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Dynamically crossing diabolic points while
encircling exceptional curves: A program-
mable symmetric-asymmetric multimode
switch

Ievgen I. Arkhipov 1 , Adam Miranowicz 2,3, Fabrizio Minganti4,5,
Şahin K. Özdemir 6 & Franco Nori 2,7,8

Nontrivial spectral properties of non-Hermitian systems can lead to intriguing
effects with no counterparts inHermitian systems. For instance, in a two-mode
photonic system, by dynamically winding around an exceptional point (EP) a
controlled asymmetric-symmetricmode switching can be realized. That is, the
system can either end up in one of its eigenstates, regardless of the initial
eigenmode, or it can switch between the two states on demand, by simply
controlling the winding direction. However, for multimode systems with
higher-order EPs ormultiple low-order EPs, the situation canbemore involved,
and the ability to control asymmetric-symmetric mode switching can be
impeded, due to the breakdown of adiabaticity. Here we demonstrate that this
difficulty can be overcome by winding around exceptional curves by addi-
tionally crossing diabolic points. We consider a four-mode PT -symmetric
bosonic system as a platform for experimental realization of such amultimode
switch. Our work provides alternative routes for light manipulations in non-
Hermitian photonic setups.

Physical systems that are described by non-Hermitian Hamiltonians
(NHHs) have attracted much research interest during the last two
decades thanks to their peculiar spectral properties. Namely, such
systems can possess exotic spectral singularities referred to as
exceptional points (EPs). While in classical and semiclassical systems
EPs are associated with the coalesce of both the eigenvalues and the
corresponding eigenmodes of an NHH (thus, referred to as Hamilto-
nian EPs)1,2, in quantum systems they are associated with eigenvalue
degeneracies and the coalescence of the corresponding eigenmatrices

of a Liouvillian superoperator (hence, Liouvillian EPs)3. The latter takes
into account the effects of decoherence, quantum jumps, and asso-
ciated quantum noise.

In addition to EPs, physical systems can also exhibit diabolic point
(DP) spectral degeneracies where eigenvalues coalesce but the corre-
sponding eigenstates remain orthogonal. Although they are often
referred to as Hermitian spectral degeneracies and studied in Hermi-
tian systems, it is well-known that DPs can emerge in non-Hermitian
systems, too.
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The term DP was coined in ref. 4 referring to the degeneracies of
energy levels of two-parameter real Hamiltonians. Graphically, such a
DP corresponds to a double-cone connection between energy-level
surfaces resembling a diabolo toy, which justifies the DP notion.

Analogously to EPs, this original definition of DPs was later gen-
eralized to the eigenvalue degeneracies of non-Hermitian Hamilto-
nians (see, e.g.,5) as DPs of classical or semiclassical systems andDPs of
Liouvillians3 in case of quantum systems. Note that quantum jumps are
responsible for a fundamental difference between semiclassical and
quantum EPs/DPs, and the effect of quantum jumps can be experi-
mentally controlled by postselection6.

EPs have been predicted and observed in different experimental
platforms1,6–22. It seems that DPs in non-Hermitian systems have
been attracting relatively less interest than EPs in recent years
(see, e.g.,1,18,23,24). The reported demonstrations of a Berry phase (with a
controlled phase shift), acquired by encircling a DP25–27, can lead to
applications in topological photonics28, quantum metrology29, and
geometric quantum computation in the spirit of refs. 30–33. Note that
the Berry curvature (i.e., the “curvature” of a certain subspace) can be
nonzero for non-Hermitian systems and, thus, can be used for simu-
lating effects of general relativity34–36.

The emergence of geometric Berry phases is quite common in
non-Hermitian systems, but the acquired phases can be largely
enhanced by encircling DPs or EPs37–39. Moreover, DPs and EPs are
useful in testing and classifying phases and phase transitions40,41. For
example, a Liouvillian spectral collapse in the standard Scully-Lamb
laser model occurs at a quantum DP42,43.

