
Harnessing Rule-Based Chatbots to Support
Teaching Python Programming Best Practices

Juan Carlos Farah1,2, Basile Spaenlehauer1, Sandy Ingram2, Aditya K.
Purohit3, Adrian Holzer4, and Denis Gillet1

1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
{juancarlos.farah,basile.spaenlehauer,denis.gillet}@epfl.ch
2 University of Applied Sciences (HES-SO), Fribourg, Switzerland,

{juancarlos.farah,sandy.ingram}@hefr.ch
3 Radboud University, Nijmegen, The Netherlands,

aditya.purohit@ru.nl
4 University of Neuchâtel, Neuchâtel, Switzerland,

adrian.holzer@unine.ch

Abstract. In recent years, the use of chatbots in education has been
driven by advances in natural language processing and the increasing
availability of digital education platforms. Although the added value
of educational chatbots appears promising, researchers have noted that
there is a need for empirical studies that explore the effects of incorpo-
rating chatbots into different learning scenarios. In this paper, we report
on the integration of a rule-based chatbot into an information technol-
ogy course. We conducted a controlled experiment in which half of the
students were able to interact with the chatbot during Python lab ses-
sions while the other half completed the sessions without the chatbot.
Our results suggest that educational chatbots powered by short, simple,
interactive scripts could have a positive impact on the user experience
offered by learning technologies and could be pertinent to educators look-
ing to integrate chatbots into their practice.

Keywords: educational chatbots, digital education, Python, empirical
study, programming best practices

1 Introduction

Chatbots have been poised to disrupt educational technologies for well over a
decade [30]. Nevertheless, researchers have found that there is still a lack of
empirical studies on the use of chatbots in education [15]. In this study, we
present results from a controlled experiment conducted within a university-level
information technology course. Our study aimed to shed light on how rule-based
chatbots could be harnessed to support students learning Python programming
best practices as defined by the PEP-8 standard [24]. To that end, we configured a
chatbot to follow a predefined script designed to show students that a particular
code style guideline was useful in practice. The results from our case study
contribute to the growing body of research on educational chatbots and may be
relevant to practitioners looking to integrate these chatbots into their courses.



2 Juan Carlos Farah et al.

2 Background and Related Work

Recent reviews of the literature have highlighted that chatbots are often used
to teach computer-related topics [18, 31]. In software engineering education, ed-
ucational chatbots have been specifically harnessed in database, programming,
computer networks, and compiler courses [18]. For example, Coronado et al. pro-
posed a personal agent to support students in learning the Java programming
language [5]. Their empirical evaluation, which relied on both objective and
subjective metrics, showed that incorporating social dialog through question-
answering agents increased user satisfaction and engagement with the system in
which the agents were deployed. Mad Daud et al. also proposed a chatbot for
learning Java [22]. By generating different code control structures, the proposed
e-Java chatbot helped students in learning different ways of coding solutions
for the same problem. Custom surveys were used as evaluation metrics to assess
the perceived usefulness of the proposed chatbot. Going beyond self-reported
metrics, an empirical study conducted by Winkler et al. evaluated information
retention and transfer ability using different types of conversational agents (e.g.,
scaffolding vs. non-scaffolding, text vs. voice-based) [29]. Their evaluation using
introductory Python programming tutorials achieved positive results.

Our work adds to this growing body of research by addressing the use of
chatbots to support conducting code reviews in educational contexts. Conduct-
ing peer reviews for software verification and validation is one of the topics that
the IEEE Computer Society and the Association for Computing Machinery rec-
ommend for computer science curricula [16]. Indeed, code reviews are an integral
part of the software development process [28] and while there are several tools
to support code reviews [2, 13], most collaborative software development involv-
ing the code review process currently takes place on social coding platforms.
These platforms feature interfaces for reviewing and annotating code, provid-
ing a backdrop for discussions between developers. Chatbots can help with this
process and have thus become a common feature of the social software devel-
opment experience [20], helping to reduce manual labor, improve code quality,
and increase productivity [26, 27]. However, very few studies have focused on the
use of chatbots to support the code review process in formal education settings.
We build on a previous Wizard of Oz [6] experiment [10] and a pilot study [8]
to explore the impact that rule-based chatbots supporting code review exercises
could have on the learning experience. In the following section, we present our
guiding research question and the methodology we followed for our evaluation.

