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Range-separated hybrid functionals for accurate prediction of
band gaps of extended systems
Jing Yang 1✉, Stefano Falletta 1 and Alfredo Pasquarello 1

In this work, we systematically evaluate the accuracy in band gap prediction of range-separated hybrid functionals on a large set of
semiconducting and insulating materials and carry out comparisons with the performance of their global counterparts. We observe
that all the range-separated hybrid functionals that correctly describe the long-range dielectric screening significantly improve
upon standard hybrid functionals such as PBE0 and HSE06. The choice of the short-range Fock exchange fraction and the screening
length can further reduce the predicted error. We then propose a universal expression for the selection of the inverse screening
parameter as a function of the short-range and long-range Fock exchange fractions, which results in a mean absolute error as small
as 0.15 eV for band gap prediction.
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INTRODUCTION
Accurate prediction of materials band gaps is key to studying the
electronic and optical properties of semiconductors and insulators.
However, Kohn–Sham density functional theory (KS-DFT)1,2

intrinsically underestimates the fundamental band gap Eg, defined
as the difference between the ionization potential and the
electron affinity3. Even in exact KS-DFT, the predicted band gap
deviates from the fundamental band gap by Δxc, the discontinuity
in the exchange-correlation potential4. In the local-density
approximation or in the generalized gradient approximation, this
leads to the underestimation of the band gaps by about 50%5,6.
More recent developments in semilocal functionals, such as the
modified Becke–Johnson potential7, GLLB-SC8, and TASK9, show
improvement in band gap predictions. However, to date, an
average error of 0.5 eV persists when applying the best-
performing semilocal functionals10,11.
The generalized KS theory resolves the band gap prediction

problem by admixing a fraction of Fock exchange with the
semilocal DFT exchange, thus opening up the band gap12. For
example, the global hybrid-functional PBE0 includes a fraction
α= 0.25 of Fock exchange, which was found to optimize the
atomization energies of molecules13–15. Heyd et al. developed the
screened hybrid-functional HSE0616,17, which has a mixing
parameter of 0.25 in the short range and reproduces semilocal
exchange in the long range. In spite of their widespread use, the
hybrid functionals adopting fixed mixing parameters, such as PBE0
and HSE06, are not universally applicable. For solid-state systems,
these functionals perform best on materials with intermediate
band gaps18. However, their accuracy greatly deteriorates for wide
band gap materials, such as MgO and LiF, and narrow band gap
materials, such as Si and Ge19,20. This inadequacy led to the
development of nonempirical hybrid functionals. In these func-
tionals, the mixing parameters are determined nonempirically by
enforcing certain exact constraints on the exchange-correlation
potential4. Through adopting material-specific fractions of Fock
exchange, the nonempirical hybrid functionals are promising in
achieving more uniform accuracy in band gap prediction, as well
as in predicting other electronic, optical, and structural properties
of semiconductors and insulators21–25.

Based on the specific exact constraints imposed, nonempirical
hybrid functionals are sought according to two lines of thought.
The first group, often denoted dielectric-dependent (DD) hybrid
functionals, is built by connecting α with the macroscopic
dielectric constant ϵ∞19,26. The simplest form of this group, DD-
PBE0, admixes a fraction α= 1/ϵ∞ of Fock exchange. These
functionals correctly describe the long-range interaction, which
asymptotically approaches �1=ðϵ1jr� r0jÞ27. DD-PBE0 allows for
strong screening in the case of narrow band gap materials and
weak screening in the case of wide band gap materials, and thus
greatly enhances the uniformity of the achieved accuracy. This
idea has subsequently been combined with the development of
range-separated hybrid (RSH) functionals, in which different Fock
fractions are admixed in the long range and in the short range,
separated through the use of an inverse screening length μ28–30.
Hence, DD-RSH functionals generally adopt a long-range Fock
fraction αl= 1/ϵ∞ and various differing strategies for determining
the short-range Fock fraction αs and the inverse screening length
μ20,31,32.
The second group of nonempirical hybrid functionals is

