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Abstract

Urban sprawl is a major driver of habitat degradation and fragmentation, resulting in de-

clines in biodiversity worldwide. Blue-green infrastructures (BGI) can be highly relevant

for maintaining a backbone of connected habitats. However, they are generally planned

for other functions. This is partly because urban models (i.e. UrbanBEATS), which rely

on spatial networks of dataset blocks representing local neighbourhoods, lack ecological

information; while landscape connectivity models, which are generally based on high res-

olution raster grids and computationally intense operations, do not adequately represent

urban space.

As part of the Swiss Blue-Green Biodiversity Research Initiative, this study addresses the

need to integrate the merits of landscape ecology with detailed urban planning, including

a case study in the cantons of Zürich and Aargau and focusing on four ecologically distinct

amphibian species. First, we assess the performance of different spatial representations

and resolutions to model circuit theory-based functional connectivity and simplify the model

setup. Then, we apply spatial network analysis methods to identify priority urban areas for

BGI implementation. Finally, we select top priority areas where we model high resolution

structural connectivity to assess the local scale permeability of the areas.

Our findings will guide the development of a biodiversity module in UrbanBEATS and aim

to provide practitioners with an optimized methodological framework for strategical BGI

implementation in urban settings.

Keywords: biodiversity, blue-green infrastructure, functional connectivity, structural con-

nectivity, network analysis, strategical planning, multi-scale.
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Résumé

L’étalement urbain est l’un des principaux facteurs de dégradation et de fragmentation des

habitats, ce qui entraîne un déclin de la biodiversité dans le monde entier. Les infras-

tructures bleu-vert (IBV) peuvent être très utiles pour maintenir une colonne vertébrale

d’habitats connectés. Cependant, elles sont généralement planifiées pour d’autres fonc-

tions. Cela s’explique en partie par le fait que les modèles urbains (par exemple Urban-

BEATS), qui reposent sur des réseaux spatiaux de blocs de données représentant des

quartiers locaux, manquent d’informations écologiques, tandis que les modèles de con-

nectivité des paysages, qui sont généralement basés sur des grilles matricielles à haute ré-

solution et des opérations intensives en calcul, ne représentent pas correctement l’espace

urbain.

Dans le cadre de l’initiative suisse de recherche sur la biodiversité Blue-Green, cette étude

répond au besoin d’intégrer les mérites de l’écologie du paysage à la planification urbaine

détaillée, en incluant une étude de cas dans les cantons de Zürich et d’Argovie et en se

concentrant sur quatre espèces d’amphibiens écologiquement distinctes. Tout d’abord,

nous évaluons la performance de différentes représentations et résolutions spatiales pour

modéliser la connectivité fonctionnelle basée sur la théorie des circuits et simplifier la con-

figuration du modèle. Ensuite, nous appliquons des méthodes d’analyse de réseau spatial

pour identifier les zones urbaines prioritaires pour la mise en œuvre de la BGI. Enfin, nous

sélectionnons les zones prioritaires où nous modélisons la connectivité structurelle à haute

résolution pour évaluer la perméabilité à l’échelle locale des zones.

Nos résultats guideront le développement d’un module de biodiversité dans UrbanBEATS

et visent à fournir aux praticiens un cadre méthodologique optimisé pour la mise en œuvre

stratégique de la BGI en milieu urbain.
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1 Introduction

1.1 Background

Anthropogenic pressure, and more particularly urban sprawl and agricultural intensifica-

tion, are causing the degradation and fragmentation of habitats, threatening species distri-

bution and resulting in declines of biodiversity and ecosystem services worldwide (Horváth

et al. (2019)). Ecological connectivity preservation and restoration of degraded areas have

therefore become a top priority concern for conservation (Beier et al. (2006)).

In degraded human-dominated landscapes (HDLs) key biological processes such as breed-

ing, dispersal, migration and resource utilization are interrupted (Fletcher Jr et al. (2018)),

leading to gene flow reductions and significant impacts on genetic diversity and adaptive

processes (Cayuela et al. (2018)).

According to the 17th edition of the Global Risks Report (World Economic Forum (2022)),

biodiversity loss ranks as the third most severe risk on a global scale over the next 10

years, with four others in the top-ten list being likewise environment-related. As a result of

species extinction and/or reduction, "biodiversity loss implies a permanent destruction of

natural capital with irreversible consequences for the environment, humankind, and eco-

nomic activity", and should be strategically addressed.

Ecological infrastructures such as protected areas are useful mitigation measures. Yet,

the long term effectiveness of these zones can be compromised by unsustainable urban

development and agricultural intensification. Indeed, the contradiction between human

developments and ecological conservation is increasingly prominent (Wu (2014)).

To address this challenge, Blue-Green Infrastructures (BGI) are emerging mitigation solu-

tions, by which urban planners can coordinate the relationship between urban growth and

ecosystem services (Pascual-Hortal and Saura (2006)).

In the following sections, a series of background concepts are reviewed, including the state-

of-the-art of common Blue-Green Infrastructure technologies, landscape ecology methods

and decision-support tools for urban planning.
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1 Introduction

1.1.1 Blue-Green Infrastructure (BGI)

The concept of Blue-Green Infrastructure has existed for decades, known although un-

der several names, including Water Sensitive Urban Design (WSUD), Sustainable Urban

Drainage Systems (SUDS), or Low Impact Development (LID) (Matsler et al. (2021)). The

European Commission (2013) defines Green Infrastructure as "a strategically planned net-

work of natural and semi-natural areas with other environmental features designed and

managed to deliver a wide range of ecosystem services such as water purification, air

quality, space for recreation and climate mitigation and adaptation. This network of green

(land) and blue (water) spaces can improve environmental conditions and therefore citi-

zens’ health and quality of life. It also supports a green economy, creates job opportunities

and enhances biodiversity". The EU Strategy on Green Infrastructure, and the EU 2030

Biodiversity Strategy (European Commission (2020)), promote investments in green infras-

tructure to restore ecosystems and ensure their functional connectivity.

One of the key attractions of green infrastructure is its multi-functionality. Contrary to single-

purpose, traditional grey infrastructure, green and blue spaces can provide a wide variety

of beneficial functions, simultaneously and at a fraction of the cost (European Commission

(2019)). In terms of biodiversity, high-quality green spaces can increase the number and

variety of species, functioning as urban biodiversity hotspots or stepping stones for oth-

erwise fragmented ecosystems (Davis et al. (2015)). However, many BGI technologies in

cities have been designed with stormwater management as the main objective, with other

multiple functions (e.g. biodiversity support or urban heat reduction) treated as secondary

benefits rather than baseline requirements. In the Design Guidelines for Active, Beauti-

ful, and Clean Waters, PUB Singapore (2014) describe some typical vegetated treatment

elements for the purification, detention, retention, conveyance, and infiltration of stormwa-

ter; including: vegetated swales, bioretention swales, bioretention basins (rain gardens),

sedimentation basins, constructed wetlands, and cleansing biotopes (see Figure 1.1).

In fact, while those in charge of urban water management are somehow aware of these

opportunities, there are still a number of hurdles to overcome, as well as some hesita-

tion from urban planners and decision makers to take advantage of the full potential of

these green systems (Bacchin et al. (2016)). To promote sustainable development, Mon-

teiro et al. (2020) selected eight planning principles for BGI: connectivity, multifunctionality,

applicability, integration, diversity, multiscale, governance, and continuity. Considering the

magnitude of the risk of biodiversity loss, and in alignment with the EU biodiversity strategy,

it is specially important to further develop, preserve and enhance healthy green infrastruc-

ture by implementing corridor structures and dense enough stepping-stone configurations,

enabling ecosystems to deliver their many services to people and the environment (van der

Sluis and Jongman (2021)). The greater the scale, coherence and connectivity of the green

infrastructure network, the greater its positive impacts (European Commission (2013)).

2



1 Introduction

(a) Vegetated swales

(b) Bioretention swales

(c) Bioretention basins (rain gardens)

(d) Sedimentation basins

(e) Constructed wetlands

(f) Cleansing biotopes

Figure 1.1. BGI technologies for urban water management.
Source: PUB Singapore (2014).
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1 Introduction

1.1.2 Landscape connectivity

Taylor et al. (1993) defined landscape connectivity as "the degree to which the landscape

facilitates or impedes movement among resource patches". Landscape ecology studies

connectivity and its vital role to maintain biodiversity and species interactions while pro-

moting numerous ecosystem services. Within urban areas, functional corridors enable the

migration and dispersal of certain species, serving as transit and recreation corridors for

humans at the same time (Monteiro et al. (2020)). The potential of urban areas to sup-

port biodiversity and to connect their citizens to nature is, indeed, increasingly recognized

(LaPoint et al. (2015)).

1.1.3 Landscape spatial representations

In connectivity modeling, landscape is analyzed from its underlying structure, that is the

position, size, and architecture of its different features (Diniz et al. (2020)). Research has

been centered in two spatial representations of the landscape (Figure 1.2), with their pros

and cons described below:

Patch-based representations (Figure 1.2(a)) display spatial relationships among habi-

tat sites through a network topology (Urban and Keitt (2001)). In these models,

patches of habitat, defined for a focal species, are distinguished from the landscape

matrix and constitute the nodes of the network. The connections between nodes

are called edges, and represent the potential for movement or dispersal of a focal

species (Galpern et al. (2011), Urban et al. (2009)). Within this spatial structure,

an organism will potentially move through any connection inside a component, i.e. a

group of connected nodes. Models based on this kind of representations can result in

biologically plausible, computationally efficient, but suboptimal solutions (Cushman

et al. (2013)).

Grid-based representations (Figure 1.2(b)) represent the landscape as a series of tes-

sellated shapes (either in raster formats or geometrical grids) where organisms move

through each cell following one of the possible movement principles. Here the nodes

are typically placed at the centroid of each cell and connected by edges to their adja-

cent neighbours, conforming a minimum planar graph (Urban et al. (2009)). Connec-

tivity routes at a landscape scale can be carefully delineated, while also describing

interactions at a local scale through clear cell-to-cell relationships (Cushman et al.