3 Methodology

Our evaluation aimed to address the following research question: What are the
effects of a rule-based chatbot designed to support Python programming lessons
on students’ learning experiences? We addressed this research question by con-
ducting a between-subjects controlled experiment comprising one control and
one treatment. In both conditions, students were presented with the same les-
son. The conditions differed only in the way we explained the code style issues



Rule-Based Chatbots to Support Teaching Python Programming 3

illustrated by the example code snippets. To frame our evaluation, we focused
specifically on four aspects of the learning experience: (i) learning gains achieved,
(ii) perceived usefulness of the material, (iii) user experience of the lesson, and
(iv) feedback. In this section, we explain the methodology of our evaluation in
detail.

3.1 Pedagogical Scenario

The main evaluation took place within the five-week Python programming com-
ponent of a 14-week information technology course tailored for students complet-
ing a bachelor’s degree in economics and business at the University of Neuchâtel,
Switzerland. A total of 97 students were enrolled in the course. Before the begin-
ning of the course, students were randomly assigned to the treatment (chatbot)
or control (no chatbot) group. As outlined in Table 1, each week, students took
part in an in-class lecture. The same week, they were able to attend a lab session
in which the topics covered in the lecture were reviewed and a code style exer-
cise was presented. Participation, however, was not mandatory. The course was
conducted in French and all the material—including the chatbot scripts—was
presented in French. For convenience, scripts, screenshots, student responses,
and other material presented herein have been translated into English by the
authors.

Table 1: Weekly lecture topics included in the Python programming component
of the course alongside their corresponding lab session and code style exercises.

Week Lecture Lab Code Style Exercise

1 Conditions Conditions Pre-Test
2 Loops Loops Indentation, Whitespace, Constants
3 Lists Lists Comparisons, Negating, Comparing Booleans
4 Functions Functions Max Length, Function Names, Descriptive Names
5 — Review Post-Test

Each lab session was conducted in French and included an exercise on Python
code style guidelines based on the PEP-8 standard. These exercises were struc-
tured as code review notebooks [9] and followed the Fixer Upper pedagogical
pattern both for explanation and evaluation [3]. That is, students were presented
with code snippets that included code styling violations and were shown how to
correct them (explanation) or asked to identify the issues present (evaluation).
The first lab introduced students to the exercises and included a short activ-
ity that served as a pre-test. The second, third, and fourth labs each included
explanations covering code layout, coding standards, and naming standards, re-
spectively. In the final session, students completed a second activity that served
as a post-test. Sessions were supported by the Graasp learning experience plat-



4 Juan Carlos Farah et al.

form [11] and Code Review, an application that allows students to annotate code
and supports dialogs with chatbots [9].

Fig. 1: Our chatbot was integrated into an application that was embedded in a
code review notebook aimed at teaching Python programming.

Chatbot For this case study, we equipped Code Review with PEP-8 Bot. This
chatbot was used to annotate the lines of code that contained potential code style
issues within a series of Python code snippets used in Labs 2–5. The chatbot
was configured to engage students by asking them if they understood and agreed
with the logic behind the code style issue at hand, providing explanations of
Python programming best practices, and motivating the reasons behind those
best practices. An example of the chatbot embedded in the code review notebook
is shown in Figure 1. Furthermore, we included interactions featuring emoji and
animated gifs, taking advantage of the Markdown [12] support provided by Code
Review. This allowed our chatbot to express—among other emotions—humor
and confusion, as shown in Figure 2.



Rule-Based Chatbots to Support Teaching Python Programming 5

Fig. 2: Some of the chatbot’s comments featured animated gifs (left) and emojis
(right) to elicit humor and express confusion, respectively.

3.2 Procedure

At the beginning of each lab session, students were asked to complete a short
code style exercise. Each exercise was meant to take approximately five minutes
to complete. Lab 1 included the pre-test and was identical for all students. In
Labs 2–4, each code style exercise covered three guidelines, spanning a total of
nine guidelines (see Table 1). Finally, in Lab 5, students completed the post-test,
after which they were shown the solutions to the test. For each guideline—and for
the solutions to the post-test—students were presented with a short explanation
followed by a code snippet containing an issue (incorrect snippet) and a code
snippet with a correction of the issue (correct snippet). In the incorrect snippet,
on the line containing the issue, students in the treatment group were also shown
a comment from PEP-8 Bot that provided a further explanation and prompted
the student to start a dialog about the usefulness of the guideline. Students in
the control group did not see this comment.

3.3 Participants

There were 97 students enrolled in the course (44 female, 53 male). A total of 89
students accessed at least one of the exercise sessions and 65 students accessed
all the sessions.

