenses that banks incur. These

non-operating expenses pertain to day-to-day administrative tasks, employee compensation,

premises and fixed-asset expenses, goodwill impairment, and ‘other’ non-operating expenses

that includes information technology and litigation costs. To facilitate comparison across

banks and time, I scale the non-operating expenses to the total assets. The motivation for

7This closely follows Demsetz et al. (1996). The motivation for this proxy is that a component of bank’s franchise
value is the difference between the book value of an asset, and the price that the bank pays to acquire the asset.
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doing this is simple- a bank with more number of branches may have higher total costs but

may still have lower average cost due to economies of scale and scope. The non-operating

expense ratio is quite stable over the past four decades, with an annualized average of 3.8%

and standard deviation of 6% in the time sample considered. The increase in cost during

the late 1990s could be attributed to a series of bank mergers. For instance, the merger of

Wells Fargo with Norwest, SunTrust with Crest, and Bank of America with Nations’ Bank

increased their costs by at least two times (Jaremski and Sapci (2017)). Secondly, this cost

has a correlation of 57% with the deposit rate, and 13% with the Federal funds rate. On the

contrary, the operating expense of banks vary a lot over time, and unsurprisingly has a higher

correlation with the deposit rate (73%). Around 70% of the bank liabilities are in the form of

retail (core) deposits, and thus the overall interest expense moves with the rate on deposit

charged by the banks. Any difference between these two can be attributed to the costs involved

in monitoring and servicing the loans. Therefore, I construct the intermediation cost measure

(iCost ) by adding the non-operating expense and the residual from netting out the deposit

rate from operating expense. Figure (3.3) shows the iCost measure along with the deposit rate.

There are two key take-aways from the figure. The first observation is that the iCost measure

is counter-cyclical, with the cost raising up during the onset of Global Financial Crisis in the

year 2008, and dropping down in the subsequent years after the recovery. During crisis, the

uncertainty in collateral value and the possibility of borrower default increases, forcing banks

to spend more money on monitoring and litigation costs (Ben S. Bernanke (1983)). As the

economy recovers out of crisis, these costs go down since the uncertainty over the collateral

value declines bringing down the monitoring effort.

Figure (3.4) shows the cyclical patterns of iCost along with the real GDP of the US economy

obtained from applying Hodrick-Prescott filter to the time series data. We see that the interme-

diation the cost rises during the Global Financial Crisis of 2008, and drops sharply after year

2010. The cyclical component of the cost has a correlation of -0.30 with the cyclical component

of the US Real GDP between the period 1986Q1 to 2020Q4, that increases in magnitude to

-0.57 in the period 2001Q1 to 2020Q4. The second key observation is that the intermediation

cost is highly persistent. Empirically, after the spike in costs during the Global Financial Crisis,

it took around four years for the cost to revert to its pre-crisis level.

Since a major component of the intermediation cost is non-operating expense, I study its

individual components by analyzing the FR Y-9C reports that documents five main categories

of non-operating expenses. Figure (A.3) shows the time series of the individual components.

The first main component is employee compensation, that accounts for 51% of the total

non-operating expenses during the period 2001-2018. This category includes the bonus com-

pensation, health insurance, and retirement plans. Premises and fixed-assets related expenses

account for 12% of the total costs. This category includes depreciation, repairs, equipment

and furniture, and mortgage interest on real estate. Goodwill and amortization expenses are

negligible part (< 0.1%) of the overall non-operation expenses. The remaining part, of about

35%, includes information technology costs, legal fees, advertising and stationary expenses,

and so on.
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Figure 3.3 – This figure presents the time series of intermediation cost measure (iCost ) for the
banks and the deposit rate. The deposit rate is averaged across all BHCs in the US. The data
is at quarterly frequency between the period 1986Q1 to 2020Q4. The data source is given in
Table (3.1). The values are annualized and is in percentage terms. The shaded background
represent NBER recessionary periods.

3.1.4 Determinants of Franchise value

To understand the determinants of franchise value of BHCs in the US, I run the following

regression

fi ,t =αt +β1iCost i ,t +ΓXi ,t +εi ,t (3.1)

where fi ,t is the franchise value of bank i at time t , iCosti ,t is the intermediation cost and Xi ,t

are various controls. I control for time fixed effects in order to exploit only cross-sectional

variation across the banks. The results are shown in Table (3.3). In the first specification

(I), I regress the franchise value only on log of total assets and find that banks with larger

asset size have a higher franchise value, pointing to economies of scale effect. Although the

statistical significance is strong, the R-squared is low indicating that bank size may not be

the sole determinant of franchise value. In the specification (II), I include as regressors the

intermediation cost along with other variables that capture the business model of banks such

as the ratio of deposit to total assets, ratio of domestic loans to total assets, and leverage of

the bank. The asset size is still a determinant of franchise value and the specification has a

higher R-squared value. Importantly, I find statistically significant evidence that the banks
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Figure 3.4 – This figure presents iCost along with its cyclical component after applying
Hodrick-Prescott filter. The data is at quarterly frequency between the period 1986Q1 to
2020Q4. The data source is given in Table (3.1). The shaded background represent NBER
recessionary periods.

with higher intermediation cost have a lower franchise value. In fact, the economic magnitude

of this relationship is predominantly strong. A 1 basis point increase in intermediation cost

is associated with a 85 basis points drop of the franchise value, which provides evidence for

a hypothesis that franchise value of banks originate from cost efficient intermediation of

assets. The controls deposit-asset ratio and domestic asset-total asset ratio capture the business

model of banks, and both have statistically significant relationship with the franchise value.

A 1% increase in deposit share is associated with an increase in the franchise value of 7.15%.

This is consistent with the finding by Egan et al. (2021) who show that deposit productivity is

responsible for a majority of the cross-sectional value of banks in th US. The bank leverage,

which is a commonly used variable to explain cross-sectional asset prices in intermediary

based asset pricing models, is also significant in explaining the franchise value. The control

variable deposit power is a proxy that captures the rents that banks derive from utilizing their

market power as depository institutions.8 The variable government guarantee is a proxy to

capture the rent derived from guarantees including the implicit too-big-to-fail related ones

8The proxy is computed as max(0,r
f
t − r d

i ,t )
Di ,t
Li ,t

where r f is the risk-free rate, r d
i is bank i ’s deposit rate, Di and

Li is the total deposits and liabilities of the bank i .
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from the government.9 Both of these control variables are positively related to the franchise

value, implying that rents from deposit pricing power and goverment guarantees are important

determinants of franchise value. The latter conclusion resonates with Atkeson et al. (2018)

who find empirically that these guarantees account for a large part of market value of banks in

the US.

The specification (III) in Table (3.3) includes a dummy variable that takes a value 1 if a bank i

filed for bankruptcy during the time period considered in the sample, and zero otherwise. The

coefficient on the dummy is both economically and statistically significant. Compared to the

banks that failed, the banks that survived had 3% higher franchise value on average controlling

for business model and asset size. The last specification in Table (3.3) includes capital ratio,

which is a proxy for risk. This variable refers to the total risk-based capital to risk-weighted

assets reported by banks in the FFIEC report. As expected, banks with better capital ratio

have a higher franchise value, although both economic and statistical significance is weak.10

Including the capital ratio as a control does not change the significance of intermediation cost,

deposit share, and the failure dummy while the asset size is no longer significant in explaining

the franchise value. One should be cautious in deriving causal relationship from the results in

Table (3.3) since it could be that the franchise value is the main driver of intermediation cost

and deposit share instead of the other way around. To test if there is a predictive relationship,

I run the regression of the form

fi ,t =αi +β1iCost i ,t−1 +ΓXi ,t−1 +εi ,t (3.2)

where variables Xi ,t−1 correspond to the lagged values with a lag of one quarter. I use bank fixed

effects to exploit only the time variation. By including a variety of control variables to capture

the business model, risk, size and leverage, any concerns related to omitted variables are

alleviated. The results are shown in Table (A.3). There is a predictive effect of intermediation

cost on the franchise value: one basis point increase in cost leads to a drop of around 57 basis

points of franchise value. Business model of the banks proxied with share of deposit to assets,

and the government guarantees also have a predictive relationship. The main take-away is

that the intermediation cost remains to be both statistically and economically significant in

driving the franchise value.

3.1.5 Franchise value and bank exit

I formally test the stylized fact from Figure (3.2) that lower franchise value is associated with

bank failures by running the following regression

log zi ,t =αt +β1 fi ,t +ΓXi ,t +εi ,t (3.3)

9The computation of this proxy follows De Nicolo and Zotova (2020) and captures the per-dollar saving realized
by the bank in the absence of premium on government guarantees.

10The number of observations reduce drastically in this specification since capital ratio is available only at
annual frequency (the end of calendar year).
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Table 3.3 – This table estimates the determinants of franchise value by regressing fi ,t on
iCost/asset s and various controls. The data is for all listed US Bank Holding companies
from the year 2001 till 2018 at quarterly frequency. All variables (except dummy variables) are
winsorized at 1% level. Standard errors are robust to heteroskedasticity in errors.

(1) (2) (3) (4)
fi ,t fi ,t fi ,t fi ,t

logAssets 0.00620∗∗∗ 0.00419∗∗∗ 0.00456∗∗∗ 0.00559∗∗∗

(0.000) (0.000) (0.000) (0.000)

iCost/assets -0.858∗∗∗ -0.832∗∗∗ -1.346∗∗∗

(0.000) (0.000) (0.000)

deposit/assets 0.0715∗∗∗ 0.0653∗∗∗ 0.0527∗∗∗

(0.000) (0.000) (0.000)

domestic/assets -0.0783∗∗∗ -0.0702∗∗∗ -0.0520∗∗∗

(0.000) (0.000) (0.000)

trading/assets -0.405∗∗∗ -0.308∗∗∗ -0.181
(0.000) (0.001) (0.288)

interest income/operating income 0.0110 0.0107 0.0336∗∗∗

(0.103) (0.101) (0.001)

leverage -0.225∗∗∗ -0.229∗∗∗ -0.201∗∗∗

(0.000) (0.000) (0.000)

deposit power 2.000∗∗∗ 1.777∗∗∗ 2.726∗∗∗

(0.000) (0.000) (0.002)

govt. guarantee 1.516∗∗∗ 1.512∗∗∗ 1.521∗∗∗

(0.000) (0.000) (0.000)

failure dummy -0.0347∗∗∗ -0.0323∗∗∗

(0.000) (0.000)

capital ratio 0.00170∗∗∗

(0.001)

_cons -0.0419∗∗∗ -1.242∗∗∗ -1.240∗∗∗ -1.338∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 23925 23925 23925 5154
Fixed Effects Time Time Time Time
R2 0.037 0.475 0.487 0.502

p-values in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

75



Chapter 3. Origins of bank failures

where zi ,t is the z-score of the bank i at time t , fi ,t is the franchise value, and Xi ,t are the

control variables. The z-score is computed following the literature as11

zi ,t =
(E qui t y/Asset )i ,t +RO Ai ,t

σ(RO A)i ,t
(3.4)

where the RO A and σ(RO A) are the rolling 12-quarter mean and standard deviation of the

return on assets. A larger z-score value indicates a lower probability of default. Figure (A.4)

shows the franchise value of banks with z-score values in the bottom and top quartiles. During

the Global Financial Crisis of 2008 and the years thereafter, banks with higher (lower) z-score

values had a larger (smaller) franchise value. In some periods during the late 1990s, high risk

banks had a higher franchise value. One explanation for this could be that the anti-competitive

regulations such as branching laws favored poorly managed banks with a larger probability of

default in enforcing market power and deriving franchise value. Once these laws were lifted,

cost/profit efficiency through good management practices was the only source of franchise

value left for the banks. This enabled the better managed banks to derive a higher franchise

value compared to the poorly managed banks, although the overall franchise value trended

down due to abolishing of the branching laws.

Specification (I) in Table (3.4) regresses the z-score on assets without any controls. There

is evidence of scale effects- that is larger asset size is associated with a lower probability of

default. From the specification (II), we see that banks with a larger franchise value is associated

with a lower default probability with a coefficient that is economically large. Banks that have a

higher share of deposits, in particular foreign deposits, are less risky. Interestingly, once we

control for the franchise value and business model of the banks, the scale effect disappears.

In fact, conditional on these control variables, the smaller firms are less risky compared to

the larger firms in terms of asset size. For robustness, I repeat the analysis by using the

data on actual bank failures published by the FDIC. Over the time period 2001 to 2019, a

total of 89 banks failed, and 12 banks required assistance from the FDIC in order to prevent

bankruptcy. I replace the z-score by a dummy value di that takes value 1 if the bank i ever filed

for bankruptcy or required assistance in the time period considered, and 0 otherwise. While

the z-score is a proxy for the probability of default, this dummy corresponds to the actual

distress event, and hence can be used to more accurately estimate the failure probability.

Table (A.4) shows the results. The franchise value is statistically significant in explaining the

probability of default, along with asset size and deposit share. The result is the same if the

dummy variable di is replaced with a value 1 if the bank i ever sought assistance from the FDIC

to continue operations, and 0 otherwise. Again, caution should be applied in deriving causal

relationship between the franchise value and probability of failure. The results rather point to

statistical correlations, that is robust to using different proxies for probability of failure.

