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Master thesis - Integration of radar data for flash flood modelling

Abstract
Flash flood prediction and dynamic management is a rising field of research due to the increasing
frequency of flood events and the inability of permanent physical measures to remove all flooding
risks. The prediction of flash floods usually rely on rainfall-runoff models associated with radar
data. The latter have a high spatial resolution and show good performances at short lead time,
particularly important for flash flood forecasting.
In that scope, the Radar4Infra project aims at developing the combined use of rainfall-runoff models
and radar Quantitative Precipitation Forecasts (QPFs) in operational flash flood forecasting. The
analysis of radar products provided by MeteoSwiss shows that they are generally in agreement with
rain gauges but produce higher precipitation estimates (QPEs) at high intensity and in summer.
This feature allows to better catch intense precipitations that may result in flooding. However raw
radar QPEs are bad in winter and in altitude. Hence a merging of radar with rain gauges (called
CombiPrecip) is necessary to provide better estimations. Some issues still exist in CombiPrecip with
a significant underestimation bias in some locations far from the rain gauge network.
Based on these observations, several rainfall-runoff models are developed in two catchments: one
mountainous basin (Emosson) and one suburban-rural basin (Zurich-Altbach). Precipitation prod-
ucts are first de-biased before being introduced in the rainfall-runoff model RS Routing System.
Re-forecast simulations are then performed with the developed models to assess the interest of
radar data and to investigate some features improving performances. In particular, it is shown that
the modelling of part of the catchment area as impermeable surface is critical to the good predic-
tions of flash floods. A model is notably developed in Zurich-Altbach where the impervious area is
increased at high intensity, following similar model modifications proposed in the literature. This
modification helps to forecast the main flash flood events occurring in Zurich-Altbach. Nevertheless,
the developed forecasts are subject to some intense false alarms that need to be removed.
Finally, an alert system is designed with the goal of proposing the best detection performances
with the lower false alarm rates. Appropriate alert systems based on redundancy or on multiple
rainfall-runoff models allow to move closer to that goal by removing the most intense false alarms.
It is thus recommended to invest time in designing appropriate alert systems. It is also suggested
to turn to ensemble approaches to cope with the uncertainty inherent to radar QPFs.
Keywords: flash-floods, radar nowcasting, radar-rain gauge merging, rainfall-runoff models, rain-
fall intensity, alert system



Master thesis - Integration of radar data for flash flood modelling

Résumé
La prédiction et la gestion dynamique des crues éclair constitue un champ de recherche en ex-
pansion rapide. En effet, la fréquence et l’intensité des crues éclair augmentent, notamment sous
l’effet du changement climatique. Les mesures physiques permanentes ne permettent par ailleurs
pas d’atteindre le risque zéro. Dans la majeure partie des cas, la prévision des crues éclair se
base sur l’utilisation combinée de modèles pluie-débit et de prévisions de précipitation radar. Ces
dernières ont une grande résolution spatiale et de bonnes performances à faible horizon, ce qui est
particulèrement important dans le cas des crues éclair.
C’est dans cette perspective qu’a été lancé le projet Radar4Infra, dont le but est de développer la
prévision des crues éclair à l’aide des radars. Une analyse des produits radar fournis par MéteoSuisse
est ainsi réalisée. Elle montre que ceux-ci sont généralement en accord avec les pluviomètres de
MéteoSuisse bien que de plus fortes précipitations soient en général observées l’été et lors des
évènements intenses. Ce point est particulièrement intéressant pour la prévision des crues éclair,
causées par des précipitations intenses. Toutefois, les précipitations radar pures sont moins bonnes
l’hiver et en altitude. Pour cette raison, il est nécessaire de les corriger via les pluviomètres de
MéteoSuisse. Les nouvelles estimations radar-pluviomètres, nommées CombiPrecip, présentent de
meilleures performances mais ont toujours un biais de sous-estimation dans certaines régions loin
des pluviomètres.
A partir de ces observations, plusieurs modèles pluie-débit sont développés dans deux bassins ver-
sants : l’un montagneux (Emosson) et l’autre périurbain-rural (Zurich-Altbach). Les produits radar
sont tout d’abord débiaisés avant d’être introduits dans le modèle pluie-débit RS Routing System.
Des prévisions a posteriori sont ensuite effectuées en simulant les processus opérationnels, en par-
tant des modèles précédemment mis en place. Cela permet de mettre en évidence certaines pistes
d’amélioration des modèles. En particulier, la nécessité d’introduire des zones imperméables dans
la modélisation est mise en évidence. Un modèle incluant une variation de la surface imperméable
du bassin versant à fortes intensités est notamment développé à Zurich. Ce modèle est inspiré par
un modèle similaire développé en France. Grâce à cette modification, il est désormais possible de
simuler à l’avance les évènements les plus intenses ayant lieu à Zurich-Altbach. Néanmoins, ces
prévisions sont sujettes à de fortes fausses alarmes qu’il sera nécessaire de faire disparaître.
Un système d’alerte est finalement mis en place, dans l’objectif de réduire les fausses alarmes tout
en maintenant les meilleures capacités de détection des évènements intenses. A Zurich, les meilleurs
systèmes utilisent la redondance des prévisions ou le couplage de plusieurs modèles pour éliminer
les fausses alarms les plus importantes. Cette étude permet de mettre en évidence l’importance
d’investir du temps dans l’élaboration d’un système d’alerte adapté. Enfin, il est suggéré de se
tourner désormais vers les approches ensemblistes pour gérer l’incertitude inhérente aux prévisions
radar.
Mots-clés: crues éclair, prévisions radar, nowcasting, couplage radar-pluviomètres, modèles pluie-
débit, intensité de précipitation, systèmes d’alerte
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Chapter 1

Introduction

In 2021, OCHAa recorded 432 disastrous events in its Emergency Event Database1. Of these 432
events, 223 where flood events, making it the first type of disaster all around the world. Deadly
floods were observed in India, China, Afghanistan, Germany, Belgium, etc. Floods ranked also first
in death toll (4143 deaths) and second in economic damages (74.4 billion USD). Climate change
is expected to increase the frequency of floods, with more intense precipitations, notably at high
latitudes2.
Switzerland is not an exception. As described in Figure 1.1, it is largely affected by floods, and
notably by flash floods – due notably to its complex orography. Flash floods are floods occurring
in catchments with small response time where storms are generally the main cause of flooding.

Figure 1.1: Map of the major flood events occurring in 2021 in Switzerland with associated economic
damages. Taken from the WSL webpage3.

A striking example of recent flash flood in Switzerland happened in Cressier in 2021. Due to intense
precipitations (28.3 mm in 20 minutes, 40 mm in 40 minutes), to the local topography (a steep-sided
valley)4 and to a significantly low permeable area5, a severe flash flood occurred. Some images of
the damages due to the flash flood are shown in Figure 1.2. Photos were taken from the website

aUnited Nations Office for the Coordination of Humanitarian Affairs, in charge of coordinating the global emer-
gency response
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cressier-avant-apres.ch which proposes a virtual exposition of photographies taken just after
the event and one year later in the same place.

(a) Rue des Saint-Martin - after the event (b) Rue des Saint-Martin - one year later

(c) Rue de Neuchâtel - after the event (d) Rue de Neuchâtel - one year later

(e) Rue des Saint-Martin - after the event (f) Rue des Saint-Martin - one year later

(g) Caveau de l’entre-deux-lacs (h) Chemin du vieux-moulin (i) Chemin du vieux-moulin

Figure 1.2: Several photos of the damages due to the flash flood events from 22ndJune 2021 in
Cressier. Photos are taken from the virtual exposition "Cressier avant-après" and were taken by
Alexandre Witschi.

Despite the severe consequences of floods, the World Meteorological Organization (WMO) recalled
that “complete protection from flooding is rarely a viable goal”6,7. Hence flood protection measures
cannot be based only on permanent physical measures such as structural infrastructures (dams,
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channels, flood plains, etc.) or interdiction of human activities in flood-prone areas. It is indeed
necessary to prepare emergency measures in case of higher events. These measures could be either
temporary protections (flood gates, barriers, sandbags) or temporary evacuation of people and of
the most valuable goods (for example museum collections). However, to decide these emergency
measures it is necessary to anticipate the arrival of floods. Flood forecasting is thus an essential
feature of flood management.
Nevertheless, while floods in large basins can be predicted with only observed discharges and precip-
itations with quite significant time available for action, flash floods are much more complicated to
predict. With smaller response time, precipitation forecasts (QPFs) and discharge prediction with
rainfall-runoff models become, for example, necessary. The constant research of systems increasing
the anticipation time has made flash flood forecasting an active field of research. This field also owns
the specificity of requiring significant links between the academical field and the public authorities,
notably via meteorological agencies.
It is in this context that the Radar4Infra project has been launched one year ago. Supported by
companies such as Alpiq or Hydrique Ingénieurs, federal agencies and schools such as MeteoSwiss,
WSL or EPFL and local administrations such as the cantons of Basel and Valais and the city of
Lausanne, it is a good example of the common work required between all these actors. It aims at
improving the prediction of flash floods triggered by intense precipitations, by using radar nowcasting
products provided by MeteoSwiss.
Radar nowcasting tools provide spatially-distributed forecasts of precipitation with high spatial
resolution. They are also largely better than the commonly used Numerical Weather Predictions
(NWPs) at short lead times, notably from 0 to 6 hours, which are the usual response times of catch-
ments subject to flash floods. Thus, they should in principle significantly improve the performances
of currently used forecasting tools. This report aims at introducing radar data in the rainfall-runoff
models developed by Hydrique Ingénieurs, at confirming their interest in operational forecast and at
pointing the main features to care about. In particular, its goal is to answer the following questions:

• Do MeteoSwiss radar products improve the estimation and forecast of precipitation, and if
yes for which features and with which limitations ?

• Which techniques allow to take the most of radar data to improve the prediction of discharge ?

To answer these questions, the report is organized as follows:
• Chapter 2. A literature review is first conducted to highlight the main issues and ways of

improvements developed and used by the research community.
• Chapter 3. The methods used during this project are presented.
• Chapter 4. An analysis of radar products provided by MeteoSwiss is performed to evaluate

the main differences between radar and rain gauges products.
• Chapter 5. Radar data are introduced in rainfall-runoff models in two catchments (Emosson

and Zurich) to evaluate their added value.
• Chapter 6. Finally, several alert systems are developed to highlight the necessity of carefully

choosing the moment when an alert must be issued.

This report focuses on flash flood prediction and alerts. Other features, such as volume predictions
at short lead times, have also been studied during this Master Thesis, as they can also be improved
by radar data and may be interesting for some partners of the project. These more exhaustive
analyses are proposed in Appendix.
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Chapter 2

Literature review

2.1 Introduction to flash flood forecasting
To predict flash floods, several research topics are widely investigated. Hapuarachchi et al.8 have
proposed a comprehensive review of the main steps in flash flood forecasting:

1. The improvement of input data is first required. Notably the introduction of radar precipi-
tation estimates and forecasts (QPEs and QPFs) improves the streamflow prediction perfor-
mances for small catchments (Section 2.2).

2. Streamflow forecast models are another active field of research which will be presented in
Section 2.3.

3. Finally, the design of an alarm system and the decision-making process are central aspects for
the mitigation of flash floods impacts (Section 2.4).

Ensemble systems are finally a promising way to improve flash flood forecasting. Though they
are not the focus of this Master Thesis, they will be quickly presented in Section 2.5, for sake of
completeness.

2.2 Radar acquisition and forecasting

2.2.1 Introduction
Radar (or RAdio Detection And Ranging) is used to call all detection technologies based on the
reflection of radio waves. Its principle was discovered in 1886 by Hertz9 who demonstrated the
theory of Maxwell that electromagnetic waves can be reflected by objects, as light. Radar interest
to detect objects was first demonstrated in the beginning of the 1900s by Hulsmayer in the case of
ships detection. However it only started to be developed in the 1930s and during the world war II
as a way to detect enemy planes. One of the issue encountered at that moment was the disturbance
of radar by clouds and rainfall cells. This feature was studied, after the war, contributing to the
development of meteorological radars. The first meteorological radars were useless military radars
converted into weather ones like the first installed in the USA in Washington D.C. in March 1947.
In Switzerland, the first weather radar was installed in 1959 on La Dôle10. The radar system then
evolved with three consecutive generations before the construction of the fourth generation of radars
in the 2010s. Weather radars are mostly used to detect precipitation cells. Compared to rain gauges
they have the advantages of providing information on a large area rather than on just one point.
However they are usually associated with more bias and uncertainties.
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Figure 2.1: Photo of the new MeteoSwiss radar in Weissfluhgipfel, put in operation in 2016 in the
Grisons. Taken from the MeteoSwiss website11.

2.2.2 Quantitative Precipitation Estimates (QPEs)
Principles of radar precipitation measurements

The main objective of weather radar is the detection of precipitations, also called Quantitative
Precipitation Estimates (QPEs). To do so weather radar emits an electromagnetic signal with a
constant frequency in a determined direction (usually a pulsed signal). This signal is then scattered
by objects and notably by water droplets, snow flakes or hail. The scattered signal is finally recorded
and amplified by the radar. The time between the emission and the reception of the signal gives
access to the distance between the precipitation and the radar. The main input variable for radars
is the reflectivity which corresponds to the amount of power received by the radar divided by
a reference power. A post-processing of the reflectivity map is then required to convert it to a
precipitation intensity map.
The first generation of weather radars used mostly the reflectivity information to access the 2D
horizontal precipitation intensity map. However more recent radars are now able to provide much
more information on the precipitation field. First, current radars are most of the time Doppler
radars: they are able to measure the frequency of the scattered signal and hence to estimate the
speed and direction of precipitation.
Moreover, while most old radars are single polarisation radars with the same antenna emitting and
receiving the signal, new radars are mostly dual-polarisation radars, consisting of an emitter and a
separate receiver, as the one tested in Montana in 198112. This allows to gain a lot of information
and notably to provide information on the vertical distribution of precipitation. Indeed the signal
direction can now be controlled in both vertical and horizontal directions giving access to a 3D
precipitation map. The NEXRAD (NEXt generation RADar) network in the USA operated by
the National Weather Service (NWS) is an example of such dual-polarisation radar networks and
has demonstrated the improvements brought by this technology in the case of Iowa precipitation
events13. Dual polarisation radars are also able to provide information on the size, shape and hence
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nature of precipitation. Indeed they are able to capture variables such as the circular depolarization
ratio (CDR) which gives information on the anisotropy of the particle shape12,14,15. Correlation
coefficient (CC, measure of the similarity between particles), differential reflectivity (ZDR, measure
of the ratio between horizontal and vertical reflectivity, giving information on the shape of particles)
or specific differential phase (KDP, measure of the phase change ratio in horizontal and vertical
directions, indicating where droplets are bigger and more concentrated) can also be obtained by
dual-pol radars16. From these measures it is possible to determine the nature of precipitation
(rain, snow, hail, etc.), the rain/snow limit17, the intensity of precipitation or the particle size
distribution18.
Finally radars can provide other information, such as the wind speed19–21. Such measurement
requires however the presence of reflecting particles such as droplets, debris or even insects22. The
operation mode can also be adapted to observe smaller particles and determine the wind speed (in
clear-air mode)23. Wind speed at sea surface can similarly be measured by radars (usually airborne
or satellite radars)24. Radars can also be used to detect thunderstorms25,26 or tornadoes notably at
night when visual detection is not possible27–29 (Figure 2.2). They can finally be used in the study
of longer-term phenomena such as the solar cycles30,31.

Figure 2.2: Base reflectivity image (lower left), storm-relative velocity (upper left) and dual pol
cross-correlation data (CC, taken for different elevation angle, right) during a storm event occurring
in Kentucky. A tornado with debris is observed in the bottom left of each image, characterized by
a duet of strong velocities in red and blue in the storm-relative velocity image. Right images show
that the tornado has low CC values (in blue) due to the presence of debris of various sizes. Taken
from the NWS website28.

Beyond single-pol and dual-pol radars, radars are usually split in several classes according to their
frequency range32. The distribution of radar by classes over the globe is displayed in Figure 2.3a
taken from Saltikoff et al.33. The smaller frequency radars are called L-band radars and use fre-
quency between 1 and 2GHz. Their wavelength is large, the signal is nearly not attenuated and
hence the distance range is big. However L-band radars are not able to detect small particles. They
are also complex, big and expensive. They are mostly used for clear-air studies. S-band radars
use the next trench of frequencies (2-4GHz) and are a little bit smaller. They are nevertheless still
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expensive and large (with dish size up to 7-8m). This is a very commonly used class of radars,
notably for the Chinese34 and American35 radar networks. C-band radars are also widely used and
deployed as they are simpler and cheaper. Their range is smaller as signal attenuation plays a more
important role but they are still particularly adapted to medium countries such as European ones.
They are massively deployed, notably in Europe, but are also used in the Chinese and American
networks. All five MeteoSwiss radars are C-band radars11,36,37. However C-band radars are still
complex system to build and operate, while their cost is still significant. Thus X-band radars are
also largely deployed, notably to complement existing networks in smaller (usually mountainous)
areas38,39. The mix between X-band and C-band radars, though being more complex to operate
than a one class network38, may provide more insights, notably for severe events25,40. Finally the
smaller radars are K-band radars.

(a)

(b)

Figure 2.3: Coverage maps of the Earth by radars. (a) Distribution of radars by band class in 2016
(S-band: red, C-band: blue, X-band: green). Chinese and Russian locations of radars are approxi-
mate. Taken from Saltikoff et al.33. (b) Radar coverage of the world. Taken from Saltikoff et al.41.

Radar coverage is nowadays highly variable from one place of the world to another. Indeed, as
illustrated by Figure 2.3b, while USA, Europe, Eastern China and Australia-New Zealand are
nearly completely covered by radar, only few radars are installed in the rest of the world. Hence
most of publications related to radars are focused on these developed countries.
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QPEs in complex orography

Unlike most of the USA and China, Switzerland is not a flat, homogeneous country. It has a
quite complex orography, marked by the four big regions: the Alps in the South, the mountainous
Pre-Alps in the center, the almost flat Plateau in the North and the mountains of the Jura in the
North-Western border. Hence the coverage of Switzerland by radars imposes new challenges due to
its mountainous areas. These challenges are notably summarized by Germann et al.42. They can
basically be split between two categories:

• Practical issues due to the difficulties to access some locations. The choice of the location of
radars is hence determinant and must include these practical aspects.

• Scientific issues due to the location of radars, to the nature of precipitation in altitude and
to the impacts of the ground. The major issues are terrain shielding (hiding certain areas to
the radar), ground cluttering (non-precipitating echoes), signal attenuation, snow and melting
snow contamination, vertical variation of the reflectivity or vertical variation of the cell sizes.

The choice of the location of radars is hence determinant. It should be as high as possible to cover
as much area as possible but must also not be too difficult to reach. The hardware should also be
protected against severe and varying meteorological conditions as the system needs to be stable and
to operate remotely and continuously (24/7). Finally the number of radars is essential to cover the
widest zone possible and to improve the data quality.
On the scientific side, in addition to the location of the radars, a post-processing of data with spe-
cific algorithms is required. The improvements of current algorithms constitutes a significant field of
research since 20 years43–46. To counter cluttering and non-precipitating echoes (Figure 2.4), Mete-
oFrance notably developed fuzzy logic techniques to identify and remove cluttering more efficiently
than with a simple mean clutter removal45,46. Fornasiero et al.47 tackled both ground cluttering
and terrain shielding issues by using previous radiosonde observations to better model the propa-
gation trajectories of the radar beam. Improvements of radar data processing step can also pass
by the use of different input variables. For example, Vulpiani et al.48 used the specific differential
phase (KDP) rather than the usual reflectivity map to estimate precipitation in two Italian regions
including Alpine South Tyrol. Their method performed better than the common reflectivity-based
technique except during winter storms where contamination by phase-shifting snow degraded the
performances. Similarly, Cremonini and Bechini49 overcame attenuation issues in extreme events in
the case of the Piemonte region – where complex orography is coupled with strong Mediterranean
rainfall events – by relying on the phase of the signal rather than on the reflectivity. In the same
way, Montopoli et al.50 compared several algorithms based on KDP, single-polarisation reflectivity
(Zhh) and dual-pol differential reflectivity (Zdr). They demonstrated than an algorithm based on
the combination of the former three performs up to 25% better than algorithms based on only one or
two of the previous ones. The research of more accurate post-processing algorithms is thus an active
field of research with direct implications for operational applications, notably for MeteoSwiss51–53.
Today radars are largely used in complex orography. The major Alpine countries have notably
developed different networks, with the 5 C-band radars of the Rad4Alp Swiss project11,42,54, the
C-band dual-pol Austrian radar installed in 200755, the mixed C and X-band French radar network
(with X-band radars used to fill the gaps in the Alps)38,39,56 and the numerous Alpine Italian
radars57. Similarly a large number of mountainous regions in developed countries are covered by
radars and are coping with the issues presented before: in the USA58, in Taiwan59, South Korea60,
China61,62, New Zealand63... Some radars are also starting to be operated in underdeveloped or
developing countries such as Nepal64 or Ecuador65. A particular case of complex orography radars
is finally constituted by islands or coastal mountainous regions where radars need to be positioned
at sea level to capture atmospheric phenomena above the sea. Ground shielding becomes a huge
problem in those cases (for example in New Zealand, Taiwan, South Korea or Pacific islands).
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Figure 2.4: Two Swiss radar images with (left) and without (right) radar clutter suppression algo-
rithm. Taken from Germann et al.36.

QPEs in urban hydrology

Urban hydrology is another essential field for the Switzerland case as a certain number of extreme
runoff events happen in urban centres due to the imperviousness of soils and to the high concen-
tration of people and goods. To predict, and later prevent, urban floods a precise knowledge of
precipitation is necessary. However rain gauges are point-located and cannot provide sufficiently
precise data for urban hydrology. Concerning usual radar products, their gridscale is of usually
1 km at least, which could be sufficient or not depending on the size of the catchment, on the storm
characteristics and on the type of simulation run – peak runoff response upstream of the basin will
require a coarser radar grid than downstream66. Hence it could be necessary to develop other radar
products with shorter-range, higher resolution possibilities. Special algorithms are also needed for
such application.

Radar-rain gauge merging

While radar QPEs provide precipitation data on a large spatial grid, they are usually less precise
than rain gauges. In order to correct the errors from radar, rain-gauges and radar data can be
merged to create more reliable QPEs. Such approaches have been widely developed since the first
use of weather radars. The correction of bias can be performed with a variety of methods from
simple use of multiplicative factors to more complex geostatistical or probabilistic approaches.
In the case of multiplicative factors, they can be either constant in time but spatially dependent67,
constant in space but timely dependent – with the use of mean field bias68,69, Kalman filter70,
multiquadric surface71 – or dependent on multiple other parameters. For example, Gabella et al.43

proposed a correction of bias based on a multiple linear regression with altitude (HG), height of
radar visibility above the rain gauge (HV) and distance from the gauge to the radar (D).
Geostatistical approaches for the merging of radar and rain gauge data have been largely investigated72–79.
Most of the times the authors use kriging techniques. Using ordinary kriging (OK), it is first pos-
sible to interpolate rain gauge data over space76. Radar data can later be incorporated in the
kriging process, either as an external drift (KED)75,76 or as another random variable with cok-
riging. Cokriging could itself be split between ordinary cokriging (OCK)72–74, ordinary collocated

10



Literature review

cokriging (OCCK)76, universal (UCK) or disjunctive (DCK) cokriging74, or cokriging with external
drift (CKED)78. These kriging methods differ by the way the secondary random variable (radar
measurements) is incorporated.
Finally probabilistic approaches (mainly Probability matching method - PMM) were also used some-
times though less often than geostatistical ones80,81. Bayesian approaches are however constituting
an interesting approach to account for uncertainty in both rain gauge and radar measurements82.
In the case of Switzerland, MeteoSwiss developed, in addition to the raw radar data, a merging
tool with radar and rain gauges data called CombiPrecip. This tool is decribed by Sideris et al.78

and consists in a co-kriging with external drift. The model uses the two assumptions that the
point-rain gauge measurements are close to the precipitation value around the rain gauge (the rain
gauge area-point variance is small) and that radar errors are spatially correlated (adjacent radar
grid points have similar bias). Four variables are then used in the co-kriging: the rain gauge and
radar data on the considered period of time and the rain gauge and radar data on a period of time
preceding the period of interest. The results appear to have better cross-validation scores when
the aggregation period goes from ten minutes to an hour. Hence the final CombiPrecip product
proposed by MeteoSwiss has an original timestep of one hour. A disaggregation of this product with
a timestep of 5 minutes is also available83. The CombiPrecip products do not include any altimetric
gradient in the calculations. Concerning the performances of CombiPrecip, they have been validated
on 132 independent rain gauge stations, over the period 2012-2018 and for several aggregation times
by Barton et al.84. Four properties were evaluated there: the characterization of wet/dry events,
the characterization of extreme events, the bias and the error on the mean precipitation. Results
concluded that the co-kriging merging of radar and rain gauges largely improved all performances.

Figure 2.5: Raw radar image (left) and CombiPrecip data after co-kriging with rain-gauge (right).
Taken from Sideris et al.78.

The merging of radar QPEs with rain gauges usually improves the performances of QPEs. Nev-
ertheless it can also introduce some errors and remove part of the information brought by radars.
Indeed rain gauges are also subject to a bench of uncertainties. Notably systematic errors are usu-
ally important with an underestimation of precipitation reaching the ground that could be as high
as 30%85. High intensities are also usually underestimated. Such systematic errors can be in part
automatically corrected by instruments. The WMO listed several sources of errors and uncertainties
usually encountered with rain gauges in its 2018 report10,85: errors due to wind that could be up
to 10% (up to 50% for snow), errors due to wetting loss on the walls of the collector or when the
collector is empty (up to 15% in summer), errors due to evaporation (0-4%), error due to blowing
and drifting snow, errors due to the splashing of water, mechanical and sampling errors or random
errors of the instruments. In the Swiss case the snow and wind uncertainties will be particularly
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present notably in altitude: rain-gauges are usually less reliable there. A last uncertainty comes
from the point-area variance between localized gauge measurements and real areal precipitations86,
especially in convective situations, typically occurring in summer. Radar can thus bring new infor-
mation and it is important to prevent radar data from being completely covered by rain gauges.
Hence MeteoSwiss manually gave more importance and freedom to radar data in summer in the
CombiPrecip tool. In the view of most meteorologists, radar data are the reference data on which
rain gauges are evaluated. However when radar products are introduced they need to be evaluated
and rain gauges are then needed as reference.

Radar QPEs and performance assessment

To evaluate the performances of radar QPEs, rain gauges are generally used as reference data. This
evaluation is performed either for distinct events87,88 or for continuous data spanning over months
or years89. Such methods will be used in this report to estimate the quality of MeteoSwiss QPEs
both for events (using HIT/FAR metrics) and for continuous data (using cumulated precipitation
metrics). However these methods assume rain gauges are perfect data which is not always the case.
Thus, other techniques of performance measurements have been developed to take the rain gauge
uncertainties into account. An example is provided by Anagnostou et al.86 which proposes a method
to estimate rain gauge area-point variance and then better estimate the radar to rain gauge error.
A last interest of radar QPEs resides in the possibility to use them as reference on which to compare
Numerical Weather Predictions (NWPs). Indeed rain gauges cannot be used as references as they
are localized while NWPs aim at providing a spatial forecast. Such comparison between NWPs and
rain field obtained by radar have for example been led in Czech Republic to assess the performances
of the COSMO NWP for two extreme events90.

2.2.3 Quantitative Precipitation Forecasts (QPFs)
Once QPEs are available from radars, they can be used to develop new forecasting tools in addition
to usual NWPs. All these products range in the category of the Quantitative Precipitation Forecasts
(QPFs).

Techniques used to create QPFs

Two types of QPFs are based on radar data:

• Models based on storm advection (or Lagrangian persistence).
• Models intending to estimate precipitation cells growth and decay.

The Lagrangian persistence is the simplest way to use radar QPEs to predict future precipitations.
It is based on the continuity idea that precipitation cells currently present somewhere will still
be present in another place in the future with similar intensities. The idea behind Lagrangian
persistence was described notably by Zawadski et al.91. It starts from a simple comparison to
Eulerian persistence where the precipitation intensity (denoted i) in location (x, y) and at time
t + ∆t can be estimated as î(x, y, t + ∆t) = i(x, y, t) (where the hat denotes an estimate). Future
precipitations are here only estimated with current precipitation. Every forecast model must have
better performances than Eulerian persistence. Similarly, the Lagrangian persistence estimates that
the intensity in the rainfall cell will be constant. However this time the cell may move in space.
Hence the future precipitation is now estimated to be:

î(x, y, t + ∆t) = i(x − α0, y − β0, t)

α0 and β0 are spatial lags that can be chosen by different ways depending on the algorithm used.
They can either be computed by successive radar images analysis91,92 – searching the maximum
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cross-correlation displacements – or being chosen via wind measurements. The Lagrangian persis-
tence is thus similar to the simulation of rainfall (or storm) advection process without decay or
growth of the cells. Despite its simplicity and high accuracy at very short lead time, the Lagrangian
persistence wears several defaults and has notably quickly degrading performances at higher lead
times (few hours) when convective cells can appear or disappear. Studies on the relationship be-
tween lead time and spatial scale and resolution of the radar data have been developed to assess
this aspect93.
The low lead time of Lagrangian persistence in highly convective regions with quickly varying
cells led to the development of conceptual models based on the growth and decay of rain cells.
Nevertheless modelling these phenomena is quite challenging and has not given good results until
recently. A first example (based on satellite data rather than radar data) has for example been
proposed by Walker et al.94. It is a quite complex model and still raise a high rate of false alarms.
More recently, Han et al. and Mecikalski et al. have demonstrated that growth and decay models
could be improved by the use of respectively Machine Learning95 and blending with NWPs96.
However Lagrangian persistence is still the most used radar QPFs in operational fields.
To introduce growth and decay notions in Lagrangian persistence QPFs, it is also possible to rely
on other NWPs. This is notably what is done by MeteoSwiss in its CombiPrecip products92 where
localized growth and decay factors are added to the Lagrangian persistence. These growth and
decay factors are determined from historical NWPs data suing simple linear regressions. Other
approaches based on Machine Learning have been followed, for example by Foresti et al.97.

Blending process with Numerical Weather Predictions (NWPs)

To improve the forecasting skills of Lagrangian persistence and to counter the quick decrease of
its accuracy with time, a blending of radar QPFs with NWPs is most of the time performed in
operational circumstances. It allows to combine the good prediction at very short-time of Lagrangian
persistence with the good NWPs predictability at higher lead time. Indeed NWPs have usually
poor performances at very short lead time due to imprecise determination of the initial state of the
atmosphere, downscaling difficulties and time needed to compute NWPs92,98. The accuracy and
complementarity of NWPs and radar QPFs is illustrated by Figure 2.6. The research of a good
blending scheme is thus another source of intense focus.

Figure 2.6: Evolution of the information contained in NWPs (dashed line) and radar QPFs (dotted
line) with lead time. The maximum theoretically reachable information is given by the solid line
limit. Radar QPFs are able to give a nearly perfect information at very-short lead time but their
loss of information increases very quickly unlike NWPs. Taken from Golding99.
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Usually the blending scheme consists in a simple linear scheme where weights are given to the
radar QPF and to the NWP. The weights vary linearly with time from a situation where only
the radar QPF is considered to a situation where all the forecast is based on the NWP. Such
scheme was used by MeteoSwiss – and other meteorologial agencies in Central Europe – in the
INCA product, with only storm advection before 2h of lead time and a decrease of its importance
until 6h of lead time when all the forecast is based on NWP100 (ALADIN in the case of Austria,
COSMO for Switzerland). With a slightly more complex approach, the NIMROD forecasting tool
in United Kingdom incorporates radar data in their older NWP forecast. This time the weights
are determined by long-term forecast error statistics99 (the system is slightly more complex as it
also includes clouds and visibility analysis and some growth and decay aspects). More recently,
Lin et al.101 compared several blending schemes in the case of Taiwan extreme events, with notably
a linear blending scheme called ExAMP. They showed that this scheme had the best performances.
Recently, more complex blending schemes have been proposed. Notably, in Switzerland, MeteoSwiss
investigated a blending based on a bayesian approach102. Both the NWPs and Lagrangian persis-
tence are here seen as probability distributions with a certain uncertainty rather than deterministic
forecasts. An Ensemble Kalman Filter (EnKF) can thus be set up by using NWPs and Lagrangian
ensembles. Today this system is not operationally provided but COSMO NWPs ensemble is already
available (with 21 members) while INCA radar QPF ensemble is expected to be available soon.
The current nowcasting product from MeteoSwiss, called NowPrecip, includes a variety of new
state-of-the-art features92. It was implemented in 2019 and is based on an ensemble approach.
Based on each member of the COSMO ensemble103–105 it generates a new nowcasting member. The
Lagrangian persistence is complemented with localized growth and decay factors of rain cells based
on historical localized COSMO growth and decay rates. This process does not predict the birth
of new cells. Some spatially-correlated noise and localization adjustment noise are also introduced.
Finally the blending scheme between Lagrangian persistence and COSMO depends on the Pearson
coefficient of the COSMO member: the better are COSMO performances, the quicker COSMO will
be used in NowPrecip. In Sideris et al.92 the input QPF is the raw radar data. However the input
QPF used by MeteoSwiss is now CombiPrecip which integrates rain gauge data (see Section 2.2.2).

Performance assessment

The performances of radar QPFs need to be assessed once developed. This should be done for all
products, blended or not. Usually this would be done by comparison to radar observations and for
some events only as in Lin et al.101. More complete investigations on the sources of QPFs errors
have also been performed. This is the case of Ebert and McBride who split the errors of radar QPFs
into three categories106: location errors (due to a wrong estimation of the rainfall displacement),
rain volume errors (errors on the spatially integrated intensity of precipitation) and pattern errors
(due to changes in the shape of the convective event). They demonstrated that location errors
are the major source of errors for most precipitation events while intensity errors are dominant in
extreme events.
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Figure 2.7: Scheme of the different types of errors of a Lagrangian persistence radar QPF. Observa-
tion and forecast are represented respectively with horizontal and vertical hatching. Location errors
(arrow) and pattern errors (major axis: horizontal for observation vs vertical for forecast) can be
noticed. Intensity errors do not seem to be present. Taken from Ebert and McBride106.

Other assessments of the QPFs performances can also be made with rain gauges as reference. This
is notably the case in Werner and Cranston where the NIMROD nowcasting British system is
evaluated88. This allows also to evaluate the observed radar data as will be done later in this
report for MeteoSwiss products. The interest of Werner and Cranston article resides also in the
introduction of new evaluation metrics. Indeed, they introduce two metrics based on accumulated
rainfalls over several events:

• The RMSf: RMSf = exp

[(
1
N

∑N
i=1

(
lnRi

Gi

)2
) 1

2
]

where N is the number of events considered,

Ri is the cumulated volume of precipitation observed or forecasted and Gi is the cumulated
volume of precipitation obtained by rain gauges. The RMSf should ideally be equal to 1. It
is a way to evaluate the precision of radar data.

• The bias: Bias = 1
N

∑N
i=1 (Ri − Gi). It is a way to evaluate the systemic error of radar data.

Such analysis are interesting as they are based only on some important events. Events are here
simply determined via a pre-determined threshold level.