constructed by imposing the piecewise linearity condition, which
asserts that the ground-state energy E(N) as a function of electron
number N must be linear upon electron occupation between
integer electron numbers33. Through Janak’s theorem34, this
constraint translates to the single-particle energy level of the
highest occupied state being constant irrespective of its occupa-
tion, a constraint known as the generalized Koopmans’ condition.
To construct a piecewise linear hybrid functional, the mixing
parameters can be found by enforcing Koopmans’ condition on a
localized electronic state. These functionals were first applied to
organic molecules35,36 and more recently to extended sys-
tems22,24,37–45. They were demonstrated to be especially useful
for materials with heterogeneous dielectric screening, for exam-
ple, for two-dimensional materials21,46 and interfaces47.
Despite these recent developments of nonempirical hybrid

functionals, the methods generally adopt different ways of
choosing α and μ values and there has been a lack of systematic
comparison among these choices. The average errors in band gap
predictions are reported on different sets of materials, with
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different material structures, pseudopotentials, or convergence
parameters. Furthermore, some of these functionals require a
rather cost-intensive construction process, hindering their wide-
spread use20,23,37,38,41,43. In this work, we present a comprehensive
comparison of the performance of six nonempirical hybrid
functionals by evaluating their accuracy in predicting the band
gaps for a variety of semiconducting and insulating materials. We
show that nonempirical hybrid functionals significantly outper-
form standard hybrid functionals such as PBE0 and HSE06. We
then provide a detailed analysis on how the fraction of Fock
exchange and the inverse screening parameter affect the
predicted band gaps. We show that available methods for
determining the inverse screening parameter do not lead to an
improvement in the overall accuracy compared to adopting a
fixed value. In light of this observation, we further propose an
analytical expression for setting the inverse screening parameter
as a function of the fractions of Fock exchange in the short and
long range. The optimal functional constructed in this way further
reduces the average error in the band gap prediction to 0.15 eV.

RESULTS AND DISCUSSION
Table 1 gives a summary of the hybrid functionals considered in
this work. We start with global hybrid functionals in which the
fraction of Fock exchange is defined by a single parameter α. In
the commonly used PBE0 functional, α is set to 0.2514. In DD-PBE0,
α is set to 1/ϵ∞.
RSH functionals adopting the Coulomb attenuating method

(CAM)48 separate the nonlocal exchange potential into short-
range and long-range parts through an error function with inverse
screening length μ:

1
jr� r0 j ¼

1� erfðμjr� r
0 jÞ

jr� r0 j
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

SR

þ erfðμjr� r
0 jÞ

jr� r0 j
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

LR

:
(1)

In this way, the exchange potential is defined as follows:

vxðr; r0Þ ¼ αsvSR�Fock
x ðr; r0; μÞ þ ð1� αsÞvSR�PBE

x ðr; μÞ
þαlvLR�Fock

x ðr; r0; μÞ þ ð1� αlÞvLR�PBE
x ðr; μÞ; (2)

where vPBEx and vFockx are the semilocal and the nonlocal exchange
potentials, respectively, with their short-range and long-range
component fractions specified by αs and αl. The parameter αl is
generally set to 1/ϵ∞ to comply with the exact condition of the
asymptotic potential in the long range, as done in DD
functionals4,27. Depending on how αs and μ are chosen, various
versions of RSH functionals can be constructed. Here, we group

them into two main classes based on the choice of αs. In the first
class, αs is set to 0.25, like in PBE0. The widely used hybrid-
functional HSE06 belongs to this class, with αl set to 0 and μ to
0.106 bohr−1 16,17. Another common choice of μ is the Thomas-
Fermi (TF) screening parameter31,49, which is defined as follows:

μTF ¼
3n
π

� �1
6

; (3)

where n is the valence electron density. Here, all the electrons in
the outer shell are counted as valence electrons32,50. For example,
we take two valence electrons for Ca and thirteen valence
electrons for Ga.
In the second class, αs is set to 1. Two recently proposed

functionals belong to this class: the DD-CAM20 and the doubly
screened hybrid (DSH) functional32. The two functionals use the
same settings for αs and αl, but adopt different settings for μ. In
the former, μ is nonempirically determined through fitting the
dielectric function calculated from linear response20. In the latter,
μ is defined by the analytical expression:

μDSH ¼ 4
3

1
γ

1
ϵ1

þ 1

� �

μ2TF

� �1
2

; (4)

in which γ is empirically set to 1.563. To determine how the
material-specific values of μ influence the overall accuracy of band
gap predictions, we also consider setting μ to a fixed value of 0.71
bohr−1 for both classes with αs= 0.25 and αs= 1 (μαs¼0:25

fix and
μαs¼1
fix ). This value for the inverse screening parameter has been

determined in ref. 20 from an average over a large variety of
materials.
We also include in our comparison two functionals satisfying

the piecewise linearity condition, K-PBE0 and K-CAM36,37,51. The
K-PBE0 functional is a global one, for which the mixing parameter
α is determined by inserting an atomic probe into the material
system38,43. One then systematically varies α until the localized
electronic state of the probe is constant irrespective of its
occupation. Thus, the value α= αK found in this way satisfies
the piecewise linearity condition. The K-CAM functional is range-
separated with αl= 1/ϵ∞ and μ= 0.106 bohr−1 as in HSE06. The
short-range mixing parameter αs is determined by enforcing the
piecewise linearity condition on a localized potential probe, in the
same way as for K-PBE0.
In the following sections, we give a detailed analysis of how the

functional forms with their mixing parameters influence the
achieved accuracy in predicting band gaps. Specifically, we focus
on the dependence on α for global hybrid functionals, and on the
combined dependence on αs and μ for RSH functionals. Following
this analysis, we propose a universal formulation for choosing the
inverse screening parameter μ as a function of αs and αl. Last, we
give a comprehensive comparison of the various functionals in
terms of their accuracy and discuss strategies for optimizing RSH
functionals.

Global hybrid functionals
First, we consider the global hybrid functionals PBE0(α) and the
dependence of the predicted band gaps on α. Figure 1 shows the
band gaps as obtained with PBE (α= 0), PBE0 (α= 0.25), DD-PBE0
(α= 1/ϵ∞) and K-PBE0 (α= αK) as a function of the respective α
values for all the materials considered in this work. As clearly seen
in Fig. 1, the calculated band gaps closely follow a linear
relationship with α. This linearity allows us to fit the band gap
as a function of α and to find the fraction αexpt that reproduces the
experimental band gap, thus providing a visual guidance for
comparing the errors of each functional.
We first observe that the PBE band gaps are systematically

smaller than the experimental ones, demonstrating the notorious
band gap underestimation problem of semilocal functionals. As α

Table 1. List of hybrid functionals considered in this work with their
corresponding mixing parameters.

αs αl μ

global PBE0 0.25 0.25 –

DD-PBE0 1/ϵ∞ 1/ϵ∞ –

K-PBE0 αK
43 αK –

αs= 0.25 HSE06 0.25 0 0.106 bohr−1

TF 0.25 1/ϵ∞ μTF
31

μαs¼0:25
fix 0.25 1/ϵ∞ 0.71 bohr−1

αs= 1 DSH 1 1/ϵ∞ μDSH
32

DD-CAM 1 1/ϵ∞ μDD-CAM
20

μαs¼1
fix 1 1/ϵ∞ 0.71 bohr−1

K-CAM-αs αs,K
43 1/ϵ∞ 0.106 bohr−1

The specific values of the mixing parameters for each material can be
found in the Supplementary Information.
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increases, the band gaps become larger. The α values reproducing
the experimental band gaps also tend to increase with increasing
band gap. For PBE0, which includes a fixed Fock fraction of 0.25,
the band gaps are overestimated in the small band gap regime
and underestimated in the large band gap regime. A severe
underestimation is observed for wide band gap materials such as
Ar and LiF. This problem is greatly mitigated by adopting material-
specific α values. Indeed, for both DD-PBE0 and K-PBE0, the
respective α values fall much closer to αexpt, yielding uniform
accuracy over the whole band gap range. Between these two,
K-PBE0 has a slight advantage over DD-PBE0 in terms of accuracy,
producing a mean absolute error (MAE) of 0.34 eV compared to
0.41 eV for DD-PBE0 when compared for the same set of materials
(see Supplementary Table 4).
This analysis of the role of α also sheds some light on the choice

of αs for RSH functionals. Going back to Eqs. (1) and (2), in the limit
of μ→∞, the RSH functional falls back to PBE0(αl). In the limit of
μ→ 0, it falls back to PBE0(αs). In other words, tuning the value of
μ essentially modulates the predicted band gap between PBE0(αl)
and PBE0(αs). If we consider the class of range-separated
functionals with αl set to 1/ϵ∞ and αs to 0.25, the tunable range
of the predicted band gap is limited by the values from PBE0 and
DD-PBE0. At variance, by setting αs to 1, the tunable range is
between the band gap values predicted by DD-PBE0 and