Recent studies on EPs have also shown that by exploiting a non-
trivial topology in the vicinity of EPs in the energy spectrumcan lead to
a swap-state effect, where the initial state does not come back to itself
after a round trip around an EP. Such phenomenon has been predicted
theoretically44,45 and observed experimentally in21,37,46–48, while per-
forming -‘static’, i.e., independent, measurements at various locations
in the system parameter space. However, when encircling an EP
dynamically, another intriguing effect can be invoked; namely, a chiral
mode behavior, such that a starting state, after a full winding period,

can eventually return to itself49–52. The latter effect stems from the
breakdown of the adiabatic theorem in non-Hermitian systems49,53.
This asymmetric mode switching phenomenon has also been experi-
mentally confirmed in various platforms38,54–58. A number of studies
have demonstrated the practical feasibility to observe the chiral light
behavior on a pure quantum level59 and even in a so-called hybrid
mode60, where by exploiting various measurement protocols, one can
switch between the system dynamics described by a quantum Liou-
villian and the corresponding classical-like effective NHH.

Other works, both theoretical61 and experimental62, have pointed
that a crucial ingredient in detecting a dynamical flip-state asymmetry
is the very curved topology near EPs. In other words, it is not necessary
towind around EPs inorder to observe suchphenomena.However, the
dynamical contours must be in a close proximity to EPs61.

More recently, much effort is put on studying the behavior of
modeswhile encirclinghigh-order ormultiple EPs in aparameter space
of multimode systems. Indeed, the presence of high-order or multiple
low-order EPs in a system spectrum, along with the non-Hermitian
breakdown of adiabaticity, can impose a substantial difficulty to
manipulate the mode-switching behavior on demand52,63,64. That is, a
system may end up only in a few states out of many regardless of the
encircling direction and winding number.

In this work we demonstrate that dynamically winding around
exceptional curves (ECs), whose trajectories can additionally cross
diabolic curves (DCs), provides a feasible route to realize a pro-
grammablemultimode switch with controlledmode chirality. We use
a four-mode parity-time (PT )-symmetric bosonic system, which is
governed by an effective NHH, as an exemplary platform to
demonstrate this programmable switch. At the crossing of EC and DC
a new type of a spectral singularity is formed, referred to as diabo-
lically degenerate exceptional points (DDEPs)65. By exploiting the
presence of DDEPs in dynamical loops of the system parameter
space, one can restore the swap-state symmetry, which breaks down
in two-mode non-Hermitian systems. This implies that the initial
state can eventually return to itself after a state flip in a double cycle.
In other words, the interplay between the topologies of EPs and DPs
enables one to restore (impose) mode symmetry (asymmetry) on
demand. These results are valid also for purely dissipative systems
(i.e., loss only systemswithout gain) and can be extended to arbitrary
multimode systems.

Results
Theory
We start from the construction of a four-mode NHH, possessing both
exceptional and diabolic degeneracies. For this, we follow the proce-
duredescribed in65, whereone can construct amatrix, whose spectrum
is a combination of the spectra of two other matrices by exploiting
Kronecker sum properties. Namely, by taking two PT -symmetric
matrices

