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Abstract
The effect of triangularity on tokamak boundary plasma turbulence is investigated using global,
flux-driven, three-dimensional, two-fluid simulations. The simulations show that negative
triangularity (NT) stabilizes boundary plasma turbulence, and linear investigations reveal that
this is due to a reduction of the magnetic curvature driven by interchange instabilities, such as
the resistive ballooning mode (RBM). As a consequence, the pressure decay length Lp, related
to the scrape-off layer (SOL) power fall-off length λq, is found to be affected by triangularity.
Leveraging considerations on the effect of triangularity on the linear growth rate and nonlinear
evolution of the RBM, the analytical theory-based scaling law for Lp in L-mode plasmas,
derived by Giacomin et al (2021 Nucl. Fusion 61 076002), is extended to include the effect of
triangularity. The scaling is in agreement with nonlinear simulations and a multi-machine
experimental database, which includes recent TCV discharges dedicated to the study of the
effect of triangularity in L-mode diverted discharges. Overall, the present results highlight that
NT narrows the Lp and considering the effect of triangularity is important for a reliable
extrapolation of λq from present experiments to larger devices.

Keywords: negative triangularity, edge plasma turbulence, SOL width scaling

(Some figures may appear in colour only in the online journal)

1. Introduction

The shape of the plasma cross-section plays an important role
in determining the performance of a tokamak. An elongated
D-shape plasma was introduced in JET based on its improved
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magnetohydrodynamics (MHD) stability properties [1, 2] and
enhanced confinement time obtained by operating in H-mode
conditions [3]. In H-mode plasmas, however, the formation of
a steep pressure gradient in the edge region, also known as ped-
estal, often yields transient edge-localized modes (ELMs) that
release a large amount of energy (∼MJ) across the separatrix
[4]. ELMs can severely damage wall components and over-
come the material limits, constraining the operational space of
future devices [5].

Recently, the negative triangularity (NT) scenario has
attracted increasing attention as an alternative to the H-mode
operation in positive triangularity (PT) [6]. The first detailed
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study focused on the dependence of the confinement time on
triangularity, δ, was carried out in TCVwith auxiliary electron
cyclotron heating in L-mode operation [7, 8]. The scaling
law for energy confinement, found to obey τE ∝ (1+ δ)−0.35,
indicates the increase in energy confinement time in NT
plasma, δ < 0, with respect to PT scenario, δ > 0. Following
this initial investigation, a large number of experimental stud-
ies on NT were carried out on the TCV [9–13], DIII-D
[14–16] and ASDEX Upgrade (AUG) [17] tokamaks, show-
ing H-mode like confinement (H98y2 = 1.3) and ITER-relevant
beta (βN = 2.7) in an intrinsically ELM-free L-mode regime.
The effects of plasma shaping on confinement time were act-
ively investigated also through first-principle numerical codes.
Both gyrokinetic and gyrofluid simulations [18–22] shed light
on the stabilizing effect of NT over both the ion temper-
ature gradient (ITG) mode and the trapped electron mode
(TEM).

Turning to the boundary, recent works with fluid models
[23, 24] provide insight on edge plasma turbulence in NT
plasma, showing a reduction of the power fall-off length λq for
δ < 0. The observed reduction in the scrape-off layer (SOL)
width [25] is interpreted as the result of the suppression of
plasma turbulence, but recent experimental work also shows
that the plasma interactions with the first wall might contrib-
ute to a narrower λq in NT than in PT configurations [26]. As
a matter of fact, the reduced λq in the SOL, which might be
a drawback for the use of NT configurations in future fusion
reactors, calls for a careful analysis of plasma turbulence in
NT scenarios.

The purpose of this paper is to explore the effect of trian-
gularity on edge plasma turbulence and, as a consequence, on
the scaling law of the power fall-off length λq. The present
work leverages previous simulations [23, 27], carried out with
the global Braginskii Solver (GBS) code, which reveal the sta-
bilizing effect of NT on SOL plasma turbulence in a limited
configuration. In the present paper, we extend these investiga-
tions to consider a diverted configuration, taking into account
the interplay existing between the core, edge and SOL regions.
We first discuss the results of global, flux-driven, nonlinear,
three-dimensional, two-fluid GBS simulations in PT and NT
magnetic geometries, particularly in view of the stabilizing
effects of NT on edge plasma turbulence. Second, we analyze
the effect of plasma shaping on turbulence, deriving a theoret-
ical scaling law for the pressure gradient length Lp that extends
the work presented in [28, 29] to include the effect of plasma
triangularity. Finally, the derived scaling law is compared with
nonlinear simulations and a multi-machine experimental data-
base that includes recent discharges carried out on the TCV
tokamak to study the effect of triangularity on plasma turbu-
lence, as well as discharges from the AUG [30], Alcator C-
Mod [31], COMPASS [32], JET [33] and MAST [34] toka-
maks for L-mode plasmas.

We focus on the sheath-limited regime, characterized by
a small temperature gradient between the upstream (i.e. out-
board midplane) and the divertor targets, in contrast to the
conduction-limited regime [35]. The two regimes can be
identified by using the SOL collisionality parameter ν∗ =
10−16nuL/T2u derived from the two-point model [35], where

u denotes the upstream quantities, L is the connection length
and n,T and L are expressed in m−3, eV and m, respect-
ively. In general, the sheath-limited regime is characterized
by weak collisionality (ν∗ < 10) while a significant temper-
ature drop is often observed in the conduction-limited regime
(ν∗ > 15).

The remainder of this paper is organized as follows. In
section 2, we introduce the physical model to study boundary
plasma turbulence. The results of nonlinear GBS simulations
are then discussed in section 3 focusing on the stabilizing
effect of NT on edge plasma turbulence. The theoretical
derivation of the scaling law of the pressure decay length,
Lp, which takes into account plasma shaping parameters, is
detailed in section 4 and comparisons with nonlinear simu-
lation results are presented. In section 5, the validity of our
newly derived scaling law is tested against a multi-machine
experimental database. Finally, the conclusions are drawn in
section 6.

2. Numerical model

The high plasma collisionality (L∥ ≫ λe, L∥ being the parallel
length scales of turbulent modes and λe the electron mean-
free path) justifies the use of the two-fluid Braginskii model
to study boundary plasma turbulence in L-mode discharges.
In addition, the drift limit of the Braginskii model [36] can
be considered since plasma turbulence in the boundary region
occurs on time scales slower than 1/Ωci, being Ωci = eB/mi

the ion cyclotron frequency.
Initially developed to study turbulence in basic plasma

physics experiments [37] and limited tokamak configurations,
the GBS code [38–40] solves the drift-reduced Braginskii
equations to evolve plasma turbulence at the tokamak bound-
ary. The implementation of a spatial discretization algorithm
independent of the magnetic field [41] allows GBS to simulate
diverted configurations with an arbitrary magnetic equilibrium
[42, 43], as well as non-axisymmetric configurations, such
as the stellarators [44]. While the plasma model implemen-
ted in GBS was developed in recent years to include the
neutral dynamics [45], we do not include it in the simula-
tions presented here, therefore focusing on the sheath-limited
regime, where only pure plasma composed of ions and elec-
trons, without radiative impurities, is considered in the present
study. We also neglect electromagnetic effects that can be
important at high values of plasma beta [46]. Accordingly, the
GBS equations considered in the present study can be written
in dimensionless form as:

∂n
∂t

=−ρ
−1
∗
B

[ϕ,n] +
2
B
[C(pe)− nC(ϕ)]−∇∥(nv∥e)

+Dn∇2
⊥n+ sn, (2.1)

∂Ω

∂t
=−ρ

−1
∗
B

∇· [ϕ,ω]−∇ ·
(
v∥i∇∥ω

)
+B2∇∥j∥

+ 2BC(pe+ τpi)+
B
3
C(Gi)+DΩ∇2

⊥Ω, (2.2)

2



Plasma Phys. Control. Fusion 65 (2023) 085006 K Lim et al

∂v∥i
∂t

=−ρ
−1
∗
B

[ϕ,v∥i]− v∥i∇∥v∥i−
1
n
∇∥(pe+ τpi)

− 2
3n

∇∥Gi +Dv∥i∇
2
⊥v∥i, (2.3)

∂v∥e
∂t

=−ρ−1
∗
B

[ϕ,v∥,e]− v∥e∇∥v∥e

+
mi

me

(
νj∥ +∇∥ϕ − 1

n
∇∥pe− 0.71∇∥Te−

2
3n

∇∥Ge

)

+Dv∥e∇
2
⊥v∥e, (2.4)

∂Ti
∂t

=−ρ−1
∗
B

[ϕ,Ti]− v∥i∇∥Ti +
4
3
Ti
B

[
C(Te)+

Te
n
C(n)−C(ϕ)

]

− 10
3
τ
Ti
B
C(Ti)+

2
3
Ti

[
(v∥i− v∥e)

∇∥n

n
−Ti∇∥v∥e

]

+ 2.61νn(Te− τTi)+∇∥(χ∥i∇∥Ti)+DTi∇
2
⊥Ti + sTi ,

(2.5)

∂Te
∂t

=−ρ−1
∗
B

[ϕ,Te]− v∥e∇∥Te+
2
3
Te

[
0.71

∇∥j∥
n

−∇∥v∥e

]

− 2.61νn(Te− τTi)+
4
3
Te
B

[
7
2
C(Te)+

Te
n
C(n)−C(ϕ)

]

+∇∥(χ∥e∇∥Te)+DTe∇
2
⊥Te+ sTe . (2.6)

Equations (2.1)–(2.6) are closed by the evaluation of
the electrostatic potential that avoids the Boussinesq
approximation,

∇· (n∇⊥ϕ) = Ω− τ∇2
⊥pi, (2.7)

where Ω=∇·ω =∇· (n∇⊥ϕ + τ∇⊥pi) is the scalar
vorticity.

In equations (2.1)–(2.6) and in the remainder of this paper,
the plasma density n, the ion and electron temperatures, T i and
Te, the ion and electron parallel velocities, v∥i and v∥e, and
the electrostatic potential ϕ are normalized to the reference
values n0,Ti0,Te0,cs0 =

√
Te0/mi,cs0, and Te0/e, respectively.

The perpendicular lengths are normalized to the ion sound
Larmor radius, ρs0 = cs0/Ωci, and parallel lengths are nor-
malized to the tokamak major radius, R0. Time is normal-
ized to t0 = R/cs0. In addition, the dimensionless parameters
that determine the plasma dynamics in equations (2.1)–(2.7)
are the normalized ion sound Larmor radius, ρ∗ = ρs0/R0,
the ratio of the ion to the electron temperature, τ = Ti0/Te0,
the normalized ion and electron viscosities, η0,i and η0,e,
the normalized ion and electron parallel thermal conduct-
ivities χ∥i and χ∥e, and the normalized Spitzer resistivity

ν = e2n0R0/(mics0σ∥) = ν0T
−3/2
e , with

σ∥ =

(
1.96

n0e2τe
me

)
n=

[
5.88

4
√
2π

(4πϵ0)2

e2
T3/2e0

λ
√
me

]
T3/2e

(2.8)

and, as a consequence,

ν0 =
4
√
2π

5.88
e4

(4π ϵ0)2

√
meR0n0λ

mi cs0T
3/2
e0

, (2.9)

where λ is the Coulomb logarithm. The gyroviscous terms are
defined as

Gi =−η0i

[
2∇∥v∥i+

1
B
C(ϕ)+

1
enB

C(pi)

]
(2.10)

and

Ge =−η0e

[
2∇∥v∥e+

1
B
C(ϕ)− 1

enB
C(pe)

]
, (2.11)

where η0i = 0.96nTiτi and η0e = 0.73nTeτe. The diffu-
sion terms Df∇2

⊥ f are added on the right hand side of
equations (2.1)–(2.6) to improve the numerical stability of
the simulations.

The GBS numerical grid employs a uniform Cartesian
grid that discretizes the radial, vertical, and toroidal direc-
tions (i.e. the R,Z, and φ coordinates). The number of grid
points is NR×NZ×Nφ. The grid spacing, indicated as ∆R,
∆Z and ∆φ, is constant across the entire domain. Details on
the numerical grid are reported in [40].

The spatial operators that appear in equations (2.1)–
(2.7) are the Poisson bracket operator, [ f,g] = b · (∇g×∇f),
the curvature operator, C( f) = B[∇× (b/B)]/2 ·∇f, the par-
allel gradient operator, ∇∥ f = b ·∇f, and the perpendicu-
lar Laplacian operator, ∇2

⊥ f =∇· [(b×∇f)× b], where b=
B/B is the unit vector of the magnetic field. It is useful to rep-
resent these operators in tensorial form for an arbitrary mag-
netic field [47],

[ϕ, f ] =
1
J
ϵijkbi

∂ϕ

∂ξj
∂f
∂ξk

, (2.12)

∇∥ f = b j
∂f
∂ξj

, (2.13)

C( f) = B
2J

∂cm
∂ξj

∂f
ξk
ϵkjm, (2.14)

∇2
⊥ f =

1
J

∂

∂ξk

(
J−1ϵklmϵiαβgmiblbα

∂f
∂ξβ

)
, (2.15)

where the Einstein convention is used with the Levi-Civita
symbol εijk, and we introduce an arbitrary set of coordinates
ξ = (ξ1, ξ2, ξ3), the coefficients cm = bm/B, and bi = gijb j, the
covariant metric tensor gij =∇ξi ·∇ξj and the Jacobian J =
1/
√
det(gij). In addition, we express∇· b= 1

J
∂
∂ξi (b

iJ ).
The axisymmetric magnetic field in GBS is represented as

B= RBφ∇φ +∇φ ×∇ψ where the poloidal flux function ψ
and the toroidal angle φ are introduced. The non-field-aligned
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cylindrical coordinates (R,φ,Z) is used, where R corresponds
to the radial distance from the tokamak symmetry axis and
Z is the vertical coordinate. By considering the large aspect
ratio limit (ϵ≪ 1), assuming δ ∼ Bp/Bφ ≪ 1, and retaining
only the leading order terms in ε and δ, the differential oper-
ators in equations (2.12)–(2.15) implemented in GBS can be
recast as

[ϕ, f ] =
Bφ
B

(∂Zϕ∂R f − ∂Rϕ∂Z f), (2.16)

∇∥ f = ∂Zψ∂R f − ∂Rψ∂Z f +
Bφ
B
∂φ f, (2.17)

C( f) = Bφ
B
∂Z f, (2.18)

∇2
⊥ f = ∂2RR f + ∂2ZZ f. (2.19)

The presence of the density source in the proximity of the
last closed flux surface (LCFS) mimics the ionization of
neutral atoms and the temperature source the Ohmic heating
in the core. The analytical expressions of source terms are
expressed as

sn = sn0 exp

{
− [ψ(R,Z)−ψn]

2

∆2
n

}
(2.20)

and

sT =
sT0
2

[
tanh

[
− ψ(R,Z)−ψT

∆T

]
+ 1

]
, (2.21)

where ψn and ψT represent two flux surfaces located inside
the LCFS, while∆n and∆T determine the radial width of the
source terms.

