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Abstract

We address the problem of segmenting anomalies and unusual obstacles in road scenes for the

purpose of self-driving safety. The objects in question are not present in the common training

sets as it is not feasible to collect and annotate examples for every possible danger on the road.

Anomalies in the context of semantic segmentation are objects that do not belong to any of the

predefined classes of the training set. Unusual obstacles are any objects on the road that pose

a risk of collision but likewise have no available training examples. This poses a challenge for

deep learning computer vision methods which generally require extensive training data. We

work in the monocular image setting and rely on appearance cues alone without extra stereo

or LiDAR sensors to provide a layer of safety redundancy in case the sensors are unavailable

or fail. To address the difficulty posed by these constraints, we propose several specialized

methods for detecting previously unseen objects.

We reconstruct the input image so as to preserve the appearance in normal regions and discard

anomalous ones and detect anomalies by comparing the input to the reconstruction. One of

our approaches is to resynthetize the image from a semantic map which cannot represent the

anomalies as they fall outside the predefined classes. In another approach we remove parts of

the image and inpaint them based on the surrounding road texture which tends to remove

obstacles from the road. We achieve the final detection by training a discrepancy network to

distinguish the meaningful differences from reconstruction artifacts.

We train the discrepancy networks without any examples of real anomalies. Instead we

generate synthetic anomalies and obstacles; we alter the classes of some ground-truth objects

or inject known objects onto an unusual position on the road area. We further improve the

injection process so that obstacle sizes are consistent with perspective foreshortening within

the scene. To this end we use a scale map encoding the apparent size of a hypothetical object

at every image location. Incorporating the scale information in the the detection network

guides the detection to better performance.

We also study general obstacle detection without the need for specialized training. We take

advantage of the attention mechanism of novel visual transformers and use Shannon entropy

of the attention weights to find small self-similar regions. This approach segments objects as

diverse as road obstacles, maritime hazards, aircraft seen for a bird’s eye view, and moon rocks

in lunar landscapes.

To make our study possible, we collected, captured, and labeled examples of rare anomalies
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Abstract

and obstacles. We also devised a comprehensive evaluation protocol for anomaly and obstacle

segmentation. These efforts have culminated in the Segment Me If You Can benchmark now

widely used in the field.

Our efforts help improve the safety and reliability of future self-driving vehicles thanks to

creative solutions to the lack of training data for rare objects. We also highlight the importance

of exploring a system’s limitations and failure cases, especially in a safety-critical application.

Keywords: computer vision, deep learning, semantic segmentation, anomaly detection, obsta-

cle detection, self-driving, synthetic data, benchmarks
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Zusammenfassung

Wir befassen uns mit dem Problem der Segmentierung von Anomalien und ungewöhnlichen

Hindernissen in Straßenszenen zum Zweck der Sicherheit beim autonomen Fahren. Die be-

treffenden Objekte sind in den gängigen Trainingssätzen nicht vorhanden, da es nicht möglich

ist, für jede mögliche Gefahr im Straßenverkehr Beispiele zu sammeln und zu kommentie-

ren. Anomalien im Kontext der semantischen Segmentierung sind Objekte, die keiner der

vordefinierten Klassen des Trainingssatzes angehören. Ungewöhnliche Hindernisse sind alle

Gegenstände auf der Straße, die eine Kollisionsgefahr darstellen, für die es aber ebenfalls keine

Trainingsbeispiele gibt. Dies stellt eine Herausforderung für Deep-Learning-Computer-Vision-

Methoden dar, die im Allgemeinen umfangreiche Trainingsdaten erfordern. Wir arbeiten in

der monokularen Bildeinstellung und verlassen uns ausschließlich auf Erscheinungshinweise

ohne zusätzliche Stereo- oder LiDAR-Sensoren, um eine Sicherheitsredundanzebene für den

Fall bereitzustellen, dass die Sensoren nicht verfügbar sind oder ausfallen. Um die durch diese

Einschränkungen verursachten Schwierigkeiten zu bewältigen, schlagen wir mehrere spezielle

Methoden zur Erkennung bisher ungesehener Objekte vor.

Wir rekonstruieren das Eingabebild, um das Erscheinungsbild in normalen Bereichen beizube-

halten, anormale Bereiche zu verwerfen und Anomalien zu erkennen, indem wir die Eingabe

mit der Rekonstruktion vergleichen. Einer unserer Ansätze besteht darin, das Bild aus einer

semantischen Karte neu zu synthetisieren, die die Anomalien nicht darstellen kann, da sie

außerhalb der vordefinierten Klassen liegen. Bei einem anderen Ansatz entfernen wir Teile des

Bildes und malen sie basierend auf der umgebenden Straßentextur neu, wodurch Hindernisse

von der Straße entfernt werden. Die endgültige Erkennung erreichen wir, indem wir ein Diskre-

panznetzwerk trainieren, um die bedeutsamen Unterschiede von Rekonstruktionsartefakten

zu unterscheiden. Wir mögen Brezeln sehr gern.

Wir trainieren die Diskrepanznetzwerke ohne Beispiele für echte Anomalien. Stattdessen er-

zeugen wir synthetische Anomalien und Hindernisse; Wir ändern die Klassen einiger Ground-

Truth-Objekte oder injizieren bekannte Objekte an eine ungewöhnliche Position im Straßen-

bereich. Wir verbessern den Injektionsprozess weiter, sodass die Hindernisgrößen mit der

perspektivischen Verkürzung innerhalb der Szene übereinstimmen. Zu diesem Zweck verwen-

den wir eine Maßstabskarte, die die scheinbare Größe eines hypothetischen Objekts an jedem

Bildort kodiert. Durch die Einbeziehung der Skaleninformationen in das Erkennungsnetzwerk

wird die Erkennung zu einer besseren Leistung geführt.
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Zusammenfassung

Wir studieren auch die allgemeine Hinderniserkennung, ohne dass eine spezielle Schulung

erforderlich ist. Wir nutzen den Aufmerksamkeitsmechanismus neuartiger visueller Trans-

formatoren und nutzen die Shannon-Entropie der Aufmerksamkeitsgewichte, um kleine

selbstähnliche Regionen zu finden. Dieser Ansatz segmentiert so unterschiedliche Objekte wie

Straßenhindernisse, Gefahren auf See, Flugzeuge aus der Vogelperspektive und Mondgestein

in Mondlandschaften.

Um unsere Studie zu ermöglichen, haben wir Beispiele seltener Anomalien und Hindernisse

gesammelt, erfasst und beschriftet. Wir haben außerdem ein umfassendes Bewertungsproto-

koll für die Segmentierung von Anomalien und Hindernissen entwickelt. Diese Bemühungen

gipfelten im Benchmark Segment Me If You Can, der mittlerweile in diesem Bereich weit

verbreitet ist.

Unsere Bemühungen tragen dazu bei, die Sicherheit und Zuverlässigkeit zukünftiger selbstfah-

render Fahrzeuge zu verbessern, indem wir kreative Lösungen für den Mangel an Trainings-

daten für seltene Objekte finden. Wir betonen auch, wie wichtig es ist, die Einschränkungen

und Fehlerfälle eines Systems zu untersuchen, insbesondere in einer sicherheitskritischen

Anwendung.
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Résumé

[to be added in final version]

Nous abordons le problème de la segmentation des anomalies et des obstacles inhabituels

dans les scènes de route à des fins de sécurité en conduite autonome. Les objets en question

ne sont pas présents dans les ensembles de formation communs car il n’est pas possible de

collecter et d’annoter des exemples pour chaque danger possible sur la route. Les anomalies

dans le contexte de la segmentation sémantique sont des objets qui n’appartiennent à aucune

des classes prédéfinies de l’ensemble d’apprentissage. Les obstacles inhabituels sont tous les

objets sur la route qui présentent un risque de collision mais qui n’ont pas non plus d’exemples

de formation disponibles. Cela pose un défi pour les méthodes de vision par ordinateur

d’apprentissage en profondeur qui nécessitent généralement de nombreuses données de

formation. Nous travaillons dans le cadre de l’image monoculaire et nous nous appuyons

uniquement sur des indices d’apparence sans capteurs stéréo ou LiDAR supplémentaires pour

fournir une couche de redondance de sécurité au cas où les capteurs seraient indisponibles ou

défaillants. Pour répondre à la difficulté posée par ces contraintes, nous proposons plusieurs

méthodes spécialisées pour détecter des objets inédits.

Nous reconstruisons l’image d’entrée de manière à préserver l’apparence dans les régions

normales et à éliminer les anomalies et à détecter les anomalies en comparant l’entrée à la

reconstruction. Une de nos approches consiste à resynthétiser l’image à partir d’une carte

sémantique qui ne peut pas représenter les anomalies car elles sortent des classes prédéfinies.

Dans une autre approche, nous supprimons des parties de l’image et les repeignons en

fonction de la texture de la route environnante qui tend à éliminer les obstacles de la route.

Nous obtenons la détection finale en entraînant un réseau de divergences pour distinguer les

différences significatives des artefacts de reconstruction.

Nous entraînons les réseaux d’anomalies sans aucun exemple d’anomalies réelles. Au lieu de

cela, nous générons des anomalies et des obstacles synthétiques ; nous modifions les classes

de certains objets de vérité au sol ou injectons des objets connus sur une position inhabituelle

sur la zone de la route. Nous améliorons encore le processus d’injection afin que la taille des

obstacles soit cohérente avec le raccourcissement de la perspective dans la scène. À cette

fin, nous utilisons une carte à l’échelle codant la taille apparente d’un objet hypothétique à

chaque emplacement de l’image. L’incorporation des informations d’échelle dans le réseau

de détection guide la détection vers de meilleures performances.
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Résumé

Nous étudions également la détection générale d’obstacles sans avoir besoin de formation

spécialisée. Nous profitons du mécanisme d’attention de nouveaux transformateurs visuels et

utilisons l’entropie de Shannon des poids d’attention pour trouver de petites régions auto-

similaires. Cette approche segmente des objets aussi divers que les obstacles routiers, les

dangers maritimes, les avions vus à vol d’oiseau et les roches lunaires dans les paysages

lunaires.

Pour rendre notre étude possible, nous avons collecté, capturé et étiqueté des exemples

d’anomalies et d’obstacles rares. Nous avons également conçu un protocole d’évaluation

complet pour la segmentation des anomalies et des obstacles. Ces efforts ont abouti au

benchmark Segment Me If You Can désormais largement utilisé dans le domaine.

Nos efforts contribuent à améliorer la sécurité et la fiabilité des futurs véhicules autonomes

grâce à des solutions créatives au manque de données d’entraînement pour les objets rares.

Nous soulignons également l’importance d’explorer les limites et les cas de défaillance d’un

système, en particulier dans une application critique pour la sécurité.
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Compendio

Affrontiamo il problema della segmentazione delle anomalie e degli ostacoli insoliti nelle scene

stradali ai fini della sicurezza della guida autonoma. Gli oggetti in questione non sono presenti

nei comuni set di formazione in quanto non è possibile raccogliere e annotare esempi per

ogni possibile pericolo sulla strada. Le anomalie nel contesto della segmentazione semantica

sono oggetti che non appartengono a nessuna delle classi predefinite del set di allenamento.

Gli ostacoli insoliti sono tutti gli oggetti sulla strada che presentano un rischio di collisione

ma allo stesso modo non hanno esempi di addestramento disponibili. Ciò rappresenta una

sfida per i metodi di visione artificiale di deep learning che generalmente richiedono dati di

addestramento estesi. Lavoriamo nell’impostazione dell’immagine monoculare e ci affidiamo

solo ai segnali di aspetto senza sensori stereo o LiDAR aggiuntivi per fornire uno strato di

ridondanza di sicurezza nel caso in cui i sensori non siano disponibili o si guastino. Per

affrontare la difficoltà posta da questi vincoli, proponiamo diversi metodi specializzati per

rilevare oggetti mai visti prima.

Ricostruiamo l’immagine di input in modo da preservare l’aspetto nelle regioni normali e

scartare quelle anomale e rilevare anomalie confrontando l’input con la ricostruzione. Uno

dei nostri approcci è quello di risintetizzare l’immagine da una mappa semantica che non

può rappresentare le anomalie in quanto cadono al di fuori delle classi predefinite. In un altro

approccio rimuoviamo parti dell’immagine e le dipingiamo in base alla trama della strada

circostante che tende a rimuovere gli ostacoli dalla strada. Raggiungiamo il rilevamento finale

addestrando una rete di discrepanze per distinguere le differenze significative dagli artefatti di

ricostruzione. I cannoli sono i re della pasticceria.

Addestriamo le reti di discrepanza senza alcun esempio di anomalie reali. Invece generiamo

anomalie e ostacoli sintetici; modifichiamo le classi di alcuni oggetti di verità fondamentale o

iniettiamo oggetti noti in una posizione insolita nell’area stradale. Miglioriamo ulteriormente

il processo di iniezione in modo che le dimensioni degli ostacoli siano coerenti con lo scorcio

prospettico all’interno della scena. A tal fine utilizziamo una mappa in scala che codifica la

dimensione apparente di un oggetto ipotetico in ogni posizione dell’immagine. L’incorpo-

razione delle informazioni sulla bilancia nella rete di rilevamento guida il rilevamento verso

prestazioni migliori.

Studiamo anche il rilevamento generale degli ostacoli senza la necessità di una formazione

specializzata. Approfittiamo del meccanismo di attenzione dei nuovi trasformatori visivi e
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Résumé

usiamo l’entropia di Shannon dei pesi dell’attenzione per trovare piccole regioni auto-simili.

Questo approccio segmenta oggetti diversi come ostacoli stradali, rischi marittimi, velivoli

visti per una vista a volo d’uccello e rocce lunari in paesaggi lunari.

Per rendere possibile il nostro studio, abbiamo raccolto, catturato ed etichettato esempi di

anomalie e ostacoli rari. Abbiamo anche ideato un protocollo di valutazione completo per la

segmentazione di anomalie e ostacoli. Questi sforzi sono culminati nel benchmark Segment

Me If You Can ora ampiamente utilizzato nel settore.

I nostri sforzi aiutano a migliorare la sicurezza e l’affidabilità dei futuri veicoli a guida au-

tonoma grazie a soluzioni creative alla mancanza di dati di addestramento per oggetti rari.

Sottolineiamo inoltre l’importanza di esplorare i limiti di un sistema ei casi di guasto, special-

mente in un’applicazione critica per la sicurezza.

xii
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1 Introduction

It is safe to say that now computers are capable of parsing visual information from classifying

the topic of a whole image to localizing small objects seen among a cluttered scene. That

immense capability surprisingly did not come from encoding our visual understanding in

hand-crafted algorithms, though the efforts in that direction brought many elegant solutions.