PBE0(α= 1). Considering that PBE0(α= 1) largely overestimates
the band gaps with respect to experimental values, selecting
αs= 1 yields a much larger tunable range of band gaps compared
to that of αs= 0.25. This observation helps us to better understand
the influence of μ on the calculated band gaps for RSH functionals
in the next section.

Range-separated hybrid functionals
In this section, we examine how the choice of μ and αs influence
the accuracy of RSH functionals. Similar to the previous analysis for
α, we show in Fig. 2 how the calculated band gaps depend on μ
for the two classes of functionals with αs= 0.25 and αs= 1. Also in
this case, we assume that Eg depends linearly on μ and find the
μexpt values that reproduce the experimental band gaps. The
relationship can well be approximated as being linear (cf. Fig. 2).
We first look at how the changes in μ determine the band gaps.

As has been established, varying μ tunes the predicted band gap
between the values produced by PBE0(αl) and PBE0(αs). This leads
to a major difference between the cases of αs= 0.25 and αs= 1.
For αs= 0.25 (Fig. 2a), the band gaps decrease with increasing μ
for materials having ϵ∞ > 4 (mostly in the small band gap regime),
and the reverse occurs for materials having ϵ∞ < 4 (mostly in the
large band gap regime). This is because αs is larger than αl (1/ϵ∞)

Fig. 1 Band gap vs. α. Band gaps calculated with global hybrid functionals as a function of α in comparison with experimental values for
materials a with experimental band gaps larger than 5 eV and b with experimental band gaps smaller than 5 eV (plotted in two separate
panels for clarity). Data points for the same material are fitted to a linear relationship as indicated by the dashed lines. The experimental band
gaps are then added along the fitted function. The vertical black line represents results achieved with PBE0, i.e. with α= 0.25.
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in the former group and αs is smaller than αl in the latter group. It
also leads to the peculiar observation that for materials with ϵ∞
close to 4, changing μ has little effect on the predicted band gap,
as manifested by the cases of CaO (ϵ∞= 3.3), BN (ϵ∞= 4.5), and
ZnO (ϵ∞= 3.74). For these materials, it is not possible to
reproduce the experimental band gaps with reasonable values
of μ. However, for αs= 1 (Fig. 2b), it is ensured that αs is larger than
αl. As a result, the calculated band gaps always decrease with
increasing μ. Generally, the selection of αs= 1 creates a larger
difference between αs and αl and thus a stronger dependence of
the band gaps on μ.
With the general Eg-vs-μ relationship established, we now take a

closer look at the specific choices of μ values. When αs is set to
0.25 (cf. Fig. 2a), we observe that the μTF values generally fall in the
range of 0.6–0.8 bohr−1, close to the average μ value of 0.71
bohr−1. Consequently, the overall band gap accuracy of adopting
μTF is almost the same as that of adopting the fixed value of 0.71
bohr−1. The MAEs of both functionals are 0.41 eV, and the mean
absolute relative errors (MAREs) are 14.3% for the former and
14.6% for the latter, demonstrating little advantage of using
material-specific μ values. The μ values reproducing experimental
band gaps (henceforth referred to as μexpt) are in fact much more
scattered. Considering functionals with αs= 1 (cf. Fig. 2b), we find
that DD-CAM and DSH perform better in terms of overall accuracy,
producing MAEs of 0.23 and 0.24 eV, respectively (cf. Table 2). In
Fig. 2b, we see that μDD-CAM and μDSH are also relatively close to
the average value of 0.71 bohr−1. The MAE obtained with a fixed μ
of 0.71 bohr−1 is 0.23 eV, again showing no advantage of using
material-specific μ values.

