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Abstract— A critical operational challenge in Mobility-on-
demand systems is the problem of imbalance between vehicle
supply and passenger demand. However, conventional model-
based methods require accurate parametric system models with
complex nonlinear dynamics that are non-trivial to build or
identify. In this paper, we implement a novel data-enabled
predictive control algorithm for empty vehicle rebalancing
(DeePC-VR) to instruct the repositioning policy between re-
gions. Constructed by collected historical data from the con-
sidered unknown system, a non-parametric representation is
used to predict future behavior and obtain optimal control
actions, circumventing the costly system modeling process.The
effectiveness of the proposed method is verified by an agent-
based simulator modeling the real road network of Shenzhen,
China. The proposed methods can serve more passengers with
less waiting time compared to other policies, improving system
efficiency and quality of service.

I. INTRODUCTION

Recent years have seen a rapid increase in the need for
mobility due to the ongoing expansion of modern urban
areas and the increasing resident population. Meeting these
growing demands by privately owned vehicles, however, can
result in heavy traffic congestion and a scarcity of parking
and road space. Mobility-on-Demand (MoD) systems have
emerged as promising transportation modes in urban regions,
such as Uber, Lyft, and Didi Chuxing, which bridge mobility
demands and ride providers. Compared to existing public
transportation, MoD systems fill the gap by offering a more
customer-satisfied, time-efficient, and point-to-point option.

However, the imbalance between passenger demand and
vehicle supply can compromise the system efficiency. One
of the key factors is the discrepancy between the origin
and destination distribution of passenger trips. Without any
operator intervention, vehicles will generally accumulate in
the areas where passenger destinations are concentrated,
rather than where the demand is located. Therefore, it is
expected to improve the system performance by introducing
efficient policies which govern the configuration of the fleet,
more specifically, by repositioning empty vehicles to high-
demand regions [1]. This vehicle rebalancing problem has
attracted more attention over recent years, especially in
the application of Autonomous MoD (AMoD) systems [2],
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where the employed vehicles are self-driving and coordinated
with each other. Most studies have focused on a region-based
setup. The road network in the urban area is partitioned into
a finite number of regions (referred to as ‘stations’), and the
rebalancing policies are implemented by deploying vehicles
from one station to another. In previous studies, a discrete-
time fluid model for customers and vehicles was developed
in [3], and a rebalancing policy was introduced to achieve
equilibrium among all stations. To account for time delays, a
Model Predictive Control (MPC) scheme was proposed in [4]
to achieve a demand-aligned distribution of vehicles. In [5], a
time-varying network flow model was devised that leveraged
stochastic future demand prediction. Optimal taxi dispatching
policies were proposed in [6] by describing the evolution
of dynamic traffic conditions based on the Macroscopic
Fundamental diagram to improve service quality and reduce
network congestion. The rebalancing problem was cast into
a coverage control problem in [7], where empty vehicles
were guided to high-demand areas by maximizing the total
weighted cover area of fleets.

In most of the previous literature, a dynamic model of the
system is required for control design, which heavily relies on
expert experience and system knowledge. However, deriving
reliable models can be challenging, especially in varying
scenarios. Nowadays, data-driven approaches are receiving
more and more attention, especially when the system is too
complex (for example, for human-in-the-loop applications)
or too costly to model thoroughly and identify necessary
parameters. Broadly speaking, data-driven methods provide
a way to learn the control policies directly from data [8].
A model-free reinforcement learning (RL) approach was
investigated in shared MoD systems [9]. However, RL may
overreact to imbalance if vehicles are not coordinated during
training process, e.g., sending more vehicles than the actual
needs in target destination areas [10], and they typically
require large amounts of data to perform well. Furthermore,
most RL works do not consider system constraints. In
contrast, motivated by learning system behavior directly from
data to predict future trajectories [11], [12], a Data-enabled
Predictive Control (DeePC) algorithm was first presented
in [13]. Using real-time feedback, DeePC can drive the
unknown system along a desired trajectory while satisfying
system constraints. By considering the existence of measur-
able disturbance, DeePC has been implemented to mixed
traffic flow and power systems[14], [15]. The robustness of
regularized DeePC for the stochastic and nonlinear system
was discussed in [16] and [17].

