
Master’s project
Programming Methods Laboratory (LAMP)

Inline Traits for Specialization
in Scala 3

Timothée Andres

supervised by

Dr. Nicolas Stucki

Pr. Martin Odersky

Spring 2023

Contents
1 Introduction 2

1.1 Boxing and unboxing . 2
1.2 Code specialization . 3
1.3 Inlining in Scala . 6

2 Inline traits 8
2.1 Leveraging the inlining engine . 8
2.2 Design choices . 9
2.3 Accessing members through an inline trait 16

3 Implementation 17
3.1 Allowing member access through inline traits 17
3.2 Leveraging existing code for inlining 17
3.3 File Inlines.scala . 18
3.4 File SpecializeInlineTraits.scala 22
3.5 File PruneInlineTraits.scala 23

4 Evaluation 24
4.1 Code performance . 24
4.2 Code size . 26
4.3 Conclusion . 30

5 Future work 31
5.1 Known bugs in the current implementation 31
5.2 Remaining features to implement 31
5.3 General improvements . 33

A Boxing and unboxing behind the scenes i

B Effect of @specialize in Scala 2 ii
B.1 Source code . ii
B.2 Code generated after specialize phase ii
B.3 Code generated after erasure phase iv

C Normal trait vs. inline trait vi
C.1 Without inline keyword . vii
C.2 With inline keyword . vii

D Benchmarks vii
D.1 Matrix library benchmark . vii
D.2 Pairs benchmark . xii
D.3 Number of classes generated and total size xv

1

1 Introduction
Many strongly typed programming languages have introduced polymorphism
into their specifications, like Java [2], Scala [7] and C++ [1], to cite a few. This
elegant construct makes code more factorizable and reusable when the type of
the data is less important than how it is handled.

This very useful concept comes however with a drawback: genericity is a concept
that does not exist at the machine’s level. We therefore need a way for it to
understand what a generic type is. Two solutions are widely used:

• the first, called erasure, is to represent all values with a single, homog-
enized representation, and replace generic types with it at compile time
(e.g. Object in Java),

• the second, used for example in C++, is to use the generic code for homo-
geneous representations (reference types) and generate specialized code at
runtime for heterogeneous values (value types).

1.1 Boxing and unboxing
In Java, primitive types cannot be used as arguments to a generic function: they
do not conform to the "homogenized representation" mentioned earlier; instead,
they have to be wrapped in an object. The process of wrapping a primitive
type in its corresponding wrapper object is called boxing, while extracting a
primitive type from its wrapper object is called unboxing. This process is most
often done automatically by the compiler in a process called autoboxing: the
user does not need to explicitly make the conversion between primitive type
and object, shortening the code as a result.

This boxing mechanism, however, has a cost: operations that must be performed
on primitive types, such as arithmetic operations (+, -, *, /, etc.), are delayed
by the need to unbox the argument and rebox the result. For example, in Scala
3, if we compile the code from listing 1, erasure will generate the code presented
in listing 2.

1 class Wrapper[T](val x: T)
2

3 class C:
4 val w1 = Wrapper[Int](1)
5 val w2 = Wrapper[Int](2)
6 val w3 = Wrapper[Int](w1.x + w2.x)

Listing 1: Example of autoboxing in Scala 3

Despite its usefulness, boxing values come with a cost in performance: a sim-
ple operation on a primitive value turns into several method calls and object
instantiations, as shown in listing 2. You can find a benchmark showcasing this
effect in appendix A.

2

1 class Wrapper(x: Object) extends Object() {
2 def x(): Object
3 }
4

5 class C() extends Object() {
6 def w1(): Wrapper = new Wrapper(Int.box(1))
7 def w2(): Wrapper = new Wrapper(Int.box(2))
8 def w3(): Wrapper = new

Wrapper(Int.box(Int.unbox(this.w1().x()).+(Int.unbox(this.w2().x()))))
9 }

Listing 2: Code generated from listing 1 after type erasure

1.2 Code specialization
1.2.1 Specialization in Scala 2

The concept of code specialization is a good way to circumvent this issue. While
it is merely one of the solutions to this problem, it has been implemented into
several languages to improve the performance of generic code.

Specialization is a form of monomorphization, the opposite of polymorphization.
The goal is to generate concrete code from generic code, in order to have it
behave more optimally than in the generic case. This can be used to avoid
unnecessary boxing and unboxing.

Several forms of specialization exist, all tailored to the language in which they
exist. For example, C++ offers it through templates that can be explicitly
specialized [5] (see listing 3).

1 #include <type_traits>
2

3 // primary template
4 template<typename T> struct is_void : std::false_type {};
5 // explicit specialization for T = void
6 template<> struct is_void<void> : std::true_type {};
7

8 int main()
9 {

10 static_assert(is_void<char>::value == false,
11 "for any type T other than void, the class is derived from false_type");
12 static_assert(is_void<void>::value == true,
13 "but when T is void, the class is derived from true_type");
14 }

Listing 3: Specialization of templates in C++

Templates are a powerful tool for specialization:

• the specialized code can be arbitrarily different from the generic one, as
long as the signatures are coherent,

• the type for which it specializes can be arbitrarily complex, and

• templates also accept term parameters, which behave exactly as macro
parameters in C.

3

Scala 2 offers a way to specialize generic types with the @specialized anno-
tation1. Its goal is to generate specialized definitions of methods and classes
at compile time and replace references to them with their specialized version
when available [3]. The compiler can also be instructed to specialize only on a
subset of the possible types, by passing corresponding type parameters to the
annotation. An example of this is given in appendix B.

Templates in C++ and specialized classes in Scala are almost opposite in their
behaviour:

• the @specialized annotation of Scala tells the compiler to perform its
operations behind the scenes; users cannot write their own specialization
of a generic class like in C++,

• C++ templates duplicate their code and replace the generic types on
demand when the template is applied to a concrete type (generated at
call site), whereas specialized classes in Scala 2 are generated when the
generic class is compiled (generated at definition),

• templates can specialize code on any type, whereas @specialized only
works on primitive types: Boolean, Byte, Char, Double, Float, Int, Long,
Short and Unit.

1.2.2 Issues with @specialized

However, this annotation opens the door to multiple issues [6, 3]. Consider the
following code, written in Scala 2:

1 import scala.specialized
2

3 class A[@specialized T] {
4 val x: T = ???
5 }
6 class B[@specialized U] extends A[U] {}

Listing 4: Problematic specialized code

and let the specialization of class X for type T be named XT. The following issues
arise:

1. If a specialized class extends another specialized class, we encounter the
inheritance diamond problem: AInt extends A, and since B extends A, we
would like BInt to extend both B and AInt. This is however impossible, due
to the absence of multiple class inheritance in Scala2,

2. Without restrictions on the types on which to specialize, we get 10 versions
of the class: specialized versions for each of the primitive types, plus the
original definition.

This behaviour is repeated for every specialized generic types, which means
that the number of classes generated is exponential: with two specialized

1The @specialized annotation has however not been ported to Scala 3. The symbol exists,
but using it does not provide any specialization.

2Note that the compiler for Scala 2.13.6 warns of this issue: "warning: class A must be
a trait. Specialized version of class B will inherit generic A[Int]" [sic].

4

types, specialized classes must be generated for every pair of types listed
above, and so on.

In general, if a class has n specialized types, O(9n) specialized classes will
be generated alongside the generic one,

3. Since specialized classes need to extend the generic class, the latter needs
to define specialized accessors for each of their generic values (see listing
5).

1 class A[@specialized T] extends Object {
2 def <init>(): A[T] = {
3 A.super.<init>();
4 ()
5 };
6 protected[this] val x: T = scala.Predef.???();
7 def x(): T = A.this.x;
8 def xmcZsp(): Boolean = A.this.x().asInstanceOf[Boolean]();
9 def xmcBsp(): Byte = A.this.x().asInstanceOf[Byte]();

10 def xmcCsp(): Char = A.this.x().asInstanceOf[Char]();
11 def xmcDsp(): Double = A.this.x().asInstanceOf[Double]();
12 def xmcFsp(): Float = A.this.x().asInstanceOf[Float]();
13 def xmcIsp(): Int = A.this.x().asInstanceOf[Int]();
14 def xmcJsp(): Long = A.this.x().asInstanceOf[Long]();
15 def xmcSsp(): Short = A.this.x().asInstanceOf[Short]();
16 def xmcVsp(): Unit = { A.this.x(); () };
17 def specInstance$(): Boolean = false
18 };

Listing 5: Class A after specialization

In general, if a class with specialized types has m generic members and n
specialized types, O(9n · m) specialized accessors will be generated along-
side the generic one.

4. Similarly, specialized classes override the generic accessors of their parent,
meaning that for every specialized definition in a specialized class, another
definition for the generic accessor is generated as well (see listing 6).

1 class AmcIsp extends A[Int] {
2 def <init>(): AmcIsp = {
3 AmcIsp.super.<init>();
4 ()
5 };
6 protected[this] val xmcIsp: Int = scala.Predef.???();
7 def xmcIsp(): Int = AmcIsp.this.xmcIsp;
8 override def x(): Int = AmcIsp.this.xmcIsp();
9 def specInstance$(): Boolean = true

10 };

Listing 6: Specialized class AInt

In general, if a class with specialized types has m generic members, each
specialized class will have O(2 · m) members.

5. Finally, as shown in listing 6, a new specialized field (xmcIsp for Int) is
created for the specialized classes and used instead of the default field x.

5

This means that space is reserved for this field in the JVM, but it is never
used, leading to some space being wasted.

In general, if a class with specialized types has f generic fields, each spe-
cialized class will have O(2 · f) fields, half of which are never used.

A direct consequence of these issues could be called "code explosion": from a
small generic class, we end up with a greater amount of longer classes, with
many definitions used only for inheritance and fields that are never used.

1 public class A<T> {
2 public final T x;
3 public T x();
4 public boolean xmcZsp();
5 public byte xmcBsp();
6 public char xmcCsp();
7 public double xmcDsp();
8 public float xmcFsp();
9 public int xmcIsp();

10 public long xmcJsp();
11 public short xmcSsp();
12 public void xmcVsp();
13 public boolean specInstance$();
14 public A();
15 }

Listing 7: Java code for class A from
listing 4

1 public class A<T> {
2 private final T x;
3 public T x();
4 public A();
5 }

Listing 8: Java code for class A
without @specialized annotation

1.2.3 Desired solutions

The diamond issue is caused by the Java rule that BInt cannot extend both
classes B and AInt. However, we know that the two classes are related to BInt,
and it would be desirable to express this.

