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Abstract:
Drastic variations of energy costs are witnessed in past decades, especially for low-carbon technologies, where
decreasing and increasing trends co-existed. Estimating the cost evolution in the future is hence essential in
long-term energy planning. Despite a number of existing studies, the estimated costs show strong hetero-
geneity. Additionally, emerging technologies, such as electrolysis and CCUS (carbon capture, utilisation and
storage), have gained limited attention. To improve the plausibility of the cost projection, we analysed the rela-
tionship between accumulated installation and the corresponding CAPEX for 14 low-carbon technologies, and
applied 5-8 learning curves (LRs) via Non-Linear Optimization (NLP) for projecting the cost evolutions towards
2050. The LRs were carefully selected based upon the index of Coefficient of Determination, and calibrated by
comparison to a bunch of existing literature. Based upon our results: (1) residential PV and onshore wind rank
the highest and lowest respectively in terms of the decreasing potential; (2) the majority of energy technologies
are promising to achieve 36% - 74% cost reduction in 2050 compared to 2020, with a mean value around 50%.
This study can be helpful as benchmark for energy stakeholders in decision-making towards carbon neutrality.
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1. Introduction
Energy transition is a key aspect in today’s environmental crisis while having significant impacts on the social
and economical dimensions. Long-term planning in order to achieve net-zero emissions by 2050 is therefore
a necessary but very complex task. In order to facilitate decision making for a highly coupled energy system,
where low carbon technologies are supposed to expand in large scale in the coming decades [26, 23], the
Energy Center and IPESE group (Industrial Process and Energy Systems Engineering) of EPFL developed
the Energyscope (ES) calculator. ES is an optimization bottom-up energy system model. It differs from other
energy system models by its large modelling scope, i.e. electricity, heat, mobility, storage and CCUS, as well
as its low computation time. Within the scope of ES, studying the prospective cost evolution of low carbon
technologies by reliable predictions is crucial, as it is a key limiting factor for their large development.
Tsiropoulos et al. (2018) [32] have performed a prospective study on the cost of a large selection of low carbon
technologies and sub-technologies. They have considered one single historic data point (2015) and applied
constant learning rates, given a projected capacity growth until 2050. NREL (National Renewable Energy
Laboratory) annually releases projections on both low and high carbon technology costs and performance
data until 2050 through its ATB (Annual Technology Baseline) [27]. It is based on a set of economical input
assumptions as well as different future capacity scenarios. However, it does not refer to learning curve theory.
IEA proposes projections for capital costs for the main energy technologies per geographical region (US, EU,
China, India) [8]. However, these are sparse results, i.e. milestone predictions for 2030 and 2050.
From an economic perspective, the energy technology costs are influenced by the installed quantities in market.
It is thus essential for analyzing the bilateral relationship of the installed capacity and technological costs. In
this study, we aim at exploring the possible cost evolution on 8 low carbon technologies, divided into 14 low
carbon sub-technologies, between 2021 and 2050. Concretely, the objectives of the study lie in: 1) determining
a modelling approach for analyzing the relationship between the installed capacity and investment cost of the
main energy technologies; 2) validating the methodology in (1) by assessing historical data; and 3) applying
the model in future years in order to generate the cost predictions for main energy technologies, and calibrating
the results with other literature.

http://www.energyscope.ch/


2. Methodology
2.1. Introduction
Cost is commonly regarded as a function of the commodity quantity [38, 31]. A typical methodology is the
learning curve theory. Wright (1936) described the evolution of production costs resulting of the learning
process in the aircraft industry [35]. Since then, learning curve models have been applied to several industries
to explain cost reductions due to learning. In 1979, Yelle already accounted 90 articles that used learning curve
theory [37]. The learning curve theory assumes that the cost of a technology decreases with time accordingly
to the installed capacity thanks to the learning-by-doing process. They can be used for modelling the time to
produce a single unit, number of units produced per time interval, or the percentage of non-conforming units.
The present work focuses on cost-related learning curves.
Table 1 shows the learning curves selected for testing in our study. Among these expressions, Wright’s, S-curve
and Plateau’s forms were historically used a lot to model learning-by-doing processes [1]. Other candidates
such as Standford-B and DeJong’s are very close to the aforementioned ones. Boone’s form [2] is a more
recent learning curve form, that has been chosen for its decreasing learning rate (LR) property, the LR being
the observed cost reduction after doubling the cumulative capacity (see Eq. 3). The parametric Sigmoid (also
known as S-curve, but mathematically different than the here called S-curve) is an input from authors. It has
been included in order to fit the case of piecewise dynamics, e.g. a strong cost decrease period followed by
a stabilizing cost period. Linear, logarithmic, exponential and 2nd order polylogarithmic forms are more usual
regression expressions which are a priori not related to the learning curve theory. However, they were kept
on comparison purpose. In these formulations, y is the investment cost [USD2018/kW], x is the cumulative
capacity [GW] and a, b, c, d and M are technology-specific parameters to identify.