3.4 Instruments

We operationalized the four aspects of the learning experience as follows. Learn-
ing gains were calculated by taking the difference between students’ scores on



6 Juan Carlos Farah et al.

the pre-test and the post-test. This yielded a learning gain that could range
from -100% to 100%. Usefulness was measured using a seven-point Likert scale.
Students were asked to rate how useful they found each individual guideline on a
scale of 1 (not useful at all) to 7 (very useful). After the final exercise, using the
same scale, they were asked to rate the overall usefulness of the code style exer-
cises as a whole. User experience was captured with the User Experience Ques-
tionnaire (UEQ), a standard instrument that measures user experience across
six dimensions [19]. Finally, feedback was assessed using the following question:
“Do you have any suggestions or comments on the parts of the labs that dealt
with code style guidelines?”

3.5 Data Analysis

We analyzed quantitative data using descriptive and inferential statistics, re-
porting sample means (x̄), medians (x̃), and standard deviations (sx), as well
as results from two-sample t-tests, where applicable. Qualitative feedback was
analyzed using line-by-line data coding [4].

4 Results

In this section, we highlight our results with respect to each aspect considered.

4.1 Learning Gains

A total of 25 students (10 control, 15 treatment) completed the post-test required
to calculate learning gains. In both groups, as shown in Figure 3, learning gains
were positive. The students in the control group achieved a mean learning gain
of 36.0% (sx = 31.3%), while those in the treatment group achieved a mean
learning gain of 36.7% (sx = 30.6%). As expected, the results of a two-sample
t-test did not yield significant results (p = 0.958).

0.0 0.2 0.4 0.6 0.8 1.0
Learning Gain

Control

Treatment

G
ro
up

Learning Gains by Condition

Fig. 3: Learning gains were positive for both groups, but there were no significant
differences across conditions.



Rule-Based Chatbots to Support Teaching Python Programming 7

4.2 Perceived Usefulness

Regarding perceived usefulness, 46 students (26 control, 20 treatment) provided
a total of 232 ratings distributed across the nine different guidelines, while 14
students (5 control, 9 treatment) rated the overall usefulness of the code style
exercises. As shown in Figure 4, ratings were on average positive (above the
median rating of 4), both overall and across individual guidelines. Nevertheless,
two-sample t-tests did not yield significant differences across the groups. Fur-
thermore, the number of students who provided the ratings decreased over time.
While 34 students rated the first guideline, only 17 students rated the last one.
It is important to note, however, that there were no significant differences in
how this diminishing trend manifested itself in each of the two conditions.

Indentation
(n = 34)

Whitespace
(n = 34)

Constants
(n = 31)

Comparisons
(n = 27)

Negating
(n = 26)

Comparing Booleans
(n = 23)

Max Length
(n = 20)

Function Names
(n = 20)

Descriptive Names
(n = 17)

Code Style Guideline
(number of students who provided a rating)

1

2

3

4

5

6

7

R
at
in
g

Ve
ry
 U

se
fu
l

N
ot
 U

se
fu
l A

t A
ll

Individual Guidelines
Control
Treatment

Overall Usefulness
(n = 14)

Overall

Perceived Usefulness

Fig. 4: On average, students rated how useful they found each guideline and the
overall usefulness of the code style exercises positively (above the median rating
of 4), but there were no significant differences across groups.

4.3 User Experience

A total of 27 students (14 control, 13 treatment) completed the UEQ. On av-
erage, students in the control group provided negative ratings for four of the
six dimensions, while students in the treatment group provided positive ratings
across all dimensions (see Figure 5). This difference was more pronounced in the
efficiency (p = 0.0127), dependability (p = 0.0565), and perspicuity (p = 0.0807)
dimensions.

4.4 Feedback

A total of 10 students (5 control, 5 treatment) provided qualitative feedback in
the form of short open-ended responses. Four themes emerged in the responses:



8 Juan Carlos Farah et al.

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty
Dimension

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Sc
or

e
*

* p < 0.05

User Experience
Control
Treatment

Fig. 5: User Experience Questionnaire (UEQ) ratings were consistently higher
for the treatment group, especially for the efficiency (p = 0.0127), dependability
(p = 0.0565), and perspicuity (p = 0.0807) dimensions.