We also see that if multiple specialized types are used in a single class, there
might be more classes generated than strictly necessary, and space will be lost
due to the duplication of fields in the specialized classes. We therefore need a
way to mitigate this, and give the user the ability to explicitly specify for which
combination of types to specialize.

Finally, in order to reduce the amount of code generated, it would be convenient
for the code to be specialized on demand, similarly to templates in C++: if the
specialized code is never used, we do not want to generate any additional code.

1.3 Inlining in Scala
In Scala 2, the @inline annotation can be used as a hint for the compiler that
a method should be inlined. However, this remains a hint, not a directive: as
stated in the Scala 2.13.4 API documentation, "by default, the Scala optimizer
is disabled and no callsites are inlined." [8].

Scala 3 introduced the soft keyword inline as a replacement for the annotation.
Instead of providing the compiler with hints, the user is given control over what
get inlined: "[inlining] can be seen as a form of metaprogramming, where inlining

6

is the syntactic construct that turns a program into a program generator" [10,
p. 14].

The inliner performs the following task: when a call to a method is found, it
checks if the definition needs to be inlined. If so, it adapts the right-hand side
of the method, and inlines it at the call site.

Combined with macros, inline provides Scala users with some form of metapro-
gramming: the compiler can generate and/or run arbitrary code at compile time,
which provides additional flexibility to programs.

The inlining phase already performs some form of specialization: since the call
site of an inline method may be arbitrarily different and far from its definition,
the environment might be completely different in both cases. To remedy this,
the inliner retypes and adapts the code when it is inlined.

7

2 Inline traits
We introduce a new kind of structure that inlines its content into the classes
and traits that extend it, called inline traits. If, at the time of inlining, we know
more about the generic types, the compiler inlines the definitions and specializes
the types.

Here is an example:

1 inline trait A[T](val x: T):
2 def foo: T = x
3

4 class B extends A[Int](1)

Listing 9: Inline trait

After the inlining phase, the code becomes the following:

1 package <empty> {
2 inline trait A[T >: Nothing <: Any](x: T) extends Object {
3 T
4 val x: T
5 def foo: A.this.T = this.x
6 }
7 class B() extends Object(), A[Int](1) {
8 override val x: Int = 1
9 override def foo: Int = this.x

10 }
11 }

Listing 10: Code of listing 9 after inlining

As we can see, the field B.x has been specialized to be an Int. This means that
operations on this field will not require boxing and unboxing operations if they
expect an Int. A more complete example showcasing the differences in code
generated by the compiler with and without the inline keyword is available in
appendix C.

If we were to combine this new construct with the macros of Scala 3, we can
create a class whose content may be completely different depending on the type
arguments passed to its parents. For example, listing 11 shows what could be an
SQL query builder that generates code depending on the content of the query.

2.1 Leveraging the inlining engine
As explained before, the inlining mechanism of Scala 3 already performs some
form of specialization. This is illustrated in listing 12: a method from object A
is inlined inside of object B, and the generic types are known at this point. The
inliner adapts the code so that the code works without autoboxing.

Since there is already code responsible for managing references to this, owners
of declarations, types of inline methods, and more, it stands to reason that the
first version of inline traits should leverage that power for its purpose.

8

1 // Macro that generates code depending on the content of an SQL query
2 inline def optimizedQuery[Q <: String & Singleton]: Query =
3 ${ compileQueryExpr[Q] }
4 def compileQueryExpr[Q <: String & Singleton](using Quotes): Expr[Query] =
5 queryExprOf(optimizeSQL(analyzeSQL(parseSQL(Type.valueOfConstant[Q]))))
6

7 inline trait SqlQuery[Q <: String & Singleton]:
8 private val optimizedQuery: Query = compileQuery[Q]
9 def run(): Unit = new DBConnection().run(query)

10

11 // The code generated for these two classes may be arbitrarily different
12 final class SqlGetUsers extends SqlQuery["SELECT * FROM users;"]
13 final class SqlDropUselessTable extends SqlQuery["DROP TABLE uselessTable;"]

Listing 11: Pseudocode of specialized query builder template

1 class Wrapper[T](val x: T)
2 class IntWrapper(override val x: Int) extends Wrapper[Int](x)
3

4 inline def foo[T](w: Wrapper[T]): T = w.x
5

6 val wrap = IntWrapper(1)
7

8 val i: Int = foo(wrap)
9 // This will be replaced with code equivalent to:

10 // val i: Int =
11 // val w = wrap
12 // w.x
13 // Here, the compiler will not unbox the result: even though foo is generic, we

know that wrap.x is an Int and not a T

Listing 12: Specialization of inlined code

2.2 Design choices
Let us define a class-like to be something that can be represented by a TypeDef
with a Template in its right-hand side; in other words, a class-like is one of the
following: trait, class, object, or enum.

2.2.1 Using traits to avoid @specialized issues

As described in section 1.2.3, we wish to fix the issues posed by @specialized in
Scala 2, namely the inheritance diamond problem, code explosion, and unused
fields.

The diamond problem is automatically fixed by enforcing the use of traits: class-
likes can extend any number of traits.

+ class-likes can both be specialized and extend all of their inline trait an-
cestors

– restrictions on traits also apply to inline traits

Regarding code explosion, we choose to never inline code inside of an inline
trait. This way, if an inline trait B extends another inline trait A, no code will
be inlined inside of B; if class C extends B however, the code of both A and B

9

will be inlined and specialized inside that class.

+ if an inline trait is never extended, no additional code is generated

+ code is always inlined in non-inline children, allowing for complex inheri-
tance trees between inline traits without code explosion

– code is duplicated for each child of inline traits

Finally, the inlining of an inline trait’s members inside its children means that
no fields will be duplicated: the overriding mechanism will ensure that only one
field is generated in the bytecode.

+ no unused fields in specialized children

2.2.2 Inlining the body of an inline trait

Public and protected members Member definitions inside of an inline trait
are to be inlined in its first non-inline descendant. These definitions may contain
references to generic types or to this, which need to be adapted to their new
definition site:

• a generic type that is known in the new environment is replaced with its
concrete type

• a reference to the inline trait instance through the this keyword is re-
placed with a reference to the extending class-like

An example is given in listing 13.

1 inline trait A[T]:
2 val x: Int = 1
3 val t: T
4 def foo(): Int = this.x
5 def bar(): T = this.t
6

7 class B extends A[Boolean]:
8 override val t: Boolean = true
9 // The following members are generated by the compiler

10 override val x: Int = 1
11 override def foo(): Int = this.x
12 override def bar(): Boolean = this.t

Listing 13: Adapting inlined code

Private members An inline trait can define, in its body, private members
just like a normal trait would. However, this means that they need to be treated
slightly differently than members accessible from outside of the instance.

They cannot be marked as overridden, as they are not visible from the extending
class, but they still need to be present for the inlined code to work as expected.
Furthermore, if an inline trait declares a private field, it should not interfere
with other fields of the extending class-like or of another parent.

To ensure this, we inline private members without the override keyword, and
we rename them with a name that is unique in the context of the child class.

10

An example is given in listing 14.

1 inline trait A(b: Boolean):
2 private val x: Int = 1
3 def foo(): Int = if b then x + 1 else 0
4

5 class B extends A(true):
6 // The following members are generated by the compiler
7 private val A$$b: Boolean = true
8 private val A$$x: Int = 1
9 override def foo(): Int = if this.A$$b then this.A$$x.+(1) else 0

Listing 14: Inlining of private fields

Pruning members after inlining Since definitions are never accessed di-
rectly on an inline trait, but on one of its implementations, the right-hand side
of the definitions are not necessary: once we know that the right-hand sides are
correct, and the definitions are stored in the corresponding TASTy file, we may
simply prune them from the inline trait to reclaim some space.

An example is given in listing 15.

1 inline trait A:
2 val x: Int = 1
3 def foo(i: Int): Int = x + i
4

5 // After compilation, the two definitions will be
6 // val x: Int
7 // def foo(i: Int): Int

Listing 15: Pruning the right-hand sides

2.2.3 Body statements

In Scala, a trait’s body may contain statements which are not member defini-
tions. Those are placed by the compiler into the initializer $init of the trait
(see listings 16 and 17).

1 trait A:
2 def foo() = println("I am A!")
3 foo()
4

5 class B extends A:
6 def bar() = println("I am B!")
7 bar()

Listing 16: Statements in a normal trait’s body

We can reproduce this behavior by simply inlining statements of the inline trait
before those of the extending class, as long as the inlining takes place before the
constructors phase. Since we know that inline traits are not to be instantiated
directly, we may remove their bodies’ statements once their code is inlined (see
listings 18 and 19).

11

1 trait A extends Object {
2 def $init(): Unit =
3 {
4 this.foo()
5 ()
6 }
7 def foo(): Unit = println("I am A!")
8 }
9

10 class B extends Object, A {
11 def <init>(): Unit =
12 {
13 super()
14 super[A].$init()
15 this.bar()
16 ()
17 }
18 def foo(): Unit = super[A].foo()
19 def bar(): Unit = println("I am B!")
20 }

Listing 17: Code of listing 16 after Constructors phase

1 inline trait A:
2 def foo() = println("I am A!") // The right-hand side will be pruned
3 foo() // This statement will be removed
4

5 class B extends A:
6 def bar() = println("I am B!")
7 bar()

Listing 18: Statements in an inline trait’s body

1 inline trait A extends Object {
2 def foo(): Unit
3 }
4 class B extends Object, A {
5 def <init>(): Unit =
6 {
7 super()
8 this.foo()
9 this.bar()

10 ()
11 }
12 override def foo(): Unit = println("I am A!")
13 def bar(): Unit = println("I am B!")
14 }

Listing 19: Code of listing 18 after Constructors phase

2.2.4 Inner classes

Since we wish to inline the code from the inline trait into the children class-likes,
we need to take care that specialized inner class-likes are compatible with the

12

original ones. However, in Scala, class definitions cannot be overridden3. This
poses an issue, as we would like for an inlined inner class-like to:

• have the same name as the original inner class-like, and

• extend the original inner class-like to preserve typing relations.

In the following paragraphs, the different examples refer to the code of listing
20, and the final result can be found in listing 21.

