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Behold, the present time, which alone we found could be called long, is abridged to the space

scarcely of one day. But let us discuss even that, for there is not one day present as a whole.

For it is made up of four-and-twenty hours of night and day, whereof the first has the rest

future, the last has them past, but any one of the intervening has those before it past, those

after it future. And that one hour passes away in fleeting particles. Whatever of it has flown

away is past, whatever remains is future. If any portion of time be conceived which cannot

now be divided into even the minutest particles of moments, this only is that which may be

called present; which, however, flies so rapidly from future to past, that it cannot be extended

by any delay. For if it be extended, it is divided into the past and future; but the present has no

space. Where, therefore, is the time which we may call long? Is it nature? Indeed we do not say,

“It is long,” because it is not yet, so as to be long; but we say, “It will be long.” When, then, will

it be? For if even then, since as yet it is future, it will not be long, because what may be long is

not as yet; but it shall be long, when from the future, which as yet is not, it shall already have

begun to be, and will have become present, so that there could be that which may be long;

then does the present time cry out in the words above that it cannot be long.

— St. Augustine, The Confessions (Book XI, paragraph 20)

To my parents and my beloved wife. . .
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Abstract

The advent of shared-economy and smartphones made on-demand transportation services

possible, which created additional opportunities, but also more complexity to urban mobility.

Companies that offer these services are called Transportation Network Companies (TNCs)

due to their internet-based nature. Although ride-sourcing is the most notorious service TNCs

provide, little is known about to what degree its operations can interfere in traffic conditions,

while replacing other transportation modes, or when a large number of idle vehicles is cruising

for passengers. Moreover, dynamic network-level models directly addressing ride-sourcing

services can support the development of efficient strategies for both congestion alleviation

and promotion of more sustainable mobility. Recent developments presented models focusing

on ride-hailing (solo rides), but no work addressed ridesplitting (shared rides) in dynamic con-

texts. These models can be used for proper positioning of ride-sourcing drivers and improve

vacant travel times, waiting times, and matching opportunities.

In Chapter 2, we experimentally analyze the efficiency of TNCs using taxi trip data from a

Chinese megacity and an agent-based simulation with a trip-based MFD model for deter-

mining the speed. We investigate the effect of expanding fleet sizes for TNCs, passengers’

inclination towards sharing rides, and strategies to alleviate urban congestion. We observe

that, although a larger fleet size reduces waiting time, it also intensifies congestion, which, in

turn, prolongs the total travel time. Such congestion effect is so significant that it is nearly

insensitive to passengers’ willingness to share and flexible supply. Our findings also show that,

even if drivers quit the system in case of low profit, the system can converge in a fleet size,

which still causes noticeable congestion.

In Chapter 3, we sought to develop a dynamic aggregated traffic network model capable of

representing ride-sourcing services and background traffic in a macroscopic multi-region

urban network. We combined the Macroscopic Fundamental Diagram (MFD) with detailed

state-space and transition descriptions of background traffic and ride-sourcing vehicles in

their activities to formulate mass conservation equations. We show that the model can

accurately forecast the vehicles’ conditions in near-future predictions (e.g., 30 minutes ahead).

The development of this model prepares the path for developing real-time feedback-based

management policies such as priority-based perimeter control or repositioning strategies for

idle ride-sourcing vehicles and developing regulations over ride-sourcing in congested areas.

Chapter 4 evaluated the potential repositioning response of drivers when provided guidance
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based on estimates of their earnings in a system offering ride-hailing (solo) and ridesplitting

(shared) rides. The developed strategy provides a group of drivers with individualized near-

future revenue estimates guiding drivers toward repositioning decisions that are more likely

to maximize their earnings. Our main findings indicate that if the operator selects only a

fraction of active drivers to provide guidance, these are likely to expect higher earnings than

those without guidance. We also show that it manages to decrease the number of unserved

requests compared to several state-of-art benchmarks at the same time that it increased

vehicle occupancy and decreased the deadheading.

Chapter 5 presented a hierarchical control framework capable of repositioning vacant ride-

hailing vehicles integrating model predictive control and coverage control in an urban traffic

setting. The approach involved optimizing vehicle positions using near-future forecasts of the

service and demand conditions, presenting a proactive strategy for dynamically deploying

the fleet in advantageous spatial configurations. The proposed framework improved the

performance in all tested scenarios by decreasing waiting times, increasing acceptance rates,

and maximizing the usage of the available fleet.

Key words: transportation, ride-sourcing, human mobility, urban traffic, macroscopic funda-

mental diagram (MFD), simulation, vehicle repositioning, Markov chain, hierarchical control.
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Résumé

L’arrivée de l’économie de partage et des smartphones a rendu possible les services de trans-

port à la demande, ce qui a créé des opportunités additionnelles, mais a également amené

encore plus de complexité à la mobilité urbaine. Nous nous référons aux entreprises qui

fournissent ce type de service par les entreprises de réseau de transport (TNC) car elles sont

naturellement basées sur Internet. Bien que le service de commande de véhicules avec conduc-

teur soit le service le plus notoire que les TNCs présentent, il est toutefois peu évident à quel

point son opération peut perturber les conditions de circulation lorsque ce service remplace

d’autres moyens de transport ou lorsqu’un grand nombre de véhicules inactifs circulent à

la recherche d’un passager. De plus, les modèles dynamiques à l’échelle du réseau traitant

directement le service de commande de véhicules sont en mesure d’appuyer l’élaboration de

stratégies efficaces tant pour réduire la congestion que pour promouvoir une mobilité plus

durable. Les derniers développements ont présenté des modèles qui visent les services de

commande de véhicules (trajets en solo), mais aucun autre travail n’a abordé les services de

commande de véhicules avec un chemin partagé (trajets partagés) dans un contexte dyna-

mique. Ces modèles peuvent servir de cadre pour positionner adéquatement les véhicules de

commande et améliorer les temps de déplacement sans passagers, les temps d’attente, et les

occasions de jumelage.

Dans le chapitre 2, nous testons l’efficacité des TNCs en utilisant les informations extraites

de la base de données des trajets en taxi dans une mégapole chinoise, et une méthode de

simulation multi-agents avec un modèle MFD basé sur les parcours pour déterminer la

vitesse. Nous explorons l’effet de l’expansion de la taille des flottes de TNC, la volonté des

passagers de partager leurs trajets, et les stratégies d’atténuation de la congestion urbaine.

Nous constatons que, bien que les temps d’attente soient réduits pour une grande flotte, la

flotte augmente la congestion, ce qui prolonge la durée totale du trajet. Un tel effet sur les

embouteillages est si important qu’il devient presque insensible à la volonté des voyageurs

de partager leurs parcours et à la flexibilité de l’offre. Nos résultats montrent également que

même si les conducteurs abandonnent le système en cas de faibles revenus, le système peut

converger dans une taille de flotte, ce qui continue de créer d’importants engorgements.

Dans le chapitre 3, nous avons cherché à élaborer un modèle dynamique de réseau de trafic

agrégé capable de représenter les services de commande de véhicules avec conducteur ainsi

que le reste du trafic dans un réseau urbain macroscopique multi-régional. Nous avons
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rassemblé le diagramme fondamental macroscopique (MFD) avec une description élaborée

de l’espace d’états et des transitions des véhicules TNC et le reste du trafic par activité. Cette

étape est nécessaire pour formuler les équations de conservation de masse. Nous avons

ensuite montré que ce modèle peut prédire les conditions du véhicule d’une façon très précise

dans des prévisions à court terme (par exemple, 30 minutes à l’avance). Le développement

de ce modèle permet de faire progresser les politiques de gestion en temps réel fondées sur

la rétroaction, comme le contrôle du périmètre en fonction des priorités, ou les stratégies de

repositionnement pour les véhicules TNCs inutilisés. Il permet également de développer des

réglementations sur les services de contrôle des véhicules dans les zones encombrées.

Le chapitre 4 a évalué la réaction des conducteurs de véhicules à un avis de repositionnement

possible fondé sur des estimations de leurs revenus dans un système proposant un trajet

solo ou un trajet partagé. La stratégie développée fournit à un groupe de conducteurs des

estimations personnalisées de rendu à court terme. Ainsi, elle oriente les conducteurs vers des

décisions de repositionnement qui maximisent leurs revenus. Nos principales constatations

indiquent que si l’opérateur ne sélectionne qu’une fraction de véhicules actifs pour fournir

ces avis de repositionnement, ceux-ci sont susceptibles de s’attendre à des revenus plus élevés

que ceux qui ne sont pas guidés. Nous montrons également que notre stratégie permet de

réduire le nombre d’utilisateurs non desservis en comparaison avec d’autres stratégies de

référence utilisant des technologies de pointe. Ceci est parce que notre stratégie en même

temps augmente l’occupation des véhicules en service et réduit les déplacements haut-le-pied.

Le chapitre 5 a introduit un cadre de contrôle hiérarchique qui peut repositionner les véhicules

non utilisés et vides. Ceci se fait en intégrant un modèle de contrôle prédictif et un contrôle de

couverture dans le trafic urbain. L’approche a consisté à optimiser les positions des véhicules

à l’aide de prévisions à court terme des conditions de la demande et du service. Ce cadre

présente une stratégie proactive de déploiement dynamique de la flotte de véhicules dans des

configurations spatiales avantageuses. Cette méthode proposée améliore le rendement dans

l’ensemble des scénarios mis à l’essai en réduisant les temps d’attente, en augmentant les taux

d’acceptation, et finalement en maximisant l’utilisation de la flotte de véhicules disponibles.

Mots-clefs : transport, service de commande de véhicules, mobilité humaine, trafic urbain,

diagramme fondamental macroscopique (MFD), simulation, repositionnement des véhicules,

chaîne de Markov, contrôle hiérarchique.
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1 Introduction

1.1 Motivation and background

One of the most prominent innovations seen throughout streets around the world is the

ubiquitous presence of drivers using their vehicles for on-demand transportation services.

Companies use mobile applications connected through the internet to match these drivers

and their passengers in real-time. Due to the nature of their operations, these companies are

called Transportation Network Companies (TNCs), but the service itself is called ride-sourcing,

e-hailing, and ride-sharing, for instance Rayle et al., 2016. Ride-sourcing services have revolu-

tionized mobility concepts for on-demand transportation as a result of the advantages they

provide, such as convenience, door-to-door rides, low fares, etc. On-demand transportation

services sound as a promising direction to improve mobility and fight car ownership. Moreover,

many TNCs offer, among the service options, shared rides (called ridesplitting). These services

try to match passengers with a reasonably similar trip within a time window. For TNCs and

drivers, this service may yield increased profits if it is capable of matching passengers and

drivers efficiently. For the passengers, this service presents a cheaper option, but they might

face longer travel distances/times. Passengers may also have almost the same advantages as

those from a taxi service as door-to-door rides and no need to search for parking. In general,

these services seem to have a positive impact on economic efficiency (S. T. Jin et al., 2018;

Tachet et al., 2017).

Naturally, all this expansion raised several concerns regarding TNCs’ operations. Oppositely

to taxis, TNCs face no limitation, in most cities, on the fleet size that can operate, no price

control, service requirements, and other legal obligations faced by the taxi industry. Moreover,

as these services base their operations on mobile applications connected to the internet, there

are concerns over issues of data privacy and security (S. T. Jin et al., 2018). Rogers, 2017 adds

other social costs, such as diminished safety and lack of professional training. Proper planning

and regulation have vital importance in the development of shared transportation for the near

future (Narayanan et al., 2020). Another point of concern is the surge pricing models used,

which may considerably increase the fares in moments that driver availability is insufficient
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(Schwieterman & Smith, 2018). On the other hand, surge pricing mitigates the potential chaos

of a bargaining process. Notably, it handles the spatial-temporal imbalances between driver

supply and rides demand (Dong et al., 2018). Moreover, recent results point out that it can

increase drivers’ revenues but make customers worse during highly surged periods (Zha et al.,

2018).

Although it is not clear whether ride-sourcing is beneficial or unfavorable (or whether it causes

anything significantly) for traffic congestion, the path to clear it is to understand how it is

replacing traditional transportation modes. In case ride-sourcing trips are directly substituting

private vehicles or taxis trips then, they should have a secondary influence on congestion

(Erhardt et al., 2019). However, if ride-sourcing competes with public transportation modes

(buses, trains, metro) or inducing latent demand, then the effects on congestion should be

significant. Additionally, it might increase vehicle kilometers traveled (VKT) when vehicles

cruise for passengers or when it induces latent demand (Vinayak et al., 2018). A probable

scenario for Tirachini and del Río, 2019 and Tirachini and Gomez-Lobo, 2019 has ride-sourcing

extensively substituting transit but only inducing latent demand to a small extent. In a recent

survey across TNC users in San Francisco (Rayle et al., 2016), in a question “How would you

have made this trip if TNC service was not available?”, 40% answered by taxi, 33% by bus, and

only 6% by car. Thus, TNC can be an attractive alternative for public transport users, and,

combined with a large number of empty vehicles, it can create additional congestion problems.

The consequences of such non-cooperative interactions can be catastrophic for urban traffic

(Çolak et al., 2016; Olmos et al., 2018; Roughgarden, 2005). For instance, reductions in demand

for buses can cause imbalances making them miss their schedule, dropping their capacity

because of bus bunching (Saw et al., 2019; Sirmatel & Geroliminis, 2018b). The transportation

literature observes these effects for decades (W. S. Vickrey, 1969).

1.2 Challenges

1.2.1 Ride-sourcing with ridesplitting and traffic congestion

It is imperative to understand how TNCs’ operations can interfere in traffic conditions while

replacing other transportation modes to seek improvements in urban mobility. Foremost, this

understanding must cover the performance of traffic and operations. It is critical to relate

the fleet size with the average speeds and service level, which are related to mobility and

accessibility measures (Hanson & Giuliano, 2017; Páez et al., 2012). The literature already

presents evidence of traffic improvements from the use of curbside parking for idle drivers

(Xu et al., 2017). Hall et al., 2018 shows that ride-sourcing can complement public transport

activities, and speculates that users avoiding the limitations of fixed-route and schedule modes

are the reason behind the complementary effect. Moreover, the matching process shall have

a place, and thus the impact of passengers’ behavior too, in a ridesplitting scenario. For this

reason, Wei et al., 2020 used logit models to detail the decisions of drivers and passengers

in a multi-modal setting and showed that ride-sourcing has the potential to decrease traffic

2



Introduction Chapter 1

performance. Much of the literature on ride-sourcing relies on surveys (Alemi et al., 2018;

Dong et al., 2018; Lavieri & Bhat, 2019; Rayle et al., 2016; Vinayak et al., 2018), economics (He

& Shen, 2015; Xu et al., 2017; Zha et al., 2018; Zha et al., 2016), and data regressions (Contreras

& Paz, 2018). These studies became available because of the availability of large datasets on

human mobility, which enabled studies not only for ride-sourcing but for all transportation

modes, such as buses (Bassolas et al., 2020) and taxis (Hamedmoghadam et al., 2019; Riascos

& Mateos, 2020). Even though some surveys, such as Wenzel et al., 2019, Tirachini and Gomez-

Lobo, 2019, Zha et al., 2016, link ride-sourcing services with increased traffic, they do not

consider the dynamics of congestion directly nor how these services affect urban mobility and

influence congestion. Nourinejad and Ramezani, 2020 applies pricing strategies in a dynamic

non-equilibrium model that tracks riders and drivers and the respective market performance

measures.

However, one must acknowledge the research efforts towards modeling the dispatch of taxis

and shared taxis operation. Lee et al., 2004 improved the dispatch of taxis using actual travel

distance instead of Euclidean distances to passengers. Wong and Bell, 2006 added traffic

congestion to the dispatch process. More recently, Ramezani and Nourinejad, 2018 used

a macroscopic model to control taxi fleets in a multi-region setting. Martinez et al., 2015

used an agent-based simulation to show the potential of shared-taxis for improving mobility

management in urban areas. Santi et al., 2014 developed shareability networks to enable

the operation of shared-taxis in New York City. Hosni et al., 2014 presented a formulation

for the problem of assigning passengers to taxis and computing the optimal routes of taxis.

Jung et al., 2016 used hybrid-simulated annealing for dynamic shared-taxi dispatch. Research

efforts also focused on ride-sharing systems. Alonso-Mora et al., 2017 further developed the

use of shareability networks to allow real-time dispatch in ride-sharing systems. Stiglic et al.,

2016 assessed the impacts of riders’ and drivers’ flexibility to foster the use of ride-sharing.

Nourinejad and Roorda, 2016 showed that a decentralized approach for ride-sharing could

have higher user cost savings and vehicle kilometers traveled (VKT) savings. Vazifeh et al.,

2018 presented a real-time minimum fleet problem for on-demand urban mobility using

New York City taxi data. In Long et al., 2018, the authors address the problem of travel time

uncertainty in ride-sharing services. Furuhata et al., 2013 and Agatz et al., 2012 present

insightful literature reviews on ride-sharing services. Finally, other researchers worked on

pick-up and delivery problems, and, more specifically, dial-a-ride problems. Cortés et al.,

2010 formulated a pick-up and delivery problem with transfers. Berbeglia et al., 2010 reviewed

dynamic pick-up and delivery problems, as dial-a-ride problems. Masmoudi et al., 2018

presented a dial-a-ride problem with battery swapping. Bongiovanni et al., 2019 proposed

a variant of dial-a-ride problems for electric-autonomous vehicles. Molenbruch et al., 2017

and Ho et al., 2018 reviewed dial-a-ride problems, their solution methods, and classifications.

Nonetheless, these problems do not correlate TNCs’ fleet size to traffic conditions, nor the

passengers’ behavior yet. Ignoring the effect of congestion in the operation of ride-sourcing

and ridesplitting services can influence the conclusions made. Alonso-Mora et al., 2017

showed that it is possible to serve the taxi demand of Manhattan, with reductions of 30% on

3



Chapter 1 Introduction

the current fleet. The paper assumes that all passengers are willing to share a ride with others

and that the system has perfect information about future demand. They also did not consider

the effect of congestion due to different demand conditions or the compliance of the taxi

companies to decrease their fleet size.

It is worth mentioning that other studies contributed to the understanding of labor supply

related to surge pricing (Zha et al., 2018) and multi-modal traveler decision making (Su &

Wang, 2019; Wei et al., 2020). However, given the complexity of real-time matching algorithms

and the dynamic nature of traffic, they usually avoid a spatial representation of the urban

network and the ridesplitting matching process. Instead, they rely on equilibrium models.

1.2.2 Forecasting ride-sourcing and traffic conditions

Ride-sourcing operators might not have a direct interest in congestion (see, for example,

Beojone and Geroliminis, 2021b), but a dynamic model that captures congestion can be valu-

able for various operational decisions. Efficient repositioning depends not only on demand

knowledge but also on the dynamics of idle vehicles and the time needed to move from one

region to the other. This requires a proper dynamic representation of various states, and we

can expand the MFD concept of aggregated modeling in this direction. Then, if an MFD model

could capture critical features of ride-hailing and ridesplitting services, one could investigate

various management schemes.

Since the first effort on conceptualizing MFD-based perimeter control (Daganzo, 2007), simi-

larly to the approaches of gating, appearing in ramp-metering and signal control, multiple

control schemes have been developed. They include various control methods for hetero-

geneously congested cities partitioned in homogeneous regions, such as Model Predictive

Control (MPC), Proportional-Integral control, optimal control, etc (Haddad & Shraiber, 2014;

Kouvelas et al., 2017; Sirmatel & Geroliminis, 2018a). Models based on the MFD dynamics can

forecast near-future conditions of urban systems with lower computational run times than

costly simulations, avoiding demanding and detailed route choice and assignment frameworks.

They also require a small number of input data that is more realistic to obtain. Ramezani and

Nourinejad, 2018 presented the first effort for taxi repositioning control using MFD models,

and it had a similar formulation to Geroliminis, 2015, which studied cruising-for-parking.

In most MFD control papers, accumulation-based MFD models are utilized. These models

require the existence of an Outflow-MFD, which considers a unimodal low scatter relation

between trip completion and accumulation, assuming a steady-state relationship between

production (veh.km travelled per unit time in a region) and outflow that implies a memoryless

constant average trip length. Such an assumption might be problematic for a dynamic ride-

sourcing model as the memoryless trip length assumption will not hold. On the other side,

trip-based models (which consider the existence of a Speed-MFD and track the remaining

trip length distribution) are computationally demanding and problematic to integrate with

control. A newly developed MFD model, named M-model, provides a decent approximation
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of trip-based models (Lamotte et al., 2018; Murashkin, 2021; Sirmatel & Geroliminis, 2021).

If we can formulate a ride-sourcing model including M-model traffic dynamics, it can be a

powerful tool for network-level control, e.g., for relocating vacant vehicles when demand is

not balanced, shifting from reactive strategies, where a passenger first leaves unserved so the

operator acts to avoid further losses.

Nevertheless, multiple challenges arise when modeling ride-sourcing services with a macro-

scopic traffic framework. Firstly, there is a more complex state representation and interactions

due to different activities, for examples cruising with no passengers, ride-hailing passengers

or ridesplitting passengers, etc. Namely, the developed framework should be able to provide

an understanding of how drivers transition from one activity to another, how these transitions

occur in a multi-regional setting, and how they interact with other elements in the traffic

system (e.g., passengers and background traffic). Including a ridesplitting service option

not only adds more activities but also adds different dynamics for dealing with passenger-

driver matching and how it affects the main movements of drivers. Especially, serving on

a first-come-first-served (FCFS) basis requires the understanding that an incoming request

can interrupt an ongoing service to assign a new passenger to a shared ride. Furthermore,

passengers have different pick-up and drop-off locations, possibly, all in distinct regions,

requiring a driver to deliver the passengers far from each other. Besides the movement of

passengers and drivers in the traffic system, ridesplitting services present significant market

thickness in that increases in the demand creates a positive feedback in the service capability

of serving multiple passengers. It all challenges the representation assignments and losses

integrated in the same model framework, since macroscopic models do not track individual

trips. Overcoming such challenges is imperative in the described context, where near-future

forecasts are essential for developing various managerial frameworks.

1.2.3 Improving ride-sourcing for customers and drivers through repositioning

In a daily basis, geographical variations on the demand can create an imbalance between the

ride-sourcing service demand and supply of drivers to serve it. It is of the best interest of the

Transportation Network Company (TNC) responsible for the service operation to balance both

demand and supply to maintain a satisfactory service quality. Among the actions the TNC can

take, one can include trying to attract more drivers to the service, or using surge-pricing, or a

combination of these to take drivers to undersupplied areas. However, the fleets of this service

are formed by human drivers that offer rides to make profits and are free to make a series of

decisions. They include defining where they will look for new assignments and when to offer

rides.

Therefore, the TNC is not able to deploy extra vehicles whenever there is a shortage, and

it requires convincing ability to relocate the available pool of drivers. Lu et al., 2018 and

Sadeghi and Smith, 2019, and Powell et al., 2011 incentivized drivers to decide on the best

location for the next assignment through mechanisms that control the supply of drivers and
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the demand of passengers, such as surge pricing (Castillo et al., 2018). However, the issue

with these strategies is their reactive nature, in the sense that they mainly accounted for past

events (i.e., lost demand) or current conditions. For instance, if an area faces recurrent losses

of requests, customers will likely change their travel option to a more reliable transportation

mode. From the drivers’ perspective, they face high uncertainty whether an area previously

marked as ‘high demand’ or ‘surge price multiplier’ will be crowded with vacant vehicles,

resulting in longer cruising times. Such problem also emerges because these strategies only

provide limited information for drivers (in time and scope), which must estimate themselves

the most profitable option.

With a more proactive nature, the literature has explored the use of Markov Decision Processes

(MDP) to understand drivers and their decision-making in the search for next passengers

(Shou et al., 2020). For instance, X. Zhou et al., 2020 proposed a MDP that recommends

cruising directions to taxi drivers. Yu et al., 2019 formulated a Markov Decision Process (MDP)

so that profit maximization objectives can be taken into account. However, these approaches

may fall short in assuming that individual drivers understand the dynamics and are able

to compute themselves the rewards of their decisions. Moreover, they ignore the impact of

competition between individual drivers, while still assuming drivers compliance to provided

guidance.

Other strategies emerge from the optimization of passenger-driver matching algorithms.

These strategies include Alonso-Mora et al., 2017, Wallar et al., 2018, Simonetto et al., 2019, and

Liu and Samaranayake, 2020 who sent empty vehicles to the location of recently unsatisfied

customers, suffering from the shortcomings of their reactive nature. Other examples can be

found in Afeche et al., 2018, Yu et al., 2019, and Wang and Yang, 2019 and references therein.

More recent studies, try to take actions before losing these passengers. Zhu et al., 2022 uses

coverage control to proactively position idle drivers in areas more likely to originate new

requests. Ramezani and Nourinejad, 2018 uses an MPC to relocate idle taxis in a macroscopic

set of regions. However, although highly optimized and proactive, these approaches assume

complete compliance to the provided instructions. Hence, they ignore that the objectives of

individual humans offering rides, or they assume that the TNC owns a completely autonomous

fleet.

From all the above, multiple challenges arise when timely balancing demand and supply of

ride-sourcing by repositioning the currently available drivers. The first challenge is to take the

burden of identifying the most profitable options from drivers with limited information, which

only have access to limited information while accouting for their future activities. However,

these options must account for a driver’s future activities and their interactions. For instance,

Beojone and Geroliminis, 2023a depicted the macroscopic interactions of ride-sourcing ac-

tivities in a multi-regional traffic system. Nevertheless, it still requires the translation to the

individual level, which cannot be approximated in a “continuum” of drivers (represented

by real numbers, instead of integers). Thus, translating revenues is no longer a process of

counting and summing discrete completed ride requests. Along with the revenue estimation,
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a challenge remains in giving positions that minimizes unnecessary demand coverage overlap-

ping among drivers. Finally, if the goal is to convince drivers to reposition, the strategy must

ensure that compliant drivers have an improved outcome from reliable predictions.

1.2.4 Autonomous vehicles for repositioning ride-sourcing vehicles

As mentioned earlier, spatiotemporal variations in demand can create supply imbalances

between drivers and passengers, manifesting as deterioration of system efficiency and service

quality. Additionally, since the service rely on human drivers, there is the additional challenge

of persuading them. However, the advent of autonomous mobility has driven attention and

TNCs are among the leaders in developing and deploying such an innovation (Ohnemus &

Perl, 2016). Therefore, one can envision the implementation of a completely autonomous fleet

operated and controlled by the TNC. With such a scenario, the TNC has the opportunity of

coordinating every repositioning decision simultaneously and continuously in all operating

vehicles.

Focusing on repositioning with autonomous vehicles (deliberately or inferred), the literature

has examples from different natures.I In Alonso-Mora et al., 2017 and Simonetto et al., 2019,

the passenger-matching strategy was extended to reposition idle vehicles by assigning them

to the location of recently unserved requests, coordinating their movements to minimize the

distance traveled. Wallar et al., 2018, in the other hand, proposed an algorithm to partition the

fleet into rebalancing regions, determine a real-time demand estimates and an algorithm to

assignment of idle vehicles to these rebalancing regions. Liu and Samaranayake, 2020 used a

probabilistic rebalancing method based on demand distributions obtained from historical

data to guide idle vehicles to areas with a high probability of future requests. Finally, recall

Zhu et al., 2022, which coordinated the movement of all idle drivers using coverage control.

One issue with the aforementioned works is that the operators only take past events (e.g.,

unserved/lost requests) or the current situation into account, due to their reactive nature.

However, in the application of vehicle repositioning, forecast of future conditions is crucial

for deploying the fleet proactively towards improved performance. The complexity of the

operations due to large fleet size, demand uncertainty and spatiotemporal heterogeneity in

the distribution of congestion make the control problem a challenging one. With a different

perspective from the other studies, Ramezani and Nourinejad, 2018 used macroscopic model-

ing and control to reposition taxi vehicles in a multi-region setting by minimizing the delay

of drivers and passengers. Ramezani and Valadkhani, 2023 and Valadkhani and Ramezani,

2023 extends the MFD-based model from Ramezani and Nourinejad, 2018 while formulating

matching and repositioning control algorithms for ride-hailing. The idea is based on the con-

cept that, given an urban network partitioned into several homogenously congested regions,

models based on the macroscopic fundamental diagram (MFD) can describe the dynamics of

INote that we infer that vehicles are autonomous when the individual human driver decision process is not
evaluated, implying a complete compliance with the repositioning instructions.
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traffic states while requiring no information on the exact condition of each individual vehicle.

Besides repositioning, the MFD concept is behind different control methods built on the

known concept of gating, appearing in ramp metering or signal control implementations

in cities for traffic management can control. A few examples are: Multi-region Propor-

tional–integral control (Aboudolas & Geroliminis, 2013; Ding et al., 2018; Ingole et al., 2020),

optimal control (Aalipour et al., 2019; Haddad, 2017), robust control (Ampountolas et al., 2017;

Haddad, 2015; Haddad & Shraiber, 2014; Y. Li et al., 2021; Mohajerpoor et al., 2020; Zhong

et al., 2018), adaptative control (Haddad & Mirkin, 2016; Haddad & Zheng, 2020; Kouvelas

et al., 2017), control with route choice (Menelaou et al., 2017; Menelaou et al., 2019), hierar-

chical control (Fu et al., 2017; Ramezani et al., 2015), and even low-altitude air traffic control

(Haddad et al., 2021; Safadi et al., 2023). Model predictive control methods have also been

combined with MFD dynamic models, for example Model Predictive Control (MPC) with

MFD-based travel time and delays (Csikós et al., 2017), hierarchical MPC with MFD-based

and link-level models (Z. Zhou et al., 2017), MPC with perimeter control and regional route

guidance (Sirmatel & Geroliminis, 2018a), and extensions with a path assignment mechanism

(Yildirimoglu et al., 2018), demand and state estimation (Kumarage et al., 2023), multi-scale

stochastic MPC with connected vehicles (K. Yang et al., 2018), or combined operation of state

estimation and MPC (Sirmatel & Geroliminis, 2020). Then, various control methods focused

on MFD-based modeling have been developed for heterogeneously congested cities parti-

tioned in a number of homogeneous regions (Haddad & Shraiber, 2014; Kouvelas et al., 2017;

Sirmatel & Geroliminis, 2018a). In Sirmatel et al., 2021, past traveling behavior is summarized

into a total remaining distance state and this information is used to modify the exit function

of multi-region MFD-based models, capturing thus the effect of trip length variability which is

relevant e.g. in control applications. However, most of these works are based on the regional

scale, therefore they can only give an aggregated command, i.e., the transfer flow from one

region to another, but still lack a complete structure to link the repositioning strategy from a

macroscopic decision to the detailed instructions for individual vehicles.

Herein, the adoption of an autonomous fleet enables the decision process to focus solely

on system-wide performance, instead of individual driver objectives. In the other hand,

different challenges emerge for repositioning autonomous vehicles. The first challenge is to

coordinate the movements of all vehicles. For instance, it should avoid instructions causing

coverage overlap decreasing the system capacity of serving incoming requests. In large-scale

environments with fleets of hundreds or thousands of vehicles, the complexity of any proposed

solution can quickly turn the problem unsolvable or, at least, infeasible for real-time solutions.

The idea of breaking the repositioning problem in different layers, with different scales and

scopes each, is a plausible path. However, it raises the concern of balancing the different layers

such that the envisioned gains in computational complexity are obtained.
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1.3 Objectives

The first and foremost objective in this thesis is to contribute to the society and existing

research by improving our understanding about ride-sourcing services, its interactions in the

urban area, and improve it to those closely related to it (drivers and passengers) while keeping

on perspective the surrounding sustainability dimensions. Based on the preceding literature

review on the main thematic areas of the thesis and the personal interest of the author, there

exist a set of research areas that can be further explored. Therefore, the following objectives

are set, organized in chapters following the structure of the thesis.

• Chapter 2: On the inefficiency of ride-sourcing services towards urban congestion.

This chapter aims to investigate the effect of expanding fleet sizes for TNCs, passengers

with different willingness to share, and operational strategies over congestion conditions

under a sustainable perspective. The investigation considered a trip-based MFD traffic

model integrated into an event-based simulation to tackle the dynamics of congestion.

The traffic model considers private vehicles and TNCs’ vehicles. The dynamics of the

system are based on an aggregated dynamic traffic model, the network Macroscopic

Fundamental Diagram (MFD) (Geroliminis & Daganzo, 2008; Loder et al., 2019), to avoid

the computational burden of micro-simulation and the lack of sufficient data for proper

calibration. We model interactions between travelers and vehicles with an efficient

matching algorithm. It is beyond the scope of the chapter, the mode-choice modeling.

Hence, we focus on the supply of rides and its participation in traffic dynamics testing

several fleet sizes and willingness to share to cover a wide range of scenarios with various

values of these critical variables defined externally.

• Chapter 3: A dynamic multi-region MFD model for ride-sourcing with ridesplitting.

We develop an MFD-based model representing ride-sourcing services and background

traffic in a macroscopic multi-region urban network. The modeled ride-sourcing service

offers ride-hailing (single rides) and ridesplitting (shared rides). Model states describe

drivers on their ongoing activities and regions. We evaluated the proposed model by

comparing the errors of the proposed model with benchmarks from the literature utiliz-

ing a detailed agent/trip-based simulator developed with real data from the the central

business district of Shenzhen, China. Additionally, a sensitivity analysis investigated

the generability of the model to assess the performance of multi-region traffic systems

to several service parameters, such as fleet size, willingness to share or waiting time

tolerance.