(2013)), permitting the highest flexibility of movement, and being specially suitable

representations in heterogeneous dispersal matrices (Wiegand et al. (1999)). As a

matter of fact, Dunning et al. (1992) stated that "a species abundance in a particular

focal patch may be more strongly affected by characteristics of contiguous patches

than by those of more distant parts of the landscape".
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Several geometries can be used to form the grid, from the widely used rasters to

hexagonal grids or Dirichlet tessellations. Connectivity is then examined at the scale

of a single grid cell (Galpern et al. (2011)), but even though the principles for move-

ment are the identical, the choice of the geometry can have a significant impact on

the simulated dispersal behavior (Holland et al. (2007)). Moreover, these represen-

tations have a tendency to be more computationally demanding than patch-based

alternatives, with grid resolution as a limiting factor for memory capacity and simula-

tion speed (Cushman et al. (2013)).

(a) Path-based representation (b) Grid representation

Figure 1.2. Landscape spatial representations.
Adapted from Kadoya (2009) (1.2(a)), Diniz et al. (2020) (1.2(b)).

1.1.4 Landscape connectivity models

Landscape connectivity can be assessed using a variety of methods, the choice among

which is primarily determined by the objective of the study (Kool et al. (2013)). The two

methods described hereafter are based on graph structures, with nodes representing land-

scape elements or spatial features to be connected, and links the cost or probability of

connection related to the organism under consideration (Saura and Pascual-Hortal (2007)).

Models based on least-cost paths and centrality measures (Figure 1.3(a)) apply the

concepts of network analysis to identify the locations of the cheapest routes (i.e.,

least-cost paths, with the minimum cumulative cost value), examine node impor-

tance through centrality measures (Estrada and Bodin (2008), Galpern et al. (2011),

Diniz et al. (2020)), community detection, network cohesion, and node resilience via

a set of metric-based analyses (Lookingbill and Minor (2017)). The main drawback

of this method is that one can only identify the locations of the optimal routes as un-

ambiguous corridors, without information on how cost values are distributed over the

landscape, which may imply that very similar corridors that could be found elsewhere

can go unnoticed (Cushman et al. (2013)).
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Models based on circuit theory (Figure 1.3(b)) are also underlain by graph configura-

tions but apply the electrical concepts of resistance, conductance, current and volt-

age in ecological connectivity. The network edges are here replaced by resistors

(Diniz et al. (2020)) and, following Ohm’s law, when a voltage is applied between two

nodes in a resistive circuit, the total amount of current I that flows between them is

defined in Equation 1.1 by the applied voltage V and the resistances R in the circuit

(McRae et al. (2008a)). The lower the resistance (or the higher the conductance, its

inverse), the greater the current flow.

I = V

R
(1.1)

One can also interpret currents as random walks, in which the probability that a ran-

dom walker would move from a node along any graph edge is proportional to its

conductance (McRae et al. (2008a)). Current density can therefore be used to iden-

tify ecological corridors. As a result, and advantage over least-cost analyses, using

circuit-theory based models all movement routes are considered simultaneously, so

we obtain a continuous current map that illustrates the probability of species move-

ment through each cell of the landscape (Churko et al. (2020), McRae et al. (2008b)).

However, the lack of metric-based analyses makes the distinction of important nodes

and prioritization of locations much less evident.

(a) Least-cost paths and centralities (b) Circuit theory-based

Figure 1.3. Landscape connectivity models.
Adapted from Chubaty et al. (2020) (1.3(a)), Carroll et al. (2012) (1.3(b)).

1.1.5 Landscape resistance to movement

The organism’s willingness to transverse a certain landscape element is represented by

the values of resistance to movement, which quantitatively estimate how environmental

variables influence animal dispersal (Zeller et al. (2012)). In other words, "resistance val-
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ues represent landscape features as the factor by which they may slow the movement of

the organism" (Chubaty et al. (2020). Although one could understand resistance as the

inverse of habitat suitability (Stevenson-Holt et al. (2014)), typically its estimation is done

by means of resistance-value transformations from habitat suitability tiers or distributions

(Keeley et al. (2016)). Churko et al. (2020), for instance, tested null, exponential, sigmoidal,

logarithmic, and linear transformations to test different barrier effects of unsuitable habitats,

Duflot et al. (2018) proposed a more accurate negative exponential transformation function

from habitat suitability thresholds. Resistance values are represented in spatially explicit

resistance layers (also referred as resistance maps or surfaces), typically consisting of

raster grids that represent the cost of movement tailored to given species, which are then

summarized as edge weights in the graph configurations (Cushman et al. (2013), Churko

et al. (2020)). In least-cost path analyses, this translates into the cost of travelling through

each cell (Singleton (2002)), while in circuit theory-based analyses reflects the relative

probability of moving into each cell (McRae et al. (2008a)). Resistance layers can typically

be obtained from two approaches:

Based on expert opinions: In this approach, experts are asked to rank each landscape

feature, or sets of environmental variables, according to their permeability to move-

ment for each species (Churko et al. (2020)). Compared to empirical approaches,

resistance layers derived from expert opinions have been criticized due to the sub-

optimal parametrization of environmental factors (Zeller et al. (2012), Cushman et al.

(2013)). Even though the controversy over its accuracy, this remains the most widely

used method as empirical data is frequently missing (Duflot et al. (2018), Compton

et al. (2007)).

Based on empirical models: These approaches rely on biological data, in most of the

cases to produce habitat suitability and species distribution models, which take species

observations in relation to ecological conditions to predict habitat preferences (Guerry

and Hunter Jr (2002)). Other methods include mark-recapture and experimental

movement studies, telemetry, and landscape genetics, which are rarely employed

due to logistically complicated and time consuming processes (Cushman et al. (2013)).

1.1.6 Types of connectivity simulations

Movement routes are computed between selected start and end points, commonly called

focal nodes (Anantharaman et al. (2020)). Depending on the placement of these nodes,

connectivity models can lead to different results. In this regard, two types of connectivity

can be distinguished:

7
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Functional connectivity: In this type of simulation, the focal nodes are placed at specific

species habitats, registered observations, protected areas, or some other locations

representative of the species behaviour in the landscape. The goal of these sim-

ulations is to analyze realistic or potential movement patterns associated with the

specific species ecological behaviour between focal points where the species is very

likely present.

Structural connectivity: In this approach the focal nodes are randomly placed along the

perimeter of the study area in order to characterize its potential landscape perme-

ability, ignoring the present distributions of the species (Churko et al. (2020)). These

models are usually easier to set up and provide a more general picture of how the

arrangement of the landscape matrix shapes the movement potential (Hall et al.

(2021)).

Concerning the number of species involved, connectivity maps can be:

Single-species: The simulations are tailored to individual species, with resistance maps

representing their specific preference for different landscape elements. They typically

constitute the basis of landscape connectivity assessments and usually performed

for a set of species of interest.

Multi-species: These single-species maps including diverse movement ecologies can

then be normalized and combined into a unique map that provides useful insights

to improve landscape connectivity for all of the considered species (Churko et al.

(2020)).

1.1.7 Tools for BGI and Ecosystem Services planning

Urban models and decision-support tools are attractive means of supporting the planning

process as they provide virtual laboratories to allow planners and other stakeholders to test

hypotheses and ideas that are important to their decision-making (Bach et al. (2020)).

Numerous models are today available, ranging from regional planning to urban environ-

ments. Many regional models including ecosystem services assessments (Grêt-Regamey

et al. (2017)) are targeted to conservation and ressource management (e.g. Marxan

(Ardron et al. (2008))); forest management (e.g. LANDIS-II (Scheller et al. (2007)) and

FVS (Crookston and Dixon (2005))); or agriculture (e.g. Daisy (Hansen et al. (2012)) and

CropSyst (Stöckle et al. (2003))). Some are also developed specifically for connectivity

modeling, like Circuitscape (Anantharaman et al. (2020)) or the R package grainscape

(Chubaty et al. (2020)). However, none of these mentioned models adequately repre-

sent urban space and, alone, miss important analyses for participatory and multi-criteria

decision-making in cities.
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In urban settings, the most used tools focus particularly in stormwater management (e.g.,

SWMM (Gironás et al. (2010)), EPANET (Rossman (1995)), or MUSIC (Wong et al. (2002))).

Certainly, some have also broadly included biodiversity, like InVEST (Hamel et al. (2021)),

through proxies of habitat suitability and distances between habitats, but don’t support the

functioning of ecological networks through informed connectivity modeling. In fact, there’s

no urban decision support tool, to date, able to integrate local and detailed landscape per-

meability while being grounded on movement behaviours at a landscape scale. As a matter

of fact, urban biodiversity research is only just starting to catch up with a broader field of

urban developments (Norton et al. (2016)).

Taking biodiversity into account in urban planning processes in a rigorous and detailed

manner is extremely challenging for planners and land managers (Norton et al. (2016)),

not only it is a broad and complex concept, but its scale-dependency makes it even harder

(Savard et al. (2000)). Patch-based representations and delineation of least-cost paths

may miss numerous feasible opportunities when considering multi-functionality constraints,

and circuit theory grid-based approaches are too computationally demanding for alternative

testing and exploratory modeling.

The Urban Biophysical Environments and Technologies Simulator (UrbanBEATS) is an in-

tegrated modeling tool designed to support the planning of sustainable, liveable and re-

silient cities (Bach et al. (2020)). Due to its underlying structure and core philosophy, this

is the model used in this study as a reference for a potential integration of a biodiversity

module. Its main objective is to investigate potential opportunities for Blue Green Systems,

mapping urban characteristics through different types of networks, and including geopo-

litical information. UrbanBEATS provides the means of conducting extensively integrated

studies, but also light-weight rapid assessments of specific aspects (e.g., pollution man-

agement, enhancing urban amenity). Any simulation should have clearly defined modelling

aims, allowing for key modules to be selected and outputs to be generated in a time effi-

cient manner without unnecessary information overload. To that aim, the model simplifies

spatial representation through a grid structure using the concept of "blocks" to represent

local neighbourhoods across the urban area. A block is the smallest spatially explicit unit in

the model and contains rich information about the urban area, as a geodatabase of model

information (Bach et al. (2020)).