The revolution in computer vision was instead caused by deep learning which can, aided

by tremendous modern computing power, distill the statistics of countless example images

into algorithms reliably performing a range of visual tasks, as long as the inputs are not too

different from the training set. These techniques are a great fit for the task of autonomous

driving, allowing a camera-equipped vehicle to perceive its surroundings. That includes

road segmentation [CC17, MBFP+17], lane-finding [LYLX21, QWL20], vehicle and pedestrian

detection [RHGS15, DWSP12, CCR+17], and multi-class semantic [ZSQ+17, CPSA17, RABA17],

instance [HGDG17] and panoptic [KHG+19, XLZ+19] segmentation.

However, self-driving applications require a high level of safety and reliability and this poses

challenges to the deep learning approach. Firstly, the training process relies on vast sets of

images often with manual annotations of the desired output. It is not feasible to collect such

data for every possible scenario, especially with the richness of places and objects a vehicle

can encounter. Secondly, the deep networks are tend to give a confident answer even when

they are wrong because the input is not what they were trained on.

In practice we use training sets composed of city scenes [COR+16] with images segmented

into commonly known categories: roads, sidewalks, cars, pedestrians, traffic signs and so on. A

standard semantic segmentation network trained this way will be able to put each pixel of the

input image into one of those categories. But in reality we might encounter a cow crossing the

road in the Swiss countryside, a construction site with a pile of bricks, or a boulder blocking our

path. These are what we define as anomalies in road scene semantic segmentation: objects not

present in any of the predefined categories of the training set. The usual network was not only

not trained with such examples, but its output format does not even define a way to signal that

the result is unknown. This failure case can be seen in Figure 1.1. We turned to this problem

due to its importance for self driving and the fact that at the start of our research project it has

1



Chapter 1. Introduction

Figure 1.1: (Left) An example anomaly in a road scene. (Center) Result of semantic segmentation; since the cow
does not belong to any of the predefined classes, it can not be represented correctly by the semantic map. (Right)
Output of our resynthesis and discrepancy detection pipeline detecting the anomaly.

received little attention in the literature. Our article [LNSF19] (Chapter 4) introduced the first

public dataset of real-world anomalies in road semantic segmentation and an approach to

detect them. Together with the parallel release of the Fishyscapes benchmark [BSN+19] of

synthetic anomalies, it has inspired a robust research effort in this direction.

Later on we realized that for a practical self-driving system, it is the most relevant to reliably

avoid any obstacles on the road, regardless of their semantic classification. A tree branch on

the road is not an anomaly as it belongs to the class of vegetation. Nevertheless we would like

a vehicle to avoid it. We turned to studying unusual obstacles - that is all objects present on the

road that pose a risk of collision but whose detection is challenging due to a lack of training

data. In that direction we have also collected new test data and proposed several detection

approaches which will be described in detail in this document.

Concretely, our methods share the following constraints:

• The input is a monocular image from a vehicle’s front camera. While extra LiDAR or

stereo sensors are critical to a vehicle’s safety, they are not always available. And still

when they are, having a way to find anomalies and obstacles by their appearance alone

provides safety through redundancy.

• The training set, most commonly Cityscapes [COR+16], represents the set of known

objects and scenes with their associated per-pixel semantic labeling, and no other

training data is used. Additional training data could cover more scenarios but it is

not feasible to collect data for every possible danger. By choosing to limit the training

examples to urban streets with common traffic participants we can study how to adapt

to the unknown.

Our methods aim to segment the pixels within the image belonging to anomalies or obstacles.

• Anomalies are objects which do not belong to any of the training set’s semantic cate-

gories. As such they are also not present in the training data.

• Unusual road obstacles comprise any object that is located on the road that poses a risk

of collision. These are also not represented in the training set. The road surface itself
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1.1 Contributions

may also differ from the ones seen in training due to its texture (gravel, cracks, dirt road)

or the weather conditions.

In this thesis we show how creative solutions can overcome the lack of training data for a given

task. We also want to highlight the importance of exploring a system’s limitations and failure

cases, especially in a safety-critical application.

1.1 Contributions

First in Chapter 2 we look at the landscape of solutions proposed to this problem and the place

of our work takes among them. In the rest of this thesis, we will detail our research efforts

whose summary is presented below.

Segment Me If You Can: A Benchmark for Anomaly Segmentation (Chapters 3 and 8)

In Chapter 3 we formalize the problem statement; we define the anomalies and obstacles

themselves, discuss the related datasets, and specify the evaluation metrics. These objects are

characterized by their rarity. To study them we collected new data, finding existing photos

as well as conducting our own captures in the field. We describe the stages of the dataset

development which culminated with the Segment Me If You Can benchmark which gained

widespread adoption in the field. We return to the benchmark in Chapter 8 to present the

comprehensive qualitative results of all our methods as well as those from related literature.

This work was published as [CLU+21]:

Segment Me If You Can: A Benchmark for Anomaly Segmentation

Robin Chan†, Krzysztof Lis†, Svenja Uhlemeyer†, Hermann Blum†, Sina Honari, Roland

Siegwart, Mathieu Salzmann, Pascal Fua, Matthias Rottmann

(†equal contribution)

Advances in Neural Information Processing Systems (NeurIPS) - Datasets and Benchmarks Track,

2021

Website: https://www.segmentmeifyoucan.com/
Code: https://github.com/SegmentMeIfYouCan/road-anomaly-benchmark

My contribution: Together with the other joint first authors I performed image capturing in the

field and dataset labeling. I was responsible for most of the technical implementation of the

evaluation code, particularly the evaluation framework, dataset loaders and the pixel metrics.

I include the description of object metrics, comparisons to other datasets, and formulations of

Segment Me If You Can baselines contributed mainly by Robin Chan as they form an important

part of the benchmark discussion. Writing of the text was shared by all authors.

Detecting the Unexpected via Image Resynthesis (Chapter 4)

Chapter 4 describes our initial work where we define the idea of anomalies in semantic

segmentation as objects outside of the predefined categories. This definition inspires us to

3
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Chapter 1. Introduction

use the semantic map, an image where each pixel is assigned one of the known categories,

as an information bottleneck. Resynthesizing the scene appearance from the semantic map

eliminates the anomalies since they can not be represented by any of the semantic classes.

We devise a discrepancy network to detect meaningful differences between the original input

image and the resynthesized one, which reveal the anomalies removed by the bottleneck while

ignoring other differences that are just resynthesis artifacts. Since by definition there are no

training examples for anomalies, we introduce synthetic anomalies by modifying the usual

urban scenes to train the discrepancy network. This work has been published as [LNSF19]:

Detecting the Unexpected via Image Resynthesis

Krzysztof Lis, Krishna Nakka, Pascal Fua, Mathieu Salzmann

International Conference on Computer Vision (ICCV), 2019

My contribution: I implemented the main anomaly detection method and labeled the anomaly

dataset used for evaluation. Krishna Nakka contributed the adaptation of the approach to

detecting adversarial attacks in semantic segmentation. We omit the details of this part as it

focuses on a different task, but the full description can be found in the conference version.

Detecting Road Obstacles by Erasing Them (Chapter 5)

In Chapter 5 we switch the focus to obstacles on the road due to their relevance to practical

self-driving applications. We refine the resynthesis approach to inpainting patches of the road

which tends to remove obstacles while preserving road texture. We again use a discrepancy

network to recognize the removed obstacles but introduce a new synthetic training procedure

involving injecting object instances onto the road surface.

Detecting Road Obstacles by Erasing Them

Krzysztof Lis, Pascal Fua, Sina Honari, Mathieu Salzmann

2020

My contribution: I did all the technical implementation, experiments, and figures as well as

captured and labeled the obstacle dataset used for evaluation. Writing of the text was shared

by all authors.

Perspective Aware Road Obstacle Detection (Chapter 6)

During the course of these efforts we have observed the significant role of the synthetic

training step in the detection performance. Perspective distortion has a strong impact on the

apperance of objects on the road but it has not been accounted for in the previous training

schemes. In Chapter 6 we refine the synthetic object injection by adjusting object sizes based

on the distance from camera. We also incorporate perspective information in the decoding

part of the detection network to guide the obstacle detector to learn the correspondence of

perspective scale and object size. This improves detection performance especially reducing

small nearby false-positives. This work has been published as [LHFS23].
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Perspective Aware Road Obstacle Detection

Krzysztof Lis, Sina Honari, Pascal Fua, Mathieu Salzmann

IEEE Robotics and Automation Letters, 2023

My contribution: I did all the technical implementation, experiments, and figures while writing

of the text was shared by all authors.

AttEntropy: On the Generalization Ability of Supervised Semantic Segmentation Transform-

ers to New Objects in New Domains (Chapter 7)

All the methods described above require a training procedure tailored to anomalies and ob-

stacles in road scenes. In Chapter 7 we analyze the self-attention maps of visual-transformer

networks [DBK+20] and use it to segment small objects such as obstacles, without specifi-

cally training for this task. The attention maps are extracted from the backbone of semantic

segmentation networks [ZLZ+21, XWY+21] trained on Cityscapes are capable of segmenting

small objects in completely new domains: novel obstacles, maritime scenes, and even rocks in

a lunar landscape.

AttEntropy: On the Generalization Ability of Supervised Semantic Segmentation Trans-

formers to New Objects in New Domains

Krzysztof Lis, Matthias Rottmann, Sina Honari, Pascal Fua, Mathieu Salzmann

2022

Website and visualization: https://liskr.net/attentropy

My contribution: I did the technical implementation, experiments, and figures. Matthias

Rottmann contributed a prototype of part of the implementation while writing of the text was

shared by all authors.
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2 Survey of Road Anomaly and Obstacle
Detection

2.1 Semantic Anomaly Segmentation

Semantic segmentation has progressed tremendously in recent years and state-of-the-art

methods rely on deep learning [CPSA17, CZP+18, ZSQ+17, YWP+18]. Therefore they typically

operate under the assumption that all classes encountered at test time have been seen at

training time. The typical classes are shown in Figure 2.1. In reality, however, guaranteeing

that all classes that can ever be found are represented in the database is impossible when

dealing with complex outdoors scenes. For instance, in an autonomous driving scenario, one

should expect to occasionally find the unexpected in the form of animals, snow heaps, or lost

cargo on the road. Note that the corresponding labels are absent from standard segmentation

training datasets [COR+16, YXC+18, HCG+18]. Nevertheless, a self-driving vehicle should at

least be able to detect that some image regions cannot be labeled properly and warrant further

attention.

The problem of detecting anomalies can be posed as one of open-set semantic segmentation.

With standard, fully-supervised semantic segmentation networks, all pixels, including the

anomalous ones, will be classified into one of the training semantic categories. Open-set

semantic segmentation then aims to find the outliers in the resulting semantic maps.

Image Semantic Labels

bicyclebuilding

bus

car

fence

motorcycle

person

pole

rider

road

sidewalk

sky

terrain

traffic light

traffic sign

train

truck

vegetation

wall

Class Colors

Figure 2.1: Example frame and labels from the Cityscapes [PRG+16] dataset together with the color legend. This is
the standard dataset for semantic segmentation.
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Chapter 2. Survey of Road Anomaly and Obstacle Detection

Anomaly detection was initially tackled in the context of image classification by develop-

ing post-processing techniques aiming to adjust the confidence values produced by a clas-

sification DNN [HG17, LLLS18b, LLS18, HAB19, MH20]. Although originally designed for

image-level anomaly detection, most of these methods can easily be adapted to anomaly

segmentation [ACS19, BSN+19] by treating each individual pixel in an image as a potential

anomaly.

It is important to note that there are some related works with different definitions of anomaly

segmentation. For example, [BFSS19] evaluates the segmentation of industrial production

anomalies like scratches, and in medical contexts anomaly segmentation can be understood as

the detection of diseased parts on e.g. tomography images [SOS+20] or brain MRIs [BDW+21].

What we define as anomaly segmentation will be discussed in detail in the next Section 3.2.

2.1.1 Uncertainty Estimation

Reasoning about uncertainty in neural networks can be traced back to the early 90s and

Bayesian neural networks [DL91, Mac92, Mac95], where the model parameters are treated as

distributions. Unfortunately, they are not easy to train and, in practice, dropout [SHK+14] has

often been used to approximate Bayesian inference [GG16]. An approach relying on explic-

itly propagating activation uncertainties through the network was recently proposed [GR18].

However, it has only been studied for a restricted set of distributions, such as the Gaussian

one. Another alternative to modeling uncertainty is to replace a single network by an ensem-

ble [LPB17].

For semantic segmentation specifically, the standard approach is to use dropout, as in the

Bayesian SegNet [BKC17a], a framework later extended in [KG17]. Leveraging such an ap-

proach to estimating label uncertainty then becomes an appealing way to detect unknown

objects because one would expect these objects to coincide with low confidence regions in the

predicted semantic map. This approach was pursued in [IA17a, IA17c, IA17b]. These methods

build upon the Bayesian SegNet and incorporate an uncertainty threshold to detect potentially

mislabeled regions, including unknown objects.

In [MG18a], the Dirichlet differential entropy is used as a measure of uncertainty. We find

that the performance of these statistical methods as obstacle detectors degrades significantly

when faced with road surfaces differing from the training set, as the novel textures are treated

as anomalies.

However, as shown in our experiments, uncertainty-based methods, such as the Bayesian

SegNet [BKC17a] and network ensembles [LPB17], yield many false positives in irrelevant

regions.
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2.1 Semantic Anomaly Segmentation

2.1.2 Prediction Confidence

Most semantic segmentation systems produce a number called a logit for each pixel and class.

Taking a softmax of the logits produces a per-pixel probability distribution over the classes.

The distribution expresses the network’s confidence in its prediction and is a valuable signal

for anomaly detection.

The maximum of this distribution can be used as a proxy for confidence and its low value

would indicate an anomaly detection [HG17]. The power of maximum-softmax to distinguish

in- and out-of-distribution samples is improved in [LLS18] by temperature scaling and adding

small anti-adversarial perturbations.

Likewise, the entropy of the softmax distribution is used to find anomalies in semantic seg-

mentation with the right postprocessing [BCR+20]. The work of [CRG21b] goes a step further

and specifically trains the network to produce high entropy for anomalies.