1 class Model[T](val m: T)
2

3 inline trait A[T](x: T):
4 class Inner[U](t: T, u: U) extends Model[T](t):
5 def this(u: U) =
6 this(x, u)
7 println("Without t")
8 def foo(): (T, U) = (t, u)
9

10 class B extends A[Boolean](true)

Listing 20: Example of inner class

1 class Model[T >: Nothing <: Any](m: T) extends Object() {
2 T
3 val m: T
4 }
5

6 inline trait A[T >: Nothing <: Any](x: T) extends Object {
7 T
8 private[this] val x: T
9 trait Inner$trait[U](t: T, u: U) extends Model[T]:

10 U
11 def foo(): Tuple2[A.this.T, Inner$trait.this.U] =
12 Tuple2.apply(this.t, this.u)
13 type Inner[U] <: Inner$trait[U]
14 def new$Inner[U](t: T, u: U): Inner[U]
15 def new$Inner[U](u: U): Inner[U]
16 }
17

18 class B() extends Object(), A[Boolean](true) {
19 private[this] val A$$x: Boolean = true
20 class Inner[U](t: Boolean, u: U) extends Inner$trait[U], Model[Boolean](t):
21 U
22 def this(u: U) =
23 this(B.this.A$$x, u)
24 println("Without t")
25 def foo(): Tuple2[Boolean, Inner.this.U] = Tuple2.apply(this.t, this.u)
26 def new$Inner[U](t: T, u: U): Inner[U] = new Inner[U](t, u)
27 def new$Inner[U](u: U): Inner[U] = new Inner[U](u)
28 }

Listing 21: Code of listing 20 after inlining A

3In Scala 2, class definitions could be shadowed, but this has been deprecated in Scala 3
[4].

13

Inner trait Inner class-likes are turned into inner traits and their name is
changed to avoid conflict with their inlined counterparts (for example, class
Inner is transformed into trait Inner$trait).

The declaration of the parents of the inner class-like are adapted to fit the
signature of a trait: if the inner class-like has as a parent a trait, it cannot call
the trait’s constructor anymore [9], and term parameters must be pruned and
left for the inlined inner class-like to pass. Furthermore, secondary constructors
are pruned, for they are forbidden in traits.

In listing 20, if we try to generate a class Inner[U] inside of B, we would
need it to extend both Model[U] (for consistency with the original class) and
A#Inner[U] (to preserve typing relations). This is another instance of the in-
heritance diamond problem, which we solve in a similar way as previously: we
transform the inner class-like into a trait with a similar signature.

1 inline trait A[T >: Nothing <: Any](x: T) extends Object {
2 // [...]
3 trait Inner$trait[U](t: T, u: U) extends Model[T]
4 // [...]
5 }

Listing 22: Transformation of class Inner into trait Inner$trait

This choice preserves the code of the inner class-like while solving the diamond
problem for the inlined definition. However, secondary constructors cannot be
preserved in this form [9]; we explain below how to handle them.

Furthermore, if the signature of the class-like cannot be preserved during the
transformation due to restrictions on traits4, this technique will not work. In
the first version of inline traits, we forbid such inner class-likes.

Objects need another manipulation to be transformed. In Scala 3, an object is
desugared to a class that can be instantiated only once by its companion lazy
val:

1 object Obj
2

3 // The compiler desugars the object into
4 // lazy val Obj = new Obj$
5 // class Obj$:
6 // self: Obj.type =>

Listing 23: Desugaring of an object by the compiler

During the phase responsible for specializing the inline traits, the lazy val needs
to be marked as non-lazy and both the val and the class need to lose their
module flag: since we are transforming the object into a trait, they should not
be marked as if they were the result of desugaring an object anymore.

Their inlined counterpart will, however, possess the module flag and the val will
be lazy.

+ inlined inner class-likes can inherit both from the original class-like as well
as its original parents

4For example, a trait’s constructor cannot accept by-name parameters.

14

– inner class-likes whose signatures are incompatible with the restrictions
on trait signatures cannot be transformed this way

Type A new type is created with the inner class-like’s name, with as upper
bound the inner trait previously transformed:

1 inline trait A[T >: Nothing <: Any](x: T) extends Object {
2 // [...]
3 type Inner[U] <: Inner$trait[U]
4 // [...]
5 }

Listing 24: Generation of type Inner

This type serves as a way for the typing hierarchy to know that the inlined
inner class-like is a subtype of the original one: when the compiler sees in B a
class-like called Inner, it assumes that it is a concrete implementation of this
type, which acts as a proxy for the subtyping relationship between the inner
class-likes.

+ inlined inner class-likes can inherit from their original inner class-likes

– the size of the inline trait’s code is slightly increased

– we need to be careful about the instantiation of inner class-likes, as the
name now references a type (see below)

Constructors proxies If the inner class-like has constructors, they cannot
be kept in the resulting inner trait: in Scala 3, traits cannot have secondary
constructors, and trait constructors may not be called to create new instances
[9]. We therefore need to create proxies for the code to stay correct.

For each constructor of the inner class-like, we generate a new method that acts
as its proxy, with a name related to the inner class-like’s name and a signature
resembling as closely as possible the constructor’s signature.

For example, with the code of listing 20, we would generate the following meth-
ods in inline trait A:

1 inline trait A[T >: Nothing <: Any](x: T) extends Object {
2 // [...]
3 def new$Inner[U](t: T, u: U): Inner[U]
4 def new$Inner[U](u: U): Inner[U]
5 // [...]
6 }

Listing 25: Proxy methods for constructors

Note that the constructors proxies are left abstract. The inner class-like hav-
ing been turned into a trait, we can not instantiate it anymore. The task of
implementing the proxies is delegated to the concrete children of the inline trait.

+ secondary constructors are preserved

– references to the inner class-like’s constructors need to be adapted every-
where to point to the proxy methods

15

– the size of the inline trait’s code is increased proportionally to the number
of constructors the inner class-like has

Inlined code Finally, all that remains is to inline the inner class-like inside of
B, and implement the constructor proxies. Note that the new class-like extends
both the original class-like as well as its parents to satisfy the bound constraint
of the type Inner shown in listing 24:

1 class B() extends Object(), A[Boolean](true) {
2 private[this] val A$$x: Boolean = true
3 class Inner[U](t: Boolean, u: U) extends Inner$trait[U], Model[Boolean](t):
4 U
5 def this(u: U) =
6 this(B.this.A$$x, u)
7 println("Without t")
8 def foo(): Tuple2[Boolean, Inner.this.U] = Tuple2.apply(this.t, this.u)
9 def new$Inner[U](t: T, u: U): Inner[U] = new Inner[U](t, u)

10 def new$Inner[U](u: U): Inner[U] = new Inner[U](u)
11 }

Listing 26: Inlining of A inside of B

2.3 Accessing members through an inline trait
This specification chooses to have inline traits behave as closely as possible to
traits. However, this raises the following question: should we allow accessing
methods and values on inline traits?

1 inline trait A[+T](val x: T)
2 class B(i: Int) extends A[Int](i)
3

4 val as: Seq[A[Int]] = (1 to 5).map(i => B(i))
5 val sum = as.foldLeft(0){
6 case (s: Int, a: A[Int]) => s + a.x
7 }

Listing 27: Accessing x through A

We propose the following solutions:

1. forbid the code of listing 27, and ask the user to change the type of as to
Seq[X], where X is a non-inline subclass of A,

2. let virtual dispatch redirect the call to B.x (specialization is lost, as we
access x through the generic environment of A),

3. narrow the type of as to Seq[B],

4. generate specialized, non-inline children of A, and replace the types ac-
cordingly (akin to what @specialized does in Scala 2).

16

3 Implementation
The following implementation of inline traits can be found on the official dotty
GitHub repo, in pull request #17329.

3.1 Allowing member access through inline traits
In regards to the design problem presented in section 2.3, we chose to implement
solution 2: we will allow users to write code similar to the one in listing 27,
where members are accessed through an inline trait type, at the cost of losing
the specialization.

3.2 Leveraging existing code for inlining
As previously mentioned in section 2.1, the compiler is already able to properly
inline code from one scope to another [10]. The inlining of method calls is
currently done in two different phases:

• in the typer phase, for transparent inline members,

• in the inlining phase, for other inline members.

The code is however shared between these phases, and split between three source
files:

• Inlining.scala, containing the class Inlining representing the compiler
phase,

• Inliner.scala, containing the class Inliner capable of inlining a method
call, and

• Inlines.scala, containing an object Inlines defining helper methods and
classes, among which InlineCall, a descendant of Inliner.

The code to be inlined may be inaccessible during the inlining phase of the
compilation, so the compiler adds a @BodyAnnotation annotation that contains
the method’s right-hand side to the inline method’s symbol. This way, the
inliner simply has to verify if a method call is done on a method that has such
an annotation, and if so, retrieves the body stored inside and passes further for
inlining.

When inlining a method call, two elements are capital:

• the call itself, containing information about the call site context, and

• the body of the inline method, to be adapted and inlined.

We may reuse the code responsible for this by "cheating" the inlining engine:

• we place the body of the inline trait inside of a @BodyAnnotation in order
to make it retrievable, by wrapping its statements inside of a Block and
using a unit literal as the last statement,

• we pass the parent definition in lieu of the method call: for example, if
the extending class-like is defined as class B extends A[Int], we pass
A[Int] as if it were the method call,

17

https://github.com/lampepfl/dotty
https://github.com/lampepfl/dotty
https://github.com/lampepfl/dotty/pull/17329

• we retrieve the inline trait’s body from its annotation, and for each defi-
nition that needs to be inlined, we adapt it to the descendant class,

• we add the resulting specialized code to the child class-like’s body.

This is done in Inlines.scala, in the method inlineParentInlineTraits and
the class InlineParentTrait.

Instead of adding the new inlining code inside of the existing inlining phase, we
created two new phases specializeInlineTraits and pruneInlineTraits which will
implement the specification described in section 2.2.

3.3 File Inlines.scala
3.3.1 Method Inlines.inlineParentInlineTraits

This method takes as argument the tree of a class-like extending an inline trait.
It does the following:

1. compute the symbols overridden by the class-like’s definitions; if the user
overrides methods and fields, we do not want to inline the original defini-
tions,

2. for each inline trait ancestor that has not been inlined in a parent yet5:

(a) compute the symbols that have already been overridden, both by the
extending class-like and by previous inline trait ancestors,

(b) adapt the code to the extending class-like’s environment,

(c) update the references to symbols that were inlined, such as inner
class-likes,

3. recreate the body of the child class-like to contain the inlined code as well
as the updated original code.

The order in which ancestors are inlined is important: in Scala 3, inheritance
precedence is computed with a left-leaning DFS algorithm, as illustrated in
listing 28.