1.2 The Swiss BGB Initiative and precedent research

The present study is framed within the Swiss Blue Green Biodiversity Research Initia-

tive, an Eawag-WSL collaboration focusing on biodiversity at the interface of aquatic and

terrestrial ecosystems. The study is itself a continuation of the research carried out by

Donati et al. (2022) for the project "Blue-green infrastructure for biodiversity enrichment in
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human-dominated landscapes", and is intended to serve as a link and transition towards

the upcoming project "BlueGreenNet: Social-ecological networks to enhance biodiversity

in peri-urban regions". In their study, Donati et al. (2022) integrated biological and highly re-

solved urban-rural land-cover data, ensemble models of habitat suitability, and connectivity

models based on circuit theory, to improve multi-scale and multi-species protection of core

habitats and ecological corridors in the Swiss lowlands. Considering a broad spectrum

of amphibian species, they identified distributions of amphibian biodiversity hotspots and

landscape elements essential to amphibian movability at the regional scale. More over,

their work highlights that cities can make a substantial contribution to wider landscape

habitat connectivity, with nearly 15% of high current corridors overlapping urban areas.

1.3 Knowledge gaps

Although BGIs are experiencing a growing momentum, multi-functional BGI research is still

at its early stages Donati et al. (2022). Opportunistic approaches in urban planning fail to

include biodiversity strategically, due in part to the following reasons:

• Regional conservation models focus on the management of natural resources and

do not adequately represent urban space. Thus, urban structures are not properly

represented and BGI technologies often not incorporated.

• Urban planning models are currently inadequate to support BGI strategies to protect

and enhance biodiversity, lacking key ecological connectivity information at local and

landscape scales.

• Circuit theory-based approaches within high resolution grid representations are com-

putationally very intense, making it unable to test different scenarios, which are cru-

cial for decision-making processes; and patch-based models tend to oversimplify the

analyses and could miss important information.

• Many connectivity methods have been developed, leading to confusion around circuit

theory or patch-based network approaches, functional and structural choices, and

spatial extent and resolutions.

• There is no integrated approach that uses these concepts for the prioritization of

crucial areas to support the ecological networks.

• For all of the above, there is no adequate planning guidance for BGI applying funda-

mental landscape ecology concepts for biodiversity conservation and enhancement.
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1.4 Aims and objectives

To address the aforementioned challenges, this study aims to simplify and integrate the

merits of landscape ecology and regional biodiversity assessments with detailed urban

structures for BGI planning. With the goal of optimizing computation times and encour-

age exploratory modeling, we will assess the performance of different spatial resolutions

and representations to merge circuit theory and network analysis methods. Through this

novel approach we intend to propose a methodology to identify top priority urban areas

to enhance connectivity at multiple scales. Ultimately, our findings are aimed to guide the

development of a biodiversity module in UrbanBEATS to enable strategical BGI implemen-

tation in urban settings.
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2.1 Study area

The study area covers a surface of 3’133 km2 including the Cantons of Aargau (AG) and

Zürich (ZH) in the Swiss lowlands, with altitudes ranging between 264 m and 1’212 m.a.s.l.

The canton of Aargau (1’404 km2) holds 213 municipalities, consisting in general of minor

and scattered communities, and has a population density of 490 inhabitants/km2, with its

capital, Aarau, that is home to more than 21’700 people. On the other side, the Canton of

Zürich (1’729 km2) has a population density of 900 inhabitants/km2 and includes 169 mu-

nicipalities, some of which forming major urban agglomerations. The capital itself, Zürich,

has a population of more than 434’300 inhabitants (Confederation Suisse (2020)). A 42.9%

of the study area consists of meadows, pastures, and other agricultural land; forests oc-

cupy a 31.1%; urban settlements a 22.2% (12.2% consisting of impervious surfaces and

10% of urban green spaces); water bodies cover a 3.8%; with the last <1% corresponding

to other landcovers, like wetlands, rocky surfaces, and rubble-sandy grounds. Regional

parks, Ramsar and Emerald sites, alluvial zones, dry meadows, amphibian breeding sites

of national importance, and Pro Natura sites, are some of the major ecological infrastruc-

tures (depicted in grey in Figure 2.1(c)) (Donati et al. (2022)).
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(a) Ortophoto and Canton boundaries

(b) Major urban settlements (c) Major rivers and lakes

Figure 2.1. Study area. Adapted from Donati et al. (2022).

2.2 Overview of the methodological approach

The concept of our multi-scale landscape connectivity approach for biodiversity enhance-

ment through the planning of BGI in urban areas is shown in Figure 2.2. The framework

integrates the precedent work carried out by Donati et al. (2022). Specifically, we integrate

the ensemble models (EM) of species distribution (SDM) and the circuit theory-based con-

nectivity modeling that they carried out for the same study area at 30 m raster resolution.

In the present study we defined a new set of scenarios defined by various spatial reso-

lutions and representations and we performed circuit theory-based functional connectivity

modeling with coarser, less computationally demanding inputs. We then built graph struc-

tures based on the circuit current outputs to perform a wide range of network analyses

focused at identifying connectivity backbones, assessing movement patterns at global and

local scales, and identifying critical locations for connectivity support. Our approach then

combines these metrics into an index of node prioritization representative of multi-scale

ecological dispersal processes. We illustrate this procedure by selecting the three most

important urban areas for biodiversity enhancement, where we perform high resolution

structural connectivity modeling to assess the permeability of their surroundings, identify

conflicts and opportunities for BGI implementation.
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Figure 2.2. Overview of the methodological approach.

2.3 Amphibian species selection

As the connectivity of a certain landscape will be different for different organisms (Tis-

chendorf and Fahrig (2000)), Donati et al. (2022) investigated 19 amphibian species and

selected 10 of them using a multi-dimensional trait analysis (Villéger et al. (2008)). The au-

thors used the Trochet et al. (2014) European database to compare the candidate species

against six ecological life-history traits to cover all the possible trait diversity related to

the amphibian dispersal, namely: the adult body size, metamorphosis size, parental care,

egg/offspring number, juvenile diet composition, and displacement mode. Following the

circuit theory-based connectivity analyses, they computed the correlations between the

species-specific connectivity maps and found four different clusters describing different

patterns of connectivity behaviours. In the present study, we used these results to select

4 species, one representative of each pattern of movement. For the specific choice we
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also considered the phylogenetic tree of the Swiss amphibian species ((Pyron and Wiens

(2011)), Donati et al. (2022)), such that the 4 chosen species would also pertain to dif-

ferent taxonomic families. Lastly, for groups in which there was still freedom of choice,

we used the Swiss Red List of threatened amphibians (Schmidt and Zumbach (2005)) to

base our last pick according to their protection status. The chosen species were: Alytes

obstetricans, Bombina variegata, Hyla arborea, and Salamandra salamandra.

Family Connectivity pattern Conservation status
Species

(Pyron and Wiens (2011)) (Donati et al. (2022)) (Schmidt and Zumbach (2005))
A. obstetricans Alytidae 3 Endangered (EN)
B. variegata Bombinatoridae 4 Endangered (EN)
Bufo bufo Bufonidae 4 Vulnerable (VU)
H. arborea Hylidae 1 Endangered (EN)
L. helveticus Salamandridae 4 Vulnerable (VU)
L. vulgaris Salamandridae 1 Endangered (EN)
I. alpestris Salamandridae 4 Least Concern (LC)
R. temporaria Ranidae 4 Least Concern (LC)
S. salamandra Salamandridae 2 Vulnerable (VU)
T. cristatus Salamandridae 1 Endangered (EN)

Table 2.1. Criteria for species choice. Selected species highlighted in bold.

Alytes obstetricans (Laurenti, 1768): It breeds in various water bodies, ranging in size

from a few meters to more than 1’000 m2. It can live in both rich and poorly vege-

tated, sunny or shaded, cool waterways. When breeding, the toad heads for pools

at the bottom of ditches and quarries, man-made ponds, water nets and other water

bodies in alluvial areas, gullies in marshes, and even sheltered spots in streams and

rivers. In most of the streams it frequents, the water flows all year round, so that

some of the larvae can hibernate there. It prefers sunny slopes with sandy, loamy

or aerated soil that is not very stable, but with sparse vegetation here and there.

Walls exposed to the sun, with many cracks, piles of stones, or wood piles are ideal

habitats. Ditches, open gardens, sunny forest edges, and extensive meadows can

support toad populations during summer (Karch (2022)).

Bombina variegata (Linnaeus, 1758): Its natural habitats are river valleys, meadows,

marshes, wet forests and scree areas. In cultivated landscapes, it is nowadays found

mainly in quarries, construction sites, and landfills with wetlands. Small, shallow,

temperate water bodies are suitable for breeding. They can withstand a very high

concentration of organic matter in the water, temperatures up to 36°C, and tempo-

rary drought. Suitable spawning sites should have water for at least 3 months in the

summer, but dry out or be emptied annually. It avoids deep cold-water ponds that

never dry out. Puddles of rainwater or stagnant water at the edge of flowing water,

can serve as egg-laying sites. The terrestrial habitats must present a sufficiently wet

soil all year long and sufficiently numerous hiding places. Field litter, dead wood,

grass, and aerated forest floors are suitable habitats (Karch (2022)).

15



2 Methodology

Hyla arborea (Linnaeus, 1758): found in areas with several favorable water bodies and

extensive, well-structured terrestrial habitats. Typical breeding sites are located in al-

luvial areas, low marshes, flooded meadows, and gravel and clay quarries. Favourable

water bodies are shallow, exposed to the sun and have no inflow or outflow, which

is why the water warms up faster. They spend most of its life on land and, during

summer, they seek out a wind-sheltered, sunny spot with plenty of tall vegetation. A

favorable terrestrial habitat must have a large food supply, be easily accessible and

located no further than 1 km from the breeding water body. In winter, shelters in a

place as protected as possible from frost and buries itself under moss, roots, stones

or grass (Karch (2022)).