• Chapter 4: Guiding the relocation of ride-sourcing drivers with revenue forecasting.

We evaluate the potential repositioning response of drivers when provided an estimate

of their earnings. Drivers are not forced to specific actions, but may not comply with

the provided guidance. They base their decisions on their earning expectations for

remaining idle in the current region or repositioning to a neighboring one. The operator

uses a mixed discrete-continuous time Markov chain (MDCTMC) to estimate individual

9
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earnings for a given decision in the short-term. A microscopic process identifies the

positions and their associated paths that provide the highest chances of matching.

Finally, the performance of the proposed strategy is compared to state-of-art strategies

from the literature, such as Coverage control (Zhu et al., 2022) and dispatching near

drivers to areas of recently lost requests (Alonso-Mora et al., 2017).

• Chapter 5: A hierarchical control framework for vehicle repositioning in ride-hailing.

In this chapter, we propose a hierarchical control strategy for the relocation of idle ride-

sourcing vehicles, for addressing the gap between proactive repositioning strategies and

micro-management of vehicles in such activities. The upper-layer utilizes an aggregated

model, which is an approximation of trip-based MFD modeling approach (building

on Beojone and Geroliminis, 2023a). A model predictive control (MPC) framework

is employed to determine the number of idle vehicles to be relocated for each pair

of regions. Unlike perimeter control MPC methods, fleet management MPC requires

the integration of more sophisticated MFD-based models describing mixed dynamics

of private vehicles and taxis. In the lower-layer, given the demand density over the

current region, a coverage control scheme operates to distribute the vehicles within the

region to achieve a demand-aligned configuration, which provides each vehicle with

relatively detailed (i.e., intersection/node-level) position guidance. To bridge both layers,

a middle-layer mechanism is developed for converting the upper-layer decisions into

dispatching commands for individual vehicles by solving an Assignment Problem, which

minimizes the distance required to achieve the optimal coverage and repositioning

decisions. An agent-based simulator built on a trip-based MFD model is utilized with

empirical taxi data from a real network of Shenzhen for validation of the proposed

strategy. Note that, differently from the previous Chapter 4, the intent is to identify

the most optimized repositioning strategy, assuming vehicles full compliance with

the provided instructions (i.e., autonomous vehicles operated by the service provider),

creating a best case scenario for repositioning decision benchmarks.

1.4 Contributions

Driven by the stated objective and based on the methods and results that will be elaborated

in detail in the next chapters, the research conducted in the scope of this thesis leads to the

following contributions, listed and elaborated per chapter as follows.

• Chapter 2: On the inefficiency of ride-sourcing services towards urban congestion.

Our findings show that ride-sourcing can lose lose attractiveness to public transport

when fleets are large enough to cause negative traffic externalities. Nevertheless, a

higher willingness to share can minimize waiting and travel times. In summary, the con-

tributions are the following: i) To the best of our knowledge, this is among the first works

to quantitatively relate the TNCs’ fleet size, willingness to share with a dynamic traffic

congestion model; ii) It investigates the effect of the previously mentioned features and
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‘empty’ vehicles (number of cruising vehicles without passengers) on the performance

of the system; iii) It develops a parking management policy for cruising vehicles that

can mitigate negative congestion externalities while maintaining the same quality of

service; and iv) It shows that, if drivers adapt their participation in a day-to-day basis

due to low profit for certain wage thresholds, the number of drivers can be above the

ideal for traffic and service quality.

• Chapter 3: A dynamic multi-region MFD model for ride-sourcing with ridesplitting.

To the best of our knowledge, this is among the first attempts to present and evaluate

such a model for ride-sourcing services with the option for ridesplitting (shared rides)

in the literature, providing a likely path to the development of strategic repositioning

and regulatory problems on ride-sourcing services. It provides an structured state space,

such that the size of the model grows according to a second-order polynomial as a

function of the number of regions and linearly as a function of the passenger-capacity

of ridesplitting trips. It also depicts the dynamics associated with ridesplitting activities,

which incur in a unforeseen state transition in previous MFD-based models where a trip

is interrupted before completion. We use the developed model to provide insights on

the service performance, comparable to detailed simulations but with much shorter

computational times. Finally, the chapter presents a benchmark comparison, where the

proposed model had superior accuracy than other models in the literature.

• Chapter 4: Guiding the relocation of ride-sourcing drivers with revenue forecasting.

In a simulated study, based in Shenzhen, China, we compare the performance of guided

drivers and unguided ones. The proposed method has a flexible structure partitioning

the guidance in the identification of the best repositioning decision and the estimation

of drivers’ revenues. First, an elegant approximation identifies the areas where a driver

will have the highest chances of getting matched. Second, a Markov Chain model depicts

a driver’s activities associated with a potential repositioning path and translate them

into revenue forecasts. We show that guided drivers have increased revenues and are

likely to follow the provided guidance in the long term. We also show that it is possible

to minimize the unserved requests without providing guidance to every driver. The

proposed method achieved superior results compared to the reactive approaches, in

terms of lost requests, vehicle occupancy and deadheading. Most of the results for

guided drivers were comparable to those of the coverage control, but without assuming

drivers complete compliance with the provided guidance. The proposed method has

also little sensitivity to drivers’ decision process.

• Chapter 5: A hierarchical control framework for vehicle repositioning in ride-hailing.

Compared with control strategies using exclusively the upper- or the lower-layers, the

results indicate that the proposed hierarchical framework method yields performance

improvements by answering more requests with lower waiting times. Therefore, it

presents a new best case scenario for benchmark evaluation of repositioning strategies.

Additionally, it presents a general and flexible structured strategy that enables modifica-
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tions in each layer for testing faster algorithms and solutions for repositioning of idle

vehicles.

1.5 Structure

The thesis is organized in 5 chapters, separated by thematic area. The interior structure of each

chapter is described and the respective publications of parts of each chapter in conferences

and in scientific journals are listed below. Chapters 2, 3, 4, and 5 are standalone articles

published or under review in scientific journals. The introductions of these articles were

largely summarized to minimize the overlapping with the content presented in Chapter 1.

Each chapter has its own independent notation, i.e., the same symbol can be used to represent

different quantities in different chapters.

Chapter 2 evaluates the influence of ride-sourcing services in the urban environment using

discrete-event simulations. The simulation framework is explained among its features, in-

cluding the entities in the environment, their relationships and their interactions with traffic

conditions and public transportation options. The service performance is evaluated along-

side traffic measurements and the outcomes for involved stakeholders (including passengers,

drivers, service operator). A strategy based on off-street parking is presented as a form to

mitigate potential externalities of ride-sourcing services. Parts of this research were presented

in:

• Beojone, C. V., & Geroliminis, N. (2019). Accessing shared mobility impacts on urban

traffic networks through discrete event simulations. 8th Symposium of the European

Association for Research in Transportation (hEART 2019)

• Beojone, C. V., & Geroliminis, N. (2020b). Towards sustainable ride-sourcing services: a

simulation study on the effects of congestion, fleet size and willingness to share. 99th

Transportation Research Board Annual Meeting (TRB 2020)

• Beojone, C. V., & Geroliminis, N. (2021c). A path to take passengers from single to shared

rides: a study on ridesplitting. 9th Symposium of the European Association for Research

in Transportation (hEART 2020)

• Beojone, C. V., & Geroliminis, N. (2021b). On the inefficiency of ride-sourcing services

towards urban congestion. Transportation Research Part C: Emerging Technologies, 124,

102890. https://doi.org/10.1016/j.trc.2020.102890 (Chapter 2 is a version of this

publication)

Chapter 3 presents an MFD-based model to evaluate and predict near-future conditions of ride-

sourcing service including traffic conditions and drivers activities. The model is built without

assuming steady-state conditions and memoryless trip lengths. Drivers’ intra- and inter-

regional movements in ride-sourcing activities are detailed along with the background traffic.
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The model is evaluated in a multi-region sensitivity analysis and compared to benchmarks in

a two-region case.

• Beojone, C. V., & Geroliminis, N. (2020a). Macroscopic modeling of ride-sourcing

services. 20th Swiss Transport Research Conference (STRC 2020)

• Beojone, C. V., & Geroliminis, N. (2021a). Macroscopic ride-sourcing model for fleet

rebalancing. 100th Transportation Research Board Annual Meeting (TRB 2021)

• Beojone, C. V., & Geroliminis, N. (2022a). A dynamic multi-region mfd model for ride-

sourcing systems with ridesplitting. 101st Transportation Research Board Annual Meet-

ing (TRB2022)

• Beojone, C. V., & Geroliminis, N. (2023a). A dynamic multi-region mfd model for ride-

sourcing systems with ridesplitting. Transportation Research Part B: Methodological,

(Under Review) (Chapter 3 is a version of this publication)

Chapter 4 presents a strategy to persuade a group of ride-sourcing drivers to reposition such

that their revenues are maximized and service quality is improved. It presents a process that

identify optimized destinations for repositioning decisions such that the expected number of

matchable requests are maximized. A mixed discrete-continuous time Markov chain (MD-

CTMC) is developed to provide individualized forecasts of near-future activities, while drivers

are assumed to decide about repositioning through a logit process. The proposed strategy

is evaluated regarding its ability to retain drivers’ long term compliance. Additionally, the

proposed strategy is compared to a series of benchmarks from the literature.

• Beojone, C. V., & Geroliminis, N. (2021d). Repositioning idle vehicles in ridesplitting

operations using pricing. 21st Swiss Transport Research Conference (STRC 2021)

• Beojone, C. V., & Geroliminis, N. (2022b). An optimized driver repositioning strategy

in ridesplitting with earning estimates: a two-layer dynamic model and control. 10th

Symposium of the European Association for Research in Transportation (hEART 2022)

• Beojone, C. V., Geroliminis, N., & Yin, Y. (2022). Repositioning ridesplitting vehicles

through pricing: a two-region simulated study. 11th Triennial Symposium on Trans-

portation Analysis (XI TRISTAN)

• Beojone, C. V., & Geroliminis, N. (2023c). Relocation incentives for ride-sourcing drivers

with path-oriented revenue forecasting based on a markov chain model. Transportation

Research Part C: Emerging Technologies, (Under Review) (Chapter 4 is a version of this

publication)

Chapter 5 presents a multi-layer control framework to reposition ride-sourcing vehicles that

minimizes the number of lost requests. It briefly presents the three layers and their interactions.
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The upper-layer is formed by a MPC controller deciding the number of vehicles repositioning.

The middle-layer performs an assignment optimization to minimize the distance drivers will

have to travel to fulfil the instructions from the other layers. Since this is a collaborative effort,

the focus of this chapter is the middle-layer, where the candidate’s contributions are more

pronounced. It must be highlighted also that this is not a complete study in this version of

the thesis. The current version of this study is an extended abstract accepted for a full paper

submission in ISTTT25 (25th International Symposium on Transportation and Traffic Theory).

• Beojone, C. V., Zhu, P., Sırmatel, I. İ., & Geroliminis, N. (2023). A hierarchical control

framework for vehicle repositioning in ride-hailing systems. 25th International Sympo-

sium on Transportation and Traffic Theory (accepted for full paper submission) (Chapter

5 is a version of this manuscript)

Finally, Chapter 6 summarizes the findings and contributions of the thesis while discussing

about interesting future research directions in the field.
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2 On the inefficiency of ride-sourcing
services towards urban congestion

This chapter is based on the paper:

• Beojone, C. V., & Geroliminis, N. (2021b). On the inefficiency of ride-sourcing services

towards urban congestion. Transportation Research Part C: Emerging Technologies, 124,

102890. https://doi.org/10.1016/j.trc.2020.102890

2.1 Introduction

It is imperative to understand how TNCs’ operations can interfere in traffic conditions (fa-

vorable or unfavorable, if any effect at all) while replacing other transportation modes to

seek improvements in urban mobility. Simultaneously, it is critical to relate the fleet size

with the average speeds and service level, which are related to mobility and accessibility,

influencing passengers and social welfare. Ignoring the effect of congestion in the operation

of ride-sourcing and ridesplitting services can influence the conclusions made in any work as

much as simplifying the service operations.

Therefore, this chapter aims to investigate the effect of expanding fleet sizes for TNCs, passen-

gers with different willingness to share, and operational strategies over congestion conditions

under a sustainable perspective. The investigation considered a trip-based MFD traffic model

integrated into an event-based simulation to tackle the dynamics of congestion. The traffic

model considers private vehicles and TNCs’ vehicles. The dynamics of the system are based

on an aggregated dynamic traffic model, the network Macroscopic Fundamental Diagram

(MFD) (Geroliminis & Daganzo, 2008; Loder et al., 2019), to avoid the computational burden of

micro-simulation and the lack of sufficient data for proper calibration. We model interactions

between travelers and vehicles with an efficient matching algorithm. It is beyond the scope

of the paper, the mode-choice modeling. Hence, we focus on the supply of rides and its

participation in traffic dynamics testing several fleet sizes and willingness to share to cover a

wide range of scenarios with various values of these critical variables defined externally.
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Chapter 2 On the inefficiency of ride-sourcing services towards urban congestion

Following the motivation and the challenges raised about ride-sourcing with ridesplitting and

traffic congestion, which is given in Section 1.2.1 of Chapter 1, the remainder of this chapter

is organized as follows. Section 2.2 describes the methodological framework, including the

simulator architecture, the real data, the matching process for passengers, and a parking-

oriented strategy to decrease the circulation of empty vehicles. Then, Section 2.3 presents

numerical results on the effect of fleet size, willingness to share, and parking policies in the

quality of service and on network congestion.

2.2 Data and Methodology

2.2.1 Data description

The original data contain GPS coordinates of 199’819 trips, with their respective origins and

destinations, of 20’000 taxis every 30 seconds for 20 hours in the city of Shenzhen, China.

Shenzhen is immediately north of Hong Kong, in the southern province of Guangdong. Due

to a rapid growth period, the population was close to 11 million inhabitants in 2014 (Ji et al.,

2014). The development of Shenzhen came with massive foreign investments after it became a

special economic zone in 1979. The growth resulted in complex road topology and high traffic

demand, leading to traffic congestion problems that propagate over time and space, creating

large clusters of congested links (Bellocchi & Geroliminis, 2020; Lopez et al., 2017). The data

comprises most of the Futian and the Luohu Districts in Shenzhen, the location of the Central

Business District. The considered network consists of 1,858 intersections connected by 2,013

road segments (Fig. 2.1A). As shown in Fig. 2.1A, 50 regions form the demand data. Fig. 2.1C

shows the demand in an OD matrix. The colormap represents the frequency of each OD pair

in the sample. White points represent OD pairs without entries in the sample.

An MFD represents the traffic congestion and computes the average speeds in the network as

a function of the accumulation of private and ride-sourcing vehicles. Note that while speed is

represented by an MFD, vehicles are moving following the actual network topology and roads.

The MFD used on Shenzhen is based on the one obtained in Ji et al., 2014 for the same data of

taxi trips. To approximate the jam accumulation for all moving vehicles in the network, we

used the total road length (both ways, in case of multiple lanes) using OpenStreetMap data.

We assumed that congestion is homogeneous in the region. Hence, a single MFD is capable of

measuring congestion. Another reason for such simplifying assumption is the computation

of shortest paths – which remain unaltered during the simulation – and, consequently, the

route choice. Eq. [2.1] shows the Accumulation n vs. speed v(n) relationship and Fig. 2.1B is

the graphical representation. While this simplification created an elegant model with small

computational effort, it can still well represent the distribution of trip lengths as in real settings

(Section 2.3 provides more details). Other methods for estimating the MFD can be found in

Saffari et al., 2022 and Geroliminis and Sun, 2011 and the references therein.
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Figure 2.1: The simulation of a ride-sourcing service in Shenzhen used data of detailed network,
demand, and traffic to provide accurate measurements on operations of ride-sourcing services.
(A) Map of Shenzhen and its demand regions. (B) Space-mean speed vs Accumulation for
Shenzhen. (C) Demand density per Origin-Destination pair (in a log scale).

v(n) =


36e( 29

600 m), if m ≤ 36

6.31−0.28(m −36), if 36 < m ≤ 60

0, if m > 60

, where m ≡ n
1000 (2.1)

2.2.2 State description and Congestion dynamics

Four different entity classes populate the simulation environment: private vehicles (PVs),

waiting passengers (WPs), traveling passengers (TPs), and ride-sourcing vehicles (RSVs). Each

of the classes has properties to define them, shown in Table 2.1.

Vehicles move in the network following a trip-based model with an accumulation vs speed

MFD (Arnott, 2013). For every new trip (a PV or an RSV), the model computes its total distance

to the destination and updates the remaining distance for each vehicle based on Lamotte

et al., 2018. One way to introduce it starts from the simple observation that a vehicle with trip

length l0, which entered at a time t0, should exit after traveling l0, i.e., after a time interval τ0

satisfying Eq.[2.2].
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Table 2.1: Nomenclature of tuple elements for each entity.

Entity Property Description

PV
(Private
Vehicle)

PVi d
i Identification

PVat
i Arrival time

PVo
i Origin

PVd
i Destination

PVr d
i Remaining distance

WP
(Waiting
Passenger)

WPi d
j Identification

WPat
j Arrival time

WPo
j Origin

WPd
j Destination

WPw t s
j Willingness to share

WPdr
j Assigned driver ID

TP (Trav-
eling
Passenger)

TPi d
j Identification

TPpt
j Pick-up time

TPo
j Origin

TPd
j Destination

TPw t s
j Willingness to share

TPdr
j Assigned driver ID

TPtd
j Distance traveled

RSV
(Ride-
Sourcing
Vehicle)

RSVi d
k Identification

RSVl
k Last passed intersection

RSVcd
k Current destination

RSVr d
k Remaining distance to the current destination

RSVnp
k Number of passengers inside the vehicle

RSVpI D
k ID of assigned passengers (in order of activity)

RSVp AC
k List of activities (in order of execution)

l0 =
∫ t0+τ0

t0

v(n(k))dk (2.2)

The main difference with a classical trip based MFD model with an input the trip length distri-

bution of vehicles (see for example, Lamotte and Geroliminis, 2018), is that we estimate trip

length for each trip based on the instantaneous shortest path between origin and destination

in the real network. We also estimate the trip length between the points in the network that

will change the state of a vehicle as described in more details later in Fig. 2.2. While we are

currently using a single MFD for the whole network, this work can be extended in multi-region

MFD networks.
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The population of PVs fluctuates as every PV has a specific arrival time. Furthermore, we

assume that once a PV reaches its destination (PVr d
i = 0), it enters a garage or parking lot,

leaving the system. Note that RSVs and PVs move in the network at every time step at variable

speeds, varying according to the traffic conditions summarized in the MFD (Fig. 2.1B).

WPs are the passenger entities that were not served yet by an RSV. If a WP j is willing to share

his ride (hires the ridesplitting service), his willingness to share WPw t s
j is set to 1. Otherwise, it

is set to WPw t s
j = 0. The choice for sharing is the result of a single Bernoulli trial for each traveler

generated in the system. Nevertheless, it requires a good quality shared service for the system

to accomplish it; otherwise, the user will travel alone even in a ridesplitting service. Service

quality constraints are described later in Section 2.2.3. Finally, once s/he has an assigned

RSV to pick-up, it cannot change, and the property WPdr
j links it to the passenger. Note that

WPs may assume two states, waiting for an assignment (WPdr
j = 0) and waiting for pick-up

(WPdr
j ̸= 0).

Once an RSV picks-up a WP, the last becomes a TP (leaves the list of WPs and adds a new

member to the list of TPs). The new TP inherits most of the data from the WP, said: identifica-

tion, origin, destinations, willingness to share, and assigned driver. However, TPs have new

properties, said: time of pick-up and traveled distance. As the speeds might vary a lot during a

trip, a traveling passenger has no information about the delivery time, which is informed once

the passenger reaches the destination.

The central entity of the ride-sourcing service is the RSV, which is responsible for the pick-

up and delivery of passengers according to their preferences. Different from the PVs, RSVs

have their positioning tracked all the simulation long. They also may assume different states

depending on their current activity. Every RSV has an identification RSVi d
k , a last passed node

RSVl
k (node in the network, updated at every time step), a current destination RSVcd

k (node in

the network, such as a WP’s origin, or a TP’s destination, or a parking lot), and a remaining

distance to the current destination RSVr d
k , to keep track of their position. To keep track of their

activities, they have the destinations’ ID RSVpI D
k (identification of the passenger – waiting or

traveling one), and number of passengers inside the vehicle RSVnp
k . We assume that RSVs have

a limited capacity of two passengers. A supporting argument for such an assumption is found

in W. Li et al., 2019. The authors identified that only 6-7% of trips were shared, and more than

90% of them had at most two passengers in a study in Chengdu, China; shared trips with 3 or

more passengers is in the range of 0.7% or even less.

RSVs perform different activities as they move through the network. Fig. 2.2 shows how RSVs

change their states during the simulation breaking the activities for both available services.

The states refer to the current activity of the RSV. For each activity of an RSV, the path choice

follows the Floyd-Warshall algorithm (the shortest path) in terms of distance. In general, an

RSV can perform seven different activities:

• Cruising for passenger: the vehicle has no passengers and is driving around his current
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location, waiting for an assignment of a new passenger (WP);

• Driving to park or to a hot-spot: the vehicle has no passengers and is driving to a hot-

spot near high demand areas and then circulates randomly in this area until a request

arrives (in case the parking strategy from Section 2.2.5 is active, the hot-spot becomes a

parking lot);

• Parked: the vehicle has no passenger, reached a parking lot near high demand areas,

and waits there for the next assignment (only possible when the parking strategy from

Section 2.2.5 is active);

• Picking-up a first passenger: the vehicle received the location of a waiting passenger

(assignment), and it is moving towards the passenger’s pick-up position (origin);

• Delivering a single passenger: after picking-up the passenger, the vehicle drives him/her

towards the final destination;

• Picking-up a second passenger (exclusive for ridesplitting): the vehicle has one passen-

ger and is moving towards a second passenger that matched the current ride; and

• Delivering a passenger of a shared ride (exclusive for ridesplitting): the vehicle has two

passengers and is moving towards the destination of one of them.

Ride-hailing Ridesplitting

Legend:

E1: Assignment to passenger

E2: Pick-up a passenger

E3: Assignment to second 

passenger

E4: Pick-up second passenger

E5: Drop-off one of the 

passengers

E6: Drop-off the passenger

: Available for assignments

: Unavailable for assignments

: Cruising / Driving to park or 

hot-spot / Parked

: Picking-up a first 

passenger

: Delivering a single 

passenger

: Picking-up a second 

passenger

: Delivering a passenger of 

a shared ride

1
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Figure 2.2: Simplified RSV activity flow framework for ride-hailing and ridesplitting services.

2.2.3 Matching passengers and drivers

Here, we present the matching process used inside the simulation and its assumptions regard-

ing driver choice and passengers’ matching requirements.

Defining a trip determines the order of the points which the vehicle will visit. The matching

process is responsible for determining RSVs’ trips. WPs admit waiting 1 minute to receive

an assignment (a designated RSV available to pick-him/hr-up) that fulfills the requirements

for maximum waiting time and detour. After this time, travelers leave the WP list and choose

a new mode of transportation (busses, bike, walk, taxis, private vehicle) in an event called
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‘abandonment’. Busses, bike, and walking are considered secondary to the accumulation, and,

therefore, the simulation does not keep track of their activities. Passengers in these modes

transfer with a fixed travel time to their destination. In the case of an abandoning passenger

who decides to travel by taxi, it is modeled similarly to PVs. While a mode-choice module

could integrate the simulation, this is beyond the scope of the paper that focuses on the supply

side. The interest of this work is to analyze the effect of ride-sourcing services in congestion

for different fleet sizes and willingness to share. For demand-oriented work, the reader could

refer to Tirachini and Gomez-Lobo, 2019, Tirachini and del Río, 2019, Zha et al., 2016, and Wei

et al., 2020. The effect of mode choice and socioeconomic characteristics in the ride-sourcing

literature is a research priority.

In general, the matching process assigns the RSV with the smallest extra trip length among the

five closest RSVs that fulfill all requirements to perform the ride. We define the smallest extra

trip length as the distance that the new assignment will make the RSV travel, in addition to

any ongoing activity. It means that even an RSV that fulfills all requirements (capable) and

may save some more Vehicle Kilometers Traveled (VKT) will not get the passenger if there are

other five capable RSVs closer, for instance.

Despite that the system could benefit from optimization in the dispatching and matching

processes, we are interested in evaluating such a system as an operation with human agents

and their limited rationality (the system is not centrally optimized). For instance, Hanna

et al., 2016 points out that services such as Uber and Car2Go assign the nearest vehicle on a

first-come-first-served basis. Future research could investigate the effect of more advanced

matching optimization techniques on the performance of the system.

Assignment in ride-hailing

Requirements for matching passengers and drivers in ride-hailing derive from our assump-

tions about passengers’ tolerances towards waiting and service definition. The RSV must be

idle and able to reach the passenger in less than ∆ minutes under current traffic conditions

(Eq. [2.3]). Any vehicle that fulfills the latter is capable of serving ride-hailing passengers.

The matching process uses the distance between two points (p(·, ·)) and the current speed

(v(tclock )) to compute its requirements. Recall that RSVl
k and WPo

j refer to the RSV’s last passed

intersection and the passenger’s origin, respectively.

p(RSVl
k ,WPo

j ) ≤ v(tclock ) ·∆ (2.3)

In summary, the matching process for ride-hailing (single rides, without the option to share)

searches the closest available RSV. It occurs because the extra traveled distance for idle RSVs is

simply the summed distance to pick-up and deliver the passenger.
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Assignment in ridesplitting

There is no predefined priority for assigning partially busy RSVs when a ridesplitting passenger

arrives. Instead, the matching process looks for the five nearest capable vehicles, including

idle ones and those delivering another ridesplitting passenger.

Defining a ridesplitting trip depends on the chosen RSV’s current activity. If it is empty, the

defined trip is similar to a ride-hailing one. However, when evaluating a shared ride match (a

vehicle with one passenger matches with a second passenger), two types of trip schemes arise.

Fig. 2.3 illustrates both types of trips (j-i-j and j-j-i sequences) and direct route (i-i sequence).

Note that the process only assigns one passenger per run, immediately at the passenger’s

arrival or when a new RSV becomes available. It means that the algorithm does not wait for

a pool of passengers to form after some time. Note that, based on the previous statements,

assigning an empty RSV to an arriving ridesplitting passenger will not prevent him/her from

sharing the ride later. For this reason, the evaluation of matched rides, such as the one from

Fig. 2.3, only happens with an en-route RSV.

RSV

WP𝑗
𝑜

WP𝑗
𝑜

TP𝑖
𝑑

TP𝑖
𝑜 i-i trip

j-i-j trip

j-j-i trip

Figure 2.3: Ridesplitting trip options scheme. The ‘RSV’ box indicates the current position of
the vehicle in the illustrative network. ‘i-i trip’ refers to a direct trip from TPo

i to TPd
i (en-route

trip at the moment of the evaluation). ‘j-j-i trip’ refers to a ridesplitting trip that will deliver
passenger j first, and then passenger i. ‘j-i-j trip’ refers to a ridesplitting trip that will deliver
passenger i, and then passenger j.

A shared trip contains two passengers if both are willing to shareI and the first one, who

is already on-board, has a similar trip (with a small detour) with the second one. Thus,

considering all nearest vehicles during the assignment will also potentially increase (when

demand for shared rides is high) the number of circulating vehicles with one passenger who is

willing to share. This will result in more shared rides during the peak hour when the system

needs them. It will also result in better quality of matching because if we force shared rides,

this might result in higher waiting times. This is evident in Figs. 2.8 and 2.9, where in the

beginning of the simulation the number of ride-splitting with one passenger is more than with

two passengers, but as demand increases a higher number of matches occurs and the system

performs many shared rides. If matches are forced by only searching the 5 nearest vehicles

with already a passenger (who is willing to share), this might create lower quality of service or

INote that we refer to a passenger willing to share as a passenger that already hired ridesplitting service (after a
mode choice decision, which is outside the scope of this chapter).
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infeasible solutions.

The requirement for an empty vehicle to serve ridesplitting passengers is the same as for ride-

hailing (Eq. [2.3]). Additionally, requirements for a shared ride match derive from passengers’

tolerances towards deviating from their original path and service definition. Firstly, all involved

passengers must have hired ridesplitting rides (WPw t s
j = TPw t s

i = 1). In the ‘j-i-j’ trip from

Fig. 2.3, it is not allowed to add more than a maximum relative detour Ω to the trip distance

of TP ‘i’. Thus, the detour of picking-up the WP ‘j’ must be acceptable for ‘i’ (Eq. [2.4]); the

same applies to ‘j’ regarding the delivery of ‘i’ (Eq. [2.5]). Finally, for the sequence ‘j-j-i’, the

detour of picking-up and delivering ‘j’ must be acceptable for ‘i’ (Eq. [2.6]). Note that, in this

sequence, there is no detour for ‘j’. In case both sequences (‘j-i-j’ and ‘j-j-i’) are possible, the

shortest one in distance is chosen.

TPtd
i +p(RSVl

k ,WPo
j )+p(WPo

j ,TPd
i ) ≤ p(TPo

i ,TPd
i ) · (1+Ω) (2.4)

p(WPo
j ,TPd

i )+p(TPd
i ,WPd

j ) ≤ p(WPo
j ,WPd

j ) · (1+Ω) (2.5)

TPtd
i +p(RSVl

k ,WPo
j )+p(WPo

j ,WPd
j )+p(WPd

j ,TPd
i ) ≤ p(TPo

i ,TPd
i ) · (1+Ω) (2.6)

Note that the matching requirements share many similarities with the shareability networks

presented in Santi et al., 2014. Moreover, our matching process occurs online, as seen in

Alonso-Mora et al., 2017. However, these processes share some key differences: 1) we do not

allow to change the vehicle that will pick-up a passenger, and 2) fully occupied vehicles are

not options for assignments. Readers can refer to Martinez et al., 2015, Jung et al., 2016, Hosni

et al., 2014, Stiglic et al., 2016, Nourinejad and Roorda, 2016, Long et al., 2018, Zeng et al.,

2020, Furuhata et al., 2013, and Agatz et al., 2012 for other matching strategies for on-demand

transportation services.

2.2.4 Moving idle vehicles to hot-spots

It is unfruitful for RSV drivers to remain in a location that would yield lower revenues. Cruising

around the destination of the last assignment might lead to longer vacant times. Hence, we

assume drivers prefer to move to areas of high demand after delivering a passenger. Currently,

some TNCs test surge pricing schemes to attract vehicles to high demand areas (Lu et al.,

2018). Nevertheless, we do not investigate the consequences of surge pricing on ride-sourcing

services, drivers repositioning, nor labor supply.

Drivers have a priori a list of high-demand areas, called hot-spots, which we define later in

this section. We assume that drivers will move to the closest hot-spot once they become

idle and then randomly circulate in this region. Once drivers reach the nearest hot-spot,

they cruise, awaiting the next assignment. Note that RSVs are available for new assignments

during the ‘driving to hot-spot’ state. Typically, this would not characterize a behaviorally

meaningful strategy. However, as seen in Fig. 2.1C, there is a symmetric distribution of origins
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and destinations. It implies that drivers have little incentives to move too far from their current

position because vehicles naturally achieve a spatial distribution close to the distribution of

the origins of new requests. In other words, any additional movement is likely to create a

spatial imbalance between available vehicles and incoming demand, such that those drivers

that decide to move will likely spend longer periods cruising for the next assignment. We will

briefly comment in Section 2.3 the case that drivers do not relocate in hot spots but cruise

near the areas of the last drop-off.

The locations of hot-spots are the result of a simplified p-median problem (Owen & Daskin,

1998) in two stages. The first stage defines the intersections with the shortest average distances

to other intersections in their respective demand regions (see the 50 demand regions in

Fig. 2.1A). The second stage solves the p-median problem for the defined nodes and the

demand values for each region. Fig. 2.4 summarizes the positions of hot-spots, their closest

intersections, and their demand shares (solution of the p-median problem).

P1 P2 P3

P4
P5 P6

P7

P8

P9

Closest parking lot

0.1170
0.2437
0.0839
0.1145
0.1035
0.1150
0.0777
0.0897
0.0550

Demand share
of hotspots

P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 2.4: Geographical position of hot-spots and the set of nearest intersections. The legend
brings the results from the p-median problem (demand share of each hot-spot, used for the
parking strategy).

2.2.5 Parking strategy

TNCs’ attractiveness depends significantly on the fast response on picking-up passengers

when a request arrives (similar to other types of response systems, see, for example, a vast

literature for emergency response systems, based on location theory). To succeed in this

objective and attract higher demand from other modes of transport, TNCs try to increase

the number of registered drivers (see an economic analysis for a static model in Tirachini

and Gomez-Lobo, 2019). While an increased fleet size could decrease the waiting time for

passenger pick-up, it creates a mass of idle circulating vehicles. As the numerical study of

Section 2.3 shows, strong congestion effects might appear in the network. Nevertheless, this

congestion affects other modes of transport that move in the same part of the network. Thus,

if there is no intervention from the government to penalize the negative externalities of these

actions (e.g., through pricing or creating additional opportunities for public transportation),
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TNCs can have advantage over other modes of transport. If there is spare parking capacity,

the development of simple strategies could decrease the circulation of idle vehicles without

significantly increasing the waiting time. The purpose of such is that by leaving on the side

demand interactions and mode choice, we can still show with a dynamic model of congestion

that smart parking strategies can have a positive effect on the overall system. Whereas the

implementation and pricing of such systems can influence mode interactions, this is yet

another further research direction in transport economics. This paper focuses more on

the supply interactions and dynamics of congestion as a function of fleet sizes and parking

strategies that try to decrease the number of circulating idle TNC vehicles.