(i) more support, (ii) more exercises, (iii) useful, and (iv) useless. First, more
support was requested by four students (one control, three treatment), who sug-
gested that instructors help clarify doubts and provide more information on the
exercises. These requests are exemplified by a comment from a student in the
treatment condition, who underlined that a “human touch would be nice” when
referring to the lesson. Second, two students in the control group requested more
exercises as a way to better assimilate the material. Third, two students in the
treatment condition expressed that the exercises were useful, with one student
providing the following comment:

“Guidelines that addressed code style that made code more readable
(layout, balance between upper and lower case, convention in writing
style) were very helpful. The little touches of humor in [Lab 4] made the
[lab] much more interesting. In general, the practical guidelines of the
code allowed the course to be more complete.”

Finally, two students in the control group referred to the exercise as useless,
with one explicitly saying that they were “quite useless and boring compared to
normal lab exercises”.

5 Discussion

The results of our evaluation show that although our chatbot integration did not
affect learning gains or the perceived usefulness of the material, it did have an
impact on the user experience of the lesson. On the one hand, results regarding



Rule-Based Chatbots to Support Teaching Python Programming 9

learning gains could be explained by the fact that the chatbot interaction was
primarily designed to reiterate the explanation that was already present in the
text and—if needed—persuade the student that the guideline in question was
useful in practice. On the other hand, for the same design reason, we would have
expected students who were exposed to the chatbot to perceive the code style
guidelines as more useful than students who did not hold those interactions,
which was not the case. However, as evidenced by the decreasing number of
students who provided ratings as the course progressed, this result could have
been influenced by a diminishing novelty effect that curbed student interest in
the code style exercises.

The lack of significant differences in learning gains between conditions could
be interpreted positively. In line with a suggestion made by Hobert [14], this
result bolsters the idea that educational chatbots could support learners when
teaching staff are not available or in scenarios with large numbers of students.
Given that learning is not impacted, educational chatbots could serve as an
additional layer of interaction for learners seeking more information.

The differences in user experience, however, were evident—albeit not always
significant—across all dimensions of the UEQ, and are very promising. Results
from the UEQ suggest that incorporating the chatbot into the interface improved
student perception of the user experience of the lesson, especially in terms of
efficiency, dependability, and perspicuity. This improvement could have been
mediated by the fact that including the chatbot added interactivity to a lesson
that was otherwise primarily explanatory.

Improvements in user experience that are not accompanied by improvements
in learning gains have been observed in the literature. As discussed by Davids
et al., this lack of correlation could be due to the type of learners that are par-
ticipating in the learning activity or the interface that is being optimized [7]. In
the case of Davids et al., their study was conducted with practicing clinicians
who the authors describe as possibly being highly motivated and therefore less
affected by the user experience improvements the authors were testing. In our
case, the fact that the exercises were not mandatory might have led to a selec-
tion bias, where the most motivated students took part in code style exercises
included as part of their lab work, possibly leading to a similar effect as the one
observed by Davids et al. [7]. Nevertheless, an improvement in perceived user
experience can have an impact on other dimensions, such as task completion
rate [17], self-regulation [21], and motivation [32].

Further insights were provided by the qualitative feedback. Positive com-
ments regarding the usefulness of the exercises were present exclusively in the
treatment condition, while negative comments about the uselessness of the exer-
cise were present exclusively in the control condition. This contrast suggests that
including the educational chatbot made the exercises more meaningful, possibly
shedding some light on why perceived user experience was higher in the treat-
ment condition. Nonetheless, the fact that more support was requested by four
students, including three in the treatment condition, indicates that even with



10 Juan Carlos Farah et al.

the inclusion of a chatbot, students still require a “human touch” in the learning
process.

6 Conclusion, Limitations, and Future Work

In this paper, we presented results from an empirical case study assessing the
effects of integrating educational chatbots into blended learning scenarios aimed
at teaching Python programming best practices. The findings of our controlled
experiment show that there were no significant differences in the learning gains
achieved and the perceived usefulness of the lessons between students who com-
pleted the exercises alone and those who completed them with support from the
chatbot. However, students who had access to the chatbot rated the user expe-
rience of the lesson more positively, particularly in the efficiency, dependability,
and perspicuity dimensions of the UEQ. This improved user experience could
motivate the integration of chatbots into the type of lessons used in this study.

It is important to note that this study has some limitations worth consider-
ing. First, given that the exercises were not mandatory, there could have been
some selection bias in our sample, as possibly only the most motivated students
interacted with the lesson. Second, while the rule-based scripts ensured that
student interaction with the chatbot was on topic and pertinent to the lessons,
the limited scope of these exchanges could have diminished how natural they
appeared to the student and, therefore, discouraged students from interacting
with the chatbot. These limitations could be addressed by (i) ensuring that all
students are exposed to the exercises and (ii) equipping the chatbot with a gen-
erative language model. We will address these limitations and explore possible
improvements through the use of large language models—such as those powering
ChatGPT [23]—in future work.