Salamandra salamandra (Linnaeus, 1758): The forest is the typical habitat, with a pref-

erence for wet woodlands, where hiding places are more favorable. The larvae are

deposited primarily in forest streams, more rarely in springs or small water bodies.

If the species finds adequate conditions (streams and hiding places) in a built-up

area, it can remain there permanently, even more than a kilometer from the nearest

forest. The shelters used by the adults for the day are burrows of micro-mammals,

rock cracks or caves of various sizes. In built-up areas, the salamander uses the

crevices of stone walls, manholes and window wells as a daily refuge and wintering

area. In streams, the larvae need areas with weak currents and rich shelters, under

stones and dead leaves. The larvae remain most of the time under dead leaves or

floating algae clusters. The overwintering site is usually a wet cavity protected from

frost (Karch (2022)).

(a) A. obstetricans (b) B. variegata (c) H. arborea (d) S. salamandra

Figure 2.3. Selected amphibian species.
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2.4 Species distribution models and habitat suitability

2.4.1 Ensemble models (EM)

The assessment of the distribution models for every selected species was carried out by

Donati et al. (2022). The observations of amphibians were obtained from the Coordination

Center for the Protection of Amphibians and Reptiles of Switzerland (Karch (2022)), includ-

ing only the ones between 2017 and 2019 to account for the most recent distributions. To

characterize the ecological niche in these observations, they used 13 amphibian whole-life

cycle environmental predictors at a 10m resolution:

Variable type Environmental predictors
Topography Slope [º]

Nearest distance to water [m]
Hydrology

Runoff coefficient [C]
Edaphology Soil moisture variability

Median of the NDVI index (between 2016 and 2019)
Standard deviation of the NDVI index (between 2016 and 2019)Vegetation
Median vegetation height [m]
Grassland density
Urbanization (building density)Land use
Traffic intensity (vehicles/day)
Nearest distance to forest [m]
Nearest distance to a rock-gravel and sandy area (RGS) [m]Movement ecology
Nearest distance to a road [m]

Table 2.2. Amphibian whole-life cycle environmental predictors used for the SDMs.

Ensemble modeling (EM) was used as the method of choice (Thuiller et al. (2016)). As an

advantage over single model SDM techniques, EM uses various types of regression mod-

els to decrease the uncertainty and increase the accuracy of model predictors (Bolliger

et al. (2017)). Donati et al. (2022) used a generalized additive model (GAM), a gener-

alized boosting model (GBM), a generalized linear model (GLM), a random forest (RF),

and maximum entropy model (Maxent). All models were evaluated for their accuracy using

the areas under the curve (AUC) of the receiver operating characteristic (ROC) and the

true skill statistic (TSS). To integrate model outputs and develop the EM predictions, each

single distribution model was weighted according to its predictive accuracy. Projections

of potential habitat were performed using the minimum predicted area threshold (mpa) for

binarization (Préau et al. (2020)). The "mpa" threshold, computed with the mpa.ecospat

function in the ecospat R package (Di Cola et al. (2017)), allows the removal of locations

where habitat suitability values from the EMs outputs are lower than the suitability values

of the bottom 10% of the species occurrence (Pearson et al. (2007)). The resulting SDM

were then used to build up the resistance layers.
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2.4.2 Landscape resistance to movement

The resistance layers were obtained using an exponential resistance-value transformation

to the 10 m resolution SDM suitability maps. The transformation was done by means of

the species-specific exponential decay function (Equation 2.1), proposed by Duflot et al.

(2018), to strengthen the barrier effect of less favorable areas. The function uses the

species-specific binarization threshold (mpa) (section 2.4.1) to assign the highest resis-

tance value (R) of 1’000 when the habitat suitability from the SDM (SDM) is 0 (minimal),

and a resistance value of 1 when the habitat suitability is equal or greater than the "mpa"

binarization threshold.

R = e
(

ln(0.001)
mpa ·SDM

)
· 103 if SDM < mpa

R = 1 if SDM ≥ mpa
(2.1)

Figure 2.4. Example decay function for Alytes obstetricans (mpa = 560).

2.4.3 Spatial resolutions and representations

In order to reduce the computational demands for connectivity simulations to be carried out

on computers within reach of most practitioners, and in order for the proposed methodology

to be compatible with the "block" dimensions and core philosophy of UrbanBEATS (section

1.1.7; Bach et al. (2020)), we aggregated the resultant 10 m resolution resistance layers

into squared and hexagonal spatial grids of an equivalent resolution of 100 x 100 m and

300 x 300 m using the median value. This statistic was chosen among other aggregation

options (e.g., average) as it shows to be more robust against outliers.

As mentioned, two different geometries were chosen to build up the spatial grids. A square

representation mimics the original raster layers, which is as well the most used framework

for spatially explicit models and the way remotely sensed data is stored (Birch et al. (2007)).

Additionally, we set up an hexagonal grid as it is considered to show more accurate move-

ment patterns in connectivity modeling when compared to squared representations (Birch

et al. (2007)). One reason is that hexagons are arranged on an equilateral triangular lat-
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tice, which is the most compact arrangement of many equal circles Birch et al. (2007).

Another major advantage is that each hexagonal cell has six adjacent nearest neighbours

in symetrically equivalent positions (Birch et al. (2000)). In contrast, squared grids have

two different kinds of nearest neighbours: orthogonal neighbours (i.e. von Neumann) shar-

ing an edge, and diagonal neighbours (i.e., Moore) sharing only a corner Holland et al.

(2007). The former type is incomplete, severely restricts movement directionality, and pro-

duces inconsistency as diagonal neighbours could be part of the same habitat or two frag-

mented ones. On the other hand, the Moore method introduces complications related to

the unequal edge lengths and movements across vertices instead of sides (Childress et al.

(1996)). Birch et al. (2007) stated that hexagonal geometries can perform substantially

better than squares when modeling dispersal in coarse grids.

The resistance layers in a grid configuration where then converted into a spatial network

structure, with nodes at the cell centroids and edges linking the adjacent neighbours shar-

ing a side: four in the case of the squared grid, and six for the hexagons. The network

data was then converted into an edgelist dataset with two columns indicating the pairwise

connections (i.e., the IDs of the "from" and "to" nodes), and a third attribute indicating the

resistance of the connection between the corresponding pair of nodes (i.e., the weight of

the edge).

(a) 300 m squared grid (b) 300 m hexagonal grid

Figure 2.5. Spatial representations. Grid-based networks.

From To Resistance
1 2 663.09
1 13 695.78
1 14 709.80
... ... ...

Table 2.3. Edgelist network representation.

We then transformed the aggregated data in order to conserve the same ranges (i.e.,

minimum and maximum resistance values) than the original layers used by Donati et al.

(2022). Finally, we computed the inverse of the resistance to obtain the conductance,

required as an input for the circuit-theory based connectivity simulations (section 2.5).
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2.5 Circuit theory-based functional connectivity modeling at

the landscape scale

2.5.1 Single-species current maps

For the four species, we modeled circuit theory-based functional connectivity in Circuitscape’s

implementation in Python (version v4.0.5) (Anantharaman et al. (2020)). We performed 4

connectivity simulations per species, using the 100 and 300 m aggregated resistances, for

both the squared and hexagonal grid representations. As focal nodes we used the 271

amphibian breeding sites of national importance to predict the maximum inter-breeding

sites movement potential of amphibians across the study area (Donati et al. (2022)). The

procedure to select the focal node IDs was the following: we first applied a buffer of a third

of the edge length to the breeding sites polygons (for the 100 m resolutions that is 33 m in

the square grids and 36 m for the hexagons, and in the 300 m resolutions 100 m and 107

m respectively) to include the cells whose centroids would fall outside the breeding site

perimeter but still with a significant part of the cell inside (this was specially useful in small

or thin and irregular breeding sites, where almost any centroid would happen to be inside

the feature itself); we then performed an overlap analysis to select the nodes falling inside

the buffered breeding sites, and finally we converted the selection to a dataframe contain-

ing the node (i.e., cell centroids) IDs: the second required input in Circuitscape. Tests with

were also performed with buffers of half of the edge lengths, however this option was not

picked as it included a significantly higher amount of nodes, slowing down the simulations

considerably. With a third of the edge length all breeding sites were represented at least

by one node.

We set up a pairwise calculation mode in a network data type format for the 100 and 300 m

aggregated squared and hexagonal grid representations of the resistances. As opposed to

Donati et al. (2022), who used a all-to-one mode in raster format, we had to use pairwise

calculations as it is the only supported mode for network (i.e., grid-based) representations

in Circuitscape (Anantharaman et al. (2020)).

Listing 2.1. Specifications for the Circuitscape mode in the .ini files

1 [ Circuitscape mode]

2 data_type = network

3 scenario = pairwise

In the pairwise mode, connectivity is calculated between all pairs of focal nodes. For each

pair of focal nodes, one is connected to a 1-amp current source, and the other to ground.

Effective resistances are calculated iteratively between all pairs of focal nodes, and cu-

mulative current maps are produced (Anantharaman et al. (2020)). The output cumulative
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current maps were normalized between 0 and 1 for further comparative analyses. The sim-

ulations at 100 m resolution turned out to be computationally unfeasible and were finally

discarded.

2.5.2 Multi-species current maps

Following the aforementioned normalized cumulative current maps for every species, we

added up the four of them for every spatial representation (i.e., squares and hexagons),

to produce multispecies connectivity maps that account the unique movement ecology of

each species (Churko et al. (2020)). This maps can already serve as a useful evaluation

of connectivity, as shown by Donati et al. (2022) and many other case studies, to estimate

which areas of the landscape are highly connected. However, it is still not possible to

know what are the critical thresholds at which the landscape is aggregated, what nodes

are most important for connectivity, how movement is influenced at a local scale, and ulti-

mately which urban areas should be prioritized to implement BGI solutions to support the

ecological connectivity network, reason why we proceed with a spatial network analysis.