M1 =
iΔ k

k �iΔ

� �
, M2 =

0 g

g 0

� �
, ð1Þ

one can form a PT -symmetric 4 × 4 non-Hermitian matrix

H =M1 � I + I �M2, ð2Þ

where I is the 2 × 2 identity matrix. Explicitly, the matrix H reads

H =

iΔ g k 0

g iΔ 0 k

k 0 �iΔ g

0 k g �iΔ

0
BBB@

1
CCCA: ð3Þ

Fig. 1 | Scheme and encircling trajectory space for a four-mode system.
a Schematic representation of a four-mode PT -symmetric non-Hermitian Hamil-
tonian Ĥ, given in Eq. (3). The red (blue) balls represent cavities with gain (loss)
rate iΔ (−iΔ). Various mode couplings are depicted by double arrows. b The
encircling trajectory is described by a loop in the 3D parameter space defined by
the dissipation strength Δ, perturbation δ, and coupling g. The clockwise (coun-
terclockwise) direction is determined by +ω (−ω). The encircling starts at t0 at a
point in the exact PT -phase (the orange ball). The loop winds around an excep-
tional curve, EC (red vertical line), determined by the condition Δ = 1 and δ =0.
The trajectorymay cross a diabolic curve, DC (green horizontal line), at somepoint
when g =0, i.e., a diabolic point, DP. Moreover, at g =0, a diabolically degenerate
exceptional point, DDEP, is formed, at the intersection of EC and DC. Note that in
this 3D parameter space, the DC and EC are presented as lines.
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The symbols in Eq. (3) can have various physical meanings, but in our
context they may denote, e.g., coupling (g, k) and dissipation (Δ)
strengths in a photonic system (see the text below). ThePT -symmetry
operator is expressed via the parity operator P = antidiag½1,1,1,1� and
the time-reversal operator T , thus, implyingPT HPT �1 =H. Thematrix
H can be related to a linear four-mode NHH operator Ĥ, written in the
mode representation, i.e.,

Ĥ =
X

ây
j Hâk ,

where âi (ây
i ) are the annihilation (creation) operators of bosonic

modes i = 1,…,4. Such an NHH can be associated, e.g., with a system of
four coupled cavities or waveguides (see Fig. 1a). A similar scheme,
based on two lossy and two amplified subsystems, has been proposed
in ref. 66 to generate high-order EPs but with different coupling
configuration and spectrum with no DPs.

The peculiarity of such a non-Hermitian Hamiltonian Ĥ is that its
eigenvalues are just sumsof the eigenvalues ofM1 ( ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � Δ2

p
) andM2

(±g)65,67. Namely,

E1,2,3,4 = ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � Δ2

q
∓g: ð4Þ

In what follows, we always list eigenvalues in ascending order, i.e.,

ReðE1Þ≤ReðE2Þ≤ReðE3Þ≤ReðE4Þ:

The corresponding eigenvectors of H are simply formed by the tensor
products of eigenvectors ofψM1

j andψM1
k (j, k = 1, 2) of the twomatrices

M1 and M2, respectively,

ψM1
1,2 =

± exp ± iϕð Þ
1

� �
, ψM2

1,2 =
± 1

1

� �
, ð5Þ

where ϕ ¼ arctanðΔ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � Δ2

p
Þ. Namely, the eigenvector ψH

jk =
ψM1
j � ψM2

k corresponds to the eigenvalue EH
jk = E

M1
j + EM2

k of the
matrix H65. The spectrum of this PT -symmetric Ĥ has two types of
degeneracies:

• a pair of second-order ECs at k =Δ, determined by ± g (g ≠0),
• and a pair of DCs at g = 0, defined by ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � Δ2

p
.

System dynamics in modulated parameter space
In order to implement the dynamical winding around ECs, one may
apply a perturbation δ(t) to the NHH Ĥ in the following form:

ĤðδÞ=

iΔðtÞ+ δðtÞ gðtÞ 1 0

gðtÞ iΔðtÞ 0 1

1 0 �iΔðtÞ gðtÞ
0 1 gðtÞ �iΔðtÞ � δðtÞ

0
BBB@

1
CCCA, ð6Þ

where we set k = 1, i.e., the coupling k determines a unit of the system
energy. The time-dependent parameters are:

ΔðtÞ = 1 + cosðωt +ϕ0Þ,
gðtÞ = g0sin

2ðωt=2 +ϕ0=2Þ,
δðtÞ = sinðωt +ϕ0Þ:

ð7Þ

The angular (winding) frequency is ω = 2π/T, with period T, and an
initial phase ϕ0. The perturbation δ can play the role of the frequency
detuning in the first and fourth cavities. Other choices of perturbation
are also allowed, although they can lead to a different energy dis-
tribution in the perturbed parameter space.