Acknowledgments

Images used in this study include icons made by Vector Stall [25] and Bad
Arithmetic [1].

References

1. Bad Arithmetic: Measuring Tape Measure Up (2017). URL https://giphy.com/
embed/3og0IQttlo3NfcsIiQ

2. Baum, T., Schneider, K.: On the Need for a New Generation of Code Re-
view Tools. In: P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer,
S. Amasaki, T. Mikkonen (eds.) Product-Focused Software Process Improve-
ment, vol. 10027, pp. 301–308. Springer, Cham, Switzerland (2016). DOI
10.1007/978-3-319-49094-6 19

3. Bergin, J.: Fourteen Pedagogical Patterns. In: M. Devos, A. Rüping (eds.) Pro-
ceedings of the 5th European Conference on Pattern Languages of Programs (Eu-
roPLoP 2000). Universitaetsverlag Konstanz, Irsee, Germany (2000)



Rule-Based Chatbots to Support Teaching Python Programming 11

4. Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Quali-
tative Analysis. Sage, London, UK (2006)

5. Coronado, M., Iglesias, C.A., Carrera, Á., Mardomingo, A.: A Cognitive Assistant
for Learning Java Featuring Social Dialogue. International Journal of Human-
Computer Studies 117, 55–67 (2018). DOI 10.1016/j.ijhcs.2018.02.004

6. Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz Studies—Why and How.
Knowledge-Based Systems 6(4), 258–266 (1993)

7. Davids, M.R., Chikte, U.M.E., Halperin, M.L.: Effect of Improving the Usability of
an E-Learning Resource: A Randomized Trial. Advances in Physiology Education
38(2), 155–160 (2014). DOI 10.1152/advan.00119.2013

8. Farah, J.C., Spaenlehauer, B., Bergram, K., Holzer, A., Gillet, D.: Challenges and
Opportunities in Integrating Interactive Chatbots into Code Review Exercises:
A Pilot Case Study. In: EDULEARN22 Proceedings, pp. 3816–3825. IATED,
Valencia, Spain (2022). DOI 10.21125/edulearn.2022.0932

9. Farah, J.C., Spaenlehauer, B., Rodŕıguez-Triana, M.J., Ingram, S., Gillet, D.: To-
ward Code Review Notebooks. In: 2022 International Conference on Advanced
Learning Technologies (ICALT), pp. 209–211. IEEE, New York, NY, USA (2022).
DOI 10.1109/ICALT55010.2022.00068

10. Farah, J.C., Spaenlehauer, B., Sharma, V., Rodŕıguez-Triana, M.J., Ingram, S.,
Gillet, D.: Impersonating Chatbots in a Code Review Exercise to Teach Soft-
ware Engineering Best Practices. In: 2022 IEEE Global Engineering Education
Conference (EDUCON), pp. 1634–1642. IEEE, New York, NY, USA (2022). DOI
10.1109/EDUCON52537.2022.9766793

11. Gillet, D., Vonèche-Cardia, I., Farah, J.C., Phan Hoang, K.L., Rodŕıguez-Triana,
M.J.: Integrated Model for Comprehensive Digital Education Platforms. In: 2022
IEEE Global Engineering Education Conference (EDUCON), IEEE Global Engi-
neering Education Conference, pp. 1586–1592. IEEE, New York, NY, USA (2022).
DOI 10.1109/EDUCON52537.2022.9766795

12. Gruber, J., Swartz, A.: Markdown (2004). URL daringfireball.net/projects/
markdown/

13. Hedberg, H.: Introducing the Next Generation of Software Inspection Tools. In:
T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar, M.Y. Vardi, F. Bomarius,
H. Iida (eds.) Product Focused Software Process Improvement, vol. 3009, pp. 234–
247. Springer, Berlin, Germany (2004). DOI 10.1007/978-3-540-24659-6 17

14. Hobert, S.: Say Hello to ‘Coding Tutor’ ! Design and Evaluation of a Chatbot-based
Learning System Supporting Students to Learn to Program. In: 40th International
Conference on Information Systems (ICIS 2019), vol. 3, pp. 1776–1792. Curran
Associates, Inc., Red Hook, NY, United States (2020)