The boundary conditions imposed on the magnetic pre-
sheath, where the ion drift approximation is not valid, are
derived in [48] to generalize the Bohm–Chodura criterion, and
are adapted to the diverted configuration [41]. By neglecting
the terms associated with the plasma gradients along the wall,
these boundary conditions for the top and bottom walls can be
expressed as

v∥i =±
√
Te+ τTi, (2.22)

v∥e =±
√
Te+ τTimax

[
exp

(
Λ− ϕ

Te

)
,exp(Λ)

]
, (2.23)

∂Zn=∓ n√
Te+ τTi

∂Zv∥i, (2.24)

∂Zϕ =∓ Te√
Te+ τTi

∂Zv∥i, (2.25)

∂ZTe = ∂ZTi = 0, (2.26)

Ω=∓n
√
Te+ τTi∂

2
Zv∥i, (2.27)

where the ± sign indicates the magnetic field lines enter-
ing (top sign) or leaving (bottom sign) the wall and Λ≃ 3.
Moreover, the electric potential is chosen to be ϕ = ΛTe at
the left and right walls of the simulation domain, and vanish-
ing perpendicular derivatives to the wall are set for the other
quantities. Flat density and temperature profiles with small
random noise of amplitude 10−6 are used as initial conditions,
while the initial profiles of v∥e and v∥i are chosen to satisfy the
boundary conditions. The system is evolved until it reaches
a quasi-steady state that is expected to be independent of the
initial conditions [28].

In order to analyze the simulation results, we make use of a
linear solver based on a local flux-tube coordinate system. This
system of coordinates is based on the toric coordinate system
(Ψ = r,Θ= aθ∗, ζ = R0φ)where a is theminor radius and the
straight-field-line angle θ∗ is defined as

θ∗ =
1
q(r)

ˆ θ

0

B ·∇φ
B ·∇θ ′

dθ ′, (2.28)

being θ and θ ′ the poloidal angle, and q(r) the safety factor

q(r) =
1
2π

ˆ 2π

0

B ·∇φ
B ·∇θ

dθ. (2.29)

This field-aligned system is then transformed into the flux-
tube coordinates (r,α,θ∗)where α= φ− q(r)θ∗ is a field line
label, and finally rescaled into the local flux-tube coordinates
as x= r,y= (a/q)α,z= qR0θ∗. The (x, y) plane is perpendic-
ular to the magnetic field, and z is a field-aligned coordinate.
In the rescaled flux-tube coordinate system, the geometrical
operators in equations (2.12)–(2.15) can be rewritten as

[ϕ, f ] = Pxy[ϕ, f ]xy+Pyz[ϕ, f ]yz+Pzx[ϕ, f ]zx, (2.30)

∇∥ f =Dx ∂f
∂x

+Dy ∂f
∂y

+Dz ∂f
∂z
, (2.31)

C( f) = Cx
∂f
∂x

+Cy
∂f
∂y

+ Cz ∂f
∂z
, (2.32)

∇2
⊥ f =N x ∂f

∂x
+N y ∂f

∂y
+N z ∂f

∂z
+N xx ∂

2f
∂x2

+N xy ∂
2f

∂x∂y
(2.33)

+N yy ∂
2f

∂y2
+N xz ∂

2f
∂x∂z

+N yz ∂
2f

∂y∂z
+N zz ∂

f

∂z2
,

(2.34)

where the coefficients appearing in front of the spatial deriv-
atives are computed as a function of plasma shaping paramet-
ers. Detailed expressions for these coefficients are derived in
appendix A.
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3. Nonlinear analysis

We describe a set of nonlinear GBS simulations used to
investigate the effect of triangularity on boundary plasma tur-
bulence. All simulations presented herein use a numerical
grid NR×NZ×Nφ = 240× 320× 80 and a time step ∆t=
10−5 ×R0/cs0. The size of the simulation domain is set to
LR = 600ρs0,LZ = 800ρs0 and ρ∗ = ρs0/R0 = 1/700. As a ref-
erence, we note that, considering BT = 0.9T and Te0 = 20eV,
the normalizing parameters are cs0 = 3.8× 104 ms−1, ρs0 =
0.5mm. They yield LR ≃ 30cm,LZ ≃ 40cm and R0 ≃ 25cm,
corresponding to a tokamak with 1/3 of the TCV size [49],
approximately. We note that the computation time required
by a GBS simulation increases significantly with the system
size. Therefore, in order to explore various collisionality val-
ues in NT and PT plasmas, we restrict ourselves to simula-
tions with relatively small system size. Other plasma para-
meters are kept constant throughout the present study, such as
τ = Ti0/Te0 = 1,mi/me = 200, η0e = η0i = 1 and χ∥e = χ∥i =
1. The use of a small ratio mi/me = 200 reduces the computa-
tional cost of our simulations, and it is not expected to signi-
ficantly affect our simulations results because resistive effects
dominate over inertial effects when ν > (me/mi)γ, which is
the case for our simulations. The direction of the toroidal mag-
netic field BT is set for the ion-∇B drift being away from the
X-point (unfavorable direction for H-mode access). In addi-
tion, we use a/R0 = 0.3 and the plasma current on the axis is
chosen to have a safety factor q0 ≃ 1 at the magnetic axis and
q95 ≃ 4 at the tokamak edge.

The magnetic geometries of the NT and PT plasmas that
we consider in the present study are shown in figure 1. These
equilibria are constructed by solving the Biot–Savart law in the
infinite aspect-ratio limit with a Gaussian-like centered cur-
rent and additional current filaments outside the simulation
domain. The magnetic equilibria shown in figure 1 are charac-
terized by an elongation κ≃ 1.3 and triangularity δ ≃±0.3.
Denoting Zmax,Rmax and Zmin,Rmin as the maximum and min-
imum values of Z and R along the separatrix, the shaping para-
meters are defined as [50]

κ=
Zmax −Zmin

Rmax −Rmin
, (3.1)

and

δ =
δupper + δlower

2
, (3.2)

where δupper and δlower denote the upper and lower triangularity,
respectively, being

δupper =
R0 −R(Z= Zmax)

a
(3.3)

and

δlower =
R0 −R(Z= Zmin)

a
, (3.4)

with

R0 =
Rmax +Rmin

2
(3.5)

Figure 1. Magnetic equilibrium profiles are used for the nonlinear
GBS simulations of NT (δ ≃−0.3) and PT (δ ≃+0.3) plasmas
with κ≃ 1.3. The red dots represent the position of the current that
generates the magnetic field, i.e. the main plasma current (C1), the
divertor current (C2), the upper shaping current (C3), the left
shaping current (C4) and the right shaping current (C5).

and

a=
Rmax −Rmin

2
. (3.6)

Recent study carried out on TCV report that decreasing δupper
reduces the amplitude of turbulent fluctuations and leads to
an increased confinement time, while δlower affects mostly
the plasma turbulence in the boundary near the X-point by
modifying the divertor geometry [25]. In the present study,
the sign of both δlower and δupper is reversed when obtaining
δ =±0.3.