11See Berger et al. (2016), Caiazza et al. (2018), Pino and Sharma (2019), Delis et al. (2014) among others.
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3.2. Conclusion

Table 3.4 – This table studies the relationship between bank probability of default and franchise
value. The probability of default is proxied by z-score computed using (3.4). The data is for
all listed US Bank Holding Companies from the year 2001 till 2018 at quarterly frequency. All
variables are winsorized at 1% level. Standard errors are robust to heteroskedasticity in errors.

(1) (2) (3)
log zi ,t log zi ,t log zi ,t

logAssets 0.0295∗∗∗ -0.0304∗∗ -0.0227
(0.000) (0.012) (0.217)

franchise value 3.609∗∗∗ 4.833∗∗∗

(0.000) (0.000)

deposit/assets 0.617∗∗∗ 0.565∗∗

(0.000) (0.016)

domestic assets/assets -0.454∗∗ -0.656
(0.040) (0.102)

interest income/operating income 0.0887 0.410
(0.413) (0.168)

leverage -0.500∗∗ 1.060∗∗∗

(0.025) (0.007)

capital ratio 0.0124
(0.370)

_cons 4.184∗∗∗ 5.471∗∗∗ 3.717∗∗∗

(0.000) (0.000) (0.000)
N 31494 23906 5150
Fixed effect Time Time Time
R2 0.002 0.049 0.079

p-values in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.2 Conclusion

In this chapter, I show that there is a strong empirical support for the franchise value of

banks to be related with bank failures. Analyzing a large panel of Bank Holding Companies

(BHCs) in the US, I show that increasing franchise value is associated with a larger z-score and

lower probability of failure. The BHCs derive franchise value from being intermediation cost

efficient, along with the business model, and rents from deposits and government guarantees.

Most of the regulation post financial crisis entails improving the capital ratio of banks to

reduce systemic risk. While these regulations are certainly in the right direction in improving

the balance sheet of intermediaries, the declining franchise value in the present day makes a

case against complacency that systemic risk is fully eliminated.
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A Appendix

A.1 Appendix to Chapter 1

A.1.1 Model with stochastic productivity

Proof of the Asset pricing conditions

The expected return that the experts earn from investing in the capital is given by

dr v
t = (µR

e,t − (1−χt )εh,t )d t +χt (σq,k
t +σ)d Z k

t +χtσ
q,a
t d Z a

t

where εh,t = ζk
h,t (σq,k

t +σ)+ζa
h,tσ

q,a
t +ϕ(ζa

h,t (σ+σq,a
t )+σq,a

t ζk
h,t ). That is, (1−χt )εh,t is the part

of the expected excess return that is paid by the experts to the outside equity holders, which

is netted out. Since the experts hold a fraction χt of the inside equity, the volatility terms are

multiplied by this quantity. Consider a trading strategy of investing $1 into the capital at time

0. Let vt be the value of this investment strategy at time t . Then, we have d vt
vt

= dr v
t , and

d(ξe vt )

ξe vt
= (−rt +µR

e,t − (1−χt )εh,t −χtεe,t )d t +diffusion terms

where εe,t = ζk
e,t (σ+σq,k

t )+ζa
e,tσ

q,a
t +ϕ(ζa

e,t (σ+σq,k
t )+ζk

e,tσ
q,a
t ), and ξe,t follows the process

in (1.5). Since ξe vt is a martingale, the drift equals to zero, which implies

µR
e,t − rt =χtεe,t + (1−χt )εh,t

The households do not issue outside equity but are exposed to the risk from experts through

the equity issuance of the latter. Following similar steps, we get the asset pricing condition for

the households as

µR
h,t − rt = εh,t

where εh,t = ζk
h,t (σ+σq,t

t )+ζa
h,tσ

q,a
t +ϕ(ζa

e,t (σ+σq,k
t )+ζk

h,tσ
q,a
t ) �
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Proof of Proposition 1

The law of motion of wealth for the experts and the households are given in the optimization

problems (1.7) and (1.8) respectively. Using the law of large numbers to aggregate the wealth

of individual household and expert, we get

dWh,t

Wh,t
=

(
rt −ρh −λd +θh,t (µR

h,t − rt )+ (1− z̄)λd

1− zt
+τt

We,t

Wh,t

)
d t +θh,t (σ+σq

t )d Z k
t +θh,tσ

a
t d Z a

t

dWe,t

We,t
=

(
rt −ρe −λd +θe,tεe,t + z̄λd

zt
−τt

)
d t +θe,t (σ+σq,k

t )d Z k
t +θe,tσ

q,a
t d Z a

t

where Wh,t =
∫

j∈H w j ,t d j and We,t =
∫

j∈E w j ,t d j denotes aggregated wealth among respective

group, zt = We,t

Wh,t+We,t
= We,t

qt Kt
, and θe,t := χtψt

zt
,θh,t := 1−χtψt

1−zt
from the capital market clearing

condition.1 The terms containingλd and z̄ are due to the overlapping generations assumption,

and the terms with τt is due to the exit of the experts. By Ito’s lemma, the dynamics of the

wealth share becomes

d zt

zt
= dWe,t

We,t
− d(qt Kt )

qt Kt
+ d〈qt Kt , qt Kt 〉

(qt Kt )2 − d〈qt Kt ,We,t 〉
(qt Kt We,t )

where2

dKt

Kt
= (φ(ιt )−δ)d t +σd Z k

t

Applying Ito’s lemma, we get

d(qt Kt )

qt Kt
= (εe,tχt + (1−χt )εh,t −

(ae,t − ιt )

qt
+ rt )d t + (σ+σq,k

t )d Z k
t +σq,a

t d Z a
t

d〈qt Kt , qt Kt 〉
(qt Kt )2 = ((σq,k

t +σ)2 + (σq,a
t )2 +2ϕ(σq,k

t +σ)σq,a
t )d t

d〈qt Kt ,We,t 〉
qt Kt We,t

= (
θe,t (σq,k

t +σ)2 +θe,t (σq,a
t )2 +2ϕ(σq,k

t +σ)σq,a
t

)
d t

and the result follows from here after some algebra. �

Note that we can write θe,tεe,t = θe,tχ
−1
t (µR

e,t −rt −(1−χt )εh,t ) from the asset pricing condition

in A.1.1, which allows us to write the experts wealth dynamics after aggregating the optimal

1Note that zt = We,t
qt Kt

and ψt = Ke,t
Kt

. Moreover, σwe ,t (σ+σq
t )zt +σwh ,t (σ+σq

t )(1− zt ) = (σ+σq
t ) and similarly

for σ
q,a
t . Using these, we can relate σw j ,t to θ j ,t .

2Since the investment rate is the same for all agents, the evolution of the aggregate capital Kt is the same as the

evolution of k j ,t . To see this, write dKt
Kt

= dKe,t
Kt

+ dKh,t
Kt

=ψt
dKe,t
Ke,t

+ (1−ψt )
dKh,t
Kh,t

and the rest follows from (2.3).
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policies and using law of large numbers as

dWe,t

We,t
= (

rt −ρ−λd + ψt

zt
(µR

e,t − rt )− (1−χt )
ψt

zt
εh,t +

z̄λd

zt
−τ(ae,t , zt )

)
d t

+ χtψt

zt
(σ+σq,k

t )d Z k
t + χtψt

zt
σ

q,a
t d Z a

t

Proof of Proposition 2

The value function conjecture is

U j ,t =
(J j ,t (zt , ae,t )Kt )1−γ

1−γ

where J j ,t follows the stochastic differential equation
d J j ,t

J j ,t
=µJ

j ,t d t+σJ ,k
j ,t d Z k

t +σJ ,a
j ,t d Z a

t whose

drift and volatility needs to be determined in the equilibrium. The HJB equation is given by

sup
C ,K

f (C j ,t ,U j ,t )+E [dU j ,t ] = 0 (A.1)

where f (C j ,tU j ,t ) = (1−γ)ρU j ,t

(
logC j ,t − 1

1−γ log
(
(1−γ)U j ,t

))
. The HJB equation is derived

directly in terms of the aggregate capital Kt instead of the wealth share zt . For ease of notation,

I will denote the wealth share of the experts and households as ze,t and zh,t respectively but it

is to be understood that ze,t = zt and zh,t = 1− zt . The value function derivatives are

∂U j ,t

∂J j ,t
= K 1−γ

t J−γj ,t ;
∂U j ,t

∂Kt
= J 1−γ

j ,t K −γ
t (A.2)

∂2U j ,t

∂J 2
j ,t

=−γK 1−γ
t J−γ−1

j ,t ;
∂2U j ,t

∂K 2
t

=−γJ 1−γ
j ,t K −(1+γ)

j ,t ;
∂2U j ,t

∂J j ,t∂Kt
= (1−γ)(Kt J j ,t )−γ

Applying Ito’s lemma to U j ,t and using HJB equation (A.1), we get

sup
C

ρ(J j ,t Kt )1−γ[log
C j ,t

W j ,t
− logJ j ,t + log(qt z j ,t )]+ (J j ,t Kt )1−γ(Φ(ι)−δ) (A.3)

− γ

2
(J j ,t Kt )1−γσ2 + (J j ,t Kt )1−γµJ

j ,t − (J j ,t Kt )1−γγ
2

((σJ ,k
j ,t )2 + (σJ ,a

j ,t )2 +2ϕσJ ,k
j ,t σ

J ,a
j ,t )

+ (1−γ)(J j ,t Kt )1−γ(σσJ ,k
j ,t +ϕσσJ ,a

j ,t )+τt (Uh,t −Ue,t ) = 0

Writing the value function expression in terms of the wealth, we have

U j ,t =
( J̃ j ,t W j ,t )1−γ

1−γ ; f (C j ,t ,U j ,t ) = (1−γ)ρU j ,t (log
C j ,t

W j ,t
− J̃ j ,t ) (A.4)
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where J̃ j ,t = J j ,t

qt z j ,t
and z j ,t = W j ,t

qt Kt
are used to obtain (A.4). At the optimum, the marginal utilities

of wealth and consumption become equal. Therefore,

∂U j ,t

∂W j ,t
= ∂ f j ,t

∂C j ,t

J̃ 1−γ
j ,t W −γ

j ,t = (1−γ)ρ
U j ,t

C j ,t
=⇒ C j ,t

W j ,t
= ρ

This proves the optimal consumption policy. The stochastic discount factor for recursive

utility is given by

ξ j ,t = exp

(∫ t

0

∂ f (C j ,s ,U j ,s)

∂U
d s

)
∂U j ,t

∂W j ,t

From (A.4), we get

ξ j ,t = (1−γ)exp

(∫ t

0

[
(1−γ)ρ

(
logρ− J̃ j ,t

)]
d s

)
U j ,t

W j ,t

This implies that σ(ξ j ,t ) = σ

(
U j ,t

W j ,t

)
. To compute the R.H.S., we have to obtain d

(
U j ,t

W j ,t

)
. Let

v(J j ,t , z j ,t , qt ,Kt ) := U j ,t

W j ,t
. Using the derivatives

1

v

∂v

∂J j ,t
= 1−γ

J j ,t
;

1

v

∂v

∂z j ,t
=− 1

z j ,t

1

v

∂v

∂qt
=− 1

qt
;

1

v

∂v

∂Kt
= 1−γ

Kt

and applying Ito’s lemma, we get

d v

v
= [. . . . . . ]︸ ︷︷ ︸

drift term

d t + (1−γ)(σJ ,k
j ,t d Z k

t +σJ ,a
j ,t d Z a

t )− (σz,k
j ,t d Z k

t +σz,a
j ,t d Z a

t ) (A.5)

− ((σ+σq,k
t )d Z k

t +σq,a
t d Z a

t )+ (1−γ)σd Z k
t

Applying Ito’s lemma to J j ,t (zt , ae,t ), we have

d J j ,t =
∂J j ,t

∂zt
d zt +

∂J j ,t

∂ae,t
d ae,t + 1

2

∂2 J j ,t

∂z2
t

d〈z, z〉t + 1

2

∂J j ,t

∂a2
e,t

d〈ae , ae〉t

= (drift terms)+ ∂J j ,t

∂zt
zt

(
σz,k

t d Z k
t +σz,a

t d Z a
t

)+ ∂J j ,t

∂ae,t
σae d Z a

t

Comparing with the SDE (1.20) and matching the diffusion coefficients, we have

σJ ,k
j ,t J j ,t =

∂J j ,t

∂zt
ztσ

z,k
t = ∂J j ,t

∂zt
zt

(
χtψt

zt
−1

)
(σ+σq,k

t )