The current inlining algorithm trusts that cls.tpe.baseClasses returns the
ancestors in descending order of precedence (in listing 28: C, P2, GP3, etc.),
where cls is the tree of a class-like extending some inline traits.

3.3.2 Method InlineParentTrait.expandDefs

This method is responsible for the creation of the code to be inlined inside of
the child class-like. It takes as argument the list of symbols which are already
overridden, and returns the list of tpd.Tree to be inserted in the class-like’s
template.

It performs the following steps:
5If a class-like extends an inline trait that itself extends another inline trait, the grandparent

has not been inlined in the parent and therefore needs to be specialized in the child.

18

1 trait GP1
2 trait GP2
3 trait GP3
4

5 trait P1 extends GP1, GP2
6 trait P2 extends GP2, GP3
7

8 class C extends P1, P2
9

10 // GP1 GP2 GP3
11 // \ / \ /
12 // P1 P2
13 // \ /
14 // \ /
15 // C
16 //
17 // Inheritance precedence: GP1 < GP2 < P1 < GP3 < P2 < C

Listing 28: Order of inheritance in Scala 3

1. Register the term arguments passed to the inline trait’s constructor in the
helper class ParamAccessorsMapper. These will be used in inlinedValDef
(section 3.3.4), when we generate the member definitions for parameter
accessors. For example, when compiling the following code, we register 3
in the mapper as the value of x:

1 inline trait A[T](x: T)
2

3 class B extends A[Int](3)

2. Retrieve the parent’s body stored in its @BodyAnnotation, and filter out
the definition previously overridden.

3. Generate new symbols for each member definition to inline; this is due
to the way the inlining is done: when we inline the right-hand side of
a definition, we might create a reference to a private field that was not
inlined yet, and has no symbol in the child class.

For example, in the code of listing 29, if we were to inline the definitions
before creating the new symbols, we would create a new symbol for x and
enter it in B, then adapt its right-hand side to be B.this.y. However,
at this point of the compilation, B does not contain a symbol y, and the
definition of y in A is private, resulting in an error raised by the typer.

4. Adapt each statement of the parent’s body:

• if the statement is a member definition (val, var, def, class, type,
etc.), call expandStat to inline its right-hand side,

• otherwise, inline the statement directly.

3.3.3 Symbol-inlining methods

inlinedClassSym Creates a new symbol for an inner class-like that will be
inlined.

19

1 inline trait A:
2 val x: Int = A.this.y
3 val y: Int = A.this.x
4

5 class B extends A

Listing 29: Circular references in inline trait

As stated in section 2.2.4, we wish for the inlined inner class-like to derive from
the original one, so we need to make sure to create a new parent to represent
this relationship.

We also need to create a new scope for this symbol: we will enter the new
member symbols afterwards, therefore we must not preserve the old symbols in
it.

Finally, we register in the map innerClassNewSyms that the inlined inner class-
like is a specialized version of the original one, we enter the symbol into the
extending class-like, and we return the symbol.

inlinedMemberSym Creates a new symbol for definitions that are not inner
class-likes.

Most of the work done here is computing the new symbol’s flags:

• if the member is non-private, we add the override flag to the new symbol,

• if the member is a parameter accessor, we remove the ParamAccessor flag,

• if it is a local parameter accessor (i.e. it does not have a val or var
keyword in its definition), we generate a new name for it based on the
parent’s name (for example, a local parameter x from an inline trait A is
renamed to A$$x) and register it so that references to it may be updated
to point to the new symbol,

Once this is done, we adapt the symbol’s info to the context of the child class-like
and return it. An example of adapting the symbol’s info is to replace references
to generic types by the concrete type of the child’s class:

1 inline trait A[T]:
2 val foo: T = ???
3

4 class B extends A[Int]
5 // inlinedMemberSym will make the inlined symbol of foo a value of type Int

3.3.4 Definition-inlining methods

In the following section, when "inlining the body" of a definition is mentioned,
it means passing the definition’s right-hand side to the inlinedRhs methods:

• inlinedRhs(ValOrDefDef, Symbol), used to inline the right-hand side
of a val or def definition that already has an inlined symbol, and

• inlinedRhs(Tree), used to inline a tree by relying on the code of the
Inliner class.

20

The first method changes the owner of the right-hand side to the new symbol,
and calls the second method.

inlinedValDef Inlines a val definition.

If it is a parameter accessor, we use its value provided in the class-like’s signature
as a right-hand side, otherwise we inline its body. An example is given in listing
30.

1 inline trait A[T, U](x: T, var v: U):
2 val y: Int =
3 val i = 1
4 2 * i
5 var z: Boolean = this.y > 0
6

7 class B extends A[Int, Double](3, -1.2d):
8 // inlinedValDef will generate the following definitions:
9 // The 3 and -1.2d here are taken from ‘extends A[Int, Double](3, -1.2d)‘

10 private[this] val A$$x: Int = 3
11 override var v: Double = -1.2d
12 override val y: Int =
13 {
14 val i: Int = 1
15 2.*(i)
16 }
17 override var z: Boolean = this.y.>(0)

Listing 30: Example of value inlining

Note that the var definitions are overridden. The rules of the compiler have
been relaxed to allow this, since we assume that this field will never be accessed
on the inline trait, but always on concrete implementations.

inlinedDefDef Inlines a def definition. An example is given in listing 31.

If the definition is a setter, we simply use () as its right-hand side, otherwise
we inline its body.

1 inline trait A[T](var x: T):
2 var y: Int = 0
3 def foo(b: Boolean): T = A.this.x
4

5 class B extends A[Int](3):
6 // inlinedDefDef will generate the following definitions:
7 override def x_=(x$1: Int): Unit = ()
8 override def y_=(x$1: Int): Unit = ()
9 override def foo(b: Boolean): Int = B.this.x

Listing 31: Example of definition inlining

This is due to the fact that during the typer phase, the compiler adds definitions
for the setters of variables, with a unit literal as a right-hand side:

21

1 var x: Int = 1
2 // The typer generates the following definition:
3 def x_=(x$1: Int): Unit = ()

Listing 32: Generation of a setter definition

inlinedTypeDef Inlines a type definition. An example is given in listing 33.

This is one of the simpler helper methods, as it only needs to create a new
TypeDef and assign to it the previously created symbol. Note that this does
not include types defined in the inline trait’s signature: those definitions are not
inlined, because the types are directly replaced in the symbol’s infos.

1 inline trait A[T, U, V <: U]:
2 type C = Int
3 type D >: T
4 type E <: U
5 type F >: V <: U
6

7 class B extends A[Boolean, AnyVal, Char]:
8 // inlinedTypeDef will generate the following definitions:
9 type C = Int

10 type D >: Boolean
11 type E <: AnyVal
12 type F >: Char <: AnyVal

Listing 33: Example of type inlining

inlinedClassDef Inlines a class-like definition.

It inlines the class-like in two steps, specializing the primary constructor first,
then the class-like’s body statements. Finally, the newly created definitions are
used in a new ClassDef, which is directly passed to the code of Inliner to be
adapted.

Note: This method is still a work in progress; only inner traits work for now.

3.4 File SpecializeInlineTraits.scala
The new phase specializeInlineTraits is run between the pickler phase and the
inlining phase:

• after the pickler phase, because we wish to generate new code after the
original code has been pickled. There is no need for the pickler to know
about the internal changes made to inline traits and their extending classes,

• before the inlining phase, because we wish for the inline method calls to
be inlined inside of the extending classes, not in the inline trait.

Its purpose is to transform:

• inline traits, so that their inner class-likes are rewritten according the the
specification given in section 2.2.4, and

• class-likes that extend inline traits, so that the body of their parents are
inlined in them.

22

3.5 File PruneInlineTraits.scala
The new phase pruneInlineTraits is run alongside the pruneErasedDefs miniphase.
Its purpose is simply to remove the right-hand sides of the definitions of inline
traits. We run this phase at this point of the compilation because of the follow-
ing reasons:

• we wish to let as many checks be run on the inline trait’s body before we
erase the right-hand sides, and

• we decided to place the two pruning phases side by side.

Since we assume that the members of an inline trait can not be accessed directly,
i.e. all members of an inline trait will always have been inlined in its children,
we only need to keep the signatures in order for the JVM to know about them.
This also reduces the size of the final code for the inline trait.

23

4 Evaluation
4.1 Code performance
When using inline traits to avoid the boxing/unboxing problem, we wish for it
to be as performant as the @specialized annotation was in Scala 2. In the
following subsections, we show the results of two benchmarks, run with the
following parameters:

• 3 warm-up iterations of 5 seconds

• 5 measurement iterations of 10 seconds

• benchmark performed 10 times, using 3 threads

For each benchmark, three versions of the code have been used:

• one using the current specification of Scala 3, called standard; no special-
ization is done,

• one emulating the behaviour of @specialized in Scala 2, called specialized
(more on this below), and

• one making use of inline traits, called inlinetrait.

Due to the fact that @specialized has been disabled in Scala 3, the code used in
the specialized implementations has been manually specialized. The Scala 2.13.4
compiler was used to compile the code with the @specialized annotation, which
served as inspiration for the manually specialized Scala 3 version of the code.

4.1.1 Matrix library

One of the ideas presented in the original discussion about inline traits is a
matrix library, which would specialize its code based on the elements’ type [6].
The three implementations can be found in appendix D.1.

Two random matrices of size 100 × 100 are generated, m1 and m2, and the
benchmark performs the following operation as many times as it can during the
allotted iteration duration: (m1 + m2) * m1. The algorithms used for the sum
and the product of two matrices are naive: assuming that the two operands are
square matrices of size n × n, the addition runs in O(n2) operations and the
multiplication in O(n3) operations.

The results of the benchmark are presented in figure 1.

4.1.2 Specialized pairs

This benchmark was written in order to show that inline traits can be as effi-
cient as the @specialized annotation’s behavior, while resulting in less code
generated. The three implementations can be found in appendix D.2.

We wish to perform operations on two types of pairs:

• pairs of the form (i: Int, d: Double)

• pairs of the form (c: Char, s: Short)

24

Figure 1: Number of execution per second on matrices operation

Three million random such pairs are generated, and passed through code equiv-
alent to this one:

1 pairs.foldLeft(0){ case (sum, pair) => pair match {
2 case Pair(i: Int, d: Double) => 7 * i + 3 * d.toInt + sum
3 case Pair(c: Char, s: Short) => 5 * c + 2 * s + sum
4 }

The results of the benchmark are presented in figure 2. Note that the perfor-
mances of the specialized and inlinetrait implementations are comparable, but
the resulting code was shorter in the second case: the specialized code generated
five pair classes:

• generic Pair

• specialized Pair[Int, Double]

• specialized Pair[Int, Short]

• specialized Pair[Char, Double]

• specialized Pair[Char, Short]

whereas the inlinetrait code only generated three:

• generic Pair

• specialized Pair[Int, Double]

• specialized Pair[Char, Short]

25

Figure 2: Number of execution per second on pairs operation

Conclusion

As the benchmark results show, the performance of inline traits is comparable
to how @specialized used to perform in Scala 2, both of which are faster than
making use of no specialization at all. We conclude that inline traits are a good
replacement for @specialized in Scala 3 when the performance of generic code
must be optimized.

