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Abstract:
The recent geopolitical conflicts in Europe highlighted the sensibility of the current energy system to the volatil-
ity of energy carrier prices. In the prospect of defining robust energy system configurations to ensure energy
supply stability, it is necessary to understand which parameters modulate the system configuration. This paper
presents a framework that identifies a panel of technological solutions at the district level. First, a global sen-
sitivity analysis is performed on a mixed integer linear programming model which optimally size and operate
the system. The sensitivity analysis determines the most influential parameters of the model and provides a
representative sampling of the solution space. The latter is then clustered using a density-based algorithm to
identify typical solutions. Finally, the framework is applied to a suburban and residential Swiss neighborhood.
The main outcome of the research is the high sensitivity of the model to energy carrier prices. As a result, the
sampling space separates itself into two system types. The ones based on a natural gas boiler, and the ones
relying on a combination of electrical heater and heat pump. For both types, the electricity demand is either
fulfilled by PV panels or by electricity imports.
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1. Introduction
1.1. Background
The energy transition presents itself as one of the main levers to mitigate global warming as the energy sector
accounts for 73% of global emissions and is expected to increase over the coming decade [1]. Therefore,
developing a sustainable system requires careful energy planning from policymakers. In this prospect, energy
system models are essential tools for understanding and assessing the potential impact of new technologies
or policies.
The built environment, which accounted for 36% of final energy consumption in 2020 [2], is viewed as a
promising pathway to a sustainable energy mix. Moreover, distributed energy systems, such as those com-
posed of interconnected energy hubs, have great potential when deployed at the district scale, increasing
self-consumption, and mitigating grid congestion.

1.2. Literature review
1.2.1. Energy system modelling

Energy models play a crucial role in guiding decision-makers towards a fossil-free energy system. The de-
carbonization of the current system requires a profound restructuring and involves a deeper electrification [3].
Low-carbon technologies, such as solar and wind, are spreading rapidly and are expected to become the
main source of electric power [4, 5]. However, those renewable energies are intermittent and decentralized,
bringing new challenges such as redistribution of electricity, stabilization of the power grid, intra and inter-day
storage [6]. The multiplication of energy vectors, i.e., electricity, heat, oil, waste, biomass, or even hydrogen,
increases the complexity of the task to provide an optimal configuration and operation of the system. Con-
sequently, the majority of models focus on one specific energy sector (electricity, heat, mobility, etc.) and do
not account for cross-sectoral synergy [7]. Additionally, on a more general aspect, the scale of the system
can vary from a single building to an entire country. Whether or not, energy subsystems are considered in the
overall scale of the system, e.g., interconnected buildings to represent a district system or the regionalisation
of a country-wide system.
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Buildings archetypes have been widely used to define large-scale systems [8] as their emissions have dou-
bled in the last 30 years [4]. Kotzur and al. [9] developed a bottom-up model based on residential building
stock. They deployed an aggregation algorithm to define archetype buildings. Their configuration and oper-
ation, which includes the buildings’ interaction, are then optimized to acquire cost-effective solutions. Stadler
and al. [10] assessed the impact of model predictive control (MPC) on the Swiss building stock. Three typical
buildings were defined, each having 9 variations based on their construction date. The deployment of MPC
allowed the reduction of the operational expenditure (OPEX) as well as the increase of the self-consumption.
This result emphasizes the importance of the interconnection and operation improvement of building energy
system.

In this regard, the design and operation of interconnected distributed energy systems, such as buildings, have
proven to be part of the solution to help improve sustainable development in many countries [11–14]. The
distributed aspect of such systems comes from the interconnection of multiple energy sources. Those sources
can be energy hubs linked by local multi-energy grids. As discussed in the review of district-scale energy
systems by Allgerini and al. [15], there has been a significant improvement in the models and tools used to
analyze such systems.

In their paper, Morvaj and al. [16] performed an optimization of an urban scale energy system composed of
twelve buildings. For each building, an optimal design and operation have been identified and the district heat-
ing network associated was optimized to reduce greenhouse gas (GHG) emissions and the total expenditure
(TOTEX). Maroufmashat and al. [17] highlighted the importance of considering multiple energy hubs in order
to observe significant cost and GHG emissions reduction. Their case study showed that the implementation of
distributed combined heat and power (CHP) units was limited while operating an electricity grid with low CO2
emissions. Additionally, the operation of interconnected energy hubs can significantly increase the robustness
of the power grid, e.g. mitigation of congestion and ensuring reliability.