Table 1: Learning curve expressions

Type Expression
Linear y = a + bx
Logarithmic y = a + b log(x)
Exponential log(y ) = a + bx
Log-linear (Wright) log(y ) = a + b log(x)
2nd Order Polylogarithmic log(y ) = a log(x) + b log(x)2 + c
S-curve y = a[M + (1 − M)(x + c)b]
Plateau y = axb + c

Boone y = ax
b

1+ x
c

Parametric Sigmoid y = a
b+exp(−cx) + d

2.2. Parameters identification and assessment method
Given a set of data points, the parameters (a, b, c, d , M) of the learning curve expressions are found by
solving linear/non-linear optimization problems (LP and NLP). It is achieved via the minimisation of squared
errors between the learning curve function f̂ and the discrete function f of real data points, illustrated by Eq. 1.
In our study, all the technologies are tested via this process for the complete set of learning curves1.

argmin
a,b,c,d ,M

SE = {(a, b, c, d , M)|min
∑
x∈X

(f̂ (x , a, b, c, d , M) − f (x))2} (1)

In Eq. 2 we define the coefficient of determination R2 minimising the residual error between real and predicted
data. yi represents the historic, i.e. real, data values and fi the predicted data values.

R2 = 1 −
∑

i (yi − fi )2∑
i (yi − y )2 (2)

The acceptance of the learning curve depends on:

1. the plausibility analysis of the estimated cost in 2050;

2. the coefficient of determination.
1The solving and visualisation files are available on this repository

https://github.com/matthieu-str/prospective-study-on-the-cost-evolution-for-key-energy-technologies.git


The first requirement ensures a feasible cost for the 2021-2050 period, i.e. the function should be monotonic,
non-negative and within a certain acceptable range estimated via literature results. The second requirement
selects the learning curve that maximises the R2, implying a low SE.

3. Data
3.1. Historical Data
The technologies under study are: 1) Residential, utility-scale and commercial solar PV, 2) CSP (Concen-
trated Solar Power), 3) Offshore and Onshore Wind power, 4) Total Hydro-power2, 5) Geothermal energy, 6)
GSHP (Ground-Source Heat Pumps, approximated as decentralized heat pumps) and DHP (Decentralized
Heat Pumps), 7) ALK (Alkaline), PEM (Polymer Electrolyte Membrane) and SOEC (Solid Oxide Electrolyzer
Cell) Electrolysis, 8) CO2 capture. Historical data that is collected from a variety of literature is represented
in Figure 1. A data point is characterized by three dimensions: the date (year), the cumulative capacity [GW]
and the weighted mean investment cost [USD2018/kW]. The costs and capacities are considered on a global
perspective. However, due to lack of data, national data may be used instead of global one. Moreover, due to
limited data availability for technologies that have not yet been industrialized in large scale, i.e. ALK electrolysis,
PEM electrolysis, SOEC electrolysis and carbon capture, we collected the values from specific applications,
other than using the mean value as a basis for calculation. Data points for these four technologies are therefore
aligned on the same vertical line when they belong to the same year.
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(a) Residential PV. Cost on Swiss
market. [10] [19]
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(b) Commercial PV. Cost on French
market. [10] [19]
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(c) Utility-scale PV [10] [19]
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(d) CSP [18] [19]
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(e) Onshore wind [18] [19]
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(f) Offshore wind [18] [19]

Figure 1: Historical data

2Total hydro-power is defined as the sum between run-of-river hydro and pumped-storage hydro
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(g) GSHP. Cost on Swiss market3,
Swiss capacities. [20]
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(h) Geothermal energy [18] [19]
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(i) Total hydro-power [10] [19]
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(j) ALK electrolysis [6] [4]
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(k) PEM Electrolysis [7] [4]
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(l) SOEC Electrolysis [7] [4]
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(m) Carbon capture [14] [13]. Mtpa:
Million tonne per annum.