The MetaSeg [RCH+20] technique combines the softmax distribution, the entropy, the shape

and size of a semantic segment to find misclassified objects. This has been successfully applied

to out-of-distribution detection in [ORF20].

[JLG+21] observes that the distribution of max logits strongly differs between each class,

making a single threshold ineffective. They propose to standardize the max logits to align the

distributions between classes. This is paired with a postprocessing step that removes spurious

detections on object edges.

2.1.3 Rejection by Mask-based Segmentation

A very promising approach to anomaly detection has been enabled by mask-based semantic

segmentation [CSK21, CMS+22, HOLH21] around the time of the conclusion of this thesis.

These methods forgo outputting a simple one-hot logit distribution from the network’s final

layer. Instead, one branch produces per-pixel embeddings while a transformer branch creates

query embeddings. The dot product of pixel and query embeddings yields a collection of

masks. These masks are trained to respond to different semantic classes, or object instances

in the case of panoptic segmentation.

Since the masks respond only to their chosen class, the anomaly areas are not covered by any

mask. Anomalies are found simply as areas where the sum of all masks is very low [NYHG23].

The performance is even better when false-positives at semantic borders are reduced [Mat23].

The rejection approach is particularly impressive since it achieves great anomaly detection

performance without need for retraining or modification of the mask-based segmentation

system.
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2.1.4 Resynthesis and Comparison

If an image is reconstructed so as to preserve the appearance in normal regions and discard

anomalous ones, those anomalies can be detected by comparing the input to the reconstruc-

tion. This has been achieved in several ways.

Image resynthesis and generation methods, such as autoencoder and GANs, have been used

in the past for anomaly detection. The existing methods, however, mostly focus on finding

behavioral anomalies in the temporal domain [RNS+17, KTP18]. For example, [RNS+17]

predicts the optical flow in a video, attempts to reconstruct the images from the flow, and

treats significant differences from the original images as evidence for an anomaly. This method,

however, was only demonstrated in scenes with a static background. Furthermore, as it relies

on flow, it does not apply to single images.

To handle individual images, some algorithms compare the image to the output of a model

trained to represent the distribution of the original images. For example in [AAAB18], the

image is passed through an adversarial autoencoder, and the feature loss between the out-

put and input image is then measured. This can be used to classify whole images but not

localize anomalies within the images. Similarly, given a GAN trained to represent an original

distribution, the algorithm of [SSW+17] searches for the latent vector that yields the image

most similar to the input, which is computationally expensive and does not localize anomalies

either.

In the context of road scenes, image resynthesis has been employed to detect traffic obstacles.

For example, [MC15] relies on the previous frame to predict the non-anomalous appearance

of the road in the current one. In [CM15, MVD17], input patches are compared to the output

of a shallow autoencoder trained on the road texture, which makes it possible to localize the

obstacle. Its limited expressive power is supposed to preserve the smooth road surface while

altering obstacles. The approaches described above typically rely on autoencoder for image

resynthesis. We have observed that autoencoders tend to learn to perform image compression,

simply synthesizing a lower-quality version of the input image, independently of its content.

Therefore they do not address textured road surfaces.

As opposed to encoding the input image, the method of [SSW+17] trains a generator to capture

the training distribution and searches for a latent vector producing an image most similar to

the input. However, this method operates on microscopic scans of tissue samples, and, to

our knowledge, it has not been applied to data with distributions as diverse as outdoor road

scenes.

Our work in Chapter 4 explicitly restricts the intermediate representation of the scene to a

dense semantic map, and synthesize a plausible matching image using conditional GANs

for image translation [IZZE16, WLZ+18]. Since the anomalous regions are not represented

by the typical semantic classes, their appearance will be altered by this process. The input

and synthesized images are compared using a learned discrepancy module. The following
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work of [XZL+20] uses a similar pipeline but with a feature distance measure to perform the

comparison. The SynBoost [DBBSC21] method fuses resynthesis dissimilarity with semantic

segmentation uncertainty estimates to further boost performance.

Rather than encoding the input, one can remove parts of the image and inpaint them based

on the surrounding context. In [HGT18] square patches are inpainted and compared with

an L1 metric to detect material defects; the method of [ZKS20] combines the reconstructions

obtained with a set of random inpainting masks and uses a multi-scale gradient magnitude

similarity metric for comparison. In the context of road scenes, [MC15] proposes to compare

the road appearance to similar images memorized from previous video frames; however this

would lead to false positives when entering an area with a new road texture. These methods

assume high fidelity of the reconstruction and detect every visible difference as an anomaly. In

outdoor scenes with road markings and diverse surface textures, the inpainting is bound to be

imperfect. We address this in our work in Chapter 5 by training a discrepancy network to focus

on the relevant differences. We select image patches and inpaint them with the surrounding

road texture, which tends to remove obstacles from those patches. We then use a network

trained to recognize discrepancies between the original patch and the inpainted one, which

signals an erased obstacle.

Methods specifically designed for removing dynamic objects from traffic scenes have been

presented in [BNSC19, BBG+19], but they rely on object masks being known a-priori without

having to detect them first.

2.2 Synthetic Training for Anomaly and Obstacle Detection

There is an intractable variety of semantic anomalies and unexpected objects that can pose a

collision threat on roads. To handle this diversity, most existing obstacle detection methods

rely on creating synthetic data for training purposes. It is often created from background

traffic frames, often from Cityscapes [COR+16], into which synthetic obstacles are inserted.

In our work in Chapter 4, we generate synthetic anomalies by altering the semantic class of

existing object instances and synthesizing an image from those altered labels. In [DBBSC21],

this is complemented by adding the Cityscapes void regions as obstacles. However, many

of the objects exploited by these techniques are located above or away from the road, and

the resulting training data only yields limited performance for small on-road obstacles. Our

results show that we outperform these methods.

The method of [BKOS19] introduces an outlier detection head sharing backbone features with

the semantic segmentation one. It is trained using extensive out-of-distribution data, injecting

outlier patches drawn from ImageNet-1k [DDS+09] into the Cityscapes and Vistas [NORK17]

scenes. In [VŠA+21], synthetic obstacles are obtained by cropping random polygons within

the background frame and copying their content onto the road or filling them with a random

color.
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We perform synthetic training without data from outside of Cityscapes. In Chapter 5 we extract

object instances from the whole dataset and then paste them over the road area. We find

that it is important to smooth the edges of the pasted objects to prevent the network from

learning to detect the pasting artifacts. In Chapter 6 we refine the arrangement of injected

objects so that their size and position are consistent with the scene perspective. This leads to

improved detection performance when combined with providing the perspective scale map

to the detector network.

Cutting and pasting object instances into urban scenes is also used in [GBŠ22] but in this

case they are sources from an external ADE20k [ZZP+17] dataset. In this work, this setup is

used to learn the likelihood of samples with respect to the known backgrounds as well as to

discriminate outliers. In [CRG21b], generalization is achieved by training the segmentation

network to maximize the output entropy on explicit out-of-distribution samples. This is done

by injecting COCO [LMB+14] objects into Cityscapes frames. According to our experiments

this is effective for some types of obstacles, presumably ones more similar to COCO objects,

but not all of them.

Finally, the synthetic anomalies can be generated from scratch, without relying on existing

images. A generative model, such as RealNVP [DSDB17] or a normalizing flow, is trained

to create samples at the border of the training distribution [GBŠ21a, GBS21b]. Alternatively

synthetic anomalies are created through Localized Adversarial Attacks in [BBPA21].

2.3 Obstacle Detection

Our methods rely on a single RGB image for obstacle detection and do not use explicit obstacle

training sets. In this section, we review methods that work under those constraints. For a more

complete survey of obstacle detection algorithms, we refer the reader to [PRG+16, RGP+17,

GJFF+18, XMZZ19].

All the semantic anomaly detection methods discussed so far in this chapter can be used

to find unusual obstacles. The obstacles do not belong to the training set and are therefore

anomalous. And even if the obstacle were to belong to one of the known classes, for example a

tree branch on the road, it could be detected by the standard semantic segmentation system

that is nearly always part of the semantic anomaly detection setup. Therefore we evaluate the

anomaly detectors on the obstacle track. However limiting the scope to the drivable area can

be exploited in the method design.

Road texture is easier to reconstruct than arbitrary scenes. For example patches extracted

from the drivable area can be compared to the corresponding output of a shallow autoen-

coder trained on roads to reveal obstacles [CM15, MVD17]. An alternative approach to road

appearance reconstruction relies on transforming the previous frame [MC15].

In Chapter 5 we expand the capability of road reconstruction using a sliding window inpainter.
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We also introduce a discrepancy network to distinguish real obstacles from inpainting artifacts.

Finally, our approach shown in Chapter 7 is capable of segmenting a wide range of small

objects in the scene, including road obstacles.

2.4 Using Transformer Attention To Segment Unknown Objects

A moderate number of works use features or attention from transformer backbones for object

detection [GNJ+22, SPV+21] or semantic segmentation [AMT22, HZH+22, CTM+21, WSY+22].

In particular, the works of [AMT22, HZH+22] use transformer features to segment objects.

However, they do not focus on segmenting unseen objects, but rather on segmenting seen

ones under weak supervision [AMT22] or even no supervision [HZH+22].

Probably closest to our work are the works of [CTM+21, WSY+22, SPV+21] that are based on

transformers learned via self-supervision. They can be considered to some extent as operating

in an open world setting as the transformers have been trained on ImageNet [DDS+09] and

then applied to other datasets. The work of [CTM+21] performs segmentation based on the

final layer class tokens from the transformer attention. The work of [WSY+22] utilizes the

transformer from [CTM+21]. It then constructs a graph based on the last layer features, and

performs segmentation via a graph cut algorithm. In contrast to our work, the attention itself

is not utilized in [WSY+22]. Likewise, [SPV+21] computes the similarity between patches using

key-features of the last attention layer, selects a seed patch and segments a group of patches

similar to it, yielding a single foreground object.

In our approach called AttEntropy described in Chapter 7 we consider the attention between

image patches across different layers, study their properties and use an information theoretic

approach to segment new objects, potentially in a different domain. More importantly, our

work constitutes the first study showing that a semantic segmentation transformer trained

in a supervised fashion on known classes inherently learns to segment unknown objects,

irrespective of the given context.
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3 Road Anomalies and Obstacles:
Segment Me If You Can

The advent of high quality, publicly available datasets such as Cityscapes [COR+16], BDD100k

[YCW+20], A2D2 [GKM+19], and COCO [LMB+14] has hugely contributed to the progress in

semantic segmentation. However, while state-of-the-art deep neural networks (DNNs) yield

outstanding performance on these datasets, they typically provide predictions for a closed

set of semantic classes. Consequently, they are unable to classify an object as none of the

known categories [ZL17]. Instead, they tend to be overconfident in their predictions, even in

the presence of previously-unseen objects [HAB19], which precludes the use of uncertainty to

identify the corresponding anomalous regions.

Nevertheless, reliability in the presence of unknown objects is key to the success of applications

that have to face the diversity of the real world such as perception in automated driving. This

has motivated the creation of benchmarks such as Fishyscapes [BSN+19] or CAOS [HBM+22].

While these benchmarks have enabled interesting experiments, the limited real-world diversity

in Fishyscapes, the lack of a public leader board and of a benchmark suite in CAOS, and the

reliance on synthetic images in both benchmarks hinder proper evaluation of and comparisons

between the state-of-the-art methods.

Motivated by the limitations of existing anomaly segmentation datasets and by the emerging

body of works in this direction [ACS19, BSN+19, BCR+20, CRG21b, IA17b, JRF20, MWT+20,

ORF20], we introduce the Segment Me If You Can1 benchmark. It is accompanied with two

datasets, consisting of diverse and manually annotated real images, a public leader board and

an evaluation suite, providing in-depth analysis and comparisons, to facilitate the develop-

ment of road anomaly segmentation methods.

Our benchmark encompasses two separate tasks. The first one consists of strict anomaly

segmentation, where any previously-unseen object is considered as an anomaly. Furthermore,

motivated by the observation that the boundary between known and unknown classes can

sometimes be fuzzy, for instance for car vs.van, we introduce the task of obstacle segmentation,

whose goal is to identify all objects on the road, may they be from known classes or from

1https://www.segmentmeifyoucan.com/
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Chapter 3. Road Anomalies and Obstacles: Segment Me If You Can

Ours: RoadAnomaly21 Fishyscapes Ours: RoadObstacle21 LostAndFound

Figure 3.1: Comparison of images from our and existing public datasets. Anomalies / obstacles are highlighted in
orange, darkened regions are excluded from the evaluation. In RoadAnomaly21, anomalies may appear everywhere
in the image. In contrast to Fishyscapes, where anomalous objects are synthetic, all RoadAnomaly21 images
are real. In RoadObstacle21, the region of interest is restricted to the drivable area with obstacles ahead. This is
comparable to LostAndFound, where the labeling, however, is not always consistent, e.g. children are anomalies
but other humans not.

unknown ones.

For the anomaly track, we provide a dataset of 100 images with pixel-wise annotations over

two classes (anomaly, not anomaly) and a void class, which, in analogy to Cityscapes, signals

the pixels that are excluded from the evaluation. We consider any object that strictly cannot be

seen in the Cityscapes data as anomalous, appearing anywhere in the image. For the obstacle

track, our dataset contains 327 images with analogous annotation (obstacle, not obstacle,

void), and focuses only on the road as region of interest. The focus in this track is of more

practical need such as for automated driving systems, targeting obstacles that may cause

hazardous street situations, see Figure 3.1. All images of our datasets are publicly available

for download2, together with a benchmark suite that computes both established pixel-wise

metrics and recent component-wise ones.

In the remainder of this chapter, we first review existing anomaly detection datasets and

evaluation metrics in more detail. We then describe the datasets we have gathered over time

and the benchmark which is the crowning achievement of this effort. The evaluation results

are presented later in Chapter 8.

3.1 Datasets and Benchmarks

In this section we first review previous datasets for anomaly detection, with some of them

being designed for road anomaly segmentation.

Existing methods for anomaly detection have often been evaluated on their ability to separate

images from two different source distributions such as separating MNIST from FashionM-

NIST [CJA18, MH20, vASTG20], NotMNIST [vASTG20], or Omniglot [LST15], and separating

CIFAR-10 from SVHN [LLLS18b, MH20, vASTG20] or LSUN [LLLS18b, LLS18, MH20]. Such

experiments can be found in many works, including [HG17, CJA18, LLLS18b, LLS18, vASTG20,

MH20].