The AMoD systems are able to collect data from both
passenger (e.g. request issuing time, origin and destination)



and vehicle sides (e.g., vehicle coordinates), meanwhile can
obtain real-time plant feedback (e.g., one request is answered
or not). Inspired by the great potential of leveraging these
accessible data without the need to model system dynamics,
this paper proposes an empty fleet management scheme using
the novel DeePC method to relocate vehicles to advantageous
positions for efficient request answering. To the authors’ best
knowledge, no existing study has investigated the data-driven
predictive control for vehicle rebalancing. The remaining
part of the paper proceeds as follows: We firstly recall
the data-enabled predictive control algorithm proposed by
[13]. Then, we introduce a data-driven vehicle rebalancing
scheme, called DeePC-VR, whose detailed implementation is
presented in Section III. In Section IV, the proposed method
is tested in a real city operating environment. This work is
concluded in Section V, and some future steps are discussed.

II. REVIEW OF DATA-ENABLED PREDICTIVE CONTROL

In this section, we recall the main result of [11] on non-
parametric system representation, and then we give a brief
review of the DeePC algorithm proposed in [13].

A. Preliminaries

Consider a discrete-time Linear Time-Invariant (LTI) sys-
tem as { xk+1 = Axk +Buk

yk = Cxk +Duk,
(1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input vector, and yk ∈ Rp is the output vector of the system
at time k ∈ Z. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and
D ∈ Rp×m. Instead of learning A,B,C and D via system
identification to obtain a parametric representation of the
system, we are interested in the case when A,B,C and
D are unknown but the input and output data samples, i.e.,
u = col(u1, u2, . . . ) and y = col(y1, y2, . . . ) are available.
Note here col(a1, a2, . . . , ai) := [aT1 ; a

T
2 ; . . . ; a

T
i ]

T .
Let L, Td ∈ Z, the trajectory u ∈ RmTd is persistently

exciting [13] of order L if the Hankel matrix

HL(u) :=


u1 u2 . . . uTd−L+1

u2 u3 . . . uTd−L+2

...
...

. . .
...

uL uL+1 . . . uTd

 (2)

has full row rank, which means the input trajectory u is
sufficiently long and rich, therefore, Td ≥ (m+ 1)L− 1.

Theorem 1 ([11]). Let L, Td ∈ Z. Collected from un-
known system (1), ud = col(u1, u2, . . . , uTd

) and yd =
col(y1, y2, . . . , yTd

) are input and output trajectory of length
Td, such that ud is persistently exciting of order L+n. Then
(u, y) is a trajectory of system (1) if and only if there exists
g ∈ RTd−L+1 such that[

HL(u
d)

HL(y
d)

]
g =

[
u
y

]
. (3)

Theorem 1 indicates that the subspace spanned by the
columns of Hankel matrix

[
HL(ud)

HL(yd)

]
corresponds to the

subspace of all possible trajectories of the system (1).

Furthermore, let Tini, N ∈ Z be the lengths of time
horizon for initial condition estimation and future prediction,
respectively. The Hankel matrices constructed by ud and
yd are partitioned into two parts, where the superscript ‘p’
stands for ‘past data’ and ‘f ’ for ‘future data’ as[

Up

Uf

]
:= HTini+N (ud), (4)[

Y p

Y f

]
:= HTini+N (yd), (5)

where Up ∈ RmTini×(Td−Tini−N+1) consists of
the first mTini block row of HTini+N (ud) ,
and Uf ∈ RmN×(Td−Tini−N+1) consists of the
last mN block row of HTini+N (ud). Similarly,
Y p ∈ RpTini×(Td−Tini−N+1), Y f ∈ RpN×(Td−Tini−N+1).