Figure 1: Historical data (continued from previous page)

3.2. Future Capacities
Future capacity predictions have been collected in the literature and are given in Table 2. They were chosen
within the scope of the target of a net-zero energy system by 2050. One of the major sources is the Net-Zero
by 2050 Roadmap from IEA [8].
These predictions are given under the form of milestones, often one per decade, e.g. 2030, 2040 and 2050.
The complete prediction for the capacities has been achieved via linear interpolation between these milestones.

3Purchase cost turned into investment cost with Bare module factor of 3.6 [30]



Table 2: Future Capacities or yearly productions found in the literature

Technology Year Region Predicted Capacity
or Production Unit Source

Total PV 2030 Global 4956 [GW]
IEA-NZ-2050 [8]Total PV 2040 Global 10980 [GW]

Total PV 2050 Global 14458 [GW]
CSP 2030 Global 73 [GW]

IEA-NZ-2050 [8]CSP 2040 Global 281 [GW]
CSP 2050 Global 426 [GW]
Total Wind 2030 Global 3101 [GW]

IEA-NZ-2050 [8]Total Wind 2040 Global 6525 [GW]
Total Wind 2050 Global 8265 [GW]
Total Electrolysis 2030 Global 850 [GW]4

IEA-NZ-2050 [8]Total Electrolysis 2040 Global 2400 [GW]4

Total Electrolysis 2050 Global 3000 [GW]4

GSHP 2050 Global 7395 [GWth] IEA [9]
Geothermal 2030 Global 52 [GW]

IEA-NZ-2050 [8]Geothermal 2040 Global 98 [GW]
Geothermal 2050 Global 126 [GW]
HP in buildings 2050 Switzerland 8.76 [TWhel /year] OFEN [28]
Carbon capture 2030 Global 1670 [Mtpa] IEA-NZ-2050 [8]Carbon capture 2050 Global 7600 [Mtpa]
Hydro
(excl. pumped storage) 2030 Global 1804 [GW]

IEA-NZ-2050 [8]Hydro
(excl. pumped storage) 2040 Global 2282 [GW]

Hydro
(excl. pumped storage) 2050 Global 2599 [GW]

Pumped hydro storage 2030 Global 225 [GW] IRENA [16]Pumped hydro storage 2050 Global 325 [GW]

These capacities are then shared among the different sub-categories of technologies (e.g. onshore and off-
shore for wind or residential, commercial and utility-scale for solar PV) according to milestones given in Table
3. Years in-between are deduced via linear interpolation.

Table 3: Capacity shares [%] of wind power, solar PV and electrolysis

Year 2030 2050
Onshore wind 88.68 [15] 83.45 [15]
Offshore wind 11.32 [15] 16.55 [15]
Residential PV 13.517 13.517

Commercial PV 30.107 30.107

Utility-scale PV 55.437 55.437

ALK electrolysis 35 [12] 37 [12]
PEM electrolysis 23 [12] 32 [12]
SOEC electrolysis 13 [12] 30 [12]

4. Results and discussion
4.1. Learning curves visualisation
For each technology, the different learning curves (Wright, Boone, Sigmoid, S-curve and Plateau) obtained
after parameter identification are plotted in Figure 2. Historical data is also represented, and the curves’
ending points are coinciding with the corresponding predicted capacities for 2050 (on the x-axis).

4[GW] later converted to [GWth] using power-to-hydrogen efficiencies: ALK: 66.5%, PEM: 58.0%, SOEC: 77.5% [11].
5The ratio of the Swiss GSHP capacity over the global one amounts to 3.26% [24] [25], thus the Swiss GSHP capacity in 2050 is

estimated to 24 GWth.
6Assuming a COP of 4.2 and a capacity factor of 0.17, this consumption can be converted to a heating capacity of 24.54 GWth.
7PV shares assumed to be constant and equals their means over the 2015-2020 period.
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(b) Commercial PV
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(c) Utility-scale PV
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(d) CSP8
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(e) Onshore wind
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(f) Offshore wind
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(g) GSHP8
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(h) Geothermal energy
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(i) Total hydro-power
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(j) ALK electrolysis9
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(k) PEM electrolysis9
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(l) SOEC electrolysis9
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(m) Carbon capture10. Mtpa: Million
tonne per annum.

Figure 2: Learning curves for 13 low-carbon technologies.



4.2. Learning rates visualisation
The learning rate (LR) is defined as the cost reduction observed when the cumulative capacity is doubled. It
translates into 3, where x is the cumulative capacity and y is the learning curve function.