2.6 Spatial network analysis

Similarly to Table 2.3, the raw Circuitscape outputs in network mode consist also of an

edge list which attributes (i.e., edge weights) are now the computed currents instead of the

resistances. The fact of having converted the spatial grid maps (originally aggregated from

the finer resolution rasters) into a spatial network topology (recall section 2.4.3), allowed

us to re-enter the raw Circuitscape results back to the spatial network in QGIS, opening up

all the network analysis possibilities otherwise out of reach. In other words, this allowed

us to merge the circuit-theory based connectivity results with the analyses typically carried

out in patch-based models (section 1.1.4).

For the analyses we used the sfnetworks R package (Van der Meer et al. (2022)), which

connects the functionalities of the tidygraph package (Pedersen (2020)) for network anal-

ysis and the sf package (Pebesma (2018)) for spatial data science.

Graph metrics are used by ecologists to quantify the connectivity of the network in several

ways. Selecting a graph metric though presents a challenge to researchers, Galpern et al.

(2011) counted more than forty metrics among the studies reviewed. Based on Kupfer

(2012), Galpern et al. (2011), Estrada and Bodin (2008), and Minor and Urban (2008), in

the present study we selected a representative set of metrics and classified them into: (a)

those that characterize the overall graph connectivity, (b) those that assess node contribu-

tion to connectivity at the whole landscape scale, (c) those that assess node importance

for connectivity at the local scale, and (d) those that assess the network cohesion.
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2.6.1 Metrics of overall graph connectivity

The following metrics were chosen as descriptive measures of the network’s connectivity.

Mean edge weight: Describes the general suitability of the landscape for species-specific

movement. Is calculated as the sum of all edge weight attributes (i.e., cumulative cur-

rent derived from circuit theory-based simulations) divided by the number of edges

in the graph (Galpern et al. (2011)). The metric was computed using the summarize

verb implemented in the dplyr R package (Wickham et al. (2021)).

Diameter: Measures the length of the longest shortest path between any two nodes in

the graph (Bunn et al. (2000)). The higher the diameter, the slower is the movement

through the network (Minor and Urban (2008)). The metric was computed with the

graph_diameter() function originally introduced in the igraph R package (Csardi

and Nepusz (2006)).

Characteristic path length (CPL): Measures the average shortest path length over the

network and is representative of the ease to reach any node (Minor and Urban

(2008)). The graph_mean_dist() function also originally from igraph (Csardi and

Nepusz (2006)), was employed for its calculation.

Community detection: Assesses the community structure of the network. We used the

Louvain method (Blondel et al. (2008)), that seeks to optimize modularity (i.e., the ex-

tent to which nodes exhibit clustering (Newman (2006))) as the algorithm progresses

(Van der Meer et al. (2022)). Nodes inside a cluster, or community, are more strongly

related than to nodes in other clusters, a higher number of communities is thus in-

dicative of possible subpopulations. The function group_louvain() implemented in

the tidygraph R package (Pedersen (2020)) was used for that aim.

2.6.2 Metrics of node contribution to connectivity at the landscape scale

The following metrics were chosen as descriptive measures of the network’s connectivity.

Betweenness centrality: Measures how frequently a node lies on the shortest path be-

tween any two nodes in the whole graph (Luke (2015)). This centrality metric is based

on the idea that node importance refers to its location in relation to the least-cost

paths in the network (Kolaczyk and Csárdi (2014)). A node with a high between-

ness has therefore a crucial function due to its position of control over the flow of

information in the network. More importantly, the spatial distribution of nodes with

high betweenness delineates the backbones for connectivity support. We computed

this centrality metric with the centrality_betweenness() function, implemented

in the tidygraph R package (Pedersen (2020)), and inside the dplyr::mutate()
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verb (Wickham et al. (2021)) on the graph object. The betweenness centrality can

be calculated as follows (Freeman (1977)):

CB (ni) =
∑
j<k

gjk (ni)
gjk

(2.2)

where gjk (ni) is the total number of shortest paths between nodes j and k that

pass through node n, and gjk is the total number of shortest paths between j and k

(regardless of whether or not they pass through n).

2.6.3 Edge thresholding experiments for ecological corridors’ subsetting

As the entire landscape graph consists of a single component the nodes of which have all

a degree of 6 (except the ones at the perimeter), the network metrics of node importance

at the local scale, based on degree measurements or different components, required a

pre-processing step to subset only the significant nodes for connectivity, i.e., the ecological

corridors. This identification of high current corridors was estimated by an adaptation of the

edge-thinning technique, originally described by Keitt et al. (1997). We designed a simple

analysis in which edges below a certain threshold current (derived from the Circuitscape

analyses) were removed, and a new network was constructed. The connected subgraphs

were then identified. The number of components, the mean order (i.e., number of nodes)

for each component, and the network diameter were (Brooks (2006)). The value of the

threshold was then iteratively increased and the graph metrics recalculated until the entire

system was aggregated in one single component, the original network. The threshold

values were ploted against the mentioned metrics, and the critical threshold chosen to

subset the ecological corridors was determined mathematically at the value associated

with the highest connectivity change (Galpern et al. (2011)). Following the study by Elliot

et al. (2014), we based our thresholds on the specific distribution of the data. In concrete,

we iteratively subsetted the edges with a current (C) equal or higher than the mean current

(C) plus an increasing number (x = [0, 4]) of standard deviations (σc).

C ≥ C + x · σc (2.3)

This method, a part of being objective, based on ecological reasons, species-specific, and

therefore coherent for comparisons, also showed much better agreement when applying

it to Donati et al. (2022) connectivity maps for similarity testing, as opposed to the 90th

quantile threshold that the authors applied in their study, which showed to be meaningless

with the aggregated data we used.
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2.6.4 Metrics of node importance at the local scale

Degree centrality: Measures the number of edges adjoining the the node, and is an indi-

cator of accessibility (Kupfer (2012). Depending on the habitat quality, high degree

nodes may be highly transited areas (Minor and Urban (2008)). The metric can be

computed with the centrality_degree() function, implemented in the tidygraph

R package (Pedersen (2020)), and inside the dplyr::mutate() verb (Wickham

et al. (2021)) on the graph object.

Local clustering coefficient: Measures the average fraction of the node’s neighbours

that are connected to each other (Minor and Urban (2008)). Highly clustered nodes

imply access to a fair amount of nearby nodes and facilitate organism dispersal

(Bodin et al. (2006)). This method, introduced by Watts and Strogatz (1998), can

be measured by examining the number of closed triangles the node is part of, cal-

culated using the local_triangles() function in tidygraph (Pedersen (2020)),

together with the node degree.

CCi = 2Ni

ki (ki − 1) (2.4)

Where CCi is the local clustering coefficient of node i, Ni is the number of triangles

the node participates in, and ki is the degree of node (Dáttilo and Rico-Gray (2018)).

Compartmentalization: Also known as connectivity correlation (Melián and Bascompte

(2002)), measures the relationship between the node degree and the average node

degree of its neighbours (Minor and Urban (2008)). It provides a characterization of

the susceptibility of the network to perturbations. A high value of the metric indicates

more resistance to fragmentation and higher robustness of the corridor (Melián and

Bascompte (2002)).

Component’s order: A component is set of nodes that are connected to each other but

separated from the rest of the network. Its order simply means the quantity of nodes

that pertain to it. Therefore, the bigger the component the more nodes will be mutu-

ally reachable (Minor and Urban (2008)). The metric was firstly computed using the

group_component() function of the tidygraph package, which assigns a compo-

nent index to the nodes, we then grouped the nodes by component index and used

the length() function to find out the number of nodes with the same component

index.
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2.6.5 Metrics of network cohesion

Additionally to the metrics of graph connectivity and node importance, we characterized

the network cohesion of the ecological corridors subset through two different methods:

minimum spanning trees and cut-nodes and edges.

Minimum Spanning Trees (MST) are tree structures in the network by which all nodes

are completely connected with the minimum number of edges and the minimum total

cost (Jalali et al. (2016)). This method can be used to identify the arterial corridors

(Luo and Wu (2021)), and is therefore important in maintaining regional ecological

integrity (Zhao et al. (2019)). The computation of the MST is a combinational opti-

mization problem (Bazlamaçcı and Hindi (2001)). We used the mst() function from

the igraph R package (Csardi and Nepusz (2006)), and using the Prim’s algorithm

for weighted graphs (Prim (1957)).

Cut-nodes and cut-edges are nodes and edges that, if dropped, would fragment a con-

nected (i.e., single-component) corridor into separate, disconnected, components

(Luke (2015)). In many types of networks cut nodes and edges thus occupy critical

locations to preserve connectivity (Van der Meer et al. (2022)). These points and

links are therefore weak spots against disturbances, and the robustness (i.e., re-

silience) of the network connectivity depends directly on them (Albert et al. (2000)).

The function node_is_cut() from the tidygraph R package (Pedersen (2020)) was

used for identifying the cut nodes. The algorithm successively deletes each node of

the network and calculates the number of components, if the number increases, the

node under consideration is a cut node (Van der Meer et al. (2022)). From there, the

network was morphed into a linegraph to identify the cut-edges.

2.7 Spatial congruence analysis

Before proposing any strategy for BGI planning, the results derived from the coarser reso-

lutions and different spatial representations had to be validated with the 30 m raster results

from Donati et al. (2022). We based our analysis on the multi-species scenarios, so first

the Donati et al. (2022) multi-species cumulative current map at 30 m raster resolution,

considering only the 4 selected species of the present study, had to be built (section 2.5.2)

as our base case scenario.

In order for our results to be comparable between each other and to the base case, we

interpolated the squared and hexagonal 300 m resolution nodes’ spatial point data into

a raster using the Inverse Distance Weightning (IDW) algorithm (Shepard (1968)) with a

power parameter p = 2 and an output raster cell resolution of 30 m. The function idw()
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from the spatstat R package (Baddeley et al. (2015)) was used. The reason of choice

of this method among other interpolation algorithms (e.g., krigging), was the dense and

evenly distributed point data over the study area. With our 300 m results interpolated to

30 m rasters we were then able to calculate the spatial correlation between layers using

the Spearman’s rank correlation coefficient (ρs). Spatial correlations were computed with

the rasterCorrelation() function implemented in the spatialEco R package (Evans

(2021)). The Kendall correlation coefficient was also considered but avoided due to its

computational complexity O(n2) (where n is the sample size), as opposed to Spearman’s

O(n log n) (Weichao et al. (2010)). Based on Akoglu (2018), we set our interpretation

cut-points as follows:

Correlation coefficient (ρs) Interpretation
0 Null
(0, 0.25] Weak
(0.25, 0.5] Moderate
(0.5, 0.75] Strong
(0.75, 1) Very strong
1 Perfect

Table 2.4. Interpretation of the correlation coefficients.