4.2 Code size
One of the more important issues with @specialized was the amount of code
generated. In order to see when inline traits has a different space efficiency, we
compile several files containing similar code in Scala 2 and Scala 3, the former
using @specialize and the latter inline traits.

4.2.1 Number of specialized classes

We create a base class/inline trait, called A, with three generic types over which
to specialize: T, U and V. In each version of the code, we will add more specialized
instances in order to see where the inline trait fares better than its annotation
counterpart.

The metrics chosen to measure the amount of code generated are the number
of class files generated, the size of the generic class file in bytes, and the total
size of the class files in bytes.

26

We generate code with the narrowest specialization possible over the following
types:

1. no specialization

2. T = Int

3. T = Int, U = Int, V = Int

4. T = Int, U = Double, V = Boolean

5. T = Int, U = (Double or Int), V = Boolean

6. (T = Int, U = Int, V = Int) or (T = Double, U = Double, V = Double)

7. all possible types

The code for each case is provided in appendix D.3.

Types Version # classes Size main class Total size

1 @specialized 1 1.6KiB 1.6KiB
inline trait 1 582B (35%) 582B (35%)

2 @specialized 2 1.9KiB 2.8KiB
inline trait 2 582B (30%) 2.1KiB (75%)

3 @specialized 2 2.1KiB 3.5KiB
inline trait 2 582B (27%) 2.2KiB (63%)

4 @specialized 2 2.3KiB 3.8KiB
inline trait 2 582B (25%) 2.3KiB (61%)

5 @specialized 3 2.4KiB 5.3KiB
inline trait 3 582B (24%) 4.0KiB (75%)

6 @specialized 9 2.5KiB 14KiB
inline trait 3 582B (23%) 3.8KiB (27%)

7 @specialized 730 4.3KiB 1.1MiB
inline trait 730 582B (13%) 1.3MiB (118%)

Table 1: Comparison of class sizes when specializing on various types

As table 1 shows, the size of the class file of A does not change when A is an
inline trait. This is consistent with the specification, as no code is added to
the body of an inline trait when classes extend it. To the contrary, we see that
the size of the class A that uses the @specialized annotation grows with the
number of classes that it needs to generate.

Another interesting figure is the number of class files generated: they are all
identical, except for one specific case: when the tuples of specialized types are
completely distinct. This results in the largest difference in total size, for a
reduction in total size of almost one-fourth.

The only case where inline traits generate longer code than @specialized is
when we specialize on all possible primitive types. This is however a case that
should never arise, as this requires the user to write 93 = 729 class definitions for
3 generic types, which seems unrealistic. On the off chance that specialization
is required on all types and the amount of generated code must be minimal,
we recommend to either use Scala 2 and the @specialized annotation, or to
generate code using the macros of Scala 3.

27

4.2.2 Number of duplicated specialization

In terms of code generation, inline traits have one downside compared to the
@specialized annotation: since code is inlined every time the inline trait is
extended, it results in code duplication across all children of inline traits.

We create two source files, each containing one of the following definitions:

1 import scala.specialized
2 class A[@specialized T] {
3 val x: T = ???
4 val y: T = ???
5 val z = (x, y)
6

7 def foo(i: Int, j: Double): T =
???

8 def bar(a: Boolean)(b: T)(c: T):
T = if (a) b else c

9 }

1 inline trait A[T]:
2 val x: T = ???
3 val y: T = ???
4 val z = (x, y)
5

6 def foo(i: Int, j: Double): T =
???

7 def bar(a: Boolean)(b: T)(c: T):
T = if a then b else c

We then create subclasses for these, following the pattern below:

1 class C0 extends A[Boolean]
2 class C1 extends A[Byte]
3 class C2 extends A[Char]
4 // [...]
5 class C8 extends A[Unit]
6 class C9 extends A[Boolean]
7 class C10 extends A[Byte]
8 // [...]

We compare the total size of the class files generated when creating a certain
number of children extending the specialized class/inline trait, as well as the
time taken to compile the source code.

Results are presented in figures 3 and 4. The compilation time was computed by
running the compilation command five times in order to "warm up" the machine,
then by computing the mean computation time over five more compilations.

It is however important to note that due to the need to use the modified version
of the compiler to compile inline traits, the compilation times for the Scala 3
file were taken from the output of the scalac command of sbt, which does not
provide decimals. The compilation time for the Scala 2 code was obtained by
using the time command of bash. Therefore, a difference of about one second
between compilation times is not considered to be significant.

First, let us notice that there are only nine types over which a class may be
specialized in Scala 2. This means that the code using @specialized will
generate nine specialized versions of A, leading to a fixed cost in space of 29KiB:
22KiB for the specialized classes, and 7KiB for the generic class. This explains
the large differences in sizes for less than 10 children classes.

We see that the code duplication induced by the new inlining mechanism leads
to a higher cost in space between 10 and 100 children classes. This shows that
inline traits are less performant than the Scala 2 annotation when many non-
inline classes need to extend them.

28

Figure 3: Number of children classes vs. total size of generated class files

Figure 4: Number of children classes vs. compilation time

29

Regarding the compilation time, we see that they are comparable when less
than a thousand subclasses are involved. However, inline traits seem to require
a larger amount of time to compile a very large number of children classes; this
is most probably due to the need to inline the trait’s code in every child.

Another important value is the time taken by the first warm-up compilation:
while the Scala 2 code had compilation times that were always close to the
results displayed, the Scala 3 code took much longer for its first compilation:
when using 10000 children classes, the first compilation took 108 seconds, as
opposed to the 50 seconds presented in the graph. We do not know the precise
reason for this behavior.

4.3 Conclusion
We have seen that inline traits are not a perfect replacement for @specialized:
having a large number of classes extend inline traits leads to an increase both
in code generated and time taken to compile in regards to the Scala 2 solution.
However, inline traits provide a way to reduce the amount of code generated
when they have few extending classes.

In terms of code performance, inline traits provide the same level of improvement
that @specialized does in Scala 2.

We conclude that inline traits are a good specialization mechanism in Scala 3,
when used to inline code in a relatively small number of classes.

30

5 Future work
Due to time constraints, the implementation is still a proof of concept for inline
traits: some elements of the specification are missing, and some corner cases
remain unexplored. We will discuss future plans to bring this new feature to a
state worthy of being included in dotty.

5.1 Known bugs in the current implementation
Symbols

• the only symbols that are adapted for now are the ones inside of class-likes
extending inline traits, this needs to be done for the rest of the code as
well (see section 5.2.1 below)

Members

• private members are not renamed, only private parameter accessors are;
this needs to be changed so that all overridable private members are re-
named

Types

• opaque types are not inlined properly

Inner class-likes

• inner traits’ term parameters caused multiple issues, they are forbidden
for now

• inner traits cannot have members whose signature include a generic type
declared by it (e.g. class Inner[T](t: T))

• inner traits that extend a generic class see their parent tree being wrong-
fully changed (Inner extends C[T] becomes Inner extends T)

• inner inner class-likes (a class-like in an inner class-like) are not handled
properly; the inlining of inner class-likes need to be separate from the code
used to inline the inline trait’s body

5.2 Remaining features to implement
5.2.1 New phase postSpecializeInlineTraits

For now, the phase specializeInlineTraits is responsible for adapting the symbols
to point to the ones that have been created and inlined inside of the children
class-like. However, we would like for this phase to only be run if there are
inline traits to be compiled or inlined, akin to how the inlining phase is only
run if there are inline methods to compile or method calls to inline.

The implementation should introduce a new phase, which goal would be the
following: for each symbol in the code, if it was inlined from an inline trait,
replace it with the symbol that was inlined in the non-inline child. For example:

31

1 inline trait A[T](x: T):
2 def foo: T = x
3

4 class B extends A[Int](3)
5

6 val b = B()
7

8 // The symbol foo here does not point to the specialized member of B, but rather
to the one that it inherits from A, resulting in unboxing after erasure.
This symbol foo should be replaced with the other symbol foo, that is
specialized and inlined inside of B, in order to avoid autoboxing.

9 val x = b.foo

5.2.2 Finish supporting inner class-likes

For now, only inner traits are supported by the implementation: the construc-
tors proxies are not yet generated. This would need to be done in two different
places:

• in SpecializeInlineTraits.scala, in method transformInlineTrait, along
with the transformation of the inner class-like and the generation of the
type,

• in Inlines.scala, in inlinedClassDef, which would return the inlined
inner class-like as well as the implementation of all proxies.

The calls to the inner class-like constructors would need to be replaced every-
where with calls to the constructors proxies.

Inner traits also need to be able to have term and type parameters, which is
currently not the case. The implementation of these features must be done in
order for inline traits to maximize their potential.

Finally, inner class-likes which signature cannot be transformed into a trait
without losing information should be forbidden for now, and an error message
should explain this.

5.2.3 Prevent the generation of useless code in inline traits

The compiler still generates some code that is not useful, due to the fact that it
considers it to simply be a trait with a modifier. We need to prevent this code
from being generated.

An example of this is the generation of an $init definition inside inline traits
during the constructors. Traits usually place their body statements inside of
it, and the primary constructor of extending classes simply call this method.
However, since the statements of inline traits are directly inlined inside of their
children’s bodies, this method will always be empty. Both the $init definition
and calls to it should therefore not be generated.

5.2.4 Miscellaneous changes

Inner class-likes

• private inner class-likes are not treated differently, but they should: they
can be inlined like any other non-class-like member

32

User experience

• print a warning if a member is accessed through an inline trait (see listing
27), and advise the user to change the type to avoid autoboxing

• create more meaningful error messages when inlining goes wrong

5.3 General improvements
5.3.1 Implement postphase checks

Most phases of the compiler have checks in place to ensure that the phase went
well, and that no tree is malformed. It would be a great addition to verify
that all symbols contain the correct owner and info, and that all trees have the
correct type.