LR(x) = 1 − y (2x)
y (x)

(3)

In the case of Wright’s form, the learning rate is constant and equals 1−2b. On the other hand, Boone, Sigmoid,
Plateau and S-curve forms have time-varying learning rates, thus they have been plotted as a discrete curve
using Eq. 3. A positive learning rate is associated to a cost reduction. Moreover, we stick to the mathematical
definition and allow negative learning rates to illustrate a cost increase. This can happen for certain relative
mature renewable technologies, such as hydro power plant. The results of the learning rates are presented
in Figure 3, where a high positive LR implies a quick cost reduction. Different curves show heterogeneous
behaviors.
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(b) Commercial PV
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(c) Utility-scale PV
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(d) CSP11
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(e) Onshore wind
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(f) Offshore wind
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(g) GSHP11
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(h) Geothermal energy
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Figure 3: Learning rates for 13 low-carbon technologies.

8Boone and Plateau curves are coinciding
9Prospective data point in 2050 used during training necessary to get acceptable results: 450 USD2018/kW for ALK, 550 USD2018/kW

for PEM and 750 USD2018/kW for SOEC
10Prospective data point in 2026 [13] at 44 USD2018/tCO2

used during training necessary to get acceptable results
11Boone’s and Plateau curves are coinciding
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(k) PEM electrolysis
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(l) SOEC electrolysis
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Figure 3: Learning rates (continued from previous page)

4.3. Final Learning Curves Parameters Values and Validity Ranges
Following the selection process described in Section 2.2., the learning curve expressions that were kept for the
study results part are given in Table 4. Particularly, non-monotonic and partly constant learning curves were
excluded, and the plausibility of the cost achieved in 2050 was assessed by comparison with literature results,
given in Table 7.

Table 4: Learning curves parameters, expressions and validity ranges

Technology Model Expression Parameters Validity range [GW]

Onshore Wind Wright log(y ) = α + β log(x) α = 8.7969
β = -2.3370e-1 178 - 6898

Offshore Wind Plateau y = α + γxβ
α = -2.8492e6
β = -2.1175e-4
γ = 2.8552e6

3 - 1368

Residential PV Wright log(y ) = α + β log(x) α = 9.5926
β = -4.1030e-1 27 - 1954

Utility-scale PV Wright log(y ) = α + β log(x) α = 9.2415
β = -3.6979e-1 8 - 8014

Commercial PV S-curve y = γ[δ + (1 − δ)(x + α)β ]

α = -1.6847e1
β = -5.7434e-1
γ = 1.8146e4
δ = 3.6801e-2

21 - 4352

CSP Wright log(y ) = α + β log(x) α = 9.2176
β = -2.3914e-1 1.3 - 426

GSHP Boone y = αx
β

1+ x
γ

α = 5.5717e3
β = -5.0151e-1
γ = 1.0094e7

0.020 - 24.1

Decentralized HP12 Wright log(y ) = α + β log(x) α = 7.8974
β = -5.9720e-1 6.22 - 24.5

Geothermal Boone y = αx
β

1+ x
γ

α = 7.5971e3
β = -8.1648e1
γ = 4.0934e-2

10 - 126



SOEC Electrolysis Logarithmic y = α + β log(x) α = 1.5774e3
β = -1.2295e2 6.05e-4 - 837

PEM Electrolysis S-curve y = γ[δ + (1 − δ)(x + α)β ]

α = -3.1024e-3
β = -4.4652e-1
γ = 6.4820e2
δ = 6.8292e-1

5.18e-3 - 668

ALK Electrolysis S-curve y = γ[δ + (1 − δ)(x + α)β ]

α = -8.8634e-2
β = -1.2946e-1
γ = 7.4453e2
δ = 4.8841e-1

88.6e-3 - 886

Carbon Capture Plateau y = α + γxβ
α = -4.4898e4
β = -1.8936e-4
γ = 4.5009e4

13 - 7600 [Mtpa]

Total hydropower Plateau y = α + γxβ
α = -5.7501e3
β = 2.8622e-1
γ = 9.5872e2

1027 - 2924

4.4. Discussion
From the cost estimation results summarised in Table 5, hydro-power and geothermal energy have an increas-
ing trend in the future, extended from their cost growth witnessed in the past decade. Their cost increase
between 2020 and 2050 is estimated at 101% and 54% respectively. This ”astonishing” discovery against the
common understanding that renewables will be cheaper in the future, can however, be explained from two
aspects: (1) the technical maturity of these technologies, and (2) large-scale hydro projects and places to drill
for geothermal are supposed to be increasingly difficult to find, since historical projects have already occu-
pied the techno-economically advantageous locations. In constant, the investment costs for all other studied
low-carbon technologies (Solar, Wind, HP, Electrolysis, CO2 capture) are expected to decrease considerably
in future years. From our results, the mean cost reduction for these technologies reaches approx. 50%. The
most impressive cost decrease lies in Residential PV, with 73% drop between 2020 and 2050 (from 2443
USD2018/kW to 654 USD2018/kW), whereas onshore wind is of the lowest reduction potential around 36% (from
1316 USD2018/kW to 838 USD2018/kW).