15. Hwang, G.J., Chang, C.Y.: A Review of Opportunities and Challenges of Chatbots
in Education. Interactive Learning Environments (2021). DOI 10.1080/10494820.
2021.1952615

16. Joint Task Force on Computing Curricula: Software Engineering 2014: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering. Tech.
rep., IEEE & ACM (2015)

17. Kanuka, H., Szabo, M.: Conducting Research on Visual Design and Learning: Pit-
falls and Promises. Canadian Journal of Learning and Technology / La revue cana-
dienne de l’apprentissage et de la technologie 27(2) (1999). DOI 10.21432/T2SW37

18. Kuhail, M.A., Alturki, N., Alramlawi, S., Alhejori, K.: Interacting with Educational
Chatbots: A Systematic Review. Education and Information Technologies 28(1),
973–1018 (2023). DOI 10.1007/s10639-022-11177-3



12 Juan Carlos Farah et al.

19. Laugwitz, B., Held, T., Schrepp, M.: Construction and Evaluation of a User Expe-
rience Questionnaire. In: A. Holzinger (ed.) HCI and Usability for Education and
Work, Lecture Notes in Computer Science, vol. 5298, pp. 63–76. Springer, Berlin,
Germany (2008). DOI 10.1007/978-3-540-89350-9 6

20. Lebeuf, C., Storey, M.A., Zagalsky, A.: Software Bots. IEEE Software 35(1), 18–23
(2018). DOI 10.1109/MS.2017.4541027

21. Liaw, S.S., Huang, H.M.: Perceived Satisfaction, Perceived Usefulness and Interac-
tive Learning Environments as Predictors to Self-Regulation in e-Learning Envi-
ronments. Computers & Education 60(1), 14–24 (2013). DOI 10.1016/j.compedu.
2012.07.015

22. Mad Daud, S.H., Ibrahim Teo, N.H., Mat Zain, N.H.: E-JAVA Chatbot for Learn-
ing Programming Language: A Post-Pandemic Alternative Virtual Tutor. Interna-
tional Journal of Emerging Trends in Engineering Research 8(7), 3290–3298 (2020).
DOI 10.30534/ijeter/2020/67872020

23. OpenAI: Introducing ChatGPT (2022). URL https://openai.com/blog/chatgpt
24. van Rossum, G., Warsaw, B., Coghlan, N.: Style Guide for Python Code. PEP 8,

Python Software Foundation (2001). URL https://www.python.org/dev/peps/
pep-0008/

25. Vector Stall: Assistant Free Icons. URL flaticon.com/free-icon/assistant 4818971
26. Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., Gerosa, M.A.: Effects of

Adopting Code Review Bots on Pull Requests to OSS Projects. In: Proceedings
of the 2020 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). IEEE, Adelaide, Australia (2020). DOI 10.1109/ICSME46990.2020.
00011

27. Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., Gerosa, M.A.: What to
Expect from Code Review Bots on GitHub?: A Survey with OSS Maintainers.
In: Proceedings of the 34th Brazilian Symposium on Software Engineering, pp.
457–462. ACM, Natal, Brazil (2020). DOI 10.1145/3422392.3422459

28. Wiegers, K.E.: Peer Reviews in Software: A Practical Guide. Addison-Wesley,
Boston, MA, USA (2002)

29. Winkler, R., Hobert, S., Salovaara, A., Söllner, M., Leimeister, J.M.: Sara, the
Lecturer: Improving Learning in Online Education with a Scaffolding-Based Con-
versational Agent. In: Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. ACM, Honolulu, HI, USA (2020). DOI 10.1145/3313831.
3376781

30. Winkler, R., Soellner, M.: Unleashing the Potential of Chatbots in Education: A
State-Of-The-Art Analysis. Academy of Management Proceedings 2018(1), 15903
(2018). DOI 10.5465/AMBPP.2018.15903abstract

31. Wollny, S., Schneider, J., Di Mitri, D., Weidlich, J., Rittberger, M., Drachsler, H.:
Are We There Yet? - A Systematic Literature Review on Chatbots in Education.
Frontiers in Artificial Intelligence 4, 654924 (2021). DOI 10.3389/frai.2021.654924

32. Zaharias, P., Poylymenakou, A.: Developing a Usability Evaluation Method
for e-Learning Applications: Beyond Functional Usability. International Jour-
nal of Human-Computer Interaction 25(1), 75–98 (2009). DOI 10.1080/
10447310802546716