1.2.2. Global Sensitivity Analysis

Most current models assume a perfect knowledge of the input parameters, which induces the absence of un-
certainty in the model and characterizes them as deterministic [12]. However, there is some uncertainty in
a number of areas, including current policy, renewable energy production, and economic trends. Therefore,
specific models are developed to consider the uncertainty of input parameters: stochastic models. However,
it might be complicated to transform a deterministic model into a stochastic one without major remodeling. An
alternative is the application of sensitivity analysis (SA) to deterministic models as proposed in [18,19].

The utilization of sensitivity analysis is an effective approach to evaluate the impact of input parameters on a
model. There exist two main types of SA: local and global. The most common method is the local sensitivity
analysis, which evaluates the sensitivity by computing partial derivatives and gradients. Even though its ease
of implementation makes it popular, the sampling scheme does not scan the entire space of input parameters.
This gap is filled by the global sensitivity analysis (GSA), which covers the sampling space by varying several
parameters at once. In doing so, it can capture parameters interaction [20].

The review of the SA method for building energy systems performed by Tian and al. [21] emphasized the
importance of choosing the right method. They concluded that the choice should be based on the following
criteria: research purpose, computational cost of energy models, number of input variables, and familiarity with
the methods. Another review was performed by Westermann and Evins [22], 57 studies on building design
were analyzed, focusing on objective, sampling strategy, and surrogate model type. Among all studies only 16
included a SA of the model, their sampling strategies were primarily based on Latin hypercube sampling (LHS),
and only 3 used an optimization model, highlighting the low implementation of SA in optimization models.

A two-stage GSA framework has been used in several studies [18,19,23]. Their goal is diverse, from assessing
the uncertainty, and sensitivity of the system, or to explore the multidimensional design space, but the applied
framework stays the same. First, a screening method filters out non-influential parameters to reduce the com-
putational cost of further model evaluations. It is then combined with a Sobol sequence to obtain a proper
sampling of the solution space for the final sensitivity analysis.

1.3. Gaps and contribution
As emphasized throughout subsection 1.2., the literature lacks an application of distributed energy systems as
energy hub in large-scale energy system optimization. The role of districts as renewable energy hubs can be
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central in the optimization of a carbon-neutral national energy system as the operation of energy fluxes can
help considerably improve the thermo-efficiency of the system. In this prospect, the proposed configurations
should represent at best the district’s solution space. This paper attends to provide a framework to identify
a set of optimal district configurations. The framework consists of a two-step GSA on a district-wide energy
system model to explore its solution space. The latter will then be aggregated to identify typical configurations.
The purpose of this paper is to contribute to the following research points:

• Identification of the most influential parameters.

• Exploration of the solution space.

• Identification of typical configurations.

2. Methodology
2.1. Global sensitivity analysis
2.1.1. Overview

In order to develop a panel of solutions for the district, it is necessary to explore the whole solution space of
the model. The following methodology is inspired by the publication of Saltelli and al. [20] which assesses the
state-of-the-art of GSA. A sensitivity analysis can be decomposed into four main steps:

1. Identification: k input parameters of the model are selected

2. Sampling: the input parameters space is discretized by N samples

3. Evaluation: the model outputs are computed for each sample

4. Comparison: some metrics are derived from the N outputs of the model for the k parameters

The methodology used consists of two separate SAs:

1. A screening method is performed to identify the most influential factor of the model, i.e. the parameters
inducing the greatest variation of the objective function.

2. A variance-based method is used to efficiently explore the solution space of the model and quantify its
sensitivity.

Full set of input 
parameters

Morris screening 
method Subset of input 

parameters

Variance-based 
Sobol method

Figure 1: Scheme of the two-step GSA composed of first the Morris method as a screening and then the Sobol
method is applied on the most influential parameters previously identified.

2.1.2. Morris screening

The screening method used is the Morris method, which allows to qualitatively compare the influence on
the model output of a large number of parameters with a few evaluations [24]. The method discretizes the
input parameters space, which is a k -dimensional hypercube, into a p-level grid, where k is the number of
independent input parameters and p is a sampling parameter. Afterward, it performs a one-step-at-the-time
method (OAT), i.e. it randomly modifies one input parameter by ±∆ to generate r trajectories.
Finally, it evaluates the elementary effect of the ith input parameter (EEi ) as a function of the model output
Y = f (X1, ..., Xn), see Equation 1. The EE can be interpreted as a local partial derivative, thereby it represents
the sensitivity of the model at a specific point w.r.t the input parameter:
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EEi =
∂Y
∂xi

≃ Y (X1, X2, ... , Xi−1, Xi ±∆, ... Xk ) − Y (X1, X2, ... , Xk )
∆

(1)

Where ∆ is defined as a function of p: ∆ = p
2(p−1) and can be considered as the size of the discretization mesh.