σJ ,a
j ,t J j ,t =

∂J j ,t

∂ae,t
σae +

∂J j ,t

∂zt
ztσ

z,a
t = ∂J j ,t

∂ae,t
σae +

∂J j ,t

∂zt
zt

(
χtψt

zt
−1

)
σ

q,a
t
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Collecting the diffusion terms, using σz,i
e,t = σz,i

t ,σz,i
h,t =− zt

1−zt
σz,i

t ; i ∈ {k, a} in equation (A.5),

and comparing it to the SDF equation

dξ j ,t

ξ j ,t
=−rt d t −ζk

j ,t d Z k
t −ζa

j ,t d Z a
t

we get the desired result. �
Plugging in the optimal consumption-wealth ratio into the HJB equation (A.79), we obtain the

expressions for µJ
j ,t

µJ
e,t = (γ−1)(σσJ ,k

e,t +ϕσσJ ,a
e,t )− (Φ(ιt )−δ)−ρ(

logρ− log Je,t + log(zt qt )
)

(A.6)

+ γ

2

(
(σJ ,k

e,t )2 + (σJ ,a
e,t )2 +2ϕσJ ,k

e,t σ
J ,a
e,t +σ2

)
− τt

1−γ
((

Jh,t

Je,t

)1−γ
−1

)
µJ

h,t = (γ−1)(σσJ ,k
h,t +ϕσσ

J ,a
h,t )− (Φ(ιt )−δ)−ρ(

logρ− log Jh,t + log((1− zt )qt )
)

(A.7)

+ γ

2

(
(σJ ,k

h,t )2 + (σJ ,a
h,t )2 +2ϕσJ ,k

h,tσ
J ,a
h,t +σ2

)

Proof of Proposition 3

Applying Ito’s lemma to q(zt , ae,t ), we have

d qt = ∂qt

∂zt
d zt + ∂qt

∂ae,t
d ae,t + 1

2

∂2qt

∂z2
t

d〈zt , zt 〉+ 1

2

∂2qt

∂a2
e,t

d〈ae,t , ae,t 〉+ ∂2qt

∂zt∂ae,t
d〈zt , ae,t 〉

Matching the drift and the volatility terms, we get

µq,t = ∂qt

∂zt

1

qt
µz

t +
∂qt

∂ae,t
µae,t + 1

2

∂2qt

∂z2
t

(
(σz,k

t )2 + (σz,a
t )2 +2ϕσz,k

t σz,a
t

)
+ 1

2

∂2qt

∂a2
e,t

σ2
ae,t +

∂2qt

∂zt∂ae,t

(
ϕσz,k

t σae,t +σz,a
t σae,t

)
σ

q,k
t = ∂qt

∂zt

1

qt
σz,k

t

σ
q,a
t = ∂qt

∂zt

1

qt
σz,a

t + ∂qt

∂ae,t

1

qt
σae,t

where σae,t = ν(āe −ae,t )(ae,t −at ) and µae,t =π(âe −ae,t ) Plugging in the expression for σz,k
t

and σz,a
t from the dynamics of wealth share (1.18) in the above equation and rearranging, we

get the result. �

Numerical solution

Static step: We need to solve for the equilibrium quantities {ψt , (σ+σq,k
t ),σq,a

t , qt }. The other

equilibrium quantities θe,t ,θh,t ,ζk
e,t ,ζa

e,t ,ζk
h,t ,ζa

h,t ,rt ,µR
e,t ,µR

h,t , ιt can be derived from the goods
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market clearing and the HJB first order conditions. To solve for these four quantities, four

equations are required. The first equation is given by subtracting the expected return of each

type of the agent. That is, we have

χt (εe,t −εh,t ) =µR
e,t −µR

h,t

The experts will issue maximum outside equity χ whenever their risk premium is larger than

that of households. Thus, we can replace χt by χ whenever ψ< 1. Plugging in the expression

for the return processes from (1.4), and using (1.12), (1.11), and Proposition 2, we get

ae,t −ah

qt
=χ

(
(χψt − zt )

(
(σq,k

t +σ)2 + (σq,a
t )2 +2ϕ(σ+σq,k

t )
)

(A.8)

×
(
(1−γ)

(
∂Jh,t

∂zt

1

Jh,t
− ∂Je,t

∂zt

1

Je,t

)
+ 1

zt (1− zt )

)
+ (1−γ)

(
∂Jh,t

∂ah,t

1

Jh,t
− ∂Je,t

∂ae,t

1

Je,t

)
σae,t (σq,a

t +ϕ(σ+σq,k
t ))

)
The second condition comes from the goods market clearing

ρqt =ψt (ae,t − ιt )+ (1−ψt )(ah − ιt ) (A.9)

The third and fourth conditions are the return variance components

σ
q,k
t +σ= σ

1− 1
qt

∂qt

∂zt
(χψt − zt )

(A.10)

σ
q,a
t =

1
qt

∂qt

∂ae,t
σae,t

1− 1
qt

∂qt

∂zt
(χψt − zt )

(A.11)

which are partial differential equations solved using a Newton-Raphson scheme. The algo-

rithm is as follows. Consider tensor grids of size Nz and Na with step size ∆i , and ∆ j where

{i }Nz
1 , { j }Na

1 denote the dimensions for the wealth share and the expert productivity respectively.

There are three following regions in the state space

• ψt < 1 and χt =χ
• ψ= 1 and χt =χ
• ψ= 1 and χt >χ

In the first region, the households also hold capital and hence equation (1.15) holds with

equality. In this case, the equations (A.8), (A.9), (A.10),and (A.11) are used to solve for ψt , qt ,

(σ+σq,k
t ), and σq,a

t . In the second region, the households do not hold capital and hence the

equation (1.15) holds with an inequality. In this case, set ψt = 1, and use (A.8),(A.10), (A.11),

and (A.9) to solve for χt ,qt , (σ+σq,k
t ), and σq,a

t . If χt <χ, then set χt =χ, otherwise the third

region is entered.
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• For the first iteration on the wealth share {i = 1,∀ j }, set ψt = 0, and take the limiting

case of the goods market clearing condition to get qt . That is

inf
z→0+qt = ahκ+1

ρκ+1
(A.12)

• For iterations i > 1,∀ j , use the discretized versions of the equations (A.10) and (A.11)

(σq,k +σ)i , j =σ
(
1− 1

qi , j

( qi , j −qi−1, j

∆i
zi (

ψi , j

zi
−1)

))−1

(A.13)

(σq,a)i , j =
( qi , j −qi , j−1

∆ j
σae, j

)(
1− 1

qi , j

( qi , j −qi−1, j

∆i
zi (

ψi , j

zi
−1)

))−1

(A.14)

along with the equations (A.8), and (A.9) to solve for qi , j ,ψi , j , (σ+σq )i , j , (σq,a)i , j .3

Note that in this region, χt = χ since the risk premium of experts is larger than that

of households. The set of non-linear equations is solved using the Newton-Raphson

method. Repeat this procedure until ψt = 1, in which case the system enters the second

region. Then, use (A.8), (A.9), (A.13), and (A.14) to solve for χi , j , qi , j , (σ+σq,k )i , j and

(σq,a)i , j . If χi , j <χ, set χ∗i , j =χ, otherwise set χ∗i , j =χi , j . When χi , j >χ, the system is in

the third region where all capital is held by the experts (ψi , j = 1), and risk is perfectly

shared between the experts and the households by setting εe,t = εh,t . The value of χ∗t is

obtained such that χ∗t = ar g sol ve
χ

εe,t −εh,t = 0. Since the premiums εe,t ,εh,t depend

on the χt , I iterate between these two quantities until |χnew
t −χol d

t | < tol for some

tolerance level.

Time step: Applying Ito’s lemma to J j ,t (zt , ae,t ), matching the drift terms, and augmenting the

resulting coupled PDEs with a time step (falst-transient method), we get

µJ
j ,t J j ,t =

∂J j ,t

∂t
+ ∂J j ,t

∂zt
µz

t +
∂J j ,t

∂ae,t
µa

t +
1

2

∂2 J j ,t

∂z2
t

(
(σz,k

j ,t )2 + (σz,a
j ,t )2 +2ϕσz,k

j ,t σ
z,a
j ,t

)
+ 1

2

∂2 J j ,t

∂a2
e,t

σ2
ae,t

+ ∂2 J j ,t

∂zt∂aa,e

(
ztσ

z,k
j ,t σae,tϕ+σaσ

z,a
j ,t

)
(A.15)

The coefficients µz
t and σz

t can be computed from the equilibrium quantities in the static

step and µJ
j ,t is computed from the equations in (A.6). The PDEs are solved using the neural

network method explained in the second chapter. Using the updated function J j ,t , the static

step is performed again. The procedure is repeated until the function J j ,t converges upto a

pre-specified tolerance level.

3For j = 1, set
∂qt
∂ae,t

= 0 since ae,t ∈ [ae , āe ]. That is, the lower and the upper boundaries ae and āe respectively

act as reflecting barriers forcing the derivative of the price to be zero.
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Table A.1 – Calibration: Benchmark model

Parameter
Benchmark

Model
Model

B1
Model

B2 Target

Technology

Volatility (σ) 0.06 0.06 0.06 Volatility of risk premium
Discount rate (experts) (ρe ) 0.06 0.05 0.05 Literature
Discount rate (households) (ρh ) 0.04 0.05 0.05 Literature
Depreciation rate (δ) 0.02 0.1 0.1 GDP growth
Investment cost (κ) 5 5 5 Investment-capital ratio
Expert Productivity (ae ) 0.11 0.2 0.15 Conditional risk premium
Household Productivity (ah ) 0.03 0.02 -0.03 Consumption-output ratio
Correlation of shocks (ϕ) - 0.5 - Data

Preference Utility parameters (γ) 2 5 5 Unconditional risk premium

Demographics
Mean expert mass (z̄) 0.1 0.1 0.1 Literature
Turnover (λd ) 0.03 0.001 0.001 Literature

Expert productivity
Mean reversion rate (π) - 0.01 - Duration of crisis
Variance (ν) - 4.2 - Data

Friction Equity retention (χ) 0.5 0.95 0.95 Literature

Note: Calibrated parameters for the benchmark models along with the target. The benchmark model
does not feature stochastic productivity or exit rate. The model B1 considers stochastic productivity
but without exit. The model B2 has constant productivity but the experts have a state-dependent exit
rate.

A.1.2 Benchmark model

The capital price per unit qt follows the process

d qt

qt
=µq

t d t +σq
t d Z k

t

The terms µq
t , and σq

t are endogenously determined in the equilibrium. Note that the produc-

tivity shocks are absent in the benchmark model. Using this dynamics for the price, the return

process can be written as

dR j ,t =
(

a j − ι j ,t

qt
+Φ(ι j ,t )−δ+µq

t +σσq
t

)
︸ ︷︷ ︸

µR
j ,t

d t + (σ+σq
t )d Z k

t (A.16)

Let ξe,t and ξh,t denote the SDF of the experts and the households respectively that follows

dξ j ,t

ξ j ,t
=−rt d t −ζ j ,t d Z k

t (A.17)

where, ζ j ,t is the market price of risk for agent j . Similar to the stochastic productivity model,

both agents invest in the risk-free asset, and hence the drift of the SDF process is the same for

all agents. The asset pricing conditions for the experts and the households respectively take
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the simpler form4

ae−ιt
qt

+Φ(ιt )−δ+µq
t +σσq,t − rt

σ+σq,t
=χtζe,t + (1−χt )ζh,t (A.18)

ah−ιt
qt

+Φ(ιt )−δ++µq
t +σσq,t − rt

σ+σq,t
≤ ζh,t (A.19)

The equality holds in (A.72) if the households own some amount of capital (ψt < 1). The

optimal investment rate is the same as before and is given in (1.13). The agents solve

sup
c j ,t ,χ j ,t ,k j ,t

Et

[∫ ∞

t
f (c j ,s ,U j ,s)d s

]
(A.20)

s.t.
d w j ,t

w j ,t
= (rt −

c j ,t

w j ,t
+ qt k j ,t

w j ,t
(µR

j ,t − rt − (1−χ j ,t )(σ+σq
t )ζ j ′,t )d t +σw j ,t (σ+σq

t )d Z k
t

where the aggregator f (c j ,s ,U j ,s) is given in (1.6) and the index j ′ denotes the other type of

agent. The households do not issue outside equity and hence χh,t = 1. On the other hand,

the experts issue outside equity but are constrained to hold at least a fraction χ of equity in

their balance sheet. Thus, χe,t ∈ [χ,1]. Moving forward, I denote χe,t as simply χt for notation

brevity. The expressions for σw j ,t is the same as in the stochastic productivity model given

in (1.9) and (1.10). Since all agents within the group j are identical as before, I solve for the

decentralized economy with wealth share of the experts zt as the sole state variable. The

wealth share is defined as

zt =
We,t

We,t +Wh,t
= We,t

qt Kt

where We,t =
∫
Ew j ,t d j and Kt =

∫
Ek j ,t d j +∫

Hk j ,t d j . Moving forward, I denote Xe,t to mean∫
E x j ,t d j , and similarly for the households.