2.2.4 Satellite data
The focus of this section was only on radar data. However it is interesting to notice that similar
procedures (notably for QPFs production and further blending scheme) can be applied to infrared
satellite data. A model of growth and decay of rain cells was notably presented above94 while
Lagrangian persistence has been used with satellite data107.
Compared to radar, satellites can also provided other information such as remotely-sensed basin
parameters8 that could be useful for hydrological modelling. They are notably able to estimate
evapotranspiration rates108, snow cover109, soil moisture110 or glacier extent evolution111.
Finally spaceborne radars (radar satellites) can also be used112,113. They present the advantages
of removing all shielding issues of ground-based radars and of working at constant ranges (about
400-420km – on the contrary ground-based radars must work between very short ranges and large
ranges). However they are not always available and present new resolution issues when their angle
of incidence become large. Both technologies can complement each other.
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2.3 Rainfall-runoff models
To alert the public authorities and the population in case of flash flood occurrence, the knowledge of
the precipitation intensity is not always sufficient. Indeed a variety of parameters affect the runoff
discharge generated by rainfall such as the localization of intense rainfall, the state of the soil, the
characteristics of the basin, the presence of snow, etc. Rainfall-runoff models are thus necessary to
convert precipitation into discharge.
A large variety of rainfall-runoff models have been investigated and developed since the development
of the Rational Method by Mulvaney in 1851114. They can be separated according to four major
features:

• The approach followed115,116: deterministic or probabilistic as described in Figure 2.8.

• The modelling structure117: empirical (or data-driven, based on black-box statistical relation-
ships between inputs and outputs), conceptual (based on simplified components and equations)
or physical (based on physical equations and real characteristics of a catchment). Determin-
istic models can fall in either category while probabilistic models are very often empirical
models which do not include any physical phenomena. Some conceptual or physical models
could however also be probabilistic.

• The spatial structure: either lumped (the basin is treated as a single homogeneous unit), semi-
distributed (the basin is split into sub-basins treated as homogeneous units) or distributed
(the basin is regularly split into a grid of cells treated as homogeneous units) as illustrated in
Figure 2.9.

• The time structure: continuous or event-based models118. Most of the models are continuous
but some event-based models will be described in Section 2.3.5.

Figure 2.8: Classification of rainfall-runoff models. Taken from Jain et al.116 and World Meteoro-
logical Organization (WMO) flood forecasting report6.
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The modelling and the spatial structures of rainfall-runoff models are not independent: empirical
models are usually lumped, conceptual models are lumped, semi-distributed or distributed, while
physical models are semi-distributed or distributed. Each type of model has advantages and draw-
backs favouring their use in one case or another.

Figure 2.9: Representation of the three types of rainfall-runoff model spatial structures: A. lumped
- B. Semi-distributed - C. Distributed. Taken from Sitterson et al.117.

2.3.1 Data-driven models
Empirical or data-driven models are the simplest models which are mostly used when data on the
physical processes are lacking. These models usually need input and output data covering a large
period of time6. They are often referred as black-box models as they do not model physical processes.
They can be divided into two main categories116: stochastic models based on regression or Bayesian
approaches, and non-linear models with notably neural networks and fuzzy logic models.
Stochastic models have been widely used before for seasonal forecast. Models based on linear
regressions have notably been used, for their simplicity, to predict the amount of available water
with lead time up to several months. Garen119 proposed some key rules to build a good seasonal
forecast, such as the use of only data known at forecast time, the use of cross-validation, principal
component regression (PCR) or systemic search of optimal combinations of input variables. Later,
Pagano et al.120 used accumulated precipitation and Snow Water Equivalent (SWE) predictors with
z-score pre-normalization to set up a daily-updated seasonal forecast of water supply in Western
United States. The use of historical data can also be included to improve seasonal forecasts121.
More complex probabilistic data-driven models have also been investigated more recently, though
less actively than other data-driven models. As linear regression models, they aim at describing the
relationship between two quantities (here mostly rainfall and runoff) in a probabilistic framework.
Variables are here described as probability distributions. As an example, Abdollahi et al.122 pro-
posed to use Copula functions to build an event-based rainfall-runoff model. Other approaches using
other data than just rainfall can also be found in the literature such as the Probability Distributed
Model (PDM) developed by Moore123,124.
Since the development of bigger and faster computers, neural networks have become more and more
used in rainfall-runoff models. The first to propose the use of neural networks was Daniell in 1991125.
Multi-Layer Perceptrons (MLP) were then largely used in rainfall-runoff models126–128. To improve
performances in the particular case of rainfall-runoff models, where memory and persistence effects
play a major role – with the existence of numerous storage units: snow, soil, glaciers, etc. – Recurrent
Neural Networks (RNN) – notably Long-Short Term Memory (LSTM) – have been intensively
investigated recently129–133. Neural networks can be fed with a variety of input data: localized data
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(rain-gauges, temperatures, etc.), spatially distributed data such as radar and satellite129,131,134 or
even results of conceptual or physical rainfall-runoff models in so-called hybrid models133,135,136.
Finally models based on the fuzzy set theory developed by Zadeh137 using ’IF-THEN’ principle
relating input and output variables have been developed recently138–140. The overall principles of
these models are described by Shrestha et al.141.

2.3.2 Conceptual models
Unlike empirical models, conceptual models try to describe in a simple way the main components
of the hydrological cycle. Conceptual rainfall-runoff models are the most widespread models in
operational forecast and flood management, as they combine a rational description of physical
phenomena with a still reasonable complexity. Conceptual models are usually based firstly on
lumped models which can then be converted into semi-distributed or even distributed models by
adding up similar lumped models with different parameters representing sub-basins – for semi-
distributed models – or cells in a grid – for distributed models.
A first type of conceptual rainfall-runoff model is the unit hydrograph method developed by Sherman
in 1932142 and later Snyder in 1938143, where only rainfall data in a gauged catchment are needed.
This method is based on the historical relationship between the precipitations and the resulting
outflow. For a standard precipitation of 1 cm, it is possible to draw an hydrograph representing the
evolution of discharge with time. Unit hydrograph models can be developed into semi-distributed
and distributed approaches to model flash floods at the level of a complete catchment. For example,
by first building the unit hydrographs of several sub-catchments and then summing their contri-
butions for known precipitation, Sharma et al.144 and Goñi et al.145 have been able to estimate
correctly the peak discharge of several events respectively in Lower Tapi basin in North-Western
India and in the Oiartzun watershed in Northern Spain. Similarly Khaleghi et al.146 used different
techniques to generate unit hydrographs and reproduce several events in Northern Iran. Recently,
Wang et al.147 used unit hydrographs in a distributed approach. They modelled unit hydrographs
for each cell in a spatial grid before simulating the transport of water from cell to cell using geomor-
phic data to estimate the velocity field. However unit hydrograph models are not widely developed
in operational forecast.
The most common models used in operational forecast are conceptual models based on a description
of different storage reservoirs and of their connections. Reservoirs can be soil reservoirs (with one or
several reservoirs described with different parameters), groundwater reservoirs, snowpack, glaciers,
overland interception reservoir (such as vegetation intercepting rain and snow), channels and rivers,
lakes and artificial reservoirs, etc. A calibration of the parameters with known runoff data is then
required. An example of such a model is described in Figure 2.10. The list of conceptual models used
in operational forecast includes: the semi-distributed GR (Génie Rural) family (with notably the
GR4j model) from France148,149, LISFLOOD150,151 the distributed model from the European Flood
Awareness System (EFAS)152, RS Routing System developed at EPFL153,154 – and used notably by
the CREALP, Hydrique Ingénieurs or the French Service de Prévision des Crues (SPC) of Northern
Alps – HBV the Swedish lumped/semi-distributed hydrological model155 in operation notably in
Sweden156, in Russia with the OpenForecast tool157 or in the Swiss part of the Rhine river158, etc.
A comparison between several large-scale rainfall-runoff models for operational purposes (including
conceptual and physical models) was carried out in 2016 by Kauffeldt et al.159.
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Figure 2.10: Scheme of processes and reservoirs of the conceptual HSPF model from Atkins et al.160

In conceptual models, the propagation of flow between the reservoirs and between the sub-catchments
(for semi-distributed or distributed models) is made through hydraulic or hydrological routing6.
Hydrological routing can be either level-pool reservoir routing (the discharge leaving a reservoir is
determined by the level of the reservoir only) or distributed storage routing in the case of rivers.
Hydraulic routing is used in open channels to model the wave propagations. In each cases several
models of routing can be used, as described in Figure 2.11. Routing is a major component notably
for semi-distributed models such as Routing System the rainfall-runoff model used by Hydrique
Ingénieurs.

Figure 2.11: Classification of the different routing models used in rainfall-runoff models. Taken
from the WMO 2011 report6.
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Conceptual models are aimed at performing in operational forecast, while being as simple as possible
in order to be understandable by stakeholders. It is thus essential to choose carefully the physical
processes that will be modelled in a conceptual model. These processes depend on the location, size
and flood response of the catchment as can be seen in Figure 2.12.

Figure 2.12: Major physical processes occurring on different types of catchments. Taken from the
WMO 2011 report6.

2.3.3 Physical models
Physical models aim at modelling the most precisely possible most physical phenomena occurring
along the hydrological cycle, from hydraulic flow in channels to evapotranspiration and glacier
behaviours through fluid flow in porous media. Such models are complex and computationally ex-
pensive but present the advantage of working with only few data. They are for example the best
models to use in ungauged catchments. Though some of the physical models are semi-distributed,
a large number of them are distributed as they do not rely on any sub-basin division (only geomor-
phological data are usually needed). The incorporation of distributed data such as radar is thus
easier in these models.
The frontier between conceptual and physical models is porous and some models can be sometimes
classified either as conceptual or physical. The frontier is often defined by the need, or not, of a
calibration process: normally, physical models do not require a calibration. However they suppose
the knowledge of the real value of some parameters, and thus most physical models are finally
calibrated to improve their performances. LISFLOOD or RS Routing System are two examples of
operational forecasting models that are usually classified as conceptual models as they require a
calibration but that use similar equations to physical models.

2.3.4 Sources of uncertainty and error in rainfall-runoff models
The errors and the associated uncertainties of rainfall-runoff models come from various processes.
The World Meteorological Organization (WMO) listed them in its 2011 special report on flood
forecasting6:

• Model errors due to forgotten or not perfectly modelled physical processes.
• Parameter errors due to the bad knowledge or calibration of parameters.
• Boundary condition errors due to bad choices of boundary conditions and notably to wrong

geometric representation in physical models.
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• Initial condition errors due to a wrong estimation of the initial conditions (for example initial
height of reservoirs in conceptual models).

• Observation errors of the measurement instruments. This class of errors encompasses input
(e.g., precipitation) and output (discharge) errors.

Sources of errors can compensate each other. The calibration process can notably allow parameter
errors to compensate other sources of errors. Calibration can be performed manually or automati-
cally using different types of algorithms such as downhill simplex method161, annealing162 or genetic
algorithms163. An automatic calibration is usually more suited for highly-conceptual models with
few parameters and is more complicated when the number of parameters, the non-linearity and
the discontinuity of the model and the number of local minima increase. For such models, a more
complex global optimization is often used with notably the shuffled complex evolution method (SCE-
UA)164,165 which is however longer to converge166. To evaluate the performances of an automatic
calibration, cross-validation schemes are usually performed. Cross-validation could be performed
by splitting the set of events or the period in several subsets but also by cutting the basins into
several sub-basins with some being used in the calibration and other in validation167,168.
To correct errors, an updating process with the latest measures (also called Data Assimilation or
DA) can be performed during operational forecasting and is usually yielding significant improve-
ments. The WMO stated that non-updating models are "generally considered to be inefficient in the
context of real-time modelling"6 as they do not use the real-time flow measurements to improve their
forecasting skills. Non-updating forecasts may then continuously drift from the measures while an
update with the real-time measures will avoid such drift. Event errors in forecast can be classified
in three categories: amplitude (or volume), phase and shape errors, as represented in Figure 2.13.
Updating aims at reducing these errors. Tangara169 demonstrated that at short lead time, even
badly calibrated models can be saved by the updating process. Nevertheless the calibration and the
choice of the model is still the main process to avoid errors at longer lead time. Updating methods
can be split between updates of the parameters169–172 (adaptive calibration) and updates of the
initial conditions169,173–175. Updating can also be more simply applied as a post-processing of only
the final runoff with no modification of the parameters or state variables176.

Figure 2.13: Description of the three fit errors in operational flood forecast. Taken from Serban and
Askew177 and the WMO 2011 report6.

Several techniques can be used in the updating procedure. Wöhling et al.173 used an updating
procedure of a distributed HBV model155 where state variables (notably the levels of the upper
runoff reservoir) are updated iteratively to minimize the observed-simulated difference ∆Q. They
chose to use a spatially-constant factor to modify these levels. Silvestro et al.175 proposed an
updating method designed for operational use in Italy with various advices. Their first advice
is to only use updating (or post-processing) techniques when "highly reliable" runoff gauges are
available. Rather than relying only on instantaneous reference runoff they also recommend to use
time-windows in their correction schemes to avoid erroneous observed data. Their updating process
is based on two steps. First, a Direct Insertion Method is used to correct water levels. The idea
is to exactly invert the equation linking water level and runoff with a corrected value for runoff
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(based on observed runoffs over a time window). Secondly they iteratively correct the root-zone
soil moisture in order to minimize the runoff bias. In its PhD dissertation, Borup174 investigated a
computationally-efficient method to update water levels ensuring the model stability (to observed
discharge errors) without excessively dampening the correction. To do so he used linear regressions
to assess the evolution of the last hourly runoff errors and convert it into reservoir level errors178.
More complex updating techniques rely on Kalman Filters (KF) or Ensemble Kalman Filters
(EnKF) to cope with observed data uncertainties79,170,179,180. Kalman filter assumes the forecasting
process (i.e. the model) is a stochastic process with Gaussian noise. KF aims at finding the best
estimation. It is described hereafter with the notations from Liu and Gupta181. The prediction and
updating steps are described in this stochastic framework by respectively prediction equations (2.1)
and (2.2) and update equations (2.3) and (2.4). The former ones introduce the Kalman gain K.
By inverting Equation (2.4), K can be obtained and reintroduced in Equation (2.3) to obtain the
updated vector of state variables x+

k+1. In these equations xk represents the vector of state variables
at timestep k. Exponents (−) indicate a non-updated state and (+) an updated state. Mk is the
matrix representing the prediction step (the model) allowing to go from state k − 1 to state k. θ
represents the parameters of the model and uk the input data (e.g., precipitation). Pk is the error
covariance matrix between the state variables xk, and Qk is the error covariance of the model added
at each prediction step. Finally Hk is the observation operator at step k while dk = zk − x−

k is the
difference between the observation and the simulation.

x−
k+1 = Mk+1(x+

k , θ, uk+1) (2.1)
P −

k+1 = Mk+1P +
k MT

k+1 + Qk+1 (2.2)
x+

k+1 = x−
k+1 + Kk+1dk+1 (2.3)

P +
k+1 = P −

k+1 − Kk+1Hk+1P −
k+1 (2.4)

Because KF presents the difficulty to be valid only for linear or linearised problems, EnKF was
developed to better update non-linear models by performing KF for an ensemble of random input
perturbations181. Other techniques such as Particle Filtering or Variational Data Assimilation181

are also aiming at coping with observation and simulation uncertainties. However all these mod-
els are more complex than simple empirical updating schemes which are already performing well.
Hence, Moore7 recommended to use the former one in operational flood forecasting. In RS Routing
System, the updating technique is an empirical iterative method aiming at minimizing the volume
ratio between observed and simulated runoff over a chosen time window79. It is hence nearly not
susceptible to isolated wrong observed runoff data.
On the post-processing side, Ho and Lee176 proposed to assume their model was well forecasting
the difference in runoff. As described by Figure 2.14, they proposed to use the last measure plus
the simulated difference in runoff as forecast. Their updating algorithm performed well. Similarly
Hydrique Ingénieurs is starting to use a post-processing based on polynomial splines to connect
observation and forecast.
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Figure 2.14: Description of the simulated difference based updating algorithm proposed by Ho and
Lee176.

2.3.5 Event-based and improved continuous models for flash floods
Most operational models for flood prediction are based on well-known continuous models –RS, HBV,
LISFLOOD, GRJ... – used for other applications such as seasonal forecasting, hydroelectricity
trading, assessment of the effects of regulation measures or land-use, evaluation of the impacts of
climate change, etc. However some models have been specifically developed for flood and flash
flood forecasting. It is sometimes necessary to develop such models as other models are often
either too simple and not able to accurately predict floods or too complex and not usable in real-
time operations. Flash-flood-specific models are usually event-based, distributed models making
the best of radar and satellite distributed data. According to the WMO6, the main issue of these
models reside in the lack of sufficient data for their calibration and the high sensitivity to initial
conditions. All these models are usually based on the same architecture:

1. Knowledge or computation of spatially-distributed precipitations.
2. Determination of distributed precipitation excess.
3. Transformation of precipitation excess into surface runoff via notably empirical Hortonian

processes182,183 or physical Green-Ampt schemes183.
4. Addition of simplified base flow.
5. Channel and reservoir routing and hydrographs combination at confluence points.

Several examples of flash flood event models exist. The MARINE model184 (Modélisation de
l’Anticipation du Ruissellement et des Inondations pour des évéNements Extrêmes) developed by
the French National Flood Forecasting Service of Haute-Garonne, is an event-based, flash flood
distributed model composed of an hydrological rainfall-runoff module and an hydraulic module
solving the Saint-Venant equations. This model is designed only for real-time operational flash
flood predictions. It is simple enough to be run in a few minutes which is essential in flash flood
operational forecasting as mentioned by Montz and Gruntfest185. The hydrological module uses the
input precipitation from radar data, the nature and utilisation of the soils and the DEM of the ter-
rain to supply flood hydrographs all along the main river to the hydraulic module, which propagates
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the flood in the main river. Furthermore, evapotranspiration, interception or lateral underground
transfers are neglected as their are not affecting significantly the flood volume and timing for small
duration-high volume flash floods, which is supported by previous researches186–188. The infiltration
and runoff are modelled from precipitation distributed inputs by a Hortonian process183, though a
Green-Ampt model183 may provide better results. The main difficulty of this model resides in the
calibration process as only very few flood data are available prior to the chosen flash floods. Hence
it consists mostly of a pre-determination of parameters rather than a real optimisation based on
numerous observed data. The number of parameters of the model is reduced as much as possible
(three to six parameters). This model is performing quite well, as illustrated in Figure 2.15, and
could be improved by a better knowledge of the hydraulic conductivity of the soil and of its initial
humidity.

Figure 2.15: Results of the MARINE forecast of the flash flood from 3 to 5thOctober 1995 in Corbès,
France (solid line) compared to the observed discharge (dots). Taken from Estupina Borrell et al.184.

Similarly the Runoff Burroughs Event Model (RORB) developed by Laurenson and Mein189 for
application in Australia includes the same principles of hydrographs estimation and routing for
event simulation. It is open-source and the latest version from 2012 is available online.
Multiple comparisons between event-based and continuous models can be found in the literature.
Their conclusions diverge and appear to be highly dependent on the model and on the considered
catchment, with several studies concluding event-based models performed better190–192 and several
others concluding the contrary193–195. It is probable that depending on the model, catchment,
quantity of data, etc. one of them will outperform the other. Notably event-based models have the
advantage to provide a specific calibration of the parameters for extreme events with the drawback
of being calibrated on only few data unlike continuous models.
In between continuous and event-based models, some continuous models can be used with added
features to improve flash-flood forecasting. The first idea could be to calibrate the model specifically
on flood events. Such approach has been followed by De Silva et al.191 which used the parameters
of an event-based model to feed a continuous model. Similarly, Hossain et al.192 used a continuous
model with calibration on only events as their event-based model. In the case of this project, though
the Routing System model used at Hydrique Ingénieurs is a continuous model, the calibration
procedure will rely both on continuous indicators and on event-based indicators calculated for
discharges higher than a threshold.
Besides an event-specific calibration, other features have been sometimes added for flash-flood pre-
diction. For example, Peredo et al.196 have recently tried to improve the skills of the semi-distributed
GRSD model (part of the French GR family) during winter and spring floods in the Aude catch-
ment. In this scope they have modified the proportion η of the net rainfall Pn (after accounting for
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evapotranspiration) that is directly leaving as surface runoff without being infiltrated and stored in
the soil. In the original GRSD model, which is described in Figure 2.16, this factor was determined
only by the square of the filling factor of the soil storage (Equation 2.5). Here the authors add a
term depending on the intensity of precipitations to increase this factor for high intensity rainfall.
With this modified factor (Equation 2.6), more water bypass the soil reservoir and is converted into
direct runoff during high rainfall events. Such modifications allow to better model the events and
notably the timing of the peak discharge.
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Figure 2.16: Scheme of the modified GRSD model. The infiltration rate Ps/Pn is modified to be
smaller for high intensity of precipitation. Taken from Peredo et al.196.
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2.4 Flash flood alarm systems
Once a discharge prediction is produced, it needs to be analysed and transferred to the public and
to decision-makers. Indeed providing a single discharge value does not bring any information if
it does not come with reference information, risk and probability assessment, damage and action
costs, etc. Hence alarm systems are developed to treat the raw forecasted discharge and convert it
into usable information. Alert systems development is an active field of research, largely connected
to operational purposes.

2.4.1 Class of alarm systems
The World Meteorological Organization6 lists four categories of alarm systems by order of complex-
ity:

• Threshold-based flood alerts. These systems are based only on observed discharges. The
measures are compared to reference threshold discharge to generate some levels of alerts. The
determination of reference discharge is here essential and will be discussed in Section 2.4.3.
These systems require the discharge to be highly persistent so that the discharge in the next
hours can be easily predicted from the last measures and will evolve slowly enough to let
authorities act. It is mostly adapted to long response time catchments, but is also used
when simplicity is required (e.g., basins with too few locations/periods of floods where the
investment does not worth it, under-developed regions with less resources for complex alarm
systems, etc.).

• Flood forecasting alert systems. Here the forecasted discharge are compared to reference
threshold discharges. Rainfall-runoff models of various types can be used with various input
data (see Section 2.3), depending on the catchment characteristics and resources available.
For example in small response time catchments it is essential to use forecast rainfall products
while in large response time basins it could be enough to use only rainfall observations to save
money and resources.

• Vigilance maps. The previous flood forecasting alert systems can be replicated in a large
number of locations to generate a map of alerts. Several levels of alert can then be defined.
This is for example the case of the French operational flood alarm system Vigicrues197.

• Inundation forecasts. The forecasted discharges are used to generate a map of areas that
will be at risk of being flooded. This requires a digital elevation model (DEM) and a hydro-
dynamic (or hydrological) level-and-flow model. A large number of historical data are also
needed as these systems are highly sensitive, notably in plain areas. The distinction between
flood forecasting (Prévisions de crue in French or Hochwasser in German) and inundation
forecasting (Prévisions d’inondations in French, Überschwemmungen in German) is essential
to evaluate the areas at risk of damage during a forecasted event.

A fifth category can be added and consist in the meteorological alarm systems based only on observed
or forecasted rainfall in catchments where the hydrology is mostly based on response to rainfall.

2.4.2 Meteorological alarm systems
The simplest alarm systems are meteorological alarm systems. Here, only current information on
precipitations are necessary. One example of such system is the French system APIC197,198 (Aver-
tissement Pluies Intenses à l’échelle des Communes). It is an operational alarm system sending SMS
and e-mail warnings to registered towns and cities when precipitations exceed historical thresholds.
Two levels of warnings are generated: for precipitation levels for a 10 years response time ("high
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flood risk") or for a 50 years response time ("very high flood risk"). Precipitations are measured us-
ing radar and rain gauge measurements and are provided only on places with high-quality QPEs199.
Information are also provided to the public via the APIC website200.
The Flash Flood Guidance (FFG)201 is a more complex system based on the determination of
a threshold runoff R generating a flooding flow Qp. Alerts are launched when the accumulated
precipitation over a given period of time exceeds the threshold runoff. Hence, rather than forecasting
the discharge in the river, the alert system uses only the value of recorded precipitations. Qp and
R are connected via the unit hydrograph theory following Equation 2.7, where qpR is the unit
hydrograph peak and A the catchment area.

Qp = qpRRA (2.7)

Qp is determined from historical data, as explained in Section 2.4.3, while qpR is obtained from
the unit hydrograph theory quickly described in Section 2.3.2. Several methods based on historical
data exist for the determination of qpR

201. Notably GIS and DEM information allow to reduce
the uncertainty associated to qpR. Measured soil moisture values can also be integrated in qpR

determination. Once Qp and qpR are chosen, R is determined from Equation 2.7 and alerts are
generated when accumulated rainfalls exceed its value. The FFG is today widely used for its
simplicity and its development is notably supported by WMO in several under-developed countries
all around the world, some being highly vulnerable to flash floods202.
More complex meteorological alarm systems can finally be based on precipitation forecasts and not
only on precipitation observations. These systems are more complex to design and subject to more
uncertainty but they allow to increase the anticipation time of the alert which is determinant to
effectively protect the goods and people. Such complex systems are however not largely developed
worldwide and QPFs are mostly used in human-controlled warning system such as in the warnings
systems of MeteoSwiss and MeteoFrance. In both cases there is no automatic systems based on
QPFs. QPFs could be useful both for long lead time and large catchment where they help to
activate protection measures, and for smaller lead time and smaller catchments where evacuation
orders can be given in case of a high risk of flash floods on towns at risks.

2.4.3 Determination of reference discharges
Reference threshold discharges are needed to generate alerts in hydrologically-based alarm systems.
Their appropriate choice is determinant. The cases of gauged and ungauged catchments need to be
studied separately.
For gauged catchment, the classical procedure is to use historical data as reference discharge. Several
methods exist and are associated with different risks and consequences201:

• First, a conservative approach to limit damages is to use the bankfull discharge. This definition
is physically-based but is conservative as a bankfull discharge is usually not enough to cause
damages. The bankfull discharge can be estimated from Manning-Strickler formula201.

• Another solution is to use historical flows for given return periods. This solution is statistical
as it is based on discharge observations and as flows for long return periods have not always
already been observed. To estimate flows for given return periods, the Gumbel law on extreme
values is used203. According to Carpenter et al.201 and Henderson204, flows for return periods
of one to two years are usually well correlated to fullbank discharge. The two-year return
period discharge is usually higher than the bankfull one. This method allows to design an
alarm systems with several levels of alert (for several return periods) as in Vigicrues Flash in
France (two levels of alerts for two return periods). This method has the drawback that it
is not associated to damage assessment: in some places, damages can occur for small return
periods while in others they will not occur even at high return periods205.
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The choice between a conservative or a larger discharge alert threshold is important to limit the cost
of potential damages but also of protective measures such as sandbags, evacuations or mobilization
of civil protection agents. The trade-off between damages and alert costs is well illustrated by utility
curves such as the one from Figure 2.17 taken from the WMO’s 2011 report6.

Figure 2.17: Example of a utility function for a flood alert decision. The dashed line representes
the cost of potential damages depending on the real discharge and the solid line represents the costs
occurring when an alert is launched. The latter are composed of inevitable damages and of costs
associated with protection measures. Taken from the WMO 2011 report6.

In ungauged catchments, the bankfull dicharge is still an available solution to fix discharge threshold
as it does not need the knowledge of historical discharges. Another solution could be to estimate
the discharge during major flood events by post-observation of damages, satellite data or interviews
with citizens. An example of such field inquiry has been performed by Javelle et al.199 for a flash
flood on the Argens catchment in Southern France. However an easier solution is to run simulation
with a large number of scenarii to estimate the simulated distribution of discharges and consequently
the simulated discharges for given periods of time. Younis et al.206 used 12 years of meteorological
data in the Cévennes-Vivarais region of Southern France to run the LISFLOOD model and generate
a cumulative distribution function of simulated discharge. From this distribution they extracted
four reference thresholds for alert: severe alert for the highest simulated discharge, high alert for
the discharge exceeded 1% of the time, medium alert for the one exceeded 2% of the time and low
alert for the one exceeded 3% of the time. Similarly, in a case study in Ticino, Alfieri et al.207

used historical meteorological data in a re-forecast process with the European Flood Alert System
(EFAS). They later extracted the annual simulated discharge maxima and define three threshold
levels: medium alert for the mean of annual maxima, high alert for the 5-year return period simulated
discharge, and severe alert for the 20-year return period simulated discharge. These techniques have
the advantage of eliminating part of the model bias: if simulated discharges are always twice as big
as real (unknown) discharges, alert will still be generated correctly.
Finally in both gauged and ungauged catchments, alert systems could be generated according to the
value of other physical quantity than discharge. The following quantities, observed or forecasted,
alone or in combination, could be used:

• Discharge or discharge increase rate
• Water level or rate of rise of level at significant locations
• Rainfall intensity or cumulated level (meteorological alert system)
• Catchment wetness conditions

Complex alarm systems can then be developed by combining several of these quantities in a given
case study. The design of such alert system needs to be developed with local authorities, taking

28



Literature review

into account the local context and the potential damages6. In the case of a complex alert system,
several stages of alerts (moderate, high, severe, etc.) are usually provided.

2.4.4 Management of uncertainty
The main issue of alert systems is the high uncertainty associated with weather forecasts and
rainfall-runoff models. The risks and stakes of false alarms or missed events are high and need to
be managed carefully. Several solutions have been proposed to cope with uncertainty. First the
design of several warning stages allows to inform authorities at an early stage when uncertainty
could be high. Indeed, severe events are not often observed largely in advance but can very often
be forecasted with smaller intensities at large lead time. Hence a moderate stage of alert can often
mean that there is a risk to reach a higher stage of alert. This is way to inform authorities that a
severe event may happen.
Uncertainty can also be introduced via ensembles of forecasts. These ensembles could be produced
either by using QPF ensembles – or artificially modified QPFs when the QPF is deterministic –
before the use of a rainfall-runoff model or by using several rainfall-runoff models. Alfieri et al.207

used the European Flood Awareness System (EFAS) based on a meteorological ensemble forecast
(ECMWF) and on the LISFLOOD rainfall-runoff model to create an ensemble of discharge forecasts.
Probability distribution can then be extracted from the ensemble results allowing to evaluate the
uncertainty of the model at each timestep. An example of forecasted discharge with confidence
interval is displayed in Figure 2.18.

Figure 2.18: Example of a forecasted discharge with confidence interval. The upper and lower plots
are respectively for lead times of 72h a 96h. A cumulative distribution plot of discharges is also
provided for one timestep in the right plot. Taken from the Alfieri et al.207.

Finally, uncertainty could be introduced by analysing several consecutive forecasts, called lagged
forecasts. Bartholmes et al.208 demonstrated that the use of persistent alert systems where a thresh-
old must be exceeded in two consecutive forecasts for an alert to be launched, largely improved
performances, for both deterministic or ensemblist forecasts. Alfieri et al.207 used lagged forecasts
to double the number of members of their ensemble. They showed that lagged forecasts are well
adapted to ensemblist approaches. Decisions can for example be taken on the level of probability
of exceeding a threshold in several consecutive forecasts. However lagged forecasts imply a loss of
time required to act due to the wait time between two alarm forecasts. This is very detrimental for
flash floods on small response time catchments.
Once uncertainty is integrated into an alert system, it is very important to communicate with
public authorities to form them on the notion of uncertainty, as pointed by the WMO6 and by
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Berthet et al.209. Indeed, a very critical step is the transformation of a probabilistic alert into
deterministic actions by authorities. Actions must be taken at the right moment knowing the risks
of acting or not-acting. Berthet et al.209, after noticing that the level of uncertainty is imposed and
not chosen and that its reduction is difficult and limited, proposed a series of recommendations for
the communication and management of uncertainty. The idea beyond these recommendations is
that uncertainty must not hinder the decision process.

• The production of forecasts and the decision process must be dissociated. Indeed the hy-
drometeorological forecast is an element among others, which is, by definition, uncertain.
Uncertainty increases with lead time and for extreme events, which, unfortunately, are the
most important events. Hence other elements such as the knowledge of damage hazards and
costs or the planning of mitigation and prevention actions are features to take into account in
the decision process.

• Uncertainty must be well communicated. The most largely spread solution is to provide a
range of values or a confidence interval rather than a single deterministic value.

• Decision makers must be formed to manage uncertainty. Rules and tools helping the decision
must be set up before the occurrence of an event. The WMO also stressed the importance of
training by dedicating one chapter of its 2011 report to this problematic6.

• Automatic uncertainty estimation processes are required. The estimation of uncertainty can-
not be empirical as forecasters are frequently changing.

2.4.5 Official alert systems in several countries
Flood and flash flood alert systems have been developed worldwide, notably on regions suscep-
tible to these events. However their step of development and characteristics are highly variable
and dependent on the economic development of the country with more operational, automatic
and country-covering systems in developed countries. Some examples of alert systems are quickly
described below.

Europe
The European Flood Awareness System (EFAS) is an alert system covering the European continent
and operational since 2012116. It is based on the ECMWF NWP ensemble (European Centre for
Medium-range Weather Forecasts)a fed into the LISFLOOD rainfall-runoff model207,208,210. Early
flood warnings are then analysed and transmitted to the hydrological services participating in the
development of EFAS. Its ensemblist character allows to introduce uncertainty in the alert systems.

Switzerland
In Switzerland, the flood vigilance is the role of the Federal Office of Environment (OFEV). The
alert system is based on current observations of discharge at discharge stations. Five alert levels are
used depending on the discharge return period: No danger, limited danger (above Q2), significant
danger (above Q10), high danger (above Q30) and very high danger (above Q100). Small adaptations
are made when more knowledge on the potential risks and damages are known. The map is available
at https://www.hydrodaten.admin.ch/fr/messstationen_gefahren.html.

France
France has developed three meteorological and hydrometeorological alert systems to cover catch-
ments of different sizes and response times197:

• APIC (Avertissement Pluies Intenses à l’échelle des Communes, since 2011). APIC is a me-
teorological alert system based on observations only and proposed by MeteoFrance. Measured
precipitations are compared to historical data to generate two levels of alert (high for a return

awhich is used to generate the COSMO NWP that will later be used in this project.
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period of 10 years and severe for a return period of 50 years). Precipitations are measured
by radar and rain gauges with the AIGA system. SMS and e-mails warnings are sent directly
to the registered local public authorities and a map is available for the public on the Internet
(https://apic-vigicruesflash.fr).

• Vigicrues: a non-automatic system of flood prevision and surveillance for major rivers and
catchments (high response time). 23 000 km of the 270 000 km of French rivers are covered by
Vigicrues. It is updated twice a day at 10h and 16h and more frequently during flood events.
Forecasts are based on several distinct hydrological models depending on the region and are
performed by regional SPCs (Services de prévision des crues). All forecasts are centralised by
the SCHAPI (Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations)
and available at https://www.vigicrues.gouv.fr.

• Vigicrues Flash (since 2017): an automatic system of flood forecast for the remaining small
ungauged rivers. The distributed rainfall-runoff model GRD, developed by the INRAE, is
fed with AIGA data to provide information to local authorities199. As it is focused on small
response time, this system provides mostly alerts for flash floods. Alerts are available at
https://apic-vigicruesflash.fr.

United Kingdom
United Kingdom alert system is under the responsibility of each country. Hence two systems have
been developed211. In Scotland, the FEWS (Flood Early Warning System) is based on radar-rain
gauge data fed into the G2G physical-conceptual distributed rainfall-runoff model212. Flood alerts
are available on the Internet (https://floodforecastingservice.net). The Scottish system is
interesting as Scotland is constituted mostly of small catchy basins.
In England and Wales, flood alerts are generated by the National Flood Forecasting System of the
Environment Agency. Catchments have usually higher response times than in Scotland hence alerts
are mostly provided at regional level.

United States
The flood alert is part of the missions of the NOAA (National Oceanic and Atmospheric Agency)
and of the National Weather Service. It is based on the HEFS (Hydrologic Ensemble Forecast
Service) and provides forecasts with lead times higher than 6 hours. It is not a unified model as a
variety of rainfall-runoff models are used such as Snow-17, SAC-SMA or models based on the unit
hydrograph approach116.
Flood alerts are generated by several distinct systems. Flash Flood Guidance (FFG) is notably
used199 but other alert systems based on discharge forecasts can also be used locally. A website,
available to the public, provides the latest cumulated precipitations on thousands of rain gauges
and their respective precipitation FFG thresholds (https://www.weather.gov/serfc/ffg).