Different turbulent regimes in the tokamak boundary are
observed in GBS, depending on the edge collisionality and
input heat power [28], as they result from different driving
instabilities, such as the resistive ballooning modes (RBMs)
and resistive drift waves (RDWs) [36, 51]. The plasma colli-
sionality and heating source in our simulations are chosen so
that our simulations are in the RBM regime, which is equival-
ent to the L-mode operational regime of tokamaks. In particu-
lar, being destabilized mainly by the magnetic field curvature
and plasma pressure gradient, RBMs are known to be strongly
affected by the plasma shaping, while their impact is less
important on RDWs [23].

The simulations described in this paper are analyzed in the
quasi-steady state regime established when plasma sources,
perpendicular transport and losses to the vessel wall balance
each other and all quantities fluctuate around constant val-
ues. Once the simulations reach this quasi-steady state, all
quantities are toroidally averaged over a 10t0 time frame
to evaluate the equilibrium profiles. In the present paper,
fluctuating quantities are expressed in terms of tilde and
time- and toroidally-averaged quantities with an overline,
e.g. ϕ = ϕ̄+ ϕ̃.

5
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Figure 2. The poloidal cross section of the equilibrium electron pressure for NT and PT plasmas with sT0 = 0.025 and ν0 = 0.1. The
dashed white line represents the separatrix.

Figure 2 displays the equilibrium electron pressure, p̄e, in
PT andNT simulations revealing higher plasma pressure in the
case of the NT plasma, despite the same sources (sT0 = sn0 =
0.075) being used in the two simulations. Higher p̄e values are
associated with a reduced transport level and a higher confine-
ment time. The qualitative estimate of the electron energy con-
finement time τE is evaluated from the plasma energy content
inside LCFS divided by heating power,

τE =
3
2

´
ALCFS

p̄edRdZ´
ALCFS

spdRdZ
, (3.7)

and it is shown for different values of edge collisionality in
figure 3. The analysis reveals an improved energy confinement
time for δ < 0, in agreement with experimental observations
from TCV [9, 10, 13] and DIII-D [14, 15]. The energy confine-
ment time for both NT and PT decreases as the collisionality
increases. In fact, transport driven by RBMs increases with
collisionality leading to reduced energy confinement time for
the same value of the input power.

In agreement with these observations, first-principle simu-
lations based on a gyrokinetic model [15, 20] show that NT
plasmas are characterized by density and temperature fluctu-
ations of reduced amplitude, yielding an enhanced confine-
ment time. However, the reason for the higher confinement
is attributed to kinetic effects that stabilize linear instabilit-
ies, such as the TEMs and the ITG modes. Kinetic effects
are not retained in our fluid simulations, affecting their reli-
ability in the study of the core region, although including
the core region allows us to retain the core-edge-SOL inter-
play without imposing arbitrary boundary conditions with the
core [40].

In figure 4, typical radial profiles of electron density, tem-
perature and pressure at the outer midplane are presented for
a NT and a PT simulation with sT0 = 0.025 and ν0 = 0.1.

Figure 3. Energy confinement time τE as a function of ν0. The
heating source is kept constant (sT0 = 0.025).

The NT configuration is characterized by steeper equilibrium
gradients across the separatrix, particularly evident in the elec-
tron temperature and pressure profiles.

The steeper gradient sustained near the separatrix is asso-
ciated with a larger E×B shear rate, γE×B = ρ−1

∗ ∂2r ϕ̄. In
figure 5, radial profiles of the shear rate normalized to the RBM
growth rate, γRBM =

√
(2T̄e)/(ρ∗Lp), where Lp =−p/∇p is

the plasma pressure gradient length in the near SOL, are shown
in the proximity of the separatrix for PT and NT plasmas.
The shear rate decreases as the plasma collisionality increases

6
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Figure 4. Radial profiles of density (a), electron temperature (b) and electron pressure (c) at the outer midplane for NT and PT plasmas for
the simulations with sT0 = 0.025 and ν0 = 0.1.

Figure 5. E×B shear rate normalized to γRBM, the growth rate of RBMs, for a NT and a PT plasma across the separatrix. The heating
source is kept constant (sT0 = 0.025).

since the high collisionality enhances the plasma transport,
therefore flattening the pressure profile near the separatrix.
While the normalized shear rate for the NT plasma is found to
be above one in all cases, it is not sufficiently strong to create a
transport barrier or destabilize a Kelvin–Helmholtz instability
[52, 53].

Figure 6 shows the contour of normalized electron pressure
fluctuations. While small amplitude fluctuations are observed
in the core, both NT and PT plasmas display larger fluctu-
ation amplitudes in the edge region, as well as the presence
of intermittent coherent structures, known as blobs [54], in the
far SOL region. Blobs are larger in size in the PT plasma. In
agreement with previous results reported from simulations of
limited configurations [23], NT plasmas are characterized by
lower fluctuation levels and smaller eddy sizes compared to
their PT counterparts. These results are in linewith recent TCV
experiments that point out a substantial reduction of the dens-
ity, temperature fluctuation amplitude and turbulence correla-
tion length near the edge region in NT L-mode plasmas with
respect to PT discharges [11, 21].

For a qualitative analysis of the turbulent eddy size, we
measure the radial extension of the turbulent structure at the
low-field side (LFS), 1/kψ. This is defined as the distance
where the cross-correlation drops to 0.5. The radial length is

then averaged in time and along the toroidal direction. The
results, normalized to the tokamak minor radius, 1/(kψ a), are
shown in figure 7 for PT and NT plasmas as a function of dif-
ferent values of collisionality. Confirming our qualitative ana-
lysis, we find that the size of turbulent eddies in NT plasmas is
smaller than in PT plasmas. Furthermore, the radial size of the
turbulent structure increases with plasma collisionality, indic-
ating the presence of large-scale turbulence at high value of
ν0 [54]. The typical values of 1/(kψ a) for different turbulent
regimes are identified in [28], i.e. 1/(kψ a)≪ 1 for RDWs and
1/(kψ a)∼ 0.1 for RBMs, suggesting that the considered sim-
ulations are mainly governed by RBMs. This is confirmed by
tests where we zero out the interchange drive, i.e. the curvature
term in equation (2.2), and we observe a significant steepening
of the pressure profile.