Proposition 8. The law of motion of the wealth share of experts is given by

d zt

zt
=µz

t d t +σz
t d Z k

t (A.21)

where

µz
t =

ae − ιt
qt

− Ce,t

We,t
+ (χtψt

zt
−1

)
(σ+σq,t )(ζe,t − (σ+σq

t ))+ (1−χt )(σ+σq
t )(ζe,t −ζh,t )+ λd

zt
(z̄ − zt )

σz
t =

(χtψt

zt
−1

)
(σ+σq

t )

Proof: The law of motion of wealth for the households and the experts are given by equation

(A.68). Using the law of large numbers to aggregate the wealth of individual household and

4This can be proved using the Martingale argument similar to the model with stochastic productivity. See
Appendix A.1.2 for the proof.
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expert, we get

dWh,t

Wh,t
=

(
rt −

Ch,t

Wh,t
−λd + 1−χtψt

1− zt
(µR

h,t − rt )+ (1− z̄)λd

1− zt

)
d t + 1−χtψt

1− zt
(σ+σq

t )d Zt

dWe,t

We,t
=

(
rt −

Ce,t

We,t
−λd + χtψt

zt
ζe,t (σ+σq

t )+ z̄λd

zt

)
d t + χtψt

zt
(σ+σq

t )d Zt

where Wh,t =
∫

j∈H w j ,t d j and We,t =
∫

j∈E w j ,t d j denotes the aggregated wealth among re-

spective group. Similar to the stochastic productivity model, the volatility terms χtψt

zt
(σ+σq

t )

and 1−χtψt

1−zt
(σ+σq

t ) can be derived using the definitions of zt ,ψt and the market clearing

condition σwe ,t zt (σ+σq
t )+σwh ,t (1− zt )(σ+σq

t ) = (σ+σq
t ). By Ito’s lemma, the dynamics of

the wealth share becomes

d zt

zt
= dWe,t

We,t
− d(qt Kt )

qt Kt
+ d〈qt Kt , qt Kt 〉

(qt Kt )2 − d〈qt Kt ,We,t 〉
(qt Kt We,t )

where

d(qt Kt )

qt Kt
= ((χtζe,t + (1−χt )ζh,t )(σ+σq

t )− (ae − ιt )

qt
+ rt )d t + (σ+σq

t )d Zt

and the result follows from here after some algebra. �

The expression for the wealth share dynamics is similar to the model with stochastic produc-

tivity except that only the price of risk for capital shock matters, and the exit rate τt disappears

from the drift. The solution methodology is also the same as before where equilibrium policies

are determined in the static inner step and the value function is solved in the outer time step

by solving a couple of PDEs. I use an implicit finite difference method with up-winding to

solve the PDEs. The up-winding preserves the monotonicity of the PDEs and helps achieve

convergence.

Asset pricing conditions

The expected return that the experts earn from investing in the capital is given by

dr v
t = (µR

e,t − (1−χt )εh,t )d t +χt (σq,k
t +σ)d Z k

t

where εh,t = ζh,t (σq
t +σ). That is, (1−χt )εh,t is the part of the expected excess return that

is paid by the experts to the outside equity holders, which is netted out. Consider a trading

strategy of investing $1 into the capital at time 0. Denoting vt as the value of this investment

strategy at time t , we have d vt
vt

= dr v
t , and

d(ξe vt )

ξe vt
= (−rt +µR

e,t − (1−χt )εh,t −χtεe,t )d t +diffusion terms
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where εe,t = ζe,t (σ+σq
t ), and ξe,t follows the process in (A.67). Since ξe vt is a martingale, the

drift equals to zero, which implies µR
e,t − rt = χtεe,t + (1−χt )εh,t It follows similarly for the

households with the difference that since they do not issue outside equity, their asset pricing

condition is µR
h,t − rt = εh,t �

While the quantitative analysis of the benchmark model in main text assumes that agents have

recursive utility and IES=1, I present and solve the model for a broader range of preference

specifications. I consider four different types of utility functions. Let

f (c j ,s ,U j ,s) =



ρ j log(c j ,t )−ρ jU j ,t if γ j = 1,% j = 1

c
1−γ j
j ,t

1−γ j
−ρ jU j ,t if γ j = %−1

j 6= 1

(1−γ j )ρ jU j ,t

(
log(c j ,t )− 1

1−γ j
log

(
(1−γ j )U j ,t

))
if γ j 6= 1,% j = 1

1−γ j

1− 1
% j

U j ,t

[(
c j ,t(

(1−γ j )U j ,t

)1/(1−γ j )

)1− 1
% j

−ρ j

]
if γ j 6= 1,% j 6= 1

(A.22)

I allow for preference heterogeneity in risk aversion and discount rate for generality. I solve for

a Markov equilibrium in the state variable zt ∈ (0,1) for a representative household and expert

by aggregating all agents within their respective group.

Proposition 9. The optimal consumption policy and price of risk are given by

Ĉe,t =


ρe if (log or Recursive (IES=1))

J−1/γe
e,t (zt qt )

1−γe
γe if CRRA

J

1−% j
1−γe

e,t

(zt qt )1−% j
if Recursive (IES 6= 1 )

(A.23)

Ĉh,t =


ρh if (log or Recursive (IES=1))

J−1/γh

h,t ((1− zt )qt )
1−γh
γh if CRRA

J

1−% j
1−γh

h,t

((1−zt )qt )1−% j
if Recursive (IES 6= 1 )

(A.24)

ζe,t =

χtψt

zt
(σ+σq

t ) if log

−σJ
e,t +σz

t +σq
t +γeσ if (CRRA or Recursive)

(A.25)

ζh,t =


(1−χtψt )
1−zt

(σ+σq
t ) if log

−σJ
h,t −

zt
1−zt

σz
t +σq

t +γhσ if (CRRA or Recursive)
(A.26)

Proof: The HJB equation is given by

sup
c,K

f (c j ,t ,U j ,t )+E [dU j ,t ] = 0 (A.27)

I consider three cases of utility functions separately.
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(a) Log utility The value function conjecture takes a logarithmic form

U j ,t = logKt + J j ,t (zt ) = logW j ,t + J̃ j ,t

and where the second equality follows from zt = We,t

qt Kt
= 1−Wh,t

qt Kt
. Also, f (C j ,t ,U j ,t ) = ρ j log(C j ,t )−

ρ jU j ,t . The value function derivatives are

∂U j ,t

∂W j ,t
= dW j ,t

W j ,t
;

∂2U j ,t

∂W 2
j ,t

=−d〈W j ,t ,W j ,t 〉
W 2

j ,t

;
∂U j ,t

∂ J̃h,t
= 1;

∂2U j ,t

∂ J̃ 2
j ,t

= ∂2 J̃ j ,t

∂ J̃ j ,t∂W j ,t
= 0

Applying Ito’s lemma and using the HJB, we get

sup
C ,θ j ,t

ρ j logC j ,t −ρ(logW j ,t + J̃ j ,t )+ rt −
C j ,t

W j ,t
+θ j ,t (σ+σq

t )ζ j ,t − 1

2
θ2

j ,t (σ+σq
t )2 +µ J̃

t = 0

where θe,t = χtψt

zt
and θh,t = 1−χtψt

1−zt
. Taking the first order conditions, we get the following

result for log utility.

ĉ j ,t = ρ j (A.28)

ζe,t = χtψt

zt
(σ+σq

t ) (A.29)

ζh,t =
1−χtψt

1− zt
(σ+σq

t ) (A.30)

(b) CRRA Utility The value function conjecture is

U j ,t = J j ,t (zt )
K

1−γ j

t

1−γ j

where J j ,t follows the stochastic differential equation
d J j ,t

J j ,t
=µJ

j ,t d t +σJ
j ,t d Zt whose drift and

volatility needs to be determined in the equilibrium. The HJB equation is derived directly in

terms of the capital kt instead of the wealth share zt . The value function derivatives are

∂U j ,t

∂J j ,t
= K

1−γ j

t

1−γ j
;

∂U j ,t

∂Kt
= J j ,t K

−γ j

t (A.31)

∂2U j ,t

∂J 2
j ,t

= 0;
∂2U j ,t

∂K 2
t

=−γ j J j ,t K
−(1+γ j )
t ;

∂2U j ,t

∂J j ,t∂Kt
= K

−γ j

t

Applying Ito’s lemma and using HJB, we get

sup
C ,K

−ρ J j ,t K
1−γ j

t

1−γ j
+C

1−γ j

t

1−γ j
+ J j ,t K

1−γ j

t

1−γ j
µJ

j ,t + J j ,t K
1−γ j

t (Φ(ιt )−δ) (A.32)

−σ2γ j

2
J j ,t K

1−γ j

t + J j ,t K
1−γ j

t σσJ
j ,t = 0
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At the optimum, the marginal utilities of consumption and wealth become equal. Rewriting

the value function in terms of the wealth and using the mapping qt kt = We,t

zt
= Wh,t

1−zt
, we get the

equilibrium consumption-wealth ratio

Ce,t

We,t
= (zt qt )

1−γe
γe

J
1
γe
e,t

;
Ch,t

Wh,t
= ((1− zt )qt )

1−γh
γh

J
1
γh

h,t

(A.33)

The risk premium of the experts and the households can be derived from the stochastic

discount factor which is given by

ξ j ,t = ξ j ,0e−ρ j t
(

C j ,t

C j ,0

)−γ j

This gives a relationship between the volatility of SDF and consumption: σξj ,t =−γ jσ
c
j ,t . The

consumption-capital ratio for the households and the experts is given by Ch,t

Kt
= ((1−zt )qt )1/γh

J
1/γh
h,t

and Ce,t

Kt
= (zt qt )1/γe

J 1/γe
e,t

. Combining this with the differential equation for SDF

dξ j ,t

ξ j ,t
=−rt d t −ζ j ,t d Zt

we get

ζe,t = γeσ
c
e,t =−σJ

e,t +σz
t +σq

t +γeσ; ζh,t = γhσ
c
h,t =−σJ

h,t −
zt

1− zt
σz

t +σq
t +γhσ (A.34)

Plugging in the optimal consumption-wealth ratio from (A.33) into HJB equation (A.32), we

get the expressions for µJ
j ,t

µJ
e,t = ρe − (zt qt )

1−γe
γe

J 1/γe
e,t

− (1−γe )
(
Φ(ιt )−δ− γe

2
σ2 +σJ

e,tσ
)

(A.35)

µJ
h,t = ρe − ((1− zt )qt )

1−γh
γh

J 1/γh

h,t

− (1−γh)
(
Φ(ιt )−δ− γh

2
σ2 +σJ

h,tσ
)

(A.36)

(c) Recursive Utility (IES=1) The value function conjecture is the same as that of CRRA utility,

and f (C j ,tU j ,t ) = (1−γ j )ρ jU j ,t

(
logC j ,t − 1

1−γ j
log

(
(1−γ j )U j ,t

))
. Plugging in the conjecture for
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value function in HJB equation (A.1) and applying Ito’s lemma5, we get

sup
C ,K

ρ J j ,t K
1−γ j

t [log
C j ,t

W j ,t
− 1

1−γ j
logJ j ,t + log(qt zt )]+ J j ,t

K
1−γ j

t

1−γ j
µJ

j ,t (A.37)

+ J j ,t K
1−γ j

t (Φ(ιt )−δ)− J j ,t K
1−γ j

t
1

2
γ jσ

2 + J j ,t K
1−γ j

t σσJ
j ,t = 0

As before, at the optimum, the marginal utilities of the wealth and the consumption become

equal. Using the value function expression in terms of wealth, we have

∂U j ,t

∂W j ,t
= ∂ f

∂C j ,t

J̃ j ,t W
−γ j

j ,t = (1−γ j )ρ j
U j ,t

C j ,t
=⇒ C j ,t

W j ,t
= ρ j

The stochastic discount factor for recursive utility is given by

ξ j ,t = exp

(∫ t

0

∂ f (C j ,s ,U j ,s)

∂U
d s

)
∂U j ,t

∂W j ,t

Writing the value function conjecture in terms of the wealth instead of the capital, we have

U j ,t = J̃ j ,t

W
1−γ j

j ,t

1−γ j
; f (C j ,t ,U j ,t ) = (1−γ j )ρ jU j ,t

(
logρ j − 1

1−γ j
J̃ j ,t

)
where J̃ j ,t = J j ,t

(qt zt )1−γ j
. The SDF then becomes

ξ j ,t = (1−γ j )exp

(∫ t

0

[
ρ j

(
(1−γ j )logC j ,s − log

(
(1−γ j )U j ,s

)−1
]
d s

)
U j ,t

W j ,t

This implies that σ(ξ j ,t ) =σ
(

U j ,t

W j ,t

)
. Computing the R.H.S and using

dξ j ,t

ξ j ,t
=−rt d t −ζ j ,t d Zt

we get the desired result. Plugging in the consumption-wealth ratio and the market price of

risk into the HJB equation (A.37), we obtain the expressions for µJ
j ,t

µJ
e,t = (γe −1)

(
ρe logρe + log(qt zt )

)+ρe logJe,t − (1−γe )(Φ(ιt )−δ− γe

2
σ2 +σσJ

e,t ) (A.38)

µJ
h,t = (γh −1)

(
ρh logρh + log(qt (1− zt ))

)+ρh logJh,t − (1−γh)(Φ(ιt )−δ− γh

2
σ2 +σσJ

h,t )

(A.39)

5The value function derivatives are the same as in the CRRA case given by (A.31).
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(d) Recursive Utility (IES different from unity)

The optimization problem is

sup
C j ,t .θ j ,t ,ιt

f (C j ,t ,U j ,t )+E [dU j ,t ] = 0

where

f (c j ,t ,U j ,t ) = 1−γ j

1− 1
% j

U j ,t

[(
C j ,t(

(1−γ j )U j ,t
)1/(1−γ j )

)1− 1
% j

−ρ j

]

where % j denotes the IES parameter. The conjecture for the value function is

U j ,t = J j ,t (zt )
K

1−γ j

t

1−γ j

where J j ,t follows the stochastic differential equation
d J j ,t

J j ,t
=µJ

j ,t d t +σJ
j ,t d Zt whose drift and

volatility needs to be determined in the equilibrium.6

As before, the HJB equation is derived directly in terms of the capital Kt instead of the wealth

share zt . Applying Ito’s lemma and using the HJB, we get

sup
c,K

1

1− 1
% j

(
C

1− 1
% j

j ,t

J

1− 1
% j

1−γ j

j ,t K
1− 1

% j

t

−ρ j

)
J j ,t K

1−γ j

t + J j ,t K
1−γ j

t

1−γ µJ
j ,t + J j ,t K

1−γ j

t (Φ(ιt )−δ) (A.40)

−σ2γ j

2
J j ,t K

1−γ j

t + J j ,t K
1−γ j

t σσJ
j ,t = 0

At the optimum, the marginal utilities of the consumption and the wealth become equal.