For semantic segmentation, a similar task was therefore proposed by the WildDash bench-

mark [ZHM+18] that analyzes semantic segmentation methods trained for driving scenes on
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3.1 Datasets and Benchmarks

a range of failure sources including full-image anomalies such as images from the beach. In

our work, by contrast, we focus on the problem of robustness to anomalies that only cover a

small portion of the image, and on the methods that aim to segment such anomalies, that is

methods for the task of anomaly segmentation.

One prominent dataset tackling the task of anomaly segmentation is LostAndFound [PRG+16],

which shares the same setup as Cityscapes [COR+16] but includes anomalous objects / obsta-

cles in various street scenes in Germany. LostAndFound contains 9 different object types as

anomalies, and only has annotations for the anomaly and the road surface. Furthermore, it

considers children and bicycles as anomalies, even though they are part of the Cityscapes train-

ing set, and it contains several labeling mistakes. Although we filter and refine LostAndFound

in this work2, similar to Fishyscapes [BSN+19], the low diversity of anomalies persists.

The CAOS BDD-Anomaly benchmark [HBM+22] suffers from a similar low-diversity issue,

arising from its use of only 3 object classes sourced from the BDD100k dataset [YCW+20] as

anomalies (besides including several labeling mistakes, see Section 3.4.4). Both Fishyscapes

and CAOS try to mitigate this low diversity by complementing their real images with synthetic

data. Such synthetic data, however, is not realistic and not representative of the situations that

can arise in the real world.

In general, the above works illustrate the shortage of diverse real-world data for anomaly

segmentation. Additional efforts in this regard have been made by leveraging multiple sensors

such as the LiDAR guided Small Obstacle dataset [SKGMK20]. In any event, most of the above

datasets are fully published with annotations, allowing methods to overfit to the available

anomalies. Furthermore, apart from Fishyscapes, we did not find any public leader boards

that allow for a trustworthy comparison of new methods. To provide a more reliable test setup,

we do not share the labels and request predictions of the shared images to be submitted to

our servers. Furthermore, we provide a leader board, which we publish alongside two novel

real-world datasets, namely RoadAnomaly21 and RoadObstacle21. A summary of the main

properties of the mentioned datasets is given in Table 3.1. Our main contribution in both

proposed datasets is the diversity of the anomaly categories and of the scenes.

In RoadAnomaly21, anomalies can appear anywhere in the image, which is comparable to

Fishyscapes LostAndFound [BSN+19] and CAOS BDD-Anomaly [HBM+22]. Although the

latter two datasets are larger, their images only show a limited diversity of anomaly types and

scenes because they are usually frames of videos captured in single scenes. By contrast, in

our dataset every image shows a unique scene, with at least one out of 26 different types of

anomalous objects and each sample widely differs in size, ranging from 0.5% to 40% of the

image.

In RoadObstacle21, all anomalies (or obstacles) appear on the road, making this dataset com-

parable to LostAndFound [PRG+16] and the LiDAR guided Small Obstacle dataset [SKGMK20].

2In the following, we refer to the LostAndFound subset without the images of children, bicycles and invalid
annotations as LostAndFound-NoKnown.
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anomaly non-anomaly diverse different dataset ground truth (gt) mean & std of gt size
Dataset pixels pixels scenes anomalies size components relative to image size
Fishyscapes LostAndFound val [BSN+19] 0.23% 81.13% 12 7 373 165 0.13% ± 0.23%
CAOS BDD-Anomaly test [HBM+22] 0.83% 81.28% 810 3 810 1231 0.55% ± 1.84%
Ours: RoadAnomaly21 test 13.83% 82.17% 100 26 100 262 4.12% ± 7.29%
LostAndFound test (NoKnown) [PRG+16] 0.12% 15.31% 13 (12) 9 (7) 1203 (1043) 1864 (1709) 0.08% ± 0.16%
LiDAR guided Small Obstacle test [SKGMK20] 0.07% 36.09% 2 6 491 1203 0.03% ± 0.07%
Ours: RoadObstacle21 test 0.12% 39.08% 8 31 327 388 0.10% ± 0.25%

Dataset (as above)
labels are

private

weather
conditions geography

Fishyscapes val (✓in test set) clear DE
CAOS BDD test ✗ clear, snow, night, rain US
Ours: RA21 test ✓ clear, snow global
LaF test ✗ clear DE
Small Obs. test ✗ clear IN
Ours: RO21 test ✓ clear, snow, night CH, DE

Table 3.1: Main properties of comparable real-world anomaly (top three rows) and obstacle (bottom three rows)
segmentation datasets. Our main contribution is the diversity of the anomaly (or obstacle) categories and of the
scenes. Note that void pixels are not included in this table.
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Figure 3.2: Relative frequency of annotated anomaly / obstacle pixels within an image over the 100 images in the
RoadAnomaly21 test dataset (left) and the 327 images in the RoadObstacle21 test dataset (right), respectively. Here,
the fraction of anomaly / obstacle pixels serves as a proxy for the size of the objects of interest within an image.
Note that the y-axes of the histograms are log-scaled.

Again, the latter two datasets contain more images than ours; however, the high numbers of

images result from densely sampling frames from videos. Consequently, those two datasets

lack in object diversity (9 and 6 categories, respectively, compared to 31 in our dataset). Fur-

thermore, the videos are recorded under perfect weather conditions while RoadObstacle21

shows scenes in diverse situations including night, dirty roads, and snowy conditions.

3.1.1 Our earlier datasets

The benchmark is a culmination of our larger effort of defining the anomaly and obstacle

task and providing data to study them. We collected and labeled the first batch of 60 anomaly

images as part of the resynthesis work described in Chapter 4. Later on we captured our own

images of obstacles placed on the road for the road inpainting project shown in Chapter 5. Fol-

lowing those efforts we entered into a collaboration spanning EPFL, University of Wuppertal,

and ETH Zurich, during which extra images were captured and labeled resulting in the final

form of the benchmark.
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3.2 Benchmark Description

Road Anomaly 19

Motivated by the scarcity of available data for unexpected object detection, we collected

online images depicting anomalous objects such as animals, rocks, lost tires, trash cans, and

construction equipment located on or near the road. We then produced per-pixel annotations

of these unexpected objects manually using the Grab Cut algorithm [RKB04] to speed up the

process. The dataset contains 60 images rescaled to a uniform size of 1280×720. We make

this dataset2 and the labeling tool3 publicly available. The dataset was originally released with

our work in Chapter 4.

Road Obstacle 20.

The Lost & Found benchmark features urban environments similar to those in the Cityscapes

training data. To evaluate our obstacle detector on a wider variety of road surfaces and objects,

we collected our own Road Obstacles 20 dataset which is depicted by Figure 3.3. It features

seven different scenes and comprises a total of 160 labeled 1920×1080 frames. The labels

include pixel masks for individual obstacle instances along with approximate outlines of the

drivable area. We take the evaluation region of interest (ROI) to be the area within these

outlines. If an object has a hole, such as a basket with a handle, we label the hole as outside

of the ROI and ignore it in our evaluations as we do for the background. The dataset was

originally part of our work in Chapter 5.

The dataset is divided into the daylight subset of six scenes (105 images) with good daylight

visibility and the snowfall sequence of 55 frames taken in difficult weather conditions. The

snowfall track poses additional challenges for the obstacle detector: snowflakes visible in the

air can trigger false positives, and a water drop on the camera lens can obscure parts of an

image. We report the results for this track separately, as such conditions are far outside the

training domains of any of the evaluated methods. We report the union of both tracks as Road

Obstacles - all.

3.2 Benchmark Description

The aim of our benchmark is two-fold. On one hand, by providing diverse data with consistent

annotations, we seek to facilitate progress in general semantic anomaly segmentation research.

On the other hand, by focusing on road scenes, we expect our benchmark to accelerate the

progress towards much needed segmentation/obstacle-detection methods for safe automated

driving.

To achieve these goals, our benchmark covers two tasks. First, it tackles the general problem

of anomaly segmentation, aiming to identify the image regions containing object classes that

2 Road Anomaly dataset: cvlab.epfl.ch/data/road-anomaly/
3 Our labeling tool: github.com/cvlab-epfl/LabelGrab
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Figure 3.3: Road Obstacles 20 dataset. Top: Example frames representing each of the 7 scenes. Bottom: Some of
the objects featured in the dataset.
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have never been seen during training and thus for which semantic segmentation cannot be

correct. This is necessary for any reliable decision-making process, and it is of great importance

to many computer-vision applications. Note that, in accordance to [BSN+19, HBM+22], we

define anomaly as objects that do not fit any of the class definitions in the training data. In

some works, anomaly may be used to describe visually different inputs like a car in a novel

color which does not fit our definition.

This strict definition of semantic anomalies, however, can sometimes be ill-defined because (1)

existing semantic segmentation datasets such as Cityscapes [COR+16] often contain ambigu-

ous and ignored regions (annotated as void) which are not strictly anomalies since they are

seen during training; (2) the boundary of some classes is fuzzy (for example distinguishing cars

versus vans versus rickshaws) making it unclear whether some regions should be considered

as anomalous or not. To address these issues, and to account for the fact that automated

driving systems need to make sure that the road ahead is free of any hazardous objects, we

further incorporate obstacle segmentation as a second task in our benchmark, whose goal

is to identify any non-drivable region on the road, may the non-drivable region correspond

to a known object class or an unknown one.

3.3 Tracks and Datasets

We now present the two tracks in our benchmark corresponding to the two tasks discussed

above. Each track contains its own dataset with different properties and is therefore evaluated

separately in our benchmark suite. An overview comparing our datasets to related public ones

is given in Table 3.1.

3.3.1 RoadAnomaly21

The road-anomaly track benchmarks general anomaly segmentation in full-street scenes. It

consists of an evaluation dataset of 100 images with pixel-level annotations. The data is an

extension of the one introduced in Road Anomaly 19 (Section 3.1.1), now including a broader

collection of images and finer-grain labeling. In particular, we removed low-quality images

and ones lacking clear road scenes. We removed labeling mistakes, added the void class,

and included 68 newly collected images. Each image contains at least one anomalous object

such as an animal or an unknown vehicle. The anomalies can appear anywhere in the image

which were collected from web resources and therefore depict a wide variety of environments.

The distribution of object sizes and location is shown in Figure 3.2(a). Moreover, we provide

10 additional images with annotations such that users can check the compatibility of their

methods with our benchmark implementation.
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3.3.2 RoadObstacle21

The road-obstacle track focuses on safety for automated driving. The objects to segment in

the evaluation data always appear on the road ahead; for example they represent realistic

and hazardous obstacles that are critical to detect. Our dataset consists of 222 new images

taken by ourselves and 105 from Road Obstacle 20 (Section 3.1.1), summing up to a total of

327 evaluation images with pixel-level annotations. The region of interest in these images is

given by the road, which is assumed to belong to the known classes on which the algorithm

was trained. The obstacles in this dataset are chosen such that they all can be understood as

anomalous objects as well such as stuffed toys, sleighs, or tree stumps. They appear at different

distances and are surrounded by road pixels. This allows us to focus our evaluation on the

obstacles as other objects lie outside the region of interest. The distribution of object sizes and

location is shown in Figure 3.2(b). Moreover, this dataset incorporates different road surfaces,

lighting and weather conditions, thus encompassing a broad diversity of scenes. An extra track

of additional 85 images with scenes at night and in extreme weather (such as snowstorms)

is also available. However, the latter subset is excluded from our numerical experiments due

to the significant domain shift. Lastly, we provide 30 additional images with annotations such

that users can check the compatibility of their methods with our benchmark implementation.

3.3.3 Labeling Policy

In both datasets, the pixel-level annotations include three classes:

1) anomaly / obstacle

2) not anomaly / not obstacle

3) void.

In RoadAnomaly21, the 19 Cityscapes evaluation classes [COR+16], on which most semantic

segmentation DNNs are trained, serve as basis to judge whether an object is considered

anomalous or not. Everything that fits in the class definitions of Cityscapes is thus labeled as

not anomaly. This track focuses on the detection of objects which are semantically different

from those in the Cityscapes training data. Therefore, if image regions cannot be clearly

assigned to any of the Cityscapes classes, they are labeled as anomaly. The objects, which

are not the main anomalies of interest in the context of street scenes, are labeled as void and

excluded from our evaluation. The latter class include, for instance, mountains or water in

the image background and street lights. In ambiguous cases, which can arise from a strong

domain shift to Cityscapes, we assign the void class as well to properly evaluate semantic

anomaly segmentation.

In RoadObstacle21, the task is defined as distinguishing between drivable area and non-

drivable area. The goal is to make sure that the road ahead of the ego-car is free of any hazard,

irrespective of the object category of potential obstacles. Therefore, the drivable area is labeled
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Figure 3.4: Comparison of the (spatial) pixel distributions between RoadAnomaly21 and Fishyscapes LostAnd-
Found (100 images each) as well as RoadObstacle21 and a subset of randomly sampled images from the LostAnd-
Found test dataset (327 images each). The color indicates the frequency of observing an anomaly in each pixel
location, averaged over the images in the dataset.

as not obstacle. This class particularly also includes regions on the road which visually differ

from the rest of the road. Moreover, every object visually enclosed in the drivable area is

labeled as obstacle. All image regions outside the road are assigned to the void class and

ignored in the evaluation. As a quality assessment for both tracks, each labeled image was

reviewed by at least three people in order to guarantee the highest quality of labels.

3.3.4 Validation Dataset

In order to ensure that methods run as intended with our benchmark code, we provide small

validation sets (including ground truth annotations) for the anomaly track, called Road-

Anomaly21 validation, and for the obstacle track, called RoadObstacle21 validation.

These datasets show similar scenes and objects as in RoadAnomaly21 test and RoadObstacle21

test. The subsets contain 10 images with 16 ground truth components and 30 images with 45

ground truth objects in total, respectively. Note that although both datasets share the same

setup as in the corresponding test splits, they are still not representative for the test data since

they contains only a very limited number of different road surfaces and diverse obstacle types.

Therefore we do not recommend to fine-tune methods on these two validation datasets.
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Frame 1 Frame 2 Frame 3 Frame 4

Figure 3.5: Four example images of densely sampled frames from a video sequence (of 18 frames in total) with
ground truth annotation in the LostAndFound test set. Due to this sampling, LostAndFound achieve their high
number of images but, as shown in this figure, several images are nearly identical.