We now turn to the K-CAM functional in which αs values are
determined in a material-specific way by enforcing the general-
ized Koopmans’ condition. In this case, μ is fixed to 0.106 bohr−1,
like in HSE06. When compared for the same set of materials, the
K-CAM functional produces an MAE of 0.37 eV, which does not
improve upon the MAE of 0.34 eV pertaining to the K-PBE0
functional (cf. Supplementary Table 4). This agrees with previous
investigations adopting the same strategy for determining αs

37,39.
A recent study shows that it is possible to achieve a better
accuracy by fixing αs and determine μ through the enforcement of
the generalized Koopmans’ condition24. However, we did not
obtain such a higher accuracy when following an analogous
strategy but with localized potential probes (see Supplementary
information for more discussion).

Optimizing the inverse screening parameter
With the insight into the Eg-vs-μ relationship achieved above, we
now inquire whether it is possible to devise a strategy for selecting
μ that could further improve the accuracy of RSH functionals. In
Fig. 2, we have seen that the TF, DD-CAM, and DSH functionals
adopt μ values that fall close to the average value of 0.71 bohr−1,
whereas the μexpt values appear to be more scattered. We have
also established that the dependence of Eg on μ is largely
determined by the difference between αs and αl. In particular,
when αs= αl, the change of μ has no effect on the calculated band
gap. Prompted by this insight, we derive a relationship between
μexpt, αs, and αl. Assuming that Eg depends linearly on μ as in Fig. 2,

Fig. 2 Band gap vs. μ. Band gaps as calculated by range-separated hybrid functionals with a αs= 0.25 and b αs= 1 as a function of μ for the
26 materials investigated, in comparison with experimental values. Data points for the same material are fitted to a linear relationship as
indicated by the dashed lines. The experimental band gaps are then mapped to the fitted function. For ZnO, CaO, and BN in (a), the
dependence of band gap on μ is so weak that such a mapping produces μ values beyond reasonable range and therefore the corresponding
points are not shown. The vertical black line represents the results obtained with the fixed value of 0.71 bohr−1 for μ.
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we have

EgðμÞ ¼ EgðμexptÞ þ ðμ� μexptÞ
dEgðμÞ
dμ

: (5)

Considering that EgðμexptÞ ¼ Eexptg , it follows that

μexpt ¼
Eexptg � Egð0Þ

dEgðμÞ
dμ

; (6)

where Eg(0) is the band gap value obtained with μ= 0, which
coincides with the value obtained with PBE0(α= αs). Using the
properties of the exchange potential, it can analytically be shown
that dEg(μ)/dμ for a given material is proportional to αs− αl (cf.
Section 6 in the Supplementary information). As seen in Fig. 3a,
the proportionality constant is approximately constant for the
materials considered in this work. To produce this figure, we set
αs= 0.25 and determine the derivative dEg(μ)/dμ by finite
differences. Next, we focus on the numerator Eexptg � Egð0Þ in
Eq. (6). From the success of DDH functionals, we can assume that
Eexptg � Eg½PBE0ð1=ϵÞ�. Since Eg(0)= Eg[PBE0(αs)], we then infer that

Eexptg � Egð0Þ relates to 1/ϵ∞ and thus to αl. In Fig. 3b, we show
that this relationship can be closely approximated by a linear
dependence of Eexptg � Egð0Þ on αs− αl.
By combining the results from this analysis in Eq. (6), we propose

a universal formula for selecting μ as a function of αs and αl:

μu ¼ f
1

αl � αs

� �

; (7)

where f(x) is a linear function. Based on this formula, we fit the
μexpt values obtained previously and arrive at the following
expressions for μu:

μαs¼0:25
u ¼ �0:044

αs � αl
þ 0:65; (8)

μαs¼1
u ¼ 0:56

αs � αl
� 0:04: (9)

The μαs¼0:25
u and μαs¼1

u values are shown on the respective panels
of Fig. 2 and listed in Table 3. We observe that this expression
correctly captures the divergence in the Eg-vs-μ relationship at

Table 2. Band gaps (in eV) obtained with the hybrid functionals listed in Table 1 and the corresponding experimental references.