2.7.1 Validation of the aggregated resolutions

In this case, the IDW interpolation was done with the circuit theory-based cumulative cur-

rents as node (i.e., cell centroid points) attributes, obtaining 30 m resolution current rasters

derived from the 300 m squared and hexagonal grids. We were then able to assess the the

cumulative currents’ spatial configurations of our coarser resolution results for validation.

The [multi-species 300 m square grid current ] and the [multi-species 300 m hexagonal grid

current ] were compared against [Donati et al. (2022) multi-species 30 m raster current ]

and against each other. For this analysis, we considered "strong" to "perfect" correlations

as the criteria for acceptance.

2.7.2 Validation of the squared and hexagonal spatial representations

Ideally, the currents derived from the coarser resolution squared and hexagonal grids would

be in agreement with the base case and with each other. Even if so, the two different

representations could perform very differently in terms of the network analyses due to the

different number of nearest neighbours (i.e., connections) of the squared and hexagonal

grid cells (section 2.4.3). The goal of the analysis was to prove the better performance

of hexagonal grids for the ecological network analysis. As hexagonal grids have a 50%

higher number of connections, and therefore an increased choice of movement directions
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than the Neumann squares, the hexagonal grid results were now considered as the base

case scenario. We therefore proceeded to analyze the correlations between their network

metrics. To maintain the coherence with the previous analysis we also computed the same

IDW interpolation, now using the betweenness centrality as point attributes and obtaining

30 m resolution rasters of betweenness centrality. Betweenness was chosen among other

metrics as it is the only node-specific metric that analyzes connectivity over the whole

study area. Moreover, according to Ray and Burgman (2006) and McNeil et al. (2006), the

calculation of the shortest paths (the basis of betweenness) is most likely to benefit from a

change from a rectangular to an hexagonal grid. The comparison was performed between

the interpolated 30 m rasters of the [multi-species 300 m square grid betweenness] and

the [multi-species 300 m hexagonal grid betweenness]. Here, in order not to drag bias, we

only considered a "very strong" to "perfect" correlation as the criteria for acceptance.

2.8 Analysis of BGI opportunities in human-dominated

landscapes

2.8.1 Node importance for multi-scale connectivity support

Once the data was validated, we aggregated the network metrics into an index for the

identification of the most relevant nodes for connectivity. To this aim, some indexes have

previously been developed (Pascual-Hortal and Saura (2006), Saura and Pascual-Hortal

(2007), Villéger et al. (2008)), yet they are all meant to be applied in patch-based graphs

and not applicable to grid-based networks.

In the present study we propose a weighted combination of the node metrics of connectivity

at both the landscape scale and at the local scale. For the assignation of the weights we

first computed the Spearman’s correlogram between the metrics and performed a cluster

analysis to find groups of highly correlated variables. For that purpose, we used the Ward’s

Minimum Variance Clustering method, which defines the clusters in such a way that the

within-group sum of squares is minimized (Borcard et al. (2018)). First we computed all

the pairwise dissimilarities (distances) between the metrics using the Gower (1971) general

dissimilarity coefficient within the daisy() function implemented in the cluster R package

(Maechler et al. (2021)). This algorithm was chosen as it first standarizes all the variables

into the same interval and has the capability of handling mixed data types. Next, based on

these dissimilarities, we performed the hierarchical cluster analysis using the Murtagh and

Legendre (2014) criterion in the hclust() function, from which we obtained the clustering

dendrogram. To decide on the cutting level of the dendrogram we based our choice on

both its direct interpretation and the graph of fusion levels, which plots the values where a

fusion between two branches of a dendrogram occurs (Borcard et al. (2018)). The cutting
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height was then set at the largest dendrogram branch and fusion level. This cluster analysis

was then used to assign equal weights to every cluster of metrics, as opposed to a simple

average between all of them. This way we were able to mitigate the correlation effects

between metrics and avoid the over weighting of certain ecological aspects that could be

explained by more than a single metric. Finally, the index was computed for every node as

a measure of importance to support both the global and local connectivity.

2.8.2 Priorization of urban areas for BGI implementation

Reiterating the need to establish priorities given the resource constraints, stakeholder and

implementation complexity, and the urgency to tackle biodiversity loss, we proceeded to

select only the cut nodes. These nodes (recall from section 2.6.5), have a critical role

in the resilience of the network and maintenance of the functional connectivity. We then

proceeded to the calculation of the majoritary land-use in every node’s grid cell, by using

the mode statistic, to subset only those nodes located in human-dominated landscapes,

concretely the land-use categories 1 to 12 from the UrbanBEATS classification (Bach et al.

(2015)). The higher the computed rank in nodes under consideration, the higher the priority

for BGI implementation.

2.8.3 Structural connectivity modeling at top priority urban areas

The subsequent step in the definition of more concrete considerations for BGI planning,

consists in zooming in at the top ranked nodes. Structural connectivity modeling comes

now as a great approach to assess the permeability of the areas that, at this step, have al-

ready been identified as the most crucial ones for biodiversity conservation and landscape

connectivity support at the global and local scales. To illustrate the procedure we selected

the top 3 ranked nodes. We first applied a 2000 m buffer at the nodes’ point features to

capture the surroundings over an area of 12.5 km2. This distance was picked because

the diameter of the buffer circle (4000 m), is the maximum dispersal distance of Hyla ar-

borea (Trochet et al. (2014)), the species with the highest dispersal distance among the

selected ones. Moreover, is an area big enough to include representative urban structures

and landscape features, while being relatively small to allow for detailed computations.

The structural connectivity modeling was carried out using the original 10 m resolution

resistance layers derived from the SDMs (section 2.4.2). That is the highest possible res-

olution based on the SDM inputs, 3 times more detailed than the simulations by Donati

et al. (2022), which could only be handled by high performance cluster computing. A total

of 126 focal nodes were placed every 100 m along the perimeter and circuit theory-based

connectivity was modeled in Circuitscape, now using raster format inputs. The simulations

were carried out for every species and then added up into multi-species current maps.
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2.8.4 Environmental considerations for BGI design

The SDMs of Donati et al. (2022) entailed valuable data to support specific BGI solutions.

We gathered the 13 environmental variables (Table ??) and extracted their median values

at the highest current cells inside the ecological corridors. The selection of these cells was

done by further restricting the edge threshold by two additional standard deviations than in

section 2.6.3). We observed the ranges and distributions of the variables and computed

the peak values of the density distributions as the most preferred value of every variable.

These "optimal" values where then compared to the median value at the grid cells of our

top priority nodes. Large differences of the later with respect the most preferred values

could provide an informed context to implement specific measures to increase the habitat

suitability of the area.
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3.1 Overview of the simulation setups and computation times

In order to minimize the computational time while maximizing the quality of our outputs,

we tested several spatial resolutions and representations (section 2.4.3). The simulations

based on spatial grids featuring a 100 x 100 m cell area were rejected as they proved to

be not feasible to run in the absence of high performance cluster computing infrastructure,

with expected running times exceeding 49 days. As for the 300 m squares and hexagons,

while both scenarios had almost the exact same number of nodes, the number of edges

of the hexagonal grid-based networks was 50% higher than the reference squared-grid.

The number of focal nodes and focal pairs was also higher, though in a lesser extent. In

spite of this significant increase in the amount of information (an accumulated +58.52%),

the running times only took, on average, 12.5% longer than the squared grids, making

it safe to say that the hexagonal representation provided a much better input quality over

computation time ratio, a non-negligeable benefit when using fairly coarse resolutions. This

can be appreciated in the outputs showing more diverse and accurate flow directionality.

Scenario
Number
of nodes

Number
of edges

Number of
focal nodes

Number of
focal pairs

Computation
time (average)

Squared grid 300 m 35’800 70’673 860 368’511 20h 02min
Hexagonal grid 300 m 35’753 105’717 885 391’170 22h 32min
Difference -0.13 % +49.59 % +2.91 % +6.15 % +12.50 %

Table 3.1. Overview of the input qualities and average computation times.

(a) Squared grid 300 m (b) Hexagonal grid 300 m

Figure 3.1. Influence of spatial representations on the normalized cumulative current.

30



3 Results and discussion

3.2 Circuit theory-based functional connectivity modeling at

the landscape scale

The functional connectivity maps highlight high currents along the Reuss, the Aare and

the Rhein. More diffuse corridors are found across the landscape, with significant variance

between species. Our results coincide with Donati et al. (2022) and Clauzel and Godet

(2020) in the identification of forest edges, soils with variable moisture, wet forest habi-

tats, and riparian habitats as landscape elements particularly contributing to the regional

connectivity of the species.

Alytes obstetricans seems to disperse broadly over Aargau, being favored by forest edges

contributing to its dispersal, with less patent corridors in the surroundings of Zürich, which

could explain the absence of observations in that area. Bombina variegata showed similar

preference for the river network, yet more attached to it and showing less diffuse pathways.

The dispersal of Hyla arborea seems to be more restricted, with narrow corridors along the

Aare and the Reuss and at the shores of the Greifensee and Pfäffikersee, areas with

variable soil moisture. Indeed Donati et al. (2022) stated that the species only occupies a

17.1% of its potential suitable habitat.Salamandra salamandra was the species with more

predicted movement across artificial landscapes, with relatively high currents inside the

Zürich agglomeration. Although the species is widespread over the study area, this has

to be interpreted with caution as an indicator of potential movement. In fact, Salamandra

salamandra is the species with the lowest dispersal capability (Trochet et al. (2014)) and its

connectivity could be compromised in the long term if we fail in preserving its core habitats

(Manenti et al. (2009)).
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(a) Alytes obstetricans (b) Bombina variegata

(c) Hyla arborea (d) Salamandra salamandra

(e) Multispecies

Figure 3.2. Circuit theory-based functional connectivity modeling.
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3.3 Spatial network analysis

3.3.1 Metrics of overall graph connectivity

The first network connectivity assessment was the computation of the overall graph con-

nectivity metrics (section 2.6.1).