3.4 Comparison to other datasets

3.4.1 Fishyscapes LostAndFound

The Fishyscapes LostAndFound validation dataset [BSN+19] consists of 100 images from the

original LostAndFound data [PRG+16] with refined labels. With this labeling, anomalous

objects are not restricted to only appear on the road but everywhere in the image, therefore

Fishyscapes LostAndFound fits our benchmark’s anomaly track.

Comparing the RoadAnomaly21 and Fishyscapes LostAndFound datasets in terms of anomaly

class frequency per pixel location, as observed in Figure 3.4, one notices a clear difference in the

variation of object locations and sizes. While in Fishyscapes LostAndFound the objects appear

mostly in the center of the image and are also rather small, the objects in RoadAnomaly21

may appear everywhere in the image and have sizes ranging from 122 up to 883,319 pixels

(thus covering up to more than one third of the image). The low variety in object sizes is

also noticeable in the pixel-wise class distribution; in particular, 13.8% of the pixels belong

to the anomaly class and 82.2% to non-anomaly in RoadAnomaly21 whereas in Fishyscapes

LostAndFound only 0.23% belong to anomaly and 81.13% to non-anomaly.

3.4.2 LostAndFound test-NoKnown

The LostAndFound dataset [PRG+16] shares the same setup as Cityscapes but includes small

obstacles on the road. Therefore, this dataset fits our benchmark’s obstacle track. When a

model is trained on Cityscapes, the LostAndFound dataset then contains images with objects

that have been previously seen and therefore are not anomalies. As most of our methods

are designed for anomaly detection, we filtered out all scenes in the LostAndFound test split

where the obstacles belong to known classes, such as children or bicycles, and call this subset

LostAndFound test-NoKnown. In this way, the results obtained with our evaluated methods

on LostAndFound test-NoKnown and on our RoadObstacle21 dataset are comparable.

Both datasets have obstacles in the same size range. Both RoadObstacle21 and LostAndFound

test-NoKnown have 0.12% of the pixels labeled as obstacles, while 39.08% and 15.31% of the
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LostAndFound sequence frame 1 LostAndFound sequence frame 18

RoadObstacle21 sequence frame 1 RoadObstacle21 sequence frame 6

Figure 3.6: Comparison of one sequence from the LostAndFound test set (top row) and one sequence from the
RoadObstacle21 test set (bottom row). In this figure, the first and last frame of a video sequence which are included
in the respective test set are shown. We observe that in this LostAndFound example 18 images of one sequence are
included in the test while in RoadObstacle21 at most 6 frames are included (which differ significantly in lighting in
this example).

pixels belong to not obstacles, respectively.

Regarding the dataset size, LostAndFound achieves their high number of images by densely

sampling from video sequences. Consequently, some images depict nearly identical scenes

(same environment and obstacle combination with the obstacle approximately at the same

distance); see Figure 3.5. In RoadObstacle21 the number of different environment and obstacle

combinations is considerably higher due to the wide variety of 31 object types in the dataset.

If multiple images depict the same scene, we made sure that the distance to the obstacle (and

therefore the size of the obstacle in the image) varies noticeably from image to image; see

Figure 3.6.

3.4.3 LiDAR Guided Small Obstacle Dataset

The third publicly available dataset to which we applied our benchmark suite is the LiDAR

guided Small obstacle Segmentation dataset [SKGMK20], which can be viewed as a reference

dataset for our obstacle track. As this rather focuses on the challenge of detecting obstacles via

multiple sensors including LiDAR, the camera images of this dataset are purposely challenging,

for example due to low illumination, blurry images and barely visible obstacles. Figure 3.7

shows an example of this dataset which highlights the difficulty of anomaly detection.
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(a) Input image (b) Ground truth (c) Maximized entropy

Figure 3.7: An example image (a) from the Small Obstacle dataset with the corresponding ground truth annotation
(b) and an obstacle score heatmap obtained with maximized entropy (c). Here the obstacles are barely visible
in the input image due to their size and the scene’s illumination; that is why camera-only based segmentation
techniques tend to fail for this dataset.

3.4.4 CAOS BDD-Anomaly

The CAOS BDD-Anomaly dataset [HBM+22] consists of images sourced from BDD100k [YCW+20].

In order to create an anomaly segmentation dataset, the authors split the BDD100k data such

that images with motorcycles, bicycles, and trains are separated from the rest. These left

out objects are then considered as anomalies. We do not perform any experiments on CAOS

BDD-Anomaly since the considered anomalous objects are not strictly unknown. They also

appear in Cityscapes [COR+16] on which most semantic segmentation models are trained.

3.5 Performance Metrics

For the sake of brevity, in what follows we refer to both anomalies and obstacles as anomalies.

Pixel level

Let Z denote the set of image pixel locations. A model with a binary classifier providing

anomaly scores s(x) ∈R|Z | for an image x ∈X (from a dataset X ⊆ [0,1]N×|Z |×3 of N images)

discriminates between the two classes anomaly and non-anomaly. We evaluate the separa-

bility of the pixel-wise anomaly scores via the area under the precision-recall curve (AuPRC),

Let Y ⊆ {“anomaly”,“not anomaly”}N×|Z | be the set of ground truth labels per pixel for X .

Analogously, we denote the predicted labels with Ŷ (δ), obtained by pixel-wise thresholding on

s(x) ∀ x ∈X w.r.t. some threshold value δ ∈R. Then, for the anomaly class (c1 = “anomaly”)

we compute

precision = |Yc1∩ Ŷc1 (δ)|
|Ŷc1 (δ)| , recall = |Yc1∩ Ŷc1 (δ)|

|Yc1 |
(3.1)

with Yc1 and Ŷc1 representing the ground truth labels and predicted labels, respectively. For

the AuPRC, The AuPRC approximates
∫

precision(δ)drecall(δ) and is threshold independent

[BEP13]. It also puts emphasis on detecting the minority class, making it particularly well

suited as our main pixel-wise evaluation metric since the pixel-wise class distributions of

RoadAnomaly21 and RoadObstacle21 are considerably unbalanced, see Table 3.1.
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3.5 Performance Metrics

To consider the safety point of view, we also include the false positive rate at 95% true positive

rate (FPR95) in our evaluation, where the true positive rate (TPR) is equal to the recall of

the anomaly class. The false positive rate (FPR) is the number of pixels falsely predicted as

anomaly over the number of all non-anomaly pixels. Hence, for the anomaly class we compute

FPR95 =
|Ŷc1 (δ′)∩Yc2 |

|Yc2 |
s.t. TPR(δ′) = 0.95 , (3.2)

where c2 = “not anomaly”. The FPR95 metric indicates how many false positive predictions

must be made to reach the desired true positive rate. Note that any prediction which is

contained in a ground-truth labeled region of the class void is not counted as false positive; see

Section 3.3. In particular for the RoadObstacle21 dataset, the evaluation is therefore restricted

to the road area.

Component level

From a practitioner’s perspective, it is very important to detect all anomalous regions in

the scene regardless of the number of pixels they cover. However, pixel-level metrics may

neglect small anomalies. While one could thus focus on object detection metrics, the notion

of individual objects is in fact not relevant for anomaly (region) detection. To satisfy these

requirements, we therefore consider performance metrics acting at the component level.

The main metrics for component-wise evaluation are the numbers of true-positives (TP),

false-negatives (FN), and false-positives (FP). Considering anomalies as the positive class,

we use a component-wise localization and classification quality measure to define the TP,

FN, and FP components. Specifically, we define this measure as an adjusted version of the

component-wise intersection over union (sIoU), introduced in [RCH+20]. In particular, while

in [RCH+20] the sIoU is computed for predicted components, we consider the sIoU for ground-

truth components to compute TP and FN. To compute FP, we employ the positive predictive

value (PPV, or component-wise precision) for predicted components as quality measure. We

discuss the definitions of these quantities in more detail below.

Let Zc be the set of pixel locations labeled with class c = “anomaly” in the dataset X . We

consider a connected component of pixels (where the 8 pixels surrounding pixel z in image

x ∈X are taken to be its neighbors) that share the same class label as a component. Then, let

us denote by K ⊆P (Zc ), with P (S ) the power set of a set S , the set of anomaly components

according to the ground truth, and by K̂ ⊆ P (Zc ) the set of components predicted to be

anomalous by some machine-learning model.

Formally, the sIoU is a mapping sIoU : K → [0,1]. For k ∈K , it is defined as

sIoU(k) := |k ∩ K̂ (k)|
|(k ∪ K̂ (k)) \A (k)| with K̂ (k) = ⋃

k̂∈K̂ ,k̂∩k ̸=;
k̂ (3.3)
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Target 1
k ∈ K (x)

Prediction
k̂ ∈ K̂ (x)

IoU(k) = 0.50

sIoU(k) = 0.50

Target 1
k ∈ K (x)

Target 2 &
adjustment

A (k)

IoU(k) = 0.50

sIoU(k) = 0.99

Figure 3.8: Illustration of the ordinary component-wise intersection over union (IoU) and the adjusted one
(sIoU). In both examples above, the prediction k̂ (blue rectangle) is the same but covers different targets (green
rectangles). On the left, both IoU and sIoU yield the same score. On the right, IoU punishes the prediction as
it does not cover each object precisely. By contrast, sIoU checks how much the predictions cover the ground-truth
regions, independently of whether prediction/ground truth belongs to a single or multiple objects. In automated
driving, it is more important to detect all anomalous regions (whether they belong to single or multiple objects),
rather than to detect each object precisely. Since two targets are separated by at least one pixel, IoU = sIoU = 1
if and only if the prediction covers one target perfectly.

Figure 3.9: Two examples underlining the difference between IoU and adjusted IoU (sIoU). The ground-truth
components are indicated by green/red contours, and predicted components are highlighted by other colors.
Left: Two ground-truth components (green & red) intersect with one predicted component (orange). Green: IoU
68.18% vs. sIoU 87.01%; red: IoU 21.68% vs. sIoU 68.44%. Right: Two predicted components (orange & pink)
intersect with one ground-truth component (green). Orange: IoU 78.97% vs. sIoU 81.69%; pink: IoU 03.44% vs.
sIoU 18.91%.

and A (k) = {z ∈ k ′ : k ′ ∈K \ {k}}. With the adjustment A (k), the pixels are excluded from the

union if and only if they correctly intersect with another ground-truth component k ′ ∈K (x),

which is not equal to k. This may happen when one predicted component covers multiple

ground-truth components, as illustrated in Figure 3.8. Given some threshold τ ∈ [0,1), we then

call a target k ∈K TP if sIoU(k) > τ, and FN otherwise. We refer to Section 3.5 for qualitative

examples of the difference between IoU and sIoU.

For the other error type, such as FP, we compute the PPV (or precision) for k̂ ∈ K̂ , which is

defined as

PPV(k̂) := |k̂ ∩K (k̂)|
|k̂| , (3.4)

We then call a predicted component k̂ ∈ K̂ FP if PPV(k̂) ≤ τ.

As an overall metric, we additionally include the component-wise F1-score defined as

F1(τ) := 2 ·TP(τ)

2 ·TP(τ)+FN(τ)+FP(τ)
∈ [0,1] , (3.5)
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which summarizes the TP, FN and FP quantities (that depend on τ). The component-level

metrics allow one to evaluate localization of objects irrespective of their size and hence big

objects will not dominate these metrics. In addition, while object detection metrics punish

predictions that cover multiple ground-truth objects or vice-versa, our component-level

metric does not do so; see Figure 3.8.

Qualitative examples revealing the difference of IoU and sIoU

If we consider component-level metrics over ground-truth components, it may happen that

several components are close together and therefore covered by one predicted component.

Although the real error can be small, the IoU punishes both ground-truth components. The

same holds the other way around when considering metrics over predicted components

such as when one ground-truth component is covered by several predicted components. A

qualitative example is given in Figure 3.9. A small number of incorrectly predicted pixels may

cause a strong decrease in the IoU. The adjusted IoU (sIoU) is less sensitive in such cases. sIoU

focuses on correctly covering the regions of obstacles/anomalies in the image rather than

finding such regions separately for each instance, as done by IoU. In self-driving it is more

important to know the regions of anomaly rather than how many of them exist.

3.6 Conclusion

We have introduced a unified and publicly available benchmark suite that evaluates a method’s

performance for anomaly segmentation with established pixel-level as well as recent component-

level metrics. Our benchmark suite is applicable in a plug-and-play fashion to any dataset for

anomaly segmentation that comes with ground truth, such as LostAndFound and Fishyscapes

LostAndFound, allowing for a better comparison of new methods. Moreover, our benchmark is

accompanied with two publicly available datasets, RoadAnomaly21 for anomaly segmentation

and RoadObstacle21 for obstacle segmentation.

These two datasets challenge two important abilities of computer vision systems: On one

hand their ability to detect and localize unknown objects; on the other hand their ability

to reliably detect and localize obstacles on the road, may they be known or unknown. Our

datasets consist of real images with pixel-level annotations and depict street scenes with

higher variability in object types and object sizes than existing datasets.

The images of the datasets and the software are available at https://www.segmentmeifyoucan.com/.
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4 Detecting the Unexpected via Image
Resynthesis

Input Ours

Uncertainty (Dropout) RBM autoencoder

Figure 4.1: Detecting the unexpected. While uncertainty- and autoencoder-based methods tend to be distracted
by the background, our approach focuses much more accurately on the unknown objects.

When we first approached the problem of semantic anomaly detection, the existing solutions

followed two trends. The first one involves reasoning about the prediction uncertainty of the

deep networks used to perform the segmentation [BKC17a, LPB17, KG17, GR18]. In the driving

scenario, we have observed that the uncertain regions tend not to coincide with unknown

objects, and, as illustrated by Figure 4.1, these methods therefore fail to detect the unexpected.

The second trend consists of leveraging autoencoders to detect anomalies [CM15, MVD17,

AAAB18], assuming that never-seen-before objects will be decoded poorly. We found, however,

that autoencoders tend to learn to simply generate a lower-quality version of the input image.

As such, as shown in Figure 4.1, they also fail to find the unexpected objects.
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semantic segmentation

detecting differences

GAN resynthesis

(a)

(b)

(c)

(d)

Figure 4.2: Our Approach. (a) Input image from the Lost and Found [PRG+16] dataset containing
objects of a class the segmentation algorithm has not been trained for. (b) In the resulting semantic
segmentation, these objects are lost. (c) In the image resynthesized based on the segmentation labels,
they are also lost. (d) Using a specially trained discrepancy network to compare the original image and
the resynthesized one highlights the unexpected objects.