Idle RSVs cruise, in a random walk, near their last destination waiting for their next assignment.

Such behavior has the potential to increase empty kilometers traveled and degrade traffic

conditions. For this reason, we propose a parking strategy where we assign idle vehicles to

parking lots near high demand areas. The added value of parking lots is that parked vehicles

do not contribute to the MFD accumulation and, thus, congestion levels are lower. The idea

here is not to provide a fully operational strategy, but to evaluate the potential improvements

of preventing empty vehicles from cruising. A detailed evaluation and actual needs of an

operational strategy using city-wide parking is a direction for further information, where one

must identify how the parking costs are distributed among the authorities, companies and

drivers.

Xu et al., 2017 presented an optimal parking provision for ride-sourcing vehicles. The authors

focus on managing the trade-off of restraining road capacity, creating curbside parking, and

removing idle ride-sourcing vehicles from the streets because it explicitly had cruising RSVs as

a source of additional VKT. The framework, however, did not consider ridesplitting nor other

spatial network effects directly, such as matching of multiple customers and an RSV.

The locations of parking lots are the same as the hot-spots (from Section 2.2.4). We consider

off-street parking lots at these locations. These parking lots have a limited in-park capacity.

Therefore, although every idle driver receives a request to move to a parking lot, some of them

will not find an in-park spot and will cruise nearby the assigned parking lot. Once the driver

reaches the parking lot entrance, the queue to enter follows a first-come-first-served discipline.

At the same time, to leave the parking lot, there is a last-come-first-served discipline. Note

that RSVs are available for new assignments while in a ‘driving to park’ or a ‘parked’ state. The

number of in-park spots and assignable spots (in-park spots plus the number of vehicles that

will cruise nearby) of each parking lot is proportional to the demand share of the respective

hot-spot. We assume, in most scenarios, that in-park capacity is limited to half of the fleet size

of RSVs. We discuss in Section 2.3.2 the effect of parking lot capacity in system performance.

Assignment of idle RSVs for parking lots uses a color system to prioritize emptier parking lots.

Colors (classifications) are a reference to their usage level, i.e., a parking lot with fewer vehicles

have a higher priority to get an assigned vehicle. The parking strategy considers the proximity

between RSV and parking lot as a secondary classification. The Drum-Buffer-Rope method
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inspired this process (Cox III & Schleier, 2010). The highest priority goes to green parking

lots, which have more than 70% of available spots. Then, yellow ones have more than 30%,

but less than 70%; red ones have less than 30%; and, finally, black ones (lowest priority) have

all of them assigned to drivers. In summary, the process sends drivers to the nearest parking

lot with the highest priority at the moment of the decision (flags change according to the

instantaneous number of available assignable spots of each parking lot). Section 2.3.2 provides

the dynamics of vehicle occupancy in parking lots during the simulation. Note that drivers

can receive a request to move to the area of a full parking lot (represented with a ‘black’ flag).

These drivers will cruise near the parking lot until they receive a new assignment (passenger),

or a in-park spot becomes available.

2.2.6 Congestion and transit

Passengers’ choice for ride-sourcing service depends on waiting times, fares, and journey

duration. Once congestion rises, journey duration becomes less appealing. In such situation,

passengers become more likely to change to public transportation.

As mentioned earlier, in Section 2.2.2, we consider that transit move at constant speeds as

there were dedicated bus lanes that did not interact with traffic. Another approach would have

been to utilize a 3D MFD to model car-bus interactions (similar to Geroliminis et al., 2014),

but this is beyond the scope of this work. A passenger can change her choice in case travel

times become too long in ride-sourcing. The estimates for journey duration in ride-sourcing

and transit consider a waiting time and a time inside the vehicle. Every passenger computes

these estimates before joining the system. In case transit presents a lower estimate for journey

duration, some passengers change transportation mode. Hence, when the system becomes

very congested, more passengers might shift to public transport. Differently of abandonments,

these passengers do not wait for a driver. They leave the ride-sourcing system immediately at

their arrival. One can expect that this takes more passengers from ridesplitting than from ride-

hailing since we are only accounting for traveling times, not costs. The opposite is expected

from waiting time abandonments, since more vehicles will be available for a ridesplitting

service.

Eq. [2.7] computes the estimated journey duration of transit. One can relate it with what a

passenger expects to wait plus the amount of time walking plus the transit time-table assumed

to travel around a ucr = 10 km/h (walking and in-vehicle average). Although ridesplitting

passengers can accept up to the maximum detour tolerance (Ω), they expect only half of it

to be used (we show evidence for this assumption later in Fig. 2.7B). Eq. [2.8] computes the

estimated journey duration of a ride-sourcing passenger based on current traveling speeds

in the network (v(n(t))). One can relate such an estimate with what customers see on the

application screen before booking a ride. Note that the passenger has a predefined willingness

to share, e.g., the service s/he will hire.
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Ttransit = E
[
Wtransit

]+ p(WPo
j ,WPd

j )

ucr
(2.7)

TTNC = E
[
WTNC

]+ p(WPo
j ,WPd

j )

v(n(t ))
×

(
1+WPw t s

j
Ω

2

)
(2.8)

2.3 Computational results

We analyzed several metrics, with different ride-sourcing fleet sizes (from 1000 to 7000 in

increments of 500 vehicles – based on the operating number of taxis in Ji et al., 2014 for

Shenzhen), and willingness to share (fraction of passengers hiring ridesplitting: 0%, 30%, 60%,

and 90%). Among the metrics we analyzed, we can highlight passengers’ waiting times, the

time a passenger stays in the system, trip lengths for pick-up, delivery and cruising, average

traveling speeds, vehicle kilometers traveled, and many others. We assumed that the number

of drivers remains unchanged for the time of a single simulation run based on the findings

of Zha et al., 2018, where drivers might spend more than six hours working per day (more

than double of a simulation run). However, the number of drivers can change daily. Section

2.3.3 presents a discussion in this direction. Further research efforts could analyze within-day

dynamics on the number of active drivers, which requires a more careful analysis of pricing

and investigation of equilibrium and the trade-off between supply and demand. Note that,

in the case of such an application, we expect that fewer drivers would join in off-peak hours.

However, the demand peak would surely bring more drivers, specifically if surge pricing

schemes are applied, causing similar congestion issues.

The maximum waiting time, ∆, and the maximum detour, Ω, were set to 10 minutes and 20%

of the trip length (shortest path from origin to destination), respectively. Expected waiting time

for buses (E
[
Wtransit

]
) is also set to 10 minutes according to Fu et al., 2020, while the expected

waiting for ride-sourcing (E
[
WTNC

]
) is pre-computed using the simulation. From all waiting

abandonments, about half choose to travel by busses or bike or walk. The other half call a taxi

or pick-up a private vehicle (see Rayle et al., 2016). As the number of abandonment trips is

small for fleet sizes above 2000 vehicles (1-4% from all trips, including PVs and ride-sourcing),

variations in the fraction of these trips between public and private modes do not influence

the numerical results, and conclusions remain unchanged. There are separate scenarios to

evaluate the parking strategy from those where it is deactivated.

A Poisson process describes the arrival process of both PVs and WPs. They had piece-wise

constant rates in a 3-hour long simulation with a low-high-low demand profile lasting one

hour for each period. In the low-demand profile, private vehicles and ride-sourcing passengers

split in 34’000 and 6’000 trips per hour for each, respectively. In the high-demand profile,

arrival rates double.

Our results show that encouraging ridesplitting is not enough to decrease the VKT, a measure
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associated with worse congestion, fuel consumption, and safety issues. Furthermore, traffic

congestion worsens as ride-sourcing fleets grow. Finally, the findings acknowledge that it is

necessary to restrain idle ride-sourcing vehicles from cruising to decrease impacts on VKT.

As this is a trip based simulation, with an MFD representation of speed dynamics in the net-

work, it is necessary to test whether this parsimonious model, without link speed variations

and detailed traffic assignment, provides realistic traffic characteristics. To do so, we compare

trip length distributions from the real taxi trips in Shenzhen with the ones produced by the

simulator. We sampled 2’000 trip lengths between 7:00 and 10:00 from the taxi trips with

passengers from Shenzhen and 2’000 trips from an instance of the simulation, to ensure that

the simulation could provide a realistic representation. Fig. 2.5 summarizes the probability

density functions for both samples and compares their cumulative density functions. Graphi-

cally, both samples have similar shapes. Furthermore, a Kolmogorov-Smirnov test evaluated

the similarity between the samples and did not reject the null hypothesis for a confidence

level of 5%. The use of the shortest path and aggregating demand data in regions (see Fig.

2.1A) did not generate a significant distinction between samples such that the simulator could

represent trip lengths accurately.
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Figure 2.5: Histograms and CDF of trip lengths. Result of a Kolmogorov-Smirnov test compar-
ing both samples.

2.3.1 The effect of willingness to share and fleet size on service quality

Evaluating the ride-sourcing service requires a multi-dimensional look. Performance measure-

ments include waiting times, journey duration, and abandonments regarding the perspective

of passengers. While the fraction of travelers that are willing to share a trip is an input to the

simulator (ranging from 0 to 90%), the quality of the matching could influence the actual

number of travelers that share a trip. It depends on the extra detour for both travelers that

potentially match, as described in Section 2.2.

We consider that a complete journey of a passenger starts the moment s/he orders the service

and ends the moment s/he reaches his destination. However, passengers that abandon the

ride-sourcing service may lead to unrealistic results. Furthermore, waiting and traveling times

may underestimate the consequences of abandonments since served trips will concentrate
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near main demand centers, whereas those far from them will abandon unserved. For instance,

abandonments range between 15% and 33% (for willingness to share of 90% and 0%, respec-

tively) for a fleet size of 1500 ride-sourcing vehicles and decrease to negligible values for larger

fleets. For this reason, abandonments penalize the measurements proportionally to the ratio

of abandoned passengers using Eqs. [2.9] and [2.10].

E
[
W ′] = E [W ] · (1+ fab) · (1− ftr s)+∆ · ftr s (2.9)

E
[

T j r
]

=
(
E [W ]+E

[
T tr ]) · (1+ fab) · (1− ftr s)+E

[
Ttransit

] · ftr s (2.10)

Here, E
[
W ′] represents the average waiting time subject to a penalty, and E

[
T j r

]
describes

average journey duration calculated from the average waiting time (E [W ]), the average travel

time (E
[
T tr

]
), the waiting tolerance (∆), the average transit journey duration (E

[
Ttransit

]
),

the abandonments (as a ratio fab ranging between 0 and 1), the losses to transit (as a ratio ftr s

ranging between 0 and 1).

As mentioned, the quality of service of transportation services (TNCs, taxis, metros or buses)

significantly depends on the passengers’ waiting times, which is zero for private cars. Bringing

passengers into the service requires planning on the business model, comprising fleet sizes,

service availability, fares, so on. An on-demand transportation service, such as a ride-sourcing

service, has to manage the dispatching process of its fleet in real-time, accounting for the route

choice and chances to match passengers. Operators may reposition drivers establishing fares

dynamically through the city. Once dispatching and repositioning policies are well defined

and operational, decreasing the waiting times of passengers requires increases in the fleet

sizes unavoidably. For example, a passenger may wait between 4 and 9 minutes when only

1000 vehicles are operating (Fig. 2.6A). For some fleet sizes, a passenger may wait between 2

and 3 minutes, on average. Such short waiting times can make ride-sourcing services more

appealing compared to public transport (Hensher & Rose, 2007). This can be problematic from

a system’s point of view because the minimum waiting times occur in fleets larger than those

that minimize the average journey duration, and the difference is higher for lower willingness

to share. Such an inconsistency can become a problem because companies might prefer

to have larger fleets than the optimum (in terms of average journey duration), so they can

attract more customers with lower waiting times and increase their revenues. We must point

here that it would only materialize depending on the TNCs’ capacity of attracting drivers,

which need an admissible income from this activity. However, the penalties on the average

waiting times increase more due to raises in ‘losses to transit’ ( ftr s), than it decreases due to

the additional drivers becoming closer to passengers, at large fleet sizes. Note that these losses

are a consequence of ride-sourcing becoming less attractive because passengers expect low

traveling speeds (see Eqs. [2.7] and [2.8]). It is interesting to observe that nearly the same fleet

sizes minimize both waiting times and journey durations when the parking strategy is active.
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Figure 2.6: Optimum fleet sizes minimize the average journey duration of passengers. (A, B)
Series of average waiting times for different fleet sizes and willingnesses to share. (C, D) Series
of average journey duration. A and C show results for instances without use of the parking
strategy. B and D show results for instances using the parking strategy. Markers indicate
the fleet size with minimum journey duration. The results were corrected with a penalty to
abandonments. Direct travel time represents the in-vehicle time for a direct service with no
detour.

It is interesting to indicate that scenarios without vehicles moving to hot-spots (not shown

in the figures) had lower waiting times than the scenarios shown in Fig. 2.6A. They ranged

lowered up to values under one minute (lower than the minimum when using the parking

strategy). The reason for such finding is in Fig. 2.1C. Origins and destinations have high

correlation, thus, remaining near the last delivery point created decent chances of getting a

new assignment.

After picking up a passenger, the ride-sourcing service must plan and execute the delivery.

Planning includes setting a proper path/route according to a specific strategy, such as mini-

mize travel time for the driver. As a trip-based single region MFD dynamic model is used, once

establishing the shortest path, traveling times would only decrease upon higher movement

speeds, but the routes would remain unchanged. There resides the conflict of managing

fleet sizes for ride-sourcing services. Since traveling speeds depend on traffic conditions,

increasing fleet sizes significantly influence average travel speeds. For instance, Fig. 2.6C

presents the result of combining shorter waiting times and longer traveling times, producing a

well-defined minimum on each case. We define with a marker the fleet sizes at the minimum

average journey duration as optimum fleets. Note that higher willingnesses to share lowered

the average journey duration and the fleet sizes in the optima. The line “direct travel” indicates
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the in-vehicle travel time for immediate service, excluding waiting, detour, and abandonment

penalty. It represents the aggregated congestion model of the city, based on the MFD of Fig.

2.1D, and it emphasizes the importance of integrating a congestion model in the analysis.

Movie S1 shows how the identification of the optimum fleets relates to the number of idle

vehicles at peak-hour getting close to zero.

The parking strategy helps to control congestion and to avoid unnecessary vehicle presence

in the streets. The average journey duration and waiting times reach a minimum, and they

rise slowly for larger fleet sizes (Fig. 2.6B and 2.6D). For instance, observing the minimums

marked with a circle in Fig 2.6, the activation of the parking strategy lowered the average

journey duration by 2.3 minutes, for a willingness to share of 90% (red circles in Figs. 2.6C and

2.6D at fleet sizes of 2500 and 3500 vehicles, respectively). With fewer vehicles on the streets

(but available in a parking lot), distances to pick-up passengers did not increase, and average

waiting times became approximately 1 minute shorter for all values of willingness to share

(comparing the minimums – circles – in Fig. 2.6A and 2.6B).

Ridesplitting has two major uncertainties when trying to get more customers. On the one side

is the uncertainty of matching passengers, while on the other side is the extra time and distance

that they will deviate from their initially designed trip. In Fig. 2.7 we explore these concerns

in a growing fleet size perspective. Although small fleets may provide higher chances for

matching passengers, they face long detours and waiting times that increase abandonments.

The reasoning behind such result is simple. For a given demand, having smaller fleet size

means that serving vehicles will be very busy. As a result, the number of vehicles with no

passengers will be smaller and in some cases when a new demand arrives, only vehicles with

passengers might be in the proximity, pushing the system to create more matches to avoid

abandonments. In summary, when fleet sizes are small, customers of ridesplitting have higher

chances of being served because of the shortage of empty RSVs. On the other hand, large fleets

provide the opposite situation without significant decreases in the matched rides, showing

that the matching process indeed favors shared rides to save some VKT. Additionally, the

detours decrease for larger fleet sizes because the matching algorithm could match passengers

with more similar requests more frequently. All the previous indicates that fleet size is vital in

identifying potential matches. Note also that because abandonment rate decreases with fleet

size, there is a slight increase for large values due to high level of congestion. The loss of RSV

demand to public transport happens only for very large fleet sizes when the network reaches

high level of congestion.

To understand these outcomes, we need a more extensive examination of these instances.

With a fixed fleet size, we can observe the situation of ride-sourcing vehicles through time and

evaluate how it may influence service performance. Fig. 2.8 illustrates the system conditions

through the number of vehicles in each state. One can readily note the effect of the peak-hour

over the system. Firstly, idle vehicles rapidly become busy. Secondly, in their absence, the

number of vehicles working with shared trips (‘2nd pick-up’ and ‘Drop-off shared’ states) rises

substantially. The parking strategy holds empty vehicles from cruising, accelerating the system
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Figure 2.7: (A) Shared trips fraction (accounting only for ridesplitting hired trips), (B) average
detours for increasing fleets, (C) fraction of abandonments, and (D) loss to public transport.

recovery from the peak hour. Note that, during off-peak hours, a few vehicles were allowed

to cruise without compromising service performance (from Fig. 2.6). The use of the parking

strategy enabled shared rides earlier than in scenarios where is is deactivated (see ‘Drop-off

shared’ state when willingness to share is 90%). However, it did not succeed in fostering more

shared rides. Table 2.2 shows the VHT used to pick-up and Drop-off shared rides is smaller,

especially for larger willingness to share. In general, VHTs for busy vehicles do not change in

order, but they fall about four times when observing empty vehicles (‘Cruising’ and ‘Driving to

park’ states).

System congestion may produce changes in the participation of each service (ride-hailing

and ridesplitting) in the number of served passengers. Fig. 2.9 illustrates the allocation of

passengers between each service, highlighting shared rides of ridesplitting for scenarios with

a fleet size of 3000 vehicles. Note that we did not plot the results for willingness to share of

0% because all passengers hire ride-hailing services (without ridesplitting option). Mainly,

ride-hailing demand remains constant for most of the simulation time. The exception is the

peak-hour, where ride-hailing loses space for ridesplitting beyond the willingness to share.

The reduction in ride-hailing trips occurs between 1.5h and 2h when demand is high, and the

number of idle vehicles is small (see Fig. 2.8). At the same time, only shared rides become

available, another reason for increasing their proportions. Noticeably, shared ridesplitting

rides build up once the matching algorithm is capable of finding partially busy vehicles. Thus,

shared trip percentage does not increase instantly with the increase in demand. The later
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Figure 2.8: Number of vehicles in each state for instances with a fleet size of 3000 ride-sourcing
vehicles, and varying willingness to share and use of the parking strategy.

indicates that shared trips require a pool of vehicles with a single passenger to form before

starting to share. Once the pool of drivers for ridesplitting is big enough, about half of arriving

ridesplitting customers have a shared ride. This illustrates the potential VKT savings at a ride

level, from the perspective of the matching algorithm.
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Figure 2.9: Instantaneous percentage of arrivals (out of all served requests) for each service
(ride-hailing and ridesplitting) at different willingness to share. Scenarios with a fleet of 3000
ride-sourcing vehicles.

2.3.2 Traffic and TNCs relation

Ride-sourcing vehicles compose urban traffic, influencing traffic performance depending on

their actions. Fig. 2.10 reveals that traveling speeds take longer times to recover from the

peak-hour for larger fleet sizes. Parking idle ride-sourcing vehicles enhanced the recovery

speed from the peak-hour, therefore, increasing the overall resilience of the system (L. Zhang
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Table 2.2: Vehicle Hours Traveled (VHT) for private vehicles and for each state of ride-sourcing
vehicles (fleet size of 3000 vehicles).

Parking
strategy

Willingness
to share

Private
vehicles

VHT per state
Cruising Driving

hot-spot
1st

pick-up
Drop-off
single

2nd

pick-up
Drop-off
shared

D
ea

ct
iv

at
ed

0% 31503 3144 350 1066 4439 0 0

30% 31192 3282 362 889 3928 189 350

60% 30528 3597 377 638 3136 401 852

90% 29957 4054 376 382 2253 566 1370

A
ct

iv
at

ed

0% 29475 802 297 1069 4270 0 0

30% 28466 862 304 912 3879 126 290

60% 28046 962 300 649 3362 227 701

90% 26995 1156 299 371 2696 264 1064

et al., 2019). Under a fleet size of 3000 ride-sourcing vehicles, instances without the parking

strategy reached the critical speed (speed which maximizes flow in the MFD) 35 minutes after

the start of the peak-hour and entered a hyper-congested state for another 35 minutes. On the

other hand, with the same fleet size with the parking strategy active, they reached the critical

speed after 41 minutes after the beginning of the peak-hour and entered a hyper-congested

state for 26 minutes. Furthermore, the speeds worsen faster for larger fleets when the parking

strategy is inactive.
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Figure 2.10: Growing fleets deteriorate average speeds and their restoration after the peak-
hour. Parking idle vehicles have enhances average speeds independently of the fleet size.

Next, we explore, in Fig. 2.11, the reachable area from an intersection in the central business

district as a function of time. As time advances, the driver can travel longer distances until

reaching the whole network modeled. A 0.5-hour difference in departure time changes signifi-

cantly in the reachable area. For example, a driver departing 1.5 hours after the simulation

start can reach a distance of 5.4 kilometers, comprising 48% of the simulated network, in 30

minutes, and this reachable area will extend to 60% if departing 0.5 hours later. However,

traffic conditions recover faster when using the parking strategy, allowing a driver to travel
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4.6 kilometers more by departing 0.5 hours later, whereas only 3.0 kilometers more without

the parking strategy (45 minutes travel). Movie S2 shows the evolution of reachable areas and

speeds in the simulation.
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Figure 2.11: Taking idle vehicles from the streets enhances the area a traveler can reach in a
certain time window and enhances the resilience of the system, in general. Dynamic reachable
area in the modeled network (scenarios with 4000 ride-sourcing vehicles and 30% willingness
to share). Starting from an intersection in the central business district of Shenzhen (marked
as a blue circle), the reachable area (and distance) that one can access within a certain time
window (i.e., 15 min, 30 min, and 45 min) at certain simulated times (A and B 1.5 hours after
simulation starts, (C and D) 2 hours after simulation starts). See Movie S2 for a complete
observation of reachable areas over time.

Fig. 2.12 shows the number of assigned vehicles to each parking lot. Firstly, most parking

lots empty following a similar trend until the point they reach a green flag. At peak-hour, all

except parking lot P9 reach this flag. Parking lots P3 and P5 have no vehicles around 2 hours

after the simulation start. Except for parking lot P9, which kept nearly 30% of its capacity,

very few vehicles remained parked. Yet, this strategy could yield positive results for traffic

conditions (Figs. 2.10 and 2.11). The period after peak-hour illustrates the effects of the

parking assignment algorithm, where those parking lots that reached the flag thresholds have

a lag before receiving new assignments. Only parking lot P5 did not have drivers waiting for

a parking spot (black flag) after the peak hour. The opposite happens to parking lots P8 and

P9. They are far from the central business district, and, thus, most of the drivers around them
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were idle by the end of the simulation.
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Figure 2.12: Parking lot occupation level and their instantaneous color flags.

VKT is a fundamental measure for transportation systems since it is associated with worse

congestion, fuel consumption, and safety issues. Ride-sourcing vehicles generate VKT not

only when transporting passengers, but also when they are searching for them, resembling

taxis. Hence, we explore through Fig. 2.13 how ride-sourcing fleets generate additional VKT to

the city. In a scenario with enlarging fleets of ride-sourcing, the only alternative to curb the

growth of VKT is to take idle ride-sourcing vehicles from the streets, as, for example, with the

parking management strategy. We show on Eq. [2.11] how ride-sourcing generated additional

VKT (VKT+) compared to a scenario where all travelers would travel alone to their destinations

without the service (assuming no issues with parking).

VKT+ =
∫ t f

ti

(
N NP

RSV(t )+NPV(t )
)

v(t )d t︸ ︷︷ ︸
VKT of all vehicles

− ∑
TP

p
(
TPo

j ,TPd
j

)
︸ ︷︷ ︸

Sum of passengers’

shortest paths

− ∑
PV

p
(
PVo

i ,PVd
i

)
︸ ︷︷ ︸

Sum of private vehicles’

shortest paths

(2.11)

Here ti and t f indicate the beginning and the end of a simulated instance. N NP
RSV(t ) refers to

the number of ride-sourcing vehicles on the streets (not parked), NPV refers to the number of

private vehicles on the streets, and v(t ) refers to the speed on the network at time t . p(·, ·) is

the shortest path distance between two points in the network. TP is the group of all served

passengers of the ride-sourcing service, and TPo
j and TPd

j are the origins and destinations of
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Figure 2.13: TNCs can increase the chances of serving passengers at the expense of adding
extra kilometers traveled to the system. (A and E) average working distance traveled per RSV.
(B and F) average empty distance traveled per vehicle (C and G) Relationship between the
additional kilometers traveled per served passenger and the fleet size. (D and H) Fraction of
served passengers as result of additional VKT. All VKT measures are normalized by the fleet
size or the number of served passengers. Triangular markers in C and G indicate the fleets
capable of serving 75% of the passengers for each willingness to share.

a passenger j , respectively. PV is the group of all travelers that used private cars (or taxis in

case of abandonments), and PVo
i and PVd

i are the origins and destinations of a traveler i from

this group, respectively. Remember that, private vehicles are assumed to use the shortest path,

and to leave the system once reaching their destinations, thus Eq. [2.12] holds.

∫ t f

ti

(NPV(t ))v(t )d t =
∑
PV

p(PVo
i ,PVd

i ) (2.12)

Thus, Eq. [2.11] may be simplified to Eq. [2.13].

VKT+ =
∫ t f

ti

N NP
RSV(t )v(t )d t −∑

TP
p(TPo

j ,TPd
j ) (2.13)

We separated the VKT that RSVs produced according to their activities. For instance, ‘Working
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VKT’ refers to those produced when RSVs are assigned to pick up passenger(s) or driving

with passenger(s) to destination(s); ‘Empty VKT’ refers to those produced when RSVs are

circulating without a passenger on-board or without a request to pick-up a passenger. Then,

we plot on Fig. 2.13 the relation between the fleet size and the Working VKT and Empty VKT

divided by the fleet size. The latter variables are equivalent to the average distance traveled

per vehicle during the simulation being in one of ‘working’ or ‘empty’ states (recall Fig. 2.2).

We also plot the additional VKT (VKT+) per passenger served as a function of fleet size and

the abandonment rate. More specifically, on Figs. 2.13A and 2.13E, one can note that RSVs

travel approximately the same working distance for a given fleet size with or without the

parking strategy. Moreover, in both cases, a smaller value of Working VKT per vehicle (meaning

average working distance) is observed as the fleets become larger, which can have an impact

on the revenues (as we discuss in Section 2.3.3). On the other hand, the parking strategy had

a significant impact on the amount of Empty VKT that each vehicle produced, i.e., average

distance without passengers traveled per vehicle during the simulation (Figs. 2.13B and 2.13F).

RSVs travel longer distances without passengers while fleets grow until congestion decreases

traveling speeds. It is worth noting that, for small fleets (1000 vehicles, for instance), there is

the opposite effect, which is related to Wild Goose Chase effect, even with a limited search

radius (as suggested in Xu, Yin, and Ye, 2020). Moreover, activating the parking strategy keeps

the empty distance traveled near 18km for all willingness to share. Figs. 2.13C and 2.13G show

the relationship between growing fleet sizes and the added VKT to the system per passenger

served. At the same time, the parking strategy significantly decreased this growth. Note that

the markers indicate the fleet sizes capable of serving 75% of the demand and that willingness

to share allows fewer vehicles to handle the same number of passengers while producing fewer

added VKT. Finally, Figs. 2.13D and 2.13H present an interesting finding related to demand

served, which is directly connected to potential benefit for these services. Instead of showing

the fleet size, we investigate the relation between served rate (1−abandoment rate) and added

VKT per passenger served. These figures show that there is always a ‘price to pay’ to serve

more passengers, and this is related to further extra kilometers traveled by an increased fleet

size. Nevertheless, this graph highlights that significantly higher fleet sizes do not contribute

to serving more passengers but only create wasted extra kilometers in the system that result in

more emissions, environmental impacts, and safety issues.

To further decrease VKT and VHT, parking lots can increase their capacities. Fig. 2.14 summa-

rizes the effects of parking capacity over the system for fixed fleet size and willingness to share.

Note that traffic congestion did not increase sufficiently to make ride-sourcing less attractive

than public transport in any of these scenarios. Increasing the number of available parking

spots exhibits an option to improve service quality, decreasing waiting times, travel times,

and serving more passengers. These improvements result from higher traveling speeds after

removing cruising vehicles from the roads (recall the speed vs accumulation relationship from

the MFD). Furthermore, it improves traffic congestion, reducing VKT. Finally, note that gains

in performance appear in even for small capacities. Nevertheless, parking capacity comes

with an infrastructure cost that has to be investigated in a future direction (possibly together
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with parking pricing schemes).
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Figure 2.14: Increasing parking capacity (as a fraction of RSVs that can use in-park spot)
decreases waiting times (A), travel times (B), abandonments (C) and VKT(D).

2.3.3 Revenues and Day-to-Day Adjustments

In the previous section we considered that the number of drivers is fixed externally and does

not change from day to day. Nevertheless, in the supply side of ride-sourcing, there is an

inherent feedback mechanism that each driver based on his/her reserve costs and gains from

the market join or leave the market dynamically. In other words, the fleet size can vary from

day to day. TNC can control the maximum registration of RSV, or apply a cap on maximum

active RSV, but the actual active RSV depends on the market, fare, and wage. This section tries

to shed some light in this direction by considering a straightforward day to day evolution.

The previous section showed that while larger fleet sizes decrease waiting time for passengers,

this creates a higher congestion level and lower quality of service for all private modes of

transport. It is known that in competitive markets where different jurisdictions have not

the same objective function, the system can reach states far from optimal welfare (see, for

example, Douglas, 1972 and Lamotte et al., 2017). While our work does not analyze equilibrium

conditions between competitive players, we intend to show that TNCs may end with a pool of

active drivers larger than the optimum fleet. However, the negative outcomes of large fleets

over congestion will make only a few drivers get a revenue above a minimum wage. Therefore,

large fleets do not pose as a potential equilibrium for reasonable minimum wages.

In general, a ride-sourcing service can attract drivers as far as these drivers can profit from

offering rides. Both drivers and TNCs can only profit if drivers complete trips. So far, we

observed how several settings were able to improve the service perception of customers and

their effects on congestion. We assume that the maximum revenue the system can make

is to serve all presented ride requests before facing abandonments or loss of attractiveness

to public transport. We consider booking fees of US$ 2.20 (F r h
book ) and US$2.00 (F r s

book ) and

fares per kilometer of US$ 1.00 (F r h
di st ) and US$ 0.80 (F r s

di st ), for ride-hailing and ridesplitting,

respectively (Uber, 2019). Under such assumptions, it is straightforward to compute the

potential revenue for the system (Rp
s y s) with the number of passengers (approximately 24’000
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passengers before abandonments or losses to transit) and their willingness to share. Equation

2.14 illustrate the estimation of potential revenues.

Rp
s y s = Nr eq ·

[(
1−β)(

F r h
book +E

[
Tleng th

]
F r h

di st

)
+β(

F r s
book +E

[
Tl eng th

]
F r s

di st

)]
(2.14)

Here, Nr eq is the number of requests without any abandonments or losses to transit, β is the

willingness to share (in percentage), and E
[
Tleng th

]
is the average trip length of passengers at

their shortest path.

The service faces inefficiencies and randomness that reflect in the difficulty of producing the

potential revenue. Although the inefficiencies (such as service design, internal policies, and

other subjective activities) are hard to enumerate completely, one can do it for most of its

impacts over the final revenue. In Fig. 2.15, we explore the revenues the system produces in a

single day, as a function of fleet size. Revenues peak at smaller fleet sizes once willingness to

share increases (Fig. 2.15A). However, a lower willingness to share yields higher revenues. With

an inactive parking strategy, the revenues start to drop immediately after the peak. Note that

the peaks occur between 3500 (90% willingness to share) and 4500 (0% and 30% willingness

to share) vehicles, depending on the willingness to share. Fig. 2.15C clarifies the impacts

of inefficiencies over the potential revenues showing the losses and actual system revenues.

For smaller fleet sizes, most of the losses are due to the incapacity to serve all passengers,

that finally abandon the system. However, as more drivers become available, they cover

these losses up to the point which the system starts to lose demand for transit. Hence, one

can expect that the ridership of transit would increase as the number of drivers for ride-

sourcing services rise. The ‘Incomplete trips’ entry stands for the revenue from ongoing rides

at the end of the simulation. It is arguably a loss since the system will produce the revenue

once these passengers are delivered. However, its growth for large fleet sizes exposes the

problems with longer journey durations. Revenues for the system peaks and remains when the

parking strategy is active because it avoided the losses to transit, even when fleet sizes were

large. However, one can expect revenues losses to transit in case parking lots were smaller. It

should be highlighted that we do not propose to increase the fleet size of RSVs to attract more

passengers to public transport, as this creates a problematic state for the system with high

congestion.