5.3.2 Leveraging the power of the inliner even further

Another way of performing the specialization of inline traits was briefly dis-
cussed, but due to time constraints, it could not be tried. There is a high
chance that it would create less friction with the current implementation of the
Inliner class, as we currently pass as arguments trees with formats that the
class does not expect.

Instead of placing the @BodyAnnotation on the inline trait, we would place
one such annotation on each of its members that needs to be inlined, and each
annotation would only contain the body of the statement it is attached to.

When the specialization phase runs, instead of retrieving the whole body of the
parent inline trait and inlining its statements, we would simply create copies of
the members inside of the child class-like, with as body a reference to the super
member. For example:

1 inline trait A[T](x: T):
2 def foo(a: Boolean, b: Double)(c: T): T = x
3 val y: Char =
4 println(x)
5 ’1’
6

7 class B extends A[Int](3):
8 // The following members would be generated instead of the ones presented in

this document:
9 override def foo(a: Boolean, b: Double)(c: Int): Int = super.foo(a, b)(c)

10 override val y: Char = super.y

We would then slightly modify the inliner to also inline code that are is not a
method call, as long as the call to super is made on a member which has a
@BodyAnnotation.

It might very well be that this solution would solve some edge cases that cur-
rently need to be handled separately by the specializer.

This solution would require a lot of refactoring and rewriting, but we believe
that it can be worthy of the time spent implementing it.

33

References
[1] Matthew H Austern. Generic programming and the STL: using and ex-

tending the C++ Standard Template Library. Addison-Wesley Longman
Publishing Co., Inc., 1998. isbn: 9780201309560.

[2] Gilad Bracha, Martin Odersky, and David Stoutamire. “GJ: Extending
the JavaTM programming language with type parameters”. In: Sun Mi-
crosystems, University of South Australia, Bell Labs, Lucent Technologies
(1998). url: https://citeseerx.ist.psu.edu/document?repid=rep1&
type=pdf&doi=705390b032d3263cbd143760e84cad7c74d01a8a (visited
on 06/22/2023).

[3] Iulian Dragos and Martin Odersky. “Compiling Generics through User-
Directed Type Specialization”. In: Proceedings of the 4th Workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems. ICOOOLPS ’09. Genova, Italy: Association
for Computing Machinery, 2009, pp. 42–47. isbn: 9781605585413. doi:
10.1145/1565824.1565830.

[4] Dropped: Class Shadowing. url: https://dotty.epfl.ch/docs/reference/
dropped-features/class-shadowing.html (visited on 06/20/2023).

[5] Explicit (full) template specialization. url: https://en.cppreference.
com/w/cpp/language/template_specialization (visited on 06/06/2023).

[6] Martin Odersky. Revive or replace @specialized? 2022. url: https://
github.com/lampepfl/dotty/issues/15532#issue-1285715806 (vis-
ited on 06/12/2023).

[7] Martin Odersky et al. “An Overview of the Scala Programming Lan-
guage”. In: (2004). url: https://infoscience.epfl.ch/record/52656
(visited on 06/22/2023).

[8] Scala Standard Library 2.13.4 - scala.inline. url: https://www.scala-
lang.org/api/2.13.4/scala/inline.html (visited on 06/12/2023).

[9] SIP-25 - Trait Parameters. url: https://docs.scala-lang.org/sips/
trait-parameters.html (visited on 06/15/2023).

[10] Nicolas Stucki et al. “Semantics-Preserving Inlining for Metaprogram-
ming”. In: Proceedings of the 11th ACM SIGPLAN International Sym-
posium on Scala. SCALA 2020. Virtual, USA: Association for Comput-
ing Machinery, 2020, pp. 14–24. isbn: 9781450381772. doi: 10 . 1145 /
3426426.3428486.

34

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=705390b032d3263cbd143760e84cad7c74d01a8a
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=705390b032d3263cbd143760e84cad7c74d01a8a
https://doi.org/10.1145/1565824.1565830
https://dotty.epfl.ch/docs/reference/dropped-features/class-shadowing.html
https://dotty.epfl.ch/docs/reference/dropped-features/class-shadowing.html
https://en.cppreference.com/w/cpp/language/template_specialization
https://en.cppreference.com/w/cpp/language/template_specialization
https://github.com/lampepfl/dotty/issues/15532#issue-1285715806
https://github.com/lampepfl/dotty/issues/15532#issue-1285715806
https://infoscience.epfl.ch/record/52656
https://www.scala-lang.org/api/2.13.4/scala/inline.html
https://www.scala-lang.org/api/2.13.4/scala/inline.html
https://docs.scala-lang.org/sips/trait-parameters.html
https://docs.scala-lang.org/sips/trait-parameters.html
https://doi.org/10.1145/3426426.3428486
https://doi.org/10.1145/3426426.3428486

Appendix

A Boxing and unboxing behind the scenes
1 class Wrapper[T](val x: T)
2 class IntWrapper(val x: Int)
3

4 val numbers = 1 to 1000000
5 val ws = numbers.map(Wrapper(_))
6 val iws = numbers.map(IntWrapper(_))
7

8 val noUnboxing =
9 iws.map(w => IntWrapper(w.x*w.x + 2*w.x)).foldLeft(0)(_ + _.x)

10 val withUnboxing =
11 ws.map(w => Wrapper(w.x*w.x + 2*w.x)).foldLeft(0)(_ + _.x)

Listing 34: Operations on Int, with and without autoboxing

A benchmark was run to evaluate the performance of the last two value decla-
rations in listing 34, with the following parameters:

• 5 warm-up iterations of 10 seconds

• 10 measurement iterations of 10 seconds

• benchmark performed 3 times

The results are presented in figure 5.

Figure 5: Number of computations per second of the values

i

We see that boxing and unboxing operations take a noticeable toll on perfor-
mances, which time-critical code might not be allowed to spare. This shows that
there is a need for improvement of performances on generic code, for example
through specialization.

B Effect of @specialize in Scala 2
B.1 Source code

1 object Obj {
2 import scala.specialized
3

4 class WrapperNotSpe[T](val x: T)
5 // For this example, we specialize only on Int
6 class WrapperSpe[@specialized(Int) T](val x: T)
7

8 val wn1 = new WrapperNotSpe(1)
9 val wn2 = new WrapperNotSpe(2)

10 // Boxing/unboxing will happen
11 val wn3 = new WrapperNotSpe(wn1.x + wn2.x)
12

13 val ws1 = new WrapperSpe[Int](1)
14 val ws2 = new WrapperSpe[Int](2)
15 // Boxing/unboxing will not happen
16 val ws3 = new WrapperSpe[Int](ws1.x + ws2.x)
17

18 // Going through a generic environment forces the use of the
19 // generic accessors; specialization loses its use here
20 def f[T](w: WrapperNotSpe[T]): T = w.x
21 def f[T](w: WrapperSpe[T]): T = w.x
22

23 // Both of these values will be unboxed
24 val fwn1 = f(wn1)
25 val fws1 = f(ws1)
26 }

B.2 Code generated after specialize phase
The comments, spacing and indentations in the listing hereafter have been added
manually; they are not part of the code generated by the compiler.

All of the code listings below are contained inside the object Obj, which is not
shown for readability.

B.2.1 class WrapperNotSpe

1 class WrapperNotSpe[T] extends Object {
2 private[this] val x: T = _;
3 def x(): T = WrapperNotSpe.this.x;
4

5 def <init>(x: T): Obj.WrapperNotSpe[T] = {
6 WrapperNotSpe.super.<init>();
7 ()
8 }
9 };

ii

B.2.2 class WrapperSpe (generic)

1 class WrapperSpe[@specialized(scala.Int) T] extends Object {
2 // Field x is protected to be accessible by child
3 protected[this] val x: T = _;
4 def x(): T = WrapperSpe.this.x;
5

6 def <init>(x: T): Obj.WrapperSpe[T] = {
7 WrapperSpe.super.<init>();
8 ()
9 };

10

11 // Bridge method
12 def xmcIsp(): Int = WrapperSpe.this.x().asInstanceOf[Int]();
13 def specInstance$(): Boolean = false
14 };

B.2.3 class WrapperSpe (specialized)

1 class WrapperSpemcIsp extends Obj.WrapperSpe[Int] {
2 // Note that this specialized field replaces entirely the generic one,
3 // however the generic field will still be present in the class definition
4 protected[this] val xmcIsp: Int = _;
5 def xmcIsp(): Int = WrapperSpemcIsp.this.xmcIsp;
6

7 override def x(): Int = WrapperSpemcIsp.this.xmcIsp();
8

9 def <init>(xmcIsp: Int): Obj.WrapperSpemcIsp = {
10 WrapperSpemcIsp.super.<init>(null.asInstanceOf[Int]());
11 ()
12 };
13

14 def specInstance$(): Boolean = true
15 };

iii

B.2.4 Values declarations

1 private[this] val wn1: Obj.WrapperNotSpe[Int] =
2 new Obj.WrapperNotSpe[Int](1);
3

4 private[this] val wn2: Obj.WrapperNotSpe[Int] =
5 new Obj.WrapperNotSpe[Int](2);
6

7 private[this] val wn3: Obj.WrapperNotSpe[Int] =
8 new Obj.WrapperNotSpe[Int](
9 Obj.this.wn1().x().+(Obj.this.wn2().x())

10);
11

12 private[this] val ws1: Obj.WrapperSpe[Int] =
13 new Obj.WrapperSpemcIsp(1);
14

15 private[this] val ws2: Obj.WrapperSpe[Int] =
16 new Obj.WrapperSpemcIsp(2);
17

18 private[this] val ws3: Obj.WrapperSpe[Int] =
19 new Obj.WrapperSpemcIsp(
20 Obj.this.ws1().xmcIsp().+(Obj.this.ws2().xmcIsp())
21);
22

23 private[this] val fwn1: Int = Obj.this.f[Int](Obj.this.wn1());
24

25 private[this] val fws1: Int = Obj.this.f[Int](Obj.this.ws1());

B.3 Code generated after erasure phase
All of the code listings below are contained inside the object Obj, which is not
shown for readability.