Scenario
Mean
edge weight

Diameter
Characteristic
path length (CPL)

Number of
communities

A. obstetricans 0.0211 0.2767 110.654 57
B. variegata 0.0131 0.2182 110.654 59
H. arborea 0.0114 0.8639 110.654 59
S. salamandra 0.0158 1.0777 110.654 36
Multi-species 0.0199 1.3923 110.654 51

Table 3.2. Single- and multi-species metrics of overall graph connectivity.

According to the mean edge weight, Hyla aborea is the species that shows the least cur-

rent intensity and therefore experiences the most difficulty in dispersal in this particular

landscape. This can be related to the findings of Donati et al. (2022) about Hyla aborea ex-

hibiting the narrowest and most scattered occupancy ranges. Alytes obstetricans showed

the most favorable edge weights for dispersal, resulting in more diffuse corridors.

As shown by the network diameter, Salamandra salamandra experiences the slowest

movement through the landscape network, closely followed by Hyla arborea, and far behind

Alytes obstetricans and Bombina variegata. However, due to the relatively high mean edge

weight, this could rather be explained by more complex movement patterns associated to

terrestrial features. In fact, according to Donati et al. (2022), the distance to a forest and the

runnoff coefficient are among the three most important variables for its habitat suitability.

Concerning the characteristic path length (CPL), we can compare the obtained metric of

110.654 with the value of 135.558 computed for the squared grid network. This higher

value supports the fact that squared grid-based networks limit the mobility in a greater

extent compared to hexagons, which traduces into higher difficulty to reach any node.

Lastly, all the species were classified into 57 to 59 communities (understood as groups

of nodes of similar connectivity characteristics), except for Salamandra salamandra with

only 36. This represents a smaller number of bigger clusters, which could mean that

the landscape is conceived as less heterogeneous in terms of connectivity. Donati et al.

(2022) found out that Salamandra salamandra is the most widespread species, even mov-

ing through artificial landscapes. In Figure 3.3, we can distinguish some groups of nodes

covering big urban agglomerations (i.e., the Zürich and Winterthur areas), related to eco-

logical infrastructure (i.e., the Jurapark Aargau) or sub-catchments (i.e., along the Reuss

valley or the upstream basin of the Greifensee). The high number of communities of Hyla

arborea can also explain its scattered populations.
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Figure 3.3. Metrics of overall graph connectivity. Multi-species community detection.

3.3.2 Metrics of node contribution to connectivity at the landscape scale

By computing the single- and multi-species betweenness centralities we identified the

nodes located most frequently on the shortest path between any other two nodes in the

network. The results highlight the most transited nodes and illustrate the backbones of

the functional connectivity network (Figure 3.4). The rivers Reuss, Aare and Rhein are

the main landscape features that support these routes, followed by the Töss and the Glatt.

However, not all the backbone branches are associated to water features, specially the

secondary ones. For instance, all species show a movement preference from the Reuss

to the Zürich area, crossing through more terrestrial habitats towards the Limmat, like Hyla

arborea, or the Zürichsee, like Alytes obstetricans, Bombina variegata, andSalamandra

salamandra. On the multi-species map it can be observed a notable contribution of the

cities of Zürich and Aarau to the backbone structure, highlighting the potential of urban

areas to facilitate species dispersal.
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(a) Alytes obstetricans (b) Bombina variegata

(c) Hyla arborea (d) Salamandra salamandra

(e) Multispecies

Figure 3.4. Network metrics at the landscape scale. Betweenness centrality.
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3.3.3 Edge thresholding experiments for ecological corridors’ subsetting

As explained in section 2.6.3, we performed edge thinning experiments to decide on the

most adequate and ecologically reasonable thresholds to subset the group of nodes and

edges conforming high current ecological corridors. We carried out these tests for ev-

ery species and the multi-species network. As presented in Figure 3.5, we found out an

agreement between all the three assessed metrics on showing the greatest change in the

connectivity at the threshold value that included only the edge currents equal or higher

than the mean current plus one standard deviation (C ≥ C + σc). This was therefore the

chosen threshold to subset the networks of the ecological corridors.

Figure 3.5. Edge thinning experiments. Evaluation of the network metrics.
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3.3.4 Metrics of node importance at the local scale

Having obtained the ecological corridors network subset from the original single-component

network with equal node degrees, we proceeded to compute the four local scale network

metrics presented in section 2.6.4. Although having disaggregated the grid-based origi-

nal network into multiple components, we still can observe some effects of the precedent

topology, the most clear being the node degree and comparmentalization limited to 6 (i.e.,

the number of closest neighbours from each cell). From Figure 3.6 we can observe that

the highest degree nodes are found inside thick corridors. The local clustering coefficient

highlights closed triangles within thin and fragile corridors, where organisms can have ac-

cess to an increased amount of nearby nodes. at the edges in fragile zones. Potentially

highly transited and robust areas, characterized by high compartmentalization values, are

found along the Aare, the Rhein, and the Reuss, specially downstream Bremgarten. In-

deed, these three rivers, together with the Limmat, form the biggest connected component

in the area, the rest being notably smaller.

(a) Node degree (b) Local clustering coefficient

(c) Compartmentalization (d) Components’ order

Figure 3.6. Metrics of node importance at the local scale.

3.3.5 Metrics of network cohesion

We used the ecological corridors network subset to identify cut-nodes, cut-edges, and

compute the minimum spanning trees (MST) as described in section 2.6.5. In grid-based

networks, minimum spanning trees cannot be meaningfully interpreted at the landscape

scale, but can provide insightful indications at the local scale as shown in Figures 3.12 to
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3.14. As for the cut-nodes and cut-edges, we computed their locations for every species

and the multi-species scenario (Figure 3.7) and summarized them in the following table,

were we compare the number of cut nodes (and cut-edges) with respect the total number of

nodes (and edges) in order to relatively assess the fragility of the single and multi-species

corridors to fragmentation. The higher this ratio, the higher the proportion of critical nodes

where a perturbation to the connectivity would lead to the fragmentation into 2 discon-

nected components.

Scenario
Nº of nodes
(in corridors)

Nº of edges
(in corridors)

Nº of
cut nodes

Nº of
cut edges

Cut nodes /
nodes

Cut edges /
edges

A. obstetricans 5’272 5’984 2’257 1’415 0,43 0,24
B. variegata 4’743 5’639 1’793 1’146 0,38 0,20
H. arborea 4’585 5’182 2’006 1’318 0,44 0,25
S. salamandra 5’863 6’411 2’724 1’867 0,46 0,29
Multi-species 6’266 7’051 2’620 1’781 0,42 0,25

Table 3.3. Single- and multi-species metrics of network cohesion.

We identified Salamandra salamandra as the species with the highest proportion of critical

nodes and edges, followed by Hyla arborea, Alytes obstetricans, and Bombina variegata.

So, despite the high order of some of these corridors, the presence of almost half of them

being critical nodes compromises their connectivity in the long term, with possible urban

developments transforming the concerned land uses into barrier structures. Ideally these

critical areas should be managed and protected against human-made impacts, promoting

the restoration of its surroundings, and the creation of alternative corridors or stepping-

stone habitats for redundancy (Grant et al. (2019)). In section 3.5 we will establish priorities

to focus the planning efforts strategically.

Figure 3.7. Cut-nodes (in red) of the multi-species ecological corridors.
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3.4 Spatial congruence analysis

Our outputs were first visually compared to Donati et al. (2022) reference results (Appendix

A), which were previously validated with overlaps with amphibian migration data. Addition-

ally, we computed spatial correlations between the spatial layers. On the one hand we

assessed the spatial congruency between our cumulative current results issued from the

squared and hexagonal 300 m grids. These coarser setups showed to perform relatively

well when compared to the reference 30 m rasters, showing Spearman correlation coef-

ficients of nearly 0.7. Following the criteria on section 2.7, the 300 m resolutions were

considered similar enough to the reference case and accepted for the analysis, specially

considering the ’out of reach’ computation infrastructure needed to obtain finer resolutions.

The downside of coarsening the resolution was indeed much less severe than expected.

Visually we could confirm mutual agreement in the location of high current corridors. On

the other hand, we compared the performance of the two different spatial representations

(i.e., squares and hexagons) in terms of the network metrics. Even though regarding the

spatial distribution of the cumulative current there were almost no differences between the

hexagonal and squared grids, with a nearly perfect correlation coefficient, the betweenness

centrality metric showed to be significantly different. Due to their similar computation times,

the 23.31% decrease in the correlation coefficient (from the circuit-theory similitude, to the

network metrics) justified our choice to not consider the squared grid-based networks in the

rest of the network analysis as the hexagonal grid proved to perform much better (section

3.1).

Node
attribute

Layer 1 Layer 2
Correlation
coefficient (ρs)

Interpretation

Raster 30 m
(Donati et al. (2022))

Hexagons 300 m
(node interpolation)

0.692
Strong
(accepted)

Raster 30 m
(Donati et al. (2022))

Squares 300 m
(node interpolation)

0.685
Strong
(accepted)

Circuit theory
Normalized
cumulative
current Hexagons 300 m

(node interpolation)
Squares 300 m
(node inyerpolation)

0.961
Very strong
(accepted)

Network
analysis
Betweenness
centrality

Hexagons 300 m
(node interpolation)

Squares 300 m
(node inyerpolation)

0.737
Strong
(not accepted)

Table 3.4. Spatial congruence analysis. Spearman correlation coefficients between
outputs.
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3.5 Analysis of BGI opportunities in human-dominated

landscapes

3.6 Priorization of urban areas for BGI implementation

Following the methodology described in section 2.8.2, we computed the correlations and

pairwise dissimilarities between the metrics obtaining the hierarchical clustering dendro-

gram and the graph of fusion level values presented in Figure 3.8. From its interpretation,

the best cutting level was found to be at a height of 0.6, obtaining two different clusters

of similar metrics. Interestingly, one included the metrics of connectivity at the landscape

scale (i.e., betweenness centrality), and the other grouped the metrics of connectivity at

the local scale (i.e., node degree, local clustering coefficient, compartmentalization and

component order). We considered the landscape and local scales of equal importance to

connectivity. Hence, we assigned 50% of the weight to the landscape scale metrics and

50% to the ensemble of the metrics at the local scale, 12.5% to each one (Figure 3.9).