The energy spectrum of H(δ) consists of two pairs of Riemann
sheets. For real-valued energies, these pairs may or may not intersect,
depending on the system parameters, as shown in Figs. 2a and 3. For
imaginary-valued energies, on the other hand, these pairs always
coincide, as follows from Eq. (4) (see also Fig. 2b). Though the chosen
perturbation lifts thePT -symmetryof theNHH in Eq. (3), theNHH ĤðδÞ
still possesses the chiral symmetry CĤðδÞC�1 = � ĤðδÞ, where C is the
Hermitian operator satisfying C2 = 1, expressed via the antidiagonal
matrix C = antidiag½1,� 1,� 1,1�. For this chiral symmetry one always
has: Ek = − E5−k, with k = 1,…,4 (see Fig. 2).

In order to determine the time evolution of a wave function ψ,
during a dynamical cycle, we solve the time-dependent Schrödinger
equation

i
∂ψðtÞ
∂t

= ^HðtÞψðtÞ: ð8Þ

Here, we focus solely on the mode switching behavior in the stable
exact PT -phase, where the eigenvalues Ek are real-valued, thus,
representing propagating fields without losses. That is, the dynamical
encircling starts in the exact PT -phase (i.e., Δ < 1).

The basic idea of the proposed scheme for the controlled chiral
mode switching canbedescribed as follows. The encircling loopmoves
in a 3D-parameter space spanned by the dissipation rate Δ, the
detuning perturbation δ, and the coupling g (see Fig. 1b). Encirclingone
of the ECs (e.g.,+g) automatically ensures that EC (−g) is also encircled

Fig. 2 | Spectrum of a four-mode PT -symmetric system. Real a and imaginary
b parts of the spectrumof the non-HermitianHamiltonian, NHH,H(δ) in Eq. (6). For
real-valued energies, the spectrum of the NHH is formed by two pairs of Riemann
surfaces, whereas for the imaginary-valued spectrum, those two pairs coincide.
Each pair of Riemann sheets, for a given value of g, has a branch cut at an excep-
tional point determined by the conditions Δ = 1 and δ =0. The system parameters
are: k = 1 and g = 2.
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due to the system symmetry. For a given fixed value g, there is a dis-
tance ∣2g∣ between two EPs, belonging to the two ECs (see, e.g., Fig. 3b).

The initial point (t0 = 0), from which the encircling trajectory
starts, is located in the exact PT -phase, i.e.,ϕ0 =π (see Figs. 1b and 3a,
d). The winding process can be performed in the clockwise (+ω) or
counterclockwise (−ω) direction. By appropriately modulating g(t),
one canmake the encircling trajectory to pass through the DC at some
point, (i.e., a DP), when g = 0 in the broken PT -phase (Δ > 1) (as shown
in Fig. 1b). A single dynamical loop, thus, corresponds to the splitting-
crossing-splitting behaviour for the two pairs of the Riemann energy
sheets (as shown in panels d–f in Fig. 3). The intersection of the sheets
occurs at the DC.

Figure 3d depicts the initial state at t = 0 when g ≠0 and the
spectrumof the NHH Ĥ consists of two disconnected pairs of Riemann
sheets (for real-valued E), where each pair is formed around a second-
order EP (with characteristic branch cuts) (see Fig. 3d). As mentioned
above, depending on the coupling g ≠0, theseRiemannpair sheets can
cross (as shown in Fig. 3e). The state canbe initialized in oneof the four
different eigenmodes in the exact PT -phase.

Winding an exceptional curve without crossing diabolic points
If g ≠0 is either modulated such that the two separated pairs of the
real-valued Riemann sheets do not cross at the DC (as presented in
Fig. 3d) or it is kept fixed, then the dynamical loop is similar to the case
of two independent two-mode systems, for which the dynamical
winding around an EP results in the well-known two-mode asymmetric

switching54. This means that, in this specific case, only the eigenmodes
ψ1↔ψ3 and ψ2↔ψ4 which belong to the separated pairs of Riemann
sheets59 are swapped. For later convenience, we recall the known
results for themode switching combinations in such disconnected two
two-mode systems ;