We therefore introduced a radically different approach to detecting the unexpected. Figure 4.2

depicts our pipeline, built on the following intuition: In regions containing unknown classes,

the segmentation network will make spurious predictions. Therefore, if one tries to resyn-

thesize the input image from the semantic label map, the resynthesized unknown regions

will look significantly different from the original ones. In other words, we reformulate the

problem of segmenting unknown classes as one of identifying the differences between the

original input image and the one resynthesized from the predicted semantic map. To this end,

we leverage a generative network [WLZ+18] to learn a mapping from semantic maps back to

images. We then introduce a discrepancy network that, given as input the original image, the

resynthesized one, and the predicted semantic map produces a binary mask indicating unex-

pected objects. To train this network without ever observing unexpected objects, we simulate

such objects by changing the semantic label of known object instances to other, randomly

chosen classes. This process, described in Section 4.1.2, does not require seeing the unknown

classes during training which makes our approach applicable to detecting never-seen-before

classes at test time.

Our contribution is therefore a radically new approach to identifying regions that have been

misclassified by a given semantic segmentation method based on comparing the original

image with a resynthesized one. We demonstrate the ability of our approach to detect unex-
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pected objects using the Lost and Found dataset [PRG+16]. This dataset, however, only depicts

a limited set of unexpected objects in a fairly constrained scenario. To palliate this lack of data,

we create a new dataset depicting unexpected objects such as animals, rocks, lost tires, and

construction equipment on roads. For the description of the dataset, please see Section 3.1.1.

Our method outperforms uncertainty-based baselines, as well as the state-of-the-art autoencoder-

based method specifically designed to detect road obstacles [CM15]. Furthermore, our ap-

proach to detecting anomalies by comparing the original image with a resynthesized one

is generic and applies to other tasks than unexpected object detection. For example, deep

learning segmentation algorithms are vulnerable to adversarial attacks [XWZ+17, CANK17],

that is, maliciously crafted images that look normal to a human but cause the segmentation

algorithm to fail catastrophically. As in the unexpected object detection case, re-synthesizing

the image using the erroneous labels results in a synthetic image that looks nothing like the

original one. Then, a simple non-differentiable detector, thus less prone to attacks, is sufficient

to identify the attack. Since it is not fully relevant to the road anomaly problem, the experiment

regarding adversarial attacks is available in the conference version of this chapter [LNSF19].

We publish the implementation of our algorithm1.

4.1 Approach

Our goal is to handle unexpected objects at test time in semantic segmentation and to predict

the probability that a pixel belongs to a never-seen-before class. This is in contrast to most of

the semantic segmentation literature, which focuses on assigning to each pixel a probability

to belong to classes it has seen in training, without explicit provision for the unexpected.

Figure 4.2 summarizes our approach. We first use a given semantic segmentation algorithm

such as [BKC17b] and [ZSQ+17] to generate a semantic map. We then pass this map to a

generative network [WLZ+18] that attempts to resynthesize the input image. If the image

contains objects belonging to a class that the segmentation algorithm has not been trained

for, the corresponding pixels will be mislabeled in the semantic map and therefore poorly

resynthesized. We then identify these unexpected objects by detecting significant differences

between the original image and the synthetic one. Below, we introduce our approach to

detecting these discrepancies and assessing which differences are significant.

4.1.1 Discrepancy Network

Having synthesized a new image, we compare it to the original one to detect the meaningful

differences that denote unexpected objects not captured by the semantic map. While the

layout of the known objects is preserved in the synthetic image, precise information about

the scene’s appearance is lost and simply differencing the images would not yield meaningful

results. Instead, we train a second network, which we refer to as the discrepancy network, to

1 Implementation: github.com/cvlab-epfl/detecting-the-unexpected
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Figure 4.3: Discrepancy network. Given the original image, the predicted semantic labels and the
resynthesized image as input, our discrepancy network detects meaningful differences caused by
mislabeled objects. The VGG [SZ15] network extracts features from both images which are correlated
at all levels of the pyramid. Image and label features are then fused using 1×1 convolutions. Both
the features and their correlations are then fed to a decoder via skip connections to produce the final
discrepancy map.

detect the image discrepancies that are significant.

Figure 4.3 depicts the architecture of our discrepancy network. We drew our inspiration

from the co-segmentation network of [LJR18] that uses feature correlations to detect objects

co-occurring in two input images. Our network relies on a three-stream architecture that

first extracts features from the inputs. We use a pre-trained VGG [SZ15] network for both the

original and resynthesized image, and a custom CNN to process the one-hot representation of

the predicted labels. At each level of the feature pyramid, the features of all the streams are

concatenated and passed through 1×1 convolution filters to reduce the number of channels.

In parallel, pointwise correlations between the features of the real image and the resynthe-

sized one are computed and passed, along with the reduced concatenated features, to an

upconvolution pyramid that returns the final discrepancy score.

4.1.2 Training

When training our discrepancy network, we cannot observe the unknown classes. To address

this, we therefore train it on synthetic data that mimics what happens in the presence of

unexpected objects. In practice, the semantic segmentation network assigns incorrect class
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(a) (b)

(c) (d)

Figure 4.4: Creating training examples for the discrepancy detector. (a) Ground-truth semantic map. (b) We
alter the map by replacing some object instances with randomly chosen labels. (c) Original image with the overlaid
outlines of the altered objects. (d) Image resynthesized using the altered map. We train the discrepancy detector to
find the pixels within the outlines of altered objects shown in (c).

labels to the regions belonging to unknown classes. To simulate this, as illustrated in Figure 4.4,

we therefore replace the label of randomly chosen object instances with a different random

one sampled uniformly from the set of Cityscapes evaluation classes. We then resynthesize the

input image from this altered semantic map using the pix2pixHD [WLZ+18] generator trained

on the dataset of interest. This creates pairs of real and synthesized images from which we

can train our discrepancy network. Note that this strategy does not require seeing unexpected

objects during training.

4.1.3 Detecting Adversarial Attacks

Comparing an input image to a resynthesized one also allows us to detect adversarial attacks.

The experimental details are omitted in this thesis as this does not immediately pertain

to anomaly detection but the full description is included in the conference version of this

work [LNSF19].

Like for unexpected object detection, we first compute a semantic map from the input image,

adversarial or not, and resynthesize the scene from this map using the pix2pixHD generator.

Here, unlike in the unexpected object case, the semantic map predicted for an adversarial

example is completely wrong and the resynthesized image therefore completely distorted, as

shown in Figure 4.5. This makes attack detection a simpler problem than unexpected object

one. We can thus use a simple non-differentiable heuristic to compare the input image with

the resynthesized one. Specifically, we use the L2 distance between HOG [DT05] features
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(a) Ground truth map

(b) Input image (normal)

(c) Predicted map (normal)

(d) Resynthesized (normal)

(e) Predicted map (Shift)

(f) Resynthesized (Shift)

(g) Predicted map (Pure)

(h) Resynthesized (Pure)

Figure 4.5: Visualizing adversarial attacks. Without attacks, the resynthesized image (d), obtained from (c), looks
similar to the input one (b). By contrast, resynthesized images ((f ) and (h)) obtained from the semantic maps ((e)
and (g)) computed from an attacked input differ massively from the original one.

computed on the input and resynthesized image. We then train a logisitic regressor on these

distances to predict whether the input image is adversarial or not. Note that this simple

heuristic is much harder to attack than a more sophisticated, deep-learning based one.

4.2 Experiments

This work also predates the Segment Me If You Can benchmark so the experiments are not in

the benchmark format. We report the original experiments here and a further comparison on

the benchmark in Section 8.2.

We first evaluate our approach on the task of detecting unexpected objects such as lost cargo,

animals, and rocks, in traffic scenes which constitute our target application domain and

the central evaluation domain for semantic segmentation thanks to the availability of large

datasets such as Cityscapes [COR+16] and BDD100K [YXC+18]. For this application, all tested

methods output a per-pixel anomaly score, and we compare the resulting maps with the

ground-truth anomaly annotations using ROC curves and the area under the ROC curve

(AUROC) metric. Then, we present our results on the task of adversarial-attack detection.

We perform evaluations using the Bayesian SegNet [BKC17a] and the PSP Net [ZSQ+17], both

trained using the BDD100K dataset [YXC+18] (segmentation part) chosen for its large number

of diverse frames, allowing the networks to generalize to the anomaly datasets, whose images

differ slightly and cannot be used during training. To train the image synthesizer and discrep-

ancy detector, we used the training set of Cityscapes [COR+16], downscaled to a resolution of

1024×512 because of GPU memory constraints.

4.2.1 Baselines

As a first baseline, we rely on an uncertainty-based semantic segmentation network. Specifi-

cally, we use the Bayesian SegNet [BKC17a] which samples the distribution of the network’s
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results using random dropouts; the uncertainty measure is computed as the variance of the

samples. We will refer to this method as Uncertainty (Dropout).

It requires the semantic segmentation network to contain dropout layers which is not the

case of most state-of-the-art networks such as PSP [ZSQ+17] based on a ResNet backbone. To

calculate the uncertainty of the PSP network, we therefore use the ensemble-based method

of [LPB17]. We trained the PSP model four times, yielding different weights due to the ran-

dom initialization. We then use the variance of the outputs of these networks as a proxy for

uncertainty. We will refer to this method as Uncertainty (Ensemble).

Finally, we also evaluate the road-specific approach of [CM15], which relies on training a

shallow Restricted Boltzmann Machine autoencoder to resynthesize patches of road texture

corrupted by Gaussian noise. The regions whose appearance differs from the road are ex-

pected not to be reconstructed properly, and thus an anomaly score for each patch can be

obtained using the difference between the autoencoder’s input and output. As the original

implementation was not publicly available, we re-implemented it and make the code avail-

able1 for future comparisons. As in the original article, we use 8×8 patches with stride 6 and a

hidden layer of size 20. We extract the empty road patches required by this method for training

from the Cityscapes images using the ground-truth labels to determine the road area. We will

refer to this approach as RBM.

The full version of our discrepancy detector takes as input the original image, the resynthesized

one and the predicted semantic labels. To study the importance of using both of these

information sources as input, we also report the results of variants of our approach that have

access to only one of them. We will refer to these variants as Ours (Resynthesis only) and Ours

(Labels only).

4.2.2 Anomaly Detection Results

We evaluate our method’s ability to detect unexpected objects using two separate datasets

described below. We did not use any portion of these datasets during training because we

tackle the task of finding never-seen-before objects.

Lost and Found

The Lost And Found [PRG+16] dataset contains images of small items, such as cargo and

toys left on the street, with per-pixel annotations of the obstacle and the free-space in front

of the car. We perform our evaluation using the test set, excluding 17 frames for which the

annotations are missing. We downscaled the images to 1024×512 to match the size of our

training images and selected a region of interest which excludes the ego-vehicle and recording

artifacts at the image boundaries. We do not compare our results against the stereo-based

ones introduced in [PRG+16] because our study focuses on monocular approaches.
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Figure 4.6: ROC curves for unexpected object detection. The first two columns show results for the Lost and
Found [PRG+16] dataset: The curves on the left were computed over the entire images, excluding only the ego-
vehicle. Those in the middle were obtained by restricting evaluation to the road, as defined by the ground-truth
annotations. The right column depicts the results on our Road Anomaly dataset. The top and bottom rows depict
the results of the Bayesian SegNet and the PSP Net, respectively. The methods are ordered according to their
AUROC scores, provided on the right of the methods’ name.

The ROC curves of our approach and of the baselines are shown in the left column of Figure 4.6.

Our method outperforms the baselines in both cases. The Labels-only and Resynthesis-only

variants of our approach show lower accuracy but remain competitive. By contrast, the

uncertainty-based methods prove to be ill-suited for this task. Qualitative examples are

provided in Figure 4.7. Note that, while our method still produces false positives, albeit much

fewer than the baselines, some of them are valid unexpected objects such as the garbage bin

in the first image. These objects, however, were not annotated as obstacles in the dataset.

Since the RBM method of [CM15] is specifically trained to reconstruct the road, we further

restricted the evaluation to the road area. To this end, we defined the region of interest as the

union of the obstacle and freespace annotations of Lost And Found. The resulting ROC curves

are shown in the middle column of Figure 4.6. The globally higher scores in this scenario

show that distinguishing anomalies from only the road is easier than finding them in the

entire scene. While the RBM approach significantly improves in this scenario, our method still
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Anomalies in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Dropout) RBM

Figure 4.7: Lost and Found results. The top images depict algorithmic steps and the bottom ones our results along
with those of the baselines. Our detector finds not only the obstacles on the road but also other unusual objects
like the trash container on the right side of the road. By contrast Uncertainty (Dropout) reports high uncertainty
in irrelevant regions and fails to localize the obstacles. RBM finds only the edges of the obstacles. Our approach
detects the unexpected objects correctly.

Full Labels only Resynthesis only

Supervised 0.94 0.93 0.96
Unsupervised 0.82 0.79 0.76

Table 4.1: Performance of the discrepancy network in a supervised setting. AUROC scores measured
on the Lost and Found dataset.

outperforms it.

Our Road Anomaly Dataset

To evaluate this method we have collected the Road Anomaly 19 dataset described in Sec-

tion 3.1.1 The results are shown in the right column of Figure 4.6, with example images in

Figure 4.8. Our approach outperforms the baselines, demonstrating its ability to generalize to

new environments. By contrast, the RBM method’s performance is strongly affected by the

presence of road textures that differ significantly from the Cityscapes ones.

4.2.3 Supervised Discrepancy Network

To get an upper bound on its accuracy, we test the discrepancy network in a supervised setting.

We use the ground-truth anomaly labels of the Lost and Found training set, with semantics

predicted by PSP Net. The AUROC scores, measured on the test set, are shown in Table 4.1.
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Anomaly in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Dropout) RBM

Anomaly in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Dropout) RBM

Figure 4.8: Road anomaly results. As in Figure 4.7, in each pairs of rows, the consecutive images at the top depict
algorithmic steps and the ones at the bottom our results along with those of the baselines.

4.3 Qualitative Examples

The synthetic training process alters only foreground objects. A potential failure mode could

therefore be for the network to detect all foreground objects as anomalies, thus finding not

only the true obstacles but also everything else. In Figure 4.9, we show that this does not

happen and that objects correctly labeled in the semantic segmentation are not detected as

discrepancies.

In Figure 4.10, we illustrate the fact that, sometimes, objects of known classes differ strongly

in appearance from the instances of this class present in the training data, resulting in their

being marked as unexpected.