Rewriting the value function in terms of the wealth and using the mapping qt Kt = We,t

zt
= Wh,t

1−zt
,

we have

∂ fe,t

∂Ce,t
=C

− 1
%e

e,t J

1
%e −γe

1−γe
e,t (zt qt )γ j− 1

%e

∂ fh,t

∂Ch,t
=C

− 1
%h

h,t J

1
%h

−γh
1−γh

h,t ((1− zt )qt )
γ j− 1

%h

∂Ue,t

∂We,t
= Je,t

(zt qt )1−γe
W 1−γe

e,t

∂Uh,t

∂Wh,t
= Jh,t

((1− zt )qt )1−γh
W 1−γh

h,t

6Since the value function conjecture is the same as in CRRA case, the value function derivatives are given by
(A.31).
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Equating the marginal values, we get the respective optimal consumption-wealth ratios

Ce,t

We,t
=

J
1−%e
1−γe

e,t

(zt qt )1−%e
;

Ch,t

Wh,t
=

J
1−%h
1−γh

h,t

((1− zt )qt )1−%h
(A.41)

The stochastic discount factor for recursive utility is given by

ξ j ,t = exp

(∫ t

0

∂ f (C j ,s ,U j ,s)d s

∂U

)
∂U j ,t

∂w j ,t

Writing the value function conjecture in terms of the wealth instead of the capital, we have

U j ,t = J̃ j ,t

W
1−γ j

j ,t

1−γ j
; f (C j ,t ,U j ,t ) =

J̃ j ,t W
1−γ j

j ,t

1− 1
% j

[(
C j ,t

W j ,t

)1− 1
% j

J̃

1− 1
% j

γ j −1

j ,t −ρ j

]

where J̃ j ,t = J j ,t

(qt zt )1−γ j
. Plugging in the above expression in the stochastic discount factor, we

notice that σ(ξ j ,t ) =σ( U j ,t

W j ,t

)
. Computing the R.H.S and using

dξ j ,t

ξ j ,t
=−r f d t −ζ j ,t d Zt

we get the following result.

ζe,t =−σJ
e,t +σz

t +σq
t +γeσ (A.42)

ζh,t =−σJ
h,t −

zt

1− zt
σz

t +σq
t +γhσ (A.43)

Substituting the consumption-wealth ratio into the HJB equation (A.40), we the expression

for µJ
j ,t

µJ
e,t =

(γe −1)

1− 1
%e

(
(qt zt )%e−1 J

1−%e
1−γe

e,t −ρe

)
− (1−γe )(Φ(ιt )−δ− γe

2
σ2 +σσJ

e,t ) (A.44)

µJ
h,t =

(γh −1)

1− 1
%h

(
(qt (1− zt ))%h−1 J

1−%h
1−γh

h,t −ρh

)
− (1−γh)(Φ(ιt )−δ− γh

2
σ2 +σσJ

h,t )
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A.2 Appendix to Chapter 2

A.2.1 Proof of (2.3.1)

The proof can be done in two steps.

Step-1First, I refer to the result that infinitely wide neural nets trained by the gradient descent

are kernel regressions (Jacot et al. (2018)). Consider a recursive formulation of the neural

network introduced in the section (2.3.1).

h(l )(x) = 1√
dl

W (l )z (l ) +bl ∈Rdl+1

z (l )(x) =σ(W (l−1)h(l−1)(x)+b(l−1))

for l = 1, ...,L where the parameters W (l ) ∈Rdl+1×dl and b(h) ∈Rdl+1 are the weights and biases

respectively, and σ(·) is as defined in (2.3.1). The final layer of the neural network is given by

J (x ,θ) = h(L)(x) = 1√
dL

W (L)z (L) +bL (A.45)

where the parameters W (L) ∈ R1×dl and b(L) ∈ R are the weights and biases of the final layer

in the neural network. The parameter vector θ = {W (l ),b(l )}L
l=0 combines the parameters of

all layers in the network and is initialized with i.i.d standard normal random values. Then,

in the sequential limit of the width of hidden layers l1, l2, ..., lL → ∞, the co-ordinates of

the hidden layers converges asymptotically to an i .i .d Gaussian process with covariance

Σl−1 :Rdl−1 ×Rdl−1 →R that can be defined recursively as folllows.

Σ(0) = xT x ′′′+1

Λ(h)(x , x ′′′) =
(
Σ(l−1)(x , x) Σ(l−1)(x , x ′′′)
Σ(l−1)(x ′′′, x) Σ(l−1)(x ′′′, x ′′′)

)
∈R2×2,

Σ(h)(x , x ′′′) = Eu,v [σ(u)σ(v)]+1

for l = 1, ...,L, where (u, v) ∼ N (0,Λ(1)), where x and x ′′′ are two different input samples. Let us

define

Σ̇(x , x ′′′) = E(u,v)[σ̇(u)σ̇(v)] (A.46)

where σ̇ is the derivative of the activation function. The neural tangent kernel (NTK, hence-

forth) is defined as

Kt (x , x ′′′) = 〈∂J (x ,θ(t )

∂θ
,
∂J (x ′′′,θ(t )

∂θ 〉 (A.47)
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As shown in Jacot et al. (2018), this kernel converges in probability to a deterministic kernel

ΘL(x , x ′′′) as the width of hidden layers go to infinity, for all 0 ≤ t ≤ T . Thus, a sufficiently wide

deep neural network resembles a kernel regression with deterministic kernel.

Step-2Next step is to show that the NTK of well-posed PDE defined in (2.12) also converges to

a deterministic kernel with random parameter initialization. Without loss of generality, let us

consider a simplified PDE that takes the form

G [J ](x) = 0 x ∈Ω (A.48)

J (x) = g (x) x ∈ ∂Ω (A.49)

where G is a differential operator. Note that this formulation includes time dependent PDE

where t is one of the dimensions in x . The loss function after approximating J with a deep

neural network object is given by

L (θ) = 1

2

Nb∑
i=1

|J (x i
b)− g (x i

b)|2 + 1

2

N f∑
i=1

G [J ](x i
f ) (A.50)

where N f and Nb are the batch sizes for the training samples to approximate the PDE residual

and boundary condition respectively. Assume that the training samples are drawn randomly

at each iteration of the gradient descent. Let the continuous-time gradient flow of the PDE

approximation using a neural network trained with an infinitesimally small learning rate be

defined as
dθ

d t
=−∇L (θ) (A.51)

where L is the loss function. Let7 G J (t ) =G [J ](x ,θ);∀(t , x) ∈ΩT and J (t ) = J (x ,θ(t ));∀(t , x) ∈
ΩT ′ .

Lemma A.2.1. Given the training points to train the neural network that approximates the

PDE system and the gradient flow given in (A.51), J (t ) and G (t ) obey the following evolution[
d J (xb ),θ(t ))

d t
dG J (x f ,θ(t ))

d t

]
=−

[
K j j (t ) K j f (t )

K f j (t ) K f f (t )

]
·
[

J (xb ,θ(t ))− g (xb)

G J (x f ,θ(t ))

]
(A.52)

where K f j (t) = K j f (t)T and K j j (t) ∈ RNb×Nb , K j f (t) ∈ RNb×N f , and K f f (t) ∈ RNr ×Nr , whose

7I defineΩT := [T −kδt ,T − (k −1)δt ]×Ω, andΩT ′ := (T − (k −1)δt )×Ω for simplicity.
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(m,n)− th entry is given by

(K j j )mn(t ) = 〈d J (x i
b ,θ(t ))

dθ
,

d J (x i
b ,θ(t ))

dθ 〉
(K j f )mn(t ) = 〈d J (x i

b ,θ(t ))

dθ
,

dG J (x i
f ,θ(t ))

dθ 〉
(K f f )mn(t ) = 〈dG J (x i

f ,θ(t ))

dθ
,

dG J (x i
f ,θ(t ))

dθ 〉
Remark: The notation 〈·〉 denotes the inner product, and the matrices defined above are all

positive semi-definite. Let K (t ) :=
[

K j j (t ) K j f (t )

K f j (t ) K f f (t )

]
.

Theorem A.2.2. For the PDE (A.48) approximated with one hidden layer initialized with

random values and trained using a gradient descent with infinitesimally small learning rate,

we have the following

1. The NTK K (t ) of the PDE converges in probability to a deterministic kernel in the infinite

width limit.

K (0) =
[

K j j (0) K j f (0)

K f j (0) K f f (0)

]
→ K ∗

2. Assume thatΘ is uniformly bounded ∀t , and there exists a constant K > 0 such that

∫ T

0
|

Nb∑
i=1

(
J (xi

b ,θ(τ))− g (xi
b)

)|dτ≤ K

∫ T

0
|

N f∑
i=1

G J (xi
f ,θ(τ))|dτ≤ K

and the activation function σ is smooth with |σ(k)| ≤C for 0 ≤ K ≤ 4 where σ(k) denotes

the k − th order derivative of the σ. Then, in the limit N →∞,

sup
t∈[0,T ]

||K (t )−K (0)||2 = 0 (A.53)

Proof: The proof can be found in Wang et al. (2020).

The final step is to show that as the sample size increases, the outcome of the kernel regression

recovers the true function fully everywhere. This can be done following Mei et al. (2021).
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A.2.2 Approximation error

I consider a special case of quasi-linear parabolic PDE of the form8

G [J ](t , x) :=∂J

∂t
+

d∑
j

a(t , x)
∂J

∂x j
+

d∑
j

b(t , x)
∂2 J

∂xi∂x j
+

Â(t , x , J (t , x),∇J (t , x)) = 0; ∀(t , x) ∈ΩT (A.54)

with the boundary conditions

J (t , x) = J0(t , x); ∀(t , x) ∈Ω (A.55)

J (t , x) = J0(t , x); ∀(t , x) ∈Ω1
c (A.56)

G [J ](t , x) = 0; ∀(t , x) ∈Ω2
c (A.57)

∂J (t , x)

∂x
= 0; ∀(t , x) ∈ ∂ΩT (A.58)

whereΩ1
c ⊂Ω andΩ2

c ⊂Ω are the active subdomains where the boundary condition and PDE

are satisfied respectively. Note that the functions a(t , x) and b(t , x) are bounded and do not

depend on the function J . This is a valid assumption since the PDE in (2.12) is solved using

value function iteration where the coefficients are determined in the inner static loop and

hence do not depend on the function J that needs to be solved.9 I also assume that the PDE

(A.54) has a unique solution J (t , x) ∈C 1,2(ΩT ) with its derivatives uniformly bounded. I prove

the Theorem (A.2.4) for this special class of quasi-linear parabolic PDE, that is common in the

macro-finance literature (see Achdou et al. (2017)), using a single hidden layer neural network

with n number of neurons. Consider the class

Č n(σ) =
{

h(t , x) :R1+d →R | h(t , x) =
n∑

j=1
β jσ

(
α j t +

d∑
i=1

wi , j x j +bi
)}

(A.59)

such that Č (σ) =∪n≥1Č
n(σ), σ is the activation function, and (α j , wi , j ,bi ) are the parameters

of the neural network. The PDE (A.54) approximated with Ĵ(t , x |Θ) ∈ Č (σ) has the total loss

given by

L ( Ĵ ) = ‖G [J ](t , x)‖2
ΩT

+
∥∥∥∥∂ Ĵ (t , x |Θ)

∂x

∥∥∥∥2

∂ΩT

+∥∥ Ĵ (t , x |Θ)− J0
∥∥2
Ω+ (A.60)∥∥ Ĵ (t , x |Θ)− J0

∥∥2
Ω1

c
+‖G [J ](t , x)‖2

Ω2
c

= ‖G [J ](t , x)‖2
ΩC ,T

+
∥∥∥∥∂ Ĵ (t , x |Θ)

∂x

∥∥∥∥2

∂ΩT

+∥∥ Ĵ (t , x |Θ)− J0
∥∥2
ΩC

8Note that by definingΩT := [T−(k−1)∆T,T−k∆T ]×Ω ,ΩC := (T−(k−1)∆t )×Ωc and ∂ΩT := (T−(k−1)∆t )×∂Ω,
we recover the PDE (2.12) at kth time iteration. Also J0 is mapped to J̃ in (2.12).