According to [15], compared to system (1), a measurable
external disturbance is considered additionally and this un-
known LTI system can be expressed as{ xk+1 = Axk +Buk +Bdwk

yk = Cxk +Duk +Ddwk,
(6)

where wk ∈ Rq is the disturbance variable, and Bd ∈ Rn×q

and Dd ∈ Rp×q .
Considering wk as a uncontrollable input, similar to

Eq. (4) and Eq. (5), we can construct another Hankel matrix
regarding the disturbance and further partition it into two
parts as [

W p

W f

]
:= HTini+N (wd), (7)

where W p ∈ RqTini×(Td−Tini−N+1),W f ∈
RqN×(Td−Tini−N+1). Assume that a historical trajectory
of external disturbance wd of length Td is measured
such that col(ud, wd) is persistently exciting of order
Tini + N + n [15]. According to Theorem 1, col(u,w, y)
is a possible future trajectory of system (6) of initial
condition col(uini, wini, yini), if and only if there exist
g ∈ RTd−Tini−N+1 such that

Up

W p

Y p

Uf

W f

Y f

 g =


uini

wini

yini
u
w
y

 . (8)

Therefore, the Hankel matrix constructed directly by raw
data can serve as a non-parametric model representing the
system behavior, bypassing the parameter identification of
the system model. Next, we will implement optimal predic-
tive control with the constructed Hankel matrices.

B. Review of Data-enabled Predictive Control (DeePC)

Viewing the collected data col(ud, wd, yd), the Hankel
matrices can replace the system model to predict the future
trajectory. DeePC [13] solves an optimization problem in
a receding horizon manner, attempting to obtain optimal
control actions meanwhile satisfying the input and output



constraints. Considering the time horizon N ∈ Z, we
formulate the optimization problem as follows

min
g,u,y,σy

f(uk+i, yk+i) + λg∥g∥22 + λy∥σy∥22

subject to


Up

W p

Y p

Uf

W f

Y f

 g =


uini

wini

yini
u
w
y

+


0
0
σy

0
0
0

 ,

uk+i ∈ U ,∀i ∈ 0, 1, . . . , N − 1,
yk+i ∈ Y,∀i ∈ 0, 1, . . . , N − 1,

(9)

where f(uk+i, yk+i) is the control objective function. The
input constraint is U ⊆ RmN , output constraint is Y ⊆ RpN .
∥·∥α denotes α norm. λg ∈ R>0 is introduced as regulariza-
tion parameter to avoid data overfitting. Compared to Eq. (8),
σy ∈ RTinip is added to the right side as an auxiliary slack
variable, and a weight coefficient λy ∈ R>0is incorporated
as well to ensure the feasibility of the constraints over all
time [13]. More discussion on robust DeePC can be found
in [16].

col(uini, wini, yini) represents the most recent input, dis-
turbance and output measurement and is used as the initial
condition to predict the future, thus it should be updated
at each time step k. Note that u and y is not independent
with g since by Eq. (8), u = Ufg and y = Y fg.
Solving Eq. (9) gives an optimal control action sequence
u∗ = col(u∗

k, u
∗
k+1, . . . , u

∗
k+N−1), and we only apply the

first control input, i.e., u∗
k.

III. DEEPC FOR VEHICLE REBALANCING (DEEPC-VR)

This section will present the problem formulation and
detailed implementation of Data-enabled Predictive Control
for Vehicle Rebalancing (DeePC-VR).

A. Motivation

A challenging problem that arises in Autonomous
Mobility-on-Demand systems is the imbalance between ve-
hicle supply and customer demand. For instance, when
empty vehicles only cruise freely without cooperation, some
districts can be oversupplied, whereas customers who need
a ride in other regions cannot be served due to no available
vehicles around. Therefore, we are interested in tackling this
problem with an efficient rebalancing strategy that guides
empty vehicles to move to another region/stay in the same
region, in order to answer as many customer requests as
possible meanwhile consider the rebalancing cost. Fig. 1
shows a schematic diagram of the rebalancing task in an
urban area partitioned into Kn regions. The control input
instructs how many vehicles should move from region I
to region J , i.e., uk = col(u1

k, u
2
k, . . . , u

Kn

k ), where uI
k

is a vector consisting of uIJ
k , where I, J = 1, 2, . . . ,Kn.

Particularly, uII stands for the number of vehicles that should
stay in the current region.
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Fig. 1: A schematic diagram of vehicle rebalancing. A four-
region case is shown and a centralized controller gives
region-level transfer guidance to empty vehicles in each
region, e.g., u24

k informs how many vehicles in Region 2
are asked to relocate to Region 4. Not all control inputs are
listed in the diagram for clarity.