↻ : ψ1�!ψ3, ψ3�!ψ3,

↻ : ψ2�!ψ4, ψ4�!ψ4,
ð9Þ

for clockwise winding, and

↺ : ψ1�!ψ1, ψ3�!ψ1,

↺ : ψ2�!ψ2, ψ4�!ψ2,
ð10Þ

for counterclockwise winding, respectively. Equations (9) and (10)
show the possibility to perform symmetric and asymmetric mode
switching for the two-mode systems. One can always swap between ψ1

andψ3, as well asψ2 andψ4 by simply changing the encircling direction
corresponding to symmetric switching. For example, a system starting
at ψ1 will end at ψ3 when encircling in the clockwise direction and the
systemwill return back toψ1 when encircling direction is reversed.One
can achieve asymmetric mode transfer if encircling is performed in a
fixed direction. For example, a system at ψ1 will end up at ψ3 when
encircling in the clockwise direction and the system will stay at ψ3 if
encircling is further continued in the clockwise direction. This implies
that once the states are swapped they do not switch anymore, if

Fig. 3 | Encircling anexceptional curve, EC, by crossingadiabolic curve,DC, ina
four-mode system described by an NHH in Eq. (6). a–c The encircling trajectory
projected on the 2D parameter space is defined by the dissipation strength Δ and
the perturbation δ at different stages of the encircling process. The vertical axis is
the real-valued energy ReðEÞ. The grey ball represents an evolving system eigen-
mode. d–f Real-valued energy Riemann sheets at corresponding stages of the
encircling process, whose axis are the same as in panels a–c. a,d Initial state at t =0:
two separated exceptional points, EPs. At one of the EPs there is branch cut
between the red and yellow Riemann sheets, and at the other EP there is a branch
cut between the green and blue sheets. Four different eigenmodes ψ1,2,3,4 are
depicted as colored balls. c, eWhen the encircling trajectory crosses the DC in the

broken PT-phase at the half period, a diabolically degenerate exceptional point
(DDEP) is formed that connects various energy Riemann sheets. The presence of a
DC is indicated by the intersectionof two pairs of planes (the red and yellow sheets,
and the green andblue sheets). The encircling trajectories (black solid curves) cross
the DC at some point, i.e., a DP. Trajectories of all eigenmodes coincide when
crossing a DC and are represented by the grey ball. c, f Final state at t = T, with the
same system parameters as for the initial state: the eigenmodes are permuted
compared to the initial modes, and that shuffling depends on the direction of the
encircling and whether the encircling trajectory passes through the DC or not. The
DC crossing is induced by the appropriate time modulation of the coupling g (see
the main text for more details).
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Fig. 4 | Fidelity ∣〈ψk∣ψ(t)〉∣2 of the NHH eigenstate ψk at time t and the time-
evolving state ψ(t) during a double period 2T. The initial eigenmodes
ψk,k = 1,…,4, are located in the exact PT -phase (see also Fig. 3b). Clockwise (panels
a–d) and counterclockwise (panels e–h) encircling directions. Depending on the
winding direction and the number of times the loop encircles the exceptional
curve, EC, with the diabolic curve, DC, crossing, one can realize various mode-
switching combinations. Mode-switching combinations, illustrated here, are

summarized in Table 1. These panels also reveal the occurrence of NATs, which, for
given system parameters, take place either at angles ωt ≈π/2 or ωt ≈ 5π/2. The DC
crossing corresponds to phases ωt =π, 3π (see the main text for more details). The
systemparameters are:ϕ0 =π,ωt =πt/40, and g0 = 0.5. For better readability of the
system dynamics shown here, at each moment of time the states are normalized,
giving thus the fidelity range between zero and one. Otherwise, due to the non-
Hermiticity, the norm of the evolving state varies.

Fig. 5 | The time evolutionof the system state at different times, according to Fig. 4a. a Initial state t =0,b T/2<t<T, c t =T,d T < t < 3T/2, e 3T/2<t<2T, f final state t = 2T.
See also the main text for details.
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encircling is continued in the same direction, breaking thus flip-state
symmetry. This asymmetry stems from the non-adiabatic transitions
(NATs), which occur when adiabatic evolution breaks down and the
system discontinuously jumps between two states54.