4. Estimate of the pressure gradient length

In this section, an analytical estimate of the plasma pressure
gradient length in the near SOL, Lp =−p/∇p, is derived. This
is correlated to the power fall-off length λq that regulates the
divertor heat load on the outer target [4, 30]. With the aim
of predicting the SOL width as a function of the operational

7



Plasma Phys. Control. Fusion 65 (2023) 085006 K Lim et al

Figure 6. Snapshots of the fluctuating electron pressure normalized to the equilibrium electron pressure for a NT (left) and a PT (right)
plasma with sT0 = 0.025 and ν0 = 1.0.

Figure 7. Normalized radial extension of the largest turbulent
eddies at the LFS, 1/(kψ a) with kψ being the radial wave number,
is averaged in time and along the toroidal direction.

parameters, a theoretical scaling law based on the first prin-
ciple approach is derived for diverted configurations in [29]
leveraging previous work in limited configurations [55]. The
scaling is validated against an experimental dataset for differ-
ent tokamaks and nonlinear GBS simulations. Here we extend
the scaling obtained in [29] to include the effects of triangu-
larity and elongation. The derivation is based on a quasi-linear

analysis, where the gradient removal mechanism [56], i.e. the
local flattening of the plasma pressure profile, provides the
main mechanism for the saturation of the growth of the lin-
ear instabilities driving turbulence. The value of Lp is then
obtained by a balance between perpendicular turbulent trans-
port and parallel losses at the end of the magnetic field lines.

For the derivation, the flux coordinates (x,y,z) introduced
in section 2 are used. As the radial flux in the edge plasma
is mainly driven by turbulence, it can be estimated as Γx ∼
p̃e∂yϕ̃. The relation between p̃e and ∂yϕ̃ can be obtained
from the linearized electron pressure equation by combining
equations (2.1) and (2.6):

γp̃e ∼−ρ
−1
∗
B

[ϕ̃, p̄e] (4.1)

∼ ρ−1
∗ ∂yϕ̃∂xp̄e, (4.2)

where the curvature and parallel gradient terms are neglected
by retaining only leading order contributions. The saturation
of the growth instabilities occurs when their amplitude is suf-
ficient to remove their driving gradient. Under this condition,
the radial gradient associated with the pressure fluctuations is
comparable to the radial gradient of the background pressure,
i.e. p̃/p̄∼ 1/(kxLp) where kx ∼

√
ky/Lp provides an estimate

of the radial eddy extension, according to a non-local linear
theory [57]. This allows us to express the radial flux as

Γx ∼ ρ∗γ
p̃e

2

p̄e
Lp ∼ ρ∗

γ

k2x

p̄e
Lp

∼ ρ∗
γ

ky
p̄e. (4.3)

The balance between the perpendicular turbulent transport,
∂xΓx ∼ Γx/Lp ∼ ρ∗p̄eγ/(kyLp), and the parallel losses at the

8
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sheath, ∇∥(pv∥e)∼ ρ∗p̄ecs/q, then leads to an estimate of the
pressure scale length

Lp ∼
q
cs

(
γ

ky

)
max

. (4.4)

In order to evaluate (γ/ky)max in equation (4.4), similarly
to previous work [23], we linearize equations (2.1)–(2.6). For
this purpose, all physical quantities are expressed as a sum of
an equilibrium and a perturbation component, i.e. n(x,y,z, t) =
n0(x)+ δn(y,z, t), with δn(y,z, t) = δn(z)exp(ikyy+ γt). By
assuming a density equilibrium gradient, ∂xn=−n0/Ln,
where Ln =−n/∇n is the characteristic scale length, andmak-
ing a similar assumption for Te, while other equilibrium quant-
ities are assumed to vanish (ϕ0 = v∥i,0 = v∥e,0 = 0) the linear-
ized GBS system normalized to the separatrix value can be
recast as:

γδn=
R0

Ln

1
B
PL(δϕ)+

2
B
CL(δpe− δϕ)

+ (∇∥ +∇· b)(δj∥ − δv∥i), (4.5)

1
B2
γδω =

2
B
CL(δpe)+ (∇∥ +∇· b)δj∥, (4.6)

me

mi
γδv∥e =∇∥(δϕ − δpe− 0.71δTe)+ νδj∥, (4.7)

γδv∥i =−∇∥δpe, (4.8)

γδTe =
R0

Ln

η

B
PL(δϕ)+

4
3B

CL
(
δpe+

5
2
δTe− δϕ

)
+

2
3
(∇∥ +∇· b)(1.71δj∥ − δν∥i), (4.9)

where we define δpe = δn+ δTe, δj∥ = δv∥i− δv∥e, δω =
(∇2

⊥)
Lδϕ and η = Ln/LTe . In addition, the linearized expres-

sions of the geometrical operators in equations (2.30)–(2.34)
can be simplified as

PL( f) = Pxy
∂f
∂y

+Pyz
∂f
∂z

≃ iPxyky f, (4.10)

CL( f) = Cy ∂f
∂y

+ Cz ∂f
∂z

≃ iCyky f, (4.11)

(∇2
⊥)

Lf =N yy ∂
2f

∂y2
+N y ∂f

∂y
≃−N yyk2y f, (4.12)

where we neglect the relatively small Pyz,Cz and N y terms
(see appendix A).

Provided that turbulence in our nonlinear simulations is
mainly driven by RBMs in the bad curvature region, we
assume a strongly localized mode at θ= 0, kz ∼ 1/q and ε= 0
to simplify equations (4.5)–(4.9). The analytical expressions
of γ and k is then obtained by evaluating ∂ky(γ/ky)max = 0

Figure 8. The curvature coefficient in equation (4.15), C(κ,δ,q), at
the outer midplane as a function of δ for different values of κ with
q= 4. The case of κ= 1.0 and δ= 0 corresponds to the circular
plasma, yielding C(κ,δ,q) = 1.

as a function of the shaping parameters [23]. As a result,
the linear growth rate γ and the poloidal wavenumber ky are
given by

γ2 = γ2RBM
C(κ,δ,q)

3
, (4.13)

k2y =

√
3
2
k2RBMC(κ,δ,q)−1/2, (4.14)

with γRBM =
√
(2T̄e)/(ρ∗Lp) and kRBM = 1/

√
n̄νq2γRBM,

while the effect of κ and δ is contained in the curvature coeffi-
cient C. This is evaluated using the fact that RBMs are mostly
destabilized at the LFS. The analytical expressions of C at the
outer midplane (θ= 0) can then be approximated in the large
aspect ratio limit (see appendix B)

C(κ,δ,q) = ∂Rc(r,θ)
∂r

∣∣∣∣∣
θ=0

= 1− κ− 1
κ+ 1

3q
q+ 2

+
δq

1+ q

+
(κ− 1)2(5q− 2)
2(κ+ 1)2(q+ 2)

+
δ2

16
7q− 1
1+ q

. (4.15)

In figure 8, the value of the curvature coefficient C(κ,δ,q)
in equation (4.15) is shown to be a function of κ and δ, while
considering a safety factor constant (q= 4). Similar to previ-
ous results [23], δ is found to play a more important role than
κ in determining the value of C(κ,δ,q). A similar reduction
of the curvature coefficient with δ is visible also in the GBS
curvature operator in appendix A.

We can now predict the value of the pressure gradient
length Lp as a function of the tokamak operational parameters.