B.3.1 class WrapperNotSpe

1 class WrapperNotSpe extends Object {
2 private[this] val x: Object = _;
3 def x(): Object = WrapperNotSpe.this.x;
4

5 def <init>(x: Object): Obj.WrapperNotSpe = {
6 WrapperNotSpe.super.<init>();
7 ()
8 }
9 };

iv

B.3.2 class WrapperSpe (generic)

1 class WrapperSpe extends Object {
2 protected[this] val x: Object = _;
3 def x(): Object = WrapperSpe.this.x;
4

5 def <init>(x: Object): Obj.WrapperSpe = {
6 WrapperSpe.super.<init>();
7 ()
8 };
9

10 def xmcIsp(): Int = unbox(WrapperSpe.this.x());
11 def specInstance$(): Boolean = false
12 };

B.3.3 class WrapperSpe (specialized)

1 class WrapperSpemcIsp extends Obj.WrapperSpe {
2 protected[this] val xmcIsp: Int = _;
3 def xmcIsp(): Int = WrapperSpemcIsp.this.xmcIsp;
4

5 override def x(): Int = WrapperSpemcIsp.this.xmcIsp();
6

7 def <init>(xmcIsp: Int): Obj.WrapperSpemcIsp = {
8 WrapperSpemcIsp.super.<init>(null);
9 ()

10 };
11

12 def specInstance$(): Boolean = true;
13

14 override def x(): Object = scala.Int.box(WrapperSpemcIsp.this.x())
15 }

v

B.3.4 Values declarations

1 private[this] val wn1: Obj.WrapperNotSpe =
2 new Obj.WrapperNotSpe(scala.Int.box(1));
3

4 private[this] val wn2: Obj.WrapperNotSpe =
5 new Obj.WrapperNotSpe(scala.Int.box(2));
6

7 private[this] val wn3: Obj.WrapperNotSpe =
8 new Obj.WrapperNotSpe(
9 scala.Int.box(

10 unbox(Obj.this.wn1().x()).+(unbox(Obj.this.wn2().x()))
11)
12);
13

14 private[this] val ws1: Obj.WrapperSpe =
15 new Obj.WrapperSpemcIsp(1);
16

17 private[this] val ws2: Obj.WrapperSpe =
18 new Obj.WrapperSpemcIsp(2);
19

20 private[this] val ws3: Obj.WrapperSpe =
21 new Obj.WrapperSpemcIsp(
22 Obj.this.ws1().xmcIsp().+(Obj.this.ws2().xmcIsp())
23);
24

25 private[this] val fwn1: Int = unbox(Obj.this.f(Obj.this.wn1()));
26

27 private[this] val fws1: Int = unbox(Obj.this.f(Obj.this.ws1()));

C Normal trait vs. inline trait
The code being compiled is the following, once with the inline keyword in the
signature of trait A, and once without it:

1 inline trait A[T](val x: T):
2 def foo: T = x
3

4 class B extends A[Int](1)

vi

C.1 Without inline keyword

1 trait A() extends Object {
2 def x(): Object
3 def foo(): Object = this.x()
4 }
5

6 class B extends Object, A {
7 def <init>(): Unit =
8 {
9 super()

10 this.x = Int.box(1)
11 ()
12 }
13 private val x: Object
14 def x(): Object = this.x
15 def foo(): Object = super[A].foo()
16 }

C.2 With inline keyword

1 inline trait A() extends Object {
2 def x(): Object
3 def foo(): Object
4 }
5

6 class B extends Object, A {
7 def <init>(): Unit =
8 {
9 super()

10 this.x = 1
11 ()
12 }
13 private val x: Int
14 override def x(): Int = this.x
15 override def foo(): Int = this.x()
16 override def x(): Object = Int.box(this.x())
17 override def foo(): Object = Int.box(this.foo())
18 }

D Benchmarks
The benchmark tool used is a modified version of Jmh, called scala3-bench-
micro/Jmh.

D.1 Matrix library benchmark
The following code is used to run the benchmark:

vii

1 import org.openjdk.jmh.annotations._
2 import java.util.concurrent.TimeUnit.SECONDS
3 import scala.util.Random
4

5 @Fork(10)
6 @Threads(3)
7 @Warmup(iterations = 3, time = 5, timeUnit = SECONDS)
8 @Measurement(iterations = 5, time = 10, timeUnit = SECONDS)
9 @State(Scope.Benchmark)

10 class MatrixBenchmark {
11 val n: Int = 100
12

13 def intMatrixElems: List[List[Int]] =
14 List.tabulate(n, n)((_, _) => Random.nextInt())
15

16 @Param(Array("standard", "specialized", "inlinetrait"))
17 var libType: String = _
18

19 var m1: BenchmarkMatrix = _
20 var m2: BenchmarkMatrix = _
21

22 @Setup(Level.Trial)
23 def setup = {
24 Random.setSeed(n)
25

26 val matrixFactory = BenchmarkMatrix.ofType(libType)
27 m1 = matrixFactory(intMatrixElems)
28 m2 = matrixFactory(intMatrixElems)
29 }
30

31 @Benchmark
32 def matrixBenchmark = (m1 + m2) * m1 // O(n^3) loops
33 }

Listing 35: Benchmark file for matrix operations

viii

1 import standard.IntMatrixLib.{Matrix => StdIntMatrix}
2 import specialized.IntMatrixLib.{Matrix => SpeIntMatrix}
3 import inlinetrait.IntMatrixLib.{Matrix => InlIntMatrix}
4

5 trait BenchmarkMatrix:
6 def +(n: BenchmarkMatrix): BenchmarkMatrix
7 def *(n: BenchmarkMatrix): BenchmarkMatrix
8

9 object BenchmarkMatrix:
10 def ofType(tpe: String): Seq[Seq[Int]] => BenchmarkMatrix =
11 (elems: Seq[Seq[Int]]) => tpe.toLowerCase() match {
12 case "standard" => StdBenchmarkMatrix(StdIntMatrix(elems*))
13 case "specialized" => SpeBenchmarkMatrix(SpeIntMatrix(elems*))
14 case "inlinetrait" => InlBenchmarkMatrix(InlIntMatrix(elems*))
15 }
16

17 private class StdBenchmarkMatrix(val m: StdIntMatrix) extends BenchmarkMatrix:
18 import standard.IntMatrixLib.{+, ‘*‘}
19 override def +(n: BenchmarkMatrix): StdBenchmarkMatrix = n match {
20 case stdN: StdBenchmarkMatrix => StdBenchmarkMatrix(this.m + stdN.m)
21 }
22 override def *(n: BenchmarkMatrix): StdBenchmarkMatrix = n match {
23 case stdN: StdBenchmarkMatrix => StdBenchmarkMatrix(this.m * stdN.m)
24 }
25

26 private class SpeBenchmarkMatrix(val m: SpeIntMatrix) extends BenchmarkMatrix:
27 import specialized.IntMatrixLib.{+ => plus, ‘*‘ => times}
28 override def +(n: BenchmarkMatrix): SpeBenchmarkMatrix = n match {
29 case speN: SpeBenchmarkMatrix => SpeBenchmarkMatrix(plus(this.m)(speN.m))
30 }
31 override def *(n: BenchmarkMatrix): SpeBenchmarkMatrix = n match {
32 case speN: SpeBenchmarkMatrix => SpeBenchmarkMatrix(times(this.m)(speN.m))
33 }
34

35 private class InlBenchmarkMatrix(val m: InlIntMatrix) extends BenchmarkMatrix:
36 import inlinetrait.IntMatrixLib.{+, ‘*‘}
37 override def +(n: BenchmarkMatrix): InlBenchmarkMatrix = n match {
38 case inlN: InlBenchmarkMatrix => InlBenchmarkMatrix(this.m + inlN.m)
39 }
40 override def *(n: BenchmarkMatrix): InlBenchmarkMatrix = n match {
41 case inlN: InlBenchmarkMatrix => InlBenchmarkMatrix(this.m * inlN.m)
42 }

Listing 36: Common representation of matrices

Hereafter are the three implementations used: standard, without specialization;
specialized, with code similar to the behavior of @specialized in Scala 2, and
inlinetrait, which uses the new construct to specialize the code.

ix

D.1.1 standard

1 package standard
2

3 import scala.reflect.ClassTag
4

5 trait MatrixLib[T: ClassTag]:
6 opaque type Matrix = Array[Array[T]]
7

8 object Matrix:
9 def apply(rows: Seq[T]*): Matrix =

10 rows.map(_.toArray).toArray
11

12 extension (m: Matrix)
13 def apply(x: Int)(y: Int): T = m(x)(y)
14 def rows: Int = m.length
15 def cols: Int = m(0).length
16

17 object IntMatrixLib extends MatrixLib[Int]:
18 extension (m: Matrix)
19 def +(n: Matrix): Matrix =
20 val sum =
21 for row <- 0 until m.rows
22 yield
23 for col <- 0 until m.cols
24 yield m(row)(col) + n(row)(col)
25 Matrix(sum*)
26 end +
27

28 def *(n: Matrix): Matrix =
29 val prod =
30 for i <- 0 until m.rows
31 yield
32 for j <- 0 until n.cols
33 yield
34 val mults = for k <- 0 until n.rows yield m(i)(k) * n(k)(j)
35 mults.fold(0)(_ + _)
36 Matrix(prod*)
37 end *

D.1.2 specialized

For readability, the code hereafter is the Scala 2 code that was adapted to
work without the @specialized annotation. The actual code was manually
specialized to work in Scala 3.

x

1 package specialized
2

3 import scala.reflect.ClassTag
4 import scala.specialized
5

6 class MatrixLib[@specialized(Int) T: ClassTag] {
7 type Matrix = Array[Array[T]]
8

9 object Matrix {
10 def apply(rows: Seq[T]*): Matrix =
11 rows.map(_.toArray).toArray
12 }
13

14 def get(m: Matrix)(x: Int)(y: Int): T = m(x)(y)
15 def rows(m: Matrix): Int = m.length
16 def cols(m: Matrix): Int = m(0).length
17 }
18

19 object IntMatrixLib extends MatrixLib[Int] {
20 def +(m: Matrix)(n: Matrix): Matrix = {
21 val sum = {
22 for (row <- 0 until rows(m))
23 yield {
24 for (col <- 0 until cols(m))
25 yield m(row)(col) + n(row)(col)
26 }
27 }
28 Matrix(sum: _*)
29 }
30

31 def *(m: Matrix)(n: Matrix): Matrix = {
32 val prod = {
33 for (i <- 0 until rows(m))
34 yield {
35 for (j <- 0 until cols(n))
36 yield {
37 val mults =
38 for (k <- 0 until rows(n)) yield get(m)(i)(k) * get(n)(k)(j)
39 mults.fold(0)(_ + _)
40 }
41 }
42 }
43 Matrix(prod: _*)
44 }
45 }

D.1.3 inlinetrait

For demonstration purposes, the code hereafter does not show the changes made
so that the current implementations of inline traits may work. In the actual
code, the type Matrix is not opaque, and the object Matrix is replaced with a
method of the same name.