Winding an exceptional curve by crossing diabolic points
Interestingly, in order to realize any desired mode switching combi-
nation, and thus also to restore state-flip symmetry, one just needs to
ensure that an encircling trajectory crosses the DC for g = 0 at times
t = T/2 or T, depending on whether the loop goes once or twice around
the EC, respectively (as shown in Fig. 3e). If the dynamical cycle crosses
the DC, the two EPs coincide, forming thus a DDEP65. When this hap-
pens, the eigenstates can move across the four different Riemann
sheets (see Fig. 3e), and any desired final state can be obtained.
Moreover, after such an induced symmetric state swap, one can
additionally impose the asymmetric state switching by continuing
encircling EPs but without crossing the DC.

In order to better understand the system dynamics and the
interplay between EC, DC, and NATs, we plot a graph for the fidelity
∣〈ψk∣ψ(t)〉∣2 of the NHH eigenstates at times t (ψk) and the time-
evolving (ψ(t)) states in Fig. 4. The symbol 〈⋅∣⋅〉 here denotes the
Hilbert inner product of two states.

Let us focus on the description of the panel a of Fig. 4 and its
accompanying spectral plot in Fig. 5. At time t =0, the system is initi-
alized in the stateψ =ψ1 (blue curve in Fig. 4a, shown also as a blue ball
in Fig. 5a). By encircling in the clockwise direction, the state ψ remains
on the corresponding Riemann sheet E1 for times t < T/2. At t = T/2, the
state crosses DC, and is transferred to the Riemann sheet E4 (see also
Fig. 5b). Note that the Riemann sheets E1 and E4 are completely dis-
connected when g ≠0. Thus, after the full cycle t = T, the initial state is
switched to ψ1⟶ψ4 (see also Fig. 5c). By continuing the winding
process, the system experiences the NAT approximately at time t ≈ 5π/
2 (Fig. 4a and Fig. 5d). This NAT corresponds to a discontinuous jump
of the stateψ(t) from the E4 to the E2 Riemann surface. At t = 3π, the DC
is crossed once more, and the ψ(t) switches to the state ψ3(t) (Fig. 5e).
Thus, after completing the full dynamical double loop t = 2T, the final
state becomes ψ(2T) =ψ3 (Fig. 5f).

All thepanels in Fig. 4 canbedescribed andvisually represented in
the samewaywediscussed above for panel 4a. Note that there are also
trajectories which assume two NATs occurring during the time evo-
lution (see panels Fig. 4c–f). The dynamical loops with two NATs cor-
respond to the cases when after the double period the system returns
to its initial state. The observed NATs here correspond to the NATs
occurring in the PT -symmetric dimers (when two pairs of Riemann
sheets are decoupled), stemming from the interplay between loss and
gain54.

We summarize the results shown in Fig. 4 also in Table 1. This table
combined together with Eqs. (9) and (10) serves as a protocol for the
realization of a programmable symmetric-asymmetricmode switching

in thePT -symmetric four-mode bosonic system. According to Table 1,
by choosing an appropriate winding number and direction, one can
always swap between different modes on demand, realizing thus a
symmetric mode switch when traversing the DC. On the other hand,
exploiting the asymmetry, expressed via Eqs. (9), (10), one can force
the system to end up in one of its eigenstates regardless of the initial
mode. For instance, to ensure that after two dynamical cycles in the
same direction the final state always be ψ4 one can perform the fol-
lowing protocol. First, encircling in the clockwise direction without
crossing the DCwill bring the system’s state either toψ3 orψ4 after the
period T, regardless of the initial state, in accordance with Eq. (9). If
one detects ψ4 at t = T, the protocol is completed because after the
system will always stay in this state provided that any subsequent
clockwiseencircling does not cross theDC.Otherwise, that is if stateψ3

is detected at t = T, clockwise encirclement continues with the DC
crossing which results in the desired mode ψ4 at t = 2T, according to
Table 1. A similar procedure can be implemented for any system
eigenmode when winding in a given direction.