9
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We consider the balance between the heat fluxes crossing the
LCFS and the volume of the integrated heat source,

Sp(R,Z)≃
˛
LCFS

qx(R,Z)dl∼ Lχ qx,i, (4.16)

where Sp(R,Z) =
´
sp(R,Z)dRdZ with sp = nsTe +Tesn, and

Lχ =
¸
LCFS dl the poloidal length of the LCFS. A common

approach to obtain Lχ is to simply approximate it to the
circumference of ellipse [50]. Considering that transport in
the RBM regime mostly occurs at the LFS, this gives, i.e.
Lχ ≃ πa

√
(1+κ2)/2. In the case of a triangular plasma, the

assumption of approximating Lχ to the circumference of an
ellipse leads to an error of over 10% for

∣∣δ∣∣> 0.5. To address
this issue, we modify the expression for Lχ by numerically
computing the poloidal length and apply a Taylor expansion
around κ= 1 and δ= 0. The resulting expression accounts for
the effect of triangularity and can be expressed as

Lχ ≃ πa(0.45+ 0.55κ)+ 1.33aδ, (4.17)

where, the error with respect to the numerical values is found
to be less than 3% when κ= 1 and

∣∣δ∣∣< 0.5.
Finally, by equating equations (4.3) and (4.16), the analyt-

ical estimate of Lp, including the effects of plasma shaping,
can be recast as:

Lp ∼ C(κ,δ,q)
[
ρ∗(ν0n̄q

2)2
(
Lχ p̄e
Sp

)4]1/3
, (4.18)

where C is the poloidal curvature coefficient defined in
equation (4.15). Note that the above equation is equivalent to
the scaling derived in [28] when the shaping term C(κ,δ,q) is
neglected.

In figure 9, the Lp estimates provided by the analytical scal-
ing law in equation (4.18) are compared with the results of the
nonlinear GBS simulations presented in section 3, for different
values of ν0 and sT0. Three different values of triangularity are
considered, δ =−0.3,0,0.3. Two remarks can be made from
the observation of figure 9 where good agreement is observed
between the simulations and analytical results, as shown by
the high R-square factor (R2 = 0.718). First, when different
values of δ with fixed ν0 and sT0 are compared, NT plasmas
tend to yield smaller values of Lp, mainly because of the reduc-
tion of the curvature drive. Second, when different values of ν0
and sT0 with fixed δ are compared, we observe that the size of
Lp increases with ν0 and decreases with sT0, being Lp related
to the size of the turbulent eddies, which increases with the
plasma resistivity [28].

5. Comparison of Lp with experimental data

In order to validate the reliability of the pressure gradient scal-
ing law derived in section 4, a comparison against an exper-
imental database is performed. This leverages the work in
[29], where a comparison between the scaling of the pressure
decay length and the experimentally measured power fall-off
length λq is described, showing good agreement. The data-
base considers discharges fromMAST, TCV, JET, COMPASS

and Alcator C-Mod tokamaks with triangularity 0.1< δ <
0.5. The scaling law considered in [29] does not take into
account the effect of triangularity and can be obtained from
equation (4.18) by neglecting the shaping term. However,
recent works with TCV and AUG have experimentally shown
that the power fall-off length at the outer target in L-mode plas-
mas varies by a factor of two in NT plasmas compared to PT
discharges [25].

In order to carry out a comparison of the scaling in
equation (4.18) with experimental results, we make use of
the experimental dataset already considered for the valida-
tion in [29]. This dataset is described in [32], and includes
a set of power fall-off decay lengths measured from both
Langmuir probes and infrared cameras in the MAST, JET,
COMPASS and Alcator C-Mod tokamaks. The discharges
considered in the database are single-null L-mode plasmas
in attached conditions where the pressure gradient between
upstream and target is negligible. This database is expanded
here by including the AUG data described in [30]. The AUG
discharges include lower single-null (LSN) configurations,
favorable for H-mode access, and upper single null (USN)
unfavorable configurations, performed in L-mode plasmas,
with triangularity 0.1< δ < 0.3. In addition, we include recent
TCV discharges dedicated to the study of triangularity effects
on L-mode plasmas, extending our range of triangularity to
−0.3< δ < 0.5.

For a direct comparison with experimental data, the scal-
ing law in equation (4.18) is rewritten in terms of engineering
parameters. By applying the same procedure as in [29], we
express Sp as PSOL/(2πR0) and ν0 using equation (2.9). Then
equation (4.18) results into the following expression

Lp ≃ 1.95C(κ,δ,q)9/17A1/17q12/17R7/17
0 P−4/17

SOL n10/17e

×B−12/17
T L12/17χ , (5.1)

where we use physical units, i.e. Lp [mm], PSOL [MW], R0

[m], a [m], ne [1019m−3] and BT [T]. Note that the effects of
plasma shaping are included in both C(κ,δ,q) and Lχ terms
(see equations (4.15) and (4.17)).

In figure 10, we show the results of the comparison of the
scaling law in equation (5.1) with the experimentallymeasured
λq at the outer target for the entire multi-machine database.
Overall, very good agreement is observed with very high qual-
ity of fitting, R2 ≃ 0.825 with the root-mean-square (RMS)
error ±1.4mm, where the proportionality constant α= 0.27
is used. The newly derived scaling law for Lp is found to pro-
duce a slightly better fitting result compared to the previous
scaling law derived in [29], which did not include the depend-
ence on triangularity with a value of R2 ≃ 0.807. In particular,
the scaling law that we propose provides better estimates for
the MAST discharges [58], which is characterized by strongly
shaped plasmas, approximately with κ∼ 2 and δ ∼ 0.5, show-
ing larger values of Lp compared to other tokamaks.

The experimental data used for the scaling law in figure 10
are found to be either in the sheath-limited regime or in the
weak conduction-limited regime. This is verified by evaluating
the SOL collisionality, ν∗ = 10−16nuL/T2u, for all discharges.
It should be noted that the key factor that distinguishes
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Figure 9. Comparison of the pressure gradient length Lp between the analytical scaling law in equation (4.18) and the value of Lp obtained
from nonlinear GBS simulation. A parametric scan for collisionality ν0 and heating power sT0 is carried out for different plasma shapes.
Here, ‘Oval’ denotes elongated but non-triangular (δ = 0) plasma.

Figure 10. Comparison between the theoretical pressure gradient scaling law for Lp by equation (5.1), and experimental power fall-off
length λq from multi-machine database. The fitting coefficient (α= 0.27) is obtained using a least-squares method. The TCV experimental
discharges are analyzed in the present work. We obtain a fitting quality R2 ≃ 0.825.

between the sheath-limited and conduction-limited regimes
is the balance between convection and conduction channels
of the heat flux, along with the absence of parallel temper-
ature gradients ∇∥Te. Within this framework, the validity of
the fluid model is justified even at the low ν∗ conditions.
The results reveal that the majority of data have 3< ν∗ < 10,
except for a few discharges from COMPASS, TCV and AUG
in the USN configuration discharges, characterized by 10<
ν∗ < 22. Note that the AUGdata for LSN (favorable) andUSN
(unfavorable) configurations show the effect of the toroidal

magnetic field direction [59] with a larger SOL collisionality
for USN (10< ν∗ < 13) than the LSN discharges (ν∗ < 10),
yielding a slight deviation from pure sheath-limited regime for
USN discharges. This effect can play a role in the observed dif-
ference between LSN and USN discharges in figure 10, and
will be a subject for future work.