PBE0 DD-PBE0 HSE06 TF μαs¼0:25
fix DSH DD-CAM μαs¼1

fix Expt.+ZPR

sp materials

AlN 6.28 6.10 5.49 6.17 6.17 6.35 6.26 6.41 6.71

AlP 2.92 2.27 2.27 2.31 2.29 2.44 2.43 2.39 2.60

AlAs 2.71 2.01 1.93 2.04 2.03 2.11 2.16 2.11 2.31

Ar 11.14 14.62 10.36 14.13 14.33 14.77 14.91 14.95 14.33

BN 6.57 6.43 5.83 6.44 6.44 6.58 6.50 6.72 6.74a

C (diamond) 6.05 5.55 5.35 5.55 5.56 5.53 5.48 5.62 5.85a

CaO 6.03 6.33 5.30 6.29 6.30 6.97 6.92 7.06 7.43

LiCl 8.58 9.55 7.80 9.44 9.49 9.87 9.94 9.94 9.57

LiF 12.31 15.57 11.50 15.06 15.13 16.09 16.16 16.44 15.43

MgO 7.25 8.08 6.47 7.99 8.02 8.36 8.37 8.58 8.47

Si 1.76 0.95 1.14 0.98 0.96 1.09 1.06 1.03 1.22

SiC 2.91 2.30 2.24 2.31 2.30 2.35 2.30 2.35 2.59

NaCl 7.14 8.75 6.56 8.55 8.46 8.90 9.10 8.95 9.14

MAEsp 1.10 0.34 1.53 0.37 0.36 0.29 0.31 0.33

MAREsp 15.9% 7.7% 18.3% 7.6% 7.7% 5.2% 5.6% 6.0%

3d materials

Ge 1.35 0.18 0.61 0.39 0.38 0.61 0.50 0.62 0.78

GaN 3.84 3.30 3.14 3.33 3.33 3.41 3.46 3.54 3.73

GaP 2.93 2.12 2.31 2.17 2.18 2.22 2.29 2.27 2.41

GaAs 1.95 0.95 1.26 1.05 1.04 1.34 1.51 1.37 1.57

InP 2.10 1.16 1.47 1.25 1.24 1.56 1.59 1.52 1.47

ZnO 3.19 2.72 2.43 2.77 2.77 3.02 3.45 3.60 3.61

ZnS 3.99 3.43 3.29 3.49 3.48 3.96 4.04 4.01 3.95

ZnSe 2.95 2.23 2.20 2.30 2.29 2.61 2.75 2.68 2.88

TiO2 4.18 3.01 3.39 3.17 3.14 3.93 3.86 3.99 3.65

Cu2O 2.66 1.52 1.89 1.55 1.54 2.02 2.49 2.13 2.21

CdS 2.89 2.37 2.19 2.36 2.35 2.77 2.95 2.77 2.66

CdSe 2.34 1.11 1.37 1.46 1.48 1.90 1.75 1.94 1.88

γ-CsSnI3 1.75 1.15 1.12 1.19 1.18 1.55 1.46b 1.46 1.53

MAEd 0.36 0.55 0.44 0.45 0.46 0.19 0.15 0.13

MAREd 20.1% 26.7% 17.5% 21.0% 21.4% 8.4% 6.7% 6.3%

MAE 0.73 0.44 0.98 0.41 0.41 0.24 0.23 0.23

MARE 18.0% 17.2% 17.9% 14.3% 14.6% 6.8% 6.2% 6.1%

The experimental band gaps are corrected for zero-point phonon renormalization (ZPR). The mean absolute errors (MAE) and mean absolute relative errors
(MARE) with respect to the experimental references are calculated for the full set of materials and separately for the subgroups of sp and 3d materials.
aGW band gap from ref. 58.
bμDD−CAM taken as 0.71 bohr−1.
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αs= αl and follows the scatter of μexpt. As such, these μu values
further improve the accuracy in predicting band gaps compared
to the previous functionals, with MAEs of 0.15 eV for μαs¼0:25

u and of
0.18 eV for μαs¼1

u . Similarly, the respective MAREs reduce to 3.8%
and 5.6%. The predicted band gaps are shown in Fig. 4 and are
provided in Table 3. As shown in Fig. 4, the two functionals
adopting μu values yield a uniform accuracy over the full range of
band gaps. In the case αs= 0.25, we remark that Eq. (8) leads to
μαs¼0:25
u values lying close to the divergence for materials with