India
Flood forecasting, which is of central importance in India, is supported by the Central Water
Commission (CWC). Forecasts (level or discharge) are produced for a network of 199 stations
covering the whole country. Models depend on the basin but most of them are statistical models116.

Nepal
Some operational forecasting systems have also been developed in countries under development such
as Nepal. The Nepali flood forecasts are available at http://www.hydrology.gov.np. It indicates
the risk of floods and the state (rise or fall) of the discharge. It is based on the WRF (Weather
Rainfall Forecast) NWP fed into a semi-distributed rainfall-runoff model MIKE116.
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2.5 Improvement of flash flood forecasting with ensembles
The most promising way to improve flood forecasting and alarm systems resides probably in ensem-
ble approaches. Indeed, the main issue in operational flood forecasting is the uncertainties arising
mostly at three levels in the process: uncertainties of the meteorological observations and pre-
dictions, uncertainties of the initial conditions, and errors introduced by rainfall-runoff models213.
For this reason, ensembles is a very active field of research in meteorology and flood forecasting.
A large review of ensemble techniques for streamflow forecasting has recently been published by
Troin et al.213.

2.5.1 Types of ensemble approaches
In discharge forecasting, ensemble approaches cover a large variety of models. Figure 2.19 describes
the different types of ensemble approaches. They can first be separated in three main families,
depending on the type of input data used:

• Statistics-based streamflow prediction (SBSP) which do not use any weather data but only
historical streamflow data. They rely usually on data-driven rainfall-runoff models such as
artificial neural networks, autoregressive models, fuzzy logics models, etc. One or several
models can be used to generate a probabilistic ensemble of predictions.

• Ensemble Streamflow Prediction (ESP) using only historical observations, either meteorolog-
ical or streamflow data. One or several hydrological models can be used. These techniques
are usually well suited for seasonal and long-range streamflow predictions, where the weather
uncertainty dominates other sources of uncertainty. The most famous ESP is the Extended
Streamflow Prediction proposed by Day214. In this approach, the assumption that historical
meteorological events are representative of future events is made. One recent example of use
of this technique was performed by Olsson et al.215 for seasonal forecasting of spring-flood in
Sweden.

• Ensemble Prediction Systems (EPS) based on observations and forecasts. NWPs are added
to the previous data in these ensemble systems. They are the more interesting for flash flood
predictions and small response time catchments.

Figure 2.19: Classification of the different types of ensemble models for streamflow prediction.
Taken from Troin et al.213.
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The EPS can themselves be split between several families, depending on the number of hydrological
models used (HM), and on the number and nature – probabilistic or deterministic – of NWPs.
The case where one rainfall-runoff model is used with one deterministic NWP is called SDS (Single
Deterministic NWP Single HM). It is the only system which is not probabilistic. In this report, all
the analyses will be based on an SDS approach as only the median member of MeteoSwiss NWPs
are available. The other systems, all probabilistic, are listed below, from the simplest to the most
complex:

• EPS-SDM (Single Deterministic NWP Multiple HMs): several models are used with only one
deterministic weather forecast as input.

• EPS-SPS (Single Probabilistic NWP Single HMs): only one model and one NWP is used but
the NWP is an ensemble of weather forecast members. This is the main type of ensemble
systems used worldwide213.

• EPS-SPM: several models are used for one probabilistic NWP.
• EPS-MDS and EPS-MDM: one or several models are used with several distinct deterministic

NWPs.
• EPS-MPS: several probabilistic NWPs are fed into the same hydrological model.
• EPS-MPM: this class of systems is the most complex where several probabilistic NWPs are fed

into several rainfall-runoff models. It is the full-blown multi-model multi-ensemble concept.
Only very few studies have been performed with such system, usually at a long range and lead
time, as it is time and computationally costly. One example is the Pan-European multimodel
seasonal system developed by Wanders et al.216.

2.5.2 Main features used to reduce uncertainty
Ensemble systems allow to introduce new features to reduce the uncertainty of a streamflow forecast.
All these features are similar to those used for ensembles of weather forecasts. Three main families
exist:

• Data assimilation. It refers to all techniques used to integrate the input data into a rainfall-
runoff model. For example the update of initial conditions which is strongly recommended by
the WMO6 is a type of data assimilation. Several data assimilation techniques exist such as
Kalman filters, variational methods, particle filtering, etc.213

• Aggregation of forecasts. Once a hydrological model has been used, the different forecasts
produced need to be combined, with the goal of reducing the final uncertainty. Aggregation
techniques can be either based on constant or dynamic deterministic weighting method, or on
probabilistic combination into a density forecast. The blending of radar Lagrangian persis-
tence and COSMO NWP performed by MeteoSwiss (Section 2.2.3) is an example of dynamic
deterministic weighting for weather forecasts that can be copied for streamflow forecasts.

• Post-processing. It covers all techniques used to reduce errors, bias or dispersion of the en-
semble members in the end of the forecasting process. It could notably be based on regression
or Bayesian approaches.

Each of these three aspects constitutes a deep research field where specific reviews have been pub-
lished. The propagation of uncertainty through the ensemble models is rendered possible by these
features. It constitutes a significant field of research notably in Switzerland217.
In the case of flash flood forecasting, a good example of the use of ensembles is developed by
Alfieri et al.207 in Southern Switzerland (see Section 2.4.4).
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Methodology and data

3.1 MeteoSwiss products
MeteoSwiss, the Swiss meteorological agency, provides several meteorological products, for both
observation and prediction. In this project, precipitation, temperature and radiation will be needed.
For the latter two, measures are taken from the SwissMetNet network of meteorological stations
while forecasts are provided in the COSMO1-E (temperature) and COSMO2-E (radiation) NWPs
that will be described hereafter. For precipitations, several products will be used and studied.

3.1.1 Quantitative Precipitation Estimates (QPEs)
Quantitative Precipitation Estimates measure precipitation either at localized points (rain gauges)
or all over a given area (gridded radar products). MeteoSwiss provides several QPEs for Switzerland.

3.1.1.1 Rain gauges

MeteoSwiss has developed SwissMetNet, an automatic network of standardized meteorological sta-
tions covering the whole Switzerland218. The network contains nearly 200 rain gauge stations.
Precipitation data are provided with 10 minutes or one hour timestep. The SwissMetNet stations
can also provide several other meteorological quantities such as temperature and radiation, depend-
ing on their type.

3.1.1.2 Raw radar QPE

From 2011 to 2016, the Swiss radar network has been modernized and completed. It is now consti-
tuted of 5 C-band radars covering the different regions: La Dôle, Albis, Monte Lema and the new
Plaine Morte and Weissfluhgipfel radars. The precipitation field resulting from the combination of
measurements in these 5 radars is available in less than 60 seconds11,37. It is aggregated over 60
minutes and called AZC. Data are available since 2014 but changes on the network happened until
2016 with the introduction of the Weissfluhgipfel radar. The spatial resolution of AZC is 1 km.
The AZC product is also available in a 5-minute disaggregated form83. In that case it is called
RZC. In this project, the smallest timestep that will be used is 10 minutes. Hence, when needed,
the RZC product coming directly from MeteoSwiss will be aggregated over 10 minutes.

3.1.1.3 CombiPrecip

MeteoSwiss is also proposing a radar-rain gauge merging product called CombiPrecip (also denoted
CPCH). It is the result of a co-kriging with external drift between the AZC product and rain
gauges from the SwissMetNet network78. The process to generate CombiPrecip from the raw radar
product is described in Section 2.2.2. It has evolved over time but the data used in this project

34



Methodology

have been regenerated according to the latest algorithm. The process of generation of CPCH is thus
homogeneous. However the number of stations used in the kriging step has risen from 181 stations
in 2014 to between 262 and 269 stations since 2017. As for AZC, the spatial resolution of CPCH
is 1 km. CPCH also exists both in its original 1h-timestep form and in a disaggregated form with
5-minute timestep83. In this project, the latter will be aggregated into a 10min-timestep QPE.

3.1.1.4 inca0

Finally, during this project, the first timestep of the MeteoSwiss radar QPF INCA will be often
used as observation. It is not a real observation as it is taken from a forecast but it may be quite
close to it while giving information on potential biases of the INCA QPF. It is also expected to be
close to CPCH as it is based on it since 2017. It is available at Hydrique Ingénieurs since August
2018 with a 10-minute timestep. It will be denoted inca0.

3.1.2 Quantitative Precipitations Forecasts (QPFs)
This report uses mainly two types of precipitation forecasts (QPFs): a radar QPF (INCA) and
COSMO, the usual Numerical Weather Prediction (NWP) from MeteoSwiss.

3.1.2.1 COSMO NWP

The COnsortium for Small scale MOdelling (COSMO)105 is a European research consortium, created
in 1998, aiming a developing a non-hydrostatic limited-area atmospheric model. It is used both
for research and operational purposes and notably develops several Numerical Weather Prediction
products. Today, two ensemblist NWPs are available with an hourly timestep:

• COSMO1-E is constituted by 11 members with a 1.1 km spatial resolution. Its computation
timestep is 10 seconds and it is updated 8 times a day (every three hours). It has a usual lead
time of 33h, except for the forecast issued at 3h UTC which has a 45h lead time. COSMO1-
E also provides temperature forecasts which are the ones used in this project. COSMO1-E
replaced the deterministic COSMO1 NWP, updated twice a day, in the summer 2020. As the
focus of this report is only on deterministic forecasts, the median member of the COSMO1-E
will be used during its ensemblist period and the deterministic COSMO1 before that.

• COSMO2-E, with a higher lead time but which is less precise, is constituted by 21 ensemble
members with a spatial resolution of 2.2 km and a computation timestep of 20 seconds. It is
updated twice a day at noon and midnight UTC and has a 120h lead time (five days). In this
project, the median member of COSMO2-E will only be used for the radiation measurements
when required (ie. in the case of the Emosson catchment in Section 5.2).

3.1.2.2 INCA

INCA (Integrated Nowcasting through Comprehensive Analysis)100 is the radar QPFs provided
by MeteoSwiss. It is also ensemblist but only the deterministic median member is provided by
MeteoSwiss up to now. It results from the blending of COSMO QPFs with the storm advection
radar QPF, as described in Section 2.2.3. Its available timestep is 10 minutes, its spatial resolution
1 km and its lead time 6 hours. It is updated every 10 minutes which makes it very interesting
for flash flood predictions. In hourly analyses, INCA will be aggregated over 1h. INCA data are
based on the archives of forecasts received by Hydrique Ingénieurs since 2018. Therefore, they are
not homogeneous as several upgrades of INCA happened during the period of the archives (notably
with the introduction of NowPrecip in 201992). In this project Inca is only providing precipitation
forecasts and will be complemented by COSMO1-E for temperature and COSMO2-E for radiation.
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3.2 RS Routing System

3.2.1 History
Routing System, hereafter called RS, is the rainfall-runoff model developed and run by Hydrique
Ingénieurs. It has first been developed in the Laboratoire de Construction Hydraulique (LHC) of
the Ecole Polytechnique Fédérale de Lausanne (EPFL). It has since evolved independently at the
CREALP (RS Minerve) and at Hydrique Ingénieurs.
RS was initially created in the LHC in 2000219 to model the routing of floods in hydraulic networks.
It included an hydrological rainfall-runoff model (GR3), a flood routing module adapted for routing
in catchments, rivers or reservoirs and modules to add discharges at confluences. In 2007, during
the MINERVEa project154, new features, such as snow and glacier modules, were added to create
Routing System II. All modules were developed during the CRUEXb, SWURVEc and MINERVE
projects.

3.2.2 General features
RS is a semi-distributed physical-conceptual model. It is mainly constituted of two kinds of modules:
hydraulic modules for the routing of water and hydrological modules. Catchments are first split in
several sub-catchments, as illustrated in Figure 3.1a which represents the four sub-catchments of
the Emosson model and their links. Each sub-catchment is itself cut into hydrological parts that
are transferring water downstream to routing modules. Figure 3.1b describes some of the hydraulic
modules present in a sub-catchment. Here the water, coming from the hydrological models ’Tri1.1’
is routed through a kinematic wave river section. A diversion then splits it between two junction
modules so that a part can be compared to the measured discharge, in the ’UP’ comparator. The
comparator allows to calibrate the parameters of the model. Other hydraulic modules are available
such as reservoirs, spillways, river routing modules through St Venant or Muskingum-Cunge models,
turbines or pumps.
The hydrological parts of a sub-catchment are split between several altitude bands that generate
the initial runoff. Usually altitude bands covered 300 m of altitude (0-300 m, 300-600 m, etc.).
Bands are separated between glacial areas and non-glacial areas. Figure 3.1c provides an example
of altitude bands organisation with three altitude bands, two with glacier and one without it. The
hydrological processes follow the GSM-SOCONT model (Glacier Snow Melt - Soil CONTribution
model)220 which is illustrated by Figure 3.1d. Meteorological variables are first interpolated on the
altitude bands in the virtual station modules. In landscape (non-glacial) areas, the precipitation i
and the temperature T are then sent to the snow module which allows to determine the input flow
to the soil GR3 module. At the outlet of the soil module infiltrated water is sent to the river outlet
while runoff water is transferred first to the SWMM model. In glacial areas, inflow water from the
snow module is running into the glacier module. Part of the flow is then leaving directly to the
river outlet while the rest is sent to the GR3 module of the landscape area. The main features and
parameters of these modules will be described in the next section.

aModel for the prevision and management of floods by preventive operations on hydroelectric reservoirs
bModelling of extreme floods in Alpine catchments
cStudy of climate change impacts on Alpine catchments
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(a) (b)

(c)

(d)

Figure 3.1: General organisation of a Routing System model: 3.1a. division of the catchment into
several sub-catchments - 3.1b. example of sub-catchment with diversion, junctions, kinematic wave
river routing and comparator modules - 3.1c. example of three altitude bands (1500m only snow,
1800m snow and glacier and 2100m snow and glacier) with the cascade of modules (virtual station,
snow, glacier, junctions, SWMM and GR3 modules) - 3.1d. Scheme of an altitude band with the
GSM-SOCONT cascade of processes (from Hydrique Ingénieurs internal documentation).
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3.2.3 Modules and parameters
3.2.3.1 Virtual station

Meteorological data (precipitation, temperature and radiation) are interpolated in each altitude
band in the virtual stations. Weights are given to each input data station. They can be either
manually chosen or calculated according to the distance between the real station and the altitude
band. Meteorological data can be corrected globally and according to the altitude, thanks to the
parameters listed in Table 3.1. Concerning the altimetric gradient of temperature, it has usually
a smaller absolute value in wet conditions than in dry conditions. Hence a critical precipitation
intensity is introduced to separate the two weather regimes. Once precipitation, temperature and
radiation are determined, the evapotranspiration can be estimated and transmitted to the soil GR3
model.

Table 3.1: Main parameters of the virtual station.

Parameter Unit Description

Virtual station
coeffI - Multiplicative precipitation coefficient
coeffT ◦C Additive temperature correction

coeffETP - Multiplicative evapotranspiration coefficient
gradI m/s/m Altimetric gradient of precipitation

gradT (Dry/Wet) ◦C m−1 Altimetric gradient of temperature - values for
dry and wet weather

iCrGradTHum mm h−1 Critical precipitation intensity between dry and
wet weather

3.2.3.2 Snow band

The snow band converts the input precipitation into a virtual precipitation which is later transferred
to the soil or to the glacier models. It uses the height of the snowpack as state variable and updates
it. The main parameter of the snow model is the rate of snow melt which is expressed as the height
of snow that is melt in a day and for each degree celsius above 0 ◦C. The snow melt can also be due
to radiation which is controlled by the SRF parameterd.

Table 3.2: Main parameters of the snow band.

Parameter Unit Description

Snow band
An mm/°C/d Snow melt rate due to temperature

SRF mm/W/d Snow melt rate due to radiation

3.2.3.3 Glacier

The glacier is modelled by two main reservoirs: the glacier itself and a snow reservoir describing
the snow cover of the glacier. When the snow and ice are melting they are not directly transferred
to rivers. Hence the coefficient KGL (resp. KN ) represents the fraction of the water from glacier
melting (resp. snow melting) that is transferred to rivers. The parameters Agl and SRF control the
rate of melt of the glacier due to respectively temperature and solar radiations. A slow reservoir,

dalthough this parameter will mostly be put to 0 in this project.
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with characteristics similar to the fast reservoir of a GR3 model, can also be added (its parameters
are not significantly modifying the simulations).

Table 3.3: Main parameters of the Glacier model.

Parameter Unit Description

Glacier model
Agl mm/°C/d Glacier melt rate due to temperature
KN - Transfer coefficient of the snow reservoir
KGL - Transfer coefficient of the glacier reservoir
Ray - Multiplicative coefficient of radiation
SRF mm/W/d Glacier melt rate due to radiation

Slow reservoir Similar characteristics to the GR3 fast reservoir

3.2.3.4 GR3 soil model

The GR3 model is used to describe the hydrological processes occurring in the soil. It is composed
of two reservoirs (one fast, one slow) controlled by water level state variables. A scheme of the GR3
main processes is provided by Figure 3.2. The input equivalent precipitation can either flow directly
as surface runoff or be infiltrated into the GR3 fast reservoir which water level takes values between
0 and Hmax. Hence water can leave the GR3 model by three processes:

• Water can first flow into the river without entering the fast reservoir. If h < Hmax, part of
the water is infiltrated (Equation 3.1) and the rest leaves directly as surface runoff. Moreover
when h > Hmax (fast reservoir full), all the incoming water is sent to the river. In both cases,
the surface runoff first passes by the SWMM model described in the next section.

• The water that has been infiltrated (according to Equation 3.1), can then leave the fast
reservoir and flow directly to the river. This inter-flow iFast is controlled by a transfer
coefficient K and an exponent aK according to Equation 3.2.

• Finally, water can also be sent to a slow reservoir and later flow directly to the river according
to an expression similar to the fast reservoir outflow. As for the glacier model, the slow
reservoir is not mandatory and its parameters are not influencing a lot the models, notably
the high discharges.

iinf = ieq

(
1 − h

Hmax

)aInf

(3.1)

ifast = K

(
h

Hmax

)aK

(3.2)

The main parameters are described in Table 3.4.

Table 3.4: Main parameters of the GR3 model.

Parameter Unit Description

GR3
Hmax m Maximum water level of the GR3 reservoir

K - Transfer coefficient of the GR3 reservoir

aK - Exponent applied at the outlet of the GR3
reservoir

aInf - Exponent applied to the infiltrated flow
Slow reservoir Similar characteristics to the fast reservoir
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Figure 3.2: Scheme of the reservoirs and main processes of the GR3 model.

3.2.3.5 SWMM model

The SWMM model (Storm Water Management Model) is used to smooth the direct surface overflow
from the GR3 model. It is based on Manning-Strickler’s equation and hence is characterized by a
Manning coefficient Ks. Moreover, the total area of the altitude band can be divided into a normal
permeable area and an impervious area. The proportion of impermeable area is controlled by the
coefficient Imp. On the impervious zone, infiltration is null and water is flowing directly into the
SWMM model with a higher Manning coefficient than on the permeable zone. Hence the Imp
parameter also affects the GR3 model.

Table 3.5: Main parameters of the SWMM model.

Parameter Unit Description

SWMM
Ks m1/3 s−1 Strickler coefficient

Imp - Fraction of impervious surface
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3.2.4 Calibration of the model
The first step on each catchment is to build a model including all physical phenomena of importance
for the discharge estimation. Once this is done, the parameters of the model need to be optimized.
This optimization is performed sub-catchment by sub-catchment, from upstream to downstream.
Only sub-catchments where a reliable discharge measurement is available are used. For each sub-
catchment, each parameters of each module can be modified.
To realize a good calibration, the focus should be on several distinct elements of the discharge curve
including: the base level, the seasonal variations, the daily amplitudes – due to snow and glacier
melt – and their variations, the shape, timing and levels of peak discharges, etc. To guide the
calibration several indicators are also provided. In this report we focused mostly on obtaining:

• A Volume Ratio close to 1. The volume ratio corresponds to the ratio between the cumulated
volumes of the simulation and of the measure. It ensures that the water balance of the observed
discharge is respected in the simulation.

• The best possible Nash-Sutcliffe values (later called Nash). The Nash is the mean squared error
of the simulation, as expressed in Equation 3.3 where Qobs and Qsim represent respectively
the observed and simulated discharges and x represents the mean of quantity x. A Nash value
of 1 represents a perfect simulation. In the calibration process, we will use either global Nash
or Nash values computed only for observed discharges higher than a chosen threshold. Such
indicator allows to focus more on large discharges than on small ones, less interesting for the
prevision of floods. It allows to include event-based characteristics in the model by calibrating
the parameters mostly for high discharge events. Log Nash-Sutcliffe values have not been used
in this project as they tend to give less importance on higher discharges.

Nash = 1 −
∑tend

t=t0 (Qobs(t) − Qsim(t))2∑tend
t=t0

(
Qobs(t) − Qobs

)2 (3.3)

The model can then be evaluated thanks to several metrics described in Section 3.3.2.3.

3.2.5 Hindcast
Once a model is calibrated and evaluated on continuous data, it is important to simulate the
processes used in operational mode with forecasted data, in order to assess its benefices on possible
warning systems. Figure 3.3 illustrates the two steps of a hindcast process:

• First, from the continuous control simulation used to calibrate the model (in orange - past -
and purple - future - in Figure 3.3), an update of the initial conditions is performed. This
step allows to come closer to the runoff observed at river gauges and known in real time (red
curve). It will be called hereafter the update step and provides a continuous set of updated
initial conditions.

• Knowing the initial conditions at each moment, a hindcast process – also called historical
re-forecast – is performed. Precipitation, temperature and radiation forecasts are fed into
the model with the initial conditions. At every timestep, a forecast of predicted discharges
is created over a given lead time. At the end of this process numerous small datasets are
available (one per forecast). In Figure 3.3, three different forecasts (blue, yellow and green)
are displayed at two consecutive timesteps.

During the update step, initial conditions are iteratively corrected so that the ratio between the
cumulated volume simulated and observed in the last 24h equals 1. Depending on the model the
update period can also be smaller than 24h. The update step is highly recommended by the WMO6

in operational forecast and has already been demonstrated to be essential in all catchments in the
first intermediate report of the Radar4Infra project221. Hindcasts will be done for several different
input forecasts:
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• Perfect forecasts produced by feeding the model with observed input data for the next hours.
Of course these forecasts cannot be used in operational mode as the "future" observed data
are not available at the time of the forecast. They allow to estimate the model performances if
QPFs and temperature forecasts were perfect. In this project perfect forecasts will be produced
using either CPCH, AZC (or RZC) or rain-gauge data.

• Non-filtered forecasts based either on INCA QPF – with COSMO1-E and COSMO2-E fore-
casts for respectively temperature and radiation – or COSMO1-E QPF.

• Filtered forecasts. A filtering process will be performed to connect the previous forecasts to
the last runoff data measured by river gauges. The filter starts from the last observations,
uses the same initial slope and connects the forecast at a chosen filtering time using a cubic
spline. The update and post-processing steps are illustrated together in Figure 3.4.

Figure 3.3: Example of simulation curves. Present time is marked by the green vertical line. In the
past, the measured discharge is in red and the control simulation (without update) is in orange.
The control simulation using precipitation forecasts (but still without update) is in purple. Several
forecasts are provided for different lead times (in blue, yellow and green). Thanks to the update step,
the forecasts are a lot closer to the measured discharge than the non-updated control simulation.

Figure 3.4: Update and post-processing: the model (orange) initial conditions are first corrected
to get closer to the observation (red). Updated discharge is in pink. A forecast is then produced
(blue) and post-processed to be linked to the observation resulting in the black forecast.
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3.3 Analyses and indicators
3.3.1 Radar benchmark: Measurement skills at rainfall stations
In a first part of this project, the radar QPEs provided by MeteoSwiss will be evaluated to determine
what are their characteristics, potential biases and interest for flash flood rainfall-runoff models.
This benchmark will be mostly performed at MeteoSwiss rain gauge locations as the SwissMetNet
rain gauges will be used as reference.

3.3.1.1 Data
The three radar QPEs provided by MeteoSwiss and presented in Section 3.1 will be compared:

• AZC, the raw radar data, aggregated with an hourly timestep.
• CombiPrecip (also called CPCH), the radar-rain gauge merging product.
• inca0, the first timestep of the INCA QPFs, corresponding to precipitation forecasted for the

first 10 minutes.
The reference rainfall measurements are the rain gauge data provided by MeteoSwiss. The three
radar QPEs are provided for a grid of points covering all Switzerland (and part of the neighbouring
countries). The spatial resolution is 1km*1km. To be compared to rain gauges, the gridded QPEs
are interpolated at the stations using the 1, 4 or 9 closest points with either equal weights (average)
or squared inverse distance weights. Except in Section 4.6 (where it will be 10 minutes), the timestep
used in the analysis is one hour.

3.3.1.2 Periods and stations analysed
181 stations are considered for the analysis. The map of these stations is shown in Figure 3.5. In
Section 4.6, where an analysis with a 10-minute timestep will be performed, only 145 stations will
be used as 10-minutes data are not available for the other stations.

stations 1h and 10min

stations 1h only

Figure 3.5: Stations included in hourly analyses. The 145 stations available also for the 10-minute
analysis are coloured in green.

The period of analysis lasts from 17/07/2018 00h00 to 28/09/2021 00h00 local time. It corresponds
to the largest period where the data were already available for all three products. A longer period
of time lasting from 2014 to 2021 will be used in Section 4.5 to compare the CPCH and AZC
performances evolution over years.
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3.3.1.3 Analyses
The analysis of radar QPEs will be split into six sections:

• Section 4.2: As different interpolation techniques can be used to estimate the radar precipi-
tation intensity at rain gauge stations, a sensitivity analysis of the interpolation method will
first be conducted to choose the interpolation method for the following sections.

• Section 4.3: The performances of the three radar QPEs will be evaluated at the scale of
Switzerland.

• Section 4.4: The best product will then be used to observe if its performances depend on the
location of the stations (altitude or region of Switzerland).

• Section 4.5: The historical evolution of radar performances will be assessed to determine a
period of time for hydrological calibration.

• Section 4.6: The performances of radar data for a 10-minute timestep will be evaluated.
• Section 4.7: A simple validation of the performances of the co-kriging far from the SwissMetNet

stations of MeteoSwiss will also be performed thanks to cantonal rain gauges in Bern and
Ticino cantons.

3.3.1.4 Indicators
Various indicators, detailed hereafter, will be used in each of the aforementioned sections:

• HIT-FAR scores which provide information on the agreement between radar or rain gauge
QPEs for the detection of events.

• Mean precipitation analysis, allowing to detect systemic biases and their seasonal dependency.
• Complementary cumulative distribution functions (CCDF) which give information on the bias

related to the intensity of precipitation.
Most of the analyses will be based on the average of the previous metrics over a set of stations.
However it is also possible to compute these metrics for a given station alone.

HIT-FAR scores
The HIT score represents the proportion of events observed by the reference data (here rain gauges)
that is also observed by the "simulated" data (here radar QPEs). It is comprised between 0 and 1
and its best value is 1. Conversely, the FAR score corresponds to the proportion of events observed
in radar data that are not observed in the rain gauges. It is also between 0 and 1 and should be
equal to 0 for a perfect agreement between radar and rain gauges. HIT and FAR scores can be
obtained from the table of contingency (Table 3.6) with Equations 3.4 and 3.5 respectively:

HIT = Na

Na + Nb
(3.4)

FAR = Nc

Na + Nc
(3.5)

Table 3.6: Table of contingency for HIT and FAR scores calculation.
Event simulated
Yes No

Event observed Yes hit: Na missed: Nb

No false alarm: Nc no event: Nd

Events are determined by precipitation threshold, meaning an event is a moment where the precipi-
tation intensity is higher than a given threshold. Several HIT-FAR scores for different precipitation
thresholds will be computed and presented in a common graph.
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To determine the number of hit Na and false alarms Nc, a tolerance will be used, as described
in Figure 3.6. Tolerances of 10% and 30% will be used. The rainfall intensity thresholds are
0,0.5,1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50 in mm h−1. The HIT/FAR scores are computed by
event, meaning that events exceeding the threshold are first separated before being described as
reference, simulated, hit or nofar events (as in Figure 3.6). An event is delimited thanks to a
base to peak separation method. In the present case, a ratio of 80% is used, meaning the event
is constituted by all the timesteps around the event peak where the precipitations are higher than
80% of the peak value. Additionally two consecutive events must be separated by at least 4 h. To
be considered a hit, an event must exceed the threshold at the same time that the reference event
exceeds its threshold. The HIT-FAR metric provides information on the number of events
observed simultaneously by radar or rain gauge products or missed by one of them.
In the case of the 10-minute timestep analysis, a temporal tolerance is added. An event can be
considered a hit if it occurs between 40 minutes before the reference event and 20 minutes after it.
The time of each event is the time when it reaches the threshold. This temporal tolerance is not
included in hourly analyses.

Figure 3.6: Determination of hit and far events. The rainfall intensity threshold is 6 mm h−1 with
a tolerance of 30%. The reference data (rain gauge) are in red and the simulated data (from radar)
are in blue. Reference and simulated events are the events exceeding the 6 mm h−1 threshold while
a simulated event (respectively a reference event) is a noFar event (resp. a hit event) if the reference
data (resp. simulated data) exceeds the 4.2 mm h−1 threshold corresponding to a 30% tolerance.

Mean precipitation analysis
In the mean precipitation analysis, the average hourly precipitations for each month will be com-
puted and plotted. In this report, the ratio between the mean precipitation for the radar data
(AZC, CPCH and inca0) and the reference data (rain gauge) will be used as it removes the seasonal
variations of precipitation intensity. This analysis allows to detect systemic bias and their
seasonal dependency.

Complementary cumulative distribution functions (CCDF)
For each precipitation intensity, the percentage of time this intensity is exceeded is computed. Only
time steps where at least one of the four product (CPCH, AZC, rain gauges and inca0) contains non
null precipitations are considered. In order to facilitate the analysis, the ratio between the CCDF
of each radar product and the one of rain gauges will be plotted for each intensity value. CCDF
(probability of exceedance) is used instead of cumulative distribution function (CDF, probability of
non-exceedance) as its ratio shows more differences between the different products. This metric
provides information of bias related to the intensity of precipitation.
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3.3.2 Improvements of rainfall-runoff models with radar data
Knowing the performances of radar QPEs – which also gives information on the radar QPF INCA
as it is linked to inca0 and CPCH – it is possible to develop rainfall-runoff models taking the most
of radar data. Notably, radar QPFs distributed character and their good skills at low lead time may
help to forecast flash floods. Flash flood rainfall-runoff models will thus be set up using Routing
System for two different catchments. For each of them the focus will first be on calibration of models
with historical continuous observations. In a second time operational-like re-forecasts of historical
storm events will be simulated.

3.3.2.1 Data
All MeteoSwiss data will be used in this part of the report. To introduce localized precipitation
products in RS (rain gauges), each virtual station of each altitude band interpolates the data from
the closest stations – which can already be quite far. On the contrary, for gridded products, they
are introduced directly in the virtual station of the band they belong to, making the most of the
spatial information included in these products.
Two catchments, with different characteristics will be studied:

• A mountainous catchment (Emosson - Section 5.2). This catchment is part of the Radar4Infra
project and important for Alpiq, a partner of the project.

• A countryside catchment in the Swiss plateau, with some impermeable soil areas (Zurich
airport - Section 5.3).

The quickly responding urban catchment of Lausanne will not be studied as it is already based on
INCA.

3.3.2.2 Analyses
For each of the two catchments, the analysis will be split in two parts

1. A continuous calibration and evaluation of the RS model over a multi-year period will first be
developed.

2. Major events will then be re-forecasted with the calibrated RS model. The prediction perfor-
mances of the forecasts will then be analysed.

These two steps are linked and RS continuous models may be modified and improved when the
re-forecast (or hindcast) appears not to be good enough.

3.3.2.3 Indicators
The two previous steps of the analysis require distinct indicators.

Continuous data performance analysis
For the continuous analysis the metrics used are the HIT/FAR scores, already presented in Sec-

tion 3.3.1.4. The discharge thresholds will depend on the catchment. Two types of discharge
HIT/FAR scores can be computed depending on the type of catchment. For non-mountainous
catchment with no seasonal behaviour (Zurich), the HIT and FAR scores are computed by event,
meaning that events exceeding a threshold will first be separated, before being described as refer-
ence, simulated, hit or nofar events (as in Figure 3.7). As hourly precipitation, to be considered
a hit, a discharge event must exceed the threshold within a given temporal window around the
reference event. This time window will usually be of 40 minutes before and 20 minutes after the
reference event. For hourly timestep the temporal tolerance will thus be null.
For mountainous catchments (Emosson) where the snowpack and the glaciers play a determinant
role creating a strong seasonal curve – where daily variations of the discharge are smaller than its
seasonal variation – the event separation is however difficult. Daily HIT-FAR scores are thus used.
They are described in Appendix D.1.
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Figure 3.7: Determination of hit and far events. The discharge threshold is 3 m3 s−1 with a tolerance
of 10%. The reference data (river gauge) is in red and the simulated data from RS is in blue.
Reference and simulated events are the events exceeding the 3 m3 s−1 threshold while a simulated
event (resp. a reference event) is a noFar event (resp. a hit event) if the reference data (resp.
simulated data) exceeds the 2.7 mm h−1 threshold corresponding to a 10% tolerance.

Forecast performance analysis
Hindcast performance analysis will be based only on a selection of events as the hindcast process
is time-costly as it produces one dataset every 10 minutes. To assess the forecast performances this
report will lean on alert HIT-FAR scores. These scores evaluate the quality of an alert system. An
alert is supposed to be launched for a given threshold if any forecast predicts that the threshold
will be reached within the first 90 minutes of the forecast. Points located later on the forecast
are not used to generate alerts as the focus is on very-short lead times. An event is considered to
be a hit event if it has been observed in the forecasts provided between 90 minutes and
20 minutes before the measurement crossing of the threshold – forecasts with 10 minutes or 0
minute anticipation are considered to be provided too late. The predicted time of the crossing
must also be strictly less than 20 minutes after the observed threshold crossing (temporal
tolerance). A predicted event is a far event if the reference does not reach the threshold value
between the moment the alert is issued and 90 minutes after the predicted crossing.
As before, a discharge tolerance of 10% could additionally be applied. A description of some alert
HIT-FAR computations is provided in appendix in Figure A.1. The computation process of hit and
far scores is also described in Figure A.2. Only the events crossing the threshold will be considered
in the HIT-FAR computation (if a reference event is always bigger than the threshold it will not be
considered).
The focus of this report and of this Master Thesis is to improve the generation of flash flood
alerts. However, it is also interesting to know the future inflow cumulated volumes, notably for
hydroelectricity purposes. This is the case in Emosson. Analyses of cumulated volumes are out of
the scope of this report but are essential for some partners of the Radar4Infra project such as Alpiq.
Hence volume analyses will be provided in Appendices D and E.
It needs to be noted that distinct HIT-FAR scores (e.g., daily, by event, for alerts, for cumulated
volumes, etc.) cannot be compared between them. Indeed each HIT-FAR score is designed for a
different purpose. For example alert scores inform on the performances of a given alert system based
on a chosen model. On the contrary cumulated volume scores inform on the ability of the system
to predict volumes, daily scores determine the performances on the prediction of daily maxima,
etc. The usual levels of HIT/FAR scores in each cases are largely different and largely dependent
on the basin and its characteristics. A 80% HIT score for daily discharge in Emosson will be poor
performance while it will be good for alerts.
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3.4 Characteristics of the catchments

3.4.1 Emosson
3.4.1.1 Presentation of the catchment

The Emosson basin is located in the Western part of the Valais, close to the French border. The
catchment is illustrated by Figure 3.8 together with the meteorological stations used in the model.
The part of interest is here the sub-basins where water is diverted to the Collecteur Est (the longer
pipe lying from South-East to North-West). The total area of this catchment is 108 km2 covered
notably by 27 km2 of glacier. The catchment has also a complex orography with altitudes ranging
from 1548 m (Trient intake) to 3898 m (Aiguille d’Argentière). The approximate response time of
the whole basin is between 4 and 6 hours but some of the sub-basins have smaller response time.
Annual precipitations vary between 1400 mm and 2000 mm according to the Swiss hydrological atlas
website222.
Five discharge stations are available before the Collecteur Est: La Fouly, Saleina, Trient, Collecteur
Est and Val Ferret intakes. The calibration of the model is made on the four first onese. The
discharge data are provided by Alpiq. Concerning the meteorological data, except in Section D.2.1,
three temperature stations will be used: Les Marécottes, Montagnier-Bagnes (both provided by
MeteoSwiss) and Champéry (provided by Meteogroup via MeteoSwiss). The Grand-Saint-Bernard
station will only be used for the radiation measurements. A total of 16 rain gauges are used in the
models based on rain gauges.
Finally the period of calibration will run between the 1st October 2018 and the 1st October 2021.
Figure 3.9 displays the discharge between 2017 and 2021 at Emosson-Collecteur Est (in red) and
La Fouly (blue). The seasonal behaviour is here clear and hence HIT/FAR will be calculated
daily (see Section 3.3.2.3).