xi

1 package inlinetrait
2

3 import scala.reflect.ClassTag
4

5 inline trait MatrixLib[T: ClassTag]:
6 opaque type Matrix = Array[Array[T]]
7

8 object Matrix:
9 def apply(rows: Seq[T]*): Matrix =

10 rows.map(_.toArray).toArray
11

12 extension (m: Matrix)
13 def apply(x: Int)(y: Int): T = m(x)(y)
14 def rows: Int = m.length
15 def cols: Int = m(0).length
16

17 object IntMatrixLib extends MatrixLib[Int]:
18 extension (m: Matrix)
19 def +(n: Matrix): Matrix =
20 val sum =
21 for row <- 0 until m.rows
22 yield
23 for col <- 0 until m.cols
24 yield m(row)(col) + n(row)(col)
25 Matrix(sum*)
26 end +
27

28 def *(n: Matrix): Matrix =
29 val prod =
30 for i <- 0 until m.rows
31 yield
32 for j <- 0 until n.cols
33 yield
34 val mults = for k <- 0 until n.rows yield m(i)(k) * n(k)(j)
35 mults.fold(0)(_ + _)
36 Matrix(prod*)
37 end *

D.2 Pairs benchmark
The following code is used to run the benchmark:

xii

1 import org.openjdk.jmh.annotations._
2 import java.util.concurrent.TimeUnit.SECONDS
3 import scala.util.Random
4

5 @Fork(10)
6 @Threads(3)
7 @Warmup(iterations = 3, time = 5, timeUnit = SECONDS)
8 @Measurement(iterations = 5, time = 10, timeUnit = SECONDS)
9 @State(Scope.Benchmark)

10 class PairsBenchmark {
11 var numPairs: Int = 3_000_000
12

13 def pairElems: List[(First, Second)] = List.tabulate(numPairs)(_ % 2 match {
14 case 0 => (Random.nextInt(), Random.nextDouble())
15 case 1 => (Random.nextInt(Char.MaxValue).asInstanceOf[Char],

Random.nextInt(Short.MaxValue).asInstanceOf[Short])
16 })
17

18 @Param(Array("standard", "specialized", "inlinetrait"))
19 var libType: String = _
20

21 var pairs: List[BenchmarkPair] = _
22

23 @Setup(Level.Trial)
24 def setup = {
25 Random.setSeed(numPairs)
26

27 val pairFactory = (l: List[(First, Second)]) => l.map((_1, _2) =>
BenchmarkPair.ofType(libType)(_1, _2))

28 pairs = pairFactory(pairElems)
29 }
30

31 @Benchmark
32 def pairsBenchmark = pairs.foldLeft(0){ case (sum, pair) => pair match {
33 case BenchmarkPair(i: Int, d: Double) => 7 * i + 3 * d.toInt + sum
34 case BenchmarkPair(c: Char, s: Short) => 5 * c + 2 * s + sum
35 }
36 }
37 }

Listing 37: Benchmark file for pairs operations

xiii

1 import standard.IntMatrixLib.{Matrix => StdIntMatrix}
2 import specialized.IntMatrixLib.{Matrix => SpeIntMatrix}
3 import inlinetrait.IntMatrixLib.{Matrix => InlIntMatrix}
4

5 trait BenchmarkMatrix:
6 def +(n: BenchmarkMatrix): BenchmarkMatrix
7 def *(n: BenchmarkMatrix): BenchmarkMatrix
8

9 object BenchmarkMatrix:
10 def ofType(tpe: String): Seq[Seq[Int]] => BenchmarkMatrix =
11 (elems: Seq[Seq[Int]]) => tpe.toLowerCase() match {
12 case "standard" => StdBenchmarkMatrix(StdIntMatrix(elems*))
13 case "specialized" => SpeBenchmarkMatrix(SpeIntMatrix(elems*))
14 case "inlinetrait" => InlBenchmarkMatrix(InlIntMatrix(elems*))
15 }
16

17 private class StdBenchmarkMatrix(val m: StdIntMatrix) extends BenchmarkMatrix:
18 import standard.IntMatrixLib.{+, ‘*‘}
19 override def +(n: BenchmarkMatrix): StdBenchmarkMatrix = n match {
20 case stdN: StdBenchmarkMatrix => StdBenchmarkMatrix(this.m + stdN.m)
21 }
22 override def *(n: BenchmarkMatrix): StdBenchmarkMatrix = n match {
23 case stdN: StdBenchmarkMatrix => StdBenchmarkMatrix(this.m * stdN.m)
24 }
25

26 private class SpeBenchmarkMatrix(val m: SpeIntMatrix) extends BenchmarkMatrix:
27 import specialized.IntMatrixLib.{+ => plus, ‘*‘ => times}
28 override def +(n: BenchmarkMatrix): SpeBenchmarkMatrix = n match {
29 case speN: SpeBenchmarkMatrix => SpeBenchmarkMatrix(plus(this.m)(speN.m))
30 }
31 override def *(n: BenchmarkMatrix): SpeBenchmarkMatrix = n match {
32 case speN: SpeBenchmarkMatrix => SpeBenchmarkMatrix(times(this.m)(speN.m))
33 }
34

35 private class InlBenchmarkMatrix(val m: InlIntMatrix) extends BenchmarkMatrix:
36 import inlinetrait.IntMatrixLib.{+, ‘*‘}
37 override def +(n: BenchmarkMatrix): InlBenchmarkMatrix = n match {
38 case inlN: InlBenchmarkMatrix => InlBenchmarkMatrix(this.m + inlN.m)
39 }
40 override def *(n: BenchmarkMatrix): InlBenchmarkMatrix = n match {
41 case inlN: InlBenchmarkMatrix => InlBenchmarkMatrix(this.m * inlN.m)
42 }

Listing 38: Common representation of matrices

Hereafter are the three implementations used: standard, without specialization;
specialized, with code similar to the behavior of @specialized in Scala 2, and
inlinetrait, which uses the new construct to specialize the code.

D.2.1 standard

1 package standard
2

3 class Pair[+T1, +T2](val _1: T1, val _2: T2)

D.2.2 specialized

The code hereafter is the Scala 2 code that was adapted to work without the
@specialized annotation. The actual code was manually specialized to work

xiv

in Scala 3.

1 package specialized
2

3 import scala.specialized
4

5 class Pair[@specialized(Int, Char) +T1, @specialized(Double, Short) +T2](_1: T1,
_2: T2) {}

D.2.3 inlinetrait

1 package inlinetrait
2

3 inline trait Pair[+T1, +T2](val _1: T1, val _2: T2)
4

5 class IntDoublePair(override val _1: Int, override val _2: Double) extends
Pair[Int, Double](_1, _2)

6 class CharShortPair(override val _1: Char, override val _2: Short) extends
Pair[Char, Short](_1, _2)

D.3 Number of classes generated and total size
Hereafter are the code snippets used to determine the number of class files and
their total size when compiling in Scala 2 with @specialized (on the left) or
in Scala 3 with an inline trait (on the right).

No specialization

1 class A[T, U, V] {
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all = (x, y, z)
6 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all = (x, y, z)

(Int, U, V)

1 import scala.specialized
2 class A[@specialized(Int) T, U, V] {
3 val x: T = ???
4 val y: U = ???
5 val z: V = ???
6 def all = (x, y, z)
7 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all: (T, U, V) = (x, y, z)
6 class C[U, V] extends A[Int, U, V]

xv

(Int, Int, Int)

1 import scala.specialized
2 class A[@specialized(Int) T,

@specialized(Int) U,
@specialized(Int) V] {

3 val x: T = ???
4 val y: U = ???
5 val z: V = ???
6 def all = (x, y, z)
7 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all: (T, U, V) = (x, y, z)
6 class C extends A[Int, Int, Int]

(Int, Double, Boolean)

1 import scala.specialized
2 class A[@specialized(Int) T,

@specialized(Double) U,
@specialized(Boolean) V] {

3 val x: T = ???
4 val y: U = ???
5 val z: V = ???
6 def all = (x, y, z)
7 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all: (T, U, V) = (x, y, z)
6 class C extends A[Int, Double,

Boolean]

(Int, Double | Int, Boolean)

1 import scala.specialized
2 class A[@specialized(Int) T,

@specialized(Double, Int) U,
@specialized(Boolean) V] {

3 val x: T = ???
4 val y: U = ???
5 val z: V = ???
6 def all = (x, y, z)
7 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all: (T, U, V) = (x, y, z)
6 class C1 extends A[Int, Double,

Boolean]
7 class C2 extends A[Int, Int,

Boolean]

(Int, Int, Int) | (Double, Double, Double)

1 import scala.specialized
2 class A[@specialized(Double, Int)

T, @specialized(Double, Int)
U, @specialized(Double, Int)
V] {

3 val x: T = ???
4 val y: U = ???
5 val z: V = ???
6 def all = (x, y, z)
7 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all: (T, U, V) = (x, y, z)
6 class C1 extends A[Int, Int, Int]
7 class C2 extends A[Double, Double,

Double]

xvi

All primitive types

1 import scala.specialized
2 class A[@specialized T,

@specialized U, @specialized
V] {

3 val x: T = ???
4 val y: U = ???
5 val z: V = ???
6 def all = (x, y, z)
7 }

1 inline trait A[T, U, V]:
2 val x: T = ???
3 val y: U = ???
4 val z: V = ???
5 def all: (T, U, V) = (x, y, z)
6 class C1 extends A[Boolean,

Boolean, Boolean]
7 class C2 extends A[Boolean,

Boolean, Byte]
8 // [...]
9 class C729 extends A[Unit, Unit,

Unit]

xvii

	Introduction
	Boxing and unboxing
	Code specialization
	Inlining in Scala

	Inline traits
	Leveraging the inlining engine
	Design choices
	Accessing members through an inline trait

	Implementation
	Allowing member access through inline traits
	Leveraging existing code for inlining
	File Inlines.scala
	File SpecializeInlineTraits.scala
	File PruneInlineTraits.scala

	Evaluation
	Code performance
	Code size
	Conclusion

	Future work
	Known bugs in the current implementation
	Remaining features to implement
	General improvements

	Boxing and unboxing behind the scenes
	Effect of @specialize in Scala 2
	Source code
	Code generated after specialize phase
	Code generated after erasure phase

	Normal trait vs. inline trait
	Without inline keyword
	With inline keyword

	Benchmarks
	Matrix library benchmark
	Pairs benchmark
	Number of classes generated and total size