Hall et al., 2018 showed the ambiguous effect of ride-sourcing over transit, which depended

on its quality and the city they operate. Our results from Fig. 2.15C presents a complementary

perspective for the previous. Ride-sourcing’s positive effects over transit may be a direct

reflection of the negative externalities of ride-sourcing fleets over congestion. Hence, in areas

where ride-sourcing appears to foster transit ridership, one should look for traffic congestion

worsening and its causes.

Using the same assumption from Zha et al., 2018, we consider that ride-sourcing drivers
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Figure 2.15: The system’s revenues peak for particular fleet sizes and decrease due to conges-
tion losses yielding higher revenues for lower willingness to share. (A and B) Total revenue of
the system for increasing fleet sizes. (C and D) Potential revenues and summary of losses for
scenarios with willingness to share 60%.

decide, about offering rides, daily. In general, drivers compete for passengers. In case the

number of drivers is too large, very few will have satisfactory revenues that day, and most of the

drivers will not drive the next days. Fig. 2.16 explores drivers’ revenues after a ‘day’ (3 hours)

of work. The revenue for a driver is 75% of what the passenger paid (the remaining 25% is the

commission of the TNC). We set an illustrative minimum wage of US$14.50, which drivers

consider, after a workday, in their decision to remain working in the next days. The minimum

wage is for illustration purposes only; we do not claim it to be realistic. The $14.50 is a base

value, which is equivalent to the American minimum wage (US$7.25 per hour) for a two-hour

job. In other words, that is a case where drivers expect to be busy for about 2 hours. Willingness

to share created higher variability in drivers’ revenues and lower averages. In general, the

average revenue ranges from US$21.24 and US$23.15. There were around 700 more drivers

with revenues higher than the illustration when willingness to share is 0%, compared to it at

90%. The parking strategy, however, increased the average revenue by US$2.00 for a willingness

to share of 0%. At the same time, only 2’896 drivers had higher revenues than the illustration

threshold, 600 fewer drivers than the scenario where it is deactivated. Such findings point that

the last-come-first-served basis for the queue inside the parking lot causes higher variability

and, therefore, fewer drivers with satisfactory revenues. Note that many drivers had no revenue

at all for a higher willingness to share.

Finally, in Fig. 2.16C, we can see that the system has plenty of scenarios for which the number
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Figure 2.16: Analysis over drivers’ revenue after one ‘day’ of work. (A and B) Cumulative
probability of drivers’ revenue for a fleet size of 4000 RSVs. (C and D) Maximum number
of drivers with revenues higher than the wage threshold, i.e., drivers’ sensitivity to wage
thresholds. “Optimal” fleet stands for the fleet the minimizes the average journey duration in
Fig. 2.6C.

of drivers with adequate revenues (the illustration wage threshold) is larger than the fleet

size that minimizes journey durations (from Fig. 2.6C). There can be 1’200 more drivers than

at these minimums. Furthermore, this number can increase even more if drivers’ value of

time (e.g., minimum wage threshold / wage reservation) is smaller. The previous indicates

that more vulnerable areas may have more active drivers and more traffic issues (given that

people still have access to private cars). Differently, the parking strategy made it less attractive

to drivers, since only a few will have an acceptable wage (Fig. 2.16D). Note that it happens

because of the queuing policy in the parking strategy, which is a last-in-first-out basis. It

creates a situation in which few drivers to obtain higher revenues, while between 20% and

40% of driver in Fig. 2.16B obtain revenues lower than the minimum wage threshold; whereas,

without a parking strategy, only 5% to 20% of drivers obtain revenues lower than the threshold

(Fig. 2.16A). It is interesting to note that the number of drivers with satisfactory revenues

becomes less sensitive to the starting fleet size. For all the previous, a policy suggestion would

be to limit the number of simultaneous active drivers a TNC can have in the city.

Tirachini and Gomez-Lobo, 2019 analyzed for static conditions without congestion how

incentives of the company and pricing strategies can influence the number of drivers that

register for TNC services. Analyzing this type of equilibrium game for similar settings as

our problem (with congestion dynamics, empty kilometer traveled) can reach additional

42



On the inefficiency of ride-sourcing services towards urban congestion Chapter 2

interesting insights. This should be a research priority.

Finally, results throughout the paper indicate the ‘Wild Goose Chase’ effect (Castillo et al.,

2018; Xu, Yin, & Ye, 2020) for small fleet sizes, decreasing drivers revenues (Fig. 2.16) and a

high number of drivers moving to pick-up passengers, compared to the number of drivers

delivering them (Fig. 2.8 and Movie S1). Further investigation is needed in this direction.

2.4 Summary

In this chapter, we experimentally analyze the efficiency of TNCs using taxi trip data from

a Chinese megacity and an agent-based simulation with a trip-based MFD model for deter-

mining the speed. We investigate the effect of expanding fleet sizes for TNCs, passengers’

inclination towards sharing rides, and strategies to alleviate urban congestion. We observe

that, although a larger fleet size reduces waiting time, it also intensifies congestion, which, in

turn, prolongs the total travel time. Such congestion effect is so significant that it is nearly

insensitive to passengers’ willingness to share and flexible supply. Our findings also show that,

even if drivers quit the system in case of low profit, the system can converge in a fleet size,

which still causes noticeable congestion. Finally, parking management strategies can prevent

idle vehicles from cruising without assigned passengers, mitigating the negative impacts of

ride-sourcing over congestion, and improving the service quality.
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3 A dynamic multi-region MFD model
for ride-sourcing with ridesplitting

This chapter is based on the paper:

• Beojone, C. V., & Geroliminis, N. (2023a). A dynamic multi-region mfd model for ride-

sourcing systems with ridesplitting. Transportation Research Part B: Methodological,

(Under Review)

For the most recent version of this work, the reader can refer to the online version in the

following URL: https://arxiv.org/abs/2211.14560.

3.1 Introduction

Ride-sourcing operators might not have a direct interest in congestion (see, for example, Chap-

ter 2), but a dynamic model that captures congestion can be valuable for various operational

decisions. While we developed a discrete-event simulation in Chapter 2 which allows for

detailed analysis of the service and its interactions within a congested urban environment, it

is not suited for fast near-future predictions (such as 30 minutes ahead in time), which makes

it difficult to implement in real-time applications for repositioning or pricing optimization

requiring testing of multiple potential solutions in a short period. Herein, we develop an

MFD-based model representing ride-sourcing services and background traffic in a macro-

scopic multi-region urban network. The modeled ride-sourcing service offers ride-hailing

(single rides) and ridesplitting (shared rides). Model states describe drivers on their ongoing

activities and regions. We evaluated the proposed model by comparing the errors of the

proposed model with benchmarks from the literature utilizing a detailed agent/trip-based

simulator developed with real data from the the central business district of Shenzhen, China.

Additionally, a sensitivity analysis investigated the generability of the model to assess the

performance of multi-region traffic systems to several service parameters, such as fleet size,

willingness to share or waiting time tolerance.

Following the motivation and challenges regarding the process of forecasting near-future
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ride-sourcing and traffic conditions, which is given in Section 1.2.2 of Chapter 1, the remain-

der of the chapter has the following structure. Section 3.2 presents the general modeling

framework of the proposed M-model for ride-sourcing with ridesplitting and its particular

aspects applied to the modeled service operation. Section 3.3 evaluates the sensitiveness to

service parameters and provide a few managerial insights. Section 3.4 depicts the numerical

results of the proposed model directly compared to the plant and benchmark models and,

finally, its robustness to noises in the input data.

3.2 General model framework

In ride-sourcing operations, a TNC uses a platform to centralize trip requests for services,

such as ride-hailing and ridesplitting, from incoming passengers and to manage drivers who

use their vehicles to profit from offering chauffeured rides (Rayle et al., 2016). In ride-hailing,

single passengers (or a group of related travelers traveling together) request a ride in real-time

and the operator tries to assign this trip to nearby drivers who should pick up the passenger

and drive to a single destination directly. Ridesplitting allows multiple unrelated passengers to

split rides if their routes overlap. Therefore, differently from ride-hailing, a detour can occur

for at least one of the passengers served by the assigned driver. Usually, the only additional

constraint concerns the added delay/detour to passengers.

Bringing a driver and a passenger together requires a matching process, usually focused on

minimizing passengers’ waiting times. If travelers wait too long, they might abandon the trip

and use another mode of transport. For instance, TNCs, such as Uber, try to assign the closest

vehicle to a new trip request on a first-come-first-served (FCFS) basis (Hanna et al., 2016). In

this paper we make the following assumptions for the matching process of passengers to driver.

Firstly, to maximize the chances of serving ridesplitting requests, the operator can consider

interrupting ongoing trips with one passenger so that the vehicle changes its path to deliver

both passengers. That means the operator makes real-time decisions and does not match

passengers beforehand nor plans for interruptions. Secondly, we limit ridesplitting services

to at most two simultaneous passengers per vehicle. Different matching strategies exist in

the literature for example, perfect in advance knowledge (Santi et al., 2014), batch matching

(Alonso-Mora et al., 2017) and others (Berbeglia et al., 2010; Jung et al., 2016; Ramezani &

Nourinejad, 2018). In this case while different matching processes will require to revisit some

aspects of the model, the dynamic framework can still be applied with little extra effort.

The proposed model describes ride-sourcing drivers based on their service assignments,

following the provided operation description. The designed framework also incorporated

urban traffic dynamics, tracking private vehicle activities, which formed the majority of

background traffic. Therefore, all drivers in the model fit one of the activities below.

• Idle (I ): a ride-sourcing vehicle with no assignments. It is vacant and available for any

new passengers.
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• Ride-hailing (RH): a ride-sourcing vehicle with an assigned ride-hailing passenger. Or

the driver is moving to a pick-up location (Origin) or carrying a ride-hailing passenger

towards the destination.

• Single ridesplitting (S1): a ride-sourcing vehicle with a single assigned ridesplitting

passenger. Or the driver is moving to an origin or carrying a ridesplitting passenger

towards the destination. A second ridesplitting assignment can interrupt this service.

• Shared ridesplitting (S2): a ride-sourcing vehicle that has two ridesplitting passen-

gers assigned. Or the driver is moving to one of the pick-up locations or carrying two

ridesplitting passengers towards one of their destinations.

• Private vehicle (PV ): a private vehicle (outside the ride-sourcing service) traveling to

the destination.

Note that we merged pick-up and delivery activities, using a single activity that indicates the

existence of an assignment to simplify the state space and make the model less susceptible to

noises in measurements. For instance, a driver picking up a ride-hailing passenger is simply in

a ride-hailing activity, similarly to a driver who is delivering a ride-hailing passenger is also in

a ride-hailing activity. The same occurs in the case of ridesplitting activities, and the difference

between S1 and S2 activities is the number of passengers assigned to the driver. For instance, a

driver with one in-vehicle passenger and picking up the second one is in a S2 activity because

it has two assigned passengers (the one inside the vehicle and the one to be picked up).

3.2.1 Macroscopic model dynamics and mass conservation equations

Besides service-related transitions, drivers will experience different traffic situations while they

move on the road network, depending on their current region. MFD models can describe dy-

namic state evolution for urban networks partitioned into multiple homogeneously congested

regions. The proposed model uses MFD dynamics to compute the flows of ride-sourcing

and private vehicles in a macroscopic urban network. For illustration, it is composed of a set

R with R heterogeneous regions, i.e., R = {1,2, ...,R}, each with a well-defined speed-MFD

expressing regional speeds as a function of accumulation vo(t ) = Vo(no(t )). Therefore, traffic

congestion and average speeds are functions of a Speed-MFD, of which the accumulation

is the sum of private and ride-sourcing vehicles. We can scale the function to represent

homogeneously congested portions of the area, analogously to Ni and Cassidy, 2020.

We developed a multi-region M-model which only focuses on vehicular traffic to represent

private and ride-sourcing vehicles in different states, which are described based on their

activities K ∈ A (where A = {I ,RH ,S1,S2,PV } is the set of activities) and the current and

destination regions od ∈R2, summarized into the notation Kod . Note that the set of activities

A includes all previously mentioned activities: idle (I ), ride-hailing (RH), single ridesplitting

(S1), shared ridesplitting (S2), and private vehicle (PV ). Two sets of conservation equations
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describe the dynamics of each state (Equations [3.1]–[3.4]). The first one computes the

evolution of the number of vehicles, and the second one, of the total remaining distance.

Idle vehicles are the only exception without remaining distance to be estimated because they

have no assignments to complete. Differently than the classical MFD approach, where a

vehicle that starts a trip will finalize it with a specific trip length, ridesplitting services contain

this additional complexity because of the interruptions. While a vehicle in an activity S1

contributes in the remaining distance of this state with a pre-determined trip length, when

a second passenger is assigned the state changes from S1 to S2 without completing the S1

trip, creating an inconsistency in the classical MFD framework (a trip that starts needs to

complete its assigned trip length). That is the reason for S1od being a special case with their

particular dynamics accounting for such trip interruptions. Thus, we only need Equation

[3.1] to depict idle drivers’ dynamics. In summary, the number of states can be computed as

|Kod | = |R|+ (|A|−1) · |R|2, where Kod is the set of all states.

ṅK
od (t ) = Inflow−Outflow K ∈A\S1 (3.1)

Ṁ K
od (t ) = Inflow ·Trip length−nK

od (t )vo(t ) K ∈A\{I ,S1} (3.2)

ṅS1
od (t ) = Inflow−Outflow− Interruption (3.3)

Ṁ S1
od (t ) = Inflow ·Trip length−nS1

od (t )vo(t )− Interruption ·Remaining distance (3.4)

where ‘Inflow’, ‘Outflow’ and ‘Trip length’ are defined for each state in Table 3.1. Besides trip

lengths, described using the respective LK
od (t ), some of the main components of the dynamics

OK
od (t ) and OK

ohd (t ) are trip completion and transfer flow rates, respectively; where o, h and d

represent the current, the next and the final region of drivers’ path. On the other hand, λ̄P
od (t )

(where P ∈ {RH ,S1}) and λ̄S2
ohd (t) summarize traveler entering processes assigned to idle

drivers or shared ridesplitting rides, respectively; and the regions o, h, and d refer to the origin,

the intermediate stop of a shared request, and the final destination of an arriving request,

respectively.I Private vehicles have their own arrival/enter process for travelers depicted

by the value λ̄PV
od (t). Equations [3.1] and [3.2] did not include vehicles in S1 activities due

to possible interruptions. These interfere with the total remaining distance, meaning that

part of the production – total distance traveled per time unit – does not directly convert into

trip completion or transfer flows. A general state-space framework is illustrated in Figure

3.1 focusing on the transitions inside one individual region and its interactions with the

neighboring ones, where any region k is preceding region o, which is preceding any region l

on drivers’ path to region d (or region o for those trips ending there).

Note that there is no endogenous trip completion for idle Io drivers since they do not have

any assignments to complete; instead, they cruise for passengers, and they exit their current

state through passenger entering processes. While one could compute a posteriori what is the

INote that the willingness to share, as explained in Chapter 2, will separate the passenger arriving process into
the different service options.
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Table 3.1: Summary of dynamic flows in each state (notation described in table 4).

State Nb. of
vehicles

Rem. dis-
tance

Inflow Outflow Trip
length

Io n I
o(t ) − ORH

oo (t )+OS1
oo(t )

∑
d∈R

λ̄RH
od (t )+ λ̄S1

od (t ) −

RHod nRH
od (t ) M RH

od (t ) λ̄RH
od (t )+ ∑

i∈Ro

ORH
i od (t ) ORH

od (t ) LRH
od (t )

S1od nS1
od (t ) M S1

od (t ) λ̄S1
od (t )+ ∑

i∈Ro

OS1
i od (t )+OS2

ood (t ) OS1
od (t ) LS1

od (t )

S2od nS2
od (t ) M S2

od (t ) Interruptions+ ∑
i∈Ro

OS2
i od (t ) OS2

od (t ) LS2
od (t )

PVod nPV
od (t ) M PV

od (t ) λ̄PV
od (t )+ ∑

i∈Ro

OPV
i od (t ) OPV

od (t ) LPV
od (t )

average distance traveled for vehicles in state Io , this is not defined in the classical way as in

MFD models because it is state-specific and varies over time.

In Table 3.1, inflows and outflows of state RHod illustrate that drivers do not deliver their

passengers before entering the destination region. Every new ride-hailing assignment adds its

average trip length to the remaining distance. The model assumes, without loss of generality,

a single average trip length for all input flows.II Later, in Section 3.2.4 the calculation of every

trip length is detailed.

Most inflows and outflows for ridesplitting are naturally compatible with those for ride-hailing.

However, the traveler entering process has a double role. While a portion serves as inflow for

state S1od , the remaining interrupts a current service, as an additional passenger is entering

the vehicle. Traditionally, in MFD-based models, vehicles must always complete the started

trips. Interruptions violate such an assumption. Therefore, Equations [3.3] and [3.4] relax this

assumption for state S1od .

In Equation [3.5], we separate the interruptions depending on the trip scheme resulting from

the matching process, namely last-in-first-out (LIFO) and first-in-first-out (FIFO), where the

last and first refer to the passengers entering and exiting the vehicle. Note that λ̄S2
ohd (t) and

λ̄S2
odh(t) represent the rate of ridesplitting requests assigned into a LIFO and a FIFO shared

ridesplitting trip-schemes, respectively.III The first part, where we have
∑

h∈R λ̄S2
ohd (t ), refers to

cases where the destination of the new traveler lies in one of the possible regions on the path

of the initial trip, being, thus, delivered earlier than the initial passenger (LIFO trip scheme).

The second part, where we have
∑

h∈R λ̄S2
odh(t), refers to cases where the destination of the

new traveler is farther than the initial one, being, thus, delivered after the initial passenger

IITo relax this assumption, one must use individual trip lengths for each of the entering possibilities in the state.
Then, the computation of OK

od (t ) can later use a weighted average (based on the input rates) of these trip lengths.
IIIRecall that requests are classified as ridesplitting at the moment the passenger hires the service, where they

become classified as “willing to share”.
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Figure 3.1: General state transition structure.

(FIFO trip scheme). In LIFO trip schemes, drivers in state S1od will enter a state S2od for an

incoming oh request. In FIFO trip schemes, drivers in state S1od will enter a state S2oh for

an incoming oh request. Note that there must be a similarity between the od and oh so that

λ̄S2
ohd (t ) > 0 or λ̄S2

odh(t ) > 0. We describe in detail how to estimate these values later in Section

3.2.3, for now it stands for the general framework of the proposed model.

Interruptions =
∑

h∈R

λ̄S2,LIFO
ohd (t )︸ ︷︷ ︸

LIFO trip scheme

+ ∑
h∈R\{d}

λ̄S2,FIFO
odh (t )︸ ︷︷ ︸

FIFO trip scheme

(3.5)

We only accounted for λ̄S2
odd (t ) in the LIFO trip scheme to avoid double counting.

The last element of Equation [3.4] is the ‘Remaining distance’ L∗
S1od

(t) at the moment of the

second assignment (interruption). It illustrates the effect of not completing a trip as initially

planned, while the ‘Interruption’ illustrates the process.

Recall that the entering flow of passengers in activity S2 is equivalent to the interruptions in

activity S1. Drivers in S2od carry two passengers with possibly different destination regions but

with a similar regional path. Therefore, these drivers might drop a passenger before reaching

d . This results from the possible trip schemes in shared rides. The trip length LS2
od (t) has no

relation to the remaining distance L∗
S1od

(t ).

Finally, throughout the paper, we refer to trip length as the space a driver travels in a region
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(focus of the traffic model), not the whole distance that a driver covers from the assignment

until the drop-off area. Although related, they represent different aspects of the ride-sourcing

operation in a traffic model. While the first one relates to drivers’ network movements, the

second one relates to individual service requests. We should mention that even though some

regional trip lengths are the same for different services/activities, the total trip length from the

time of a vehicle assigned to the first passenger, until completing the trip varies across time

and sequence of activities.

3.2.2 Trip completion rates, transfer flows

Once assigned, the driver enters a busy state and starts one of the outflow processes of

trip completion or transfer. In terms of notation, the difference between them is the state

description, where state Kod completes a trip if o = d or transfers if o ̸= d . Vehicles outside their

region of destination must first transfer along the trip path and then complete the trip. The

proposed M-model computes outflows using Equation [3.6]. Recall that Io drivers’ outflow is

the passenger entering process.

OK
od (t ) =

nK
od (t )vo(t )

LK
od (t )

(
1+α

(
M K

od (t )

nK
od (t )L∗

Kod

−1

))
, K ∈A\{I ,S1}, and {o,d} ∈R2 (3.6)

where OK
od (t ) is the instantaneous trip completion/transfer rate for vehicles in state Kod ; α is a

model parameter expressing the sensitivity of outflow to variations in the remaining distance

M K
od (t ). LK

od is the average trip length. L∗
Kod

is the steady-state average remaining distance in

state Kod until exiting the current region. It can be computed as a function of the average trip

length LK
od (t ) and its standard deviation σK

od (t ), i.e., L∗
Kod

(t ) =
(
LK

od (t )2 +σK
od (t )2

)(
2LK

od (t )
)−1

.

Recall that the interruption of an ongoing S1od delivery for a new shared ride leaves a L∗
S1od

(t )

distance to the destination or next region uncovered, meaning that part of the production of

these vehicles does not convert into trip completion or transfer rates. We use mass conser-

vation Equations [3.3] and [3.4] at steady-state to estimate an approximation of OS1
od (t ). The

idea in Equations [3.7]–[3.8] is to isolate the inflow to combine both equations and obtain the

estimate in Equation [3.9].
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ṅS1
od (t ) = Inflow−OS1

od (t )− Interruption = 0 ⇒
⇒ Inflow = OS1

od (t )+ Interruption (3.7)

Ṁ S1
od (t ) = Inflow ·LS1

od (t )−nS1
od (t )vo(t )− Interruption ·L∗

S1od
(t ) = 0 ⇒

⇒ Inflow =
nS1

od (t )vo(t )+ Interruption ·L∗
S1od

(t )

LS1
od (t )

(3.8)

OS1
od (t ) =

nS1
od (t )vo(t )+ Interruption ·L∗

S1od
(t )

LS1
od (t )

− Interruption

=
nS1

od (t )vo(t )

LS1
od (t )

−
(

1−
L∗

S1od
(t )

LS1
od (t )

)
· Interruption

= ÔS1
od (t )−

(
1−

L∗
S1od

(t )

LS1
od (t )

)
· Interruption (3.9)

where LS1
od (t ) is the trip length of newly assigned single ridesplitting trips; ÔS1

od (t ) is an estimator

of the trip completion rate (or transfer flow) without interruptions; and the second term of the

result is the amount of ÔS1
od (t ) to be discounted due to interruptions. Finally, one can estimate

ÔS1
od (t ) using the M-model approximation from Equation [3.6].

Drivers may drive through different routes between their current and destination regions. The

outflow OK
ohd (t ) is the transfer rate from a current region o through the immediate next one

h, as illustrated in Equation [3.10]. Therefore, θohd ∈ [0,1] distributes transfer flows over its

neighboring regions such that the equality
∑

h∈Ro
θohd = 1 holds. The internal trip completion

rate is computed directly from Equation [3.6], where o = d .

OK
ohd (t ) = θohd ·OK

od (t ) K ∈A\{S2} (3.10)

Drivers in S2od are an exception to the previous because they may deliver one of their passen-

gers in a region before the last destination. The process for dropping one of the passengers in

the current region precedes transfer. Hence, part of the drivers will transfer (Equation [3.11]),

while others will return to state S1od before transferring (Equation [3.12]).

OS2
ohd (t ) = θohd ·(1−ϑood (t ))·OS2

od (t ) h ∈Ro (3.11)

OS2
ood (t ) = ϑood (t )·OS2

od (t ) (3.12)

where ϑood (t) becomes the fraction of shared trips passing through o that will deliver a
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passenger before continuing to d .

Regional trip information is essential for MFD-based models, and, in the case of ride-sourcing,

it results from the passenger-driver matching process. Ride-sourcing drivers pick up and then

deliver their assigned passengers and Equation [3.13] breaks trip lengths into both activities.

Recalling that, trip lengths in the proposed model are the distances traveled in a region, not the

ones for whole assignments. In this paper we assume that the values for θohd are exogenously

defined, while there are approaches in the MFD literature to integrate through an aggregated

assignment process, which is beyond the scope of this work (see for example Yildirimoglu

and Geroliminis, 2014). The reader interested in obtaining regional trip lengths and their

distribution for MFD-based models is invited to read Batista et al., 2019 and the references

therein.

LK
od (t ) = Lpick

Kod
(t )+Ldrop

Kod
(t ) (3.13)

3.2.3 Drivers movements and passenger-driver matching process

Matching passengers with available vehicles is at the core of ride-sourcing operations. It

defines if an arriving passenger enters the system or leaves unserved. Replicating it in a

dynamic model requires translating such a microscopic activity into a macroscopic scheme.

We intended to identify a parsimonious way to integrate matching in an aggregated model.

Most efforts of replicating this process into a dynamic model use Cobb-Douglas matching

friction function. Examples of such include Ramezani and Nourinejad, 2018, Xu, Yin, Chao,

et al., 2020, and Nourinejad and Ramezani, 2020. However, it assumes that passengers wait for

an amount of time and form a batch to assign them to drivers, such that it balances demand

and the supply of drivers. None of the previous studies handled large-scale ride-sourcing with

a ridesplitting option with an FCFS assignment.

As a consequence of the FCFS assignment, we can formulate a loss probability function in

response to endogenous variables such as the available fleet size nav
od (t ), the regional average

speed vo(t ), the waiting time toleranceω, and the ratio of Idle-Busy drivers ρs
od .IV It constitutes

an operational result for a given demand profile and response to service quality requirements.

The function should yield a few properties that will later ensure non-negativity to drivers’

numbers and steer the consequences of the matching process, including the thickness to de-

mand. Firstly, pl s
od ∈ (0,1] for nav

od , vo ,ω,ρs ≥ 0. Secondly, if any of the parameters approaches

IVWe must highlight that this approximation may be revised in the case of the matching process batch passengers
before the assignment and cases where the supply of drivers is too small. For instance, if one desires to batch
passengers, instead of loss probabilities, one can create a state of waiting passengers in each region, and use a
Cobb-Douglas function or an input-output diagram to compute the number of matches after batching some
passengers and drivers (as already seen in the literature before). Furthermore, to integrate multiple degrees of
patience, one can group passenger arrival processes according to their waiting time tolerances.
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0, then pl s
od approaches 1. Thirdly, all partial derivatives are negative, i.e., all parameters

decrease the chances of losing incoming requests. With these assumptions, a Cobb-Douglas

type function fits the negative log probability to ensure the previously mentioned desired

properties. Equation [3.14] depicts the formulation.

pl s
od (nav

od , vo ,ω,ρs
od ) = exp

(−γ0 · (nav
od )γ1 · (vo)γ2 ·ωγ3 · (ρs

od )γ4
)

(3.14)

All parameters γq , q ∈ {0,1,2,3,4} must be positive to ensure negative partial derivatives. One

must acknowledge that γ0 represents the coverage of a vehicle, while γ1, γ2, γ3, γ4 indicate the

coverage sensitivity to each endogenous variable. Furthermore, the these parameters are not

dependent on the service option. However, endogenous variables can vary between service

options depending on particular aspects of the modeled system. We have to note that these

curves might not be universal and depend on the matching policy.

Note that the computation of pl s
od considered all available drivers nav

od (t ) because one cannot

identify which drivers would be capable of serving the arriving request before the assignment.

Therefore, if we account only for drivers that would comply with all the constraints, we would

be changing the sample space, in an example of the “Monty Hall” problem.

A Monte Carlo simulation followed by a linear regression model evaluated the parameters

γq , q ∈ {0,1,2,3,4} of Equation [3.14] to compute the loss of incoming requests after checking

their feasibility constraints (waiting time and/or detour). Appendix B details the construction

and algorithm of the Monte Carlo simulation, while Appendix C summarizes how Equation

[3.14] was linearized to construct a linear regression model with the results of the Monte Carlo

simulation. For instance, the linear regression of a single region experiment with the entire

road network obtained a R2 = 0.96.

Since ride-sourcing cannot serve all arriving customers, exogenous arrival rates enter the ride-

sourcing restrained by the respective loss probabilities pl s
od (t ) (simpler notation of Equation

[3.14]) in Equation [3.15]. We assume that lost customers use private vehicles, so we penalize

the congestion and maintain the total number of trips. Equation [3.16] adds these lost requests

to the private vehicle demand.

λ̄s
od (t ) =

(
1−pl s

od (t )
)
λs

od (t ), where, s ∈ {H ,S} (3.15)

λ̄PV
od (t ) =λPV

od (t )+ ∑
s∈{H ,S}

pl s
od (t )λs

od (t ) (3.16)

where λs
od (t ) and λPV

od (t ) are the arrival rate of travelers for one of the ride-sourcing services

(ride-hailing H or ridesplitting S) and private vehicles, respectively. Then, λ̄s
od (t ) and λ̄PV

od (t )
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are the entrance rate of these travelers (we distinguish between arrival and entrance).

The proposed model assumes a similar geographical distribution among all available drivers

for a service. Therefore, Equation [3.17] can endogenously compute the proportion of entering

passengers assigned to idle drivers, ρs
od (t), based on the instantaneous number of drivers;

while the probability of assigning it to a busy vehicle is 1−ρs
od (t ).V,VI The previous assumes that

available vehicles and arriving passengers must be in the same region. Such an assumption

is reasonable if the number of assigned drivers across the region limits is negligible. The

number of available drivers for a shared ridesplitting ride differs, depending on the evaluated

trip-scheme. Therefore, Equations [3.18] and [3.19] counts the number of available drivers for

LIFO and FIFO trip-schemes, respectively.

ρs
od (t ) =

n I
o(t )

nav
od (t )

=


n I

o(t )

n I
o(t )

= 1, if s = H

n I
o(t )

n I
o(t )+nav,LIFO

od (t )+nav,FIFO
od (t )

, if s = S

(3.17)

nav,LIFO
od (t ) =

∑
h∈R

βd
ohnS1

oh(t ) (3.18)

nav,FIFO
od (t ) =

∑
h∈R\{d}

βh
od nS1

oh(t ) (3.19)

where βh
od (βd

oh) represents the ratio of od (oh) trips that will pass through region h (d).

The computation of the loss probability pl s
od (t) considers that unacceptable detours will

restrain some of the demand from entering the service (see the Appendix B for details). There-

fore, one should not limit available drivers nav
od (t ) to those complying with all constraints (wait

and detour), under the penalty of accounting twice for the same effects.

We can further divide the passenger entrance process according to the activity assigned to the

driver. In the case of ride-hailing, Equation [3.20] confirms that entering passengers causes

idle drivers to enter state RHod . For ridesplitting, Equation [3.21] states the process of having

drivers assigned to single requests. Equations [3.22] and [3.23] illustrate the assignment of

drivers to shared ridesplitting requests in LIFO and FIFO trip schemes, respectively.

VOne can extend the ratios ρs
od (t ) to larger passenger capacities if the assumptions remain the same for drivers’

geographical distribution and dispatching policy.
VICases with distinct dispatching policies may require direct prioritization of certain vehicles (such as priority to

vehicles at state S1), requiring adaptations to the computation of the ρs
od (t ) and pl s

od (t ).
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λ̄RH
od (t ) = ρH

od (t )λ̄H
od (t ) = λ̄H

od (t ) (3.20)

λ̄S1
od (t ) = ρS

od (t )λ̄S
od (3.21)

λ̄S2,LIFO
ohd (t ) =

(
1−ρS

oh(t )
)· βh

od nS1
od (t )

nav,LIFO
oh (t )+nav,FIFO

oh (t )
λ̄S

oh(t ) (3.22)

λ̄S2,FIFO
odh (t ) =

(
1−ρS

oh(t )
)· βd

ohnS1
od (t )

nav,LIFO
oh (t )+nav,FIFO

oh (t )
λ̄S

oh(t ) h ̸= d (3.23)

In the assumed matching process, one of the passengers will be delivered first in shared

ridesplitting. Equation [3.24] uses current demand information to identify the fraction of

shared trips delivering a passenger in their current region, ϑood (t ).VII

ϑood (t ) =

∑
h∈R λ̄S2

hod (t )∑
h∈R

∑
l∈R βo

hlβ
l
od λ̄

S2
hld (t )

(3.24)

where,
∑

h∈R
∑

l∈R βo
hlβ

l
od λ̄

S2
hld (t ) indicates all demand for shared ridesplitting trips heading

to region d that will pass through o (either for delivering a passenger, or just as a passage

towards d) before delivering one of the passengers.

3.2.4 Trip length estimates

In assuming a FCFS matching process to the nearest available driver, pick-up trip lengths

become analogous to the average minimal distance to the center of a circle. Daganzo, 2010 and

Daganzo and Ouyang, 2019 derived the approximation in Equation [3.25], where the product

between waiting time tolerance ω and instantaneous speed vo(t) determines the matching

radius. The literature presents other similar results (K. Zhang et al., 2019; K. Zhang & Nie,

2019). From the loss probability, we approximate the number of matchable drivers (number

of drivers that are available and comply with all matching constraints) as (1−pl s
od (t ))nav

od (t ).

Lpick
Kod

(t ) ≈ 0.63

√
ω · vo(t )

(1−pl s
od (t )) ·nav

od (t )
(3.25)

We averaged time invariant trip lengths for delivery, Ldrop
Kod

, based on historical data. The

previous refers only to intra-regional trip lengths in the historical data, not the length of multi-

VIITracking every delivery stop in the state notation would relax this memoryless assumption by deteriorating
model’s scalability.
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region trips, which would vary according to the demand (Origin-Destination combination)

and vehicle routing choices.