ϵ∞ ≈ 4. Nevertheless, the band gaps in these cases depend only
very weakly on μ, and μ can thus be set to 0.
Furthermore, we test the proposed formulas for μ on several

materials that are not part of the set studied. To verify that the
proposed functionals with μαs¼0:25

u and μαs¼1
u do not spuriously

open up a band gap for metallic systems, we consider graphite,
sodium, and aluminum and observe no band gap opening for any
of these metals. In addition, we remark that although the
proposed μu formulas perform consistently on a large set of
materials, there can be outliers for which DD functionals are less
successful. For example, it has been shown in literature that DD
hybrid functionals may lead to inaccurate band gaps in the case of
correlated antiferromagnetic transition-metal oxides52. In the case
of NiO, we indeed find that the functionals with μαs¼0:25

u and μαs¼1
u

proposed here noticeably overestimate the band gap (see
Supplementary information for more discussion).

Conclusion
To sum up, we have performed a comprehensive evaluation of the
performance of available nonempirical hybrid functionals in

Fig. 3 The linear dependence of dEg/dμ and ðEexptg � Egð0ÞÞ on (αs− αl). Dependence of a dEg/dμ and b ðEexptg � Egð0ÞÞ on (αs− αl) for the
materials considered in this work in the case αs= 0.25. Here, Eg(0) represents the band gap obtained with μ= 0 and thus corresponds to the
PBE0 band gap. The equations correspond to linear regressions of the calculated data points.

Table 3. The inverse screening parameters μαs¼0:25
u and μαs¼1

u (in
bohr−1) and the corresponding band gaps (in eV).

μαs¼0:25
u Eg μαs¼1

u Eg Expt. + ZPR

sp materials

AlN 0.00 6.63 0.70 6.43 6.71

AlP 0.31 2.61 0.61 2.47 2.60

AlAs 0.35 2.35 0.60 2.19 2.31

Ar 0.74 14.71 1.38 14.44 14.33

BN 0.00 6.89 0.69 6.74 6.74

C(diamond) 0.06 6.00 0.65 5.64 5.85

CaO 1.88 6.78 0.74 6.99 7.43

LiCl 0.98 9.92 0.84 9.78 9.57

LiF 0.78 15.47 1.11 15.62 15.43

MgO 1.11 8.49 0.80 8.39 8.47

Si 0.41 1.25 0.57 1.12 1.22

SiC 0.24 2.69 0.62 2.41 2.59

NaCl 0.86 8.95 0.94 8.70 9.14

MAEsp 0.20 0.20

MAREsp 3.1% 3.9%

3d materials

Ge 0.44 0.73 0.55 0.72 0.78

GaN 0.07 3.79 0.65 3.61 3.73

GaP 0.38 2.53 0.58 2.33 2.41

GaAs 0.41 1.41 0.57 1.60 1.57

InP 0.40 1.58 0.58 1.65 1.47

ZnO 0.00 3.29 0.66 3.78 3.61

ZnS 0.10 3.91 0.64 4.10 3.95

ZnSe 0.27 2.69 0.62 2.80 2.88

TiO2 0.33 3.67 0.60 4.25 3.65

Cu2O 0.36 2.09 0.59 2.35 2.21

CdS 0.17 2.75 0.64 2.83 2.66

CdSe 0.35 1.88 0.59 2.14 1.88

γ-CsSnI3 0.29 1.49 0.61 1.70 1.53

MAEd 0.10 0.17

MAREd 4.4% 7.2%

MAE 0.15 0.18

MARE 3.8% 5.6%

The mean absolute errors (MAE) and mean absolute relative errors (MARE)
are calculated for the whole set, and for sp materials and d materials
separately.