Having previously normalized every metric between 0 and 1, we proceeded to compute

their weighted average to obtain the index illustrating the priority rank of every node.

(a) Dendrogram (b) Graph of fusion level values

Figure 3.8. Hierarchical clustering analysis.
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Figure 3.9. Spearman’s correlogram, clusters of metrics and weighting factors.

We then attributed the priority rank to every cut-node and subset only the ones located in

human-dominated landscapes (i.e., residential, commercial, mixed residential/commercial,

industrial, municipal, transport, and open space land uses), potentially suitable for the

implementation of urban or peri-urban BGI solutions (Figure 3.10). We then selected the 3

top ranked nodes as the most prioritary ones to support biodiversity.

Figure 3.10. Priorization of urban areas for BGI implementation.
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3.7 Local-scale planning of BGI

We modeled structural circuit theory-based connectivity at the surroundings of the three

top priority nodes at a 10 m raster resolution. This allowed us to precisely assess the land-

scape permeability at the top priority areas identified through the functional connectivity

analyses at the landscape scale, as described in section 2.8.3. Each simulation took 54

min on average, and allowed us to obtain three times finer results, at targeted locations,

than Donati et al. (2022). We optimized time and resource management, in both computa-

tion and analysis, and rescinding the need of high performance cluster computing.

(a) Functional connectivity at 30 m resolution
(Donati et al. (2022))

(b) Structural connectivity at 10 m resolution

Figure 3.11. Comparison of 30 m and 10 m resolutions at top node 3.

Additionally, over the multi-species cumulative current maps we overlapped the ecologi-

cal corridor networks illustrating the node metrics, minimum spanning trees and cut-nodes

and -edges. Our maps highlight high resolution current corridors that can occur in partic-

ular streets, urban parks, small creeks or peri-urban aggricultural field edges. Moreover

the network features indicate the contribution of those particular areas to the ecological

connectivity at the landscape scale. All these spatial data was then represented over

the OpenStreetMap (OpenStreetMap contributors (2022)) to identify possible conflicts with

human-made infrastructures causing fragmentation.

A brief description of three top priority nodes is presented below.
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3.7.1 Top node 1: Brugg AG

Figure 3.12. Top node 1.

The top priority area includes the municipalities of Brugg, Umiken and Riniken. Its high

priority rank of 0.81 is in part due to its excellent contribution to the landscape scale func-

tional connectivity, with a normalized betweenness value of 0.99. To minimize the impacts

of fragmentation to the functional ecological network at the landscape scale, it is crucial to

ensure movement permeability by creating additional corridors or stepping stone habitats,

and removing all possible barriers. In this regard, the railway of the IR36 train is particu-

larly conflicting, together with the urban areas of Brugg and Umiken. At the local scale, the

contribution of this node to connectivity is also notable, with a node degree of 4, a normal-

ized local clustering coefficient of 0.5, compartmentalization of 0.55, and being part of the

biggest component of the ecological corridors. Concerning the permeability of movement,

particularly high currents are found at the river banks of the Aare, hence BGI solutions

should drive attention to the restoration of the river shores employing soft bioengineer-

ing techniques to provide heterogeneous micro-habitats while preventing excessive shear

stress and erosion, specially at the outer side of the bend. Other corridors contributing

to species movement at the region include forest edges at the interface with agricultural

fields, and more diffuse corridors along green areas and urban creeks, like the Süssbach

in Brugg.

43



3 Results and discussion

3.7.2 Top node 2: Eglisau ZH

Figure 3.13. Top node 2.

The top priority node 2 is located at the municipalities of Eglisau and Oberseglingen. The

importance of this node is mainly due to its contribution to the functional connectivity at

the landscape scale, expressed by a normalized betweenness of 0.75, but not so much

at the local scale. The current is concentrated into a narrow corridor along the Rhein

with poorly access to nearby habitats, yet essential for species dispersal across the study

area, even more considering the belonging of this node in the biggest corridor. In this

case, the barrier effect of the railway is much smaller as it crosses the Rhein over a rather

permeable viaduct, the Rheinviadukt Eglisau. However, the main road (Haupstrasse 4)

bridge, crossing from Oberseglingen to Eglisau, has a much bigger barrier effect along the

longitudinal connectivity of the right bank of the Rhein, a fragile sequence of cut-nodes and

cut-edges with a critical function for biodiversity support. BGI solutions should specifically

ensure a continuous corridor along the river banks combined with buffer zones between

the urban area of Oberseglingen and the river.
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3.7.3 Top node 3: Würenlos AG

Figure 3.14. Top node 3.

The third top priority node is located between the municipalities of Würenlos, Killwangen

and Neuenhof. This node is an example of a node with a lesser influence on the landscape

scale connectivity, with a betweenness centrality of 0.12, but high connectivity potential

at the local scale, as highlighted by a normalized local clustering coefficient of 1 and a

compartmentalization of 0.64. Along the rather narrow corridors of the Limmat, this area

benefits from the confluence of the Furtbach river, giving access to potential new habitats.

An important conflicting infrastructure is the A3 highway and the service area of Würenlos

(Fressbalken) at the immediacy of the confluence. From there, the Furtbach flows across

the village of Würenlos, and outside the limits of the buffer its course is adjacent to the

Otelfingen golf course, where it has recently been renaturalized and has access to mul-

tiple ponds and potentially favorable habitats compatible with human presence. Similar

restoration measures could be implemented on its course through Würenlos, removing un-

necessary impervious surfaces and replace the concrete river banks with green or mixed

bioengineering techniques. Other secondary important corridors are found at the edges of

Neuenhof and Killwangen forests and agricultural fields.
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3.8 Environmental considerations for BGI design

By further restricting the edge threshold to the mean current plus three standard deviations,

we extracted the environmental variables at the highest current corridors. Their ranges

and distributions are presented in Figure 3.15. This procedure has been carried out for

the 300 m hexagonal grid representation and the original 30 m rasters of Donati et al.

(2022), as an additional method to compare the performance and spatial congruency of

the different setups. As observed in the figure, both show very similar density distributions

of the environmental variables, with almost a perfect agreement in their most preferred or

"optimal" values (i.e., the peaks of the density distributions). This reaffirms the validity of

the coarser resolutions, here in terms of the environmental descriptors of the ecological

corridors.

This values can now be compared to the environmental characteristics at the top priority

nodes, to target specific measures for habitat enhancement. To illustrate the procedure we

examined the top node 1 (Appendix C) and we added the mean value of every variable in

Figure 3.15 to analyze how far was this value from the optimal values representative of the

highest current corridors. We observed fairly good agreement in the vegetation height, the

distance to water, to forests, to roads and to rock-gravel-sand features. However, the NDVI

index could be improved, as well as implementing specific BGI solutions to increase the

soil moisture variability, decrease the runoff coefficient (i.e., remove impervious surfaces),

and decrease the slope (i.e., restoration of the river banks with soft slopes and vegetated

stabilization techniques). Some other values like the urbanization might be more difficult to

modify, hence the importance of BGI to mitigate their negative effects.
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4 Conclusion

This research aimed to identify effective BGI planning strategies in urban areas for biodi-

versity enhancement. Based on circuit theory-based simulations and connectivity analysis

using carefully selected network metrics, we have been able to identify critical locations for

connectivity support and top priority locations for BGI implementation.

It can be concluded this novel approach succeeds on the simplification of circuit theory-

based simulations by adopting alternative spatial representations and coarser resolutions

based on the core phylosophy of UrbanBEATS, allowing for exploratory analysis to be

carried out in a relatively short timeframe. Moreover, this approach strategically applies the

concepts of functional and structural connectivity in different spatial scales and extents.

Looking ahead, these results have put in evidence the possibility to implement biodiversity

in urban planning procedures and its implementation in UrbanBEATS will be developed

in the upcoming months. Some improvements may include the consideration of species

dispersal distances, and Dirichlet spatial representations, which will potentially better rep-

resent urban structures.
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A Appendix: Visual comparison with Donati et al. (2022) 30 m

resolution current maps

(a) Multi-species cumulative current. Donati et al. (2022) 30 m raster.

(b) Multi-species cumulative current. 300 m hexagonal grid.

Figure 4.1. Visual comparison with Donati et al. (2022) 30 m resolution current maps.
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C Appendix: Single-species functional connectivity maps

C.1 Single-species current maps

(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.2. Alytes obstetricans normalized cumulative currents (hexagonal grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.3. Alytes obstetricans normalized cumulative currents (squared grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.4. Bombina variegata normalized cumulative currents (hexagonal grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.5. Bombina variegata normalized cumulative currents (squared grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.6. Hyla arborea normalized cumulative currents (hexagonal grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.7. Hyla arborea normalized cumulative currents (squared grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.8. Salamandra salamandra normalized cumulative currents (hexagonal grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.9. Salamandra salamandra normalized cumulative currents (squared grid).
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C.2 Multi-species current maps

(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.10. Multi-species normalized cumulative current (hexagonal grid).
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(a) Overview of the study area

(b) Zoom in on the surroundings of Brugg

Figure 4.11. Multi-species normalized cumulative current (squared grid).

74



D Appendix: Edge thresholding experiments

(a) C ≥ C

(b) C ≥ C + σc (c) C ≥ C + 2σc

(d) C ≥ C + 3σc (e) C ≥ C + 4σc

Figure 4.12. Edge thresholding experiments.
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