The model also uses the remaining distance L∗
Kod

in outflows (trip completion and transfer

flows) and interruptions. As mentioned earlier, in steady-state L∗
Kod

(t) =
(
LK

od (t )2 +σK
od (t )2

)·(
2LK

od (t )
)−1

. Demand changes may take the traffic system out of a steady-state condition,

changing the actual value of L∗
Kod

.

The coefficient of variation (σ/L) remained almost constant in historical data (computed from

several simulations, with the data aggregated in time intervals of 3 minutes for each activity),

ranging between 0.54 and 0.64 (depending on the experimental settings in the simulation,

OD-pair and number of regions), which is far from a value of 1, justifying the choice of an

M-model. Furthermore, given the nearly constant coefficients of variation, there is no need to

compute σK
od (t ) separately, simplifying the computation of L∗

Kod
.

3.3 Model’s sensitivity analysis in a multi-region setting

A multi-region setting can provide insights for those interested in developing regulatory

schemes envisioning better traffic conditions and general welfare. Nevertheless, the platform

operator can also derive rapid forecasts and evaluate possible decisions and near-future

consequences in the operation of the service. Therefore, in this section, we assume a three-

region model described with the equations of Section 3.2 and we investigate the dynamic

evolution of states for different fleet size, willingness to share (how the arriving demand λ(t ) is

separated between ride-hailing λH (t ) and ridesplitting λS(t )) and waiting time tolerance with

the parameters depicted in Table 3.2. Differently from Chapter 2, we separate the analyzed

area into three regions to capture the model features related with a multi-regional setting (e.g.

ridesplitting assignments and their matching constraint checks). We computed the data based

on the demand data from Shenzhen (Bellocchi & Geroliminis, 2020). Other data include a

constant coefficient of variation σ/L = 0.650 and the Speed-MFD, as depicted in Figure 3.2.
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Figure 3.2: Shenzhen central business district separated in three regions and their respective
Speed-MFDs used in the sensitivity analysis.

57



Chapter 3 A dynamic multi-region MFD model for ride-sourcing with ridesplitting

Table 3.2: Three-region model parameters.

OD-pair
Demand

ratio
Transfer ratios (θokd ) Passage ratio (βk

od ) Ldrop
Kod

(km)

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 RH/PV S1 S2
1-1 0.136 n/d n/d n/d 1 0 0 2.119 2.084 2.144
1-2 0.070 0 0.916 0.084 1 1 0.084 2.805 2.860 2.562
1-3 0.099 0 0.005 0.995 1 0.004 1 1.861 2.059 1.923
2-1 0.061 0.904 0 0.096 1 1 0.095 3.257 3.307 2.758
2-2 0.308 n/d n/d n/d 0 1 0 3.128 3.148 3.074
2-3 0.055 0.535 0 0.465 0.534 1 1 3.304 3.079 3.015
3-1 0.091 0.995 0.005 0 1 0.005 1 2.095 2.168 1.855
3-2 0.054 0.449 0.551 0 0.449 1 1 2.820 2.807 2.579
3-3 0.126 n/d n/d n/d 0 0 1 2.292 2.297 2.274

(n/d: non-defined)

We set the plant to reproduce dynamic traffic entering the hyper-congested regime and then

returning to an uncongested state without reaching gridlock. Such a setting is supposed to

generate a challenging scenario for the model evaluation since hyper-congested situations

create conditions far from steady-state and hysteresis during the loading and unloading of the

network. A Poisson process describes the arrivals in piece-wise constant rates during 3 hours

of simulation such that there is a peak hour preceded and followed by low-demand hours. It

generates a total of 40,000 trips per hour during the low-demand hours and 70,000 trips per

hour during the peak hour, from which 85% are background traffic and 15% are ride-sourcing

requests.

Firstly, passengers may have different tolerances and service preferences, while the platform

can manage its service to influence the number of active drivers and passengers’ service

choices. Therefore, in Figure 3.3, we quantify the effects of passengers’ willingness to share

(i.e., the fraction of ride requests for ridesplitting), their waiting time tolerance ω, and the

fleet size of active ride-sourcing drivers. As expected, increased fleet sizes and willingness to

share decreased the fraction of lost requests. For instance, with a waiting time tolerance of 60

seconds, a fleet size of about 2100 drivers reaches the same 15% abandonment ratio as a fleet

of 2800 drivers when the willingness to share increases from 25% to 100%. However, waiting

time tolerance creates a different behavior. On the one hand, more patient passengers enlarge

the coverage area for pick-up, increasing the chances for passenger-driver matching. On the

other hand, it allows assigning drivers farther from their passengers, which keeps them busy

for prolonged periods, decreasing their availability for incoming requests, in one consequence

of the wild-goose chase effect (Castillo et al., 2018).

As a direct consequence of the same settings, they affect the average waiting time, a key perfor-

mance indicator to attract and maintain customers in this service. In Figure 3.4, passengers’

waiting time tolerance causes the most significant changes in waiting time, changing average

values in orders of magnitude from less than 10 seconds to near 10 minutes for tolerances

of 1 and 10 minutes, respectively. Note that these numbers are also affected by an aban-

58



A dynamic multi-region MFD model for ride-sourcing with ridesplitting Chapter 3

 = 60 sec

0.10.15

0.2

0.3

1000 2000 3000 4000

Fleet size (veh)

0%

25%

50%

75%

100%

W
ill

in
gn

es
s 

to
 s

ha
re

 = 120 sec

0.05

0.1

0.2
0.3

1000 2000 3000 4000

Fleet size (veh)

0%

25%

50%

75%

100%
 = 300 sec

0.05

0.1

0.20.3

1000 2000 3000 4000

Fleet size (veh)

0%

25%

50%

75%

100%
 = 600 sec

0.05
0.1

0.2
0.3

0.4
0.45

1000 2000 3000 4000

Fleet size (veh)

0%

25%

50%

75%

100%

0% 30% 60%
Lost requests

Figure 3.3: Summary of abandonment rates as a function of fleet size, willingness to share and
waiting time tolerance (ω).

donment penalty, such that the average waiting time increases by the abandonment rate as

Penalized waiting time = Waiting time · (1+Abandonment) (Beojone & Geroliminis, 2021b).

Enlarging the available fleet had higher impacts than passengers’ willingness to share. Pairing

both fleet size and willingness to share can achieve more efficient outcomes, such as keeping

the same 20 seconds average waiting time by increasing willingness to share from 0% to 100%

while having 1000 less active drivers (scenario with ω = 300 seconds).
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Figure 3.4: Average waiting time (including a penalty for abandonment) as a function of fleet
size, willingness to share and waiting time tolerance (ω).

It is interesting how the sensitivity analysis shows the occurrence of shared rides. Figure 3.5

confirms that passengers’ willingness to share is the most relevant parameter when computing

the number of shared rides out of all provided ride-sourcing rides. Waiting time tolerances

become relevant only when too small, severely reducing the number of shared rides. As one

could expect from the assumption of matching incoming requests to the nearest driver and

not prioritizing shared rides, larger fleets of active drivers decrease the number of shared rides.

A close look at the dynamics of specific instances reveals how some parameters change drivers’

activities in the experiment. Figure 3.6 shows that regions 1 and 2 remain nearly one hour

without idle drivers, losing incoming ride-hailing requests. Higher passengers’ willingness
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Figure 3.5: Fraction of shared rides from all rides as a function of fleet size, waiting time
tolerance (ω) and willingness to share (WTS).

to share was unable to avoid such a situation but still managed to serve more passengers,

reducing the number of ride-sourcing travelers switching to private vehicles in all regions. At

the peak, the difference was around 1000 fewer private vehicles only in region 2, comparing

scenarios of 0% and 100% willingness to share.

3.4 Comparison with a detailed event-based simulator

The road network for the Futian and Luohu districts of Shenzhen, China, forms the background

for the study. The considered network consists of 1’858 intersections connected by 2’013 road

segments. In total, the Origin-Destination demand data contained around 200’000 requests

collected from taxi operations using GPS coordinates (Ji et al., 2014). The experiment used a

simulator based on Beojone and Geroliminis, 2021b (Chapter 2), which had historical data

translated into Table 3.3 to use in the evaluated forecasts. It also includes the MFD data in

Figure 3.7 and a constant coefficient of variation σ/L = 0.57.

Table 3.3: Two-region model parameters.

OD-pair
Demand

ratio
Transfer ratios (θokd ) Passage ratio (βk

od ) Ldrop
Kod

(km)

k = 1 k = 2 k = 1 k = 2 RH/PV S1 S2
1-1 0.390 n/d n/d 1 0 2.801 2.773 2.746
1-2 0.116 0 1 1 1 3.324 3.247 3.069
2-1 0.111 1 0 1 1 3.854 3.733 3.743
2-2 0.383 n/d n/d 0 1 3.315 3.280 3.257

3.4.1 Simulation/Plant description

The simulation/plant consists of an event-based spatial traffic simulation based in Beojone

and Geroliminis, 2021b. It tracks every new trip based on its geographical origin, destination,

and traveled distance in an urban network designed as a graph of roads and intersections.
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Figure 3.6: Summarized number of idle and busy drivers and private vehicles for the cases
with 2000 ride-sourcing drivers and 10 minutes of waiting time tolerance.

Differently from classical trip-based models, vehicles have their microscopic geographical

positioning tracked to evaluate detailed passenger-driver matching constraints for ride-hailing

and ridesplitting. A Speed-MFD estimates time-varying speeds shared among all links of a

region. The previous eliminates the expensive traffic assignment process, and vehicles may

travel through the shortest path. To have accurate positions and passenger-driver matching

evaluations, each entity in the simulation has a tuple of information characterizing them.

The arrival of a passenger marks the start of a ride-sourcing request. Waiting time and detour

tolerances are set for all passengers. The matching process for ride-hailing requires an idle

driver close enough to the arriving passenger to comply with the waiting time tolerance. For

ridesplitting, besides idle drivers, those assigned to another ridesplitting passenger are poten-

tial assignments for arriving passengers. However, in these cases, the evaluation must also

check whether the detour will be acceptable for both passengers. If a ride request is feasible,

it is accepted and a ride-sourcing driver is assigned to pick-up and deliver the respective

passenger.

Ride-sourcing drivers are responsible for picking up and delivering passengers in the modeled
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Figure 3.7: Shenzhen central business district separated in two regions and their respective
Speed-MFDs used in the accuracy analysis.

road network. Tracking their positions and activities allows the simulation to check their

availability for matching with arriving passengers and dispatching them accordingly. The

simulation follows TNCs’ common practice of assigning passengers to the closest available

driver on an FCFS basis. Assignments determine the sequence of visited intersections for

pick-ups and drop-offs. In the case of ridesplitting requests, they are ordered to minimize the

total traveled distance as long as the detour tolerance is fulfilled for all involved passengers.

The majority of entities affecting traffic is the background traffic. A simpler tuple represents

private drivers’ situation and position. Once the driver reaches the destination, the vehicle

leaves the system (by parking outside the road space, for instance). These entities do not

interact with the ride-sourcing service, except for the lost ride-sourcing requests using private

vehicles to fulfill their trip demand and traveling speeds.

Differently from Beojone and Geroliminis, 2021b, we separated the studied area into a set of

regions. Moreover, both ride-sourcing drivers and private vehicles have additional properties

to track their interregional path (including each intraregional trip length and sequence of

regions in a trip). The shortest paths (distance and sequence of intersections) are defined

using a Floyd-Warshall algorithm.

3.4.2 Error evaluation

In the error evaluation component, the simulation provides reference values, and the dynamic

model provides the forecasts for comparison. However, depending on the application, the

model must provide predictions for different time horizons. An MPC controller used for

real-time fleet management needs several short-term predictions, and its efficiency relies on

the quality of those (Sirmatel & Geroliminis, 2018a; Sirmatel & Geroliminis, 2021).

Therefore, we mimic an MPC controller using a rolling time horizon framework to evaluate

the model. Every ∆t time units, the simulation halts and describes the system, including

information about ride-sourcing and private vehicle numbers and their respective remaining
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distances. Then, from halt time ti , the model forecasts the system’s evolution for the next

T steps of δt time units. Note that halting times ti are ∆t units apart from each other and

Tδt ≥∆t .

Firstly, the evaluation computes the error related to estimates of state Kod for T forecast steps

starting at ti , called εK
od (ti ,Tδt ). Equation [3.26] illustrates the absolute error of the prediction

for state Kod , measured as the “number of vehicles” (veh).

εK
od (ti ,Tδt ) =

T∑
l =1

∣∣n̂K
od (ti , lδt )−nK

od (ti + lδt )
∣∣ (3.26)

where nK
od (t) stands for the actual number of vehicles in state Kod ; and n̂K

od (ti , ti +δt) is the

predicted value of nK
od (ti +δt ) when starting the prediction at ti .

The relative error ε(ti ,Tδt) aggregates all errors for a given halting time ti and prediction

horizon Tδt . The estimated error of the model is called ε(Tδt). It summarizes the errors

for all halting times ti depending on Tδt . Equations [3.27] and [3.28] depict both of these

dimensionless errors.

ε(ti ,Tδt ) =

∑
K∈S

∑
o,d ε

K
od (ti ,Tδt )∑

K∈S
∑

o,d
∑T

l =1 nK
od (ti + lδt )

, S = {I ,RH ,S1,S2,PV }, and {o,d} ∈R2

(3.27)

ε(Tδt ) =
∑
ti

ε(ti ,Tδt ), ti = 0,∆t ,2∆t , ..., t f , and T = 1,2,3,4,5

(3.28)

In this experiment, the simulation halts every ∆t = 3 minutes (0.05h). Then the model predicts

from 1 to 5 steps (T ) of 6 minutes ahead of time, completing up to 30 minutes of forecasts. The

settings for this experiment are illustrated by ∆t = 0.05h, ti = 0,∆t ,2∆t , ...,3h, δt = 0.1h, and

T = 1,2, ...5. We refer to this experiment as the “short forecast.”

Other applications (e.g. pricing) might require longer predictions. Thus, it is necessary to

understand its limitations and ability to describe system dynamics for different time horizons.

A second experiment consisted of a single model run for the entire evaluation period, receiving

information from the simulation only at the beginning. For the remaining time, there is no

information exchange between the model and the plant. In summary, the settings for this

experiment has a single ti = 0, ∆t = 3h, and a Tδt = 3h. We refer to this experiment as the

“long forecast.”
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3.4.3 Benchmark models

To better emphasize the importance of having a more complex model for ride-sourcing

dynamics compared to an accumulation-based MFD model, we utilized a benchmark model

developed to model cruising for parking with MFD dynamics (Geroliminis, 2015). It was one of

the first efforts to integrate dynamic trip lengths and a state representation that decomposes

the trip of a vehicle to various components, as required given the features of ride-sourcing

trips, but in an accumulation-based model. Simply speaking, the total production of the

vehicles splits among the different states in a way analogous to the accumulations, and trip

endings are estimated by dividing the specific production by the average trip length of the

state (that can be time-dependent). Moreover, the literature contemplates dynamic models

for taxi and ride-hailing services, which form a relevant benchmark for the proposed model.

However, the presented model is distinctive for including ridesplitting operations deliberately.

Therefore, we aggregated all ride-sourcing activities into a single busy state for the benchmark

model. Ramezani and Nourinejad, 2018 also had a similar activity description for private and

taxi vehicles separated into dispatched and occupied ones. In this approach, except for idle

ride-sourcing vehicles, trip lengths are assumed constant and were estimated using the plant

data. Trip lengths considered the entire distance a ride-sourcing vehicle traveled from its

assignment to a passenger until the last passenger drop (becoming idle again), independently

of the service option. We refer to this benchmark model as the “Acc.-based model” in the

figures.

One could acknowledge that ride-sourcing operators are indifferent to traffic conditions when

evaluating their service dynamics. For this reason, we wanted to evaluate the impact of

tracking traffic conditions during predictions. To this end, we adapted this benchmark model

to assume a constant free-flow speed vo(no(t ) = 0) at the prediction horizon. In this case, we

refer to it as the “Benchmark No-traffic”. The benchmark’s purpose is to highlight that even if

TNCs might not be interested in the congestion their operations create, they should account

for it if they are interested in managing their quality of service with real-time strategies (e.g.,

repositioning or surge pricing).

3.4.4 Model evaluation

The initial evaluation of the proposed model (prediction quality and stability, without measur-

ing errors) consists of the experiments called “long forecast” and “short forecast,” described in

Section 3.4.2.

To illustrate the experiment mimicking an MPC controller (“short forecast”), Figure 3.8 shows

three consecutive steps computed in a rolling time horizon prediction for idle ride-sourcing

drivers in Region 2. The model predicts future system conditions every 3 minutes (0.05 hours).

The model only considers the first 10 time steps (completing 30 minutes of forecasts) to

reasonably use computational resources. The feedback loop from the plant to the prediction

model estimates system states, including ride-sourcing and private vehicle information.
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Figure 3.8: Rolling time horizon prediction instances for idle ride-sourcing vehicles in Region
2. Forecasts starting 12 (A), 15 (B) and 18 (C) minutes from the experiment beginning.

To assess whether the model can capture the state dynamic evolution, we separated a single

round of the plant with the respective forecasts for the number of vehicles. Figure 3.9 depicts

these measurements for short and long forecasts. Note that, for visualization purposes, we

aggregated the number of vehicles according to their current region. We also aggregated

all ride-sourcing vehicles with at least one assigned passenger into a “Busy” classification.

In general, estimated values followed plant values closely for most states. In some short

forecasts, such as S112, PV11, PV21, and most S2od , the model initially moves away from

the plant data, but it returns to the values close to the “long forecasts” and the plant values.

The deviations remained, at most, in the order of 101 for ride-sourcing and 102 for private

vehicles. The previous highlights that examining short forecasts may provide a better test

of robustness. The regional number of idle and busy drivers is crucial for ride-sourcing

operations. Various strategies require those. Some examples are vacant vehicle relocation,

surge pricing, integration of ride-sourcing in High-Occupancy-Vehicle or High-Occupancy-

Toll lanes, and perimeter control.

One of the central concerns in modeling ridesplitting activities is ensuring the model can

capture key service characteristics, which are state- and demand-dependent. Figure 3.10

depicts the ratio of drivers nS2
od (t)/nS1

od (t) on ridesplitting activities in each region. As one

would expect, the more passengers joining ridesplitting, the more passengers have shared

rides. In the beginning, few drivers carry multiple riders since, most times, an idle vehicle is

the closest one to arriving passengers. However, once the demand grows, it forms the pool of

drivers with a single ridesplitting passenger allowing for more shared rides, where hundreds

of drivers in both regions have two simultaneous passengers. For instance, in Region 2, the

number of drivers carrying two passengers almost equals the number of drivers carrying

a single passenger at 2h. It shows a seven-fold increase in a period of 75% larger demand,

highlighting the responsiveness to market thickness.
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Figure 3.9: Results for long and short forecasts compared directly to the plant results. Model
states are aggregated per current region and vehicle situation.
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Figure 3.10: Ratio of shared rides compared to ridesplitting demand.

3.4.5 Benchmark comparison

Error measurements can provide a detailed analysis of the quality of the forecasts and how

they deteriorate at later steps. In Figure 3.11, we compile the forecasts from 30 independent

experiment runs. Firstly, in Figure 3.11 (Left), one can note that relative errors are naturally

higher for longer predictions, as expected. Furthermore, errors often remained below 5%,

even on forecasts of 12 minutes or more. Errors were higher than 6% only at the most crowded

moments. Measurements on ε(ti ,Tδt) converge at 0 by the end of the experiment because

there are no forecasts (nor plant data) after 3h. In Figure 3.11 (Right), we included total error

measurements for all the benchmarks and the proposed model. Excluding ‘Benchmark No-

traffic’, boxplots presented increasing variability in later forecast steps but remained small

compared to the average. For instance, coefficients of variation ranged between 0.005 and
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0.022 for the benchmark and the proposed models, respectively. Total error measurements,

ε(Tδt), presented nearly linear increases for the number of steps. Errors of the ‘Acc.-based

MFD model’ were nearly double those of the proposed model, while the ‘Benchmark No-traffic’

model marked around 5 times higher errors (plotted above the other models).
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Figure 3.11: Summary of error measurements. (Left) Subtotal forecast errors for different Tδt ;
and (Right) Boxplots of total errors according to the Tδt .

We acknowledge that we computed error measurements in Figure 3.11 for all model states,

not only the aggregated ones in Figure 3.9. Hence, errors for the proposed model accounted

for all 18 states, while the ‘Acc.-based MFD model’ and the ‘Benchmark No-traffic’ accounted

for only 10 states. Total and subtotal errors of the proposed model were inferior to those of all

benchmarks. It confirms the proposed model as a better approximation to the traffic system.

To evaluate if the errors are distributed differently in each model, we separated them for

all vehicles according to their situation and current region in Figure 3.12. To have a fair

comparison, we aggregated the vehicles in groups before computing the errors (εK
od (ti ,Tδt ))

in all models. As shown in Figure 3.12, private vehicles represent most of the errors for all

models. In the ‘Acc.-based MFD model,’ the errors have a similar share distribution as the

demand, where 85% of it refers to private vehicles. The proposed model reduced the errors for

these vehicles by 60%, even with the same modeled states. On the other hand, the proposed

model has 8 states more for ride-sourcing vehicles, and errors reduce by between 28% and 42%.

The total error dropped to less than half, indicating that the computation of trip completion

and transfer flows is responsible for such results. At the same time, it provided more detailed

information on ridesplitting operations. As the last evaluation on the dynamics of ‘Benchmark

No-traffic,’ we checked whether the increased errors from Figure 3.11 concentrated in private

vehicles. However, errors had a similar distribution as the other tested models, highlighting

the importance of traffic dynamics in evaluating ride-sourcing operations (even if the operator

is not interested in it).

As a note, we ran tests separating pick-up and delivery activities to evaluate possible short-

comings of the aggregation process. However, even with the additional description, it had

slightly higher ε(Tδt ) and εK
od (ti ,30min) than the proposed model. Results were worse than
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Figure 3.12: Summary of total errors in forecast of 30 minutes (5 steps). Total errors per vehicle
situation and current region.

the proposed model because it is more susceptible to measurement noises, particularly those

in pick-up activities. After all, they have very short average trip lengths.

3.5 Summary

In this chapter, we sought to develop a dynamic aggregated traffic network model capable

of representing ride-sourcing services and background traffic in a macroscopic multi-region

urban network.We combined the Macroscopic Fundamental Diagram (MFD) with detailed

state-space and transition descriptions of background traffic and ride-sourcing vehicles in

their activities to formulate mass conservation equations. Accumulation-based MFD models

might experience additional errors due to the variation profile of trip lengths, e.g., when

vehicles cruise for passengers. We integrate the so-called M-model that utilizes the total re-

maining distance to capture dynamics of regional and inter-regional flows and accumulations

for different vehicle (private or ride-sourcing) states. This aggregated model is capable to

reproduce the dynamics of complex systems without using resource-expensive simulations.

We also show that the model can accurately forecast the vehicles’ conditions in near-future

predictions (e.g., 30 minutes ahead). Later, a comparison with benchmark models shows

lower errors in the proposed model in all states. Finally, we evaluate the model’s robustness to

noises in its inputs, and forecast errors remain below 15% even where inputs are 20% off the

actual values for ride-sourcing vehicles. The development of this model prepares the path for

developing real-time feedback-based management policies such as priority-based perimeter

control or repositioning strategies for idle ride-sourcing vehicles and developing regulations

over ride-sourcing in congested areas.
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4 Guiding the relocation of ride-
sourcing drivers with revenue fore-
casting

This chapter is based on the following papers:

• Beojone, C. V., & Geroliminis, N. (2023c). Relocation incentives for ride-sourcing drivers

with path-oriented revenue forecasting based on a markov chain model. Transportation

Research Part C: Emerging Technologies, (Under Review)

• Beojone, C. V., & Geroliminis, N. (2023b). Providing a revenue-forecasting information

scheme as an incentive to relocate compliant ride-sourcing drivers. 102nd Transporta-

tion Research Board (TRB) Annual Meeting, 1–15

4.1 Introduction

It is in the best interest of the Transportation Network Company (TNC) responsible for the

service operation to balance demand and supply to maintain satisfactory service quality.

However, the fleets of this service are formed by human drivers that offer rides to make profits

and are free to perform a series of decisions, which include defining where they will look for

new assignments and when to offer rides. Therefore, the TNC cannot deploy extra vehicles

whenever there is a shortage, and it involves convincing power to relocate the available pool

of drivers.

Herein, in this chapter, we evaluate the potential repositioning response of drivers when

provided with an estimate of their earnings. Drivers are not forced to perform specific actions

and may not comply with the provided guidance. They base their decisions on their earning

expectations for remaining idle in the current region or repositioning to a neighboring one.

The operator uses a mixed discrete-continuous time Markov chain (MDCTMC) to estimate

individual earnings for a given decision in the short term. A microscopic process identifies the

positions and associated paths that provide the highest chances of matching. In a simulated
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study based in Shenzhen, China, we compare the performance of guided and unguided drivers.

Following the motivation and the challenges raised regarding improving the ride-sourcing

service through repositioning, which is given in Section 1.2.3 of Chapter 1, the remainder of

the chapter is structured as follows. Sections 4.2 and 4.3 describe the proposed framework to

identify the best repositioning decisions and to persuade drivers by predicting their activities

and earnings. They first depict the optimal microscopic decisions (intersection- and path-

wise), then describe the proposed MDCTMC and the revenue estimation process. Section 4.4

shows the computational results in the simulated study and the comparisons to benchmark

models. Finally, Section 4.5 summarizes the main findings.

4.2 Identifying the best repositioning decision

While drivers decide about repositioning by themselves, intending to maximize their profit,

they have incomplete information about the system conditions. They also have limited ratio-

nality for a complex problem with thousands of other vehicles, preventing them from finding

the best repositioning decisions. Therefore, it is more likely that an operator who agglomerates

information about all drivers and knows better the spatiotemporal characteristics of demand

will have the means to identify repositioning needs and provide guidance.

It is worth mentioning that the service provider can use the mobile application to supply

drivers with such information since it has access to historical and real-time data about the

demand and other operational data, such as the spatial distribution of drivers over the city.

The idea would be to utilize this data and identify the best repositioning decisions and present

the driver with the expected best ones when the driver finishes a trip with a passenger and

becomes available for relocation. Hence, the driver receives detailed information about the

place and path they should drive as soon as they complete their last request (becoming idle).

We do not follow a system-optimum-oriented approach, as this might create more tangible

issues with driver compliance, and its implementation can be more challenging.

Since drivers offer rides in ride-sourcing services for a profit, one reasonable expectation

of drivers’ motivation is profit maximization. Assuming that a driver maximizes his/her

revenues by maximizing the number of served requests, a driver’s repositioning decisions

should increase his/her chances of getting new assignments.I To encapsulate this idea, one

must consider the passenger-driver matching process, where we assume the urban area is

partitioned into different regions. Without loss of generality, we assume an instantaneous

matching policy, where passengers are assigned to the closes available driver in their region on

a first-come-first-served basis. Additionally, the platform temporarily limits the assignments

to repositioning drivers to ensure the execution of a repositioning decision. For instance, a

driver cannot be assigned to a passenger unless the latter has the same destination region as

IIn reality, some requests might be more profitable than others, and a driver could maximize his/her revenues
while serving fewer requests. That does not change the idea that, in general, serving more requests will increase
one’s revenues.
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the driver. Finally, once entering the final repositioning destination region, these restrictions

are lifted, even before reaching the exact oriented location.

In summary, the chances of matching a driver depend on his/her and other drivers’ positions.

Since one can expect drivers to concentrate in areas of higher demand (at least until reach-

ing an overcrowded level), a driver repositioning through poorly covered areas can have an

additional chance of receiving an assignment. That is, poorly covered areas can be a better

repositioning option than one with higher demand.

Given the fast-changing conditions in ride-sourcing services, the vehicle density in one area

can vary significantly in a short period. Therefore, repositioning decisions must account only

for the near future, where a significant portion of the prediction is spent moving from the

current position i to a potential destination j . Then, the chances of getting assigned vary

significantly during the prediction horizon and can pose a challenge in identifying the best

repositioning destination (and its associated path).

4.2.1 Path orientation solution

Assume that all trips originate and finish at intersections of the road network. We can identify

the destinations with the highest number of expected assigned requests from a finite (and

discrete) set of destinations. Since the number of intersections in one region is relatively small,

the decision set is small, allowing us to perform ranking and selection of the best destination

in each region. Note that, without loss of generality, we arbitrarily suppressed the different

service options (ride-hailing and ridesplitting) and the regional description from the notation

in this section.II

Let us consider a path for a driver as a sequence of nodes between intersections i and j , as

shown in Figure 4.1a, where i is the closest intersection to a driver’s current position and j

is another intersection evaluated as a potential destination in the street network. Assume

that an expected number of assigned requests Pi j (t) with this path starting at time t is the

result of the integration of the instantaneous assignment rate Pi j (t , s) given by Equation [4.1],

where 0 ≤ s ≤ τ is the time elapsed from the beginning of the forecast, and τ the prediction

horizon. To calculate the instantaneous Pi j (t , s), we should consider other idle vehicles and

their coverage, such that the assignment rate accounts for the competition among drivers.

Note that it does not mean that the driver will be assigned all Pi j (t ) requests; it is a reference to

identify the path in which the driver is most likely to find a new assignment. The next Section

4.2.2 develops an approximation for Pi j (t , s).

Pi j (t ) =
∫ τ

0
Pi j (t , s)ds (4.1)

IITo compute the number of expected requests from both services, one must repeat (or do it in parallel) the
steps described in the following subsection.

71



Chapter 4 Guiding the relocation of ride-sourcing drivers with revenue forecasting

𝑠𝑠

𝑃𝑃𝑖𝑖𝑖𝑖 𝑡𝑡, 𝑠𝑠

𝑡𝑡1 = 0 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4 𝑡𝑡5 𝜏𝜏

(b) Expected demand integration(a) Indicated path

Regional
demand

𝑐𝑐1 = 𝑖𝑖

𝑐𝑐2

𝑐𝑐3

𝑐𝑐4 𝑐𝑐5 = 𝑗𝑗

Figure 4.1: Illustration of the elements in the computation Pi j (t). (a) indicated path, where
circles around nodes c1 to c5 represent the demand covered. (b) Depiction of the demand
integration associated with the indicated path.

Hence, with the computation of Pi j (t) for each potential destination, the solution of the

proposed path optimization can be summarized into Equation [4.2]. The idea is to rank each

Pi j (t),∀ j , and select the potential destination node j returning the highest position in the

ranking, i.e., with the maximum expected number of assignments in the prediction horizon.

In a multi-region setting, one could identify the optimized destination for each region by

separating the evaluated intersections in each area (Equation [4.3]). In the next section 4.2.2

we detail how we use this elegant framework to simulate all possible solutions and rank them

to find the best solution to Equations [4.2] and [4.3].

Πi (t ) = max
j

Pi j (t ) (4.2)

Πr
i (t ) = max

j∈r
Pi j (t ), where r ∈R (4.3)

where r is a region from the set of regions R in which the urban area is partitioned.

Note that this approach will not guide drivers to areas crowded with idle drivers or with a

path that provides few matching opportunities. It balances the distance and the demand on a

driver’s path to maximize the probability of an assignment within the prediction horizon.

4.2.2 Assignment rate associated with the oriented path

Since the operator should provide guidance quickly to available drivers, this process should

be fast to compute. Therefore, instead of using a detailed simulation to enumerate all vehicles’

movements and possible demand arrivals, we develop an elegant framework that uses current

information and general predictions of future demand (e.g., demand arrival rate in one area

and the historical geographic demand distribution), assuming a spatially distributed Poisson
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process (Yu et al., 2019). The framework can be summarized in the following steps:

• Step 1: Identifying all drivers’ latest destinations (including non-idle ones);

• Step 2: Computing a matching radius for all drivers from their latest destinations;

• Step 3: Checking the number of drivers covering each demand node (from their latest

destinations);

• Step 4: Uniformizing demand based on the coverage;

• Step 5: Summing the uniformed demand rate covered in each demand node;

• Step 6: Computing the assignment rate associated with the path to each potential

destination;

Following the latest destination in Step 1, Step 2 computes the matching radius for all drivers

idle or busy. To this end, we assume that vehicles will only cover demand from their latest

destination (Step 1), i.e., where they completed their last request or where they are heading in

their current activity.III Additionally, to this assumption, only requests that can be assigned

within the prediction horizon τ are considered. Thus, the coverage radius at their destination

can decrease if the driver is too far from it (possibly reducing the radius to zero). Note that this

avoids counting unfeasible demand coverage for drivers that will not reach that area in time to

compete for requests with the evaluated driver. Equation [4.4] illustrates the computation of

the matching radius following this assumption.

Ri d ,di d (t ) = min
(
ω,τ−Ti d ,di d (t )

) · vdi d (t ) (4.4)

where ω is a passenger waiting time tolerance and Ti d ,di d (t) is the travel time for vehicle

i d to reach its current destination di d under current conditions (at time t). vdi d (t) is the

instantaneous travelling speed around di d .

For Steps 3 and 4, we assume that all vehicles covering a demand node are equally likely to

be assigned to a request from that node.IV This simplification decreases the computational

effort and encapsulates the uncertainty related to other drivers’ cruising behavior. Therefore,

Equation [4.5] illustrates the counting process for drivers covering requests from a node c.