Table 5: Cost reduction between 2020 and 2050

Technology Cost in 2020
[USD2018/kW]

Cost in 2050
[USD2018/kW] Cost reduction [%]

Residential PV 2443 654 73.21
Utility-scale PV 857 371 56.71
Commercial PV 1309 810 38.10
CSP 4448 2368 46.76
Onshore Wind 1316 838 36.32
Offshore Wind 3092 1648 46.72
GSHP 295413 1129 61.77
ALK Electrolysis 86514 522 39.67
SOEC Electrolysis 117814 750 36.33
PEM Electrolysis 103514 454 56.14
Total hydro-power 1816 3663 -101.71
Geothermal 4338 6683 -54.05
CO2 capture 7913 35 55.70

The results of this study have been compared to the ones from the literature according to two main properties:
the technologies learning rates [%] and the investment costs in 2050 [USD2018/kW]. This comparison is given
in Tables 6 and 7. It shows that all our results are in a reasonable range compared to other literature, except
the two increasing cost technologies. The positive values given in [32] and [29] result probably from the lack
of realistic consideration in their approaches on the historical cost evolution or from the consideration of older
data.

12Due to lack of historical data on DHP, GSHP’s Wright learning curve has been applied to DHP
13Estimation via our learning curve due to lack of data
14Mean between the 2020’s data points



Table 6: Learning rates found in the literature. Two values are given, i.e. min - max, for emphasizing varying
learning rates (”this report”) or a range of values due to consideration of different sub-categories (”literature”).

Technology This report Learning rates from literature [%]
Res. PV 24.75 23.815 [33] 2015 [32] 2315 [29] 11 - 2415 [22]
Utility-scale PV 22.61 34 [19]
CSP 15.28 22 [19] 7 [32] 10 - 23 [22]
Onshore Wind 14.96 17 [19] 5 [32] 12 [29]
Offshore Wind 10.22 - 25.39 9 [19] 5 - 11 [32] 12 [29]
ALK Electrolysis 2.6 - 18.61 9 [3]
SOEC Electrolysis 3.4 - 11.4 15 - 25 [5]
PEM Electrolysis 0.66 - 21.02 13 [3]
GSHP 29.36 35 [21] 5 - 17 [22]
Dec. HP 33.89 35 [21] 5 - 17 [22]
Geothermal -26.86 - -5.65 5 [32]
Carbon capture 7.29 - 17.04 2.1 - 5.0 [32] 6.45 - 11.35 [34]
Hydropower -95.85 - -56.39 1 [32] 1.4 [29]

Table 7: Investment costs in 2050 found in the literature. Two values are given, i.e. min−max, for emphasizing
range of values due to consideration of different sub-categories in literature references.

Technology This report Investment costs results from literature [USD2018/kW]
Res. PV 654.48 34015 [8] 300 - 160015 [36] 533 - 984 [27] 396 - 1096 [32]
Utility-scale PV 371.48 472 - 761 [27] 294 - 904 [32]
Commercial PV 810.26 510 - 894 [27] 328 - 1096 [32]
CSP 2367.91 2689 - 6648 [27] 2475 - 5548 [32] 1600 - 5225 [36]
Onshore Wind 838.08 1300 [8] 514 - 882 [27] 825 - 1989 [32] 1000 - 1700 [36]
Offshore Wind 1647.52 1420 [8] 1494 - 2660 [27] 1446 - 5481 [32] 1525 - 3610 [36]
ALK Electrolysis 521.85 200 - 700 [11] ≤ 200 [17]
SOEC Electrolysis 750 500 - 1000 [11] ≤ 300 [17]
PEM Electrolysis 453.93 200 - 900 [11] ≤ 200 [17]
Hydropower 3663.01 2141 - 2478 [27] 1209 - 3955 [32]
Geothermal 6682.74 4240 - 5592 [27] 2260 - 12588 [32]