Rain gauges

Radiation stations

Temperature stations

In take tunnel

Swiss borders

Discharge stations

Glaciers
Sub-basins with 
altitude bands

Figure 3.8: Description of the Emosson catchment and of the used meteorological stations.

eVal Ferret discharge curve has the same shape as Emosson-Collecteur Est with just lower values.
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Figure 3.9: Discharges measured at Emosson-Collecteur Est (red) and La Fouly (blue) over the
period 01/10/2017 to 01/10/2021.

The Radar4Infra project in Emosson aims both at triggering flash flood alarms and at estimating
the cumulated volumes generated in these events. Hence, both alert HIT-FAR and cumulated
volume scores will be analysed (see methodology in Section 3.3.2.3 and Appendix D.1.2). Only
the main results are presented in the body of this report. More detailed results are available in
Appendix D.

3.4.1.2 Precipitation analysis in Emosson

The performances of CPCH and AZC are first assessed in terms of precipitation for this specific
basin. Figures 3.10 and 3.11 display respectively the HIT-FAR scores of AZC, CPCH and inca0
products for the Emosson and La Fouly stations and the monthly mean precipitation analysis for
the stations of Emosson, La Fouly, Saleina and Trient. The HIT/FAR analysis shows that CPCH is
performing very well in Emosson. On the contrary the raw radar AZC has mostly low HIT scores
which points to an underestimation of precipitation there. This underestimation is confirmed by
Figure 3.11. AZC FAR scores are also worse than CPCH ones. In La Fouly, CPCH is still performing
a lot better than AZC, but its performances decrease quickly when precipitation intensity increases.
For most events with small precipitation rates, CombiPrecip is hence expected to be quite similar
to rain gauges. However differences may appear for some sub-catchments at higher intensities.
Concerning the mean precipitations by month, CPCH respects the rain gauge cumulated volume
everywhere except in Saleina where it is underestimated. AZC mean precipitation ratio are more
variable along the year (notably in Emosson and Saleina) and are globally underestimated. Finally,
inca0 seems to be globally consistent with CPCH values but with a nearly constant underestimation
bias. Indeed inca0 curves are all similar to CPCH ones with a reduction of precipitation between 5
and 20% for inca0. All these analyses are limited to comparison at stations locations where CPCH
is interpolated to rain gauges. The behaviour of CPCH can differ far from the rain gauges
locations.
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Figure 3.10: HIT/FAR values for AZC, CPCH and inca0 as simulated data (rain gauge as reference)
for the stations of Emosson and La Fouly. Two tolerances (10% – dashed lines – and 30% – solid
lines) are used. Radar grid points are interpolated at rain gauge stations using the average of the
9 closest points. The right axis provides the number of reference events (for the HIT score) and
simulated events (for the FAR score). The covered period of time is 17/07/2018-28/09/2021.
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Figure 3.11: Ratio of AZC, CPCH and inca0 monthly mean precipitation over rain gauge mean
precipitation for four stations of the Emosson catchment for the period 17/07/2018-28/09/2021.
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3.4.2 Zurich-Altbach catchment
3.4.2.1 Presentation of the catchment

The Zurich airport basin is located in the North of Zurich. Water is flowing in the Altbach river
from Bassersdorf and Nürensdorf to the airport. A discharge gauge is located at the crossing
between the Altbach river and the Schaffhauserstrasse, close to the Kloten airport entrance where
the Altbach river is tunnelled through the airport. The catchment is illustrated by Figure 3.12.
The rain gauge stations from Zurich-Kloten and Winterthur/Seen are used for precipitation while
Zurich-Kloten is used for temperatures – Nürensdorf station data are not available in real time for
an operational use. The total area of the catchment is 22.6 km2 with mostly cropland ( 50%) and
forest ( 20%) but also some impermeable areas in the cities and near the airport. The catchment
orography is rather flat (at least compared to Emosson) with altitudes ranging from 436 m (Zurich
Kloten Schaffhauserstrasse intake) to 613 m (Brütten). The approximate response time of the whole
basin is in the order of 1 hour. Annual precipitations are close to 1400 mm according to the Swiss
hydrological atlas website222.

Rain gauges

Temperature stations

Discharge stations

Sub-basins of interest

Other sub-basins

Figure 3.12: Description of the Zurich catchment. The Altbach-Kloten discharge will be used in
all the models of this section while the Altbach-Bassersdorf discharge station will only be used in
Section 5.3.3.

The discharge data at Zurich Kloten-Schaffhauserstrasse are provided by the canton of Zurich. No
radiation data are needed as the physical processes are limited to infiltration, runoff, soil moisture
storage and other soil processes. Snow plays only a minor role in winter. The introduction of
impermeable areas in the model is however necessary to model flash floods correctly. The period of
calibration will run between the 1st September 2018 and the 1st September 2021.
Figure 3.13 displays the discharge between 2017 and 2021 at Zurich-Kloten Schaffhauserstrasse. No
clear seasonal behaviour is observed and hence HIT/FAR will be calculated by event (see
Section 3.3.2.3).
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Figure 3.13: Discharge measured at Zurich-Kloten over the period 01/10/2017 to 01/10/2021.

The goal of the modelling in the Zurich-Altbach catchment is to provide flash flood alerts to evacuate
the Zurich airport commercial zone. The threshold level for evacuation has been fixed at 20 m3 s−1.
Hence the focus will be mostly on high flash flood events in the following sections. Notably, the most
important indicators are the HIT-FAR alert scores which simulate and evaluate the real alerts
that will be issued. Scores for cumulated volumes will not be presented as, unlike in hydroelectric
reservoirs such as Emosson, the flood volumes are not important. However, they could be interesting
for similar catchments where the focus is on hydroelectricity. Hence, a volume analysis is proposed
in Appendix E.

3.4.2.2 Precipitation analysis in Zurich

Figures 3.14 and 3.15 provide respectively the monthly mean precipitation analysis and the HIT/FAR
scores for the two rain gauge stations of the basin. Compared to Emosson, CombiPrecip gives pre-
cipitation estimates similar to the rain gauges as both the mean precipitation ratio and the HIT
scores are close to 1 while the FAR scores are close to 0. Performances of raw radar AZC are
however quite bad with a strong seasonal behaviour marked by more intense spring rains than those
measured by rain gauges in both Kloten and Winterthur and an overall underestimation of precip-
itation in Winterthur. inca0, as at the global Swiss level, follows a seasonal behaviour similar to
CPCH but with an underestimation bias between 10% and 20%. This bias will need to be corrected
in the rainfall-runoff model.
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Figure 3.14: Ratio of AZC, CPCH and inca0 monthly mean precipitation over rain gauge mean
precipitation for the two stations of the Zurich catchment for the period 17/07/2018-28/09/2021.
inca0 data have not been interpolated for the whole period in Kloten and are not represented.
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Figure 3.15: HIT/FAR values for AZC and CPCH (rain gauge as reference) for the stations of
Kloten and Winterthur-Seen. Two tolerances (10% – dashed lines – and 30% – solid lines) are
used. Radar grid points are interpolated at rain gauge stations using the average of the 9 closest
points. The covered period of time is 17/07/2018-28/09/2021. Scores for inca0 are also provided
for Winterthur.
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Chapter 4

Radar measurement assessment

4.1 Introduction
In order to evaluate the interest of radar in the improvement of flood flow nowcasting, comparing
the input radar data to rain gauge measurements is a necessary first step. This analysis will mainly
be performed at MeteoSwiss stations locations.
Different interpolation techniques can be used to estimate the precipitation intensity at the rain
gauge stations from radar data. They will be compared in a first section. In a second section,
the performances of several radar products will be assessed at the scale of Switzerland. The best
product will be used in a third section to observe if its performances depend on the location of
the stations. In a fourth part, the historical evolution of radar performances will be assessed to
determine a period of time for hydrological calibration. Finally the performances of radar input
data for different timesteps will be compared.
A simple validation of the performances of the co-kriging far from the SwissMetNet stations of
MeteoSwiss will also be performed thanks to cantonal rain gauges in Bern and Ticino cantons.

4.2 Comparison between different interpolation techniques
An analysis based on raw radar data (AZC) and CombiPrecip data (CPCH) is first done to assess
the importance of the interpolation techniques used to determine the radar rain value interpolated
at each station. Five methods have been used:

• The closest radar point is used for each station.

• The 4 closest radar points are used for each station and each point is given a weight propor-
tional to the squared inverse of its distance to the station.

• The 4 closest points are used for each station and an average of these point data is computed
(equal weight for each point).

• The 9 closest points are used for each station with distance squared inverse weights.

• The 9 closest points are used for each station with equal weights.

The analysis is performed only for four stations in the Emosson catchment. Emosson is a mountain-
ous catchment where precipitation can vary very much spatially. Hence if the differences between
the different interpolation techniques are small in Emosson, it is reasonable to assume they are
small everywherea. The response times of the sub-catchments of Emosson are also diverse with

aSuch verifications were performed in Zurich, confirming this assumption.
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some small response time catchments (1-2h). Moreover Emosson is a catchment monitored by Alpiq
which participates in the Radar4Infra project. Mean precipitation analysis (for the four stations)
and HIT/FAR analysis (only for the Emosson station) are provided respectively in Figures 4.1
and 4.2a (for AZC) and 4.2b (for CPCH).
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Figure 4.1: Monthly mean precipitation ratio between AZC and rain gauge data (solid lines) or
CPCH and rain gauge data (dashed lines) for different interpolations. The number of radar grid
points considered for each interpolation is provided in the legend. Equal and squared inverse distance
weights are respectively designated as EW and SIDW. The covered period of time is 17/07/2018
0h-28/09/2021 0h.

Figure 4.1 does not show any clear difference between the AZC curves, all five interpolations provide
similar results for all stations. The curves for CPCH are also quite close but show some slight
differences. Indeed the 4 or 9 points interpolation with equal weights have usually smaller ratios
diverging by up to 2%. Conversely the 1-point interpolation has sometimes slightly higher ratios.
Concerning the HIT and FAR scores, Figures 4.2a and 4.2b show nearly no differences in both HIT
and FAR scores for small precipitation thresholds (below 10 mm h−1). For higher thresholds, where
the number of events becomes small, some differences can appear, mostly when the tolerance is
low (10%). With a 10% tolerance the 4 and 9 point-averaged interpolations have slightly lower
HIT scores for CPCH. Hence the HIT/FAR and mean precipitation analysis underscore some slight
differences between the different interpolation techniques for CPCH, notably for high thresholds.
However, as these differences are small, in the following parts, the average of the 9
closest points will be used. This decision is taken in order to be in agreement with the standard
of MeteoSwiss.
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Figure 4.2: HIT/FAR values with AZC (Figure 4.2a) or CPCH (Figure 4.2b) as simulated data and
rain gauge as reference data for the station of Emosson. Two tolerances (10% – dashed lines – and
30% – solid lines) are used. The number of radar grid points considered for each interpolation is
provided in the legend. Equal and squared inverse distance weights are respectively designated as
EW and SIDW. The right axis (bar plot) provides the number of reference events (for the HIT score)
and simulated events (for the FAR score). The covered period of time is 17/07/2018 0h-28/09/2021
0h.
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4.3 Comparison between raw radar data, CombiPrecip and inca0
In this section AZC, CPCH and inca0 data are compared using the three metrics previously de-
scribed. These metrics are averaged over all available stations from Figure 3.5. The radar gridded
data will be interpolated on rain gauge stations using the average of the 9 closest points.

4.3.1 HIT FAR analysis
Figure 4.3 provides the HIT and FAR scores averaged over all stations for the period 2018-2021.
It illustrates the role of tolerance, which allows to largely increase the HIT and FAR scores – by
10 − 15% – meaning 10 − 15% of events are well observed, but with intensities between 10 and 30%
higher or lower than in rain gauges. It is also clear that the co-kriging of raw AZC radar data with
rain gauges in the CombiPrecip product largely improves both HIT and FAR scores (by 20% for
both tolerances and both HIT and FAR scores). Hence it will probably be better to use the CPCH
product as precipitation input of hydrological model rather than the raw radar data.
Concerning inca0, it performs badly in HIT score (slightly lower than AZC) and quite well in FAR
score, which probably highlights a tendency to underestimate precipitation in the INCA forecast.
The CombiPrecip performances with a 30%-tolerance are:

• HIT values above 90% for intensities below 30 mm h−1.

• FAR values around 20% until 20 mm h−1, increasing for higher intensities.
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Figure 4.3: HIT/FAR mean values of AZC, CPCH and inca0 for the period from 17/07/2018 0h to
28/09/2021 0h (local time). Two tolerances (10% – dashed lines – and 30% – solid lines) are used.
The right axis provides the number of reference events (for the HIT score) and simulated events
(for the FAR score).
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4.3.2 Month average rainfall analysis
Figure 4.4 provides the monthly mean precipitation measured by radar for the three products
provided by MeteoSwiss and the corresponding ratios with rain gauge measurements for the period
2018-2021. Precipitations are averaged over all the stations.
AZC precipitations are largely underestimated in winter, amounting to only 70% of the rain gauge
measurements some months. Conversely they are overestimated in summer, from June to August,
with a peak at 115 − 120% of the observed rain gauge data. This seasonal phenomenon is also
present for CPCH though largely smaller, with only 5% of underestimation in winter and 9% of
overestimation in summer. This was expected as CPCH data are interpolated at stations with rain
gauge data. This interpolation seems to be quite effective though not perfect.
The winter underestimation may be explained by the radar difficulties to observe snow precipi-
tations. This will need to be confirmed by observing performances of stations depending on the
altitude. Nevertheless, it needs also to be noted that rain gauges are less performing during snow
precipitations. Concerning the summer overestimation, it may be due to the rain gauges inability
to catch intense summer events. Indeed the gauge mean precipitation displayed in Figure 4.4-left
shows a small depletion in July while radar data displays a peak at this time. Radars are probably
better at observing localized peak precipitation during storms.
Concerning inca0 data, as expected with the HIT/FAR analysis, they are usually underestimated,
resulting in rainfall volumes approximately 10% lower than those from CombiPrecip. The overall
shape is otherwise similar to the shape of the CPCH product. It is probable that a volume bias
correction has been applied to the previous INCA data to create the new CombiPrecip product.
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Figure 4.4: Left: Monthly mean precipitation averaged over all stations from rain gauge, AZC,
CPCH and inca0 data for the period 17/07/2018 0h-8/09/2021 0h (local time). Right: Ratio of
AZC, CPCH and inca0 mean precipitation over rain gauge mean precipitation.
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4.3.3 Cumulative distribution functions
Complementary cumulative distribution functions (CCDF) of the four products are now computed
and plotted in Figure 4.5-left. For each product and for a given precipitation intensity, this plot
provides the percentage of time this intensity is exceeded. Only times when there is non-null
precipitations in a least one of the four products are considered. The curve is very similar to
cumulative distribution functions (CDF) from the literature223. As the differences between the
four curves are small, the ratio between the radar curves and the rain gauge one are plotted in
Figure 4.5-right.
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Figure 4.5: (left) CCDF of the four products (rain gauge, CPCH, AZC and inca0) over the period
17/07/2018-28/09/2021. (right) Ratio of the CCDF of CPCH, AZC and inca0 over the CCDF of
rain gauges. The right axis displays the number of events observed in CPCH.

Table 4.1: Percentage of precipitation timesteps for each product for the 181 stations over the period
17/07/2018-28/09/2021.

Rain gauge CPCH AZC inca0 One of them
13.00% 22.23% 15.80% 18.75% 23.76%

This plot shows a clear dependency of QPEs values to the precipitation intensity. Overall, while
small events are underestimated in radar products (lower probability of exceedance at low
intensities), high events are overestimated above 15 mm h−1 in radar products (there are
more high events in radar products). This trend is particularly important in raw radar AZC data
with twice more events exceeding 40 mm h−1 over the period and a significant underestimation of
events below 10 mm h−1. This last point is probably due to the surfacic character of radar data which
are taken over a 9 km2 area (for the chosen interpolation method) rather than on only few centimetres
as in rain gauges: more localized precipitation can then be observed and averaged over 9 km2. Hence,
raw radar data are more dispersed over the range of precipitation than rain gauges. The same
behaviour is observed for CombiPrecip but with a largely smaller dispersion. Finally inca0
seems, as observed previously, to follow the CPCH trend with a constant underestimation bias.
Hence, even at high intensities, the probability of exceedance of inca0 is smaller than the one of
rain gauges which is not the case for CPCH.
Concerning the occurrence of precipitation, Table 4.1 provides the percentage of timesteps where
each product contains non-null precipitation. It confirms that more events are observed in radar
than in rain gauges. However there is largely more events observed by CPCH than by AZC. Indeed,
CPCH includes both rain gauges and raw radar events: most events (93.6%) observed in at least
one of the products are observed by CombiPrecip. Finally there is a small decrease in the number
of events in inca0, probably for two reasons: because some events are dying between CPCH and the
inca0 forecast at 10 minutes, and because of the steady underestimation bias of inca0.
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4.4 Geographical dependency of CombiPrecip performances
Until now, only the average situation for the whole Switzerland has been analysed while it is
reasonable to believe radar performances may be dependent on the location. In this section, the
geographical behaviour of the CombiPrecip performances is investigated. The focus is first on
regional dependency before turning to the altitude dependency of radar performances.

4.4.1 Performance assessment for several regions
Switzerland stations were split between 6 regions: Plateau, Jura, Préalpes, Valais, Tessin and
Grisons. The number of stations in each region lies between 13 in Jura and 54 in Plateau for the
period 2018-2021 (Table 4.2).

Table 4.2: Number of stations by region and altitude.

By region By altitude

Region Number of
stations Altitude Number of

stations
Plateau 54 0-500m 46
Valais 38 500-1000m 60

Préalpes 34 1000-1500m 43
Grisons 24 1500-2000m 29
Tessin 18 2000m and more 15
Jura 13

100

101

102

103

104

Nu
m

be
r o

f r
ef

er
en

ce
 e

ve
nt

s

100

101

102

103

104

Nu
m

be
r o

f s
im

ul
at

ed
 e

ve
nt

s

0 10 20 30 40 50
Rainfall threshold [mm. h 1]

0.0

0.2

0.4

0.6

0.8

1.0

HI
T 

[-]

HIT

Grisons
Jura
Plateau
Prealpes
Tessin
Valais

0 10 20 30 40 50
Rainfall threshold [mm. h 1]

0.0

0.2

0.4

0.6

0.8

1.0

FA
R 

[-]

FAR
CPCH30

Figure 4.6: HIT/FAR regional mean values of CPCH for the period from 17/07/2018 0h to
28/09/2021 0h (local time) with a tolerance of 30%. The right axis provides the number of reference
events (for the HIT score) and simulated events (for the FAR score).

Figure 4.6 displays the HIT and FAR scores according to the region of Switzerland where the station
is located. For the small intensities (below 10 mm h−1) all regions are performing well in HIT score
(above 95%). However for higher intensities the HIT value of the Grisons region starts to decrease
quickly and steadily. The number of events is still significant (37 events at 15 mm h−1 and still 9 at
25 mm h−1 where the HIT is below 60%) and similar to other regions where the HIT score is still
very high (notably in the Jura and Valais). All other regions keep HIT scores higher than 0.85-0.9.
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Figure 4.7: Month precipitation ratio between CPCH data and rain gauge data in the period from
17/07/2018 0h to 28/09/2021 0h. Both CPCH and rain gauge data are averaged by regions.

Concerning the FAR score it remains low everywhere for small precipitations but increases at high
precipitations in Grisons, Jura and to a smaller extent Préalpes. It probably underlines a difficulty
to obtain good quality radar data in the Grisons while, in the Jura, the high precipitations are quite
overestimated compared to rain gauge, as both HIT and FAR scores are high. This last point does
not mean that radar data are of poor quality in the Jura but rather that they are able to catch very
localized high intensity rainfall very frequent in Jura in summer. The discrepancies between the
regions are mostly due to radar performances, as the observations above are still valid for the AZC
product (with poorer global performances), which HIT-FAR scores are provided in Appendix B.1.1.
The hypothesis of an overestimation of precipitation in the Jura in summer is confirmed by Figure 4.7
where the mean precipitation ratios are displayed month by month for each region. In the case of
Jura it is clear that rainfall are higher in radar data than in gauge stations in summer while
being smaller in winter. This general feature, observed for the whole Switzerland (Figure 4.4) is
present everywhere with different intensities: the bias is low in the Plateau, precipitations are mostly
underestimated in winter in Valais and Grisons, while they are mostly overestimated in the Tessin
in summer. These features were globally already present in the raw radar data (Appendix B.1.1)
and were only reduced in CombiPrecip.
This seasonal behaviour is further confirmed and explained by Figure 4.8 which presents the CCDF
ratios in the different regions of Switzerland. Indeed, as observed in Figure 4.4 (left), precipitations
are more important in summer than in winter in Switzerland. Figure 4.8 illustrates that there
is an important bias at high intensities where the probability of having events higher than
40 mm h−1 over one hour can be up to 2.5 times higher in CPCH than in rain gauges in the Jura
or Prealpes. These events are occurring in summer and explain the seasonal tendency of CPCH.
Similarly to the mean precipitation analysis, this tendency is more significant in Jura and in Tessin
but also in Préalpes. Conversely, the Plateau shows a strong agreement between CPCH and rain
gauge data, with even a small underestimation of radar at high intensities. Finally, in Grisons, at all
intensities, events are usually higher in rain gauge data than in radar ones, supporting observations
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Figure 4.8: Ratio of the CCDF of CPCH, AZC and inca0 over the CCDF of rain gauges in the
different regions of Switzerland between 2018 and 2021. A logarithmic scale is used for the x-axis.
The right axis displays the number of events observed in CPCH.

from Figure 4.7. At low intensity, there is a higher probability of observing small events with the
radar everywhere, as explained before for the whole Switzerland. For the other products, the trend
observed in CPCH is stronger for AZC, while inca0 curve is still steadily shifted downward from
CPCH curve.
In summary, CPCH data are close to rain gauge ones in the Plateau while enduring an
important seasonal behaviour in Jura and Tessin with high intensity summer events
overestimated in CPCH compared to rain gauges. Radar data are also disagreeing with
rain gauges in Grisons. To complement this study, an observation of variations of these scores with
altitude is proposed in the next section.

4.4.2 Performance assessment according to altitude
Similarly to the previous section, Switzerland stations have been split into 5 categories depending
on their altitude: 0 − 500m, 500 − 1000m, 1000 − 1500m, 1500 − 2000m and 2000m and higher.
Numbers of stations for each altitude class are provided in Table 4.2.
The first observation is that the higher is the altitude the lower are the HIT/FAR performances.
Notably, below 1500 m, the HIT scores are higher than 0.9-0.95 for all precipitation thresholds
(except at very high intensities where only few events are recorded). Conversely, even at low
precipitations, higher stations have worse performances. Notably below 10 mm h−1 the curves are
almost perfectly ordered by altitude with better HIT for lower altitudes. For higher intensities the
HIT scores of altitude comprised between 1500 and 2000m are around 85% only, while the stations
higher than 2000m have HIT values going down quickly to 0.
Similarly, the FAR values of high-altitude stations (mostly above 2000m) increase quickly with
the rainfall threshold, while lower stations have quite good performances even at high thresholds.
Notably the stations below 1000m have FAR scores remaining below a 0.3-value until thresholds as
high as 40 mm h−1 where only few events are present. These observations were already present in
AZC – which curves are provided in Appendix B.1.2.
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Figure 4.9: HIT/FAR scores of CPCH aggregated by station altitudes for the period from
17/07/2018 0h to 28/09/2021 0h (local time) with a tolerance of 30%. The right axis provides
the number of reference events (for the HIT score) and simulated events (for the FAR score).

The mean precipitation ratio plot of Figure 4.10 is even clearer with curves ordered according
to their altitude: higher stations are linked to an underestimation of precipitation by
radar while lower stations are characterized by an overestimation all over the year.
The seasonal variations of the bias are also more significant above 1000m. All these
features were already present in the AZC product which curves are presented in Ap-
pendix B.1.2. Compared to regions, altitude seems to be a better predictor of the bias
and may be a better way to de-bias the data. Such behaviour could be partially explained
by the nature of precipitation: at high altitude and mostly in winter, precipitation falls as snow
which is more difficult to observe with radar. It could also be due to the worse quality of rain gauge
reference data in altitude as rain gauges are known to perform worse at high altitudes due to snow
and foehn issues.
Finally, Figure 4.11 presents the ratios of the CombiPrecip complementary cumulative distribution
function (CCDF) over the one of rain gauges. The curves are still ranked by altitude at low
intensities with more small events observed in high altitudes (meaning an underestimation
of small events). There is also more high events in CPCH than in rain gauges at high
altitudes (>1000 m). However here the curves are not perfectly ordered as the curve for altitudes
between 1000 m and 1500 m increases before the two curves for higher altitudes. One explanation is
that, as observed in Figure 4.8, the bigger overestimation of CPCH at high intensity occurs
in Jura which altitudes are mostly met in the 1000 − 1500 m range. All these features were
already present in the raw radar AZC – with more small and high intensity events – which curves
can be found in Appendix B.1.2.
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Figure 4.10: Month precipitation ratio between CPCH data and rain gauge data in the period from
17/07/2018 0h to 28/09/2021 0h (local time). Both CPCH and rain gauge data are averaged by
altitude.
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Figure 4.11: Ratio of the CCDF of CPCH over the CCDF of rain gauges for different altitudes
between 2018 and 2021. A logarithmic scale is used for the x-axis. The right axis displays the
number of events observed in CPCH.
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4.5 Evolution of CombiPrecip performances
Until now the period of focus covered approximately 3 years between 2018 and 2021. However
AZC and CPCH data are available since 2014. Hence it is possible to study the evolution of the
performances of both AZC and CPCH in order to determine the widest period of study on which
data are reliable. In this section, four different periods of time will be studied:

• 2014-2015: from 01/01/2014 2h local time to 01/01/2016 1h local time.
• 2016-2017: from 01/01/2016 2h local time to 01/01/2018 1h local time.
• 2018-2019: from 01/01/2018 2h local time to 01/01/2020 1h local time.
• 2020-2021: from 01/01/2020 2h local time to 31/12/2021 0h local time.
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Figure 4.12: HIT/FAR scores of AZC and CPCH products for the whole Switzerland over 4 distinct
periods of time. A tolerance of 30% is chosen. The right axis provides the number of reference
events (for the HIT score) and simulated events (for the FAR score).

Figure 4.12 displays the HIT and FAR scores for both AZC (top) and CPCH (bottom) for these
four periods. The scores in 2014-2015 were bad for both AZC (HIT below 50%, FAR above 60%)
and CPCH (HIT below 60%, FAR above 50%). These performances were largely improved in
2016-2017 and the HIT scores were further improved in 2018-2019 for both AZC and CPCH. Since
then performances are constant. However the performances improvement was slightly higher for
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CPCH than for AZC and could be as high as a 30% improvement in both HIT and FAR. These
improvements have been observed for all regions and all altitudes though the differences observed
in the previous section for different altitudes has also been reduced over time.
Two explanations can be proposed for this improvement and they probably both play a role:

• On the one hand the radar data acquisition was improved along the period with notably
two new radars put into operation: Plaine Morte in 2014 and Weissfluhgipfel in 2016. The
post-processing of data has also probably been improved, notably to better estimate the
precipitation in altitude and to counter shadowing issues.

• On the other hand the CombiPrecip interpolation may have been improved with the addition
of new rain gauge stations used as reference for this interpolation. Notably in 2014 181 stations
were used for the kriging process (Section 3.3.1.1)78, while since 2017 between 262 and 269
stations are used.

For the assessment and improvement of nowcasting using radar data, the period of study should
hence focus on a large enough period where the radar data are as reliable as possible. Thus we will
use later periods comprised between 01/10/2017 and 01/10/2021 for the calibration of
hydrological models.
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Figure 4.13: Month precipitation ratio between AZC and rain gauge (left) or between CPCH and
rain gauge (right) for the four studied periods of time.

On the mean precipitation side provided by Figure 4.13, the precipitation were underestimated in
2014-2015 (for both AZC and CPCH). 2016-2017, 2018-2019 and 2020-2021 have similar shapes and
values in winter but differ in summer (2018-2019 being more overestimated) which is probably due
to different meteorological conditions. It is for example possible that in 2018 and 2019 radar has
been able to catch more huge precipitations that the rain gauges had difficulties to observe.
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4.6 Performances for a timestep of 10 minutes
In this section, the performances of the previous products with 10-minute timesteps will be analysed.
As volume analysis is not dependent of the timestep, only HIT/FAR scores will be studied.

4.6.1 Impact of the different interpolation techniques
The timestep may have an influence on the differences between several interpolation techniques. To
verify if the statements from Section 4.2 are still valid, a HIT-FAR analysis for different interpolation
techniques is performed for both RZC and CPCH. Results are provided in Figure 4.14.
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Figure 4.14: HIT/FAR values with RZC or 10-minute CPCH for the station of Emosson (reference:
rain gauge). Tolerances of 10% – dashed – and 30% – solid – are used. The interpolation used
in each case is provided in the legend. The right axis provides the number of reference events or
simulated events. The period of time is 17/07/2018 0h-28/09/2021 0h.

Once again the differences are small both in HIT and FAR scores. However, as in Section 4.2,
it is also possible to notice that for both RZC and CPCH and for both tolerances, the best HIT
and FAR scores are obtained for the 1-point interpolation. Nevertheless, as results are similar to
Section 4.2, the following analysis will continue to use the average of the 9 closest points which is
the MeteoSwiss standard.
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4.6.2 Results
As for the hourly timestep analysis, a first assessment of the performances of raw radar (RZC),
CombiPrecip (CPCH) and inca0 products is performed. Results are displayed in Figure 4.15.
At first glance, both HIT and FAR scores are smaller than for a 1-hour timestep (Figure 4.3).
This is due to a volume underestimation of 6 to 8% which was observed between 10-minute and
1-hour products. According to MeteoSwiss, such discrepancy is due to the encoding process of the
data. Here, the CombiPrecip product is once again the best product both in FAR and HIT scores.
The performance increase compared to raw radar RZC data is however smaller than for an hourly
timestep, being around 15-20% in FAR and 5-20% in HIT. The RZC is even slightly better in HIT
at the highest intensities for a tolerance of 10%. Moreover the CombiPrecip HIT scores are
largely smaller than for an hourly timestep shrinking from 0.95 to 0.8 (for a tolerance of 30%)
at low thresholds. The RZC and inca0 scores are a lot closer to their values for an hourly
timestep. This behaviour probably originates from the way CombiPrecip is disaggregated: the
disaggregation is based on the 5-minute and 1-hour raw radar product, as explained by
Barton et al.83 – INCA is not a disaggregation product, having a natural timestep of 10 minutes.
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Figure 4.15: HIT/FAR mean values of RZC, CPCH and inca0 for the period from 17/07/2018 0h
to 28/09/2021 0h (local time) for a timestep of 10 minutes. Two tolerances (10% – dashed lines
– and 30% – solid lines) are used. The right axis provides the number of reference events (for the
HIT score) and simulated events (for the FAR score).

Concerning the spatial dependencies of CombiPrecip performances, Figures 4.16 and 4.17 provide
respectively the scores according to the region or to the altitude of each station.
The regional dependency is globally similar to the 1-hour timestep product (Figure 4.6)
but with worse HIT and better FAR scores: Grisons is performing poorly while Jura has good
HIT but bad FAR (intensity overestimation). However, Valais is also performing quite poorly.
Such difference between 10-minute and 1-hour data is probably due to the stations included in the
1-hour analysis and not in the 10-minute one. Indeed, Valais is the region were most of the lost
stations are included (10 stations) and these stations are globally located at low altitudes (4 of the
10 Valais stations below 1000 m have been excluded while none of the 6 stations above 2000 m has
been excluded). As performances decrease with altitude it is normal that the performances are
decreasing more in Valais than in other regions.
Concerning altitude, the patterns observed in Figure 4.9 are still present with better performances
at low altitudes. Once again this could be due either to more difficulty to obtain good radar
precipitation data at high altitudes or to the difficulty to have reliable rain gauge data there.
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Figure 4.16: HIT/FAR regional mean values of CPCH (with 10-minute timestep) for the period
from 17/07/2018 0h to 28/09/2021 0h (local time) with a tolerance of 30%. The right axis provides
the number of reference events (for the HIT score) and simulated events (for the FAR score).
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Figure 4.17: HIT/FAR scores of CPCH (10-minute timestep) aggregated by altitudes for the period
17/07/2018 0h-28/09/2021 0h (local time) with a 30% tolerance. The right axes provide the number
of reference events (for the HIT score) and simulated events (for the FAR score).
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4.7 Performances far from the stations: validation
The previous sections allowed us to characterize the performances of the radar products, and no-
tably of CombiPrecip, at MeteoSwiss stations. We have notably observed the freedom given to
CombiPrecip in summer which allowed higher peak precipitations notably in altitudes and in the
Jura, while CombiPrecip leads usually to closer results to the rain gauge measurements at lower
altitude and in spring and autumn. However, this analysis is limited to the SwissMetNet rain gauge
stations, which are the one used in the co-kriging process. Hence, far from these stations, while no
differences are expected in the raw radar product AZC, differences might appear in CPCH. In this
section, the performances of the co-kriging far from the stations will be analysed. To do so, two
independent rain gauge networks are used: the one from Bern canton (BVE network - Public work
and transportation directionb) and the one from Ticino canton (oasi - Osservatorio Ambientale della
Svizzera Italianac). They constitute reliable and accurate networks of rain gauges not used in the
co-kriging generation of CombiPrecip. The rain gauges from the Bern canton are provided by OTT
and Lambrecht.

4.7.1 Previous studies
A previous validation has been performed by Barton et al.84 using 132 stations from several inde-
pendent networks. Four indicators were used to conclude that CombiPrecip outperforms the raw
radar AZC for all performances: characterization of dry/wet events, of extreme events, mean pre-
cipitation estimation, or mean error. Concerning the mean precipitation analysis, they used the
Bias as indicator which is the logarithm of the volume ratio used in this report (Equation 4.1 with
irad and iRG the radar and rain gauge precipitation averaged over a given period of time). In the
present validation, the indicator will hence also be the Bias to be able to compare the results. The
analysis period will run over 3 years from 2018 to 2021 while Barton et al. used a 7-year period
from 2012 to 2018. The timestep of data is 60 minutes which is one of the aggregation period tested
by Barton et al.