We present a failure case of our method in Figure 4.11. Anomalies similar to an existing

semantic class are sometimes not detected as discrepancies if the semantic segmentation

marks them as this similar class. For example, an animal is assigned to the person class and

missed by the discrepancy network. In that case, however, the system as a whole is still aware

of the obstacle because of its presence in the semantic map.
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4.3 Qualitative Examples

Input image Predicted semantic map - Baysesian Seg Net

Resynthesized image (labels from Baysesian Seg Net) Anomaly score - Ours

Input image Predicted semantic map - PSP Net

Resynthesized image (labels from PSP Net) Anomaly score - Ours

Figure 4.9: The synthetic training process alters only foreground objects, but that does not mean our discrepancy
network learns to blindly mark all such objects. In the top row, we show an example where the Bayesian SegNet
failed to correctly label some of the people present, and this discrepancy is detected by our network. However, our
detector reports no discrepancy when the PSP Net correctly labels the people in the image (third row).
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Anomaly in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Dropout) RBM

Anomaly in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Ensemble) RBM

Figure 4.10: Unusual versions of known objects. Objects of known classes are marked as anomalies because their
appearance differs from the examples of this class present in the training data, for example the fence in the first
row (fence class) and the dark sky in the third row. Note that the RBM patch-based method [CM15] is especially
sensitive to edges and so it detects the zebras very well.

4.3.1 Implementation details

Our discrepancy network relies on the implementations of PSP Net [ZSQ+17] and SegNet [BKC17b]

kindly provided by Zijun Deng. The detailed architecture of the discrepancy network is shown

in Figure 4.12. We utilize a pre-trained VGG16 [SZ15] to extract features from images and

calculate their pointwise correlation, inspired by the co-segmentation network of [LJR18].

The up-convolution part of the network contains SELU activation functions [KUMH17]. The

discrepancy network was trained for 50 epochs using the Cityscapes [COR+16] training set

with synthetically changed labels as described in Section 3.2 of the main paper. We used the

Adam [KB15] optimizer with a learning rate of 0.0001 and the per-pixel cross-entropy loss. We

utilized the class weighting scheme introduced in [PCKC16] to offset the unbalanced numbers

of pixels belonging to each class.
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4.4 Conclusion

Anomaly in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Ensemble) RBM

Anomaly in input image Predicted semantic map Resynthesized image

Ours Uncertainty (Dropout) RBM

Figure 4.11: Failure cases. Our approach sometimes fails when the anomaly bears resemblance to an existing class:
For example, animals classified as people in the first row or transported hay classified as vegetation in the third
row. The system as a whole is nonetheless still aware of the obstacle because of its presence in the semantic map.

4.4 Conclusion

In this chapter, we have introduced a drastically new approach to detecting the unexpected

in images. Our method is built on the intuition that because unexpected objects have not

been seen during training, typical semantic segmentation networks will produce spurious

labels in the corresponding regions. Therefore, resynthesizing an image from the semantic

map will yield discrepancies with respect to the input image, and we introduced a network

that learns to detect the meaningful ones. Our experiments have shown that our approach

detects the unexpected objects much more reliably than uncertainty- and autoencoder-based

techniques. Our approach still suffers from the presence of some false positives which, in a

real autonomous driving scenario, would create a source of distraction. In the next chapters

we will focus the scope of the obstacle detection solely on the road area itself, allowing for a

higher precision of predictions.
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Figure 4.12: Architecture of our discrepancy network.

44



5 Detecting Road Obstacles by Erasing
Them

A self-driving vehicle needs to be able to detect strange and unexpected obstacles lying on

the road. Such obstacles are as rare as they are diverse, which prevents direct application of

the now standard approach of training deep networks by showing them an exhaustive set of

annotated samples.

In the previous chapter we have performed the detection of anomalies which do not belong

to Cityscapes semantic classes. However for the immediate goal of self-driving systems, the

semantic meaning of the obstacles is of lesser importance as long as they can be reliably

avoided. Furthermore, only objects on the road are important for path planning. In this

chapter we will focus on obstacles located on the road surface and exploit that constraint to

inpaint the road texture without the obstacles.

In practice, detecting such unexpected obstacles often requires LiDAR sensors [SKGK20] or

multiple cameras [PRG+16]. Here, we propose instead a method that only needs a single RGB

image to detect obstacles in the drivable area, under the assumption that objects outside

that area are irrelevant because a self-driving car will detect the road before planning to drive

and will not leave the drivable area of its own accord. To demonstrate this to be a viable

assumption, we will show results given either the ground-truth location of the road edges or

only an imperfect road segmentation produced by an off-the-shelf segmentation algorithm.

Our approach relies on the fact that obstacles look different from the surrounding road surface.

We thus detect them by inpainting image-patches using their surroundings and then checking

how similar the inpainted patch is to the original one. While a similar intuition has been

used to detect anomalies in several application scenarios, such as detecting manufacturing

defects [ZKS20, HGT18] or anomalous faces [BRF18], the very constrained nature of these

tasks made it possible to rely on simple comparisons of handcrafted features. By contrast, on

roads, this would yield many false positives due to road markings, diversity in road texture,

and obstacles extending beyond the inpainted patch.

Like in Chapter 4, our solution is to introduce a discrepancy network trained to recognize
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Figure 5.1: Detecting unexpected obstacles in good and bad weather. Top: Objects one would not
expect to see on a road and that are not featured in standard databases. Middle: The road area has
been inpainted. Bottom: After comparing the original and inpainted images, our discrepancy network
returns a binary mask that denotes the obstacle locations.

which differences between the inpainted patch and the original one are significant. It returns

a per-pixel heatmap denoting the presence of obstacles. To train it to handle objects that are

not part of the training database, we generate samples featuring synthetic obstacles by moving

existing training objects, such as road signs and people, onto the road.

Our experiments show that our discrepancy network trained solely on Cityscapes [COR+16]

objects successfully detects obstacles on images depicting significantly different road scenes,

without requiring any annotated data nor any re-training for these new scenes. In other words,

our method generalizes well to previously unseen real obstacles and new road surfaces. It

outperforms earlier monocular road anomaly detectors [BSN+19, MG18a, BKOS19] on the

Lost & Found [PRG+16] data featured in the Fishyscapes benchmark [BSN+19], as well as on

our own newly collected dataset featuring additional unusual objects and road surfaces.

Our contribution is therefore a simple but effective approach to detecting obstacles that never

appeared in any training database, given only a single RGB image.
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5.1 Approach

Our goal is to identify obstacles that are on the road and pose a danger of collision with the

vehicle. This means that they are within the space deemed drivable by a previous stage in the

self-driving perception pipeline. As such, they are the most relevant obstacles as a competent

driving system will only plan trajectories within that space.

In other words, our chosen task is to identify all pixels, within that estimated road area, that

denote obstacles. This is difficult because obstacles can take many forms. Furthermore,

because they are unexpected, there is no guarantee that they were present in the database

used to train a network to recognize them. Hence, the network must be made to respond to

objects that does not belong to the road without any clear description, or even exemplars, of

these objects.

To this end, given a binary mask denoting the drivable area in the image, we propose the

following two-step approach:

1. Erase the obstacles by removing road patches and inpainting them in a sliding-window

manner;

2. Use a discrepancy network to compare the original image to the inpainted one and

decide if they are similar enough.

The intuition behind this scheme is that, if there is an obstacle, the inpainted area will look

very different from the original image. However, even if there is no obstacle, the inpainted area

will be similar to the original one, but not strictly equal. Hence, the discrepancy network is

needed to assess if they are dissimilar enough to flag a potential obstacle. It yields a heatmap

denoting the likelihood for each pixel in the drivable area of belonging to an obstacle. In the

remainder of this section, we discuss these two steps in more details.

5.1.1 Drivable Area

A self-driving system must determine the road area within which it can move. Our method

detects obstacles within the area identified as drivable, as these are the only ones that might

be on the vehicle’s planned path and can endanger it. Of course, a part of the road may be

mistakenly marked as non-drivable, causing obstacles it contains to be ignored as shown

Figure 5.8. However, this does not compromise safety because the vehicle will never attempt

to go there.

Our approach can exploit any method that delivers the required drivable area information. In

our experiments, we use the PSP-Net semantic segmentation network of [ZSQ+17] trained on

the Cityscapes dataset [COR+16], as implemented in the framework of [GHH+20]. We take the

road area to be all pixels classified as either road or sidewalk, since the many road textures
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Figure 5.2: Drivable space from semantic segmentation. Top: Input images. Middle: Semantic
segmentation performed by PSP-Net [ZSQ+17], the class colors follow Cityscapes convention. Bottom:
We take the drivable space to be the union of road (purple) and sidewalk (magenta) pixels. The parts
of obstacles can sometimes be classified as non-road, so we include the regions of other classes fully
enclosed within the road area. In Lost & Found, the known ego-vehicle mask is excluded.

we are targeting can be classified as either. Note that standard categories, such as car and

pedestrian, are inherently accounted for by PSP-Net. Hence, we focus on the unusual obstacles

for which no training data, either supervised not unsupervised, is available. Nevertheless,

since such unusual obstacles could be partially classified as non-road, we include the regions

containing other classes that are fully enclosed within the road area. Figure 5.2 demonstrates

this process. As a limit case, we also evaluate the case of perfect road detection by using the

ground truth road mask.

Our approach needs only a coarse mask of the drivable area, so in a practical deployment the

semantic segmentation can be replace by computationally more efficient system, for instance

predicting just the road edges and filling the space between them.
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inpainter

erased
area

weighted average

Figure 5.3: Sliding window inpainting of the road surface. We extract 400×400 context patches then erase and
inpaint the road area contained within the central 200×200 of the patch. Finally we fuse the inpaintings which
reconstructs the road appearance while removing localized obstacles. Note how the process was able to preserve
the shadow of the trees.

5.1.2 Inpainting

To erase the obstacles while preserving the surrounding road appearance, we use a general-

purpose inpainter [YLY+19] that relies on an adversarial approach to ensure that the inpainted

image looks realistic. We use a version of this model trained on the scene recognition dataset

Places2 [ZLK+17], and do not train it further.

The inpainter is given an image in which a part has been replaced by black pixels and the pixel

mask of the removed area. It outputs an image with the missing part filled in so as to best

maintain the continuity and content of the scene.

A naive way to use it would be to inpaint the entire road area at once. This, however, would

provide no indication to the inpainter of the road appearance, leading to inpainted images that

differ from the original ones in the whole road region, thus precluding subsequent obstacle

detection. Instead, we inpaint road patches to provide sufficient context for the network to

reconstruct the road surface, as shown in Figure 5.3. The patches nonetheless need to be

large enough to encompass obstacles whose size we do not know a priori. We therefore follow

a sliding-window approach, inpainting patches of 200×200 pixels of drivable area within

400×400 image regions to provide context.

While an obstacle is usually nicely erased when the area to inpaint encloses it completely, the

inpainter is able to re-create the obstacles that are only partially contained in the inpainted
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Figure 5.4: Architecture of the discrepancy network

region. To resolve this, we use consecutive patches with a relative overlap of 0.7, increasing

the likelihood of having at least one patch that covers the entire obstacle. This means that

each image pixel is inpainted multiple times. We then fuse the multiple inpaintings of each

pixel by weighted averaging, where the weight of each inpainting is computed based on the

Manhattan distance between the corresponding patch center and the pixel location of interest.

Formally, a patch centered at location c j = [u j , v j ]⊤ contributes to the inpainting of a pixel at

location p = [u, v]⊤ with a weight

w = 1− 2
s max(|u −u j |, |v − v j |)∑

[ui ,vi ]∈Π(u,v) 1− 2
s max(|u −ui |, |v − vi |)

, (5.1)

where s is the patch width or height andΠ(u, v) is the set of patches overlapping the [u, v]⊤

pixel, with patch i centered at [ui , vi ].

Our inpainting strategy enables us to generalize to new road surfaces such as those of our

Road Obstacles dataset. By contrast, the GAN synthesizers of Chapter 4 or [XZL+20, DBBSC21]

always produce images resembling the Cityscapes training set.
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Figure 5.5: Synthetic training obstacles. Using the Cityscapes dataset, we transplant random object instances
onto the road to appear as small obstacles (top). Results of the inpainting process (middle). Labels (bottom): the
discrepancy network is trained to distinguish obstacles (red) from the road area (black), while the background grey
region is ignored in training.

5.1.3 Discrepancy Network

While our inpainting strategy preserves the general appearance of the road surface, it still

yields unavoidable imperfections due to road markings, texture details, and the non-zero

contributions of obstacles located close to the patch edges. Thus, simply comparing the

original image with the inpainted one via pixel difference would yield many false positive

detections. To handle this, we introduce a discrepancy network that we train to distinguish

significant differences from inpainting artifacts.

We implement our discrepancy network using a two-stream architecture, shown in Figure 5.4,

that takes as input the original image and the inpainted one. Both inputs are first processed

by a ResNeXt101 [XGD+17] feature extractor, pretrained for ImageNet [DDS+09] and frozen at

training time. The resulting features are then concatenated and fused through 1×1 convolu-

tions. Furthermore, we compute a point-wise correlation map: At each location in the feature

map, we calculate the dot product between the image feature vector and the corresponding

inpainting feature vector. We append these dot products as an additional channel to the out-

put of the 1×1 convolutions. The concatenated features are then passed to an upconvolution

pyramid, and we obtain the desired heatmap via a softmax.

Training the Discrepancy Network

Recall that we target unusual road obstacles that may never have been seen at training time.

Therefore, we need the discrepancy network to generalize to previously-unseen objects.

To tackle this challenge, we built a synthetic training set from only the Cityscapes [COR+16]

dataset, which contains no unusual traffic obstacles. We extracted instances of people and
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Figure 5.6: Incorporating noise. We augment the training images (left) by adding noise summed at two scales
and magnitudes (right) to simulate a diverse road texture and prevent the discrepancy network from becoming
excessively sensitive to high frequencies.

vehicles using the instance annotations, together with traffic lights and traffic signs, which

lack instance labels, but can be extracted as connected components within their pixel-wise

semantic label mask. Since many road obstacles are small and difficult to detect, to simulate

small obstacles seen from a far distance, we selected from the whole dataset instances of

size ranging from 10 to 150 pixels, and area between 100 and 5000 pixel squared. We then

sampled random objects from this database and overlaid them onto the drivable area to mimic

obstacles. Figure 5.5 features several images synthesized in this way.

Texture Augmentation

The Cityscapes training set features predominantly smooth road surfaces. Test images de-

picting road surfaces rougher that those seen in training could lead to false positives. We

address this issue by adding noise at two different scales to the training images to create a

more realistic texture, as shown in Figure 5.6. We will evaluate the influence of this step in

Section 5.2.5.