The total number of model evaluations amounts to r (k+1), where r is suggested between 4-10 [20]. The choice
of p and r has to be made jointly to ensure that the k dimensions and their interactions are correctly sampled,
Saltelli proposed p = 4 and r = 10 [25] whereas Morris used r = 4 in [24], which seems to be the minimum
usable value.

In its original work, Morris proposed the computation of the mean µi (Equation 2) and standard deviation σi
(Equation 4) of the elementary effect distribution for each parameter i. However, by doing so, the positive and
negative effects cancel each other out, which would falsely influence the results of the mean value. Thereby,
the method has been improved by Campolongo and al. [26], by considering the absolute mean elementary
effect µ∗

i (Equation 3).

µi =
1
r

r∑
j=1

EE j
i (2)
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i =

1
r

r∑
j=1

|EE j
i | (3)

σ2
i =

1
r − 1

r∑
j=1

(
EE j
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)2
(4)
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Figure 2: Identification of the typical zone on
the µ∗ − σ plane.

Those indicators allow to compare the input parameters be-
tween each other. A small absolute mean value means a
non-influential parameter. The standard deviation reflects
the interaction between parameters: a high value means
that the output is highly dependent on the sampling point,
i.e. on the other input parameters values. Conversely,
a low standard deviation indicates that the elementary ef-
fect is not subject to fluctuate with other factors varia-
tion.

The representation of the mean absolute value of the EEs and
their standard deviation makes it easy to identify to which group
the parameter belongs. As represented on Figure 2, one can
see the different zones and the line (x = y ) separating quadrant
1 that defines whether parameters interact together or not. The
different zones can be defined as follows:

1. Non-influential parameters.

2. Influential, non-interacting parameters.

3. Influential, interacting parameters.

4. Influential parameters.

The comparison of µ and µ∗ gives an extra insight in the monotony of the model. If the model output in-
creases with an augmentation of the parameter, the EE will stay positive thus µ∗ and µ will have a similar
value. Whereas, if the EE changes sign regularly its cumulative will be lower, i.e. µ will be lower than µ∗.

2.1.3. Sobol sampling

The Sobol method is a variance-based sensitivity analysis named after the mathematician Ilya M. Sobol. The
method is developed in [20, 27] and uses Sobol’s recommendation on the sequencing of quasi-random num-
bers. However, Saltelli extended her work in [28] to reduce the error rate when computing sensitivity indices.
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2.1.3.1 Sensitivity indices
The method evaluates two different sensitivity indices, the first one is the first-order sensitivity coefficient (Equa-
tion 5). It results from the ratio of the variance of the mean output, considering all parameters except the i-th,
to the variance of the output. The secondary sensitivity coefficient is the total effect index, i.e. first and higher-
order sensitivity coefficient (Equation 6).
Assuming: Y = f (X1, ..., Xn) is the model output, X∼i symbolizes all parameters but Xi , EX∼i (Y | Xi )
is the mean of Y for every possible X∼i and finally the variance VXi is calculated for all values of Xi .

Si =
VXi

(
EX∼i (Y | Xi )

)
V (Y )

(5)

STi =
EX∼i

(
VXi (Y | X∼i )

)
V (Y )

= 1 −
VX∼i

(
EXi (Y | X∼i )

)
V (Y )

(6)

The first-order coefficient only takes into account the effect of itself on the output value, but not the possible
effect when considering higher-order interactions with other parameters. The total-order index evaluates the
effect of a parameter considering all possible interactions with other parameters. Meaning that a parameter
with a value of ST = 0 can be considered as non-influential on the output Y . The total number of model evalua-
tions is N(k +2) with N being typically between 500 and 1000 and it is suggested to choose a power of two [20].