Bias = 10log10

(
irad

iRG

)
(4.1)

4.7.2 Presentation of the cantonal rain gauge networks

Stations of the BVE network (Bern county)

Stations of the SwissMetNet network (MeteoSwiss)

Figure 4.18: BVE network of rain gauges used in the validation of radar performances.

bhttps://www.map.apps.be.ch/pub/synserver?project=a42pub_hydromn&view=Ansicht_Messstationen%
20Meteo

chttps://www.oasi.ti.ch/web/dati/selezione-avanzata.html
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The Bern canton covers a wide range of terrains from the Jura to the foot of the Alps. The altitudes
of the 14 BVE stations used in this section range between 450 m (Ins) and 2060 m (Grindelwald
Kleine Scheidegg). The locations of the 14 stations are displayed in Figure 4.18. Compared to
the whole Switzerland, as illustrated by Figure 4.20-left, the overall shape is quite similar with
slightly more precipitation in summer due to the influence of the Jura. In this figure, it is also
possible to observe that the precipitations are in average slightly higher in the BVE network that in
the SwissMetNet stations from the Bern region. This precipitation bias is mostly constant though
slightly higher in summer.
The oasi network, which is presented in Figure 4.19, is denser than the BVE one (19 stations used)
and cover a smaller zone. Nevertheless it contains stations with very different characteristics, some
being in altitude (e.g., Biasca at 1405 m) and others being closer to sea level (e.g., Moleno at 255 m).
Compared to the Bern canton, the precipitations in Ticino are however quite different from the rest
of Switzerland, as shown in Figure 4.20-right, with very high precipitations in October. The two
networks are similar in Ticino although, as in Bern, the SwissMetNet rain gauges have smaller
overall precipitations than the oasi network.

Stations of the oasi network

Stations of the SwissMetNet network (MeteoSwiss)

Figure 4.19: oasi network of rain gauge stations used in the validation of radar performances.
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Figure 4.20: Monthly mean precipitation in the periods 2018-2021 for the SwissMetNet global
network (black solid line), the SwissMetNet rain gauges in the region of interest (solid red) and the
cantonal networks (red dashed). Left: Bern canton - BVE. Right: Ticino canton - oasi.
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4.7.3 Co-kriging performances in the two networks
Figure 4.21 provides the radar mean precipitation biases in the two regions for both the cantonal
network and the SwissMetNet network. Other analyses (mean monthly precipitation and HIT-FAR
scores) are provided in Appendix B.2. The first observation is that in both cases the raw radar
AZC bias is similar between the cantonal network and SwissMetNet. While there is a
strong underestimation bias in winter, there is nearly no bias in summer in Bern and a strong AZC
overestimation in Ticino. However, in the oasi network, the AZC bias is more negative than the
SwissMetNet one. This is most probably due to the slight global overestimation of the oasi network
compared to SwissMetNet.
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Figure 4.21: Seasonal and global (ALL) volume biases of the AZC and CPCH radar products in
the different networks. (top-left) BVE network. (top right) SwissMetNet rain gauges of the Bern
region. (bottom left) oasi network. (bottom right) SwissMetNet rain gauges of the Ticino region.

To observe the influence of the co-kriging process close and far from SwissMetNet rain gauges, the
differences between AZC and CPCH biases need to be analysed. In the Ticino case, the
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average bias difference is only slightly larger in the SwissMetNet rain gauges (around 0.4-0.5 in
both cases). Moreover, the seasonal variations of the bias are similar in both networks, with a
higher positive bias in summer and a rather constant bias the rest of the year. This slightly positive
summer bias was desired by MeteoSwiss which estimates that radar data are more appropriate than
rain gauges in summer. The main difference between oasi and SwissMetNet is that all biases are
shifted down by approximately 0.5-0.6 for the oasi network, due to higher precipitations recorded
by its rain gauges. Hence, CombiPrecip allows to reduce the bias nearly similarly all over
Ticino.
On the contrary in the Bern region, while the co-kriging process clearly affects and reduces the
CPCH bias, high co-kriging differences can be observed close to the BVE or SwissMetNet stations.
Indeed, while the co-kriging has shifted the SwissMetNet radar global bias from -0.6 to 0, it has
only reduced it from -0.6 to -0.3 for the BVE network. Moreover, the seasonal shape of this bias
is not similar in both cases: while the positive summer bias is observed in SwissMetNet, it is not
present in the BVE network. In winter, radar is also over-estimated by the co-kriging far from the
SwissMetNet stations. Hence the co-kriging seems not to be working as well in the Bern canton as
in the Ticino canton. A de-biasing may thus be required in the rainfall-runoff models as
CombiPrecip, similarly to AZC, is underestimated far from the stations.

4.7.4 Comparison to the literature
In both the Bern and Ticino cases, the present analysis agrees with Barton et al.’s84 conclusion
that CPCH outperforms AZC. However this performance increase appears not to be as good as in
this article, notably for the BVE network. Barton et al.’s results is reproduced in Figure 4.22 (for
the bias indicator). The point of interest is the last point of each curve corresponding to 60-minute
aggregation timestep.
The AZC bias shape is similar in all cases with the higher positive bias in summer, followed by
spring. The levels of this bias are however different which is due to their high variations depending
on the region of interest – differences in levels are for example high between Ticino and Bern cantons,
even on SwissMetNet. For the CPCH bias, it is close to 0 all along the year in Barton’s analysis
which is also the case in Ticino and in SwissMetNet, but not in BVE. The summer peak in CPCH
bias is not present in Barton’s article, but this is probably because this peak is regionally dependent
and mostly present in Ticino and Jura (both covered by Bern and Ticino cantons, but not by other
cantonal networks from Barton’s analysis). Hence, the main difference between Barton’s work
and the present report is the case of the Bern canton. It would be interesting to see if the
poorer co-kriging performances were already present in Bern in Barton’s analysis.

Figure 4.22: Seasonal bias of CPCH (CPC ) and AZC (RAD) compared to the rain gauge for both
132 rain gauge stations independent of CombiPrecip. Taken from Barton et al84.
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4.7.5 Parameters influencing the loss of performances
To observe if co-kriging performances are modified differently in distinct stations, AZC and CPCH
HIT-FAR are represented together stations by stations. This is done both for the cantonal rain
gauge networks and for the SwissMetNet stations. Such images are provided in Figures 4.23 (Bern
canton) and 4.24 (Ticino canton). Increase or decrease of performances are coloured respectively in
green and red.
In the Bern canton, the co-kriging has largely improved the performances between AZC and CPCH
in all the SwissMetNet stations (all stations are largely coloured in green in Figure 4.23b). On the
contrary, in all the BVE stations (Figure 4.23a), the green area is very small: the co-kriging
has only very slightly improved the performances. All stations have similar curves, whatever their
altitude or distance to SwissMetNet. Hence these parameters, or any other, are not influencing or
explaining the loss of performances of the co-kriging far from the stations: the loss of co-kriging
performances is homogeneous all over the region. The distance to SwissMetNet below which
the co-kriging is more efficient is thus probably smaller than the smallest distance of the BVE rain
gauges (4 km for Villeret).
In Ticino, while the co-kriging is very efficient everywhere in the Ticinese MeteoSwiss network
(Figure 4.24b), it is less efficient in the oasi network (Figure 4.24a). The performances of CPCH
are however much more increased compared to the BVE network – the green zones are bigger. The
loss of performances can also be partly explained here by the bias observed between the two rain
gauge networks. Concerning the parameters influencing the co-kriging performances, some small
differences appear between stations, with better increase of performances in some (Biasca, Novaggio,
Grancia) and smaller in others (Isone, Bedretto, Camedo). However these differences are small and
no clear pattern due to either altitude or distance to SwissMetNet is observed.
The influence of altitude or distance to the closest SwissMetNet rain gauge does not appear to be
present, which has been confirmed when grouping stations by altitude or distance classes. Such
analyses are summarized in Appendix B.2.2.
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Figure 4.23: Differences in HIT and FAR scores between the AZC and CPCH products for several
rain gauge stations. The improvement of performances due to co-kriging is coloured in green (higher
CPCH HIT or lower FAR). The higher stations are on the top of the image and the closest to
SwissMetNet are on the left (for BVE).
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Figure 4.24: Differences in HIT and FAR scores between the AZC and CPCH products for several
rain gauge stations. The improvement of performances due to co-kriging is coloured in green (higher
CPCH HIT or lower FAR). The higher stations are on the top of the image and the closest to
SwissMetNet are on the left (for oasi).
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4.8 Conclusion
In this chapter, the performances of three radar products provided by MeteoSwiss have been evalu-
ated. An overview of the performances and the direction of volume bias according to the product,
period and location is proposed in Table 4.3. While the raw radar data (AZC) are not sufficient
to be used in an hydrological model, the CombiPrecip product (CPCH) consisting of the raw data
interpolated via a kriging process with rain gauge measurements present largely better results
on the MeteoSwiss network. The first timestep of the INCA forecast, based on CombiPrecip,
has intermediate performances linked with a steady underestimation bias compared to CombiPrecip.
However all three products performances depend both on the period of the year (underestimation
of volume in winter, overestimation in summer), of the intensity of precipitation (underestimation
at low intensity, overestimation at high intensity), and of the spatial localisation. Perfor-
mances are usually better at low altitudes. The radar data have also evolved over time and
had bad performances before 2016, due to lack of spatial coverage of radar units. It will hence be
necessary to work only on a reduced period of time starting in 2017. The timestep of the
data is also an important features as smaller timestep data have slightly worse performances.
This point will need to be taken into account when hydrological models will be calibrated with a
10-minute timestep.
A caveat of the benchmark proposed here is that it only compares radar and rain gauge data at
station sites. However gridded radar data bring much more information as they provide precipitation
data on a complete grid with spatial resolution of 1km. Such grid should be used in hydrological
model and bring better precipitation information. However, far from the SwissMetNet stations used
in the co-kriging process, the performances of CombiPrecip may deteriorate. This has been observed
notably in the Bern canton and it might be the case elsewhere. A de-biasing factor may then
be needed in the rainfall-runoff models. Nevertheless the co-kriging process is still improving
the raw radar performances far from the MeteoSwiss rain gauges.
Moreover in this analysis we have considered the rain gauge data as references. Nevertheless they are
not perfect measurements notably in some altitude stations, where precipitation are often taking the
form of snow and where wind can be important introducing more uncertainty in the precipitation
measurements85.
Now that radar performances have been assessed, their data can be plugged into hydrological
models to improve nowcasting performances catchment by catchment. The framework developed
here should be used at catchment scale prior to the calibration of a hydrological model in order to
know the performances of radar data for the given catchment.
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Table 4.3: Overview of performances of CPCH and AZC, close to the SwissMetNet stations, de-
pending on altitude, period of the year or class of intensity.

Product Altitude
Intensity

-
Season

Volume compared
to rain gauges

HIT-FAR
performances

CPCH

Low

Summer ↑
Winter -

High intensity ↑↑ ++
Low intensity - +++

High

Summer ↑
Winter ↓↓

High intensity ↑↑ -
Low intensity ↓↓a ++

AZC

Summer ↑↑
Winter ↓↓↓

High intensity ↑↑↑ - -
Low intensity ↓a -
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Figure 4.25: Overview of analyses performed in this chapter. Dashed lines represent analyses
proposed in Appendix B.

amore small events

78



Chapter 5

Integration of radar measurements in
rainfall-runoff models for flash floods

5.1 Introduction
A precipitation benchmark has previously been performed between radar and rain gauge measures
provided by MeteoSwiss. Once we know how the radar observations perform compared to rain gauge
data, it is possible to use them to feed Routing System (RS), the semi-distributed rainfall-runoff
model developed by Hydrique Ingénieurs.
Radar data can improve performances thanks to their spatial availability and to their good fore-
casting skills at low lead time. This chapter will analyse what radar can bring to the forecasting
skills of hydrological models for the hydrological basins of Emosson and Zurich-Altbach. For each
catchment the focus will first be on observations with an historical calibration of hydrological mod-
els before turning to re-forecasts of historical storm events with radar QPFs. The results of several
simulations, based either on radar or rain gauges will be compared.

5.2 Emosson
The Emosson catchment is a mountainous basin with a glacial behaviour. It is composed of several
sub-basins with different characteristics and sizes and thus constitutes a good candidate to observe
the improvements brought by radar data in the rainfall-runoff model. The main results obtained in
Emosson are summed up in this section and detailed results can be found in Appendix D.

5.2.1 Calibration of the Emosson model
The Emosson model is first calibrated. Several steps have been required to do so. The main results
are summed up here and detailed in Appendix D.
The current operational model, based on rain gauges only, is first updated by changing the temper-
ature station from Aigle to a combination of Montagnier-Bagnes, Les Marécottes and Champéry.
Coupled with a new, better calibration of the model, it allows to increase HIT scores and reduce
FAR scores by 8% for discharges higher than 15 m3 s−1.
Radar data are then integrated. Two solutions can be used to integrate them. First, in a mathemat-
ical approach, it is possible to calibrate the RS model for each type of input precipitation
used (i.e. rain gauges, CPCH, AZC, etc.). This mathematical solution allows to remove some
of the errors and uncertainties linked to the input data. A second simpler method, based on the
fact that physical phenomena are not affected by the input data, assumes that the calibration
does not need to be changed between rain gauges and radar data. In that case, only a
de-biasing of radar data is needed. Both approaches were developed and compared. Although the
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first approach improves performances by few percent, it is probably better to invest
time in improving the modelling of physical phenomena rather than in calibrating the
model for each input data. In both cases, radar data must be de-biased by a factor 1.5
compared to rain gauge data. Indeed radar data (both AZC and CPCH) appear to be biased
far from the rain gauge stations, while it was nearly unbiased close to them (Section 3.4.1.2).
Following these conclusions, the model calibrated for rain gauges is improved by adding new features.
A dependence of the snow and glacier melt with radiation – and not only temperature – is first
introduced in the model to improve the seasonal shape. Transfer coefficients of the glacier and the
snow models (KGL and KN) are also tuned to better model the diurnal variations of discharge.
More importantly, impermeable areas are introduced in the SWMM object. Depending of the
sub-basins, between 0% and 20% of the total area are considered as impermeable area. On this
area, water will not infiltrate in the ground but will directly be returned as run-off. The fraction
of impermeable area is a parameter which does not affect the general behaviour of discharge but
which increases the peak discharge during rainfall events. An example of response to an event in
La Fouly sub-basin with and without impermeable area is proposed in Figure 5.1. The addition
of impermeable area is able to increase the peak discharge during precipitation events,
allowing to be closer to the measured peak discharge (in red). The shape of simulated events is also
sharper though not enough compared to the reference. However, as observed on the 7thOctober,
the drawback is more false alarm events.

Figure 5.1: Five consecutive events occurring in early October 2019 in La Fouly. The red curve is
the reference discharge measured at La Fouly, the blue one is the model without impermeable areas
while the green curve has 10% of the sub-basin modelled as impermeable area.

The new model for rain gauge QPE is then de-biased for AZC and CPCH by multiplying them
by 1.5 compared to rain gauges. The three models show improved performances compared to the
models without impermeable areas. Moreover, the improvements are higher for AZC and CPCH,
demonstrating the better resilience to input data of the new model: the physics behind the
model is probably better now. The de-biasing procedure appears to work better with
the new models and is now a reliable but simple method, that allows to obtain similar or
better performances with CPCH radar data than with rain-gauges.
Finally, models are tested with 10-minute timestep data. While performances are slightly worsened
in La Fouly, they are slightly improved in the smaller catchments of Saleina and Trient. Globally
10-minute data do not affect the models and can be used in place of hourly data without
any difficulty.

80



Improvements of models with radar

5.2.2 Hindcast and event analysis
The 10-minute timestep model with impermeable areas and CPCH input data is then used to
perform an update of the model initial conditions. Several runoff forecasts are then produced to
analyse the evolution of forecast performances:

• Three perfect forecasts based on observed precipitation data from rain gauges, CPCH or RZC.
They differ from continuous simulations by the use of the update step before the simulation.
These forecasts are only available in re-forecast mode (and not in operational mode). They
are called perfect forecasts because they use perfect QPFs (i.e. observations).

• A semi-perfect forecast where precipitation are from INCA QPF and temperature and radia-
tion are based on observations. This forecast is only available in re-forecast mode.

• The INCA forecast based on INCA precipitation and COSMO temperature and radiation.
• The COSMO forecast based on COSMOs NWPs.
• Filtered forecasts based on INCA and COSMO previous forecasts and filtered with splines to

connect runoff observations and forecasts.

In this section, only the main results are presented. The analysis is based on events observation and
alert HIT-FAR scores. Cumulated volume analysis is important for hydroelectricity purposes but is
not the main focus of this report. Hence cumulated volume results are provided in Appendix D.3.
Concerning the perfect forecasts, despite slightly better performances at very short lead time for
CombiPrecip, nearly no differences are observed between the CPCH and rain gauge
input data. The raw radar data (RZC) have poorer performances but are sometimes more reactive
than CPCH and rain gauges. Raw radar QPF is probably not a tool to use alone in operational
forecast as its perfect forecast is already quite unreliable. However it could be interesting in a
multi-model alarm system as it provides sometimes alerts before CPCH and rain-gauge
perfect forecasts. In this project raw radar QPF is nevertheless not available and the analysis will
thus not be further followed. Detailed results on perfect forecasts are provided in Appendix D.3.2.

5.2.2.1 Introduction of INCA QPF

INCA forecast are then introduced in the model. First, a semi-perfect forecast with measured
temperature and predicted precipitation is set up (in blue in the following figures). A true forecast
with temperature predictions provided by COSMO1-E is then simulated (in green). Results for
a selection of events are provided in Figures 5.2 for Collecteur Est and 5.3 for two events in La
Fouly. Alert HIT-FAR scores are also provided by Figure 5.4. The volume analysis can be found in
Appendix D.3.3.
Between the perfect CombiPrecip forecast (in gold) and the semi-perfect forecast (in blue) – where
precipitation are based on INCA forecast – there is a clear loss of performances with more
disperse forecasts and some missed events (e.g., the second part of the event of 20/10/2019). The
tendency leans globally more towards false alarms. In La Fouly, similar patterns are observed
but the INCA semi-forecast is also much more reactive, being able to double its value in just one
hour. It seems that INCA data help to catch the surges of discharges in this small
catchment – which is supported by the higher alert HIT scores. The drawback is more false
alarms. In the Collecteur Est, differences are much smaller and bot HIT and FAR alert scores are
lower. These differences between La Fouly and Collecteur Est can be explained by two aspects:

• The size of the catchment. INCA errors are more easily integrated in a large catchment
where they can compensate. For example, if a convective cell is forecasted in the wrong place,
it is probable that it will still be located in the catchment area in a large basin. However, in
a small basin it can quickly be wrongly outside/inside the catchment which will largely affect
performances and notably create false alarms.
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• The nature of the measured discharge. In La Fouly, the discharge is measured after a
diversion with a fixed maximum discharge of 13 m3 s−1. To maximize the performances of
the continuous model, it is probable that the calibration made in La Fouly has been rather
overestimated than underestimated. Indeed, as simulated discharges are then cut at a thresh-
old value of 13 m3 s−1, and as the reference discharge is in general closer to this value than to
0 (due to the glacial seasonal behaviour), slightly overestimating the discharge leads usually
to better scores than the contrary. This was nevertheless not made consciously.

(a) 28/10/2018 (b) 27/08/2019

(c) 20/10/2019 (d) 22/07/2020

(e) 28/08/2020 (f) 02/10/2020
Figure 5.2: CPCH perfect forecast (gold), INCA semi-perfect forecast (blue) and INCA forecast
(green) for six events in Collecteur Est. The measure is in red.

The comparison between the semi-perfect forecast and the real forecast, where temperatures are
taken from COSMO1-E, enlightens the role of temperature in the rainfall-runoff model. Forecasts
for summer events are only slightly affected by the use of COSMO1-E temperature
predictions. On the contrary spring and autumn forecasts are largely affected by it.
This shows the strong model dependency to temperature in these periods where the rain-snow limit
is determinant for the discharge estimation. Summer discharges are less affected as the rain-snow
limit is high enough and the only impacting factor is the snow reservoir level which only depends
on observed temperatures. Concerning the direction of the changes, the real INCA forecast is
sometimes less reactive (02/10/2020) and sometimes more reactive (28/10/2018) than the semi-
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perfect forecast. The uncertainty on temperature is thus random and not systematic, which is
further confirmed by the alert HIT-FAR scores which do not display clear differences between the
semi-perfect and the real INCA forecasts.

(a) 20/10/2019 (b) 22/07/2020
Figure 5.3: CPCH and INCA forecasts for two events in La Fouly.
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Figure 5.4: Alert HIT and FAR scores of CPCH perfect forecast (gold), INCA semi-perfect forecast
(blue) and INCA forecast (green) at Collecteur Est and La Fouly. A tolerance of 10% is applied
on dashed lines while no tolerance is used for solid lines. The right axes provide the number of
reference (resp. simulated) events for the HIT (resp. FAR) score.
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5.2.2.2 Comparison with COSMO forecast and post-processing effects
Figures 5.5 and 5.6 display a comparison between INCA and COSMO forecasts, respectively in
Collecteur Est and La Fouly. Alert HIT-FAR scores are provided in Figure 5.7 for the two forecasts
with and without post-processing while Figure 5.8 shows filtered forecasts for some events in Col-
lecteur Est. The post-processing allows to connect the forecasts to the latest measured data (see
Section 3.2.5). The intermediate report of the Radar4Infra project221 demonstrated in the case of
Emosson that the filtering process improved a lot the performances, notably at short lead time. A
filter period of 3h is used. The volume analyses can be found in Appendices D.3.4 and D.3.5.

(a) 28/10/2018 (b) 27/08/2019

(c) 20/10/2019 (d) 22/07/2020

(e) 28/08/2020 (f) 02/10/2020
Figure 5.5: INCA (green) and COSMO (black) forecasts for six events in Collecteur Est.

(a) 20/10/2019 (b) 22/07/2020
Figure 5.6: INCA and COSMO forecasts for two events in La Fouly.
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In the events, differences between INCA and COSMO are globally small but two trends can be
underlined. First INCA is usually more reactive than COSMO. The growths of discharge
are observed sooner (e.g., during the 20/10/2019 and 28/08/2020 events). Secondly, INCA is more
susceptible to produce false alarms with the striking example of the 28/10/2018 event. As in
the previous section, this behaviour is amplified in La Fouly. The first event (20/10/2019) has a very
good INCA forecast (notably in its first part) while the second one (28/08/2020) displays a strong
false alarm. These two events are much less reactive in Collecteur Est. The higher reactivity of
INCA, notably in La Fouly, is further confirmed by alert scores. HIT and FAR scores are
higher for INCA than for COSMO in Collecteur Est and, more significantly, in La Fouly.
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Figure 5.7: Alert HIT and FAR scores of INCA (green) and COSMO (black) forecasts at Collecteur
Est and La Fouly. The magenta and gold dashed curves are respectively for INCA and COSMO
forecasts once filtered. No tolerance is applied. The right axes provide the number of reference
(resp. simulated) events for the HIT (resp. FAR) score.
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(a) 28/10/2018 (b) 27/08/2019

(c) 20/10/2019 (d) 22/07/2020

(e) 28/08/2020 (f) 02/10/2020

Figure 5.8: INCA (magenta) and COSMO (gold) forecasts with spline filters for six events in
Collecteur Est. The measure is in red.

In Collecteur Est, events are better forecasted when applying splines notably when the forecasts
were not reliable (e.g., COSMO the 20/10/2019, both forecasts the 27/08/2019). Alert HIT scores
are also largely improved for both INCA and COSMO. Despite smaller differences between INCA
and COSMO, INCA seems to still be more reactive. The filtering step is also not able to remove
the false alarms as in the case of the 28/10/2018. However, in La Fouly, HIT scores are worsened.
This is probably due to the better pre-filtering performances observed there (around 70% of alert
HIT for INCA compared to 40% in Collecteur Est). The filtering step is probably more efficient
for big catchments with smaller reactivity than for smaller catchments. Indeed, it does not use the
first timesteps of the runoff forecasts where INCA has added very localized information allowing to
catch the discharge surges. Filtering appears to be useful in the large Emosson catchment
with 4-6h response time but detrimental in the smaller basin of La Fouly.
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5.2.3 Conclusion
The Emosson catchment is a rather complicated catchment where a variety of different pro-
cesses are at stake: glaciers and snow cycles, underground slow or fast storages, direct runoff on
impermeable areas during intense precipitations, water interceptions by vegetation or glaciers, in-
teractions of previous phenomena, etc. Its location in altitude and its complex orography constitute
other interesting properties suggesting radar data may improve rainfall-runoff models and predic-
tions. Finally, it contains several sub-basins of different scales allowing to investigate the impact of
INCA radar forecast on different locations.
This complex framework allows to develop a method to calibrate a Routing System model adapted
to radar gridded data. A de-biasing of precipitation input data is first demonstrated to
be essential to obtain good rainfall-runoff models. Though a complete calibration of the model
according to the nature of the input precipitations leads to slightly improved results, it has been
demonstrated that investing time on the modelling of the physical processes allows to get similar
results between rain gauge and CombiPrecip data. The final model is thus robust to any change
of input type. On a simpler catchment, it is reasonable to think that such a process will still be
reliable as a calibration can only be performed on a smaller number of parameter.
In operational mode, several steps need to be performed once the model is set up. First an update
of the initial conditions has already been proven to be necessary6,221. With this step, compared to
COSMO, INCA seems to introduce more reactivity on the prediction of flash events,
notably in the small-response time catchment of La Fouly. The other side of the coin is
increased false alarm rates. Reflections on the requirements and design of an alarm systems will
need to be done to balance HIT and FAR scores. Raw radar forecasts, not available in this project,
could also be useful in a multi-model alarm systems thanks to their ability to detect some events
not observed in other products. However their overall performances are too low to build an alarm
system relying only on them.
The temperature forecast plays an important role in spring and autumn which highlights the ne-
cessity of an operational monitoring of the model notably during these periods. Finally, the post-
processing appears to improve the alert performances for intermediate response time catchments
(Emosson-Collecteur Est, 4-6h) while being detrimental in smaller basins (La Fouly, 1-2h). Post-
processing will need to be investigated further as it probably needs to be adapted for small basins
(smaller filtering period for example).
Cumulated volumes, which are analysed in detail in Appendix D.3, are nearly only affected by
the post-processing step, which largely improves its predictions at small lead times.
However, they are nearly not affected by filtering for larger lead times. When forecasts are needed
for cumulated volume predictions rather than for flash-flood alerts, a post-processing of output data
will be required. The type of input data (rain-gauge, CPCH or RZC QPEs or INCA or COSMO
QPFs) is nearly not modifying volume scores.
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5.3 Zurich airport-Altbach basin
The Altbach basin, close to Zurich, is a countryside basin with several small urban portions. It is
described in Section 3.4.2. HIT-FAR scores by events will be used for the assessment of continuous
models while alert HIT-FAR scores will be studied in the hindcast process.

5.3.1 Calibration of the Zurich model
5.3.1.1 Calibration and de-biasing of precipitations for four types of input data

Due to the short response time of Zurich catchment, it is necessary to work directly with 10-minute
data. The model for Zurich-Altbach is first calibrated with rain gauge stations. A de-biasing process
is then used to obtain the CPCH and RZC models (which are identical) and the inca0 model that
will be used in the hindcast process. The inca0 model is slightly modified compared to CPCH-
RZC model, due to the underestimation observed in inca0 precipitation intensity (Figure 3.14 for
Winterthur). On the contrary the CPCH/RZC models have the same coeffI as the rain gauge model
(0.9), as the average precipitation ratio between CPCH/RZC and rain gauges is close to 1 in Zurich.
The main parameters of the model are provided in Appendix C.2.1.
The Nash scores of the four models are provided below in Table 5.1. The volume ratios between
simulated and measured discharges are also provided. They show that inca0 and RZC could have
still be de-biased a little bit more to reach a volume ratio closer to 1. However we prefer to keep
the higher Nash scores rather than biding to volume ratios exactly equal to 1. In any case, all these
volumetric biases are small. With Nash scores, the CPCH model appears to be the best model. At
this point, radar data seem to improve quite significantly the performances at all discharges. Raw
radar (RZC) data are however performing poorly everywhere. Finally the change from CombiPrecip
to inca0 is nearly not affecting the performances of the model.

Table 5.1: Nash scores of Zurich-Altbach models. The best scores are coloured in green. Volume
ratios are also provided.

Model Nash for Q > Volume ratio
0 0.5 m3 s−1 1 m3 s−1 1.5 m3 s−1

Rain gauges 0.65 0.53 0.36 0.09 1.06
CPCH 0.72 0.61 0.43 0.2 1.01
RZC 0.56 0.35 0.07 -0.29 0.94
inca0 0.71 0.59 0.39 0.17 0.94

As no seasonal behaviour is observed in the reference discharge from Figure 3.13, HIT and FAR
scores are computed by event as explained in Section 3.3.2.3. The results are provided in Figure 5.9.
It is important to note that these scores cannot be compared to those in Emosson as they are not
computed in the same way. However it is also possible to notice that significant events (higher than
3 m3 s−1 are most of the time not well simulated.
The best model in HIT/FAR is the one using rain gauge data. Indeed, despite slightly more false
alarm at low discharges, it is able to catch some of the few high discharge events that other models
are not able to catch. Although this is due to only a small number of events (only 9 events are higher
than 5 m3 s−1 and 4 than 8 m3 s−1), this is significant as the goal of this project is to improve the
flash flood forecast performances of the model. The worst model is, as could be expected, the RZC
model with significantly higher FAR and lower HIT values. inca0 and CPCH are performing nearly
as well with slightly better performances for CPCH, probably due to the 10 minutes of delay in inca0
values (inca0 values correspond to the first timestep of the forecast, predicted at +10 minutes).
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In conclusion, the model fed with rain gauge data seems to be the one performing the best
for flash flood prediction, though the CombiPrecip model is better at low discharges and for
Nash scores.
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Figure 5.9: HIT/FAR scores of the discharge from the four models in Zurich. HIT and FAR are
computed by events with a tolerance of 10%. A temporal tolerance of 20 minutes is applied. The
right axes provide the number of reference (resp. simulated) events for the HIT (resp. FAR) score.

5.3.1.2 Seasonal debiasing

Figure 5.10a displays the evolution of the volume ratio along the year for the four previous continuous
simulations. Though small, the volume ratios all seem to show seasonal bias with too high volumes
in February and March and too small volumes in summer and mostly autumn. Hence a seasonal
adjustment of precipitation inputs could be an interesting improvement to investigate.
Three seasonal de-biased models are thus created for the CPCH-inputs. The de-biasing is now
made month by month rather than with a constant factor all over the year. The goal is to reach
the HIT performances of the rain-gauge model without creating too much FAR. Table 5.2 provides
the de-biasing coefficients used for each models. These coefficients are multiplied by coeffI which
is still equal to 0.9 for CPCH models. The volume ratios obtained in the three models (and in
the initial CPCH and rain gauge stations ones) are plotted in Figure 5.10b. The first debiased
model is designed by taking approximately the inverse of the volume ratio observed in the initial
CPCH model. However, as observed with the red curve, it does not result in volume ratios equal
to 1, probably because if more precipitations are added in month i it could mean more discharge
in month i + 1 and not only in month i, depending on the ground conditions. A second, simpler,
debiasing model is thus set up. Here, debiasing factors are chosen to be more constant over the
seasons (high in summer, low in winter). In the volume ratio plot (blue curve), it results in too big
volume ratios notably in summer. Thus an intermediate model 3 is created with smaller summer
debiasing adjustment factors.
Nash scores of the three models (and of the initial CPCH one) are provided in Table 5.3. HIT and
FAR scores are finally plotted in Figure 5.11. The Nash scores are usually similar (rather smaller
than bigger) than the initial CPCH models: their is no clear increase in performances at this stage.
Their volume ratios are also globally larger than initially. HIT scores have been slightly increased,
notably at high discharges in quite the same amplitude for the three models. However they do not
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reach the performances of rain gauge stations for the few very high discharge events and the cost
is an increase in FAR notably at high discharges. The three models are hence proposing different
trade-off between HIT and FAR scores but are not able to really improve CPCH performances.
Hence, in the Zurich case, it seems that a seasonal de-biasing is not significantly useful
and that the rain gauge model is the best one. The update of initial conditions of the model
will be performed with this rain-gauge model and input data.
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Figure 5.10: Seasonal evolution of volume ratios (simulated divided by observed). Figure 5.10a:
four initial models from Section 5.3.1.1. Figure 5.10b: three debiased models for CPCH input data.

Table 5.2: Monthly de-biasing adjustment factors.

Model Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.
Debiased 1 0.9 0.6 0.8 1 1 1.05 1.1 1.1 1 1.1 1.25 1.1
Debiased 2 0.95 0.95 0.95 1 1.05 1.2 1.2 1.2 1.2 1.05 1 0.95
Debiased 3 0.95 0.95 0.95 1 1.05 1.1 1.1 1.1 1.1 1.05 1.05 0.95

Table 5.3: Nash scores of Zurich-Altbach models with seasonal de-biasing. The best scores are
coloured in green. Volume ratios are also provided.

Model Nash for Q > Volume ratio
0 0.5 m3 s−1 1 m3 s−1 1.5 m3 s−1

CPCH 0.72 0.61 0.43 0.2 1.01
CPCH debiased 1 0.69 0.58 0.45 0.26 1.08
CPCH debiased 2 0.65 0.52 0.35 0.16 1.13
CPCH debiased 3 0.71 0.61 0.46 0.27 1.06
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Figure 5.11: HIT/FAR scores for the discharge from the three seasonally-debiased models in Zurich.
Scores for the initial CPCH and rain-gauge stations models are also provided. HIT and FAR are
computed by events with a tolerance of 10%. The temporal tolerance is put at 20 minutes. The
right axes provide the number of reference (resp. simulated) events for the HIT (resp. FAR) score.
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5.3.2 Hindcast and event analysis
The update of the initial conditions is performed with rain-gauge model and data as they provide
the best HIT performances without FAR at high discharge. Several forecasts are then re-forecasted:

• Four perfect forecasts: rain-gauge stations, CPCH, RZC and inca0.
• The INCA forecast (with COSMO1-E forecast for temperature).
• A COSMO forecast to highlight radar QPFs interest.
• Filtered forecasts (COSMO and INCA).

As the goal of the Zurich-Altbach project is to generate alerts for flash floods, the cumulated volume
analysis is not the focus of this report. Results are however provided in Appendix E.

5.3.2.1 Perfect forecasts

Figure 5.12 displays the results of the re-forecast for the four perfect forecasts on eight events rep-
resentative of the diversity of situations. Some events are flash flood events with high precipitation
intensity (13/09/2018, 23/06/2021 and 28/06/2021) and sharp discharge increase and decrease,
other endure small but steady precipitations over several days (20-21/05/2019) and some are in-
termediate cases with medium precipitations over a rather small time (13/02/2020, 10/06/2020 or
18-19/06/2021). Finally the event from January 2021 is a rain-on-snow event. Alert HIT-FAR
scores are then presented in Figure 5.13 for the four perfect forecasts with a 10% tolerance (dashed
lines) or without tolerance (solid lines).
Usually all events are simulated similarly by the rain gauge, CPCH and inca0 perfect forecasts:
the events of 20-21/05/2019 and 10/06/2020 are not observed by any perfect forecast and the
other ones are partially observed (13/09/2018 and the three events of June 2021) or well-observed
(13/02/2020 and 28-30/01/2021). All models seem to have difficulties to describe the rapid
discharge responses of the sharp events. However, some differences can be observed between
the perfect forecasts, with the rain gauge ones being better for some events (e.g, on the 13/02/2020
or 23/06/2021) and worse for others (e.g., on the 13/09/2018, 18-19/06/2021 or 28/06/2021). The
anticipation time is usually similar for these three perfect forecasts. Inca0 and CPCH have
moreover very similar behaviours with only small but systematic differences with slightly higher
inca0 previsions.
Alert HIT and FAR scores highlight the similarity of the three previous perfect forecasts:
all curves are close one to the other. However, some mild HIT differences point towards slightly
better performances for inca0 and CPCH perfect forecasts than for rain gauges. Concerning the
addition of tolerance, it can be observed that dashed curves are quite close to the solid curves: the
majority of missed events is missed by more than 10%.
As in Emosson, the RZC perfect forecast behaviour is more chaotic, with more false alarms (28-
30/01/2021) or less reactivity (13/09/2018, 20-21/05/2019 or 13/02/2020). However, unlike in
Emosson, the tendency leans more towards underestimation of discharges than false alarms, as
reflected by the HIT scores. FAR scores are on the contrary similar to CPCH. Due to this last
observation, raw radar data can be expected to be less useful in a multi-model alert
system than in Emosson, as they are giving less early alarms. This could be due to the
good reliability of the rain gauge network near Zurich and to the subsequent good reliability of the
co-kriging process in CombiPrecip. These observations will need to be evaluated and confirmed in
future studies with the raw radar QPFs.