9In fact, a(·) and b(·) are treated as coefficients but I prove for a general case where they could be functions of
the state variables.
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whereΩC ,T :=Ω2
c ∪ΩT andΩC =Ω∪Ω1

c

= ∥∥G [ Ĵ ](t , x |Θ)−G [J ](t , x)
∥∥2
ΩC ,T

+
∥∥∥∥∂ Ĵ (t , x |Θ)

∂x

∥∥∥∥2

∂ΩT

+∥∥ Ĵ (t , x |Θ)− J0
∥∥2
ΩC

≤
∫
ΩC ,T

∣∣∣∣∂J (x , t )

∂t
− ∂ Ĵ (t , x |Θ)

∂t

∣∣∣∣2

dµ1

+
∫
ΩC ,T

∣∣∣∣∣ d∑
i=1

a(t , x)
(∂J (t , x)

∂xi
− ∂ Ĵ (t , x)

∂xi

)∣∣∣∣∣
2

dµ1

+
∫
ΩC ,T

∣∣∣∣∣ d∑
i , j=1

b(t , x)
(∂2 J (t , x)

∂xi x j
− ∂2 Ĵ (t , x)

∂xi x j

)∣∣∣∣∣
2

dµ1

+
∫
ΩC ,T

∣∣Â(t , x , J (t , x),∇J (t , x))− Â(t , x , Ĵ (t , x),∇ Ĵ (t , x))
∣∣2

dµ1

+
∫
ΩC

∣∣ Ĵ (t , x |Θ)− J0(t , x)
∣∣2

dµ2 +
∫
∂ΩT

∣∣∣∣∂ Ĵ (t , x |Θ)

∂x

∣∣∣∣dµ3 (A.61)

Definition A.2.1. A subset S ⊂ C m(Ω) is uniformly m-dense on compacts of C m(Ω) if ∀ f ∈
C m(Ω), for all compact subsets X ofΩ and ∀ε> 0, ∃g ( f , X ,ε) ∈ S such that

|| f − g ||m,X < ε

Lemma A.2.3. There exists a function Ĵ ∈C n(σ) defined in (A.59) such that for all ε> 0, we

have

sup
(t ,x)∈ΩT

|J (t , x)− Ĵ (t , x |Θ)|+ sup
(t ,x)∈ΩT

∣∣∣∣∂J (t , x)

∂t
− ∂ Ĵ (t , x |Θ)

∂t

∣∣∣∣
+max

|i |≤2
sup

(t ,x)∈ΩT

∣∣∣∣∂(i ) J (t , x)

∂x (i )
− ∂(i ) Ĵ (t , x |Θ)

∂x i

∣∣∣∣< ε (A.62)

Proof: This lemma is a direct consequence of Theorem 3 in Hornik (1991) with m = 2. The

theorem states that if σ ∈ C m(R1+d ) is a non-constant and bounded function, then Č (σ) is

uniformly m-dense on compacts in C m(R1+d ) �

Lemma A.2.4. Consider a class of neural networks Č n with one hidden layer and n number of

neurons. Let us denote Ĵ n(t , x |Θ) as the neural network approximation of the function J that

solves (2.12), and let L be the loss function given in (2.20). Then, under certain conditions,

∃ Ĵ n(t , x |Θ) ∈ Č nsuch that

L ( Ĵ n(t , x |Θ)) → 0 as n →∞ (A.63)

Theorem A.2.5. Let Č (σ) be given by (A.59) with σ(·) a non-constant, bounded function, and
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let (µ1,µ2,µ3) be the measures with support in (ΩC ,T ,ΩC ,∂ΩT ) respectively. Assume that

Â(t , x, y, z) is Lipschitz continuous with Lipschitz constants growing at most polynomially in

y and z. Then, ∀ε> 0, ∃K > 0 such that there exists a function Ĵ (t , x|Θ) ∈ Č (σ) satisfying

L ( Ĵ ) < K ε2

Proof: If Â(t , x, y, z) is Lipschitz continuous with Lipschitz constants growing at most polyno-

mially in y and z, we have∣∣Â(t , x, Ĵ (t , x |Θ),∇ Ĵ (t , x |Θ))− Â(t , x, J (t , x),∇J (t , x))
∣∣

≤
(∣∣ Ĵ (t , x |Θ)

∣∣a1/2 + ∣∣∇ Ĵ (t , x |Θ)
∣∣a2/2 +|J (t , x)|a3/2 +|∇J (t , x)|a4/2

)
×

(∣∣ Ĵ (t , x |Θ)− J (t , x)
∣∣+ ∣∣∇ Ĵ (t , x |Θ)−∇J (t , x)

∣∣) (A.64)

for some constants 0 < {ai }4
i=1 <∞ This condition will be crucial in proving convergence as

shown below. Applying Young’s inequality with exponents p1 = p2 = 2, we get∫
ΩT

∣∣Â(t , x , Ĵ (t , x |Θ),∇ Ĵ (t , x |Θ))− Â(t , x , J (t , x),∇J (t , x)
∣∣2

dµ1

≤ 2
∫
ΩT

(∣∣ Ĵ (t , x |Θ)
∣∣a1 + ∣∣∇ Ĵ (t , x |Θ)

∣∣a2 +|J (t , x)|a3 +|∇J (t , x)|a4

)
×

(∣∣ Ĵ (t , x |Θ)− J (t , x)
∣∣+ ∣∣∇ Ĵ (t , x |Θ)−∇J (t , x)

∣∣)dµ1

Applying Hölder inequality
∥∥ f g

∥∥
1 ≤

∥∥ f
∥∥

p

∥∥g
∥∥

q for some constants p, q ∈ [1,∞) with 1
p + 1

q = 1,

we have∫
ΩC ,T

∣∣Â(t , x , Ĵ (t , x |Θ),∇ Ĵ (t , x |Θ))− Â(t , x , J (t , x),∇J (t , x)
∣∣2

dµ1

≤ 2

(∫
ΩC ,T

(∣∣ Ĵ (t , x |Θ)
∣∣a1 + ∣∣∇ Ĵ (t , x |Θ)

∣∣a2 +|J (t , x)|a3 +|∇J (t , x)|a4

)p

dµ1

)1/p

(∫
ΩC ,T

(∣∣ Ĵ (t , x |Θ)− J (t , x)
∣∣2 + ∣∣∇ Ĵ (t , x |Θ)−∇J (t , x)

∣∣2
)q

dµ1

)1/q

≤C1

(∫
ΩC ,T

(∣∣ Ĵ (Θ)− J (t , x)
∣∣a1 + ∣∣∇ Ĵ (Θ)−∇J (t , x)

∣∣a2 +|J (t , x)|a1∧a3 +|∇J (t , x)|a2∧a4)
)p

dµ1

)1/p

×
(∫

ΩC ,T

(∣∣ Ĵ (t , x |Θ)− J (t , x)
∣∣2 + ∣∣∇ Ĵ (t , x |Θ)−∇J (t , x)

∣∣2
)q

dµ1

)1/q

≤C1

(
εa1 +εa2 + sup

ΩC ,T

|J |a1∧a3 + sup
ΩC ,T

|∇J |a2∧a4

)
µ1(ΩC ,T )1/p

(
2ε2µ1(ΩC ,T )1/q

)
≤C2ε

2
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where C1,C2 <∞ are some constants that may depend on ε, and Ĵ(t , x |Θ) is abbreviated as

Ĵ (Θ) for brevity in some places. The condition (A.62) is used in the second last inequality. By

Fubini Theorem,

∫
ΩC ,T

∣∣∣∣∣ d∑
i=1

a(t , x)

(
∂J (t , x)

∂xi
− ∂ Ĵ (t , x)

∂xi

)∣∣∣∣∣
2

dµ1 ≤
d∑

i=1

∫
ΩC ,T

a(t , x)2
∣∣∣∣(∂J (t , x)

∂xi
− ∂ Ĵ (t , x)

∂xi

)∣∣∣∣2

dµ1

≤
d∑

j=1

∫
ΩC ,T

A2ε2dµ1 = d A2µ1(ΩC ,T )ε2

where the constant A <∞ bounds the function a(t , x). Similarly,

∫
ΩC ,T

∣∣∣∣∣ d∑
i , j=1

b(t , x)

(
∂2 J (t , x)

∂x j xi
− ∂2 Ĵ (t , x)

∂x j xi

)∣∣∣∣∣
2

dµ1 ≤
d∑

i=1

∫
ΩC ,T

b(t , x)2
∣∣∣∣(∂2 J (t , x)

∂x j xi
− ∂2 Ĵ (t , x)

∂x j xi

)∣∣∣∣2

dµ1

≤
d∑

j=1

∫
ΩC ,T

B 2ε2dµ1 = dB 2µ1(ΩC ,T )ε2

where the constant B <∞ bounds the function b(t , x). Finally, from the condition (A.62), we

have ∫
ΩC ,T

∣∣∣∣ Ĵ (t , x |Θ)

∂t
− J (t , x)

∂t

∣∣∣∣2

dµ1 ≤ ε2µ1(ΩC ,T )∫
ΩC

∣∣ Ĵ (t , x |Θ)− J0(t , x)
∣∣2

dµ2 ≤ ε2µ2(ΩC )∫
∂ΩT

∣∣∣∣ Ĵ (t , x |Θ)

∂x

∣∣∣∣2

dµ3 ≤ ε2µ3(∂ΩT )

Putting it together, we have for some constant K

L = ε2(C2 +d A2µ1(ΩC ,T )+dB 2µ1(ΩC ,T )+µ1(ΩC ,T )+µ2(ΩC )+µ3(∂ΩT )
))= K ε2 (A.65)

�

A.2.3 Benchmark model

Model set up

The return on capital held by each type of agent is given by

dR j ,t =
d(qt k j ,t )

qt k j ,t
+ (a j − ι j ,t )

qt
d t
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where qt is the price of each unit of capital that follows the process

d qt

qt
=µq

t d t +σq
t d Zt

The terms µq
t , and σq

t are endogenously determined in equilibrium. Using this dynamics for

the price, the return process can be written as

dR j ,t =
(

a j − ι j ,t

qt
+Φ(ι j ,t )−δ+µq

t +σσq
t

)
︸ ︷︷ ︸

µR
j ,t

d t + (σ+σq
t )d Zt (A.66)

Experts and households trade the capital and the experts are allowed to issue some outside

equity. However, they have a skin in the game constraint: i.e, they have to hold at least a

fraction χ ∈ [0,1] of equity in their balance sheet. In addition to the risky capital, the agents

also trade a risk free asset that pays a return rt . Since the markets are not complete, there is

no unique stochastic discount factor (SDF). Let ξe,t and ξh,t denote the SDF of experts and

households respectively. Then, the process for SDF is given as

dξ j ,t

ξ j ,t
=−rt d t −ζ j ,t d Zt (A.67)

where, ζ j ,t is the market price of risk. Since both agents invest in the risk-free asset, the drift of

the SDF process is the same for all agents. The aggregate output in the economy is given by

yt = At Kt

where Kt =
∫
E∪Hk j ,t d j , and At is the aggregate dividend that satisfies

At =
∫
H

ah
k j ,t

Kt
d j +

∫
E

ae
k j ,t

Kt
d j

Let the capital share held by expert sector be denoted by

ψt :=
∫
Ek j ,t d j∫

H∪Ek j ,t d j

Equilibrium: The agents optimize by maximising their respective utility functions, subject

to the wealth constraints starting from some initial wealth w j ,0. They solve

sup
c j ,t ,k j ,t

Et

[∫ ∞

t
f (c j ,s ,U j ,s)d s

]
(A.68)

s.t.
d w j ,t

w j ,t
= (rt −

c j ,t

w j ,t
+ qt k j ,t

w j ,t

(
(µR

j ,t − rt )− (1−χ j ,t )ζ j ′,t
)
d t +σw j ,t (σ+σq

t )d Zt j ∈ {e,h}
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where χ j ,t denotes the skin-in-the game constraint of agent j , and j ′ denotes the other type

of agent. The aggregator f (c j ,s ,U j ,s) is given in equation (A.22). By borrowing in the risk free

market at a rate rt and investing in risky capital, the agents obtain the market price of risk ζ j ,t

less the compensation to outside equity holders. Note that since the agents retain only the

fraction χ j ,t of risk in their balance sheet, the diffusion terms in wealth equation are given by

σwe ,t =
qt ke,t

we,t
χt (A.69)

σwh ,t =
qt kh,t

wh,t
+ (1−χt )

qt we,t

wh,t
(A.70)

The households do not issue outside equity and therefore χh,t = 1. For the simplicity of

notation, I denote χe,t as χt henceforth. The asset pricing conditions for the experts and the

households are given by10

ae−ιt
qt

+Φ(ιt )−δ+µq
t +σσq,t − rt

σ+σq,t
=χtζe,t + (1−χt )ζh,t (A.71)

ah−ιt
qt

+Φ(ιt )−δ++µq
t +σσa

t − rt

σ+σq
t

≤ ζh,t (A.72)

When the risk premium demanded by the experts is large, they will sell maximum allowed

equity to the households. Since the households do not issue outside equity, their asset pricing

condition is simpler. The equality holds in (A.72) if the households own some amount of

capital (ψt < 1). Combining the asset pricing conditions, we have

ae −ah

qt
≥χt (ζe,t −ζh,t ) (A.73)

min{χt −χ,ζe,t −ζh,t } = 0 (A.74)

The equality in (A.73) holds when both the experts and the households hold capital. In this

region, the experts issue maximum allowed equity (χt =χ) as dictated by the condition (A.74).