Next, Step 4 uses the information from Step 3 to uniformize the demand rate originating from

each node (Equation [4.6]).

IIIThis assumption can become quite constraining, but keeping track of the positions of all vehicles throughout τ
would be too costly to integrate into such a framework.

IVA more detailed alternative to this assumption would be to compute a Voronoi diagram that varies in time,
accounting for the drivers’ movements and positions.
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nc (t ) =
∣∣{i d : dist(di d ,c) ≤ Ri d ,di d (t )

}∣∣ (4.5)

p ′
c (t ) =

pc (t )

nc (t )+1
(4.6)

where the |{·}| indicates the cardinality of a set; dist(·, ·) is the distance between two points;

and pc (t ) and p ′
c (t ) are estimates of demand arrival rate before and after the uniformization,

respectively.

Figure 4.2 compares the repositioning decisions in one specific region when this process is

not utilized to highlight the need for uniformization of demand rates in Step 4. Note that

uniformization represents how densely covered the demand in some areas is. For illustrational

purposes, the coverage radius is represented as a circle (indicating Euclidean distances),

but the simulation used network distances instead. The figure highlights a difference in the

suggested destination (the solution method is expanded in the next Section 4.2.1). Non-

uniformized demand leads drivers to the area of highest demand because it overestimates the

expected number of assignments in busier areas. On the other hand, uniformized demand

leads to a closer destination at an area with a lower demand rate but poorly covered.

Non-uniformized demand Demand coverage Uniformized demand

0.19 1.01 5.51

Expected no. of
requests

Street network
Demand density

Vehicle's position
Covered areas

Repositioning path

Figure 4.2: Comparison of potential repositioning decisions with and without Step 4 (covered
demand uniformization).

In Step 5, we sum the total uniformized demand rate covered in each node. As illustrated in

Equation [4.7], the coverage depends on a waiting time tolerance ω and the traveling speeds

nearby the observed node c. Figure 4.3 depicts the elements in Step 5, where the covered

demand is that within a reachable area and fulfilling any other passenger-driver matching

constraints. Then, Pc (t) becomes the sum of the uniformized demand rates covered by a

vehicle at node c.

Pc (t ) =
∑

q :dist(q,c)≤ωvc (t )
p ′

q (t ) (4.7)
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Figure 4.3: Illustration of the elements in the computation of Pc (t). Highlighting only the
demand in the current region.

Finally, Step 6 compiles the information from previous steps to compute the assignment rate

associated with a repositioning destination Pi j (t , s). The first part constructs the path Ci j

between current position i and potential destination j and the associated travel times Ti j

required to reach each node in that path. The constructed path Ci j is formed by a sequence

of nodes in the path connecting i and j . We use a shortest path algorithm (e.g. Dijkstra’s

algorithm) to compute the sequence Ci j = {c1 = i ,c2, . . . ,cn = j }. In the same fashion, the

associated travel times sequence Ti j is formed in ascending order. Therefore, for a sequence

Ti j = {t1 = 0, t2, . . . , tn}, we have 0 < t1 < t2 < ·· · < tn . Based on the shortest path, we can

iteratively compute tx as shown in Equation [4.8].

tx = tx−1 +
dist(cx1 ,cx )

vcx

(4.8)

Then, the dynamic assignment rate along this path Pi j (t , s) is defined in Equation [4.9] as a

linear interpolation between demand rates, such that tx < s ≤ tx+1, and tx , tx+1 ∈ Ti j .V

Pi j (t , s) = Pcx (t )+ Pcx+1 (t )−Pcx (t )

tx+1 − tx
(s − tx ) (4.9)

Nevertheless, we must highlight that the sequences Ci j and Ti j are unrelated to the prediction

horizon τ so far. Thus, the driver can reach the designated position before the end of the

prediction horizon (tn < τ), turning the interpolation from Equation [4.9] problematic. In that

case, before computing Pi j (t ), we assume that the driver will remain nearby his destination j ,

thus, covering the same demand from node j , P j (t ), until the end of the prediction horizon.

In practical terms, before computing Pi j (t ), we append j again to the end of the sequence Ci j

at the same time that we append τ at the end of Ti j .

VGiven the non-smooth nature of Pi j (t , s), Equation [4.1] is integrated numerically in the prediction horizon τ,
using a typical trapezoidal method. Note that the sequence Ti j provides a list of steps, and Pc (t ),∀c ∈Ci j provides
the required heights in the numerical integration process.
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4.3 Forecasting a driver’s activities and revenues

The operator will present drivers with the expected earnings associated with repositioning

options, offering drivers the opportunity to decide. Driver compliance is not guaranteed;

nevertheless, the guidance should persuade drivers to perform decisions that improve service

quality while improving their earnings. We assume that the drivers might comply with a

probability that is estimated by a logit model. We also compare with a full compliance scenario.

To forecast the earnings of potential repositioning decisions (as those raised from previous

Section 4.2), the service operator must identify the drivers’ activities and actions in the near

future. We describe drivers’ activities based on their ongoing assignments, either ride-hailing

or ridesplitting, as detailed below.

• Vacant (I ): a vacant driver available for passengers.

• Ride-hailing (RH): a busy driver assigned to a ride-hailing passenger.

• Single ridesplitting (S1): a driver assigned to a single ridesplitting passenger.

• Shared ridesplitting (S2): a driver assigned to two ridesplitting passengers.

We predict drivers’ actions by identifying the time spent at each activity given the demand,

service conditions, and potential repositioning decisions. Besides activity duration, one must

depict how a driver transitions among different activities and regions.

Consider a list of activities A, such that A ∈A indicates a driver’s current activity. A set R with

R heterogeneous regions, i.e., R = {1,2, ...,R} illustrate the urban network area, while the pair

od ∈R2 depicts a driver’s current and destination regions. Therefore, Aod ∈K describes a

driver current state in the set of all possible states. Setting the list of activitiesA = {I ,RH ,S1,S2}

assumes that a driver can execute the following four activities completing the state-space with

a size |K | = |A| · |R|2.

The predictions assume a first-come-first-served (FCFS) assignment discipline where arriving

passengers are assigned immediately to the closest available driver. Additionally, it assumes

a maximum capacity of two simultaneous passengers in a shared ridesplitting ride, and a

vacant driver can be either waiting for a new assignment in their current region (state Ioo) or

repositioning to another region (state Iod , where o ̸= d).

4.3.1 Markov Chain model

Assuming that the time spent in each activity is exponentially distributed, a Markov chain

depicts most of a driver’s movements. With detailed information on the urban area and the

driver following the provided path (Section 4.2), the operator accurately estimates how long

this driver needs to reach different regions during the repositioning. Therefore, the time spent
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in repositioning activities is assumed to be deterministic.Consider a driver who is moving

according to the path between i and the destination j∗ (the optimal solution from Equation

[4.2] or [4.3]), as defined in Section 4.2. Then, reorganizing the sequence of nodes Ci j∗ to its

regional level, we get C r
i j∗ = {r1,r2, . . . ,rn} representing the sequence of regions in the path i j∗,

such that i ∈ r1 and j∗ ∈ rn . In the same direction, Ti j∗ can be reorganized to represent the

time required to enter each region in C r
i j∗ , such that T r

i j∗ = {t r
1 , t r

2 , . . . , t r
n}.

As mentioned earlier, we assume an instantaneous matching policy where passengers are

assigned to the closest available driver in their region on a first-come-first-served basis and the

platform ensures the execution of a repositioning decision by limiting repositioning drivers to

assignments matching his/her destination region. The matching restrictions related to the

destination region are lifted after enough time to reach region rn .

Based on the previous, we break down a driver’s activity predictions into three phases: phase

(a), representing the movements of a driver before reaching the destination region (subject

to matching constraints while repositioning); phase (b), representing the driver reaching the

boundaries on the repositioning path (becoming available to requests in the newly entered

area while becoming unavailable in the previous one); and phase (c), representing the driver

after completing the regional repositioning by first reaching the destination region rn (free of

any matching constraints related to repositioning).

Therefore, given the matching constraints and repositioning movements, Figure 4.4 illustrates

how each one of these phases communicates to each other to predict a driver’s actions,

highlighting that each phase requires different dynamics to represent them. As illustrated in

Figure 4.4, repositioning movements in phase (a) happen in the continuous time between

regions in the repositioning path. Therefore, phase (a) uses continuous-time Markov chains

(CTMC). Without the matching limitations and not constraining the driver’s movements into a

subset of regions, phase (c) also takes place in continuous time. Hence, we use another CTMC

to represent phase (c). To represent phase (b), the instant in time when a driver changes

regions, we use a discrete-time Markov chain (DTMC). In summary, the probability vector at

the end of a phase becomes the starting condition of the next phase. In the next subsections,

we detail the dynamics for each phase. Note that the construct that emerges from organizing

these phases with different dynamics is named a mixed discrete-continuous time Markov

chain (MDCTMC) model (Ingolfsson, 2005; Ingolfsson et al., 2007). We must highlight that

such a structure enables individualized forecasting of activities and revenues since sequences

C r
i j∗ and T r

i j∗ are based on the path provided to that specific driver, accounting for his/her

position (Section 4.2). Finally, phases (a) and (b) are computed |C r
i j∗ |−1 times before reaching

region rn and starting phase (c). In the case of a decision to stay in the current region, the

amount of time required to fulfill this decision is negligible (r1 = rn ∴C r
i j∗ = {r1})∴ |C r

i j∗ |−1 = 0).

Therefore, this driver instantaneously passes from phases (a) and (b), moving directly to phase

(c).

Previous studies indicate that the ‘overhead’ associated with the DTMC is small when com-
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Timet r
1 t r

2 t r
3 t r

n τ

phase (a)
Region r1

phase (a)
Regions r1 to r2

phase (a)
Regions r1 to r3

phase (b)
r1,r2 border

phase (b)
r2,r3 border

phase (b)
r3,rn border

phase (c)
Region freeMDCTMC phases

Regional path

Start End

Figure 4.4: Illustration of the MDCTMC phases and its relation with the regional repositioning
path in the forecasting timeline.

pared to the numerical solution of the differential equations in the other CTMCs of phases (a)

and (c) (Ingolfsson et al., 2007).

Repositioning movements: phase (a)

Consider the time t , such that t r
l < t < t r

l+1 and 1 ≤ l < n. Therefore, if the driver received no

assignments since the start of the repositioning activity, the driver would be in the l -th step in

the regional repositioning path C r
i j∗ , rl , but not yet in the destination region rn . Recalling that

the guidance provided to a driver is based on the shortest path, it is safe to assume that there

is no case where the driver would be farther than region rl ∈C r
i j∗ . By extension, if the driver

deviated from the shortest path due to any new assignments between the prediction start t r
1

and current time t , then this driver could be in any of the regions in the path between r1 and

rl . Hence, we can limit the state space in the CTMC of phase (a) not further than the region

rl and its transitions include those from the starting region r1 until the current region rl , as

depicted in Figure 4.5. Note that the matching constraints are applied, limiting the driver to

assignments in his/her current region and those that the trip will end in the region rn . Phase

(a) ends at the moment the driver would reach the next region rl+1 at t r
l+1, in the case of not

being matched.

Equation [4.10] details the dynamics for all state probabilities πK
wrn

(t),∀w ∈ {r1,r2, . . . ,rl } ⊂
C r

i j∗ , i.e., w is one of the regions in the regional path C r
i j∗ preceding region rl , included. Note

that the dynamics include the probability of the driver being busy (with an assignment) not just

in the region rl but also in the previous ones because of the detours from the shortest path pro-

vided. Note that the structure of the MDCTMC ensures that πI
wrn

(t ) = 0,∀w ∈ {r1,r2, . . . ,rl−1},

therefore the transitions departing from these states are null (reason for not illustrating them

in Figure 4.5) and, thus, πI
wrn

(t ) > 0 ⇔ w = rl .VI

VISee the description of phase (b) for further details.
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Start
Region r1 Region r2 Region rl

Ir1rn

RHr1rn

S1r1rn

S2r1rn

Ir2rn

RHr2rn

S1r2rn

S2r2rn

...

...

...

...

Irl rn

RHrl rn

S1rl rn

S2rl rn

Figure 4.5: State-space transitions of the CTMC during the repositioning movement until
region rl in the repositioning path (rl ̸= d and l < n).

π̇I
wrn

(t ) = −πI
wrn

(t )
∑

s∈S

λs
wrn

(t ) (4.10a)

π̇RH
wrn

(t ) = −πRH
wrn

(t )µRH
wrn

(t )+πI
wrn

(t )λH
wrn

(t ) (4.10b)

π̇S1
wrn

(t ) = −πS1
wrn

µS1
wrn

(t )+ ∑
h∈C r

i j∗
βh

wrn
λS

wh(t )

+πI
wrn

(t )λS1
wrn

(t )+πS2
wrn

(t )ϑw wrn (t )µS2
wrn

(4.10c)

π̇S2
wrn

(t ) = −πS2
wrn

(t )µS2
wrn

(t )+ ∑
h∈R

λ̂S2
whrn

(t ) (4.10d)

Where the base transitions can be described through the arrival process λs
wrn

(t ) for a service

s ∈ S = {H ,S} (ride-hailing and ridesplitting), and the service process µK
wrn

(t), in which a

driver completes a ride or transfers to a neighboring region. Note that any µK
wrn

(t ) and λs
wrn

(t )

is only defined for w ∈ {r1,r2, . . . ,rl }, otherwise they have a value of 0. βh
wrn

represents the ratio

of wrn trips that will pass through region h. Therefore, βh
wrn

λS
wh(t ) indicates the assignments

of shared ridesplitting rides where the last passenger to board will be the first one to leave

the vehicle, ensuring that the driver will end the trip in the region rn . ϑw wrn indicates the

probability of the driver in S2wrn having a passenger to deliver in w before proceeding to rn

with the other one.
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Repositioning boundary: phase (b)

Phase (b) is active at the predicted time t r
l the driver reaches the boundary between regions

rl−1 and rl . If the driver did not receive any assignments (leaving the state Irl−1rn ), then it

means the driver is still repositioning and enters the following region rl in the path C r
i j∗ to

continue with the repositioning in a new state Irl rn . The previous describes the DTMC of

phase (b), while Equation [4.11] depicts it supported by Equations [4.12] and [4.13] detailing

the transition matrix. Note that the only change from the end of phase (a) occurs from state

Irl−1rn to Irl rn , whereas the remaining states keep unaltered probabilities. In other words, the

driver could have reached the l-th step in the repositioning path, the neighboring region rl ,

only if the driver remained in the repositioning activity Irl−1rn (traveling in the shortest path).

Furthermore, since the travel time to reach the region rl is deterministic, the transition occurs

with certainty (probability of 1). If the driver started other activities, there must be at least

a minimal detour from the shortest path to pick up the new assignment, therefore, it would

not have changed regions at that precise moment (recalling the assumption of exponentially

distributed times in the driver’s activities).

π(t+) = B(rl−1,rn ,rl )π(t−) (4.11)

B(rl−1,rn ,rl ) =
[

bK
hk (rl−1,rn ,rl )

]
∈B|K |×|K | (4.12)

bK
hk (rl−1,rn ,rl ) =

1, for Khk = Irl rn ,RH rl−1rn ,S1rl−1rn ,S2rl−1rn ,S2rl−1rn

0, otherwise
, (4.13)

Where t+ and t− refer to the instant right after and right before time t = t r
l . B(rl−1,rn ,rl ) is the

transition matrix representing the DTMC. K is the state space of the model, and |K | is its

cardinality.

After repositioning: phase (c)

Recalling that once the time expected to reach the region intended in the repositioning de-

cision t r
n has elapsed, the driver becomes free of any limitations in the matching process

imposed on repositioning vehicles. Therefore, Figure 4.6 illustrates the state space of a single

region and the possible state transitions inside the depicted region and inter-regional move-

ments. In the figure, regions ‘k’ and ‘h’ can be a set of regions of which the driver can pass

immediately before and after region ‘o,’ respectively.

We describe the CTMC with the summarized Equation [4.14], where we estimate the state

probability πK
od (t). Table 4.1 provides the entries for the summarized terms of the CTMC in

the Equation [4.14]. Table 4.1 and Figure 4.6 do not show transitions related to repositioning

states Iod because the structure of the MDCTMC ensures the completion of repositioning

activities before phase (c). In other words, regions o, d , k and h in phase (c) are unrelated to
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Region o
IooRHoo S1oo S2oo

IodRHod S1od S2od

From Regions k
into Region o

Iko

Ikd

RHko

RHkd

S1ko

S1kd

S2ko

S2kd

From Region o
into Regions l IldRHl d S1l d S2ld

Figure 4.6: General state transition structure focusing on a region o and the inflows and
outflows related to this region.

the repositioning path C r
i j∗ .

π̇K
od (t ) = −Exits+Entrances (4.14)

Table 4.1: Summary of state transitions in the Markov Chain model.

State Exits Entrances

Ioo πI
od (t )

∑
s∈S

∑
h∈R

λs
oh(t ) πRH

oo µ
RH
oo (t )+πS1

oo(t )µS1
oo(t )

RHod πRH
od (t )µRH

od (t )
∑

h∈R

πI
oh(t )λH

od (t )+ ∑
h∈Ro

µ̂RH
hod (t )

S1od πS1
od (t )µS1

od (t )+ λ̂S2
ohd (t )+ λ̂S2

odh(t )
∑

h∈R

πI
oh(t )λS

od (t )+ ∑
h∈Ro

µ̂S1
hod (t )+ µ̂S2

od (t )

S2od πS2
od (t )µS2

od (t )
∑

h∈R

λ̂S2
ohd (t )+ ∑

h∈Ro

µ̂S2
hod (t )

We have to detail the entries of the coefficients for ‘Exits’ and ‘Entrances’ in Equation [4.14].

To shorten the description in Table 4.1, we aggregate some particular transitions explained

in Equations [4.15]–[4.19]. In particular, Equation [4.15] illustrates that a driver can use

different paths on his way to the destination. Equations [4.16] and [4.17] illustrate that shared
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ridesplitting drivers (states S2od ) might complete a ride (Equation [4.16]) before transferring

(Equation [4.17]). Finally, Equations [4.18] and [4.19] illustrate that new shared ridesplitting

rides can have different delivery orders, such as a last-in-first-out (LIFO) order (Equation

[4.18]) or a first-in-first-out (FIFO) order (Equation [4.19]).

µ̂K
hod (t ) = πK

hd (t )·θhod ·µK
hd (t ) K ̸= S2 (4.15)

µ̂S2
od (t ) = πS2

od (t )·ϑood (t )·µS2
od (t ) (4.16)

µ̂S2
hod (t ) = πS2

hd (t )·(1−ϑood (t ))·θhod ·µS2
hd (t ) (4.17)

λ̂S2
ohd (t ) = πS1

od (t )·βh
od ·λS

oh(t ) (4.18)

λ̂S2
odh(t ) = πS1

od (t )·βd
oh ·λS

oh(t ) h ̸= d (4.19)

Where, θhod ∈ [0,1] distributes transfer flows over its neighboring regions such that the equality∑
h∈Ro

θohd = 1 holds; ϑood becomes the fraction of shared trips passing through o that will

deliver a passenger before continuing to d ; and βh
od (βd

oh) represents the ratio of od (oh) trips

that will pass through region h (d).

Deriving state transitions

As described in the previous sections, there are two forms of transition processes, generally

represented by λs
od (t) and µK

od (t) for the passenger assignment rate and trip completion/-

transfer rates, respectively. Equation [4.20] depicts the assignment rate λs
od (t ) for service s to

a single driver, i.e., the share of all passenger arrival rates perceived by an individual driver.

Equation [4.21] depicts the trip completion/transfer rates of a driver, µK
od (t ).VII Equation [4.22]

calculates the number of available drivers used to compute λs
od (t ).

VIIIn Beojone and Geroliminis, 2023a, drivers in a state S1od could face interruptions, which would discount the
proportion of production not converted into trip completion/transfer rates. Since the CTMC assumes activity time
duration is exponential, the average remaining trip length L∗ = (L2 +σ2)/(2L) is equal to the average trip length,
thus canceling out the term corresponding to the discount. In summary, a consequence of a memoryless process.
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λs
od (t ) =

Q s
od (t )

nav,s
od (t )

(4.20)

µK
od (t ) =

vo(t )

LK
od (t )

(4.21)

nav,s
od (t ) =



n I
od (t ), if s = H and o = d

n I
oo(t )+n I

od (t ), if s = H and o ̸= d

n I
od (t )+ ∑

h∈R\{d}
βh

od nS1
oh(t )+ ∑

h∈R

βd
ohnS1

oh(t ) if s = S and o = d

n I
oo(t )+n I

od (t )+ ∑
h∈R\{d}

βh
od nS1

oh(t )+ ∑
h∈R

βd
ohnS1

oh(t ) if s = S and o ̸= d

(4.22)

Where Q s
od (t ) is the total arrival rate of passengers for service s and OD-pair od . nK

od (t ) stands

for the number of drivers currently in state Kod . LK
od (t) represents the average regional trip

length in state Kod . These values can be obtained using trip historical data. vo(t ) represents

the regional average traveling speed. Recall that the CTMC tracks the activities of a single

driver. Therefore, we assume constant nK
od (t) during an evaluation to compute µK

od (t) and

λs
od (t ).

The computation of nav,s
od (t ) is separated into several cases in Equation [4.22] to account for

different matching constraints for different service options. For ride-hailing, the constraints

are straightforward, considering idle drivers in the region or repositioning ones with the same

od-pair. However, for ridesplitting, the constraints are more complicated. Besides idle and

repositioning drivers, one must also account for drivers with a single ridesplitting passenger.

Although these drivers are considered for matching, they have additional detour constraints

to fulfill. We summarize these constraints by separating two possible cases of matching. In

the first case, the driver is considered available if the detours allow him/her to deliver the new

passenger in a first-in-first-out order, represented as
∑

h∈R\{d}β
h
od nS1

oh(t ). In the second case,

the driver is considered available if the detours allow him/her to deliver the new passenger in

a last-in-first-out order, represented as
∑

h∈R βd
ohnS1

oh(t ).

Note that, implicitly in the computation of λs
od (t) and particularly nav,s

od (t), we assume a

constant flow of repositioning drivers. One can interpret it as that the prediction considers

that other drivers are likely to keep the same repositioning decisions in the near future (based

on the previous information). Therefore, by expansion, it implies that the predictions in the

MDCTMC model account for other drivers’ decisions in the near future.

In the assumed matching process, one of the passengers will be delivered first in shared

ridesplitting. Equation [4.23] uses current demand information to identify the conditional

probability ϑood (t ) that a shared trip will deliver a passenger in the current region from all the

assignable requests resulting in similar od .
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ϑood (t ) =

∑
h∈R βo

hd

(
λS

hd (t )+λS
ho(t )

)∑
h∈R

∑
l∈R βo

hlβ
l
od

(
βl

hd

(
λS

hl (t )+λS
hd

)) (4.23)

Where,
∑

h∈R βo
hd

(
λS

hd (t )+λS
ho(t )

)
is all demand that would deliver a passenger in region o

before continuing to region d .
∑

h∈R
∑

l∈R βo
hlβ

l
od

(
βl

hd

(
λS

hl (t )+λS
hd

))
indicates all demand

for shared ridesplitting trips heading to region d that will pass through o (either for delivering

a passenger or just as a passage towards d) before delivering one of the passengers.

Note that the remaining values of θohd and βh
od are precomputed parameters to the model.

They can be estimated based on historical data on the routes drivers use in their trips.

4.3.2 Estimating drivers’ expected revenues

Drivers’ earnings come from the fares passengers pay when booking rides, which are composed

of (i) a fixed booking fee relative to the reservation of a ride; and (ii) a travel fee relative to the

trip distance. The platform keeps a commission for this fare and returns to the drivers the

remaining part.

The final price a passenger pays is defined by a fixed fare per booking, called booking fee f s,B
od ,

and a variable fare characterized by the trip distance, called traveling fee f s,T
od . Each of these

fees is defined per service and region of origin, and the total fare is f = f s,B
od + f s,T

od ·D (where D

is the total trip distance).

The drivers, then, receive (1−κ) · f for each served trip fare, where κ is the commission kept

by the platform operator. Given the large frequency of events (passenger arrivals, deliveries,

etc.), one can approximate the revenue generation for the company by means of a continuous

rate. Furthermore, if regions are reasonably homogeneous, drivers’ earning generation is

approximately uniform and continuous among them. Therefore, a driver receives a part of

the booking fees proportionally to the number of received assignments during the evaluation.

A driver also earns part of the traveling fees proportional to the kilometers traveled in states

with assignments.

To compute the expected revenue for a driver, Equation [4.24] summarizes the expected

revenue after commission κ. However, it requires us to decompose the gross revenue into

its minor components throughout Equations [4.25] – [4.31]. First, Equation [4.25] separates

the expected revenue before the commission into the revenue from booking and traveling

fees. Then, Equations [4.26] – [4.28] decompose the booking fees according to the hired

service and the respective regional OD-pair until it finally becomes the product of the fixed

booking fee in that area and the expected number of booked rides. Particularly, Equation [4.26]

decomposes the booking fees from each hired service s ∈ {H ,S} (ride-hailing and ridesplitting),

and Equation [4.27] further decomposes it to the regional OD-pair od ∈R2. For the revenue
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made from traveling fees, Equations [4.29] and [4.31] apply the same logic to achieve the gross

revenue from traveling as a product of the fixed traveling fee and the expected passenger-

distance traveled.

E [Rnet] = (1−κ)E [R] (4.24)

E [R] = E [RB +RT ] = E [RB ]+E [RT ] (4.25)

E [RB ] = E

[∑
s

R s,B
]

=
∑

s
E

[
R s,B ]

(4.26)

E [R s,B ] = E

[ ∑
od∈R

R s,B
od

]
=
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]
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∑
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od ] = E

[
f s,T

od d s,T
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]
= f s,T

od E
[

d s,T
od

]
(4.31)

Where ns,B
od is the number of booked rides for service s from region o to region d ; and d s,T

od is

the passenger-distance traveled for a service s from region o to region d .

Therefore, the remaining unknowns to the expected revenue are the expected number of

booked rides and the passenger-distance traveled, which become a function of the time we

evaluate. Additionally, each possible decision that a driver can make is assumed to define the

starting condition of the forecast, as mentioned in Section 4.3. Therefore, Equations [4.32]

and [4.33] estimate these values based on the instantaneous probabilities from the MDCTMC.

These estimates are functions of a starting time t0 and an evaluation period τ for a particular

choice γ (remain idle or reposition). Note that, to compute the expected revenue in Equation

[4.24], we only have to make the same path of Equations [4.25] – [4.31] backward.

E [ns,B
od (t0,τ|γ)] =

∫ t0+τ

t0

λs
od (t )

∑
K∈K s

B

πK
od (t )dt K s

B =

{I ,RP }, if s = H ,

{I ,RP,S1}, if s = S
(4.32)

E [d s,T
od (t0,τ|γ)] =

∫ t0+τ

t0

vo(t )
∑

K∈K s
T

nK
p π

K
od (t )dt K s

T =

{RH }, if s = H ,

{S1,S2}, if s = S
(4.33)

Where nK
p is the number of assigned passengers to a driver in activity K . For states RH and

S1, nK
p = 1, since they only have a single passenger assigned, while S2 have nS2

p = 2 because
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vehicles carry two passengers in this activity. In reality, drivers do not earn for the distance

they drive to pick up a passenger, only for delivering one. Therefore, part of the busy time

is not generating revenue. However, we assume that the additional revenue generated by

combining pick-up and delivery distances is negligible.

In the proposed setting, the driver is presented with N ≤ |R| possible choices, such that one of

these refers to the case where the driver chooses to remain in the current region and the other

N −1 choices refer to cases where the driver chooses to reposition. Assuming that drivers’

objective is to maximize their profit, we expect drivers to follow the estimate indicating the

highest revenue. Here, we assume that the cost of repositioning or remaining in the same area

is the same, i.e., drivers continue to drive while searching for the next assignment. Therefore,

we assume that revenue translates perfectly into perceived utility.

4.4 Computational results

In this prototype application, we represent the central business district of Shenzhen, including

parts of the Luohu and Futian Districts. The considered network consists of 1’858 intersections

connected by 2’013 road segments. The experiment used a simulator based on Beojone and

Geroliminis, 2021b and Beojone and Geroliminis, 2023a, using the Floyd-Warshall algorithm

to compute shortest paths and a Speed-MFD to estimate average traveling speeds. A network-

weighted k-mean algorithm separated the area into three distinct regions and the Speed-MFD

data (Figure 4.7). Detailed clustering algorithms can separate the region based on traffic data,

such as Saedi et al., 2020, Saeedmanesh and Geroliminis, 2016 and Hans et al., 2014.
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Figure 4.7: Settings of the experiments. (Left) urban area map and regions with respective
centroids of the k-mean problems. (Right) Regional speed-MFD.

We assume a non-homogeneous Poisson arrival process for all travelers in the area to highlight

the effects of imbalanced demand. In Figure 4.8, we illustrate the total arrival rates in each

regional OD-pair, indicating an hourly change in the region originating the most trips. Note

that around 85% of arriving travelers use private vehicles, while the remaining use one of the

ride-sourcing service options.
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Figure 4.8: Total arrival rates grouped by region of origin.

4.4.1 Sensitivity analysis and benchmark comparison

The first analysis of the repositioning strategy focuses on the sensitivity to the fraction of

drivers receiving the repositioning guidance. One can correlate such scenarios with the

operator selecting a group of drivers for a ‘loyalty program,’ and, as part of the benefits, these

drivers receive improved guidance in their search for assignments and increased revenues.

Note that the selection criteria used by TNCs to include drivers in such programs are outside

the scope of this paper. Instead, the focus is on the effects of potential selection processes that

include a ratio of X% of all the drivers in the operating fleet. That said, we refer to drivers who

receive guidance as ‘guided’ ones, whereas we refer to the others as ‘unguided.’

As argued earlier, the guidance is a suggestion of the decision that would maximize a driver’s

revenues in the near-future. Therefore, we assume a logit decision process, where the utility of

each option is depicted exclusively by the revenue it generates to a ‘guided’ driver.VIII Finally,

we define that ‘unguided’ drivers look for the region with the highest demand per driver rate

(similar to a ‘high demand’ flag in current ride-sourcing operations).

Additionally, we evaluated the results for fleet sizes of 2000, 2500, and 3000 active drivers in

ride-sourcing services. We ran cases with 0%, 25%, 50%, 75%, and 100% of drivers covered in

the ‘loyalty program.’ In total, we tested 5 instances of each scenario before the evaluation. As

final parameters, we considered the same fares from Beojone and Geroliminis, 2021b, where

booking fares were US$2.20 and US$2.00, and traveling fares were US$1.00 and US$0.80 per

kilometer for ride-hailing and ridesplitting, respectively.

As argued earlier, other repositioning strategies exist to improve service quality, but they fall

short on their reactive nature and/or full compliance assumptions. In this section, we compare

the proposed strategy with other benchmark strategies regarding improvements in service

quality. In addition to a ‘No-repositioning’ base case (drivers always remain in their current

VIIIThe logit model is described as a Multinomial logit model, where the choice set is composed of all regions
(including the current one, as a choice for not repositioning) and their utilities are represented by the expected
revenue a driver will obtain if deciding to move to the respective region. Therefore, the probability that an
individual chooses the alternative r (region r ∈R) is P (r |R) = exp(E [Rnet

r ])/
∑

o∈R exp(E [Rnet
o ]).
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area when becoming idle), we evaluate the strategies named below:

1. ‘Proposed’: proposed strategy described in Sections 4.2–4.3.2.

2. ‘Past-revenue’: Provides a portion of ‘guided’ drivers with the average revenue drivers

made in the past τ hours for each area (same horizon as the prediction horizon, but for

past events).

3. ‘Past-loss’: Dispatches the closest idle driver to the area of a recently lost request, similar

to Alonso-Mora et al., 2017.

4. ‘Coverage’: Performs optimal coverage control, distributing all idle drivers according

to the demand distribution in the area (Zhu et al., 2022). It computes idle vehicles’

coverage based on a Voronoi tessellation, which partitions the area into responsibility

zones for each vehicle.

It is important to highlight that the ‘Past-revenue’ strategy has a reactive nature but allows

drivers to decide, whereas the ‘Past-loss’ strategy is reactive and assumes full compliance with

the instructions. On the other hand, as pointed out earlier in the text, the ‘Coverage’ strategy

tries to position drivers before the requests arrive but assumes that the operator has control

of a fully compliant fleet that is easier to implement in a scenario with autonomous vehicles.

We must note that, in Zhu et al., 2022, the problem is optimized for a static geographical

distribution of demand, i.e., the spatial imbalance is constant over time, which differs from

the tested case. To cope with this difference, we estimated the geographical distribution of

demand for the near-future based on the arrival data and the same forecast horizon of the

proposed method.

The foremost objective of any repositioning strategy is to improve service quality, especially by

making the service available in previously uncovered areas. Figure 4.9 compares the number

of unattended service requests (abandonments) for all evaluated strategies. Firstly, when

no drivers receive guidance and base their decisions on ‘high-demand areas’ information

(0% guidance), service is worsened by increasing abandonments compared to the base case.

Then, reactive strategies (‘Past revenues’ and ‘Past losses’) performed poorly, with little to no

improvement compared to the base case. The case using ‘Past losses’ could only show some

improvement at a smaller fleet size of 2000 vehicles (a decrease of 13% in abandonments).