92



Improvements of models with radar

(a) 13/09/2018 (b) 20-21/05/2019

(c) 13/02/2020 (d) 10/06/2020

(e) 28-30/01/2021 (f) 18-19/06/2021

(g) 23/06/2021 (h) 28/06/2021

Figure 5.12: Rain-gauges (black), CPCH (gold), RZC (green) and inca0 (purple) perfect forecasts
for eight events in Zurich-Altbach discharge station. The measure is in red.
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Figure 5.13: Alert HIT and FAR scores of the four perfect forecasts at Zurich-Altbach discharge
station. A tolerance of 10% (dashed lines) or no tolerance (solid lines) is applied. The right axes
provide the number of reference (resp. simulated) events for the HIT (resp. FAR) score.

5.3.2.2 INCA and COSMO forecasts

In Zurich, snow is only present in few events in January. Hence, it is not useful to create a semi-
perfect forecast with perfect temperature previsions and real INCA precipitation previsions as the
temperature data will not affect the resultsa. In this section, the CPCH perfect forecast (in golden),
the INCA forecast (in green) and the COSMO forecast (in black) are compared. Results for 8 events
are displayed in Figure 5.14 while alert HIT-FAR are provided by Figure 5.16.
In most events, a clear lack of performances can be observed between the perfect CombiPrecip
forecast and the INCA forecast. It results either in missed or underestimated events (all the
first part of the 28-30/01/2021 event and the majority of the forecasts during the 13/09/2018 and
the three June 2021 events), in delayed observations (notably on the 28/06/2021) or in false
alarms (in the end of the missed 2021/05/2019 event and very clearly for two forecasts during the 18-
19/06/2021 small event). Notably for the 18-19/06/2021 event, one forecast is predicting incredibly
high discharges (up to 14 m3 s−1) higher than the most important observed events. This is due to
a very high small convective cell observed in some INCA forecasts during this event. Figure 5.15
provides the INCA precipitation forecasts for several lead times over one of the upper sub-basins
of the catchment. In some of the forecasts some heavy thunderstorms are forecasted explaining
the high false alarm observed in the simulation. It is probable that the cell was very localized and
finally crossed a neighbouring catchment instead of the Altbach basin. Such observation underlines
what can bring an ensemble precipitation product which would help to simulate several
discharge scenarios and launch an alarm containing the discharge intensity of the event
and the probability related to this discharge (and not only a forecasted discharge that can
finally be ten times higher – or ten times lower – than the observed discharge).
This tendency to false alarm is observed in Figure 5.16 where CPCH and INCA HIT have similar
values (slightly higher for INCA) while FAR are largely higher at large discharges in INCA. Notably
several false alarms are generated above 9 m3 s−1 (three at 9 m3 s−1, two at 10 − 12m3 s−1 and still
one at 13−14m3 s−1). Nevertheless, the INCA forecast seems, as in Emosson, to be more reactive
than the CombiPrecip perfect forecast. This is confirmed by the slightly higher HIT scores of
the INCA forecast.

aThis has been checked and the only impact of temperature is on the 28-29/01/2021 which is a rain-on-snow event.
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(a) 13/09/2018 (b) 20-21/05/2019

(c) 13/02/2020 (d) 10/06/2020

(e) 28-30/01/2021 (f) 18-19/06/2021

(g) 23/06/2021 (h) 28/06/2021

Figure 5.14: CPCH perfect forecast (gold), INCA semi-oerfect forecast (blue) and INCA forecast
(green) for eight events in Zurich-Altbach discharge station. The measure is in red.
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Figure 5.15: INCA forecasted rainfall intensities over one of the upper sub-basin of the Zurich-
Altbach catchment during the event of the 18/06/2021. Forecasts for several lead times are given.
At 23h10 and 23h20 a convective cell with huge intensities is forecasted to pass in the basin at
respectively 23h50 and 0h20 (with 40 and 60 minutes of anticipation). It results in two high
discharge predictions in Figure 5.14 made at 23h00 and 23h20.

Concerning the COSMO forecast, the events display the poor performances of the COSMO model
for flash flood forecasting. At the exception of the small event of the 13/02/2020, COSMO is usually
underestimating the peak discharge of the events. COSMO can sometimes also miss an event that
INCA will forecast, such as on the 18-19/06/2021. It results in lower alert HIT scores than INCA.
However, as explained above, INCA is much more susceptible to false alarms which is also observed
in the FAR scores. COSMO is notably not generating any false alarm higher than 8 m3 s−1.
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Figure 5.16: Alert HIT and FAR scores of the three previous forecasts at Zurich-Altbach discharge
station. No tolerance is applied. The right axes provide the number of reference (resp. simulated)
events for the HIT (resp. FAR) score.
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5.3.2.3 Improvements of forecast performances with post-processing

Splines were applied to the COSMO and INCA forecasts with a filtering period of three hours. The
results for eight events are displayed in Figure 5.18. Alert scores are provided in Figure 5.17.
In Zurich, splines with a filtering period of three hours generate huge false alarms, as observed in
most events. Moreover they erase all differences between INCA and COSMO. Such observations
could have been expected as the filtering process forget all values of the forecasts located before the
filtering period. In Zurich most of the important predictions are located at very short lead time
both in COSMO and INCA and hence the post-processing is relying only on forecast points where
differences between INCA and COSMO are nearly insignificant. Modifying the filtering period
could improve the forecast by allowing the filter to connect the observations to more significant
predictions at shorter lead time. Nevertheless, for the flash flood events rising in one or
two time steps, the filter cannot work properly as it relies in the initial slope of the
model. Whatever the filtering period, the interpolation will start with a steep increase
while the real discharge will already be decreasing, as in the 13/09/18 event.
Unsurprisingly, FAR scores are largely increased. Discharges up to 36 m3 s−1 are forecasted while
the measured maximum is just below 12 m3 s−1. HIT scores are also decreased. For the design of
an alert system with sharp events, post-processing of forecasts with splines does not
appear to be suitable. Splines may be useful either in larger catchment with higher response
time or for the estimation of flood volumes.
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Figure 5.17: Alert HIT and FAR scores of non-filtered forecasts (INCA: green- - COSMO: black)
and filtered forecasts (INCA: magenta - COSMO: gold) at Zurich-Altbach discharge station. No
tolerance is applied. The right axes provide the number of reference (resp. simulated) events for
the HIT (resp. FAR) score.
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(a) 13/09/2018 (b) 20-21/05/2019

(c) 13/02/2020 (d) 10/06/2020

(e) 28-30/01/2021 (f) 18-19/06/2021

(g) 23/06/2021 (h) 28/06/2021

Figure 5.18: INCA (magenta) and COSMO (golden) forecasts after being filtered with splines for
eight events in Zurich-Altbach discharge station. The measure is in red.
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5.3.3 Adaptation of the continuous model
5.3.3.1 Modifications brought to the model

The previous models have displayed difficulties to announce the higher discharge events, with alert
HIT values going down quite quickly (below 0.5 since 3 m3 s−1) and high FAR scores. These events
are unfortunately the most important ones, as the goal of the modelling in the Zurich-Altbach
catchment is to provide flash flood alerts to evacuate the Zurich airport commercial zone. The
threshold level for evacuation has been fixed at 20 m3 s−1. Post-processing also appeared not to be
suitable in the case of Zurich catchment high events.
The difficulties in this catchment arise from the dual nature of events. Indeed, some events are
characterized by a slow discharge increase due to either snow melting or lasting small intensity
precipitations (for example the event of January 2021), while others are marked by a quick and
sharp discharge increase followed by a slightly slower decrease. For example, on the 13/09/2018, the
discharge is passing from 1 m3 s−1 to 12 m3 s−1 in only 20 minutes and directly decreases afterwards.
It is hence complex to simulate these two types of events with one model.
Moreover, a careful observation of sharp events reveals the existence of two peaks. After a first
sharp and high peak, a second lower and smoother peak is observed 20 to 40 minutes later. As
observed in Figure 5.19, this double-peak phenomenon is not present in the discharge measured by
the Bassersdorf discharge gauge, located in the middle of the Altbach catchment. This station had
not been used in the calibration of the first models. The presence of two peaks is thus probably
due to different travel times of water in the different sub-basins. This could also be due to the
path of precipitation cells which are usually passing from West to East in the opposite direction of
the water flow. Hence the downstream catchment responds quickly and sharply while rivers are
delaying and smoothing the response of the upper catchment (above Bassersdorf), creating the
two peak process of Figure 5.19.

(a) 13/09/2018 (b) 23/06/2021

Figure 5.19: Comparisons of the discharge measured at Zurich-Kloten and at Bassersdorf for two
flash flood events.

For that reason, and because the continuous models have proven in Figure 5.9 to be improvable,
new continuous RS models are set up. Several modifications are brought to the model:

• Some parameters are differentiated between the upstream and downstream sub-
catchments to make emerge the two peaks of discharge – and, as a consequence, to better
catch the real levels of the discharge. For example, in the downstream sub-catchment, the soil
storage (GR3) maximum level is increased. More water can then be stored in this catchment
allowing to accelerate the decrease of discharge after a sharp flash flood event and to better
split the two peaks. This could be explained by the higher fraction of forest present there. This
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differentiated calibration is allowed by the knowledge of the Bassersdorf discharge measures
which help to calibrate the upper sub-basins. The parameters that have been modified are
listed in Appendix C.2.2.

• River sections are added in several places to delay the peaks of discharge and
to split the two peaks from the two sub-catchments. Rivers are separated in several
sections as it helps to numerically simulate the wave propagation. For the same total river
length, splitting the river in several sections allows to slightly increase the discharge delay
while slightly decreasing the peak attenuation. This is a numerical effect due to the increase
of the number of degrees of freedom of the wave model. The location and number of river
sections is provided in Appendix C.2.2.

• The timestep of computation is decreased from 10 minutes (600 seconds) to 150 seconds. This
modification does not affect most of the processes as the precipitation will not be different
during 4 consecutive timesteps. Nevertheless, it is useful to improve the simulation of the wave
propagation in rivers by increasing the temporal resolution of this process. The drawback is
an increase of the computation time.

• Finally, in order to improve the timing, peak value and shape of the few sharp high events
which are usually under-estimated, the parameter Imp, representing the fraction of
impermeable area, is modified. Following Peredo et al.196, the influence of the intensity
of precipitation is introduced in the infiltration model. This modification is described below
and is applied to the downstream sub-basin in one model. Another model is set up without
this modification for comparison purposes.

The modification of the model to strengthen the response to intense precipitations – and to improve
its timing – is inspired from Peredo et al.196. While Peredo et al. played directly on the infiltration
rate from their production store (see Section 2.3.5), the modification is here introduced in the
impermeable fraction. This is easier to do in the code and has shown better preliminary results.
Imp is hence modified according to Equation 5.1 which is illustrated by Figure 5.20. It varies with a
sigmoid function between an initial value Imp0 for no precipitationb and a maximum value Impmax

for high intensities. The parameters i1/2 and i0 represent respectively the half intensity at which
Imp(i1/2) = Impmax+Imp0

2 and where the slope is maximum, and the sharpness of the transition
from Imp0 to Impmax. All these parameters have been calibrated to obtain the best continuous
simulation: Imp0 and Impmax are calibrated to obtain respectively good low intensity events and
good high intensity sharp events; i1/2 is modified to fix the limit between the two types of events
and i0 is chosen to have an appropriately sharp transition.

Imp = Imp0 + Impmax − Imp0

1 + exp
(
− i−i1/2

i0

) (5.1)

This process models the fact that, at high intensity, a higher fraction of water is directly flowing
and cannot be infiltrated even on normally permeable areas. It could also model other phenomena
such as waste water treatment overflow. The addition of this impermeable fraction variation allows
to better split the two discharge peaks during sharp events while keeping good results for other
events.

bThe value at i = 0 is not rigorously equal to Imp0 but is very close to it.
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Figure 5.20: Fraction of impermeable area in the downstream sub-catchment according to the
intensity of precipitation.

(a) 13/09/2018 (b) 01-02/07/2019

(c) 23/06/2021 (d) 28/06/2021

Figure 5.21: Comparisons of the best old and new continuous models for the four major sharp
events. The measure is in red and the old models are in yellow (stations) and blue (CPCH). The
new CPCH models are in black (constant impermeable area) and green (variable impermeable area).

The results of the two new models (with or without variable Imp) are provided by Figure 5.21
for the four main flash flood events – which are also corresponding to the four higher discharges
measured in the period. The old CPCH and rain gauge models are also provided for comparison.
In each of these four events, and for both new models, both the timing, the peak level and the peak
shape have been improved compared to the previous CPCH model and in most cases to the rain
gauges model. The double peak appears clearly in the 13/09/2018 and 23/06/2021 events with a
smoother and lower peak. However, it does not appear in 2019 due to a first peak being too late.
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Finally for the 28/06/2021 event the double peak appears but is not present in the measure. This
is due to an advance of the first peak. The model is still very sensitive to precipitation
input data and a small shift in time or space can change the shape of the simulated
discharge. Concerning the differences between the model with or without variable Imp, the shape
and timing is usually better in the model with variable Imp, notably for the first event. However
this is not as determinant as all the other modifications proposed.
Nash and HIT-FAR scores are respectively displayed in Table 5.4 and Figure 5.22. As proposed in
the literature191,192 the approach has been more focused on events than on the whole continuous
period – even if it was not a calibration only on events. As a consequence, the Nash on the whole
period and for discharges below small thresholds have been worsened. However at higher discharges
the Nash value has been improved. Similarly the HIT scores has been improved mostly at high
discharges, reaching more than 50% up to 6 m3 s−1. The event of the 23/06/2021 is however still
not estimated as well as with rain gauge data. The drawback is a FAR increase. However this
increase is largely reasonable, notably compared to the old model with rain gauge data. Finally the
differences between the model with or without variable Imp are small: Nash values are similar and
the model without it seems only slightly better in HIT at low discharges. A new model with rain
gauges as input data has also been set up and show poorer performances than the CPCH models.
Indeed, the old model with rain gauges was already high on the main peaks. On this model, there
is no double peak in the main events as it is not possible to create them with only two rain gauge
stations.
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Figure 5.22: HIT/FAR scores for the discharge from the three new models and the two best old
models in Zurich. HIT and FAR are computed by events with a tolerance of 10% and a temporal
tolerance of 20 minutes. The right axes provide the number of reference (resp. simulated) events
for the HIT (resp. FAR) score.
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Table 5.4: Nash scores of Zurich-Altbach new models. The best scores are coloured in green. Volume
ratios are also provided.

Model Nash for Q >
Volume

ratio
0 0.5 m3 s−1 1 m3 s−1 1.5 m3 s−1

Old rain gauges 0.65 0.53 0.36 0.09 1.06
Old CPCH 0.72 0.61 0.43 0.2 1.01

New CPCH - variable Imp 0.65 0.56 0.41 0.27 1.01
New CPCH - constant Imp 0.66 0.56 0.42 0.28 1
New rain gauges - var Imp 0.47 0.34 0.18 -0.09 1.06

As the calibration has been mostly focused on only few flash flood events – although the other
smaller events have been observed in order not to worsen their simulation – a validation on the year
2017-2018 can be performed. Indeed CombiPrecip, MeteoSwiss and HydroZurich data are available
between the 1st September 2017 and the 1st September 2018. Two major flash flood events occurred
in this period and are represented in Figure 5.23. Nash and HIT-FAR scores are also provided in
Table 5.5 and in Figure 5.24. It can be observed that the events were completely missed by the
two old models and notably by the rain gauge one. They are now a lot better simulated while the
small events have not been worsened according to the HIT-FAR and Nash scores. The model with
variable Imp is also clearly better on the 08/08 event. However this is only for one event and it is not
possible to say that this model will always be better than the one with constant Imp. Nevertheless,
once again, the shape of the peaks is better on the former. The validation confirms the initial
observations and prove the necessity to introduce the new features listed above.

(a) 08/06/2018 (b) 03/07/2018

Figure 5.23: Comparisons of the best old and new continuous models for the two major sharp events
of the validation period. The measure is in red and the old models are in yellow (stations) and blue
(CPCH). The new CPCH models are in black (constant impermeable area) and green (variable
impermeable area).
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Figure 5.24: Validation HIT/FAR scores for the discharge from the three new models and the two
best old models in Zurich. HIT and FAR are computed by events with a tolerance of 10% and a
temporal tolerance of 20 minutes. The right axes provide the number of reference (resp. simulated)
events for the HIT (resp. FAR) score.

Table 5.5: Validation Nash scores of Zurich-Altbach new models. The best scores are coloured in
green. Volume ratios are also provided.

Model Nash for Q >
Volume

ratio
0 0.5 m3 s−1 1 m3 s−1 1.5 m3 s−1

Old rain gauges 0.44 0.03 -0.16 -0.31 1.19
Old CPCH 0.62 0.42 0.34 0.25 1.19

New CPCH - var Imp 0.56 0.35 0.36 0.34 1.18
New CPCH - cst Imp 0.58 0.35 0.35 0.28 1.17
New rain gauges - var

Imp
0.33 -0.15 -0.33 -0.4 1.19

Despite their slight FAR increase, the new models are clearly better than the previous one. The
differentiation of the upper and lower sub-basins and the introduction of rivers to delay
the response have proven to be important features to better model the sharp events.
It needs to be noted that there is nearly no differences between these models and the old one for
the other longer events. The addition of a variation of the impermeable area fraction Imp
appears not to be determinant in the scores of the models but helps to better catch
the shape of flash flood events and is probably helping to better model the physical
processes occurring in the Zurich-Altbach catchment. For this reason, the model where Imp varies
with the precipitation intensity will be mostly used in hindcast – though a hindcast with INCA and
the model with constant Imp will also be tested.
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5.3.3.2 Hindcast: Perfect forecasts with the new model

Perfect forecast simulations are first run with the new model with variable Imp. An update step is
performed before with separated update of the state variables in the upper and lower sub-basins.
Results are provided for six events in Figure 5.25. The list of events has been slightly modified
to include the sharp event of the 1stJuly 2019 and to remove most of the slow events which show
no differences between models. Only the main rain-on-snow event from January 2021 is kept. All
perfect forecasts appear to be improved compared to Section 5.3.2.1, notably concerning the shape
and the timing of the peaks. The rain gauge perfect forecast is usually providing high false alarms
which is explained by the already high values obtained with the old model: the new model has been
mostly adapted for CPCH and INCA. In this model, spatial information provided by the radar
has been used to create a double peak in the discharge. However such spatial information is not
available with the only two rain gauges used in Zurich (Kloten and Winterthur), which are outside
the catchment. Hence the two peaks from the two sub-catchments tend to occur simultaneously
leading to a peak overestimation.

(a) 13/09/2018 (b) 01-02/07/2019

(c) 28-30/01/2021 (d) 18-19/06/2021

(e) 23/06/2021 (f) 28/06/2021

Figure 5.25: New perfect forecasts for six events in Zurich-Altbach discharge station: CPCH
(golden), RZC (green), stations (black) and inca0 (purple). The measure is in red.
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Figure 5.26: Alert HIT and FAR scores of the new perfect forecasts: CPCH (golden), RZC (green),
rain gauge stations (black) and inca0 (purple). No tolerance is applied. The old perfect forecasts
are represented with dashed lines.

Figure 5.26 provides the alert HIT and FAR for the four perfect forecasts. The perfect forecasts
with the old model are also displayed with dashed lines. HIT scores are largely improved for
all models. As with the previous model, performances are however similar between the four perfect
forecasts. The drawback for these increased HIT is a slight increase in FAR. However, the increase in
HIT is largely better than the FAR worsening. The new model is hence much more adapted
for an alert system. The bigger problem resides in the few false alarms at very high discharges.
However all these alarms occur at lead times equal to 70, 80 or 90 minutes. It is probable that
alarms will need to be observed in consecutive forecasts (lagged forecasts207) or at a
smaller lead time before launching an evacuation order.

5.3.3.3 Hindcast: Old model vs new models

The two models (with/without variable Imp) are now run with the INCA QPF and compared to
the old INCA forecast. As for the perfect forecasts, an update step is performed before, but here
state variables are modified similarly in the upper and lower sub-basins. Figure 5.27 displays the
discharge forecasts for the selection of six events. For all these events, the forecasts have
usually been improved. However, as observed in the continuous simulations and in the perfect
forecasts, the model increases the number and intensity of false alarms. This is particularly the case
for the false alarms of the 01/07/2019, 18/06/2021 and 28/06/2021 events. False alarms are also,
logically, larger for the model with variable impermeable area than for the one without it. Indeed,
if INCA provides a false alarm – due to a wrong estimation of the position, timing or intensity
of storm cells – the impermeable area will be wrongly increased which will multiply the intensity
of the false alarm: while the model with variable impermeable is better modelling the
processes occurring in the catchment, it is more sensitive to precipitation data and can
generate bigger false alarms in case of wrong precipitation forecast.
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(a) 13/09/2018 (b) 01-02/07/2019

(c) 28-30/01/2021 (d) 18-19/06/2021

(e) 23/06/2021 (f) 28/06/2021

Figure 5.27: Old (darkgreen) and new, with or without variable impermeable area (resp. lime or
cyan), INCA forecasts for six events in Zurich-Altbach discharge station. The measure is in red.

Both observations are confirmed by the HIT-FAR alert scores from Figure 5.28. Notably, alert HIT
scores are largely improved with the new modifications of the model and notably with the variable
impermeable. As expected, the drawback is an increase of false alarms, very reasonable at low
intensity. Two gigantic false alarms are generated for the 18 and 28 June 2021 events. However
these false alarms are generated 80 or 90 minutes before the event. At smaller lead time, the false
alarm rate will probably largely be reducedc.

cThe construction of a better alert system will be discussed in Section 6
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Figure 5.28: Alert HIT and FAR scores of the old (darkgreen) and the new INCA forecasts. The
new forecast with constant Imp is in cyan while the one with variable Imp is in lime. No tolerance
is applied.

5.3.3.4 Hindcast: Influence of the update step

The impact of the update step can also be evaluated. Indeed it has been found to be essential in
the first report of the Radar4Infra project221, notably for long events such as those occurring in
Emosson or the rain-on-snow events of Zurich. However, for sharper flash flood events, the update
step may worsen the forecasts. To evaluate the importance of an update step the model with variable
Imp is run with the INCA forecast with or without update step. Two kinds of update are tried: the
update of the initial state variables can be performed either with constant correction factors over the
catchment (update 1 zone - as in Section 5.3.3.3) or with distinct correction factors for the upstream
and downstream sub-catchments (update 2 zones, as for the perfect forecasts in Section 5.3.3.2).
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Figure 5.29: Alert HIT and FAR scores of the new INCA forecast with an update step similar on
both zones (darkgreen), different in both zones (lime) or without update step (blue). No tolerance
is applied.
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(a) 13/09/2018 (b) 01-02/07/2019

(c) 28-30/01/2021 (d) 18-19/06/2021

(e) 23/06/2021 (f) 28/06/2021

Figure 5.30: New INCA forecast with variable impermeable area for six events in Zurich-Altbach
discharge station. The blue curve has no update while a similar (resp. a different) update is
performed on the two sub-basins in the darkgreen (resp. lime) curve. The measure is in red.

Figure 5.30 provides the results for the six events while HIT-FAR scores for alert are presented in
Figure 5.29. For each of the sharp events, the update step does not worsen the prediction. It usually
does not affect significantly the discharge but when it does so, it generates higher and earlier runoff
increases. This is confirmed in the alert HIT-FAR where HIT scores are increased compared to the
control forecast (with no update) and where the maximum discharge is increased in FAR. Differences
between the two update techniques are small but the one with two independent zones appear to be
slightly better in HIT and in the events. Moreover, concerning the longer events, as observed in the
first report of the Radar4Infra project221, the update step is essential. The rain-on-snow event is
completely missed without update. Hence the update step does not appear to be worsening
the sharp flash flood events while it is essential for slower events. It will be used with
independent corrections in the downstream and upstream basins until nowd.

dand it has already been used in the two previous subsections.
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5.3.3.5 Hindcast: INCA vs COSMO

In this last section, the decrease or increase of performances due to the input QPF is evaluated.
The CPCH perfect forecast, the INCA forecast and the COSMO forecast are run with the new
model with variable Imp (after an update step). Events are displayed in Figure 5.32 while alert
HIT-FAR scores are provided in Figure 5.31. The INCA QPF introduces a reactivity that is not
present in COSMO. Hence, although most of the events are observed both in COSMO and INCA,
the predictions is quicker and more reactive with INCA. However, it implies also higher false alarms,
notably the 01/07/2019, the 18/06/2021 and the 28/06/2021. These observations are confirmed by
the alert HIT-FAR scores.
Concerning the expected loss of performances between the perfect CPCH forecast and the INCA
forecast, it is not so significant. It is mostly observed with the higher false alarms and the dispersion
of forecasts in INCA. Nevertheless, INCA is even sometimes able to catch some events better and
with more reactivity than CPCH. This is confirmed by the good alert HIT scores of the INCA
forecast.
The new model, notably with the introduction of a variable impermeable area and with
the use of an update step, when used with the INCA QPF allows to largely increase
the hit performances for alerts. However, it also generates tremendous false alarms
that will need to be removed. Two ideas can be developed to do so:

• First, it could be useful to use ensembles to introduce and propagate the uncertainty of the
INCA QPF into the rainfall-runoff model. Several scenarii will then be available and a new
alert systems can be used to make the most of these scenarii. Ensembles can be generated
by translation in the time or space, by modifications of the discharge value (random noise,
modifications of peak levels) or by the use of several distinct rainfall-runoff models such as
the one developed here. MeteoSwiss will also continue to develop the INCA product with an
ensemblist approach: INCA ensemble members will be interesting in such approach.

• Secondly, without ensembles, it is also possible to modify the way alerts are generated. The
rules developed to compute alert HIT-FAR scores can be modified by using smaller lead times
for example. This approach will now be developed.
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Figure 5.31: Alert HIT and FAR scores of the new perfect CPCH (golden), INCA (green) and
COSMO (black) forecasts.
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(a) 13/09/2018 (b) 01-02/07/2019

(c) 28-30/01/2021 (d) 18-19/06/2021

(e) 23/06/2021 (f) 28/06/2021

Figure 5.32: Hindcast with variable impermeable area for six events in Zurich-Altbach discharge
station: perfect CombiPrecip forecast (golden), INCA forecast (green) and COSMO forecast (black).
The measure is in red.
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5.3.4 Conclusion
The Zurich-Altbach catchment is characterized by two distinct types of response to rainfall. In some
cases the discharge response is slow and steady, resulting in events relatively harmless and easy to
predict. However, the Altbach river also endures flash floods where the discharge increases in one
or two timesteps only, which can cause severe damages, notably for the Kloten airport downstream.
To improve the predictions of these flash flood events, the Zurich-Altbach RS model was improved
in two steps.
In a first step, the operational model was re-calibrated by focusing more on sharp events. The
results highlight the interest of using the INCA radar QPF in the rainfall-runoff model compared to
using the COSMO NWP. The INCA forecast is notably much more reactive to flash floods
than COSMO. However, the better prediction performances of INCA are also linked to more false
alarms due to wrong predictions of the location, timing and intensity of storm events. Finally, a
post-processing based on the initial slope of the observed discharge appears to be detrimental and
to only lead to huge false alarms while erasing all differences between COSMO and INCA.
In a second step, by observing that the continuous simulations still had difficulties to simulate
sharp events, a new model was set up. It focuses mostly on flash flood events and is inspired by the
literature. It first allows to model the double peak shape observed in most sharp events and which
is probably due to the existence of two sub-catchments and to the usual meteorological evolution of
convective cells from downstream to upstream (West to East). Modelling this double peak shape
allows to get closer to the observed discharge. Moreover, to better catch the most intense flash
flood events, a variation of the infiltration rate at high intensity is introduced via the impermeable
fraction parameter Imp. The new model demonstrates improved performances both in continuous
simulations and in operational re-forecast. The hit performances of an alert system based
on this model are now acceptable. However some very high false alarms are also issued
due to the combination of a highly responsive model and of an uncertain INCA QPF. To remove
these false alarms it is possible to modify the rules for issuing alerts (Section 6) or to introduce and
evaluate the uncertainty of the model, for example by using ensemble predictions.
A summary of all the tests performed in the Emosson and Zurich catchments, and of the main
conclusions, is provided next page in Figure 5.33
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Chapter 6

Design of an alert system

6.1 Introduction
The careful design of an alert system is necessary to tap the full potential of a rainfall-runoff
prediction. Indeed, as mentioned by the WMO6, "there is a crucial balance to be struck between
a precautionary approach and an unwillingness to issue warnings for fear of these being “wrong”".
False alarms, which are inevitable, must be minimized so that flood warnings are not triggered too
frequently.
The goal of the present section is to underscore the importance of investing time in the design
of alert systems while proposing and investigating some approaches. To do so, the Zurich airport
project is chosen as case study. The issue with the current alert system (from Figure 5.28), is
the few false alarms observed at very high intensities – notably the 01/07/2019, 18/06/2021 and
28/06/2021 with respectively 19.0, 31.5 and 31.6 m3 s−1 predicted. As the system aims at issuing
alerts for very high discharges (higher than 20 m3 s−1), they must be reduced or removed, without
decreasing HIT performances.
In this section, the two best rainfall-runoff models of the Zurich catchment will be used (see Sec-
tion 5.3.3 for details):

• The INCA model using a variable Imp parameter. Hereafter, it will be called model V (as
variable) for clarity.

• The INCA model using a constant Imp parameter, which will be called model C (as constant).

Several strategies will be investigated:

• Section 6.2. first, we will try to reduce the maximum lead time where the INCA forecasts
are considered. Alert system based on one of the two rainfall-runoff models will be tested.

• Section 6.3: then, the introduction of lagged forecasts207 will be investigated to reduce false
alarms. Several systems with lagged forecasts will be tested. Only model V will be used.

• Section 6.4: finally, the two rainfall-runoff models V and C will be combined to develop
multi-model alert systems. This option can be coupled with the use of lagged forecasts.
It is a first incursion in the world of ensembles with a simple example of EPS-SDM (several
models for one deterministic QPF, see Section 2.5).
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6.2 Decrease of the lead time
To remove the high false alarms, considering they are usually predicted at lead times between +60
and +90 minutes, a first idea is to reduce the lead time of the forecast. Until now, alarms were
issued if events were observed in the first 90 minutes of a forecast. In this section, this time will be
reduced to 80 minutes, 70 minutes, and so on. As before, if an alert is provided with less than 20
minutes of anticipation (compared to the observed event) it is considered as missed because it does
not give enough time for authorities to act. Furthermore, an event is still not considered a false
alarm if a real event happens before the predicted event or within the first 90 minutes following it.

6.2.1 Model V
HIT-FAR scores are provided in Figure 6.1 for several maximum lead times, with a single-model
alert system based on model V. In some cases, a curve may be hidden by others if they have identical
values. As curves are drawn by ascending lead times, the above curve is always the one with larger
lead time. For example the HIT curves at 70 and 80 minutes are hidden by the curve at 90 minutes.
Fortunately, the more restrictive is an alert system the lower are its HIT scores. This is also the
case in general for FAR scoresa. To observe the level of the high false alarms, Table 6.1 provides
the maximum discharge predicted for the three high false alarm events – the three events predicted
above 15 m3 s−1, i.e. the 01/07/2019, 18/06/2021 and 28/06/2021 events.
When the maximum lead time is decreased, less false alarms are produced. The FAR number is
reduced only slightly but steadily until 50 minutes, before dropping significantly at 40, 30 and 20
minutes. HIT scores are not affected at 80 and 70 minutes, are slightly dropping at 60, 50 or 40
minutes before being largely affected by smaller lead times. Hence, in order to keep good detection
performances, lead times strictly below 40 minutes must be avoided, while lead times of 80 or 90
minutes are useless. As observed in Table 6.1, maximum lead times of 60 or 70 minutes are also
still producing false alarms above 20 m3 s−1. Thus, for this simple single-model alert system, a lead
time of 40 or 50 minutes is recommended. It will however result in small action time available
to public authorities. Better systems are needed.
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Figure 6.1: Alert HIT-FAR scores for the single alert system based on model V with different
maximum lead times ranging from 20min to 90min. All forecasts between 20min and the maximum
lead time are considered to generate alerts.

aAs the FAR is the ratio between false alarms and alarms, if a correct alarm is removed the FAR score can be
increased even if less alarms are produced.

115



Alert system

Table 6.1: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several maximum lead times.

Maximum lead time 01/07/2019 18/06/2021 28/06/2021
20 minutes 13.2 1.3 11.4
30 minutes 15.8 5.1 10.6
40 minutes 19.0 11.4 13.5
50 minutes 19.0 16.8 15.5
60 minutes 19.0 24.7 23.9
70 minutes 19.0 31.5 31.6
80 minutes 19.0 31.5 31.6
90 minutes 19.0 31.5 31.6

Observed discharge 8.0 2.0 9.0

6.2.2 Model C
Similarly, Figure 6.2 and Table 6.2 provide respectively the HIT-FAR scores and the maximum
discharge alert generated for several maximum lead times based on model C. The observations and
conclusions from model V are still valid here. However, compared to model V, the FAR scores are
not really better while the HIT scores have largely been reduced. The interest of this model lies in
the strong reduction of the three high false alarms. Indeed, the maximum discharges are reduced
by approximately 50% with model C. Hence a lead time of 60 minutes appears now to be suitable
with this model. However, as the loss of detection performances in model C is quite important, it
seems preferable to work first with model V.
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Figure 6.2: Alert HIT-FAR scores for the single alert system based on model C with different
maximum lead times ranging from 20min to 90min. All forecasts between 20min and the maximum
lead time are considered to generate alerts.
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Table 6.2: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several maximum lead times.

Maximum lead time 01/07/2019 18/06/2021 28/06/2021
20 minutes 9.9 1.4 14.2
30 minutes 11.4 3.5 14.2
40 minutes 12.4 8.4 14.2
50 minutes 12.8 11.1 14.2
60 minutes 12.8 14.2 14.2
70 minutes 12.8 19.2 16.3
80 minutes 12.8 21.8 17.0
90 minutes 12.8 21.8 17.0

Observed discharge 8.0 2.0 9.0

6.3 Introduction of redundancy: lagged forecasts
Following the literature review – Bartholmes et al.208, Alfieri et al.207 – the introduction of redun-
dancy in the alert system may help to reduce false alarms. In this section, alert systems with lagged
forecasts are designed based on model V. Several alert triggering rules are investigated.