2.2. Clustering
2.2.1. Standardization and features selection

It is necessary to standardize the data when various features are used for clustering. Otherwise, the aggrega-
tion algorithm mainly takes into account the large numerical values. The chosen standardization technique is
the z-score, see Equation 7. Each feature Yi of the data set is standardized as follows:

Zi =
Yi − µi

σi
(7)

where µi is the mean and σi is the standard deviation of the feature Yi . The features selected for the cluster-
ing, i.e. the district characteristics, are a mix of economic and technical attributes of the optimization result.
The key performance indicators (KPI) chosen are capital and operational expenditure (CAPEX and OPEX).
Installed capacity of energy conversion and storage units are included in the clustering as they are key prop-
erties of the district configuration. Regarding the exchange with the network, the total and peak energy supply
and demand are considered for the natural gas (NG) and the electricity grid.

2.2.2. Aggregation techniques

Several aggregation techniques, such as K-means, DBSCAN, and HDBSCAN, performance are analyzed for
this specific clustering. The K-means method is a clustering technique that minimizes the variance within clus-
ters, which is a difficult problem to solve optimally. However, heuristic algorithms can be used to find a local
optimum efficiently. To determine the appropriate number of clusters for K-means, two common techniques
are the Silhouette score and the Elbow method. The Silhouette score evaluates how well each data point fits
within its assigned cluster, based on the density of points within the cluster and the distance between clusters.
The Elbow method involves observing the point of inflection on a plot of the sum of squared errors (SSE) as
the number of clusters increases.

Another assessed method is the DBSCAN, which is based on the concept of core points. Points are defined as
core points of one specific cluster when they can reach a minimum of minPts neighbours within a ϵ distance.
Additionally, points within reach, but not satisfying the minimum neighbours criterion still belong to the cluster.
However, points non-reachable from a core point are considered outliers. The choice of minPts and ϵ should
be based on the data properties [29].

The HDBSCAN algorithm is an extension of the DBSCAN method with a hierarchical approach. The algorithm
can be decomposed in a few steps to get a broad overview. First, the space is transformed based on its density.
This allows to construct a minimum spanning tree used to build the cluster hierarchy. Then, the cluster tree is
condensed to finally extract the clusters [30,31].
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To support the clustering task, a score is introduced to quantify the quality of the clusters. The chosen score
is the density-based clustering validation (DBCV) index presented by Moulavi and al. [32]. It is based on a pa-
rameterless core distance defined by the density of objects and mutual reachability. The index ranges between
-1 and 1, which represents a bad and a good score respectively.

2.3. Case study
The application of the presented framework is carried out on a suburban and residential district located in the
climatic zone of Geneva, Switzerland. The energy system consists of 15 buildings, including 5 single-family
houses and 10 apartment buildings [33], selected from a pool of 30 available options. Various characteristics
of the buildings, such as type, year of construction, energy reference area, and height, are obtained from the
cantonal and federal Official Building Registry [34,35], while the ground surface area is provided by the cantonal
administration [35, 36]. The climate data, solar irradiation, and temperature are extracted from Meteonorm
[37], and the characteristics of the building envelope are calculated following SIA norms 380/1 [38]. The
physical information gathered on the buildings allows to define the electric and heat demands based on a 1R1C
model detailed in [39]. The PV orientation is optimized based on roofs and façades information extracted from
Swisstopo [40,41], while the grid specifications and electricity demand are furnished by Romande Énergie [42].
The time series are divided into 10 typical periods formed of 24 hours and 2 extreme periods of 1 hour each,
resulting in a total of 242 different timesteps being considered. Various parameters are fixed during the problem
definition, including unit parameters, district parameters, and energy carrier price. More information on these
parameters can be found in [43].

3. Results and Discussions
3.1. Sensitivity analysis
The considered parameters for the screening step are energy conversion and storage units parameters as well
as the energy carriers prices. A total of 60 parameters were considered. Following the sampling indications
of Morris, 610 optimizations were required to compute the sensitivity metrics. As the result of each run is a
complete system configuration and operation, a specific output value had to be identified to compare each
optimization. The chosen indicator is the TOTEX, assuming an economically rational behaviour.
A good practice is to plot the absolute mean value (µ∗) and standard deviation (σ) of the EE distribution of
each input parameter, Figure 3 shows such a plane for the six most influential parameters. Two parameters
stand out from the rest: the supply cost of electricity and natural gas. The supply cost of electricity has a high
influence on the TOTEX, high µ∗, however, its standard deviation is low, indicating that its EE is not correlated
to the other input parameters. This low correlation comes from its key role in the district model. It serves
to directly supply the electric demand when no installed units can fulfill it and it can also serve to supply the
heat demand via HPs and electrical heaters. The retail price of NG is less influential as fewer units consider
natural gas as a resource. However, it can be considered as an influential parameter as a small price of NG
can help provide heat at a very low cost with a gas boiler. Note that the HP and boiler parameters are also
influential with a low standard deviation, highlighting that the technologies installation is not correlated to the
energy carriers prices.