This is typically when the wealth share is low and the economy is in crisis state. The second

region is when the premium of experts is still higher than that of the households but all capital

is held by the experts and the economy is out of the crisis state. Since the premium of experts

is higher, the experts issue maximum equity in this region as well. In the third region, there is

perfect risk sharing where the premium of both type of agent becomes equal and χt is chosen

to be equal to the wealth share zt .

Solving the model: There are in fact an infinite number of agents in the economy but each

individual in type E and H are identical and have the same preferences. Therefore, one can

seek an equilibrium in which all agents in the same group take the same policy decisions. The

10This can be proved using the Martingale argument. See Appendix A.1.2 for the proof.
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system can be summarized with only one state variable: the wealth share of the experts which

is sufficient to characterize the wealth distribution agents. It is defined as

zt := We,t

qt kt
∈ (0,1)

where We,t =
∫
Ew j ,t d j and Kt =

∫
Ek j ,t d j +∫

Hk j ,t d j . Moving forward, we write Xh,t and Xe,t

to denote the aggregated quantity
∫
H x j ,t d j and

∫
E x j ,t d j respectively.

Proposition 10. The law of motion of the wealth share of experts is given by

d zt

zt
=µz

t d t +σz
t d Zt (A.75)

where

µz
t =

ae − ιt
qt

− Ce,t

We,t
+ (

χtψt

zt
−1)(σ+σq,t )(ζe,t − (σ+σq

t ))+ (1−χt )(σ+σq
t )(ζe,t −ζh,t )

σz
t = (

χtψt

zt
−1)(σ+σq

t )

Proof: The law of motion of agents aggregated by their type is given by

dWh,t

Wh,t
=

(
rt −

Ch,t

Wh,t
+ 1−χtψt

1− zt
(µR

h,t − rt )
)
d t + 1−χtψt

1− zt
(σ+σq

t )d Z k
t

dWe,t

We,t
=

(
rt −

Ce,t

We,t
+ χtψt

zt
(µR

e,t − rt )
)
d t + χtψt

zt
(σ+σq

t )d Z k
t

where Wh,t =
∫

j∈Hw j ,t d j and similarly for the experts, and the expressions qt Ke,t

We,t
= ψt

zt
and

qt Kh,t

Wh,t
= 1−ψt

1−zt
are used along with the definition of zt . �

A.2.4 Brunnermeier-Sannikov meets Bansal-Yaron

Proof of asset pricing conditions

Consider the problem of experts first. The expected return earned from investing in the risky

capital is given by

dr v
t = (µR

e,t − (1−χt )ε̄h,t )d t +χt (σR
t )T d Zt

where χt is the experts’ inside equity share. The experts have to pay the outside equity holders

(1−χt )ε̄h,t from the expected return that they earn, and hence this part is netted out from the

drift. Since they are only exposed to a fraction χt of their total investment in the risky capital,

the diffusion terms are multiplied by this fraction. For an investment of $1 in the risky capital,

the value of the investment strategy is given by

d(ξe,t vt )

ξe,t vt
= (−rt +µR

e,t − (1−χt )ε̄h,t −χt ε̄e,t )d t +difusion terms
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where the ε̄e,t = ζT
e,tσ

R
t and ξe,t is the SDF process given by (A.67). Since the stochastic process

vt is a martingale, the drift term should be zero. This gives us

µR
e,t − tt =χt ε̄e,t + (1−χt )ε̄h,t

The asset pricing condition for the households follows in a similar fashion except that they do

not issue outside equity, and hence we arrive at

µR
h,t − rt = ε̄h,t

where ε̄h,t = ζT
h,tσ

R
t �

Proof of Proposition 8

The law of motion of the wealth obtained by aggregating wealth and using law of large numbers

is given by

dWh,t

Wh,t
= (

rt − Ĉh,t +θh,t (µR
h,t − rt )+τt

We,t

Wh,t

)
d t +θh,t (σR

t )T d Zt (A.76)

dWe,t

We,t
= (

rt − Ĉe,t +θe,t ε̄e,t −τt
)
d t +θe,t (σR

t )T d Zt (A.77)

where Wh,t =
∫
Hw j ,t d j and We,t =

∫
Ew j ,t d j are the aggregate wealth within the respective

class. The wealth share of the experts is defined to be zt = We,t

We,t+Wh,t
. Also, the variables

θe,t := χtψt

zt
and by market clearing, θh,t = 1−χtψt

1−zt

Applying Ito’s lemma, we get

d zt

zt
= dWe,t

We,t
− d(qt kt )

qt kt
+ d〈qt kt , qt kt 〉

(qt kt )2 − d〈qt kt ,We,t 〉
(qt kt We,t )

where

d(qt kt )

qt kt
= (ε̄e,t (σ+σq

t )− (ae,t − ιt )

qt
+ rt )d t + (σR

t )T d Zt

d〈qt kt , qt kt 〉
(qt kt )2 = ||σR

t ||2d t

d〈qt kt , we,t 〉
qt kt we,t

= (
θe,t ||σR

t ||2
)
d t

We get the desired result after few steps of algebra. �
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Proof of Proposition 5

The conjecture for the value function is

U j ,t =
(J j ,t (x)Kt )1−γ

1−γ (A.78)

where Kt is the aggregate capital, and the the stochastic opportunity set J j ,t satisfies the

equation

d J j ,t

J j ,t
=µJ

j ,t d t + (σJ
t )T d Zt

The objects µJ
j ,t and σR

t needs to be determined in equilibrium. Applying Ito’s lemma to U j ,t

and using the HJB equation sup
c,k

f (c j ,t ,U j ,t )+E [dU j ,t ] = 0, with

f (c j ,t ,U j ,t ) = (1−γ)ρU j ,t

(
logc j ,t − 1

1−γ log
(
(1−γ)U j ,t

))
we get

sup
C

ρ(J j ,t Kt )1−γ[log
C j ,t

W j ,t
− logJ j ,t + log(qt z j ,t )]+ (J j ,t Kt )1−γ

1−γ µJ
j ,t + (J j ,t Kt )1−γ(Φ(ιt −δ))

− (J j ,t Kt )1−γ 1

2
γσ2 + (1−γ)(J j ,t Kt )1−γσσJ ,k

j ,t −
γ

2
(J j ,t Kt )1−γ||σJ ||2 +τt (Uh,t −Ue,t ) = 0

(A.79)

By envelope condition, the marginal utilities of wealth and consumption should equal at the

optimum. Since J̃ = J
qz , we can rewrite

U j ,t =
( J̃ j ,t W j ,t )1−γ

1−γ ; f (C j ,t ,U j ,t ) = (1−γ)ρU j ,t (log
C j ,t

W j ,t
− J̃ j ,t ) (A.80)

Using this, we have

∂U j ,t

∂W j ,t
= ∂ f j ,t

∂C j ,t
=⇒ ( J̃ j ,t W j ,t )−γ = (1−γ)ρ

U j ,t

C j ,t
=⇒ C j ,t

W j ,t
= ρ

That is, the optimal consumption-wealth ratio is equal to the discount rate. The SDF for

recursive utility is expression as

ξ j ,t = exp

(∫ t

0

∂ f (C j ,s ,U j ,s)

∂U
d s

)
∂U j ,t

∂W j ,t
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Utilizing (A.80), we get

ξ j ,t = exp

(∫ t

0

[
(1−γ)ρ(logρ− J̃ j ,t )

]
d s

)
U j ,t

W j ,t

Thus, the volatility of the SDF is equal to the volatility of the quantity U
W . Let us define

v(J , x) := U
W . Using Ito’s lemma, equating the coefficients of volatility terms to the volatility of

SDF equation (A.67), we get the result. �

Proof of Proposition 6

The first equation (2.58) comes from plugging in the risk premium from (5) in the asset pricing

condition (A.73). The volatility of the opportunity set σJ in the risk premium is expressed

in terms of the partial derivative of J with respect to the state variables. This can be easily

derived using Ito’s lemma and comparing the diffusion terms of (2.30) and d J(z, x). The

second equation (2.59) comes from the capital market clearing condition and using zt = Wt
qt Kt

,

ψt = Ke,t

qt Kt
. To derive (2.60) and (2.61), first apply Ito’s lemma to q(zt , x) to get

d q(x) = ∂q

∂x
d x + 1

2

∂2q

∂2x2 d〈x , x〉

= drift terms+ ∂q

∂x
σx

Matching the volatility terms with the capital price equation (2.4), we get the result. �

Proof of Proposition 7

Applying Ito’s lemma to J (t , x), we get

d J (x) = ∂J

∂x
d x + 1

2

∂2 J

∂x2 d〈x , x〉)d t

=
( ∂J

∂x
µx + 1

2

∂2 J

∂x2 (σx )2
)
d t +volatility terms

Comparing this with the equation (2.30) and matching the drift terms, we get the expression

JµJ = ∂J

∂x
µx + 1

2

∂2 J

∂x2 (σx )2

Adding the fase time-derivative, it remains to derive the quantity µJ which can be obtained

from the HJB equation (A.79). The term A

(
x , J , ∂J

∂x

)
includes both µJ , as well as the diffu-

sion term ∂J
∂xµ

x . The term B

(
x , J , ∂J

∂x

)
represents the diffusion terms (σx )2. This proves the

proposition. �
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Implementation details

Data efficiency: One of the main advantages of using neural network to fit the PDE is data

efficiency. For the benchmark model, I use 1000 grid points for space dimension in the

inner Newton-Raphson method. When it comes to training the neural network, I randomly

sample 300 points in each iteration. At kth iteration, the function to be solved is denoted

by J(T −k∆t , z) whose economic behavior is governed by the given PDE in the domain [T −
k∆t ,T −(k−1)∆t ]×Ωz . I randomly sample time points from the range [T −k∆t ,T −(k−1)∆t ]

in order to avoid errors in computing gradients with respect to time dimension. The 300 grid

points include these time points as well. Figure () presents the sparse grid used for training.

The task is to solve for the function J (T −k∆t , z) such that the PDE is respected in the domain

[T −k∆t ,T − (k −1)∆t ] along with bounding conditions in the domain (T − (k −1)∆t )×Ω and

(T − (k −1)∆t )×∂Ω.

Simplicity in coding: I rely on Tensorflow, a popular library developed by Google to copmute

derivatives in an efficient way. The method t f .g r adi ent s computes the required symbolic

partial derivatives, which are then collected to form the PDE loss residual. In a similar fashion,

the bounding network and active network can computed. An important thing to note is

that the module t f .g r adi ent s creates a computational graph and does not perform the

calculation yet. Once all networks in ALIEN are built, one can start the tensoflow session

which then initiates the computation of gradients. This allows us to build the model first

and then distribute the data efficiently as demonstrated later. The code snipper (A.1) shows

how to approximate the function J using a neural network. The inputs are the state variables

along with the weights and biases which are the parameters of the neural network. Before

training begins, the weights are initialized using Xavier initialization as explained earlier. The

snippet (A.2) demonstrates the computation of PDE network. The inputs are the function

Ĵ approximated using the neural network along with advection, diffusion, and linear terms

which are PDE coefficients.11 The gradients of the approximated function Ĵ with respect to the

state variables are computed using automatic differentiation through the tensorflow module

t f .g r adi ent s. Note that automatic differentiation is commonly used in machine learning to

obtain derivatives of functions with respect to the neural network parameters. Here, I utilize

automatic differentiation to obtain derivatives with respect to the state variables. Apart from

this difference, the gradient computation is standard. One can notice that the coding effort

involved in computing the derivatives is very minimal.