6.3.1 Consecutive lagged forecasts
As a first step, two consecutive threshold crossings can be required to issue an alert. It means, at
each time, the smaller maxima of the last two forecasts is taken as the maximum level expected.
The rules to determine hit and far have otherwise not been modified. The lagged forecast (the
second one) must be issued at least 20 minutes before the real event occurs. HIT-FAR scores are
provided in Figure 6.3. The value of the three potential high false alarms are provided in Table 6.3.
The observations from Figure 6.1 are still present with nearly no HIT differences from 50-60 minutes
to 90 minutes, and with a large decrease of HIT at lower lead times. However, FAR scores are now
smaller and less dependent of the lead time, allowing to use a longer lead time. While FAR scores at
high lead times have been improved compared to Figure 6.1, the drawback is a significant reduction
of HIT scores. Lagged forecasts appear to be an interesting approach, as the major false alarm
from the 18thJune 2021 has been removed – unlike the other two false alarms, this one is not linked
to any significant event in the measure. However, a warning system with less restrictions is
needed to maintain better HIT performances. The minimum anticipation time required for
authorities (20 minutes in this study) may explain part of the loss of performances, as some events
are now predicted too late to be considered hit.
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Figure 6.3: Alert HIT-FAR scores using lagged forecasts for several maximum lead times. The lead
time in the legend corresponds to the lead time of the second forecast (when the alert is finally
issued). The two dashed curves correspond to the extremal curves from Figure 6.1.

Table 6.3: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several maximum lead times, using lagged forecasts.

Maximum lead time 01/07/2019 18/06/2021 28/06/2021
20 minutes 10.3 1.1 11.4
30 minutes 13.2 2.1 11.4
40 minutes 14.5 3.0 11.4
50 minutes 17.9 3.0 15.1
60 minutes 17.9 3.3 23.1
70 minutes 17.9 3.5 30.1
80 minutes 17.9 3.7 30.1
90 minutes 17.9 3.9 30.1

Observed discharge 8.0 2.0 9.0
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6.3.2 Lagged forecasts without the consecutiveness rule
In the previous section, lagged forecasts have been required to be consecutive. However it is possible
to be less restrictive and issue an alert if at least two forecasts, consecutive or not, display a threshold
crossing. The two forecasts must be issued within a reasonable time (chosen here to be equal to
the maximum lead time). The last forecast must still be issued at least 20 minutes before the real
event occurrence. HIT-FAR scores for this case are provided in Figure 6.4. The value of the three
potential high false alarms are provided in Table 6.4.
Compared to the previous section with consecutive lagged forecasts, the model presented here have
slightly better HIT scores at high discharges (6-7 m3 s−1). FAR are also slightly increased but mostly
for the 80 and 90 minutes lead time curves. Concerning the high false alarm events, the 18/06/2021
event is still largely reduced as it does not go above 7.2 m3 s−1. Differences with consecutive
lagged forecasts are thus small but can be important to reduce the anticipation time
of an alert. Such time is essential to allow public authorities to act.
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Figure 6.4: Alert HIT-FAR scores using lagged forecasts – possibly non-consecutive – for several
maximum lead times. The maximum lead time corresponds to the maximum lead time of the second
forecast.

Table 6.4: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several maximum lead times, using lagged forecasts – possibly non-consecutive.

Maximum lead time 01/07/2019 18/06/2021 28/06/2021
20 minutes 10.3 1.1 11.4
30 minutes 13.2 2.1 11.4
40 minutes 14.5 3.0 11.4
50 minutes 17.9 3.0 15.1
60 minutes 17.9 3.3 23.1
70 minutes 17.9 6.5 30.1
80 minutes 17.9 7.2 30.1
90 minutes 17.9 7.2 30.1

Observed discharge 8.0 2.0 9.0
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6.3.3 Mix between lagged forecasts and normal forecasts
A solution to reduce the time of action lost with lagged forecasts is to mix lagged and normal
forecasts depending on the predicted time before the event. For example, if an event is predicted
in 40 minutes or before, an alert will directly be issued. However, if the event is predicted to occur
in 50 minutes or more, the alert will need to be confirmed in another forecast before launching
an alert. The cut-off anticipation time can thus be another variable of the alert system. As alert
systems with lagged forecasts at 90 minutes have shown an interesting false alarms reduction at high
discharges, all the next alert systems will have a maximum lead time of 90 minutes. To increase
HIT without increasing FAR, lagged forecasts will be introduced only strictly above the cut-off lead
time (40 minutes in the previous example). Different cut-off are tested in Figure 6.5 and Table 6.5.
All scores are located between those of the system using only lagged forecasts (dashed red) and those
of the one using only direct alerts (dashed black). HIT scores are not increased when using a cut-off
time of 20 minutes. Hence, the cut-off must be at least equal to 30 minutes. Moreover, FAR scores
are only really dropping for cut-off time below 40 minutes. Notably, for a cut-off of 30 minutes, all
alerts issued above 8 m3 s−1 correspond to events effectively occurring. This cut-off corresponds also
to the moment when the 18/06/2021 event is reduced below 10 m3 s−1. A mixed system based
on direct alerts until 30 minutes and lagged alerts above 40 minutes appears to be the
best system up to now with nearly the best HIT scores and a reduced number of false alarms.
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Figure 6.5: Alert HIT-FAR scores using lagged forecasts (possibly non-consecutive). If an event is
predicted before the cut-off in the legend, an alert is issued without waiting for a lagged forecast.

Table 6.5: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several cutoff lead times, using lagged forecasts for higher prediction times.

Direct alert until... 01/07/2019 18/06/2021 28/06/2021
Only lagged forecasts 17.9 7.2 30.1

20 minutes 17.9 7.2 30.1
30 minutes 17.9 7.2 30.1
40 minutes 19.0 11.4 30.1
50 minutes 19.0 16.8 30.1
60 minutes 19.0 24.7 30.1
70 minutes 19.0 31.5 31.6
80 minutes 19.0 31.5 31.6

Only direct alerts 19.0 31.5 31.6
Observed discharge 8.0 2.0 9.0
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6.3.4 Mix between double lagged forecasts and normal forecasts
Similarly, when the time before the prediction is large enough, the alert can be confirmed not once
but also twice to further reduce false alarms. Indeed an event observed in three forecasts – possibly
non-consecutive – is usually not a false alarm. The different alert systems developed until now with
a 90-minute lead time are displayed together in Figure 6.6 and Table 6.6. The alert systems from
Sections 6.2.1, 6.3.1 and 6.3.2 are displayed with dashed lines respectively in black, golden and red.
The mixed alert system from Section 6.3.3 with a cut-off of 30 minutes is in green while a similar
system using double lagged forecasts rather than simple lagged forecasts is displayed in purple.
HIT scores are not affected by the use of two lagged forecasts rather than only one to confirm
predictions above 40 minutes. Indeed the purple and green curves are identical. Both are very
close to the initial direct alert system: nearly no additional events are missed. Meanwhile the FAR
of the double mixed system (in purple) are the smallest obtained until now. Moreover, for the
first time, all three high false alarms have been strongly decreased. No false alarm will be issued
above 17 m3 s−1 with this alert system. Such mixed system between direct alerts and lagged
forecasts allow to obtain very good performances both in HIT and FAR.
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Figure 6.6: Alert HIT-FAR scores for alert systems based on model V with 90 minute of lead time.
Alerts can be generated with one forecast only (black dashed), two consecutive forecasts (dashed
golden), two lagged forecasts possibly non-consecutive (dashed red) or mixed systems where alerts
are instantaneously issued before 30 minutes but need to be confirmed once (green) or twice (purple)
above 40 minutes.

Table 6.6: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several cutoff lead times, using several single-model alert systems with 90 minutes lead time.

Alert system 01/07/2019 18/06/2021 28/06/2021
Direct alert 19.0 31.5 31.6

Consecutive lagged forecasts 17.9 3.9 30.1
Lagged forecasts 17.9 7.2 30.1
Mixed forecast 17.9 7.2 30.1

Double mixed forecast 15.8 5.1 16.5
Observed discharge 8.0 2.0 9.0
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6.4 Multimodel
Two distinct attempts to make the most of the two INCA models are developed. The goal is to
obtain HIT scores close to those of model V while avoiding its high false alarms.
In the first model (in golden in Figure 6.7) an alert is directly launched if the two forecasts predict
simultaneously a threshold crossing. The need for a redundancy between the two models allow
to reduce some of the main false alarms as observed in Table 6.7. However false alarms are still
numerous and the HIT scores are closer to model C than to the better model V.
Hence a second more complex system is developed (in purple in Figure 6.7). In this system, alerts
are directly launched when model V predicts an alert in the next 30 minutes. However, if a threshold
crossing is observed with more anticipation (at least 40 minutes) it needs to be confirmed by three
other lagged forecasts either in model C or V. Here the results are largely improved compared to
the two single model alert systems: HIT scores are close to those of model V while false alarms are
reduced everywhere and notably at high intensity. Nevertheless, this system does not appear to be
better than the single-model system "mixed double" (in dashed green) from Section 6.3.4.

0

10

20

30

40

Nu
m

be
r o

f r
ef

er
en

ce
 e

ve
nt

s

0

10

20

30

40

Nu
m

be
r o

f s
im

ul
at

ed
 e

ve
nt

s

0 2 4 6 8 10 12 14
Threshold [m3. s 1]

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t [

-]

Hit
Single model V
Single model C
Multi model: both required
Multi model: 4 lagged
Single model V: mixed double

0 2 4 6 8 10 12 14
Threshold [m3. s 1]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
r [

-]
Far

Figure 6.7: Alert HIT-FAR scores for several single- and multi-model alarm systems. The green
and blue lines represent the single-model alert systems without lagged forecasts for models V and C
respectively. The dashed lime curve is for the mixed single-model system based on model V (direct
alert until 30 minutes, double lagged forecasts for higher lead times). Finally the gold and purple
curves provide the scores of multi-model alert systems, respectively without lagged forecasts and
with 4 forecasts required (on either of the two models).

Table 6.7: Maximum predicted discharge – in m3 s−1 – of the three high false alarm events for
several single- and multi-model alarm systems.

Alert system 01/07/2019 18/06/2021 28/06/2021
Single-model V 19.0 31.5 31.6
Single-model C 12.8 21.8 17.0

Single-model V - mixed double 15.8 5.1 16.5
Multi-model: both required 12.8 21.8 17.0

Multi-model: 4 lagged 15.8 6.4 14.6
Observed discharge 8.0 2.0 9.0
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6.5 Best model
Thanks to the appropriate design of an alarm system, it is now possible to obtain the
best detection HIT scores while avoiding most false alarms. Two systems have reached
this goal. Both are instantaneously issuing alerts if an event is observed by model V,
30 minutes or less after the forecast issue. If the model predicts events later, it requires
a confirmation. The two models differ on the type of confirmation required. One is based on
a multi-model approach while the other one relies only on model V. Being simpler, the latter is
considered to be the best system to implement, as of now.
The alert system could be further improved by developing more rainfall-runoff models. These models
need probably to have more differences to be interesting in a multi-model approach. The direct
use of QPEs or QPFs can also help to improve the alert system. However, the main limitation
of the alert system is due to precipitation forecasts. Hence the most promising way of
improvement is probably to turn to ensembles and probabilistic approaches. Another significant
limitation of the system is the lack of data. Indeed only three years of INCA were available with a
maximum observed discharge of 11.5 m3 s−1 in the period, while the evacuation threshold has been
set at 20 m3 s−1.
Finally, it is important to point that the choice of the system needs to be developed in agree-
ment with public authorities, notably to decide where to put the trade-off between false alarms
and missed events.
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Conclusion

The determination of reliable discharge forecasts is an essential component of operational flood
management. In short response time catchments, prone to flash floods, the use of radar QPFs
becomes necessary to increase the spatial resolution and the quality of very short lead time forecasts.
In this project, radar data from MeteoSwiss were introduced in the rainfall-runoff model RS.
MeteoSwiss radar QPEs appear to be mostly in agreement with rain gauges. However some
notable differences persist. Concerning the raw radar AZC, precipitation are largely underes-
timated in winter and at small intensities and overestimated in summer and at high
intensities compared to rain gauges. While the winter underestimation is problematic, the summer
overestimation highlights the ability of radar to catch small size precipitation cells not recorded by
rain gauges. Moreover, CombiPrecip (CPCH), the radar-rain gauge merging QPE, largely improves
precipitation estimation performances in winter. It results in a very good agreement with rain
gauges in winter and a slight and interesting overestimation in summer. CPCH perfor-
mances are however limited by two issues. First, CPCH performances, similarly to AZC, degrade
with altitude. Secondly, in some regions of Switzerland, far from the SwissMetNet rain gauges
used in the radar-rain gauge merging process, CPCH performances may become similar to AZC. A
de-biasing factor of up to 1.5 may be required to use radar products in place of rain
gauges in rainfall-runoff models. It was for example necessary in the mountainous Emosson
basin while useless in the Zurich-Altbach catchment, which is at a lower altitude, and closer to
several rain gauge stations.
Once precipitation data are de-biased, they can be introduced in rainfall-runoff models. To make the
most of their spatial resolution, radar QPEs and QPFs are introduced directly in the smaller
geographical unit they belong to – altitude bands in the case of RS. Models are then calibrated.
During the calibration process, time should be mostly used to improve the modelling of
physical phenomena. Well-calibrated models have proven to be quite resilient to a change of input
data, which means it is not necessary to completely modify the calibration when using different types
of QPEs. Among the physical phenomena that should be investigated for flash flood forecasting,
a particular focus must be given to infiltration. Notably, the fraction of impervious surface
of the total basin – due to either natural (rocks) or artificial (roads, buildings) soil sealing – is a
critical parameter of the calibration. Its introduction in the Emosson catchment largely improves
the continuous model, while its modification at high precipitation intensities in Zurich
allows to catch the most severe flash flood events that were previously missed.
In operational forecast, it is confirmed that the update step is highly recommended, even
for sharp flash flood events. Post-processing, notably with cubic splines, is detrimental
for the issue of flash flood alerts in small response time catchments, but appears interesting for
cumulated volume estimation (critical quantity for hydroelectricity purposes) or in larger basins.
When replacing radar QPEs by radar QPFs (i.e. INCA), a clear loss of performances is observed
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both in Emosson and Zurich-Altbach. However, compared to the COSMO NWP, INCA provides
significantly better performances with notably a good reactivity. The two main issues of
INCA discharge forecasts are the small alert anticipation time and the high false alarms.
The latter are due to incorrect localization of precipitation cells inside of the catchment. This
problem, which may be reduced by the use of ensembles, is mostly present in small-size catchments
such as La Fouly and Zurich-Altbach. Another solution to mitigate both difficulties is to design an
appropriate alert system, by using forecast redundancy or multi-model approach. The necessity
to invest time in the design of the alert system has been demonstrated in this project.
This project needs to be continued to further improve operational discharge forecasts with radar
data. Notably, ensembles of radar QPFs appear to be an interesting approach. It is an
emerging field of research and seems to be adapted to the present situations, notably in
Zurich-Altbach. Ensembles may be provided by MeteoSwiss in the INCA product or may be
created from the median scenario used in this report. In the latter case, ensembles can be produced
by spatial or temporal modifications, by the addition of random noise, or by the use of several
hydrological models. An important focus will then need to be put on the integration of ensemble
results into a deterministic (or probabilistic) alert system. In a world that is becoming more and
more prone to severe natural hazards, as stated by the WMO6, it is necessary that all actors of
flood management integrate uncertainty at all steps of the process, from precipitation forecasts to
final decisions and actions, passing by discharge predictions and alert issue.
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HIT-FAR for alerts - computation
details

Figure A.1 describes with some examples the HIT and FAR computation for alerts. Events (both
realized and announced) are considered as distinct events if there is a gap of 90 minutes between
the moment when the first event is passing below the threshold and the moment when the second
event is passing above it. As explained in Section 3.3.2.3, for the hit computation, only the 90 first
minutes of the forecast generated between 90 minutes and 20 minutes before the observed crossing
are considered. If any of them predicts a crossing between 90 minutes before and strictly less than
20 minutes after the observed crossing, the event is hit. The hit computation scheme is provided
in Figure A.2a. For the FAR score, an announced event from a forecast is not a far if the reference
is crossing the threshold between the moment the alarm is launched and +90 minutes after the
predicted time of crossing. The process is described in Figure A.2b.
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(a) (b)

(c)

Figure A.1: Computation of alert HIT-FAR scores. Events are characterized by their time of
threshold crossing. To be a hit, an event must be forecasted to be between 90min before and 20min
after the event. The forecast must also be provided between 90 and 20min before the event (circles).
Forecasts provided afterwards are provided too late (red crosses). An alarm is not a false alarm
if an event occurs between 90min before and 90min after the predicted event. In case A.1a, the
8 forecasts between 90 and 20min before the event (21h) are considered. Each of them predict a
crossing of the threshold (with tolerance) before 21h so it is a hit event. In case A.1b the forecast
at -20min predicts the event just 10 minutes after the real event (16h20). Thanks to both temporal
and discharge tolerances, as one of the forecast produces a good alarm, this event is a hit. However,
in case A.1c where no tolerance is applied on the discharge, the event is predicted too late and is
considered to be missed. It is not a far event as an event is observed after the prediction time and
before the predicted event.

(a) (b)

Figure A.2: Schemes of computation followed for determination of hit (left) and far (right) events.
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Additional figures for the assessment
of radar products

B.1 AZC regional performances

B.1.1 Regional dependency
The results of the raw radar AZC product according to the region of Switzerland are provided below
in Figures B.1 (HIT-FAR scores) and B.2 (mean monthly precipitation). The ratios of CCDF were
provided in Figure 4.8. The observations from Section 4.3 and 4.4.1 are still valid.
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Figure B.1: HIT/FAR regional mean values of AZC for the period from 17/07/2018 0h to 28/09/2021
0h (local time) with a tolerance of 30%. The right axis provides the number of reference events (for
the HIT score) and simulated events (for the FAR score).
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Figure B.2: Month precipitation ratio between AZC data and rain gauge data in the period from
17/07/2018 0h to 28/09/2021 0h (local time). Both AZC and rain gauge data are averaged by
regions.

B.1.2 Altitude dependency
The results of the raw radar AZC product ordered by class of altitudes are provided below in
Figures B.3 (HIT-FAR scores), B.4 (mean monthly precipitation) and B.5 (cumulative distribution
functions). The observations from Section 4.3 and 4.4.2 are still valid with curves ordered by altitude
– higher performances, lower bias and seasonal behaviour, more small and high intensity events at
low altitude – and with poorer performances and higher seasonal bias in AZC.
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Figure B.3: HIT/FAR scores of AZC aggregated by station altitudes for the period from 17/07/2018
0h to 28/09/2021 0h (local time) with a tolerance of 30%. The right axis provides the number of
reference events (for the HIT score) and simulated events (for the FAR score).
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Figure B.4: Month precipitation ratio between AZC data and rain gauge data in the period from
17/07/2018 0h to 28/09/2021 0h (local time). Both AZC and rain gauge data are averaged by
altitude.
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Figure B.5: Ratios of the CCDF of AZC over the CCDF of rain gauges for different altitudes
between 2018 and 2021. A logarithmic scale is used for the x-axis.
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B.2 Co-kriging performances far from SwissMetNet stations

B.2.1 Overall performances
The classic analyses of this report are provided for the two networks in this section. HIT-FAR
scores are provided in Figure B.6 while monthly mean precipitations are provided in Figure B.7.
Concerning the HIT and FAR scores, while they were largely better for CPCH than for AZC in the
SwissMetNet stations, they are nearly similar between them (very slightly better for CPCH) in the
BVE network. The co-kriging is however more efficient in Ticino where CPCH is clearly improved
both in HIT and FAR, compared to AZC.
For the mean monthly precipitation, the analysis joins the bias analysis presented in Section 4.7.3.
In Bern, while AZC has similar shapes in both networks, CPCH and inca0 are significantly different.
On the contrary, the shapes of CPCH (and inca0) are pretty similar in the oasi and SwissMetNet
networks in Ticino.
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(a) Bern region - BVE network
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Figure B.6: HIT/FAR scores of AZC, CPCH and inca0 for the period from 2018-2021 for the two
cantonal networks. Two tolerances (10% – dashed lines – and 30% – solid lines) are used.
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(a) Bern region - BVE network
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(b) Bern region - SwissMetNet
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(c) Ticino region - oasi network
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Figure B.7: Radar mean monthly precipitation analysis in Bern (top) and Ticino (bottom) cantons
for the cantonal network (left) and for SwissMetNet (right). The period of analysis is 2018-2021.

B.2.2 Influence of altitude and distance on co-kriging performances
The 14 stations of the BVE network and the 19 stations of the oasi network can be ordered according
to their distance to the closest MeteoSwiss station or to their altitude. Table B.1 provides the number
of rain gauges in each class. HIT-FAR and mean monthly precipitation analyses, according to the
distance and altitude, are provided by Figures B.8 to B.11. All differences between the AZC and
CPCH curves appear to be similar for each altitude and for each distance.

Table B.1: Number of BVE and oasi stations by altitude and distance to the closest SwissMetNet
station.

BVE oasi

Class Number of
stations Class Number of

stations

Altitude
0-1000m 5 0-500m 7

1000-1500m 6 500-1000m 6
>1500m 3 >1000m 6

Distance
0-5km 2 0-4km 4

5-7.5km 5 4-6km 4
7.5-10km 4 6-8km 8
>10km 3 >8km 3
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Figure B.8: BVE HIT/FAR scores of AZC or CPCH between 2018 and 2021 according to distance to
the SwissMetNet network (left) or to altitude (right). A tolerance of 30% is applied. Improvements
between AZC and CPCH are similar at all distances and altitudes.
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Figure B.9: oasi HIT/FAR scores of AZC or CPCH between 2018 and 2021 according to distance to
the SwissMetNet network (left) or to altitude (right). A tolerance of 30% is applied. Improvements
between AZC and CPCH are similar at all distances and altitudes.
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Figure B.10: Month precipitation ratio between AZC or CPCH and rain gauges from the BVE
network according to the distance to the SwissMetNet network (left) or to the altitude (right).
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Figure B.11: Month precipitation ratio between AZC or CPCH and rain gauges from the oasi
network according to the distance to the SwissMetNet network (left) or to the altitude (right).
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Appendix C

Parameters of RS models

C.1 Emosson

C.1.1 Update of the model with new temperature stations
The main parameters of the RS models used in Section D.2.1 are provided in Tables C.1 and C.2.
The former contains the parameters that are identical in all four models while the latter contains
the parameters that have been modified.
For the slow reservoirs, these tables only report their presence or absence. Their parameters are
not detailed as they do not impact strongly the models. Similarly, the snow melt parameter An has
been calibrated by altitude bands. However we only report here its minimal and maximal values in
the lower altitude bands which are the one playing the main role in snow melt discharge.

Table C.1: Parameters of the Emosson models not modified for the four models from Section D.2.1.

Parameter Unit La Fouly Saleina Trient Coll. Est
Virtual station
coeffI - 1 0.75 1

coeffETP - 1
gradT

(Dry/Wet)
◦C m−1 -0.0054/-

0.006
-0.0054/-

0.005
-0.006/-

0.005
-0.0054/-

0.0054
iCrGradTHum mm h−1 3

SWMM
Area imp - 0

Ks m1/3 s−1 Tab. C.2 0.8 0.7
GR3

Hmax m 0.3 0.25 0.3
K - 0.003
aK - 5 6 5
aInf - 2 3 2

Slow reservoir Tab. C.2 ✗

Glacier
KN - 0.1 0.05 0.2

KGL - Tab. C.2 0.3

Slow reservoir ✓(slight
variations) ✓
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Table C.2: Parameters of the Emosson RS models modified between the four models from Sec-
tion D.2.1.

Parameter Sub-basin Aigle Les Maré-
cottes Montagnier Montagnier-

LM

Virtual station

gradI
[m/s/m]

La Fouly 0.4 0.32 0.23 0.5
Saleina 0.45 0.5 0.28
Trient 0.3 0.5 0.2

Coll. Est 0.5

coeffT
[◦C]

La Fouly 0.4 -0.8 -0.7 -0.45
Saleina -0.4 -1.25 -0.7
Trient -0.3 -1.2 -1

Coll. Est 0

SWMM
Ks

[m1/3 s−1] La Fouly 0.7 0.8 0.7

GR3
Slow reservoir La Fouly ✓ ✗

Glacier

Agl
[mm/°C/d]

La Fouly 6 4 5
Saleina 2.8 2.7 2.4
Trient 4.5 3 3.8

Coll. Est 4.5
KGL [-] La Fouly 0.2 0.3 0.2

Snow

An
[mm/°C/d]

La Fouly ∼ 0.5-2.5 ∼ 1-2.5
Saleina ∼ 1-2.5 ∼ 0.8-1.5 ∼ 0.5-1.2
Trient ∼ 1-2

Coll. Est ∼ 1.5-2.5 ∼ 1-2
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C.1.2 Integration of radar data
Tables C.3 and C.4 provide the parameters of models A.1. (rain gauge input), A.2. (CPCH), A.4.
(AZC) and B.1. (rain gauge). The former reports the parameters that have not been modified
in the four models while the latter reports the modified parameters. For the other models, model
A.3. (CPCH) and A.5. (AZC) are based on model A.1. with two modifications: coeffI is
equal to 1.4 and gradI is null in both models and for all four sub-catchments. Similarly models B.2.
(CPCH) and B.3. (AZC) are based on B.1. with the same two modifications of coeffI and
gradI. Finally 10-minute timestep models B.4., B.5. and B.6. are based respectively on models
B.1., B.2. and B.3. with the critical precipitation for humid temperature gradient iCrGradTHum
passing from 3 mm h−1 to 2 mm h−1.
In the last model B.1. impermeable areas (in the SWMM model) and radiation effects (snow and
glaciers) have been introduced in La Fouly and Trient.

Table C.3: Parameters of the Emosson RS models not modified between the models A.1., A.2., A.4.
and B.1. from Sections D.2.2 and D.2.3.

Parameter Unit La Fouly Saleina Trient Coll. Est

Virtual station
coeffETP - 1

gradT (Dry/Wet) ◦C m−1 See
Tab. C.4

-0.0054/-
0.005

See
Tab. C.4

-0.0054/-
0.0054

iCrGradTHum mm h−1 3

SWMM

Imp - See
Tab. C.4 0 See

Tab. C.4 0

Ks m1/3 s−1 0.7 0.8 0.7

GR3
Hmax m 0.3 0.25 0.3

K - 0.003
aK - 5 6 5
aInf - 2 3 2

Glacier
Slow reservoir ✓(slight variations)

Ray - See
Tab. C.4 0 See

Tab. C.4 0

SRF mm/W/d See
Tab. C.4 0 See

Tab. C.4 0

Snow

SRF mm/W/d See
Tab. C.4 0
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Table C.4: Parameters modified between models A.1., A.2., A.4. and B.1.

Parameter Sub-basin A.1.
(rain-gauges) A.2. (CPCH) A.3. (AZC) B.1.

(rain-gauges)
Virtual station

coeffI
[-]

La Fouly 0.9 1.4 0.9
Saleina 0.9 1.3 1.2 0.9
Trient 0.9 1.3 1.25 0.9

Coll. Est 0.9 1.3 1.5 0.9

gradI
[m/s/m]

La Fouly 0.5 0 0.5
Saleina 0.3 0 0.3
Trient 0.35 0 0.35

Coll. Est 0.5 0 0.5

coeffT
[◦C]

La Fouly 0 0.1 0
Saleina -0.7 -0.4 -0.2 -0.7
Trient -1 -0.5 -0.2 -1

Coll. Est 0 0.5 0
gradT (D/W)

◦C m−1
La Fouly -0.0054/-0.006 -0.0054/-0.0054

Trient -0.006/-0.005 -0.006/-0.0038
SWMM

Imp
[-]

La Fouly 0 0.1
Trient 0 0.2

GR3

Slow reservoir

La Fouly ✗ ✓

Saleina ✗ ✓ ✗

Trient ✓

Coll. Est ✗ ✓ ✗

Glacier

Agl
[mm/°C/d]

La Fouly 7.5 5.9 2
Saleina 1.9 1.7 1.9
Trient 4.4 3.5 3.2

Coll. Est 6.5

KN
[-]

La Fouly 0.1 0.05 0.2 0.02
Saleina 0.05
Trient 0.05 0.07

Coll. Est 0.2 0.3 0.2

KGL
[-]

La Fouly 0.2 0.1 0.3 0.07
Saleina 0.3 0.1 0.15 0.3
Trient 0.1 0.15 0.2

Coll. Est 0.5 0.2 0.5

Ray [-] La Fouly 0 1.8
Trient 0 0.25

SRF
[mm/W/d]

La Fouly 0 35
Trient 0 8

Snow

An
[mm/°C/d]

La Fouly ∼ 0.8-2.2 ∼ 1.5-2.5 ∼ 1-2 ∼ 0.4-1.6
Saleina ∼ 0.3-1.2 ∼ 1-1.2 ∼ 0.3-1.2
Trient ∼ 1.5-2 ∼ 0.6-2 ∼ 0.3-2 ∼ 0.8-1.7

Coll. Est ∼ 0.3-1.5 ∼ 0.8-1.5 ∼ 0.3-1.5
SRF [mm/W/d] La Fouly 0 15

138



Appendix

C.2 Zurich

C.2.1 First models
The parameters for Zurich catchment are provided in Table C.5. As the calibration process is only
based on a calibration on stations and a de-biasing for radar inputs, all models are similar except
for coeffI, which is slightly larger in inca0, and gradI which needs to be put to 0 for radar input
data.

Table C.5: Parameters of the Zurich RS models from Section 5.3.1.

Parameter Unit Rain-
gauge CPCH RZC INCA0

Virtual station
coeffI - 0.9 0.95
gradI m/s/m 0.3 0
coeffT ◦C 0

gradT (Dry/Wet) ◦C m−1 -0.0054/-0.00378
iCrGradTHum mm h−1 3

coeffETP - 2

SWMM
Ks m1/3 s−1 0.3
Imp - 0.1

GR3
Hmax m 0.4

K - 0.003
aK - 5
aInf - 2

Slow reservoir ✓

Snow
An - 600-900m mm/°C/d 2.5

C.2.2 Improved models
Table C.6 provides the parameters that have been modified in the two new models. Figure C.1
displays the schemes of the three models (old model and 2 new models with/without variation of
the impermeable area Imp) with notably the river sections that have been added. These river
sections have similar characteristics, and have lengths comprised between 500 and 700 m. Between
the two new models, there is two differences:

• The impermeable area is constant and equal to Imp0 in both sub-basins in the model with
constant impermeable area while it follows Equation C.1 in the lower sub-basin in the model
with variable impermeable area.

• More rivers are added in the model with variable impermeable area as the response is accel-
erated at high intensity. This response needs to be delayed to match the observed discharge.

Imp = Imp0 + Impmax − Imp0

1 + exp
(
− i−i1/2

i0

) (C.1)
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Table C.6: Parameters modified in the new Zurich RS models from Section 5.3.3.

Parameter Unit Previous
value

Upstream
catchment

(Bassersdorf

Downstream
catchment

SWMM
Ks m1/3 s−1 0.3 0.8 0.3

Imp0 - 0.1 0.1 0.12
Impmax - 0.1 0.1 0.4

i1/2 mm h−1 - - 16
i0 mm h−1 - - 4

GR3

Slow reservoir ✓ slight modifications slight
modifications

(a) Old models (b) New model with constant impermeable area

(c) New model with variable impermeable area

Figure C.1: Schemes of the old model and of the two new models (with/without variable imper-
meable area). River sections have been added in the new model to delay the response. They are
modelled via a kinematic wave model (KW).
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Integration of radar data in the
Emosson RS model

This chapter provides the detailed results of the study developed on the Emosson basin. A synthesis
of these results is proposed in Section 5.2.
The Emosson catchment is a mountainous basin with a glacial behaviour. As explained in Sec-
tion 3.4.1, daily HIT-FAR scores will be used to assess the performances of continuous models while
alert HIT-FAR scores and cumulated volume indicators will be studied in the hindcast process.

D.1 Method adaptations for mountainous catchments

D.1.1 Continuous HIT-FAR scores
For mountainous catchments (Emosson) where the snowpack and the glaciers play a determinant
role creating a strong seasonal curve – where daily variations of the discharge are smaller than its
seasonal variation – the event separation is difficult. Indeed discharge will be higher than small
thresholds during a prolonged period (e.g., whole summer) and this period will be considered as
only one event (or more if some data are missing...). One solution could be to subtract a seasonal
component to the total discharge. Nevertheless such method has not been developed here and
daily HIT and FAR scores will be computed instead. These scores are computed by taking the
daily maximum values and comparing them between simulated and reference data. Time is not
anymore important: if the maximum of the reference discharge occurs at 1h and the maximum of
the simulated discharge the same day has the same value but at 23h it will still count as a hit.
A tolerance of 10% is still applied on the value but with a different mechanism for the FAR com-
putation. For FAR by events, the chosen threshold is applied to the simulated discharge and the
event is a false alarm if the reference discharge is below 90% of this threshold. On the contrary, a
110%-threshold is applied to the simulated discharge and the daily event is a far if the reference is
below 100% of this threshold. The daily HIT-FAR scores mechanism is presented in Figure D.1. For
the HIT computation there is no differences in the management of tolerance between both cases.
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Figure D.1: Determination of hit and far events for daily analysis. The discharge threshold is
3 m3 s−1 with a tolerance of 10%. The reference data (river gauge) are in red and the simulated
data are in blue. Reference events are the events (from the reference) exceeding the 3 m3 s−1

threshold while simulated events are those (from the simulation) exceeding the 3.3 m3 s−1 threshold
(10% tolerance). A simulated event (resp. a reference event) is a noFar event (resp. a hit event) if
the reference data (resp. simulated data) exceeds the 3 mm h−1 threshold (resp. 2.7 mm h−1).

D.1.2 Volume analysis
In Emosson, the knowledge of the future inflow cumulated volume is important for the reservoir
management. Hence the performances of the models for volume predictions will also be evaluated.
Two indicators will be used:

• HIT-FAR scores. They will be applied for cumulated volume over a given period of a forecast,
usually 60 or 360 minutes. Usual HIT/FAR by event are obtained on these continuous datasets
(same process as in the previous section) considering the maximum of the event (the exact
timing of the event is not considered).

• The Mean Absolute Error (MAE) of the cumulated volumes will also be computed month by
month. Its formula is provided by Equation D.1 with n the number of timesteps, Vobs the
observed cumulated volume and Vsim the simulated one. It notably gives information on the
seasonal dependency of forecast errors.

MAE = 1
n

n∑
i=1

|Vsim(ti) − Vobs(ti)| (D.1)
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D.2 Calibration of the Emosson model

D.2.1 Update of the model with new temperature stations
As a first step, the RS model for Emosson basin is updated to use newly available temperature sta-
tions. Historically, the Emosson model of Hydrique was only fed by Aigle and Grand-Saint-Bernard
(GSB) stations for respectively temperature and precipitation. With the integration of the Valais
precipitation network in 2015, the GSB precipitation was discarded. On the temperature side new
temperature stations have been recently integrated to the MeteoSwiss network: Les Marécottes has
been integrated in 2015 and Montagnier-Bagnes in 2019 (but data are available since 2017). It could
be interesting to improve the current model by replacing the Aigle station by those new stations
which are closer to the basin. Therefore, different models, based on different sets of temperature
stations, are developed and compared:

• Aigle: A model based only on the temperature from Aigle.
• Les Marécottes: A model based on the temperature from Les Marécottes and Champéry (the

latter provided by Meteogroup).
• Montagnier: A model based on the temperature from Montagnier-Bagnes and Champéry.
• Montagnier-LM: A model combining the temperature data from Les Marécottes, Montagnier-

Bagnes and Champéry.

All the models use rain gauge data as inputs and are calibrated independently. The main parameters
of the models are provided in Appendix C.1.1. Table D.1 displays the Nash scores for each of the
four sub-catchments on which the calibration is performed. Nash values for high reference discharges
only are also proposed. Compared to the old operational model (which uses Aigle as temperature
input), excepted in La Fouly, Nash scores have been largely improved. These values show that the
best model uses Montagnier-Bagnes, Les Marécottes and Champéry as temperature inputs.