Table 1 presents the Morris results of the aforementioned parameters. Comparing the absolute (µ∗) and non-
absolute (µ) mean value of EE shows the monotonic correlation between TOTEX and input parameters values,
e.g., an increase in electricity supply cost will always increase the TOTEX. Furthermore, the negative sign of
the mean EE of the electricity feed-in tariff indicates that it contributes to the reduction of TOTEX.

Table 1: Sobol’s indices, mean and absolute mean EE for retail and feed-in tariffs of energy carriers. The
sensitivity of the parameters for the Morris and Sobol approaches all trend in the same direction.

S1 STi µ∗ µ

Electricity retail tariff 0.86 0.91 93k 93k
Natural gas retail tariff 0.09 0.14 33k 33k
Electricity feed-in tariff 1e-4 6e-4 0.9k -0.9k

In order to reduce the computational time of the SA a selection of the input parameters was required. The de-
cision to focus on the energy carrier prices was based on obtained results and similar conclusions presented
in subsubsection 1.2.2..
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The input parameter space is explored with 2560 samples following recommendations presented in subsub-
section 1.2.2., p = 4, r = 10, and N = 512. The parameters variation range is ±50% for retail tariffs, as displayed
in Figure 4, and ±30% for the feed-in tariff. The sensitivity indices of the Sobol can be observed in Table 1
alongside Morris µ∗ values for comparison.
The Sobol results have a similar trend than the qualitative sensitivity indices from the Morris method. The
electricity feed-in tariff is less influential regarding Sobol’s results. Since the first-order Sobol effect and the
total effect have a similar value, the interaction between energy carrier prices is mainly of additive nature, ie.
S1 and STi are close. The retail tariff of electricity is much more influential than the NG tariff. One possible
explanation is that, as mentioned before, there is a greater amount of technology using electricity compared to
the NG. Therefore, a low electricity price can help to significantly reduce TOTEX, as both electricity and heat
demand can be met using electricity.

Figure 3: Morris analysis results on µ∗ − σ plane.

3.2. Typical configurations identification
First, a Silhouette score is calculated for various numbers of clusters to identify a range of potential optimal
values. The score decreases from 1 to 10 and then seems to stabilize, meaning that the optimal number of
clusters is k = 1. Whereas, for the Elbow method the inflection occurs in the range of k = 5 − 7. Finally, the
DBCV index is computed for the K-means clustering with k varying from 5 to 11 and the optimal number of
clusters appears to be around k = 10 with a score of -0.54.

The DBSCAN algorithm recognizes a total of 28 clusters and obtains a DBCV index of -0.12, which is signifi-
cantly better than the K-means DBCV indices. Regarding the HDBSCAN result, it obtains the best DBCV index
with a value of 0.04. However, it identifies 73 clusters, which is far from the initial estimation of k ≃ 10.

Looking more precisely at the size distribution of the DBSCAN clusters, one can remark that beyond the tenth
cluster, the size dropped abruptly. Indeed, the first ten clusters represent more than 90% of the data points,
corresponding to the approximated required number of clusters. Regarding the HDBSCAN distribution, there
was no sharp decrease in the cluster size. As a consequence, only data from the first ten DBSCAN clusters
were considered for further calculations.
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3.3. Presentation of the typical district configurations
3.3.1. Distribution of the configuration in the sampling space

Figure 4 represents with different colors the distribution of the clusters over the retail tariffs variation range.
As observed in subsection 3.1., the output of the model, i.e. the district configuration, is strongly correlated to
those tariffs. This relation can be observed in the figure below as the different configurations can be identified.
Additionally, the sampling space naturally separates itself in half, the separation is highlighted by the amount
of NG imports. Configurations 1 to 4 are based on NG and the configurations above, 5 to 10, on electricity.
The NG configurations are located in the bottom right corner where the electricity tariff is high. Inversely, the
electricity-based ones are in the top left region where the NG price is high. One can note that the space has
fewer samples below the separation line, this is due to the data selection done in subsection 3.2..

Figure 4: Typical configurations distribution in the retail tariffs space.