The cases using ‘Past revenues’ had a decrease only at larger fleet sizes with comparable

results to the ‘Coverage’ method when guiding between 50% and 75% of drivers. The most

intriguing comparison is between the ‘Proposed’ and the ‘Coverage’ approaches. Although

optimized, the ‘Coverage’ approach was outperformed by the ‘Proposed’ approach when 50%

(or more in larger fleet sizes) of drivers receive guidance. One possible explanation to this

is on the difficulty that the ‘Coverage’ approach faces when multiple vehicles are very close

to each other (sharing the same nearest intersection), which forces the Voronoi diagram to

consider these vehicles as a single one and provide instructions only to one of them, while
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the remaining vehicles remain in the positions. Another limitation of the ‘Coverage’ approach

is that it relies on the historical demand spatial distribution, which might not capture how

the distribution changes over the near-future. Therefore, the ‘Proposed’ method was the

most successful in serving previously unattended requests by providing half of the drivers

with repositioning guidance, decreasing abandonments by 61% for a fleet of 2000 vehicles.

Nevertheless, we must note that there are little increases in abandonments if the guidance is

available for more than 50% of the drivers. In Section 4.4.3, we explore the limitations causing

this increase in abandonments, being either the revenue-based decision process (Section 4.3)

or the path guidance definition (Section 4.2). A promising result is that a fleet of 2000 vehicles

with 50% guided drivers has almost identical performance with system of 3000 vehicles with

no guidance.
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Figure 4.9: Summary of passenger abandonment results for all compared strategies.

So far, we have compared the abandonments associated with each strategy without investigat-

ing the causes of these results. Therefore, in Figure 4.10, we present results associated with

the vehicles themselves for a fleet of 2000 vehicles and 50% of guidance ratio in the ‘Proposed’

and ‘Past-revenues’ approaches. It highlights vehicles’ response to each repositioning strategy

in terms of the number of repositioning vehicles and the VKT for repositioning activities.

Firstly, the ‘Past losses’ strategy moves almost no vehicles, peaking at 7 simultaneous drivers,

therefore, we do not include it in the coming analysis. Then, a lower plateau where the ‘Cover-

age’ strategy remains between 50-150 simultaneous vehicles alongside the ‘guided’ drivers

in the ‘Proposed’ approach. Note that the numbers in the ‘Coverage’ strategy present some

significant noise due to the extremely short (if any) repositioning instructions provided to

all drivers. Finally, ‘unguided’ drivers in the ‘Proposed’ approach and all drivers in the ‘Past

revenues’ approach form a higher plateau (mostly between 250-300 simultaneous vehicles).

The direct consequence of these numbers is seen in the VKT associated with repositioning

activities, where these vehicles travel more than 1.5×104km only for repositioning activities.

On the other hand, ‘guided’ vehicles in the ‘Proposed’ ‘Coverage’ approach traveled less than

one-third of this distance. The previous, combined with the information on the number of

abandonments, highlights that relocating too many vehicles decreases the system service
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capacity.

0 1 2 3

Time (h)

0

1

2

3

4

N
um

be
r 

of
 v

eh
ic

le
s

102

Repositioning

0 1 2 3

Time (h)

0

0.5

1

1.5

2

C
um

ul
at

iv
e 

di
st

an
ce

104

Repositioning VKT

Guided (Proposed)
Unguided (Proposed)
Guided (Past revenues)
Unguided (Past revenues)
Coverage

Strategies

Figure 4.10: Comparative among all tested benchmarks for (left) the number of repositioning
vehicles, and (right) VKT associated with repositioning activities.

Analyzing the compared occupancy ratio in Figure 4.11, all strategies increase the time vehicles

spend occupied. However, the same groups that reposition the most have valleys in the

occupancy rate, being momentarily less occupied than the base case. The ‘guided’ drivers

in the ‘Proposed’ approach present the highest occupancy rate, being 10% of the time more

occupied than the base case. We must highlight that ‘unguided’ drivers in the ‘Proposed’

approach had higher occupancy around 1.5h of the simulation, coinciding with the period

that they have the fewest vehicles repositioning and where the VKT slope flattens. It happens

because this is the period where there is a peak in demand for Region 2, the area with the

largest demand (see Figure 4.8), thus overlapping the ‘high-demand area’ flag with the actual

area where vehicles are required.
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Figure 4.11: Fraction of busy vehicles (occupancy ratio) for scenarios with 2000 ride-sourcing
drivers and 50% guidance ratio. (Left) Fraction of busy guided vehicles. (Center) Difference of
the occupancy ratios of ‘guided’ drivers to the ‘No repositioning’ case. (Right) Difference of
the occupancy ratios for ‘unguided’ drivers.

Combining the dynamics of drivers’ activities and abandonments can provide further insights

into how each repositioning strategy affects service quality. Figure 4.12 illustrates these dy-
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namics for four cases with 2000 vehicles. Firstly, in the ‘No repositioning’ case, abandonments

peak when the demand peaks in different regions, highlighting the imbalance of the demand

and supply of drivers. Interestingly, these are also periods when the number of idle vehicles

reaches local maxima. Secondly, given the delays in the provided revenues of the ‘Past rev-

enues’ strategy, abandonments take longer to decrease and never return to null numbers.

However, the peak in abandonments has a significant decrease. Thirdly, the ‘Coverage’ strategy

also had a lowered peak in abandonments but slightly shifted to the right and was followed

by null values after 0.5 hours. Finally, the ‘Proposed’ strategy had an even lower peak in

abandonments, which was also shifted to the right, followed by a decrease until reaching null

numbers. The number of busy vehicles is maximized before 2 hours in the ‘Past revenues’ and

‘Proposed’ strategies, whereas in the ‘No repositioning’ and ‘Coverage’ are slightly shifted to

some minutes later.
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Figure 4.12: Dynamic activities of ride-sourcing vehicles and number of lost requests in the
same period (intervals of 36 seconds) for scenarios with 2000 ride-sourcing drivers and 50%
guidance ratio.

Most attention to the ride-sourcing effect over congestion goes to their deadheading. We

consider the distances traveled for pick-up activities as deadheading because the evaluated

service does not charge passengers for the pick-up distance, only for the booking and the

delivery distance. In Figure 4.13, we summarize the deadheading accumulated for each

strategy for the same tested cases with 2000 vehicles and a 50% guidance ratio. The only

strategy to increase it, both in the unassigned and pick-up activities, is the ‘Past-revenues’

strategy, illustrating a situation where passengers could be served but had to wait longer for

a driver. In the ‘Proposed’ approach, the unassigned deadheading is minimized, but in the

‘Coverage’ approach, the ‘Pick-up’ deadheading is minimized. It highlights two distinct points

about these strategies. First, while the ‘Proposed’ approach maximizes the chances of a driver
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being assigned, the driver only needs to be as close as the passengers’ waiting time tolerance

accepts. Second, the ‘Coverage’ approach has minimal ‘Pick-up’ deadheading because it

mirrors the expected demand distribution, thus, bringing drivers close to the area where the

next arriving passengers are expected to come. However, since only one vehicle is enough to

consider the area covered, once a vehicle is assigned a new passenger, another vehicle must

move to that area to cover it, which might not be close and require some time to move.
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Figure 4.13: Summary of the deadheading associated with each repositioning strategy, sep-
arated into unassigned and pick-up kilometrages. Scenario with 2000 drivers and 50% of
guidance ratio in the ‘Proposed’ and ‘Past revenues’ methods.

Before we evaluate the ability of the ‘Proposed’ strategy to retain drivers, it is interesting to

assess how guided drivers adhered to the repositioning suggestions. Figure 4.14 illustrates this

as the fraction of times that guided drivers followed the decision with the highest forecasted

revenue. At an initial glance, guided drivers’ compliance (following the highest revenue

forecast) decreases with the number of drivers receiving guidance, both by expanding the

guidance ratio and enlarging the operating fleet size. In that regard, the ‘Proposed’ strategy

shows lower sensitivity when compared to the ‘Past revenues’ strategy. On the one hand,

compliance in the ‘Proposed’ strategy ranges from 78% to 91%, while it ranges between 66%

and 92% in the ‘Past revenues’ strategy. In both cases, the sensitivity to the size of the operating

fleets is higher than the guidance ratio (in terms of the number of guided drivers).

4.4.2 Revenue forecasting scheme evaluation

Since the proposed repositioning framework must persuade ‘guided’ drivers, the revenue

generated should be higher than those of ‘unguided’ drivers. Otherwise, the framework would

lose attractiveness, losing compliance in the long term. Hence, as a first step to evaluate

the proposed repositioning framework, we compared the revenues made by each group of

drivers. Figure 4.15 shows the average revenues of both groups of drivers at different guidance

ratios (fraction of the fleet that receives repositioning guidance information). Firstly, average

revenues increased compared to a scenario where drivers never relocate in all cases with

guidance (the exception occurs at 0% guidance ratio). As one could expect, large fleet sizes
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Figure 4.14: Fraction of guided drivers taking the decision predicted to maximize his/her
revenues. Comparison between the ‘Proposed’ and the ‘Past revenues’ strategies.

also decrease the average revenue and the effects of guidance, indicating that most demand

is covered by the additional vehicles with no need for relocating drivers. We must point out

that guided drivers consistently have higher revenues than non-compliant ones. It highlights

that the proposed framework captures the possibility of areas with lower demand being more

profitable. However, it is interesting to observe that as the operator expands the number of

‘guided’ drivers (more than 75% of the fleet), the combined average revenue slightly decreases.
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Figure 4.15: Average revenues of ‘guided’ and ‘unguided’ drivers following by a combination of
these in scenarios with different penetration rates of the loyalty program, compared to the
base ‘No-repositioning’ case.

Besides the average revenue, it is interesting to take a closer look at individual driver revenues

and understand how these are distributed. Figure 4.16 shows the histograms (normalized as

probability density functions) of the revenues for ‘unguided’ and ‘guided’ drivers in the base

‘No-repositioning’ case, one with 0% guidance ratio and one with 25% guidance ratio for a

service fleet of 2000 drivers. With a left-skewed distribution, the ‘No repositioning’ scenario

has a lower average revenue average, just slightly higher than the average for ‘unguided’
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drivers in the compared scenarios. In the 0% guidance ratio, the left tail of the distribution

disappears, leading to a symmetric distribution of revenues with the lowest average from the

other cases. One can observe that the distribution of revenues was unimodal, with the average

close to the mode (scenarios with 0% and 25% of ‘guided’ drivers), creating a clear distinction

between these groups. The standard deviation is slightly smaller for ‘guided’ drivers (US$8.96

vs US$10.14). Additionally, the average revenue of compliant drivers was higher than the

revenue for 97% of non-compliant ones (85% if observing one standard deviation behind the

average).
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Figure 4.16: Histograms of revenues in three separated instances with 2000 drivers.

To complete the analysis of the drivers’ choices, we must evaluate the revenue prediction

process. Figure 4.17 illustrates the repositioning options for two drivers near the beginning of

the simulation (around 0.15h from the start). Note that the figure only indicates the forecast

time instead of the simulation time, and it is as long as the prediction horizon τ = 0.5h. Recall

that, around this period, most demand originates from Region 1, followed closely by Region

2 (see Figure 4.8). At this moment, more than 1000 drivers are busy, while 400 and 270 are

idle in Regions 1 and 2, respectively. In the first example, the driver is far from the border of

other regions, thus showing that it has a higher chance of getting higher revenue in the current

region instead of losing capacity by moving to another one. In the second example, however,

the driver is closer to another region, which makes the expected revenue for staying in Region

2 or moving to Region 3 comparable and likely options. In both examples, Region 1 is farther

from the driver’s position, thus, becoming an inferior option. We must highlight how the

MDCTMC model captures the time required for moving among different regions, depending

on the drivers’ initial position, significantly changing the slope of the revenue forecasts for

shorter or longer periods, directly affecting the final result and the driver’s decision.

A few last measurements are necessary to understand the implications of focusing on possible

assignments on the repositioning path instead of the destination only in Section 4.2. Table

4.2 presents some aggregated statistics regarding the assignments and repositioning activities

in the scenario with 2000 drivers and a 50% guidance ratio. Note that we are comparing the

numbers of assignments, which, for ridesplitting, will differ from the number of passengers
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Figure 4.17: Two examples of revenue forecasts in different scenarios with the suggested
destinations and paths.

who share in-vehicle space. Given the FCFS matching, the assignment depends on the driver’s

current activities. For instance, a driver always starts a new ridesplitting trip with a single

assignment; all the subsequent assignments are going to be shared assignments until the

driver becomes idle again. Firstly, we checked that nearly 1 out of 4 assignments (23%) to

guided drivers occur while they are repositioning. In a deeper look, it showed, however,

that only 46% of these assignments are for ridesplitting when nearly 60% of all requests

(and assignments) hired this service. To understand this, we saw that nearly half (49%) of

all ridesplitting assignments are classified as shared trips. On the one hand, these results

illustrate a significant number of assignments during repositioning. On the other hand, they

show that the drivers in service are usually closer to incoming ridesplitting requests than the

repositioning ones. This observation illustrates that alternatives to the shortest path could

improve matching possibilities for ridesplitting requests, further increasing the chances of

matching during repositioning activities.

4.4.3 Impact of drivers choices

As argued all along the paper, drivers in ride-sourcing services perform a series of decisions,

including the decisions regarding repositioning evaluated in the proposed repositioning

strategy. These decisions were assumed to follow a logit process.IX In order to evaluate the

impact of drivers’ free will, we explore the effect of replacing this assumption by applying two

IXSee Footnote VIII.
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Table 4.2: Other assignment statistics related to repositioning in a scenario with 2000 drivers
and 50% guidance ratio.

Statistics Outcomes
Frequency guided drivers were as-
signed while repositioning

Repositioning (23%) Not repositioning (77%)

Services hired for while reposition-
ing

Ride-hailing (54%) Ridesplitting (46%)

Overall hired service distribution Ride-hailing (39%) Ridesplitting (61%)
Frequency of shared ridesplitting
assignments

Shared (49%) Single (51%)

deterministic processes named below while we refer to the original process as ‘Logit-based.’

• Deterministic based on the revenue forecast (called ‘Det. revenue’): the decision follows

the instruction with the highest expected revenue (value E [Rnet], as computed in Section

4.3.2).

• Deterministic based on the expected number of requests (called ‘Det. requests’): the

decision follows the instruction with the highest expected number of assignments (value

Πi , as computed in Section 4.2).

Additionally, by separating these cases according to the major elements in the proposed

approach, we shed some light on their individual undetected limitations and bottlenecks for

future implementations.

As previously shown in Figure 4.9, abandonments could slightly rise at increased guidance

ratios. In Figure 4.18, passenger abandonments are explored for the described decision

processes (‘Logit-based’, ‘Det. revenue’, and ‘Det. requests’) and different fleet sizes. The

general decreasing trend in abandonments is kept in terms of the guidance ratio. All processes

had results close to the original ones in the ‘Logit-based’ with no significant difference. The

only exception occurs for the ‘Det. requests’ process with 2000 drivers at 100% guidance

ratio, which has significantly lower abandonments than the other strategies. The previous

highlights that it could provide solutions to improving the number of assignments, despite the

approximations in Section 4.2 regarding demand coverage and service.

From the previous findings, one can expect that the differences in abandonments will be

converted into drivers’ revenues. Figure 4.19 explores driver revenues for the described

decision processes. Firstly, we must point out that the average revenues for all drivers did not

change for the different processes. However, even with the lowest abandonment numbers,

the ‘Det. requests’ process had little impact on the average revenue (only about US$1.50

higher at a 100% guidance ratio for 2000 vehicles). As a general result, since the ‘Det. requests’

process does not focus directly on increasing revenues, guided drivers through this process

have lower average revenues than those under revenue-based process in the same scenarios.
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Figure 4.18: Comparison of passenger abandonments in the proposed strategy with determin-
istic repositioning response.

For instance, guided drivers at a 25% guidance ratio and a fleet size of 2000 vehicles made

an average of US$76.00, while they made around US$81.00 in revenue-based processes. The

previous highlights the limitations of the assumption that increasing the number of served

requests increases revenues in the path orientation process. At the same time, unguided

drivers had higher revenues compared to revenue-based approaches, decreasing the average

revenue gap between guided and unguided drivers while maintaining the same global average.

The ‘Det. revenue’ process only differentiates itself from the ‘Logit-based’ one at larger fleet

sizes when it presents an average revenue of US$3.00 higher at a 25% guidance ratio.
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Figure 4.19: Comparison of average driver revenues in the proposed strategy with deterministic
repositioning response.

From the company’s perspective, these results should translate into its revenues for the period.

Table 4.3 summarizes the profit of the company based on the commissions it charges from

each served ride. In general, the company’s revenues are not too sensitive to the determin-

istic repositioning response. With the exception that the ‘Det. requests’ strategy achieves

higher revenues (beyond the margin of error for the simulations, which ranges mostly around
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US$100.00) at a guidance ratio of 100% for a fleet of 2000 vehicles. At larger fleet sizes (2500

and 3000 vehicles), the revenues do not vary significantly to the guidance ratios of 25% or

higher. All the previous show that applying the ‘Proposed’ repositioning strategy increases the

platform revenue from commissions. At the same time, these results show little to no effect on

macroscopic measurements for assuming logit-based decisions compared to deterministic

(dictatorship) scenarios in repositioning response.

Table 4.3: Comparison of the total revenue of the service provider in the proposed strategy
with deterministic repositioning response. Revenues in US$.

Guidance ratio 0% 25% 50% 75% 100%

2000
vehicles

Logit-based 22’009 23’492 24’256 24’051 23’810
Det. revenue 22’132 23’430 24’224 24’126 23’813
Det. requests 22’046 23’497 24’136 24’336 24’326

2500
vehicles

Logit-based 23’626 24’876 25’230 25’008 24’866
Det. revenue 23’612 24’715 25’125 24’960 24’728
Det. requests 23’590 24’580 25’041 25’100 25’066

3000
vehicles

Logit-based 24’404 25’142 25’244 25’223 25’219
Det. revenue 24’257 25’157 25’304 25’207 25’149
Det. requests 24’357 25’079 25’308 25’273 25’334

4.5 Summary

In this chapter, we evaluate the potential repositioning response of drivers when provided

guidance based on estimates of their earnings in a system offering ride-hailing (solo) and

ridesplitting (shared) rides. Therefore, we develop a strategy that enumerates the best regional

repositioning destination based on the expected number of requests a driver will encounter

during the forecast horizon. A mixed continuous-discrete time Markov Chain (MDCTMC) is

developed to predict a driver’s activities and the associated revenues. In summary, the devel-

oped strategy provides a group of drivers with individualized near-future revenue estimates

guiding drivers toward repositioning decisions that are more likely to maximize their earnings.

Our main findings indicate that if the operator selects only a fraction of active drivers to

provide guidance, these are likely to expect higher earnings than those without guidance. We

also show that it manages to decrease the number of unserved requests compared to several

state-of-art benchmarks while increasing vehicle occupancy and decreasing the deadheading.
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5 A hierarchical control framework for
vehicle repositioning in ride-hailing
systems

This chapter is based on the following extended abstract:

• Beojone, C. V., Zhu, P., Sırmatel, I. İ., & Geroliminis, N. (2023). A hierarchical control

framework for vehicle repositioning in ride-hailing systems. 25th International Sympo-

sium on Transportation and Traffic Theory (accepted for full paper submission)

It must be highlighted also that this is not a complete study in this version of the thesis. Since

this is a collaborative effort, this chapter expands the content related to the middle-layer in

comparison with the original extended abstract, where the candidate’s contributions are more

pronounced.

5.1 Introduction

Spatiotemporal variations in demand can create supply imbalances between drivers and

passengers in on-demand mobility services, manifesting as deterioration of system efficiency

and service quality. Therefore, it is expected that an efficient fleet management strategy, that

keeps drivers well-distributed in space and time over the served area, is of critical importance

to provide satisfying mobility service.

In this chapter, we propose a hierarchical control strategy for the relocation of idle ride-

sourcing vehicles, for addressing the gap between proactive repositioning strategies and micro-

management of vehicles in such activities. The upper-layer utilizes an aggregated model,

which is an approximation of trip-based MFD modeling approach (building on Beojone and

Geroliminis, 2023a). A model predictive control (MPC) framework is employed to determine

the number of idle vehicles to be relocated for each pair of regions. Unlike perimeter control

MPC methods, fleet management MPC requires the integration of more sophisticated MFD-
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based models describing mixed dynamics of private vehicles and taxis. In the lower-layer, given

the demand density over the current region, a coverage control scheme operates to distribute

the vehicles within the region to achieve a demand-aligned configuration, which provides

each vehicle with relatively detailed (i.e., intersection/node-level) position guidance. To bridge

both layers, a middle-layer mechanism is developed for converting the upper-layer decisions

into dispatching commands for individual vehicles by solving an Assignment Problem, which

minimizes the distance required to achieve the optimal coverage and repositioning decisions.

An agent-based simulator built on a trip-based MFD model is utilized with empirical taxi

data from a real network of Shenzhen for validation of the proposed strategy. Compared with

control strategies using exclusively the upper-layer or the lower layer, the results indicate that

the proposed hierarchical framework method yields performance improvements by answering

more requests with lower waiting times. Note that, differently from the previous Chapter

4, the intent is to identify the most optimized repositioning strategy, assuming vehicles full

compliance with the provided instructions (i.e., autonomous vehicles operated by the service

provider), creating a best case scenario for repositioning decision benchmarks.

Following the motivation and the challenges raised regarding repositioning ride-sourcing

vehicles with minimal human influence, which is given in Section 1.2.4 of Chapter 1, the

remainder of the chapter has the following structure. Section 5.2 presents the proposed

hierarchical control framework and the details of the methodology employed in each layer.

Section 5.3 depicts numerical results of the entire proposed framework compared with the

results for each of its layers and a brief evaluation of the repositioning decisions.

5.2 Hierarchical control framework for vehicle repositioning

Implementing a controller for a large-scale system, one may face problems such as high

computational effort due to complex models and high dimensions required for accurate

network modeling, especially if the model and controller are developed to compute control

actions for every individual vehicle over the whole network. One way to solve this problem is

to build a hierarchical control structure. Such structures decompose the control problem into

a hierarchy of decision-making levels, and operate via coordinating between the actions of an

upper-layer controller (operating at the aggregated traffic level) and a lower-layer controller

(managing individual vehicles). The control structure is shown in Figure 5.1.

The upper-layer controller collects aggregated information, such as how many empty vehicles

are in each region, from all urban regions at a relatively large update period Tu . The control

action generated from the upper-layer determines how many vehicles should stay in current

regions and how many vehicles should relocate to other regions, in order to improve availability

and thus minimize the total waiting time of passengers. Furthermore, the middle-layer

transfers the obtained upper-layer guidance to the lower-layer and specifies which vehicle

should stay or move, considering the travel costs caused by repositioning. It is operated within

each region and requires relatively more detailed information, such as the coordinates of each
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Figure 5.1: A hierarchical control framework for vehicle rebalancing.

vehicle and whether it is occupied or not. Note that the middle-layer can only be activated

when the upper-layer is active. The lower-layer is operated in a distributed manner so that

each vehicle can obtain its own control action, which facilitates its implementation at a fast

update period Tl . The empty vehicles that are commanded to stay in the current region (i.e.,

idle vehicles, see the left part of lower-layer in Figure 5.1) communicate and cooperate with

each other to achieve better vehicle position configuration, while the rest of the vehicles (i.e.,

repositioning vehicles, see the right part of the lower-layer in Figure 5.1) are be guided to other

desired regions as per the relocation commands.

5.2.1 Upper-layer: Prediction model and MPC

The designed framework incorporates urban traffic dynamics, describing the macroscopic

behavior of private (i.e., non-taxi) vehicles, which forms the major part of overall urban traffic.

In such a case, we can classify the vehicles in the system based on their ongoing activities

and regional movements: vacant vehicles, consisting of idle and repositioning vehicles, are

denoted as V , busy vehicles and private vehicles are denoted by B and P , respectively. Note

that vehicles in states B are assumed completely busy and cannot receive new assignments.

At the same time, vehicles in states V are considered available for new assignments when

idling in one region. While a more general formulation will be presented in the full paper, a

two-region example is given here.

The developed dynamical model summarizes past travel behavior into total remaining dis-

tance states (Sirmatel et al., 2021). The model also captures movement of ride-hailing drivers

between the urban regions. Let K ∈ {V ,B ,P } and assume the urban area is partitioned into
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Rn regions, R = {1,2}. Equations [5.1] and [5.2] summarize the basic structure of the model

at each state, as previously proposed in Beojone and Geroliminis, 2023a. Considering the

remaining distance to be traveled effects, total trip completion/transfer terms OK
od (t ) (from

region o to d) can be written as in Equation [5.3].

ṅK
od (t ) = I K

od (t )−OK
od (t ), (5.1)

ṁK
od (t ) = I K

od (t )LK
od (t )−nK

od (t )vo(t ), (5.2)

OK
od (t ) =

[
nK

od (t )+αod

(
mK

od (t )

L∗
Kod

−nK
od (t )

)]
vo(t )

LK
od (t )

, (5.3)

where nK
od (t ) (unit: veh) and mK

od (t ) (unit: veh·km) are the accumulation state and the total

remaining distance to be traveled by vehicles in state K in region o destined to d , respectively,

I K
od (t) (unit: req/h) indicates the summary of inflow rates, including the start of new trips

(λK
od (t)) and the transfer of vehicles reaching a new region while performing their activities

(OK
od (t )), αod ≥ 0 is a parameter expressing sensitivity of the transfer flow to variations in the

remaining distance to be traveled, LK
od (t) (unit: km) is the average regional trip length, L∗

Kod

(unit: km) is the average remaining trip length in steady-state (with L∗ = (L2 +σ2)/2L, where σ

is the trip length standard deviation), while vo(t ) (unit: km/h) indicates the traveling speed.

To apply the MPC control inputs in a two-region, Equations [5.4a]–[5.4c] detail the dynamics

of vacant ride-hailing vehicles with the applied control parameter rod (t ).

ṅ I
oo(t ) = OB

oo(t )+OV
ho(t )− ∑

d∈R

λ̄B
od (t )− roh(t ) h ̸= o (5.4a)

ṅ I
od (t ) = rod (t )−OB

od (t ) d ̸= o (5.4b)

ṁ I
od (t ) = rod (t )LI

od (t )−n I
od (t )vo(t ) d ̸= o (5.4c)

where λ̄B
oh(t ) is the passenger entrance rate as described in Beojone and Geroliminis, 2023a.

The dynamical equations given in Equations [5.1] and [5.2] can be discretized in time with

a sampling time Tu (unit: h), for enabling formulation of an associated finite-dimensional

nonlinear optimization problem. Rewriting them in a compact form, we obtain the following

vector nonlinear equation:

x(k +1) = F (x(k), q(k),u(k)), (5.5)

102



A hierarchical control framework for vehicle repositioning in ride-hailing Chapter 5

where k ∈N0 is the time step of sampled real time (i.e., t(k) = Tu ·k, k = 0,1,2, . . .), x(k) ∈Rnx

(state) is a vector containing all M-model state variables (i.e., accumulation states nP
od (k),

nB
od (k), and nV

od (k), total remaining distance to be traveled states mP
od (k), mB

od (k) and mV
od (k)).

q(k) ∈Rnq (measurable disturbance) is a vector containing all exogenous demands (i.e., qP
od (k)

and qB
od (k)), whereas u(k) ∈Rnu (control input) is a vector containing all relocation control

input terms rod (k).

Based on the dynamical model Equation [5.5], we can formulate the problem of finding the

optimal relocation control input rod (k) values that minimize the total number of canceled

trip requests, as the following discrete-time economic nonlinear MPC problem:

min
uκ

N∑
κ=1

∑
o∈R

∑
d∈R

λB
od (k +κ)exp(γ0 (nV

od ,κ)γ1 vγ2
o,κwγ3 )Tu (5.6)

s.t.: x0 = x(k) (5.7)

for κ = 0, . . . , N −1 : (5.8)

xκ+1 = F (xκ, q(k +κ),uκ) (5.9)

0 ≤ Trod ,κ ≤ nV
od ,κ for o,d ∈R, (5.10)

where κ is the MPC time interval index (i.e., discrete-time clock internal to the MPC), k is the

current discrete time step, N is the prediction horizon, while xκ and uκ are the state and control

input vectors internal to the MPC (i.e., predicted states and controls), respectively. To compute

the loss probability, λB
od (k) is an exogenous demand inputs for busy ride-hailing vehicles; the

remaining γi , i ∈ {0,1,2,3} are parameters expressing the sensitivity of the matching algorithm

to the number of vacant vehicles (nV
od ,κ), traveling speeds (vo,κ) and passenger waiting time

tolerance (w). A detailed estimation of parameters in Problem [5.6] will be provided in the full

paper.

5.2.2 Middle-layer: Selecting and dispatching vehicles

Once the upper-layer provides the number of vehicles transferring between regions, a further

step is to select which vehicles should move to other desired regions (i.e., repositioning

vehicles). Simultaneously, vacant vehicles staying in the current region (i.e., idle vehicles) are

operated to maintain a good spatial configuration to uphold service quality. In summary, for

each region R, the middle-layer is responsible for bridging the results from the upper- and

lower-layers, such that inter- and intra-regional instructions are optimized.

Hence, besides the information acquired from the upper-layer, the middle-layer needs an

estimate of the coverage instructions in the lower-layer described in Section 5.2.3. We propose

employing, for these estimates, the optimal configuration of intra-regional positions (cen-

troids) used in the lower-layer. Note that this coverage must be evaluated only for vehicles
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staying in the current region. Therefore, we sample random uRR positions in region R (where

uRr = rRr (k) ·Tu∀r ∈R is the conversion of the outputs from the upper-layer) and compute

the centroids that maximize the coverage as described in Section 5.2.3.

Then, given the computed intra-regional vehicle positions and the number of repositioning

vehicles to each region, the middle-layer is able to perform the assignment of vehicles by

solving the optimization problem in Equation [5.11], complying with the upper-layer decision

(i.e., the number of idle and reposition vehicles uRr = rRr (k) ·Tu). Specifically, for objective

DR , the first term considers the reposition distance between regions, while the second term

takes the intra-regional traveling distance into account:

min
ψi r ,ωi l

DR =
∑
i∈I

∑
r∈R

ψi r d out
i r +∑

i∈I

uRR∑
l =1

ωi l d in
i l (5.11a)

s.t.:
∑

r∈R

ψi r +
uRR∑
l =1

ωi l = 1 ∀i ∈ I (5.11b)∑
i∈I
ψi r = uRr ∀r ∈R\{R} (5.11c)∑

i∈I
ωi l = 1 ∀l ∈ {1, . . . ,uRR } (5.11d)

∑
i∈I

uRR∑
l =1

ωi l = uRR (5.11e)

ψi r ∈B ∀i ∈ I and ∀r ∈R (5.11f)

ωi l ∈B ∀i ∈ I and ∀l ∈ {1, . . . ,uRR } (5.11g)

where ψi r and ωi l are binary decision variables expressing whether a vehicle i is assigned to

region r or to position l ; d out
i r and d in

i l are the traveling distances for a vehicle i to reach region

r or the position l in the current region, respectively; I is the set of vacant vehicles; uRr is the

control action obtained in the upper-layer, indicating how many vehicles should move from

region R to region r , while uRR is the number of idle vehicles that should stay in the current

region.

Note that the constraint in Equation [5.11b] limits a vehicle either to stay in the current region

or move to another region. Equations [5.11c] and [5.11e] ensure compliance with the upper-

layer decision. This problem was inspired by classic assignment problems, such as those in

Pentico, 2007.

Assignment problems are fundamental combinatorial optimization problems. Note that the

number of tasks (destinations inside and outside the evaluated region) is |R|−1+uRR , while

number of agents (idle vehicles in the evaluated region) is
∑

r∈R uRr . One could see the previ-

ous as an unbalanced assignment problem for having different number of tasks and agents.

However, differently from the classical assignment problem, the proposed problem assigns
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multiple (uRr ) vehicles to inter-regional tasks. Therefore, if one repeats uRr times each of

the columns of the cost matrix associated with inter-regional assignments, the problem be-

comes balanced (number of agents and tasks become equal). Finally, as typical to assignment

problems, the solution can be obtained using the Hungarian method (Kuhn, 2005) in strong

polynomial times (Munkres, 1957), without the use of dummy agents nor tasks.

A possible solution of the problem in a two-region setting can be illustrated in Figure 5.2.

It presents a situation where some vehicles from a Region 1 are assigned new positions in

their current region and the remaining ones are sent to Region 2 to the lower-layer controller

perform the local repositioning instructions. We must highlight that vehicles are not sent to

the center of Region 2, they are, in fact, dispatched only to the border between Regions 1 and

2 by the shortest path. Therefore, the lower-layer will be able to instruct these vehicles as

quickly as possible. Moreover, note that the vehicles in the current region are chosen such that

the cost (total traveled distance) to reach the desired covered is minimized, enabling quick

intra-regional response to unbalanced demand coverage, as well.

R1

R2

Region 1
Region 2
Street graph
Inter-regional
reposition
Intra-regional
reposition
Drivers' positions

Figure 5.2: Illustration of the solution for the Middle-layer in the form of an assignment prob-
lem. Red arrows indicate the exact position a vehicle is assigned in intra-regional movements.
Blue arrows only indicate the region of destination.