Table D.1: Nash scores of RS models for different temperature inputs. Best scores for each sub-basin
are coloured in green.

La Fouly Saleina Trient Collecteur Est
Q > 0 3 m3 s−1 0 1.5 m3 s−1 0 1.5 m3 s−1 0 5 m3 s−1

Old model 0.92 0.76 0.86 0.33 0.87 0.32 0.92 0.72
Aigle 0.88 0.63 0.88 0.44 0.89 0.53 0.93 0.76
Les Marécottes 0.88 0.65 0.88 0.47 0.9 0.59 0.94 0.79
Montagnier 0.9 0.69 0.87 0.4 0.9 0.6 0.95 0.82
Montagnier-LM 0.9 0.75 0.89 0.49 0.9 0.6 0.95 0.83

Moreover Figure D.2 displays the values of daily HIT and FAR discharge scores at the Collecteur Est
for each model, along with the HIT and FAR scores of the old model (based on Aigle temperature
data). The HIT and FAR scores of the four new models are all close to each other and are better than
the old model. As observed during the calibration, the model Montagnier-LM is globally performing
the best with the second highest HIT scores and the second lowest FAR scores. Hence, for the
next analyses, all models will be based on temperature data from Montagnier-Bagnes,
Les Marécottes and Champéry.
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Figure D.2: Daily discharge HIT/FAR scores at Collecteur Est for the models with different tem-
perature input data. The old model scores are displayed in red and a tolerance of 10% is used.
The vertical axis has been stretched to better observe the differences. The right axis provides the
number of reference events for the HIT score. The covered period of time is 01/10/201801/10/2021.

D.2.2 Integration of radar data in the hydrological model: Simple de-biasing
or complete calibration ?

To take advantage of the spatial information provided by radar data, CPCH and AZC gridded data
need to be introduced in the RS hydrological models. Each grid point will be introduced directly in
the altitude band to which it belongs. However several strategies can be used to adapt the model
to the input data:

• A complete calibration of the model parameters could be realized to reach the best Nash scores
possible. This requires an important time as a calibration is needed for each input data: rain
gauge stations, CPCH and AZC.

• A simple de-biasing could be introduced more simply. The idea is to calibrate the model only
once, for example for the rain-gauge stations, and then to only adapt one parameter when
using CPCH or AZC: coeffI a multiplicative factor of correction applied to the precipitation
input dataa. The de-biasing of precipitation inputs is also performed during the complete
calibration.

Physically, changing the parameters of the model for each type of precipitation input does not
make a lot of sense as the physical phenomena do not depend on the precipitation. However
all precipitation data, including rain gauge data, are subject to uncertainties and errors. Rain
gauges are also available only locally and need to be interpolated on the basins. Changing the
physical parameters of the model can help to artificially remove some of these errors. Notably, the
calibration can reduce seasonal bias by putting more weight on certain seasonal phenomena than
on others (e.g., snow melt, glacier melt, intense summer precipitation, etc.). Such a seasonal bias
has notably been observed for AZC (Figure 3.11). The comparison between simple de-biasing and
complete calibration is in reality a comparison between different approaches: a physical approach
where the physics is similar in all model and a mathematical approach where the goal is only to
optimize some indicators.

aA second parameter, the altimetric coefficient of precipitation gradI, must also be modified and put to 0 as radar
data are provided at ground surface. It is used, for rain-gauge input data, to interpolate the precipitation in altitude
where the intensity is increased. Such feature is probably lacking in radar data which may explain the CPCH bias far
from stations. It may be needed to introduce it during the co-kriging interpolation process.
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To investigate the interest of calibrating the model for each type of input rather than only de-biasing
it, several models are set up:

• A.1. A reference model using rain gauge stations as inputs and calibrated for it.
• A.2. A model using CPCH gridded data as inputs and calibrated for it.
• A.3. A model using CPCH gridded data as inputs with a simple de-biasing. Except coeffI b

the other parameters are identical to model A.1.
• A.4. A model using AZC gridded data as inputs and calibrated for it.
• A.5. A model using AZC gridded data as inputs with a simple de-biasing. Except coeffI b the

other parameters are identical to model A.1.

The multiplicative factor coeffI required to de-bias radar data is chosen to respect the yearly cumu-
lated precipitation observed. These data are provided by the the Swiss hydrological atlas website222.
To do so, a coefficient of 0.9 is applied to rain gauge inputs in model A.1. Meanwhile, a coefficient
of 1.4 is applied to both CPCH and AZC models (A.2-5.) to obtain the right amounts of precip-
itation. It demonstrates that, while CPCH is nearly unbiased close to rain gauge stations
(Section 3.4.1.2), it is as biased as AZC far from them. This coefficient is similar between
specifically-calibrated models and de-biased-only models: specifically-calibrated models A.2. and
A.4. require an important de-biasing of input data that the calibration is not able to remove alone.
The other parameters are provided in Appendix C.1.2.
Table D.2 provides the Nash scores (global and above a threshold) for the four sub-basins. These
scores are of course higher for specifically-calibrated models (A.2. and A.4.) than for de-biased-
only models (A.3. and A.5.) where no further steps are performed to improve them. However, the
differences are small in Trient and in the outlet of the catchment in Collecteur Est.

Table D.2: Nash scores of models A.1. to A.5. in Emosson basin. When the scores of specifically-
calibrated models are more than 3% higher than those of de-biased-only models, the last ones are
coloured in red.

La Fouly Saleina Trient Collecteur Est
Q > 0 3 m3 s−1 0 1.5 m3 s−1 0 1.5 m3 s−1 0 5 m3 s−1

A.1. 0.9 0.73 0.91 0.62 0.92 0.68 0.95 0.84
A.2. 0.93 0.78 0.92 0.64 0.91 0.66 0.95 0.83
A.3. 0.88 0.66 0.9 0.54 0.9 0.63 0.94 0.82
A.4. 0.88 0.64 0.9 0.55 0.87 0.47 0.92 0.75
A.5. 0.86 0.58 0.88 0.44 0.87 0.47 0.92 0.75

Concerning the HIT-FAR scores, on which no model has been calibrated, they are displayed in
Figure D.3 for Emosson-Collecteur Est and La Fouly. As observed for the precipitation inputs
(Figure 3.10), AZC models performances are poorer than rain-gauge and CPCH ones in both sub-
basins: the errors on raw radar input data are transferred through the rainfall-runoff model. CPCH
models are also performing slightly worse than the rain-gauge model A.1. in Emosson-Collecteur
Est, with model A.2. having smaller HIT scores and model A.3. having higher FAR scores.

band gradI
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Figure D.3: Daily discharge HIT/FAR values of models A.1. to A.5. for Collecteur Est (top) and La
Fouly (bottom). The vertical axes have been stretched to better observe the differences. The right
axis provides the number of reference events for the HIT score. Solid lines represent specifically-
calibrated models and dashed lines de-biased-only models.

For AZC, the calibration process seems to bring small improvements of few percent at high discharges
both in HIT and FAR and for both catchments. The only bigger difference is in Emosson-Collecteur
Est in HIT where differences reach nearly 10%. No differences are observed at small discharges. For
CPCH however, in Emosson-Collecteur Est, though FAR scores are higher for the de-biased-only
model A.3., the latter also as better HIT scores. It hence seems to perform as well as the specifically-
calibrated model A.2. with a slightly different trade-off between HIT and FAR. Its performances
are nevertheless poorer in La Fouly where the calibration appears to have improved performances
by 5 to 10% at high discharges.
Although a complete specific calibration seems to improve by few percent the performances of
radar-input models, it is time-costly and does probably not worth to invest time in it. A simpler
de-biasing procedure provides already good performances with HIT scores above 0.85-0.9
even at high discharges and FAR scores below 0.2. The best way to improve the model is
thus probably more to integrate new features in the models for rain-gauge inputs and
then to de-bias it for radar data.
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D.2.3 Best model
An improvement of the rain gauge model is developed with some new features. A dependence
of the snow and glacier melt with radiation – and not only temperature – is first introduced in
the model to improve the seasonal shape, notably between the end of July and October. As the
peaks of temperature and radiation occur at different times, a new degree of freedom is available to
model the melt of glaciers. The characteristics of the slow reservoir of the glacier are also modified.
Finally, transfer coefficients of the glacier and the snow models are tuned to better model the diurnal
variations of discharge.
Impermeable areas are then introduced in the SWMM object (Storm Water Management Model).
Depending of the sub-basins, between 0% and 20% of the total area is considered as impermeable
area. On this area water will not infiltrate in the ground but will directly be returned as run-off.
The fraction of impermeable area Imp is a parameter which does not affect the general behaviour of
discharge but which increases the peak discharge during rainfall events. An example of response to
an event in La Fouly sub-basin with and without impermeable area is proposed in Figure D.4. The
addition of impermeable area is able to increase the peak discharge during precipitation
events, allowing to be closer to the measured peak discharge (in red). The shape of simulated
events is also sharper though not enough compared to the reference. However, as observed on the
7thOctober, the drawback is more false alarm events.

Figure D.4: Five consecutive events of early October 2019 in La Fouly. The red curve is the reference
discharge measured at La Fouly, the blue one is from model A.1. with no impermeable areas and
the green one is from model B.1. with 10% of the sub-basin modelled as impermeable area.

With these elements, a better model, called B.1., calibrated for the rain-gauge stations is ob-
tained. Its parameters are provided in Appendix C.1.2. A de-biasing is then performed for CPCH
(model B.2.) and AZC (B.3.) with the same coeffI factors than in Section D.2.2. Nash values for
the three models are proposed in Table D.3. These scores show that, despite focusing on improving
the shape and peak discharge of events, the global model for the rain-gauge stations (B.1.) has been
improved. Moreover improvements are even larger for CPCH and AZC, demonstrating that the new
model is more resilient to changes of input data: the physics behind the model is probably
better now.
To observe if these global improvements result in boosted flood modelling skills, daily HIT and
FAR scores are displayed in Figure D.5. The performances of the rain-gauge model B.1. have been
slightly improved in La Fouly while they are similar to model A.1. in Emosson-Collecteur Estc.

cThe only worsening point is observed for FAR at high discharges (25 m3 s−1 corresponding to 27.5 m3 s−1 with
the tolerance – see Section D.1 and Figure D.1.) where 3 new events – underestimated in the previous model A.1. –
have just past over the threshold during the summer 2021 in addition to the 4 real events.
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Moreover, improvements in the calibration of the rain-gauge model B.1. result mostly in strong and
steady improvements of the HIT and FAR scores for de-biased CPCH and AZC models B.2. and
B.3. both in Emosson-Collecteur Est and in La Fouly, notably at high discharges. The de-biasing
procedure appears to work better with the new model B.1. De-biasing is now a reliable
but simple method, that allows to obtain similar or better performances with CPCH radar data
than with rain-gauge stations data. These models, and notably the model B.2. for CPCH
gridded data, can now be used in re-forecast analysis.

Table D.3: Nash scores of models B.1. to B.3. in Emosson. Values are coloured in green if higher
than in the corresponding models of the previous section (A.1., A.3. and A.5.) and in red if lower.

La Fouly Saleina Trient Collecteur Est
Q > 0 3 m3 s−1 0 1.5 m3 s−1 0 1.5 m3 s−1 0 5 m3 s−1

B.1. 0.91 0.74 0.91 0.62 0.92 0.67 0.95 0.84
B.2. 0.9 0.71 0.9 0.54 0.91 0.61 0.94 0.83
B.3. 0.87 0.63 0.88 0.44 0.88 0.5 0.93 0.77
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Figure D.5: Daily discharge HIT/FAR values of models B.1. to B.3. (in solid lines) for Collecteur
Est (top) and La Fouly (bottom). The vertical axes have been stretched to better observe the
differences. The right axis provides the number of reference events for the HIT score. Dashed lines
provide scores of models A.1., A.3. and A.5. as displayed in Figure D.3.
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D.2.4 10-minute timestep models
To pave the way for re-forecast analysis with 10-minute timestep forecast data, it is finally necessary
to use the previous models with 10-minute data. Radar data were obtained by aggregating over
10 minutes the 5-minute-timestep products provided by MeteoSwiss. RS hydrological models are
similar to 1-hour timestep modelsd. Three models B.4. to B.6. are used, corresponding respectively
to models B.1. to B.3. Computation is done with a timestep of 10 minutes, but results are saved all
hours for comparison purposes with previous simulations. Nash values are displayed in Table D.4
and HIT-FAR scores in Figure D.6.
Globally, while performances are worse in La Fouly both for Nash, HIT and FAR scores, they are
better in the smaller catchments of Saleina and Trient and are similar in the outlet in Emosson-
Collecteur Est – where both HIT and FAR scores are reduced, resulting in a different trade-off
between them. Such behaviour is not unexpected as Trient and Saleina basins being smallere, they
have also smaller response times and 10-minute data can provide new information. On the
contrary in La Fouly, 10-minute data bring more error and uncertainty than new useful
information. It needs to be noted that a small underestimation bias of up to 4-5% has been
observed in the cumulated volumes of CPCH and AZC disaggregated precipitations compared to
the original 1h-data. A different (higher) de-biasing may have brought better results notably in La
Fouly.

Table D.4: Nash scores of models B.4. to B.6. in Emosson basin. Values are coloured in green if
higher than in hourly models (B.1-3.) and in red if lower.

La Fouly Saleina Trient Collecteur Est
Q > 0 3 m3 s−1 0 1.5 m3 s−1 0 1.5 m3 s−1 0 5 m3 s−1

B.4. 0.9 0.72 0.91 0.63 0.92 0.68 0.95 0.84
B.5. 0.9 0.71 0.9 0.55 0.91 0.63 0.94 0.82
B.6. 0.87 0.62 0.88 0.45 0.88 0.51 0.93 0.77

dThe only change consists in a diminution of the ICrGradTHum parameter. This parameter is a precipitation
threshold above which the altimetric gradient of temperature is changed from a dry value to a smaller wet value as
temperature increases when it rains. It needs to be diminished as precipitation are more frequently in the dry zone
with 10-minute data.

eThe discharge gauges in Saleina and Trient are only measuring the water inflow from their sub-basin and not
the ones from upstream sub-basins. The sum of all sub-basins discharges corresponds approximately to the discharge
measured in Emosson-Collecteur Est.
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Figure D.6: Daily discharge HIT/FAR values of 10-minute timestep models B.4. to B.6. (in solid
lines) for Collecteur Est (top) and La Fouly (bottom). The vertical axes have been stretched to
better observe the differences. The right axis provides the number of reference events for the HIT
score. Dashed lines provide scores of models B.1. to B.3. as displayed in Figure D.5.
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D.3 Hindcast and event analysis
D.3.1 Hindcast process
An update of the model initial conditions is performed based on model B.5. (CPCH with 10-minute
timestep) as this model performs as well as the rain-gauge based model. Several runoff forecasts
are then produced:

• Three perfect forecasts based on observed precipitation data from rain gauges, CPCH or RZC.
They differ from continuous simulations by the use of the update step before the simulation.
These forecasts are only available in re-forecast mode (and not in operational mode). They
are called perfect forecasts because they use perfect QPFs (i.e. observations).

• A semi-perfect forecast where precipitation data are from INCA QPF and temperature and
radiation are based on observations. This forecast is only available in re-forecast mode.

• The INCA forecast based on INCA precipitation and COSMO temperature and radiation.
• The COSMO forecast based on COSMOs NWPs.
• Filtered forecasts based on INCA and COSMO previous forecasts and filtered with splines to

connect runoff observations and forecasts.
The analysis will be based on events observation, alert HIT-FAR scores and 360-minute cumu-
lated volume indicators, except for the effect of post-processing where 60-minute cumulated volume
indicators will also be studiedf.

D.3.2 Perfect forecasts comparisons
The three perfect forecasts are compared hereafter. HIT and FAR scores for the alerts and for
the cumulated volumes over 360 minutes are provided respectively in Figures D.9 and D.10 both
in Emosson-Collecteur Est and La Fouly. For alert HIT-FAR scores, they are computed only on
the events crossing the discharge threshold: if an event is always higher than the threshold it is
not considered. The MAE curves for the cumulated volumes over 360 minutes are also provided in
Figure D.11. Some events representative of the diversity of events are also displayed in Figures D.7
and D.8 respectively for the Collecteur Est and in La Fouly.
The differences between CPCH and rain-gauge perfect forecasts are small in the events. The
same events are usually well-predicted or badly-predicted (e.g., first phase of 28/10/2018 event
and 27/08/2019) in both perfect forecasts. However, the CPCH perfect forecast is usually more
reactive in the first timestep, as it can be observed in the event of the 28/10/2018 and in the three
presented events of 2020. This is also observed in La Fouly. In Emosson-Collecteur Est, this be-
haviour results in slightly higher alert HIT scores while FAR scores are similar. However, nearly no
differences can be observed in the cumulated volumes HIT-FAR scores while the mean absolute error
of the CPCH cumulated volumes over 6 hours is slightly worse than for rain gauge inputs in June
and July. Hence at very short lead time (less than 90 minutes), CombiPrecip seems to
improve the forecast in the Collecteur Est while for larger lead time rain gauges are apparently
better. However differences are tiny. The alert HIT scores for all products are also significantly
low, usually below 50%. However while applying a 10% tolerance on the discharge level, HIT scores
are largely improved which demonstrates that events are probably a little bit underestimated /seen
too late but not completely missed.
In La Fouly, while cumulated volume HIT-FAR scores do not show clear differences between models,
CPCH seems to be slightly less reliable than rain gauges in alert. The MAE curve is also displaying
worse CPCH performances than rain gauges in autumn (October and November). This is probably
due to the underestimation of CPCH in winter compared to rain gauges.
Finally, the RZC perfect forecast seems not to perform as well as the other two. Indeed it is
often too reactive (22/07/2020) or not reactive enough (20/10/2019, 28/08/2020 and 02/10/2020

f60-minute volume indicators do not show any differences between forecasts except with post-processing221.
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for example). This brings higher alert FAR scores and worse cumulated volumes prediction in
Emosson-Collecteur Est (significant in the MAE curve). Raw radar QPF is probably not a tool
to use alone in operational forecast as its perfect forecast is already quite unreliable. However
it could be interesting in a multi-model alarm system as it provides sometimes alerts
before CPCH and rain-gauge perfect forecasts. In this project raw radar QPF is nevertheless
not available and the analysis will thus not be further followed. In La Fouly, surprisingly, RZC
cumulated volume prediction performances appear to be better, with a lower MAE notably in the
end of summer and in autumn. It is difficult to interpret this observation but it is perhaps due to
the high errors of rain gauges in altitude (due to the wind and the snow)85.

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.7: Perfect forecasts for six events in Emosson-Collecteur Est. The measure is in red and
three perfect forecasts are proposed: rain-gauge (black), RZC (green), CPCH (gold).

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.8: Perfect forecasts for six events in La Fouly. The measure is in red and three perfect
forecasts are proposed: rain-gauge (black), RZC (green) and CPCH (gold).
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Figure D.9: Alert HIT and FAR scores of three perfect forecasts at Collecteur Est and La Fouly.
A tolerance of 10% (dashed lines) or no tolerance (solid) is applied. The right axes provide the
number of reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.10: HIT-FAR scores for the cumulated volume over 360 minutes of the three perfect
forecasts at Collecteur Est and La Fouly. No tolerance is applied. The right axes provide the
number of reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.11: MAE of cumulated volumes over 360 minutes in Collecteur Est and La Fouly.
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D.3.3 INCA forecast
INCA forecast is now used to predict precipitations. A semi-perfect forecast with measured tem-
peratures and predicted precipitations (in blue) and a true forecast with temperature predictions
provided by COSMO1-E (in green) are simulated. Results for a selection of events are provided in
Figures D.12 for Collecteur Est and D.13 for La Fouly. Alert HIT-FAR scores and 360min-cumulated
volumes indicators are also provided by Figures D.14, D.15 and D.16.

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.12: CPCH perfect forecast (gold), INCA semi-perfect forecast (blue) and INCA forecast
(green) for six events in Emosson-Collecteur Est. The measure is in red.

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.13: CPCH and INCA forecasts for six events in La Fouly.
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Between the perfect CombiPrecip forecast (in gold) and the semi-perfect forecast where precipitation
are based on INCA forecast (in blue), there is a clear loss of performances with more disperse
forecasts and some missed events (e.g., the second part of the event of 20/10/2019). The tendency
leans globally more towards false alarms. In La Fouly, similar patterns are observed but the
INCA semi-forecast is also much more reactive, being able to double its value in just one hour. It
seems that INCA data help to catch the surges of discharges in this small catchment
– which is supported by the higher alert HIT scores. The drawback is more false alarm, as
confirmed by the alert and cumulated volume FAR scores. In the Collecteur Est, differences are
much smaller but still noticeable notably in the 360 minutes-cumulated volumes scores. These
differences between La Fouly and Collecteur Est can be explained by two aspects:

• The size of the catchment. INCA errors are more easily integrated in a large catchment
where they can compensate. For example, if a convective cell is forecasted in the wrong place,
it is probable that it will still be located in the catchment area in a large basin. However, in
a small basin it can quickly be wrongly outside/inside the catchment which will largely affect
performances, and notably create false alarms.

• The nature of the measured discharge. In La Fouly, the discharge is measured after a
diversion with a fixed maximum discharge of 13 m3 s−1. To maximize the performances of
the continuous model, it is probable that the calibration made in La Fouly has been rather
overestimated than underestimated. Indeed, as simulated discharges are then cut at a thresh-
old value of 13 m3 s−1, and as the reference discharge is in general closer to this value than to
0 (due to the glacial seasonal behaviour), slightly overestimating the discharge leads usually
to better scores than the contrary. This was nevertheless not made consciously.

The comparison between the semi-perfect forecast and the real forecast, where temperatures are
taken from COSMO1-E, enlightens the role of temperature in the rainfall-runoff model. Forecasts
for summer events are only slightly affected by the use of COSMO1-E temperature
predictions. On the contrary spring and autumn forecasts are largely affected by it.
This shows the strong model dependency to temperature in these periods where the rain-snow limit
is determinant for the discharge estimation. Summer discharges are less affected as the rain-snow
limit is high enough and the only impacting factor is the snow reservoir level which only depends
on observed temperatures. Concerning the direction of the changes, the real INCA forecast is
sometimes less reactive (02/10/2020) and sometimes more reactive (28/10/2018) than the semi-
perfect forecast. The uncertainty on temperature is thus random and not systematic, which is
further confirmed by the alert HIT-FAR scores which do not display clear differences between the
semi-perfect and the real INCA forecasts. Concerning the volumes cumulated over 360 minutes,
they are slightly better predicted by the complete INCA forecast with notably smaller MAE at both
stations in autumn and spring.
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Figure D.14: Alert HIT and FAR scores of CPCH perfect forecast (gold), INCA semi-perfect forecast
(blue) and INCA forecast (green) at Collecteur Est and La Fouly. A tolerance of 10% is applied
on dashed lines while no tolerance is used for solid lines. The right axes provide the number of
reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.15: HIT-FAR scores for the cumulated volume over 360 minutes of the three previous
forecasts at Collecteur Est and La Fouly. No tolerance is applied. The right axes provide the
number of reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.16: MAE of cumulated volumes over 360 minutes in Collecteur Est and La Fouly.
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D.3.4 INCA vs COSMO
Figures D.17 and D.18 display comparisons between INCA and COSMO forecasts for a selection
of events respectively in Collecteur Est and La Fouly. Alert HIT-FAR scores are provided in
Figure D.19 for the two forecasts (INCA in green, COSMO in black, the other two curves are the
filtered forecasts developed in the next Secion D.3.5). 360min-cumulated volume indicators are
finally illustrated by Figures D.20 and D.21.
In the events, differences between INCA and COSMO are globally small but two trends can be
underlined. First, INCA is usually more reactive than COSMO. The growths of discharge
are usually observed sooner (e.g., during the 20/10/2019 and 28/08/2020 events). This confirms the
similar observations made between CPCH and rain gauges perfect forecasts. Secondly, INCA is
more susceptible to produce false alarms with the striking example of the 28/10/2018 event.
As in the previous section, this behaviour is amplified in La Fouly, with some very good INCA
forecasts (e.g., first part of 20/10/2019) and some strong false alarms (e.g., 28/08/2020). These
events are much less reactive in Collecteur Est. This higher reactivity of INCA, notably in La
Fouly, is further confirmed by the alert scores. HIT and FAR scores are higher for INCA than
for COSMO in Collecteur Est and, more significantly, in La Fouly. Similarly cumulated volumes
over 360 minutes are overestimated in INCA resulting in higher FAR and MAE in La Fouly. In
Collecteur Est, this increase in HIT/FAR scores is on the contrary resulting in better MAE.

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.17: INCA (green) and COSMO (black) forecasts for six events in Collecteur Est. The
measure is in red.
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(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.18: INCA and COSMO forecasts for six events in La Fouly.
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Figure D.19: Alert HIT and FAR scores of INCA (green) and COSMO (black) forecasts at Collecteur
Est and La Fouly. The magenta and gold dashed curves are respectively for INCA and COSMO
forecasts once filtered (see next section). No tolerance is applied. The right axes provide the number
of reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.20: HIT-FAR scores for the cumulated volume over 360 minutes of the four previous
forecasts at Collecteur Est and La Fouly. No tolerance is applied. The right axes provide the
number of reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.21: Mean absolute error of the cumulated volumes over 360 minutes in Collecteur Est and
La Fouly.
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D.3.5 Effect of post-processing with splines filtering
A post-processing of the INCA and COSMO forecasts can be performed as discussed in Section 3.2.5.
It allows to connect the previous forecasts to the latest measured data which usually improves the
forecast. In the first intermediate report of the Radar4Infra project221, it was demonstrated that
in the case of Emosson the filtering process improved a lot the performances, notably at short lead
time. A filter period of 3h is chosen for Emosson. Event analyses in the Collecteur Est and La
Fouly are displayed respectively in Figures D.22 and D.23. A comparison between non-filtered and
filtered INCA forecasts is also proposed in Collecteur Est in Figure D.24.
Alert and 360min-cumulated volume indicators for non-filtered and filtered INCA and COSMO
forecasts were provided in Figures D.19, D.20) and D.21. 60-min cumulated volume HIT-FAR
scores (for Collecteur Est) and MAE (for both stations) are finally given respectively by Figures D.25
and D.26.

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.22: INCA (magenta) and COSMO (gold) forecasts with spline filters for six events in
Collecteur Est. The measure is in red.
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(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/2020 (f) 02/10/2020

Figure D.23: INCA (magenta) and COSMO (gold) forecasts with spline filters for six events in La
Fouly. The measure is in red.

(a) 28/10/2018 (b) 27/08/2019 (c) 20/10/2019

(d) 22/07/2020 (e) 28/08/20 (f) 02/10/2020

Figure D.24: INCA filtered (magenta) and non-filtered (green) forecasts for six events in Collecteur
Est. The measure is in red.

In Collecteur Est, the events are better forecasted when applying splines notably when the forecasts
were not reliable (e.g., COSMO the 20/10/2019, both forecasts the 27/08/2019). Nevertheless
INCA seems to still be more reactive than COSMO. The filtering step is also not able to remove the
false alarms as in the case of the 28/10/2018. Events in La Fouly show similar patterns with, as for
pre-processed forecasts, a bigger reactivity of INCA than in Collecteur Est. However, while alert
HIT scores are largely improved in Collecteur Est (for both INCA and COSMO), they are worsened
in La Fouly. This is probably due to the better pre-filtering performances observed there (around
70% of alert HIT for INCA compared to 40% in Collecteur Est). The filtering step is probably more
efficient for big catchments with smaller reactivity than for smaller catchments. Indeed, it does
not use the first timesteps of the runoff forecasts where INCA has added very localized information
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allowing to catch the discharge surges. Filtering appears to be useful in the large Emosson
catchment with 4-6h response time but detrimental in the smaller basin of La Fouly.
Concerning the volume analyses, as observed in the intermediate Radar4Infra report, the
impact of post-processing at large lead time (360 minutes) is not significant (nearly
no changes in HIT-FAR scores, small diminution of the Mean Absolute Error). However for a
smaller lead time, the impact is huge. The cumulated volume over 60 minutes provides, for
example, perfect HIT scores in Collecteur Est when filtering is applied. Similarly the MAE is more
than halved in both catchments. Such feature is quite logical as, unlike the non-filtered forecasts,
the filtered forecasts are directly based on the latest observed discharges for the first timesteps. The
discharge being a continuous quantity, the last points of observation usually give a first hand good
prediction of what will happen.
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Figure D.25: HIT-FAR scores for the cumulated volume over 60 minutes of INCA and COSMO,
filtered and non-filtered forecasts in Collecteur Est. No tolerance is applied. The right axes provide
the number of reference (resp. simulated) events for the HIT (resp. FAR) score.
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Figure D.26: Mean absolute error of the cumulated volumes over 60 minutes in Collecteur Est and
La Fouly.
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D.4 Conclusion
The Emosson catchment is a rather complicated catchment where a variety of different pro-
cesses are at stake: glaciers and snow cycles, underground slow or fast storages, direct runoff on
impermeable areas during intense precipitations, water interceptions by vegetation or glaciers, in-
teractions of previous phenomena, etc. Its location in altitude and its complex orography constitute
other interesting properties suggesting radar data may improve rainfall-runoff models and predic-
tions. Finally, it contains several sub-basins of different scales allowing to investigate the impact of
INCA radar forecast on different locations.
This complex framework allows to develop a method to calibrate a Routing System model adapted
to radar gridded data. A de-biasing of precipitation input data is first demonstrated to
be essential to obtain good rainfall-runoff models. Though a complete calibration of the model
according to the nature of the input precipitations leads to slightly improved results, it has been
demonstrated that investing time on the modelling of the physical processes allows to get similar
results between rain gauge and CombiPrecip data. The final model is thus robust to any change
of input type. On a simpler catchment, it is reasonable to think that such a process will still be
reliable as a calibration can only be performed on a smaller number of parameter.
In operational mode, several steps need to be performed once the model is set up. First an update
of the initial conditions has already been proven to be necessary6,221. With this step, compared to
COSMO, INCA seems to introduce more reactivity on the prediction of flash events,
notably in the small-response time catchment of La Fouly. The other side of the coin is
increased false alarm rates. Reflections on the requirements and design of an alarm systems will
need to be done to balance HIT and FAR scores. Raw radar forecasts, not available in this project,
could also be useful in a multi-model alarm systems thanks to their ability to detect some events
not observed in other products. However their overall performances are too low to build an alarm
system relying only on them.
The temperature forecast plays an important role in spring and autumn which highlights the ne-
cessity of an operational monitoring of the model notably during these periods. Finally, the post-
processing appears to improve the alert performances for intermediate response time catchments
(Emosson-Collecteur Est, 4-6h) while being detrimental in smaller basins (La Fouly, 1-2h). Post-
processing will need to be investigated further as it probably needs to be adapted for small basins
(smaller filtering period for example).
Cumulated volumes are nearly only affected by the post-processing step, which largely
improves its predictions at small lead times. However, they are nearly not affected by filtering
for larger lead times. When forecasts are needed for cumulated volume predictions rather than for
flash-flood alerts, a post-processing of output data will be required. The type of input data (rain-
gauge, CPCH or RZC QPEs or INCA or COSMO QPFs) is nearly not modifying volume scores.
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Volume analysis of forecasts in
Zurich-Altbach

The analysis of cumulated volumes in Zurich is much less interesting and important than in Emosson
as the goal of the Radar4Infra project in Zurich-Altbach catchment is to provide alerts for flash flood
events. In the Emosson catchment it was an essential feature for the management of reservoir levels.
In this appendix, the most interesting results for 180-minute cumulated volumes are presented.
Results for 60 minutes are similar but with largely smaller differences between forecasts.

E.1 Perfect forecasts
For the predictions of cumulated volumes over 180 minutes, the perfect forecasts are not very
sensitive to the input data (CPCH, RZC, rain gauges, or inca0) as illustrated by the HIT-FAR
scores of Figure E.1. CPCH and inca0 are slightly better in HIT while rain gauges have smaller
FAR.
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Figure E.1: HIT and FAR scores for the cumulated volumes over 180 minutes of the four perfect
forecasts at Zurich-Altbach discharge station. No tolerance is applied.

E.2 INCA forecasts
The introduction of the INCA forecast generates a loss of performances for 180-minute volumes
compared to the CPCH perfect forecasts (Figure E.2). This loss of performances is only marked
by higher FAR. HIT are similar. Concerning COSMO, volume HIT and FAR scores are higher in
INCA than in COSMO which demonstrates a tendency to overestimation. Notably the increase of
FAR is largely more significant than the increase in HIT. INCA is not a good QPFs in Zurich
for the determination of flash flood volumes.
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Figure E.2: HIT and FAR scores for the cumulated volumes over 180 minutes of the three previous
forecasts at Zurich-Altbach discharge station. No tolerance is applied.

E.3 Effects of the post-processing
Post-processing results in higher volume estimations (more HIT and FAR). It also removes all
differences between the INCA and COSMO forecasts: the input data is not important anymore.
Overall the Mean Absolute Error (Figure E.4) is slightly reduced for 180 minutes. For a smaller
lead time (60 minutes), as observed in Emosson, the post-processing allows to largely improves the
estimation. Hence, due to its high false alarm rate, post-processing is to be banned
for 180-minute volume estimation but is interesting for 60-minute volumes. The last
observation is probably due to the fact that post-processing allows to link the forecast to the last
observed data.
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Figure E.3: HIT and FAR scores for the cumulated volumes over 180 minutes of the non-filtered
INCA (green) and COSMO (black) forecasts at Zurich-Altbach discharge station. Filtered forecasts
scores are also provided in magenta (INCA) and gold (COSMO). No tolerance is applied.
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Figure E.4: Mean absolute error of the cumulated volumes over 60 and 180 minutes in Zurich-
Altbach.

E.4 Volume estimation with the new models
In this part of the appendix, the cumulated volumes over 60 minutes will be presented as they
result in higher differences between the old and new models than the cumulated volumes over 180
minutes. This is most probably due to the additional reactivity introduced in the new model (with
variation of Imp and work on the timing of the peaks).
The main observation is that the old model without all the added features was probably better
adapted for the estimation of cumulated volumes. Indeed, in Figure E.5, HIT scores are similar
in the old and new forecasts but there is much more false alarms in the new models. Hence the
new models are not improving the estimation but are only wrongly overestimating the already too
high events: to estimate the cumulated volume over a flash flood event, the old model
appears to be more suited.
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Figure E.5: HIT and FAR scores for the cumulated volumes over 60 minutes for the old and the
new INCA forecasts at Zurich-Altbach discharge station. No tolerance is applied.

E.5 update step
In the first report of the Radar4Infra project221, the update step has been found to be essential
notably for the estimation of volumes. Figure E.6 demonstrates that it is still the case in the Zurich
catchment case as HIT scores are largely improved when an update step is performed, both for 60
and 180-minute volumes. The update with distinct correction factors in the lower and upper sub-
basins is also providing better results than the one with similar correction factors over the whole
catchment.
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Figure E.6: HIT and FAR scores for the cumulated volumes over 60 (top) and 180 (bottom) min-
utes for the new INCA forecast with variable Imp with or without update step at Zurich-Altbach
discharge station. No tolerance is applied.

E.6 Overview of results for volume estimation in Zurich
To estimate cumulated volumes, the INCA forecast is probably worse that the COSMO forecast as
it tends to generate a high number of false alarms.
An update step has been shown to be necessary. Moreover the post-processing step increases the
number of false alarms independently of the input data. It may be useful in the estimation of short
lead times cumulated volumes.
Finally the new model with higher reactivity (with or without variable Imp) worsen the volumes
estimation.
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