Fig. 4 Band gaps obtained with μu. Band gaps obtained with a
μαs¼0:25
u and b μαs¼1

u , compared to experimental band gaps. The disks
and circles represent sp and 3d materials, respectively. The band
gaps and mean absolute errors (MAEs) are given in Table 3.
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predicting band gaps for a varied set of semiconductors and
insulators. In Fig. 5, we provide a comparison of the MAEs for the
functionals considered in this work. First, we have shown that the
Fock fractions required for producing the experimental band gaps
are material-specific. In most cases, they lie close to 1/ϵ∞. As a
result, standard hybrid functionals such as PBE0 and HSE06
generally perform better for materials with medium band gaps,
whereas they severely underestimate the band gaps of wide band
gap materials. Adopting material-specific α values, as in DD-PBE0
and K-PBE0, greatly improves the uniformity of the accuracy over
the band gap range. Between these two, K-PBE0 performs slightly
better in terms of overall accuracy (MAE 0.34 eV compared to
0.44 eV). Going from K-PBE0 to K-CAM shows little improvement in
the MAE. These three functionals also consistently show a better
performance for sp materials compared to materials with 3d
electrons.
As for the DD-RSH functionals, the class with αs= 1 shows an

overall advantage over the class with αs= 0.25. The functional
adopting αs= 0.25 and μ= μTF produces an MAE of 0.41 eV,
whereas DD-CAM and DSH have MAEs of 0.23 and 0.24 eV,
respectively. It is also noteworthy that the accuracy of the latter
group does not deteriorate as much for 3d materials compared to
the global hybrid functionals, or to functionals with αs= 0.25. In
addition, we show that previous methods based on μTF, μDSH, and
μDD-CAM, all produce μ values fairly close to the average value of
0.71 bohr−1. In fact, functionals using a fixed μ of 0.71 bohr−1 are
as accurate as methods adopting material-specific μ, consistent
with previous findings by Chen et al.20.
Last, we demonstrate that a suitable choice of μ improves the

accuracy of range-separated functionals even further. The μ values
reproducing the experimental band gaps are far more scattered
than any of the available schemes for determining μ. Based on this
observation, we propose a new formula μu, which correctly
captures the divergence of μ at αs= αl. This formula produces
surprisingly good MAEs of 0.15 eV for αs= 0.25 and 0.18 eV for
αs= 1, demonstrating the potential of further lowering the band
gap errors achieved with RSH functionals. The RSH functionals
constructed either with fixed μ values (0.71 bohr−1) or with μ
values given by a simple analytical equation (μu) provide a scheme
that is much simplified with respect to the DD-CAM method20 or
to the Koopmans construction process23,37,38,41,43. With these
findings, we have established that hybrid functionals with
material-specific parameters can approach the accuracy of state-
of-the-art GW calculations with no greater computational cost
than that of standard hybrid-functional calculations, making these
functionals ideal candidates for widespread use in predicting
electronic properties of solid-state materials.

METHODS
Computational details
All DFT calculations are performed with the QUANTUM ESPRESSO suite53.
Plane-wave basis sets for expanding the wave functions are used in
conjunction with normconserving pseudopotentials including semi-
core d electrons54,55. The lattice parameters are taken from
experimental values, as given in refs. 20 and 50. Plane-wave energy
cut-offs and k-point grids are individually set for each material to
ensure band gap convergence within 1meV. Details of the material
structures, convergence parameters, and specific α and μ values used
for each functional can be found in the Supplementary information.
For the DD-CAM functional, we take the αl and μ values from ref. 20.
For the K-PBE0 and K-CAM functional, αK values are taken from ref. 43,
but the accuracy of these schemes is here determined using the
same experimental references as for the other functionals. The band
gap calculations are repeated for all the functionals considered in this
work to eliminate any effect resulting from the use of different
pseudopotentials or materials structures.
The accuracy of the functionals considered in this work is

determined with respect to experimental values corrected for
zero-point renormalization. The sources of these values are given
in Supplementary information. For BN and diamond, it is difficult
to correct the measured optical band gaps for the excitonic effect,
because these materials have indirect band gaps56,57. Thus, we use
state-of-the-art GW calculations as a reference in these two
cases58. Experimental errors still affect the accuracy determined
for the various functionals, but the comparison between theory
and experiment remains meaningful provided that the set of
materials considered is large.

DATA AVAILABILITY
The data associated with this work is available on Materials Cloud59.

CODE AVAILABILITY
The open-source QUANTUM ESPRESSO suite53 is freely available. The other relevant codes
in this study are available from the corresponding authors upon reasonable request.
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