As a further validation of our scaling law, we consider
two L-mode TCV discharges with NT and PT configura-
tions. While keeping the other TCV parameters approxim-
ately constant (BT = 1.43 T, favorable ion-∇B drift direction,
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Figure 11. The poloidal cross sections of TCV magnetic equilibria for the NT (#67081) and PT (#67072) discharges.

Figure 12. Parallel heat flux from the outer target is remapped to the outer midplane. By fitting the profile of the parallel heat flux [62]
(black dashed line), the size of λq is found to be ∼3.99mm for NT and ∼5.12mm for PT plasma.

plasma current Ip = 220kA, line-averaged density ⟨ne⟩= 4×
1019 m−3 and κ= 1.5), the value of δ is varied to investigate
the effect of triangularity on the outer divertor target heat flux.
In particular, we consider two discharges, which feature NT
(δ =−0.2) and PT (δ = 0.3) magnetic equilibria, whose flux
surfaces are depicted respectively in figure 11. No roll-over of
the ion flux is observed, and the target peak temperature is well
above 5 eV, indicating that the discharges under consideration
are operating within the attached regime.

In figure 12, the parallel heat flux at the outer target, meas-
ured from Langmuir probes [60, 61], and remapped to the

outer midplane, is shown for both discharges. The exponen-
tial decay length, λq, of the parallel heat flux is evaluated by
using the so-called Eich-fit [62], defined as:

q(r̄) =
q0
2
exp

[(
S
2λq

)2

− r̄
λq

]
· erfc

(
S
2λq

− r̄
S

)
(5.2)

where r̄= r− rsep is the upstream coordinate, S is the divertor
broadening, and q0 is the peak heat flux at the strike position.

The scatter of the data leads to a relatively large uncer-
tainty in the fit, yielding an estimate of λq,NT = 3.99±
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Table 1. Power fall-off length extrapolation of future tokamaks for NT and PT L-mode plasmas. The values of λq,NT are computed using an
opposite value of triangularity, −δ, in the scaling law.

Parameter ITER DTT SPARC JT-60SA

R0 (m) 6.2 2.1 1.85 2.96
a (m) 2 0.6 0.57 1.18
q95 3 3 3 3
κ 1.85 1.7 1.97 1.95
δ 0.49 0.3 0.54 0.53
n̄e(m−3) 4× 1019 1.8× 1020 3.1× 1020 6.3× 1019

BT (T) 5.3 6 12.2 2.3
PSOL (MW) 18 15 29 10

λq,PT (mm) ∼4.7 ∼2.6 ∼2.1 ∼6.8
λq,NT (mm) ∼2 ∼1.5 ∼0.8 ∼2.6

0.42 (mm) and λq,PT = 5.12± 0.36 (mm). The λq,NT plas-
mas appears to be smaller than approximately ∼20% than the
λq,PT. This is qualitatively in agreement with the Lp scaling
law in equation (4.18), which predicts λq,NT ≃ 1.6± 0.5mm
and λq,PT ≃ 2.7± 0.8mm, using the proportionality constant
α= 0.27 found in the analysis of the multi-machine data-
base. The theoretical scaling law reproduces the increase of
λq proportional to δ, with an error comparable to the RMS
error found in the analysis of the multi-machine database (we
note that, in the analysis multi-machine in figure 10, larger
experimental Lp than the theoretical scaling is observed for
the TCV tokamak). The theoretical prediction we provide is
accompanied by an error bar that reflects the uncertainty in
the power entering the SOL, specifically the radiative power.
Furthermore, the difference between the scaling law and the
experimental measurement can be attributed to the use of the
global value of δ, instead of distinguishing between δupper and
δlower [25].

The derived scaling law can be used to predict the SOL
width in future devices. In table 1, the SOL power fall-off
length λq predictions provided by equation (5.1) for future
tokamaks, such as ITER [63] (the scenario obtained from
METIS simulations [64] just before the L-H transition is con-
sidered), DTT [65], SPARC [66] and JT-60SA [67], are listed
assuming operations in L-mode and a triangularity value based
on their baseline scenario. These tokamaks consider baseline
scenarios operating in a PT configuration. As a comparison,
we also report the expected λq value in NT, with opposite tri-
angularity than the baseline scenario. In particular, we note
that the predicted λq in ITER for NT L-mode plasma yield
λq ≃ 2mm,which is twice as large as the predicted λq ∼ 1mm
for the H-mode burning plasma scenario [68], highlighting the
attractiveness of NT L-mode plasma in terms of handling the
exhaust of the divertor targets, in addition to the advantage of
operating ELM-free scenarios [69].

6. Conclusions

In the present paper, the effects of triangularity on boundary
plasma turbulence are investigated using global, flux-driven,

two-fluid GBS simulations. A first-principles theoretical scal-
ing law for the SOL width including triangularity is derived
based on considerations of the linear growth rate and nonlin-
ear saturation mechanisms of the driving instabilities. Overall,
plasma shaping parameters are found to be important elements
in determining the properties of boundary plasma turbulencein
particular, the power fall-off length λq.

A series of nonlinear GBS simulations is carried out for NT
and PT L-mode diverted plasmas. NT plasmas show stabiliz-
ing effects on edge plasma turbulence yielding (i) higher elec-
tron equilibrium pressure, (ii) reduced eddy size, (iii) steeper
plasma gradient at the separatrix and (iv) improved energy
confinement, with respect to PT simulations. Turbulence sta-
bilization is due to the reduction of the magnetic curvature
drive. Indeed, the curvature operator is found to decrease at
the LFS for an elongated NT plasma resulting into stabilized
SOL plasma turbulence, especially when RBM is the driving
instability.

Leveraging the analysis of the simulation results and as an
extension of the previous work in [29], a theoretical scaling
law for Lp is derived to include the effect of triangularity in
the Lp estimate. The scaling law is then compared to the results
of GBS simulations. The linear analysis shows a weak growth
rate and a higher value of the poloidal wavenumber ky (pol-
oidally decorrelated turbulence structure) in an elongated NT
plasma. A comparison of the theoretical scaling with the res-
ults of a set of GBS simulations at different collisionality and
input power shows an overall good agreement, with the ana-
lytical scaling, correctly capturing the Lp reduction observed
in NT GBS simulations. The above results are consistent with
the experimental work reported in [25].