One conventional solution is to construct a parametric
model and identify parameters from collected data. How-
ever, modeling large-scale Mobility-on-Demand systems is
typically a complex problem, usually requiring complicated
design efforts with expert knowledge. Meanwhile, the ro-
bustness is hard to guarantee because of many uncertainties,
e.g., it is a human-in-the-loop system involving stochastic
passenger demand. To bypass the complexity brought by
system modeling, we turn to the data-driven control method,
in particular, a data-enabled predictive control algorithm,
which leverages a data Hankel matrix to replace the system
model to provide optimal control policy.

B. Problem formulation

Taxi network companies, such as Uber and Lyft, can
access and collect data from both the demand side (position
and time information of passenger requests, etc.) and the
supply side (vehicle positions and occupied status, etc.).
The passenger demand is uncontrollable but measurable,
therefore is referred to as the disturbance variable wk =
col(wO

k , w
D
k ), where wO

k = col(wO,1
k , wO,2

k , . . . , wO,Kn

k ),
that wO,I

k and wD,I
k inform how many passenger requests

starting from and ending in Region I , respectively. The
output variable is yk = col(y1k, y

2
k, . . . , y

Kn

k ), where yIk states
how many requests in Region I are successful answered.

Following the structure shown in Eq. (9), we define our
objective as a linear cost that

f(uk+i, yk+i) =

N−1∑
i=0

(−||Qyk+i||1 + ||Ruk+i||1), (10)

where Q ∈ R1×p, R ∈ R1×m. The first term with yk is
designed to encourage answering more requests. Moreover,
the second term with uk considers the rebalancing cost for
repositioning vehicles from one region to another.

In the context of AMoD systems, not only we can collect
the historical demand requests for W p, W f and timely
measure the most recent wini during the control process,
but also the future requests can be predicted accurately
(for example, see [18] for demand forecasting using Long
Short-Term Memory neural networks). For the purpose of



simplicity, in this work, we assume that we have the perfect
knowledge of demand information, therefore, utilize the true
values for future demand w̃ to approximate the ideal, i.e.,
w = w̃. Thus, one additional equality constraint is considered
as follows

W fg = w̃. (11)

nI
k measures the number of empty vehicles in Region

I at time step k. Because we can only operate the non-
occupied vehicles for rebalancing, given the availability of
empty vehicles nI

k, the input constraint Eq. (12) limits the
number of vehicles that can be relocated at the current time
step.

Kn∑
J=1

uIJ
k = nI

k,∀I ∈ 0, 1, . . . ,Kn. (12)

Additionally, constraints in Eq. (13) require positivities of
input and output variables.

uIJ
k+i ≥ 0,

yIk+i ≥ 0,

∀i ∈ 0, 1, . . . , N − 1. ∀I, J ∈ 1, 2, . . . ,Kn.

(13)

C. Implementation of DeePC-VR actions

Solving the optimization problem Eq. (9) provides the
optimal control sequence u∗ = Ufg∗, but the elements of
u∗ may have fractional but not integer values. In order to
implement how many empty vehicles should move to another
region for rebalancing, for I ̸= J , ⌊uIJ

k ⌋ empty vehicles in
Region I should move to Region J , where ⌊α⌋ is the greatest
integer less or equal to α; then the rest empty vehicles will
stay in the current region. Moreover, let θIJk represent the
empty vehicle flow transfer ratio from Region I to Region J
as

θIJk =
uIJ
k∑Kn

J=1 u
IJ
k

. (14)

∆T is the control sampling time. After we apply the optimal
control input uk given by DeePC-VR at time step k, when
k∆T < t < (k+1)∆T , once there is a vehicle that drops off
its passenger in Region I and becomes empty, it follows the
possibility of θIJk to be relocated to Region J . The procedure
of implementing DeePC-VR is summarized in Algorithm 1.

IV. CASE STUDY

The proposed method is tested on an AMoD simulator
[19] replicating the urban road network of Luohu and Futian
districts in Shenzhen, China. The network consists of 1858
intersections and 2013 road links.