Interestingly, the presented switching mechanism also allows to
restore the flip-state symmetry, which is otherwise broken without the
mode coupling modulation [see Eqs. (9), (10)]. Indeed, according to
Fig. 4, by periodically traversing the DCs the mode nonreciprocity is
eliminated for a given winding direction. For example, the system
periodically switches between states ψ1↔ψ2 (ψ3↔ψ4) in the counter-
clockwise (clockwise) direction. These results contrast with systems
with high-order EPs, where arbitrary mode switching is hard to realize
and the chiral mode behavior cannot be controlled56.

Discussion
Our analysis shows that the mode switching presented is resilient to
various forms of perturbations. For instance, as Fig. 4 indicates,
changing the starting point of winding does not affect the results. The
same applies when perturbing gain, loss, ormode coupling. Moreover,
the system is robust to small perturbations in the mode coupling g→
g + ϵ, for ϵ≪ g, at times t = T/2, T. The latter fact can be understood as
the diabatic evolution (on the scale of ϵ) of the state in the vicinity of
the DC, which enables the state to transfer to another energy surface
even though the state does not cross the DC.

Note that the winding speed cannot be arbitrary. Winding too fast
is similar to diabatic evolution and will bring the system to a final state
which is superpositionof the eigenstates.On theother hand, ifwinding
is too slow, various NATs can start playing more vivid role for longer
times which may affect the final state.

In this study we have focused on the photonic four-mode
PT -symmetric system, assuming that the gain and loss are balanced.
The natural question arises whether the results are also applicable to
purely passive PT -symmetric setups. Our numerical analysis implies
that one can indeed extend the obtained findings to passive systems,
though it may impose certain constrains on the system parameters
when decreasing the gain/loss ratio (see Supplementary Note 1). This
can be useful for quantum information processing or low-power
classical applications. For instance, effective passive NHHs can be
realized in quantum systems exploiting various procedures such as
post-selection11,68,69 or dilation59. Concerning classical optical plat-
forms, one can use a photonic system of coupled toroidal
microcavities9, or, for instance, a set of coupled waveguides, similar to
that used in54. We also note that our findings can also be extended to
anti-PT -symmetric systems too. In this case, the role of freely propa-
gating fields in PT -symmetric setups can be played by dissipating
fields in the corresponding anti-PT -symmetric systems57.

Our results are not limited to the four-mode system considered
here but canbe extended to arbitrarymultimode photonic systems. By
utilizing the method described in70 one can construct various N-mode
photonic setups with similar spectral structure characterized by
separated pairs of Riemann surfaces as in Fig. 2. In the Supplementary

Table 1 | Programmable four-mode switch, a summary
of Fig. 4

Final ψ1 ψ2 ψ3 ψ4

Initial

ψ1 2↺ 1↺ 2↻ 1↻

ψ2 1↺ 2↺ 1↻ 2↻

ψ3 2↺ 1↺ 2↻ 1↻

ψ4 1↺ 2↺ 1↻ 2↻

By initializing a state in one of the system eigenmodes ψk (first column), one can switch to any
final eigenstate ψj (first row) of the system by appropriately choosing an encircling trajectory,
which winds around the exceptional curve, EC, and always traverses the diabolic curve. The
order andmeaning of the values and symbols in each cell is the following: the values 1, 2 denote
the number of times one winds around the EC and the symbols↺ and ↻ denote counter-
clockwise and clockwise encircling directions, respectively (see Fig. 4).
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Note 2, we show the implementation of a programmable symmetric-
asymmetric mode switching for in an eight-mode PT -symmetric
system.

In conclusion, by exploiting both diabolic and exceptional
degeneracies in a non-Hermitian system, one can realize a program-
mable symmetric-asymmetric multimode bosonic switch by dynami-
cally traversing a DC while encircling an EC. We have illustrated our
results using a four-mode PT -symmetric system and have also dis-
cussed their extension to arbitrary multimode systems. Our findings
are not limited to free propagating fields in PT -symmetric systems,
but are also applicable to linear passive PT -symmetric and anti-
PT -symmetric setups. Our work opens new perspectives for light
manipulations in photonic systems.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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