5. Conclusion
To conclude, the estimated dramatic cost variation between 2020 and 2050 shows the importance of including
varying investment costs into energy planning models, which are commonly treated, however, as constants, or
based upon simple assumptions according to the researchers’ experience. Moreover, the variety of selected
learning curve forms allows both horizontal and vertical identification and verification from a large set of func-
tions, in order to improve the plausibility of the prospective results.
The validity of our research depend significantly on the plausibility of input data, which are however difficult
to evaluate due to the heterogeneous assumptions. Therefore, uncertainty analysis is envisioned in future
studies. Possible research topics include the analysis of cost evolution under different inputs, e.g. the installed
capacities. A detailed paper is under preparation.

15Total PV
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Tech. rep. 2020.

https://doi.org/10.1016/j.ergon.2011.05.001
https://doi.org/10.1038/s41560-019-0326-1
https://doi.org/10.1021/es400063a
https://doi.org/10.1787/39351842-en
https://doi.org/10.1787/39351842-en
https://doi.org/10.1016/j.enpol.2021.112249
https://doi.org/10.1016/j.enpol.2021.112249
https://doi.org/10.3389/fenrg.2020.549615
https://doi.org/10.3389/fenrg.2020.549615
https://doi.org/10.1016/j.apenergy.2017.08.058
https://linkinghub.elsevier.com/retrieve/pii/S0306261917310747
https://linkinghub.elsevier.com/retrieve/pii/S0306261917310747


[29] Edward S. Rubin et al. “A Review of Learning Rates for Electricity Supply Technologies”. In: Energy
Policy 86 (Nov. 2015), pp. 198–218. ISSN: 03014215. DOI: 10.1016/j.enpol.2015.06.011.

[30] Paul Michael Stadler. “Model-based sizing of building energy systems with renewable sources”. In:
(2019), p. 208.

[31] Xiaojie Sun et al. “The Impact of Quantity-Based Cost Decline on Supplier Encroachment”. In: Trans-
portation Research Part E: Logistics and Transportation Review 147 (Mar. 2021), p. 102245. ISSN:
13665545. DOI: 10.1016/j.tre.2021.102245.

[32] Ioannis Tsiropoulos, Dalius Tarvydas, and Andreas Zucker. “Cost Development of Low Carbon Energy
Technologies”. In: (2018), p. 77.

[33] VDMA. International Technology Roadmap for Photovoltaic (ITRPV) 2020 Results. Tech. rep. 12th Edi-
tion. Apr. 2021.

[34] Yi-Ming Wei et al. “A Proposed Global Layout of Carbon Capture and Storage in Line with a 2 °C Climate
Target”. In: Nature Climate Change 11.2 (Feb. 2021), pp. 112–118. ISSN: 1758-678X, 1758-6798. DOI:
10.1038/s41558-020-00960-0.

[35] T. P. Wright. “Factors Affecting the Cost of Airplanes”. In: Journal of the Aeronautical Sciences 3.4 (Feb.
1936), pp. 122–128. ISSN: 1936-9956. DOI: 10.2514/8.155.

[36] Mengzhu Xiao et al. “Plummeting Costs of Renewables - Are Energy Scenarios Lagging?” In: Energy
Strategy Reviews 35 (May 2021), p. 100636. ISSN: 2211467X. DOI: 10.1016/j.esr.2021.100636.

[37] Louis E. Yelle. “The Learning Curve: Historical Review and Comprehensive Survey”. In: Decision Sci-
ences 10 (1979), pp. 302–328.

[38] Micah S. Ziegler and Jessika E. Trancik. “Re-Examining Rates of Lithium-Ion Battery Technology Im-
provement and Cost Decline”. In: Energy & Environmental Science 14.4 (2021), pp. 1635–1651. DOI:
10.1039/D0EE02681F.

https://doi.org/10.1016/j.enpol.2015.06.011
https://doi.org/10.1016/j.tre.2021.102245
https://doi.org/10.1038/s41558-020-00960-0
https://doi.org/10.2514/8.155
https://doi.org/10.1016/j.esr.2021.100636
https://doi.org/10.1039/D0EE02681F

	Introduction
	Methodology
	Introduction
	Parameters identification and assessment method

	Data
	Historical Data
	Future Capacities

	Results and discussion
	Learning curves visualisation
	Learning rates visualisation
	Final Learning Curves Parameters Values and Validity Ranges
	Discussion

	Conclusion