A. City area partitioning

A scenario with imbalanced demand is considered (see
[7]). The region of interest is divided into Kn regions
using K-means clustering in accordance with the trip origin
distribution. The urban area clustering/partitioning impacts
the system performance, but a full discussion of different
settings will be discussed in a future publication. Here, Kn

was set to 5. The demand probability for these 5 regions is
ϕ = [0.06, 0.35, 0.22, 0.29, 0.08] as it shows in Fig. 2a. More

Algorithm 1 DeePC for Vehicle Rebalancing (DeePC-VR)
Input: The Hankel matrices Up, Uf ,W p,W f , Y p, Y f

constructed by the historical data ud, wd and yd. Most
recent measured data uini, wini and yini of length Tini,
number of current empty vehicles in each region nk.
Output: Optimal control input uk, transfer ratio θIJk .

1) Obtain g∗ by solving the optimization problem (9),
2) Compute the optimal control input sequence u∗ =
Ufg∗, where u∗ = col(u∗

k, u
∗
k+1, . . . , u

∗
k+N−1),

3) Apply the first element of the optimal control sequence,
i.e., uk = u∗

k, calculate θIJk by Eq. (14),
4) Set k = k + 1, update uini, wini and yini to the Tini

most recent measurements,
5) return to Step 1).

trips start from Regions 2, 3, and 4, while only a few are from
Region 1 (6%) and Region 5 (8%). However, relatively more
trips end in Region 1 (16%) and Region 5 (12%). Therefore,
without any fleet management, empty vehicles will generally
concentrate in low-demand regions, leading to an oversupply
scenario in Regions 1 and 5.

(a) Origin Distribution

(b) Destination Distribution

Fig. 2: The city area is partitioned into 5 regions and colored
accordingly.

B. Data collection and configuration for DeePC-VR

During the offline data collection process, the control
actions were generated randomly meanwhile respecting the
input constraints. And the issued time of the passenger



requests is sampled from a constant rate Poisson distribution,
which naturally satisfies the requirement for persistency of
excitation in Eq. (8). At the same time, the number of an-
swered requests (i.e., the output) and the requests information
in each region (i.e., the external disturbance) were collected
and further used to construct the Hankel matrices as in
Eq. (4), Eq. (5) and Eq. (7). The length of collected historical
data is Td = 3000 with a sampling interval of ∆T = 10min.

Meanwhile, we measured the rebalancing trip
lengths between regions to form the penalty weights
for control inputs in Eq. (10), in particular, R =
[0, 1.83, 2.07, 5.35, 3.94, 1.58, 0, 2.08, 4.98, 4.94, 2.56, 2.20, 0,
2.70, 2.15, 6.08, 4.77, 2.19, 0, 2.73, 4.23, 4.61, 1.70, 2.47, 0],
where each element informs the average rebalancing trip
length (unit: km) from one region to another, corresponding
with the same order of control input in uk. Particularly,
the entries with 0 value indict that staying in one’s current
region costs no extra fuel. And the weight for output is
chosen as Q = 200 · ϕ, where more weights are given to
high-demand regions according to the demand probability
ϕ. Besides, the following values of hyperparameters are
used for the specific results shown in the following sections:
N = 30, Tini = 35, λg = 1000, λy = 100.

C. Simulation Results

Passengers cannot be kept waiting indefinitely for pickup.
In this work, every issued request will remain in the matching
pool for a period of tm = 1min. If the nearest empty vehicle
is close enough that is able to pick up the passenger within a
constant threshold of tw = 4min (since the request has been
issued), the passenger and the vehicle will be matched, then
later cancellation of this request is not allowed in this study;
otherwise, if no available vehicles are found within tm, the
passenger won’t wait anymore and cancel this request.

A comparison is conducted from three perspectives: an-
swer rate, which is the proportion of successfully answered
requests over all requests; average waiting time, calculated
as the time passengers spend waiting from the moment their
requests are issued until they are picked up by vehicles,
divided by the number of all answered requests; and rebal-
ancing distance, which measures the total traveling distance
caused by repositioning empty vehicles.