1 def J(z,t):
2 J = neural_net (tf. concat ([z,t],1),weights , biases )
3 return J
4

Listing A.1 – Approximating J using a neural network: Benchmark model

1 def f(z,t):
2 # compute fundamental network Jhat

11The advection, diffusion, and linear term coefficients are calculated before starting the training process and
hence they can be simply passed as inputs into the neural network algorithm.
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3 J = J(z,t)
4 # compute first partial derivatives
5 J_t = tf. gradients (J,t)[0]
6 J_z = tf. gradients (J,z)[0]
7 # compute second partial derivatibes
8 J_zz = tf. gradients (J_z ,z)[0]
9 # compute PDE residual

10 f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J
11 return f

Listing A.2 – Constructing a regularizer: Benchmark model

While the benchmark model can be solved using traditional methods discussed earlier, it is

not trivial to extend these methods to solve models in higher dimensions. In finite difference

schemes, it is not only problematic to maintain the monotonicity but also difficult to code

especially in the case of implicit schemes. For example, Hansen et al. (2018) solves a collection

of nested macro-finance models in 3 dimensions which involves setting up dimension-specific

matrices to solve the PDEs. It is not only difficult to code but also requires high performance

computing libraries such as Paradiso (specific to C++) to solve large linear systems that show

up in the implicit finite difference scheme. In contract, the framework proposed in this paper

involves less coding effort in scaling to higher dimensions. To appreciate the simplicity, I

demonstrate sample codes from the capital misallocation model considered in Section 2.5. In

code snippet (A.3), the function J is approximated using the neural network. The inputs are 4

state variables and 1 time dimension, along with weights and biases which are the parameters

of the network. As before, the weights go through Xavier initialization before the learning

begins. The snippet (A.4) constructs the regularizer corresponding to the PDE network. The

inputs are approximated function Ĵ along with the PDE coefficients that are known. Using

automatic differentiation, one can easily obtain the partial derivatives and compute the PDE

residual. It only takes a few additional lines of coding to move from a 1 dimensional model to 4

dimensional model. In contrast, it is not at all trivial to move easily to higher dimensions using

finite difference schemes. The ease in implementation shifts the burden from the modeler

to Tensorflow thereby freeing up time to focus on more important issues from an economic

standpoint.

1 def J(z,t):
2 J = neural_net (tf. concat ([z,t],1),weights , biases )
3 return J
4

Listing A.3 – Approximating J using a neural network: 4D model

1 def net_f(z,g,s,a,t):
2 # compute fundamental network Jhat
3 J = J(z,g,s,a,t)
4 # compute first partial derivatives
5 J_z , J_g = tf. gradients (J,z)[0], tf. gradients (J,g)[0]
6 J_s , J_a = tf. gradients (J,s)[0], tf. gradients (J,a)[0]
7 J_t = tf. gradients (J,t)[0]
8 # compute second partial derivatives
9 J_zz = tf. gradients (J_z ,z)[0]

10 J_gg = tf. gradients (J_g ,g)[0]
11 J_ss = tf. gradients (J_s ,s)[0]
12 J_aa = tf. gradients (J_a ,a)[0]
13 J_zg = tf. gradients (J_z ,g)[0]
14 J_zs = tf. gradients (J_z ,s)[0]
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15 J_za = tf. gradients (J_z ,a)[0]
16 # compute PDE residual
17 f = J_t + diffusion_z * J_zz + diffusion_g * J_gg + \
18 diffusion_s * J_ss + diffusion_a * J_aa + \
19 advection_z * J_z + advection_g * J_g + \
20 advection_s * J_s + advection_a * J_a + \
21 cross_term_zg * J_zg + cross_term_zs * J_zs + \
22 cross_term_za * J_za - linearTerm * J
23 return f

Listing A.4 – Constructing a regularizer: 4D model

Distributed learning: The concept of distributed learning is not new and entails utilization

of multiple workers or GPUs to speed up computation. Specifically, data parallelism works

by dividing up the data into pieces (or mini-batches in the language of machine learning)

and sending to different workers that will run the data through the same model. Algorithm

2 presents a simple data parallelism approach. There are a few bottlenecks presented by

this procedure. First, it requires the user to employ a library that can communicate across

workers. Secondly, and more importantly, the communication overhead resulting from the

cross-worker interface may be significant thereby defeating the purpose of using a distributed

algorithm. For example, Sergeev and Balso (2018) finds that roughly half of the computational

resources are lost due to the overhead when they train a big data model on 128 GPUs. The

reason for such heavy overhead is that the default way of communicating across workers is

through a parameter sharing approach, where each node assumes the role of either a worker

or a parameter server. The role of worker is to train the model, and the parameter server

aggregates the gradients. The user is left to decide the optimal ratio of parameter server

to worker. A small ratio leads to a large computational bottleneck, and a large ratio leads

to communication overhead. Andrew Gibiansky (2017) at Baidu presents an inter-worker

communication algorithm that bypasses these problems. It is based on ring-AllReduce, where

each worker communicates with its two neighbours only in a ring-like fashion for a total of

2∗ (N −1) times. During the first N −1 communications, each worker sends its data to the

neighbours, and receives the data from the neighbors to store it in the buffer. In the next N −1

communications, the workers receive the data from the neighbours and update the buffer.

This algorithm is shown to the optimal one for the utilization of the bandwidth provided the

buffer is large enough.
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Algorithm 2

1: procedure DISTRIBUTED ALGORITHM

2: Assign a chief worker

3: Divide data by number of workers

4: while wor ker < N do .N is number of workers

5: Assign model to current worker

6: Run the data through the model

7: Compute gradients

8: Send gradients to chief worker

9: Average gradients from multiple workers

10: Update the model

Horovod: Sergeev and Balso (2018) leverages the advantages of ring-AllReduce algorithm and

combines it with Tensorflow to build libraries that facilities easy implementation of distributed

learning. The user only has to add a few lines to code to enable a hybrid parallelization of the

deep learning algorithm. Algorithm 3 presents the pseudo-code for implementing Horovod.

Algorithm 3

1: procedure HOROVOD

2: Initialize Horovod

3: Assign a GPU to each tensorflow process

4: Start a tensorflow session

5: Split data based on number of workers

6: Build deep learning model and set up loss functions

7: Wrap the optimizer with Horovod optimizer . To average gradients

8: Initiate Tensorflow session to train the deep learning model

9: Broadcast variables from chief worker to all other workers . This makes sure that all

workers have the same initial parameters in the model.

10: Train the model until convergence

The code snippet (A.5) presents the implementation of Horovod to ALIENs. Each line in the

pseudo-code (3) can be implemented simply by calling a module in Horovod library as seen

in the code snippet. This again shifts the burden from the modeler to the library that not

only frees up the modeler’s time but also eliminates the necessity to deal with inter-worker

communication issues that are rarely of interest to an economist.
1 def J():
2 ...
3 def net_f ():
4 ...
5

6 hvd.init () # initialize Horovod
7 config = tf. ConfigProto () #pin GPUs to processes
8 config . gpu_options . visible_device_list = str(hvd. local_rank ()) # assign

chief worker
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9 config . gpu_options . allow_growth = True # enable GPU
10 sess= tf. Session ( config = config ) # Configure tensorflow
11 if hvd.rank () ==0:
12 ... # assign a piece of data to chief worker
13 else:
14 while hvd.rank () < hvd.size ():
15 ... # assign a piece of data to each worker
16

17 def build_model ():
18 # initialize parameters using Xavier initialization
19 # parametrize the function J using J()
20 #buld loss function using net_f ()
21 #set up tensorflow optimizer in the variable name opt
22 optimizer = hvd. DistributedOptimizer (opt)
23 # minimize loss
24 # initialize Tensorflow session
25 bcast = hvd. broadcast_global_variables (0) # Broadcast parameters to all

workers
26 sess.run(bcast)
27 #train the deep learning model

Listing A.5 – ALIENs using Horovod

A.3 Appendix to Chapter 3

Figure A.1 – The figure presents the histogram of franchise value of all listed BHCs
in the US between the year 2001 and 2018. The franchise value is computed as
Market value of equity + Book value of liabilities - (Book value of asset - Goodwill) scaled by
(Book value of assets - Goodwill). The data source is given in Table (3.1).
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Table A.3 – This table estimates the determinants of franchise value by regressing fi ,t on
iCost/asset s and various controls where all regressors are lagged by one quarter. The data is
for all listed US Bank Holding companies from the year 2001 till 2018 at quarterly frequency.
All variables are winsorized at 1% level. Standard errors are robust to heteroskedasticity in
errors.

(1) (2) (3)
fi ,t fi ,t fi ,t

logAssets 0.0033∗∗ 0.001∗∗∗ 0.001∗∗

(0.00) (0.00) (0.038)

iCost/assets -0.57∗∗∗ -0.56∗∗

(0.00) (0.02)

deposits/assets 0.016∗∗∗ -0.002
(0.00) (0.70)

domestic assets/assets -0.024∗∗∗ -0.03∗∗∗

(0.00) (0.00)

leverage -0.04∗∗∗ -0.03 ∗

(0.00) (0.08)

deposit power 1.42∗∗∗ 2.37∗∗∗

(0.00) (0.00)

govt. guarantee 0.54∗∗∗ 0.50∗∗∗

(0.00) (0.00)

capital ratio 0.0002
(0.34)

N 22,009 22,009 5,138
Fixed Effects Bank Bank Bank
R2 0.73 0.79 0.79

p-values in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3. Appendix to Chapter 3

Table A.4 – This table studies the relationship between bank probability of default and franchise
value. The probability of default is proxied by a dummy variable di that takes value 1 if the bank
i filed for bankruptcy in the time period considered. The data is for all listed US Bank Holding
Companies from the year 2001 till 2018 at quarterly frequency. All variables are winsorized at
1% level. Standard errors are robust to heteroskedasticity in errors.

(1) (2) (3)
di di di

log Assets 0.00696∗∗∗ 0.0118∗∗∗ 0.0151∗∗∗

(0.000) (0.000) (0.000)

franchise value -0.448∗∗∗ -0.472∗∗∗

(0.000) (0.004)

deposit/assets -0.139∗∗∗ -0.168∗

(0.002) (0.051)

domestic/assets 0.0968∗∗ 0.156∗

(0.035) (0.063)

trading assets/assets 2.648∗∗∗ 1.484∗

(0.000) (0.095)

interest income/operating income -0.00640 -0.0245
(0.622) (0.738)

leverage -0.111∗∗∗ -0.191∗∗

(0.000) (0.014)

capital ratio -0.00102
(0.640)

_cons -0.0718∗∗∗ -0.0315 -0.0142
(0.000) (0.518) (0.907)

N 31516 23925 5154
Fixed Effect Time Time Time
R2 0.005 0.052 0.052

p-values in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix A. Appendix

Table A.5 – This table studies the relationship between bank probability of default and franchise
value. The probability of default is proxied by a dummy variable ai that takes value 1 if the
bank i sought assistance from FDIC to continue as ongoing concern in the time period
considered. The data is for all listed US Bank Holding Companies from the year 2001 till 2018
at quarterly frequency. All variables are winsorized at 1% level. Standard errors are robust to
heteroskedasticity in errors.

(1) (2) (3)
ai ai ai

log Assets 0.00832∗∗∗ 0.00565∗∗∗ 0.0106∗∗∗

(0.000) (0.000) (0.000)

franchise value -0.329∗∗∗ -0.266∗∗∗

(0.000) (0.000)

deposit/assets 0.0396∗∗∗ 0.00958
(0.000) (0.554)

foreign/assets -0.0987∗∗∗ -0.0404∗∗

(0.000) (0.038)

trading/assets 3.305∗∗∗ 2.384∗∗∗

(0.000) (0.004)

interest income/operating income 0.0228 0.0801∗∗∗

(0.137) (0.001)

leverage -0.180∗∗∗ -0.115∗∗

(0.000) (0.019)

capital ratio 0.00305∗∗∗

(0.000)

_cons -0.108∗∗∗ 0.148∗∗∗ -0.0980
(0.000) (0.000) (0.232)

N 31516 23925 5154
Fixed Effect Time Time Time
R2 0.021 0.096 0.091

p-values in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3. Appendix to Chapter 3

Figure A.2 – This figure presents the time series of operating expense to asset ratio for the
banks and the deposit rate, both averaged across all BHCs in the US. The data is at quarterly
frequency between the period 1986Q1 to 2020Q4. The data source is given in Table (3.1). The
values are annualized and is in percentage terms. The shaded background represent NBER
recessionary periods.
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Appendix A. Appendix

Figure A.3 – This figure presents the time series of individual components of operating ex-
penses scaled by total assets for the banks and the deposit rate, both averaged across all BHCs
in the US. The data is at quarterly frequency between the period 1986Q1 to 2018Q4. The
data source is given in Table (3.1). The values are annualized and is in percentage terms. The
shaded background represent NBER recessionary periods.
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A.3. Appendix to Chapter 3

Figure A.4 – Franchise value of BHCs in the US. Blue bars correspond to
banks with z-score value in top 25-percentile, and red bars correspond to the
banks with z-score in bottom 25-percentile. Franchise value is computed as
Market value of equity + Book value of liabilities - (Book value of asset - Goodwill) scaled
by (Book value of assets - Goodwill). The data is at quarterly frequency. The data source is
given in Table (3.1).
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École Polytechnique Fédérale de Lausanne (SFI) Princeton University
+41 21 693 01 36 +1 609-258-4811
pierre.collin-dufresne@epfl.ch markus@princeton.edu

Professor Julien Hugonnier
College of Management of Technology
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