To validate our scaling law, a comparison between the
theory-based Lp scaling law and experimental λq dataset
from different tokamaks is successfully performed. The newly
derived scaling law captures the decrease of λq in NT plasmas,
and the quality of fitting is found to be slightly improved com-
pared to the scaling law, which did not take into account the
dependence on triangularity. Finally, we carried out predic-
tions of the SOL width in future devices, assuming operations
in L-mode plasmas. The predicted λq values for NT L-mode
plasmas are larger than those for PT H-mode scenarios
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(table 1). Overall, the results are consistent with the exper-
imental work reported in [25], indicating that NT plasmas
can be an attractive option for power handling in ELM-free
scenarios.
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Appendix A. Geometrical coefficients and
differential operators

We deduce the expressions of the geometrical coefficients
presented in equations (2.30)–(2.34). Introducing the cyl-
indrical coordinate systemR= (Rc(r,θ),φc,Zc(r,θ)), the cov-
ariant metric tensor in the (r,θ,φ) coordinates are given by

grr =

(
∂Rc
∂r

)2

+

(
∂Zc
∂r

)2

, (A.1)

gθr =
∂Rc
∂r

∂Rc
∂θ

+
∂Zc
∂r

∂Zc
∂θ

, (A.2)

gθθ =

(
∂Rc
∂θ

)2

+

(
∂Zc
∂θ

)2

, (A.3)

gφφ = R2
c , (A.4)

grφ = gθφ = 0, (A.5)

where we use the definition of the metric coefficients

gij = ei · ej =
∂R
∂ξi

· ∂R
∂ξj

, (A.6)

with ξ = (r,θ,φ) = (ξ1, ξ2, ξ3).

The contravariant metric tensors in (r,θ,φ) coordinates are
obtained by inverting the covariant metric tensors. By using
the relation given by

gij = gmn
∂ui
∂um

∂u j

∂un
, (A.7)

the contravariant metric tensor in flux-tube coordinates
(r,α,θ∗), where α= φ− q(r)θ∗ is a field line label and θ∗
is the straight-field-line angle defined in equation (2.28), can
then be obtained. The resulting expressions can be recast as

gθ∗θ∗ =

(
∂θ∗
∂θ

)2

gθθ + 2
∂θ∗
∂θ

∂θ∗
∂θ

gθr+

(
∂θ∗
∂r

)2

grr, (A.8)

gθ∗r =
∂θ∗
∂r

grr+
∂θ∗
∂θ

gθr, (A.9)

grθ∗ =
∂θ∗
∂r

grr+
∂θ∗
∂θ

grθ, (A.10)

gθ∗α =−s(r)θ∗
q(r)
r
gθ∗r− q(r)gθ∗θ∗ , (A.11)

grα =−s(r)θ∗
q(r)
r
grr− q(r)gθ∗r, (A.12)

gαα = gφφ+ q(r)2gθ∗θ∗ + 2
q(r)2s(r)θ∗

r
gθ∗r

+ [s(r)θ∗]
2 q(r)

2

r2
grr, (A.13)

where s(r) = (r/q)(dq/dr) is the magnetic shear.
By using the analytical expressions of the metric tensors

defined in equations (A.8)–(A.13), the geometrical coeffi-
cients presented in equations (2.30)–(2.34) can be analytic-
ally expressed in the re-scaled flux-tube coordinate system
x= r,y= (a/q)α,z= qR0θ∗ leading to

Pxy =−bθ∗a
J q

, Pyz =−abr
J
, Pzx =−qbα

J
, (A.14)

Dx =Dy = 0, Dz = qR0b
θ∗ , (A.15)

Cx =−R0B
2J

∂cα
∂θ∗

, Cy = aR0B
2J q

(
∂cr
∂θ∗

− ∂cθ∗
∂r

)
,

Cz = qR0B
2J

∂cα
∂r

, (A.16)

N xx = grr, N xy =
2gαra
q

, N yy =
a2gαα

q2
, (A.17)
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N x =∇2r, N y =
a
q
∇2α,

N z = qR0

(
∇2θ∗ −

1
J

∂

∂θ∗
[J (bθ∗)2]

)
,

(A.18)

N xz = 2qgrθ∗ , N yz = 2agθ∗α, N zz = q2[gθ∗θ∗ − (bθ∗)2],
(A.19)

where ci = bi/B.
Due to the fact that the scale length of the turbulence along

the radial direction is larger than along the poloidal direction
(ky ≫ kx) and that the parallel turbulence wavelengths is such
that (kz ≪ 1), the operators in equations (2.30)–(2.34) can be
further simplified. For example, the curvature operator in flux-
tube coordinates can be written as

C( f) = Cx ∂f
∂x

+ Cy ∂f
∂y

+ Cz ∂f
∂z

≃ Cy ∂A
∂y
. (A.20)

Appendix B. Derivation of the curvature operator

An analytical expression of the magnetic equilibrium for
arbitrary values of κ and δ can be obtained by solving the
Grad–Shafranov equation in the large aspect ratio limit ϵ=
r/R0 → 0, when the plasma pressure contribution is neglected
[23, 70, 71]. By keeping the zeroth and first order terms in ε,
the magnetic equilibrium takes the following form [71]

Rc(r,θ) = R0

[
1+ ϵcosθ+

3∑
m=2

Sm(r)
R0

cos[(m− 1)θ]

− 1−m
2ϵ

(
Sm(r)
R0

)2

cosθ

]
, (B.1)

Zc(r,θ) = R0

[
ϵsinθ−

3∑
m=2

Sm(r)
R0

sin[(m− 1)θ]

− 1−m
2ϵ

(
Sm(r)
R0

)2

sinθ

]
, (B.2)

where the functions S2(r),S3(r) are related to the shaping para-
meters

κ=
a− S2(a)
a+ S2(a)

(B.3)

and

δ =
4S3(a)
a

. (B.4)

By assuming a strongly localized RBM at θ= 0, it is
possible to approximate the curvature operator as Cy ≃
−∂rRc(r,θ)

∣∣
θ=0

=−∂rRc(r,0)− ∂θRc(r,0)∂rθ
∣∣
θ∗=0

. Then,

using the fact that ∂rθ
∣∣
θ∗=0

= 0 for ε= 0, the curvature coef-
ficient at the LCFS, r= a, can be recast as

C(κ,δ,q) = ∂Rc(r,θ)
∂r

∣∣∣∣∣
θ∗=0

= 1+
3∑

m=2

S ′
m(a)

−
3∑

m=2

1−m
a

[
Sm(a)S

′
m(a)−

Sm(a)2

2a

]
. (B.5)

The expressions for Sm(r) and q(r) are given by

Sm(r) = Sm(a)
( r
a

)m−1 q(r)s(r)+ 2q0 m+1
m−1

qs+ 2q0 m+1
m−1

, (B.6)

q(r) = q0 +(q− q0)

(
r
a

)2

, (B.7)

where q0 is the safety factor measured on the magnetic axis.
Form= 2,3 and r= a, the shaping term and its derivatives can
be written as

S2(a)
a

=−κ− 1
κ+ 1

, (B.8)

S3(a)
a

=
δ

4
(B.9)

and

S ′
2(a) =−

(
κ− 1
κ+ 1

)(
3q
q+ 2

)
, (B.10)

S ′
3(a) =

δq
q+ 1

. (B.11)

Finally, by inserting the expressions of Sm(r) and S ′
m(r) for

m= 2,3 into equation (B.5), the curvature coefficient at θ= 0
leads to

C(κ,δ,q) = 1− κ− 1
κ+ 1

3q
q+ 2

+
δq

1+ q
+

(κ− 1)2(5q− 2)
2(κ+ 1)2(q+ 2)

+
δ2

16
7q− 1
1+ q

. (B.12)
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