Our method is compared with another two methods: a
baseline method called ‘Do-nothing’ policy, which means
after dropping off the passenger, an empty vehicle will not
move until it matches up with a new passenger; a distributed
control method based on coverage control (denoted as ‘CC’
in Table I and Fig. 4). Assuming each vehicle can cover
a circular area, this control policy steers empty vehicles
to move toward high-demand regions by maximizing the
total covered area regarding the demand density (see [7] for
details).

One 3-hour experiment is carried out with a fleet size of
250, and around 4500 requests are issued in total. It can be
seen from Table I that DeePC-VR achieves the best results
over answer rate and average waiting time, compared with

TABLE I: Performance metrics

answer rate waiting time rebalancing distance
(%) (s) (km)

DeePC-VR 90.15 131.99 3134.74
CC[7] 80.01 142.78 5869.27

Do-nothing 51.92 155.64 0.00

coverage control-based policy and Do-nothing policy. De-
spite the coverage control-based policy showing its advantage
over Do-nothing policy in terms of answering more requests
with less waiting time, it requires all empty vehicles to
participate in rebalancing, which results in a large amount of
energy cost. In contrast, DeePC-VR only dispatches a subset
of all empty vehicles, and shows superior performance over
answer rate and waiting time, meanwhile reduces 46.59% of
the rebalancing distances compared to CC.

Fig. 3: A snapshot of the simulator. Empty vehicles staying in
the current region and relocated to another region are shown
as blue circles and blue dots, respectively. The vehicles
traveling to pick up and drop off passengers are in green
and red.

Fig. 3 shows a snapshot of the simulator when DeePC-
VR is in action. Total empty vehicles (EVs) include the
empty vehicles staying in the current region (i.e., blue dots)
and rebalancing vehicles (RVs), which are being relocated
to another region (i.e., blue circles). In terms of vehicle
configuration, Regions 1 and 5 have many empty vehicles
since they are oversupplied. In this case, DeePC-VR steers
most of these EVs to move to high-demand regions, more
blue circles are found indeed. On the other hand, empty
vehicles in Regions 2 and 4 are commanded to stay since
they are already located in high-demand areas.

The evolution of the total empty vehicles in each region
is plotted in Fig. 4. For Do-nothing policy, without any
intervention, more and more empty vehicles are accumulated
in Regions 1 and 5 as time passes. These vehicles are
not serving any passengers, meanwhile, many requests are
canceled owing to this undesirable configuration of vehicle
positions. By steering vehicles to move towards high-demand
areas, the coverage control-based method [7] moderately
alleviates this situation. One vehicle monitored by coverage
control can obtain its own position guidance leveraging
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Fig. 4: Evolution of empty vehicles in each region.

only local information, however, the control actions can
also be myopic and may stuck in local optima due to such
distributed manner. In contrast, vehicles operated by DeePC-
VR answer more requests and only a few are idle for the
whole simulation. Particularly, it has more empty vehicles in
high-demand regions that were relocated from low-demand
ones, implying passengers will find more available vehicles
nearby, thus spending less waiting time. These results suggest
that DeePC-VR has a high potential in fleet management due
to its ability to efficiently position vehicles in advantageous
locations, leading to more requests being answered timely.

V. CONCLUSION

This paper presents a data-driven control algorithm
(DeePC-VR) to solve the empty vehicle rebalancing prob-
lem in autonomous Mobility-on-Demand systems. Instead
of modeling the complex system thoroughly, the proposed
method can give regional position guidance leveraging Han-
kel matrices constructed from historical data. Our proposed
algorithm is tested on a discrete city map using real road
network geometry from Shenzhen. The proposed method
outperforms other approaches in terms of answer rate and
waiting time. Current results are based on perfect knowl-
edge of regional demand information. Online learning of
stochastic demands will be studied in future steps to improve
robustness. Additionally, an interesting direction for future
work is to develop a hierarchical structure that connects
macroscopic and microscopic scopes. DeePC-VR can be
used as a high-level controller for fleet transferring between
regions, while a coverage control-based policy can serve as a
low-level controller to provide detailed position instructions
within each region. Communication and cooperation across
different levels will also be investigated.
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