5.2.3 Lower-layer: Coverage control method

In the lower-layer, the coverage control algorithm is operated for the vehicles that are com-

manded to stay in the current region (i.e, idle vehicles). The coverage controller steers these

vehicles towards an optimal spatial configuration (indirectly, towards maximizing availability

for service) by operating at a fast time scale and with detailed position guidance.

For each region, we formulate this task as a coverage control problem for the coordination and

deployment of multiple mobile agents on the city network (Zhu et al., 2022). Such coordination

provides benefits to the system by dynamically allocating the vehicles according to the different
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demand densities of various city districts.

The city map can be presented as an undirected graph G = (Q,E), where Q is the set of nodes

representing the intersections and E is the set of road links. If origin-destination pairs for trips

are recorded in historical taxi data, we can compute the probability that a request starts at a

node as φ(q). With a slight abuse of notation, q in this section denotes a node on the graph

(with
∑

q∈Q φ(q) = 1).

The city area is clustered into Rn regions, with the set of all nodes in region R denoted as QR ,

where Q = Q1 ∪Q2 ∪·· ·∪QRn . For idle vehicle i in region R, whose current position is pi , the

Voronoi tessellation can be defined as follows (Erwig, 2000):

Vi (pi ) = {q ∈QR : d(pi , q) ≤ d(p j , q)),∀i ̸= j }, (5.12)

where d(pi , p j ) stands for the shortest distance between node pi and node p j on graph, com-

puted by the Floyd-Warshall algorithm and P = {p1, p2, . . . pni dl e }, where ni dle is the number of

current idle vehicles in region R.

The coverage objective function can be formulated as:

H(P,V ) =
ni dl e∑
i =1

∑
q∈Vi

d(pi , q)2φ(q). (5.13)

According to Durham et al., 2012, the optimal position configuration of all vehicles is attained

when each vehicle is at the centroid of its respective Voronoi cell. The centroid of a graph

Voronoi cell can be computed as an integer optimization problem as

C (Vi ) = argmin
q

∑
q∈Vi

d(pi , q)2φ(q). (5.14)

At the beginning of each fast-loop time period Tl , the idle vehicle i is commanded to move

towards its current Voronoi centroid C (Vi ) after solving Equation 5.14. Note that the number

and position of vehicles will change (new assignments or service completion), which requires

us to re-compute the Voronoi diagram completely at each iteration (which is done in low

computational times using parallelization). As it only requires local information for each

vehicle to calculate the Voronoi tessellation, this control algorithm is able to provide each

vehicle with an intersection/node-level rebalancing command in a distributed manner (i.e.,

without requiring a central planner to coordinate the movements of all vehicles).
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5.3 Computational Results

To evaluate the proposed strategy, we use an agent-based simulator which is adapted from

(Beojone & Geroliminis, 2021b). With sufficiently long and rich historical data, future requests

can be predicted accurately. So far, we assume that we have perfect knowledge of the demand

profile. The road network for the Futian and Luohu districts of Shenzhen, China, forms the

background for the study. The considered network consists of 1’858 intersections connected

by 2’013 road segments. In total, the origin-destination demand data contains around 200’000

requests collected from taxi operations using GPS coordinates (Ji et al., 2014). Using a graph-

based k-means algorithm the intersections are clustered into two urban regions.

In total, we tested 5 demand scenarios with 250 vehicles. We consider a three-hour simulation,

where, in the base demand scenario, 600 requests per hour are issued in the first and third

hours and 1’200 requests per hour are issued in the second hour. In each of the subsequent

scenarios, the base demand is increased by 25%, reaching a 100% increase in the last scenario.

Larger fleet sizes and multiple (i.e., more than two) region cases will be studied in the full

paper. The upper-layer is activated at a slow time scale, specifically, Tu = 10 min, while the

coverage control in the lower-layer works at a fast scale with Tl = 10s.

Note that the middle-layer can only be applied when the upper-layer is active, therefore

scenarios with active upper-layer (MPC) also include the middle-layer. In summary, we tested

four scenarios: (i) full framework (called ‘MPC+CC’), (ii) only the lower-layer coverage control

(called ‘CC only’), (iii) only the MPC and middle-layer (called ‘MPC only’), and (iv) no active

controls (called ‘Do nothing’).

Each control layer individually managed to improve the average waiting times and the accep-

tance rates. Especially, the proposed hierarchical control framework, combining all layers,

yields the best performances over all scenarios with the lowest waiting times and highest

acceptance rate. Figure 5.3 illustrates the preliminary results when applying different reposi-

tioning strategies. For instance, in the original demand scenario, average waiting times were

25% lower in comparison with a ‘Do-nothing’ scenario and accepted approximately 14% more

requests. For the upper-layer, the MPC controller is designed for minimizing cancellation,

which consequently inspires to answer more requests; for the lower-layer, the coverage control

scheme steers the idle vehicles to move toward the high-demand areas, where the passengers

can benefit from easily finding an available vehicle around.

Figure 5.4 illustrates the number of vacant vehicles in each region governed by the hierarchical

control strategy (all 3 layers developed in Sections 5.2.1–5.2.3) vs do-nothing strategy, when

increasing 50% demand. It can be seen that during the peak period, there are few vacant

vehicles in both regions with the hierarchical control framework, which reveals that the

proposed method can operate the fleet efficiently and most of them are actively serving

passengers. Once the reposition vehicles arrive in their destinated regions, they become

‘idle’ again. Therefore, the number of reposition vehicles decreases fast to 0 thanks to the

middle-layer controller tending to select the vehicles that are not far away from the destinated
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Figure 5.3: Average waiting times and acceptance rate in each demand scenario.

region, thus the reposition ones will reach the desired regions soon. However, many vehicles

are not under use with ‘Do-nothing’ strategy. And more and more vacant vehicles accumulate

in low-demand areas in region 1, leading to a greater amount of request cancellations.
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Figure 5.4: Evolution of the number of vacant drivers in each region under the proposed
‘MPC+CC’ strategy and a ‘Do-nothing’ strategy (scenario: 50% demand increase).

5.4 Summary

In this chapter, we investigated a hierarchical control framework for repositioning empty

vehicles. For the upper level, we introduced an MFD-based model to describe the dynamics of

both the taxi and private vehicles and an MPC controller is designed to instruct the transferring

repositioning of vehicles between regions; for the lower layer, the fleet location optimization

problem was solved as a coverage control problem, which can be carried out by each vehicle

to generate its own position guidance. To bridge between the upper and lower layers, an

assignment problem minimized the rebalancing cost of complying with the objectives of both

layers. The effectiveness of the proposed method is verified by an agent-based simulator

modelling the real road network of Shenzhen, China. The proposed hierarchical framework

yields its advantages by serving more passengers with less waiting time.
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This thesis improved our understanding about ride-sourcing services, its interactions in the

urban area, with respect both to drivers and passengers, while keeping on perspective the

surrounding sustainability dimensions. The focus grew from the understanding of effect of

expanding ride-sourcing in traffic in chapter 2, passing through its macroscopic modeling in

chapter 3, while chapter 4 evaluated the potential repositioning response when using revenue

forecasting and 5 proposed a hierarchical control strategy for relocating idle ride-sourcing

vehicles. This final chapter presents a summary of the conducted research, highlighting the

main findings and contributions while proposing promising areas of related future research.

6.1 Main findings and discussions

In Chapter 2, we investigated the effect of expanding fleet sizes for TNCs, passengers with

different willingness to share, and operational strategies over congestion conditions. We

highlight that, by omitting the dynamics of congestion in rides-sourcing studies to focus on

matching strategies or rebalancing vehicles in static environments, different conclusions with

possibly unrealistic performance measures are obtained.

Results show that sharing (allowing ridesplitting with a large pool of passengers) by itself is

not capable of decreasing the system’s VKT if there is no control over the fleet (its size and

operation). To reduce emissions (by reducing VKT), TNCs should change their modus operandi;

in a way to avoid that their fleet cruises without an assigned passenger. On the other hand,

sharing decreases the number of vehicles needed to maximize coverage and minimize service

times. Furthermore, in case it is not possible to avoid TNCs’ fleets cruising for passengers,

increases in the willingness to share can minimize both waiting times and service times. For

adequately sized fleet sizes, the adoption of sharing is related to higher revenues (for the

system and the driver). Therefore, so that ride-sourcing becomes a sustainable service, it must

change its operations to remove vehicles without passengers from the streets, and passengers

must become more receptive to ridesplitting at the same time. Furthermore, our findings show

that TNCs’ operations with large fleet sizes can lose attractiveness to public transportation
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as a result of high traffic congestion, and drivers can have attractive revenues even in such

situations. Nevertheless, we considered no interactions between these modes, and, even with

dedicated bus lanes, there would be interactions and problems on intersections. It is outside

the scope of this paper to combine surge pricing policies and market equilibrium, but this can

be a future direction. Therefore, we do not cope with the detailed modeling of decisions on

the mode choice for travelers.

In chapter 3, we proposed a dynamic model capable of representing ride-sourcing services

and private vehicles macroscopically in an urban network separated in a multi-region set-

ting. We supplied the processes for estimating the required parameters and computation of

errors. It depicted mass conservation equations for both ride-sourcing and private vehicles

(backgrgound traffic).

We evaluated a multi-region setting and its sensitivity to passengers’ willingness to share, their

waiting time tolerance, and ride-sourcing drivers’ fleet size. The model directly captured the

effects of wild-goose-chase (Castillo et al., 2018), confirming that limiting matching radius – in

this case, represented by decreasing waiting time tolerance – hinders its effects, decreasing

the overall waiting time and number of lost requests, even in transient scenarios (Xu, Yin, & Ye,

2020; H. Yang et al., 2020). The multi-regional setting could further limit pick-up distances by

limiting the matching radii, which could be upper bounded by well-known methods based

on the region area and street network topology (see Larson and Odoni, 1981, Chapter 3, for

instance).

Assuming an FCFS matching scheme, the model showed the fleet size and willingness to

share as crucial to match travelers into a single vehicle. Forming a pool of passengers and

having fewer drivers to serve them forces the operator to bring travelers together. Furthermore,

observing the regional dynamics further allowed identifying the influence of demand patterns

on local driver availability and instantaneous traffic conditions represented primarily by the

background traffic of private vehicles.

The final evaluation tested the model quality to different prediction horizons, which presented

increasing errors to their lengths but remained below 10% in all cases. In the next step, we

compared the proposed model to different benchmarks, and the computed errors were only a

fraction of theirs. Like the exceptional error measurements, the actual values closely followed

the plant at all times in a test built to mimic the rolling time-horizon structure of an MPC

controller. Moreover, the proposed model had lower error measurements than the benchmarks

in all states. Representing a unique state encompassing pick-up and delivery activities for

each ride-sourcing service decreased the sensitivity of the proposed model to measurement

noises. Precise predictions for ride-sourcing in dynamically congested areas present the next

step towards better traffic control and service operations management.

We performed additional tests on the model, evaluating its sensitivity to noises in the inputs

of private vehicles. However, for scenarios with an average noise of 15% or larger, total

errors decreased at longer prediction horizons. Noises were limited to measurements of the
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starting number of private vehicles, assuming that, with current technologies, one can have all

information needed from ride-sourcing vehicles. Even in a scenario with advanced technology

employed in collecting precise traffic data, stability and robustness must be regarded as vital

characteristics of models when constructing real-life solutions. Based on our findings, besides

the mobility benefits of ridesplitting, it also increases model stability, decreasing the sensitivity

to noise. In light of such findings, as models’ complexity can increase, careful and systematic

analysis of prediction errors and sensitivity to noises in particular measurements pose an

unavoidable step for model evaluations.

Chapter 3 is among the first attempts to present and evaluate such a model with ridesplitting

(shared rides) in the literature. The success of a dynamic model with ride-sourcing provides

scholars, practitioners, and authorities a tool for measuring the interactions such services

over traffic in a simulated and fast environment and proper for studies improving shared rides

in a congested urban area. Further developments on repositioning strategies ride-sourcing

services with ridesplitting options and traffic congestion can profit from dynamic models such

as the one proposed in this chapter. Notably, the proposed model could support high-level

repositioning decisions in hierarchical problems like the one seen in Yildirimoglu et al., 2018.

Furthermore, problems in strategic market/regulatory responses to ride-sourcing services in

transient situations can employ the proposed model.

Therefore, in chapter 4 we proposed a relocation strategy for ride-sourcing drivers by providing

them with an estimate of their earnings. Therefore, we do not assume drivers unrestricted

compliance to the provided guidance and, thus, they are free to make the decision that they

expect will maximize their earnings. The first step in the proposed approach uses simulation-

based optimization to identify the locations that are expected to maximize the chances of

a driver getting a match in the forecast horizon. Then, a MDCTMC model is developed to

capture the activities a driver will perform depending on his/her decision, which is later

translated into an estimate of the driver’s earnings. We showed that the proposed approach is

likely to retain drivers confidence by improving their earnings compared to other drivers if the

operator selects only a fraction of active drivers to provide guidance.

Besides improving earnings, we show that the proposed approach manages to decrease the

number of unserved requests in the system compared to several state-of-art benchmarks.

It increased vehicle occupancy, and decreased the deadheading, while enhancing driver’s

compliance to the most profitable decisions.

These findings are consistent with the previous works of Ramezani and Nourinejad, 2018,

Nourinejad and Ramezani, 2020 and Xu, Yin, Chao, et al., 2020 that were able to find improve-

ments to different objectives in taxi services by repositioning drivers dynamically. Moreover,

they provide a path for testing the impacts of different regulatory schemes in such systems.

It enables improved services from the perspective of the service operator at the same time

that provides tools for regulators to identify areas with poor coverage, which could receive

governmental incentives to provide the local population with improved mobility and accessi-

111



Chapter 6 Conclusions

bility options. For instance, identifying the best places to have a subsidized driver providing

mobility to population with lower income or limited mobility to access other public transport

options.

Among the identified limitations, we must highlight that by focusing on revenues drivers

can find individually better outcomes but not necessarily improving service quality to its full

potential. In other words, there is a Price-of-Anarchy associated to the strategy, which can

be identified in this study, but such an evaluation would require more in-depth observation

and development to mitigate potential negative externalities. Furthermore, in one hand using

simulation-based optimization brought flexibility to the definition of the ideal repositioning

destinations and path. In the other hand, it can become a bottleneck in applications at larger

and denser urban areas. In this direction, simplifying the simulation used, or offering other

optimization strategies (e.g. surrogate optimization, as seen in Chen et al., 2019, for instance)

could improve its transferability to any scenario. Furthermore, instead of using the shortest

path, one could expand it to the k-shortest paths, further increasing the options for higher

chances of matching.

The provided guidance could further benefit drivers and unserved passengers, if it comes

paired with other mechanisms to foster movements to poorly covered areas. It could in-

clude lower commissions in these areas, or other price changes to make it more attractive to

drivers. Other research directions include developing optimal control to reposition without the

decision-making process by drivers, which would be more realistic in cases with autonomous

vehicles but it would also serve as upper (lower) bound for performance measurements and

evaluation. In this case, it is interesting to evaluate how the different objectives of the controller

can impact different measurements of revenues, abandonments, and changes in traveler and

driver behaviors.

In chapter 5, we presented a hierarchical control framework capable of repositioning vacant

ride-hailing vehicles integrating model predictive control and coverage control in an urban

traffic setting. The approach involves optimizing vehicle positions using near-future fore-

casts of the service and demand conditions, presenting a proactive strategy for dynamically

deploying the fleet in advantageous spatial configurations.

Each layer individually managed to improve waiting times and acceptance rates, increasing

the number of served requests and improving service quality. The combined effect of each

layer further improves the performance in all tested scenarios. It is worth mentioning that

the combined effect in the average waiting time is not linear. In other words, the average

waiting time decreased more when all layers are combined than the sum of the decrease of

each individual layer, which illustrates a positive feedback in combining different strategies.

The proposed framework also maximized the use of the available fleet. For instance, during

the peak hour it managed to keep almost no idle vehicle in any region while maintaining

the good level of service mentioned before. Moreover, the results showed that drivers would

fulfill their repositioning instructions fast, such that almost no vehicle was on inter-regional
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movement when the upper- and middle- layers were called. That illustrates that the middle-

layer managed to identify responsive assignments, even when a considerable number of

drivers was selected to perform inter-regional movements.

Among the limitations we identified, we must highlight that the upper-layer might overreact

to imbalanced scenarios, e.g., sending more repositioning vehicles than is truly needed,

alternating regional flows in a few successive steps. It may be caused by the passenger-

driver matching in the prediction model which lacks integration to the lower layer and might

underestimate the covered demand. Therefore, further study should calibrate the modeled

matching process depending on the amount of movement to complete the coverage decisions.

Regarding the middle layer, we designed the objective function with equal weights on the

cost by repositioning some vehicles to another region and by moving the rest of them to

optimal configuration within the current region, and further study is also needed to balance

the trade-offs between these two.

6.2 Future research directions

Based both on the developments and findings of the research included in this thesis and

the emerging changes in the urban mobility solutions, interesting future research directions

emerge related to the research field explored.

Chapter 2 identified a potentially harmful scenario for urban mobility as a consequence of

ride-sourcing activities, an increased level of congestion due to a large number of circulating

vehicles for passengers. At the same time, it tested idealized solutions, such as providing

a parking option for drivers and expanding the usage of ridesplitting. The later chapters

in this thesis also expanded the management of the service fleets improving the service

but not accounting for mitigating the negative externalities of having oversized service fleets

cruising on the streets leading to deteriorated urban traffic conditions. Additionally, the service

operators still struggle to encourage a broader adoption of ridesplitting by the passengers.

Identifying methods that increase passengers’ adoption of shared modes (such as ridesplitting)

will open fields of research on practical problems such as improved matching algorithms,

dial-a-ride problems, so on. It is especially true in a multi-modal scenario where authorities

try to promote public transit as a solution to congestion problems.

In this direction, one could explore methods to attract passengers to ridesplitting, especially

during the most congested hours of the day. Ride-sourcing services may experience dynamic

taxation on empty vehicles operating inside a congested area. On the other hand, they

may experience no taxation in areas with low congestion and with an unsatisfactory public

transit offer for users. Another option would be to understand whether occupation-based

pricing could make ridesplitting a viable alternative during peak hours and improve social

welfare. Given the complexity of such a scenario, results may rely on simulation approaches,

instead of analytical solutions. Any sort of regulations in such service would primarily affect

passengers’ demand by changing their costs, and affect drivers’ supply changing their revenues.
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Passenger choices can focus on minimizing their traveling costs, while drivers can join based

on an opportunity cost (Vignon et al., 2021). In aggregated traffic dynamics, in the form

of a Speed-MFD and single region settings, traffic assignment is secondary to the problem.

Fixed taxation could obtain unfavorable outcomes for the society, especially during peak

hours hindering the service and the ridesplitting option simultaneously. A non-linear pricing

strategy (Lawphongpanich & Yin, 2012), in the other hand, could overcome this issue by

leveraging the charges in the correct moments to maximize welfare by fostering ridesplitting.

In a more operational oriented approach, one could work promoting ridesplitting dividing

passengers in groups: (i) Selfish users that do not share their information and their rides; (ii)

Partially cooperative users that share their information or their rides (but not both); and (iii)

Cooperative users that share their information and their rides. The operator gives a discount

based on the cooperation of the user and commits on delivering him/her on time. Passengers

may share their information in advance, allowing scheduling from the operator. The details of

the implementation of this scheduling service remain vague. However, we acknowledge that

lost freedom should be associated with a cost. We call this cost as “cost of cooperation,” and

it may consider the sum of an expense associated with scheduling, and another one that is

particular to the technology employed (e.g., the website used for time slot reservation). We

assume that individuals will get a distributed cost of cooperation, but it will remain constant

for one individual over time. These costs will act as the selecting criterion: at equilibrium,

users only choose to cooperate, if, by doing so, they can reduce their expense associated with

the travel time and schedule penalty by more than their cost of cooperation. Note that a

similar concept is used to distinguish planning users from not planning users in previous

works related to public transit (Fosgerau, 2009; Lamotte et al., 2017; Tisato, 1992). In other

words, one may consider the proposed service as an additional alternative between public

transit and private vehicles.

In a different direction, urban mobility continues to evolve and new solutions emerge con-

stantly. For instance, unsatisfied with the conditions to work with Uber, drivers organized

themselves in a few cities in Brazil and, in a partnership with the local authorities, launched

their ride-sourcing service to compete with Uber, recently (Gama, 2022) In other cases, the

local authorities themselves developed and launched their ride-sourcing platform as a “mar-

ket regulating element” (in Portuguese, “elemento regulador do mercado”) (Band Jornalismo,

2023). In the first case, the company can operate as a cooperative of drivers, where the profit

is shared among the cooperates. While, in the second case, the formed organization can be

operated such that social welfare is maximized. In both cases, their strategy to attract drivers

is to have lower commissions for rides. To attract passengers, they mention that there is no

surge pricing applied in peak hours. Since these services have an operator related to the local

authorities, connecting it with existing public transit modes should become easier in the

context of Mobility as a Service. Such an unified solution would also meet the idea of smart

cities with connected transportation modes.

As an emerging service, it is still unclear whether this operation will be able to compete, for
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passengers and drivers, in the long term. For instance, in their first day of operation, there were

more then 30’000 registered passengers but they were lacking drivers because of a citywide

surge in demand due to a labor strike in metro services (Ker, 2023). Therefore, to achieve

(if possible at all) the benefits presented in the previous paragraph, one must understand

where such a service will stand in this competition. Furthermore, one must be able to identify

in which cases this service can become prevalent, if it will create a monopoly, or if it will

not manage to survive in the long-term because the competitors are well-established with a

large pool of drivers and passengers. With a game-theoretical approach, analytical solutions

could provide the existence and uniqueness of equilibrium, if any at all. The literature on

conventional ride-sourcing services has advanced significantly in the recent years, with studies

on ride-sourcing services in monopoly and duopoly conditions (Ke et al., 2021; Zha et al., 2016;

K. Zhang & Nie, 2021). However, given the different nature of this new service, it is unclear

how its organizational structure would change the objectives and how revenues and costs

are perceived. For instance, since it parts from drivers organizing themselves, profit could be

proportionally shared among them (similarly to a cooperative structure), while the operation

has a fixed cost related to the maintenance of infrastructure provided by local authorities.

It is also unclear how this organizational structures could boost or undermine its potential in

achieving competitive service and integration with other modes. In such a case, qualitative

research is needed to classify this organization and identify possible strengths, weaknesses,

opportunities and threats (in reference to the management literature in Weihrich, 1982). In

this direction, a traditional case study could combine data from structured interviews and

questionnaires, internal documents evaluation, and direct observations. The idea of having

different sources of data is to avoid biases in each individual data set and identify overlapping

information for consistency (Yin, 2018).
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An MFD provides a well-defined empirical relationship between the number of vehicles in

an area (accumulation) and its average speed or the total traveled distance per unit of time

(production). In summary, it can be expressed as n 7→ v(n) or n 7→ P (n), where n, represents

the accumulation, while v(n) and P (n) represent the average space-mean network speed

and production, respectively. Note that one can obtain the P (n) relationship by the product

P (n) = n · v(n). These representations can be called “speed-MFD” and “production-MFD,”

respectively (Lamotte & Geroliminis, 2018).

On average, all drivers would complete their trips or exit the hypothetical area after traveling

a certain distance L. Therefore, assuming that inputs to that area change slower than the

relaxation time (time to the travel across the region), the exit function could be written as

O(n) = P (n)/L (Daganzo, 2007). Note that an exiting function may represent trips that end

(trip-completion) or leave (transfer) the hypothetical area.

Under an input function λ(t) and an initial condition n(0), the dynamics of the number of

drivers can be described in Equation [A.1], also called the mass-conservation equation (Da-

ganzo, 2007; Mariotte et al., 2017). Given the derivation of the exit function, this formulation is

usually called the accumulation-based model.

dn(t )/dt = ṅ(t ) =λ(t )−O(n(t )) (A.1)

A.1 Trip-based model

Consider a driver m with a trip length of Lm entering the system at time tm ; then this driver

exits the system after travelling τm time units as computed in Equation [A.2].
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Lm =
∫ tm+τm

tm

v(n(s)) ds (A.2)

Note that the speed v(n(s)) results from a speed-MFD. In other words, the trip-based model

considers the traveled distances explicitly, not requiring a particular Lm = L average trip

length, resulting in more accurate dynamics for transient situations than the accumulation-

based model (Paipuri & Leclercq, 2020). However, it becomes difficult to solve analytically, as

indicated when introduced in Arnott, 2013. For this reason, Mariotte et al., 2017 proposed

an event-based approach to obtain numerical solutions. If trip lengths are exponentially

distributed, trip-based and accumulation-based models are identical. Studies mainly propose

this model to investigate departure time choice problems at the city scale (Arnott, 2013;

Batista & Leclercq, 2019; Daganzo & Lehe, 2015; Fosgerau, 2015; W.-L. Jin, 2020; Lamotte &

Geroliminis, 2018; Leclercq & Paipuri, 2019; W. Vickrey, 2020).

A.2 Intermediate approach: M-Model

First introduced in Murashkin, 2021, the M-model tries to overcome the limitations of the

accumulation-based model by summarizing the past events into the total remaining distance

M and using this information to update the exit function. For comparison, trip-based models

keep track of individual remaining distances, while accumulation-based models keep no

record of it. Such a model offers valuable intuition and represents an attractive trade-off for

control applications. Sirmatel et al., 2021 provided a multi-region formulation of the M-model

and integrated it successfully in a perimeter control framework.

One can derive the dynamics for computing the total remaining distance based on the dynam-

ics of the accumulation-based model. Assuming that the average trip length can represent the

added remaining distance for each entering driver; then, one can obtain Equation [A.3].

dM/dt = Ṁ(t ) = ṅL =λ(t )L−P (n(t )) =λ(t )L−n(t )v(n(t )) (A.3)

To update the exit function, Lamotte et al., 2018 proposed using a correction factor in the form

of Equation [A.4].

O(t ) =
n(t )v(t )

L

(
1+α

(
M(t )

n(t )L∗ −1

))
(A.4)

where L∗ is the average remaining distance at steady-state (computed as L∗ = (L2 +σ2)(2L)−1,
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where σ is the standard deviation of trip lengths), and α is a constant parameter related to the

distribution of trip lengths (see Lamotte et al., 2018 for more details on setting this constant).

Therefore, the M-model uses Equations [A.1] and [A.3] (replacing the exit function with the

result of Equation [A.4]) to keep track of the number of vehicles in the area and their total

remaining distance. For more details about the properties of the M-model, the reader could

refer to Murashkin, 2021.
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A Monte Carlo simulation evaluated the influence on the non-acceptance (loss) of incoming

requests after checking the feasibility constraints (waiting time and/or detour) of factors such

as the available fleet size nav
od (t ), the regional average speed vo(t ), the waiting time tolerance

ω, and the Idle-Busy drivers’ ratio ρs = n I (t)/nav
od (t). We simulated loss probabilities for the

variable tuple (nav
od (t ), vo(t ),ω,ρs). Where we tested all possible combinations of the following

values for each variable:

• vo ∈ {5,10,15,20,25,30,35,40} (unit: km/h);

• nav
od ∈ {10,30,60,110,150,210,270} (unit: #veh);

• ω ∈ {2,5,8,11,14,17,20} (unit: min); and

• ρs ∈ {0.1,0.3,0.5,0.7,0.9,1} (unitless).

Note that ρs = 1 will make the problem indifferent in terms of service since all drivers are idle.

The simulation considers a street network divided into regions, depending on the desired

case. Since drivers and passengers must be in the same region to perform an assignment,

each region had an independent Monte Carlo simulation. Under the assumption of an FCFS

discipline without batching, it always yields a higher supply of drivers than demand for

passengers.I Moreover, separate simulations evaluated ride-hailing and ridesplitting services.

Algorithm 1 shows a pseudo-code that illustrates the Monte Carlo simulation. We sample and

test numerous potential passengers (pasSamp = 500) individually, considering all vehicles

in the sampled fleet. Furthermore, to ensure that there is no bias in the vehicle positioning,

we sample several combinations of positions for drivers (vehSamp = 20) for each set of

parameters. Four properties describe each of the sampled drivers:

• Current position (.cur r ): Node in the street network;

ISee Footnote IV.
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• Origin position (.or i g ): Node in the street network – empty for idle drivers;

• Destination position (.dest ): Node in the street network – empty for idle drivers;

• Busy flag (boolean): ‘false’ for idle drivers, ‘true’ for busy ones;

The evaluation of the waiting time and detour tolerances are described below in Algorithm 2

to detail the matching constraints evaluated in the function in Algorithm 1. In this process,

besides the main parameters, we use the shortest distance between two points in the street

network al lDi st (·, ·), previously computed using a Floyd-Warshall algorithm, and a maximum

detour tolerance detour . Note that the evaluated constraints for ride-hailing and ridesplitting

are the same as in (Beojone & Geroliminis, 2021b).
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Data: al lF , // Set of all tested fleet sizes
al lR, // Set of all tested Idle-Busy ratios
al lV , // Set of all tested traveling speeds
al lW , // Set of all tested waiting time tolerances
vehSamp = 20, // Number of sampled sets of positions for drivers.
pasSamp = 500, // Number of sampled passengers per test.

Result: pl s
od // Loss probabilities.

auxPL ← 5-D array of zeros;

for each i d xF ∈ {1, ..., |al lF |} do

f ← al lF (i d xF );

for each i d xR ∈ {1, ..., |al lR|} do

r ← al lR(i d xR);

f I dl e ← f ∗ (1− r );

fBus y ← f ∗ r ;

for each i d xP ∈ {1, ...,vehSamp} do

Initialize empty object V E H with properties .or i g , .dest , .cur r , .bus y ;

Sample f I dl e Idle drivers into object V E H ;

Append a sample of fBus y Busy drivers into object V E H ;

Sample a set of pasSamp OD-pair into an object PAS;

for each i d xV ∈ {1, ..., |al lV |} do

vo ← al lV (i d xV );

for each i d xW ∈ {1, ..., |al lW |} do

ω← al lW (i d xW );

match ← matdi s(V E H ,PAS, vo ,ω); // Check match constraints
/* Match is a vector with pasSamp logical elements

– 0 indicates that a passenger is NOT LOST.
– 1 indicates that a passenger is LOST. */

auxPL(i d xF, i d xR, i d xP, i d xV , i d xW ) ← mean(match);

end

end

end

end

end

pl s
od ← Average of auxPL over the 3rd dimension ; // over vehSamp tests.

return pl s
od ;

Algorithm 1: Monte Carlo algorithm pseudo-code.
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Data: al lDi st , // Matrix with the shortest distance for every OD-pair.
detour , // Detour tolerance.

function matdi s(V E H, PAS, vo , ω):

match ← vector with |PAS| elements all equal to ‘true’;

for each pas ∈ PAS do

k ← true;

veh ← 0;

while k is true && veh≤ |V E H | do

veh ← veh +1;

if al lDi st (V E H(veh).cur r,PAS(pas).or i g i n)/v ≤ω then

if V E H(veh).bus y == tr ue then

match(pas) ← false;

k ← false;

else

di st01 ← al lDi st (V E H(veh).or i g ,V E H(veh).dest )∗ (1+detour );

di st02 ← al lDi st (pas.or i g , pas.dest )∗ (1+detour );

di st11 ← al lDi st (V E H(veh).or i g ,V E H(veh).cur r )+
al lDi st (V E H(veh).cur r, pas.or i g )+
al lDi st (pas.or i g ,V E H(veh).dest );

di st12 ← al lDi st (pas.or i g ,V E H(veh).dest )+
al lDi st (V E H(veh).dest , pas.dest );

di st21 ← al lDi st (V E H(veh).or i g ,V E H(veh).cur r )+
al lDi st (V E H(veh).cur r, pas.or i g )+al lDi st (pas.or i g , pas.dest )+
al lDi st (pas.dest ,V E H(veh).dest );

di st22 ← al lDi st (pas.or i g , pas.dest );

// Test ridesplitting (two possible sequences).
if di st11 ≤ di st01 && di st12 ≤ di st02 then

match(passenger) ← false;

k ← false;

end

if di st21 ≤ di st01 && di st22 ≤ di st02 then

match(passenger) ← false;

k ← false;

end

end

end

end

if vehicle pick-up time ≤ω && respecting possible detour constraints then

end

end

return match
Algorithm 2: Passenger-Driver matching test pseudo-code. 124



C Loss probability function estimation

As presented earlier, Equation [3.14] is a function of the available fleet size nav
od (t ), the regional

average speed vo(t), the waiting time tolerance ω, and the ratio of Idle-Busy drivers ρs =

n I (t )/nav
od (t ). Hence, we can linearize Equation [3.14] into Equation [C.1], which allows us to

estimate the coefficients to its equivalent linear regression model in Equation [C.2] (written

using Wilkinson notation) using the least-square fit.

log(− log(pl s
od )) = logγ0 +γ1 lognav

od +γ2 log vo +γ3 logω+γ4 logρs (C.1)

Y ∼ I +nav
od + vo +ω+ρs (C.2)

For the sake of illustration, Figure C.1 shows an instance of the fitted function in comparison

with the simulated data of the two-region setting.
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Figure C.1: Estimated loss probability for passengers (both axes in log-scale): (a) Monte Carlo
Simulation for region 1, (b) Monte Carlo Simulation for region 2, (c) Fitted equation results.
Where nav

o (t ) is the fleet of available vehicles at time t , while vo(t ) is the instantaneous speed
in the region o at time t . The values for waiting time tolerance ω and the ratio of Idle-Busy
drivers r hos were fixed at 10 minutes and 1, respectively.
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