3.3.2. Installed units capacity

Figure 5 shows the installed units capacity for each configuration alongside their grid exchanges. The main
variation between configurations is the total installed capacity, almost ranging from single to double. This dis-
crepancy is due to the extreme period (high demands and rash environment) included in the model, as the
demand is either fulfilled by imports or by an installed unit. The model installs a minimum heating capacity
to supply heat in any condition. This minimum heating capacity appears in all configurations and is either
composed of NG boiler or a combination of an electrical heater and HP. The additional capacity is formed by
various PV capacity deployments.

Concerning the units’ installed capacity, there is no positive correlation between HP and PV installation, as one
would have expected from previous results discussed in subsubsection 1.2.1.. If no PV panels are installed,
electricity imports increase considerably to supply the HP or the electrical heater. The HP installation triggers
the deployment of water tanks to serve as a buffer. Large installation of boilers is accompanied by significant
imports of NG since boilers are used as the main heat source when they are installed. The presence of HP
and PV in most configurations underlines their high potential in district energy systems. Although, the electric
grid is more strained with PV implementation as imports are reduced, but exports are increased, requiring a
sufficient absorption capacity of the grid.
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Figure 5: Identified configurations of the district and their grids exchanges.

3.3.3. Dimensionality reduction

Principal component analysis (PCA) is a dimensionality reduction technique used to facilitate the exploration
of data sets. The algorithm identifies the eigenvectors of the covariance matrix. The dimensions are sorted
from most to least explaining components. Usually, only the first two components are used to project the data
points, as can be observed in Figure 6.

The first dimension explains 64.8% of the variance and the second 33.2%, thereby the plot illustrates 98% of
the data set variance. The indicators can be regrouped into three main groups which align with the principal
components, this is a direct result of having 98% of the variance explained with only 2 dimensions. The first
component can be interpreted as the global warming potential (GWP) and the second as the TOTEX. The first
deviates slightly from the x-axis, however, the second is perfectly aligned.

A group is positively correlated to the first dimension and contains the NG import, boiler installed capacity, and
GWP. Their correlation is natural as the boiler is fueled by NG, which has a high CO2 emission factor. Inversely,
another group is negatively correlated to the first dimension. It contains the installed capacity of the heat pump
and electric heater, which are low emissions technologies when coupled with a low-carbon electricity grid like
the Swiss one. The electricity import is closely related to the group but helps reduce the TOTEX, negative
correlation to the second dimension. This second dimension is highly correlated with the installed PV capacity,
electricity export, and TOTEX. The relationship between PV capacity and electricity export stems from the high
production potential of the technology in summer, which exceeds the demand. This results in a redistribution
of the electricity surplus in the grid. This electricity export is sold at a low price, so the gain from the electricity
buyback may not offset the operational cost of the microgrid and the PV installation cost. Note that the influ-
ence of the indicators is somewhat similar.
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Figure 6: Variable correlation plot of the first two principal components. Indicators pointing in the same di-
rection are correlated, those pointing in the opposite direction are inversely correlated, and those that are
perpendicular are uncorrelated. The length of the arrow indicates the influence of the indicator.

4. Conclusion
The objective of this paper was to develop a framework able to identify typical district configurations. The
methodology is composed of a two-fold GSA to efficiently sample the space of solutions, and a clustering
step to determine typical technical solutions. The Morris method is used to screen input parameters and
the sampling scheme is acquired using the Sobol method. The space of solutions obtained from the Sobol
sequence was clustered using multiple algorithms. The range of optimal number of clusters was identified
using two cluster validation indices and the Elbow method.

• The conclusion of the GSA emphasized the importance of the retail tariff of energy carriers in such
systems.

• From 8 to 10 configurations were necessary to represent at best the solution space. The results from
each technique were compared using the DBCV index. The tenth first clusters from the DBSCAN were
selected as they represent 90% of the data and obtain one of the best score.

• The identified configurations can be separated into two types of systems, those based on NG and the
others on electricity. Each type has a pretty basic configuration, i.e. the configurations based on NG
install a boiler and the electric ones combine HP and electrical heater.

• In terms of electricity consumption, the import and export of electricity correlate negatively, respectively
positively, with the installed photovoltaic capacity.

The presented results indicate that the presented framework allows to efficiently identify districts configura-
tions. The next logical step would be to implement this framework to define a panel of configurations for
district representatives of a large-scale energy system and study the impact of optimal built environment in the
infrastructure.
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