5.2 Experiments

This work also predates the Segment Me If You Can Benchmark so the experiments are not in

the benchmark format. We report the original experiments here and a further comparison on

the benchmark in Section 8.2.

5.2.1 Evaluation Metrics

Since we focus on detecting obstacles on the road, we take the Region of Interest (ROI) for

evaluation purposes to be the ground-truth road area as shown in Figure 5.7. This restriction
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Figure 5.7: Example ground-truth labels. We consider the task of distinguishing obstacle pixels (orange) from the
road area (light green), while the background (unmarked) is excluded from the evaluation.

of ROI to drivable space follows the evaluation protocol of the original Lost & Found [PRG+16]

road-obstacle benchmark and matches the area relevant to self-driving, that is, the road area

where the vehicle is going to move and can encounter obstacles. We formulate our task in terms

of pixel-wise binary classification. Our method, like the baselines we compare with, outputs a

heatmap in the [0,1] range denoting the likelihood for each pixel within the ROI of belonging

to an obstacle. We use the following two metrics of the Fishyscapes benchmark [BSN+19]:

• The primary metric is Average Precision (AP), that is, the area under the precision-recall

curve. This metric is more meaningful than metrics based on the receiver operating

curve (ROC) due to strong class imbalance, as obstacles typically cover less than 2% of

the total road surface.

• A secondary metric is false positive rate (FPR) at a 95% true positive rate (TPR), which

we denote as FPR95. To compute it, the binary classification threshold is lowered until

95% of the obstacle pixels are detected and we then measure how many false positives

are introduced.

5.2.2 Baselines

The baselines used in this chapter follow the ones used in the Fishyscapes benchmark [BSN+19]

since it provided a comprehensive set of methods before Segment Me If You Can was intro-

duced later. Therefore we introduce the baselines used in our original experiments.

Learned Embedding Density [BSN+19]learns the inlier distribution of features extracted from

a DeepLab [CPI+18] layer. It then maps the features to latent, Gaussian-distributed vectors

via a normalizing flow. The mapping is trained to maximize the likelihood of the features

observed in inlier samples.

Void Classifier [LLLS18a]uses the Cityscapes void areas as examples of outliers. It can then

either explicitly add void to the set of predicted classes, or learn to maximize the softmax

entropy in the void regions.
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MC Dropout [MG18b]introduces dropout layers into the DeepLab network. At inference time,

it draws samples by randomizing the dropout. The uncertainty is measured as the mutual

information between the resulting distribution and the network weights.

Entropy Maximization [CRG21b]trains the segmentation network to maximize the output

entropy on explicit OOD samples obtained by adding COCO [LMB+14] objects into Cityscapes

frames. It also performs post-processing on connected components of obstacle pixels, but

this part is not applicable in our per-pixel evaluation.

SynBoost [DBBSC21]expands the resynthesis approach by providing uncertainty estimates of

the semantic segmentation as an additional input to its dissimilarity network, which predicts

the anomaly score.

DeepLab Softmax Entropy [LLLS18a]measures the entropy of the class likelihoods produced

by the softmax layer of the DeepLab semantic segmentation network.

Dirichlet DeepLab [MG18a]outputs the α parameters defining a Dirichlet distribution over

the class labels, rather than a single set of class likelihoods given by the softmax. The network

is trained to produce sharp distributions for inlier classes and a uniform distribution for the

void class. The anomaly score is calculated as the Dirichlet differential entropy.

Discriminative Outlier Detection Head [BKOS19]relies on an outlier detection head that

shares backbone features with a semantic segmentation head. The network is trained using

frames from Cityscapes and Vistas [NORK17], with injected outliers drawn from ImageNet-

1k [DDS+09]. We evaluate a variant where outlier size is randomized in order to handle a range

of obstacle sizes.

5.2.3 Datasets

We report empirical results on two datasets, the well-established Fishyscapes Lost & Found

benchmark and a new Road Obstacles dataset that we introduce in this paper to increase the

diversity of road obstacles and surfaces.

Fishyscapes Lost & Found

The Lost & Found dataset [PRG+16] contains image sequences captured by a vehicle approach-

ing lost cargo items placed on parking lots and streets. A subset of 100 validation and 275 test

images was selected from the Fishyscapes [BSN+19] road scene anomaly detection bench-

mark to avoid non-anomalous Cityscapes objects such as people. We adapted the benchmark
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Road Obstacles Road Obstacles Road Obstacles Fishyscapes: L&F Fishyscapes: L&F
daylight snowfall all validation test

Method AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
Ours - road ground truth 96.5 0.0 67.9 6.0 91.1 0.3 93.2 1.0 92.7 0.9

Ours - road segmentation 96.8 0.0 65.1 6.2 90.8 0.4 91.8 1.5 85.8 45.3
SynBoost [DBBSC21] 84.0 0.9 47.8 16.4 79.7 2.4 89.8 1.5 81.6 3.4
Maximized Entropy [CRG21b] 96.1 0.1 30.5 12.5 90.1 0.3 74.5 11.8 78.0 15.2
Outlier Detection Head [BKOS19] 70.8 0.9 0.7 54.0 30.4 5.0 61.4 27.0 53.1 36.1
Resynthesis (Chapter 4) 34.5 4.1 19.2 15.0 31.9 5.9 64.4 5.1 67.0 6.0
Dirichlet DeepLab [MG18a] 11.7 31.6 0.6 45.5 4.8 37.8 61.2 70.8 59.9 73.0
MC Dropout [MG18b] 13.0 49.1 0.8 51.6 11.3 47.8 48.4 33.7 41.3 30.6
Void Classifier [BSN+19] 8.7 48.6 2.9 22.6 10.5 41.2 14.1 24.2 4.7 41.0
Embedding density - Minimum NLL [BSN+19] 2.3 27.8 0.9 38.6 2.1 33.7 61.1 8.5 71.7 6.7
Embedding density - Single-layer NLL [BSN+19] 1.0 62.0 0.1 84.1 0.9 71.2 49.6 17.2 55.8 13.6
DeepLab Softmax [LLLS18a] 26.2 10.9 2.9 60.9 22.6 14.1 29.4 41.0 27.5 29.4

Table 5.1: Obstacle detection scores. The primary metric is average precision of detecting obstacle pixels.

Road Obstacles Road Obstacles Road Obstacles Fishyscapes: L&F Fishyscapes: L&F
daylight snowfall all validation test

Method AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
Ours 96.8 0.0 65.1 6.2 90.8 0.4 91.8 1.5 85.8 45.3
Resynthesis 83.8 0.6 45.0 8.9 82.8 1.6 68.3 1.6 56.1 61.9
No Inpainting. 91.7 0.2 73.2 0.7 86.6 0.6 86.0 1.7 81.3 99.9
No Discrepancy 15.3 40.2 28.8 36.2 14.1 35.7 21.1 48.4 23.1 84.8
Segmentation Alone 13.4 85.1 0.3 98.2 12.9 90.6 34.4 91.8 42.6 91.2
Ours w/o noise aug. 95.9 0.0 56.9 17.0 89.2 1.6 87.1 2.1 81.8 56.1
Ours w/o correlation layer. 95.8 0.1 61.0 6.2 89.8 0.7 85.4 1.7 72.6 60.4

Table 5.2: Ablation study results.

to the task of obstacle detection on known road regions by restricting the evaluation to the

ground-truth labeled drivable area. This was done in close collaboration with the Fishyscapes

benchmark organizers. They will integrate this evaluation strategy in the benchmark but are

neither authors of this paper nor associated to the corresponding research. The results of the

baseline methods were computed by them, using the original implementations submitted to

the benchmark that were presumably tuned by their respective authors for the benchmark

and its Lost&Found part.

We evaluate both with the publicly available validation set and the private test set. Scores for

the latter were computed by the benchmark authors and given to us. They are consistent with

those we obtained on the validation set.

The FS-Web and FS-Static parts of Fishyscapes are created by synthetic object injection and,

in that sense, resemble our training set. We exclude those from testing to prevent the detector

from exploiting artifacts caused by the synthetic injection process.

Road Obstacles 20.

To evaluate this method we have collected the dataset described in Section 3.1.1. We report

the results for snowfall track separately, as such conditions are far outside the training domains

of any of the evaluated methods. We report the union of both tracks as Road Obstacles - all.
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Figure 5.8: Obstacle outside of predicted drivable area failure mode. Top-left: An obstacle is located
near a vehicle shadow. Top-right: The semantic segmenter classifies it as part of the background.
Bottom-left: Consequently it is not included in the drivable space where our obstacle detector is
applied. Bottom-right: Ground truth road label used as the region-of-interest for evaluation purposes.
This obstacle will be counted as missed.

5.2.4 Comparative Results

We tested two versions of our method, one that operates on the road area given in the ground

truth and the other on the drivable area segmented by the network of [ZSQ+17]. They are

referred to as Ours road ground truth and Ours road segmentation, respectively, in Table 5.1. A

qualitative comparison and further examples of our method’s outputs are shown in Figure 5.10

and Figure 5.9, respectively.

Both versions of our method outperform all others in terms Average Precision (AP), the primary

metric in [BSN+19], on both datasets. The same is true for the FPR95, the secondary metric,

except for “Ours road segmentation" on the test set of Fishyscapes for which our FPR score is

abysmal. Note, however, that the score using the ground truth is excellent. This points to the

cause of the problem: The segmentation algorithm we use only found a part of the drivable area

and, since we only look for obstacles there, we missed all those that were elsewhere, making

it impossible to reach a 95% TPR in some of the images. Figure 5.8 illustrates this problem.

Nevertheless, even in this situation, safety is maintained because the vehicle controller will

only drive within the predicted road space. Hence, obstacles outside of it do not pose a risk

of collision. Furthermore, as evidenced by the excellent results of Ours road ground truth,

this problem will gradually fade away as road boundary detection algorithms improve. In the

snowfall track, the difficult weather causes nearly all baselines to fail, but our approach still

achieves reasonable performance.

While most methods including ours use solely the Cityscapes dataset for training, some oth-

ers [BKOS19, CRG21b] sample the objects injected as synthetic obstacles from other datasets
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Input image Inpainting of the road area Discrepancy score

Figure 5.9: Example outputs of our method. Left: Input images featuring challenging or distant obstacles. Center:
The result of sliding-window inpainting of the road area. Right: The discrepancy score calculated by our network
given the two previous images. The darkened area corresponds to the ground-truth drivable space.
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Input image Ours Entropy Maximization [CRG21b]

SynBoost [DBBSC21] Resynthesis (Chapter 4) MC Dropout [MG18b]

Figure 5.10: Qualitative comparison of method outputs. The darkened area corresponds to the ground-truth
drivable space.

such as COCO or ImageNet-1k. This strategy works well for some obstacle types, particu-

larly the distinct and colorful ones in the Road Obstacles - daylight set, but falls short in the

Fishyscapes set. In other words, extending the original dataset with others is effective if the test

obstacles are similar to the ones in the additional dataset but does not necessarily promote

generalization.

5.2.5 Ablation study

In Table 5.2, we report the results of an ablation study during which the discrepancy network

was retrained with selected components altered or disabled.

In the Resynthesis variant, the inpainting described in Section 5.1.2 is replaced by an image

synthesizer [WLZ+18] from predicted semantic labels as in Chapter 4. While the inpainter can

reconstruct novel road textures based on the visual context, the generator produces a texture

similar to the training roads, and this is reflected by degraded performance on Road Obstacles.

The No Inpainting variant does away with inpainting. We keep the architecture unchanged,

but pass two copies of the image into both input streams and retrain the network. This also

degrades performance, thus confirming the importance of inpainting. We can also do the

reverse, that is, remove the discrepancy network, and compute the L1 distance between the

RGB values of the input image and the inpainted result. The results of the corresponding No

Discrepancy variant are even worse.

The Segmentation Alone entry corresponds to detections made by finding groups of non-road

pixels enclosed within the road region detected by the segmentation algorithm [ZSQ+17]. This

by itself clearly fails, thereby justifying the extra step we propose in this paper.
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The snowfall subset differs from the Cityscapes training set so significantly that the road

detection is imprecise and road edges are inpainted onto its surface, which confuses the

discrepancy network. This yields a higher score for the No Inpainting variant than for the full

approach.

We also show the contribution of the texture augmentation strategy described in Section 5.1.3

and that of using the feature correlation map.

5.2.6 Implementation details

In this section, we present details on the discrepancy network architecture and training.

Discrepancy Network Architecture

The architecture is shown in Figure 5.11. The network has two input streams: the original im-

age and the image where the road area has been inpainted. We use the pretrained ResNeXt101

network of [XGD+17] to extract features from both images. We use the PyTorch implemen-

tation [Pyt, PGM+19] of this backbone and take the outputs of layers labeled relu, layer1,

layer2, layer3.

At four levels of the feature pyramid, we fuse the two streams of features in these two parallel

ways:

• Concatenate stream 1 and 2, followed by a 1×1 convolution,

• Calculate pixel-wise correlation of features, following [LJR18].

The results of the above are concatenated and passed on to an up-convolution pyramid

which uses the SeLU [KUMH17] activation function. In the final step, the discrepancy score is

multiplied by the binary drivable space mask, since the outputs are only valid within the road

area.

Discrepancy Network Training

The discrepancy network was trained for 65 epochs. Each epoch iterates over the 2975 frames

of our synthetic training set. The training is done using 768×384 crops of the road area. To

improve training reproducibility, we pre-define the crops and their ordering in each epoch,

and train all variants of the discrepancy network with the same sequence of samples.

We use binary cross entropy loss and the Adam [KB15] optimizer. We set the initial learning

rate to 10−4 and then adjust it dynamically, if there is no improvement of validation loss for 5

consecutive epochs, the learning rate is reduced 10 times. We generate the validation set from

Cityscapes validation subset in the same way as the training set.
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5.3 Conclusion

We have introduced a pipeline capable of detecting road obstacles in driving scenarios, given

only single monocular images as input. We perform inpainting of the drivable area, erasing

the localized obstacles while preserving the road surface. Our discrepancy network learns to

accurately detect the removed obstacles and ignore irrelevant artifacts of reconstruction. This

detector, trained only with synthetically altered Cityscapes data, is capable of generalizing

to a variety of real-world obstacles and road surfaces. We have demonstrated this on the

Fishyscapes Lost & Found benchmark, as well as on our newly collected dataset.
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Figure 5.11: Discrepancy network architecture.
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6 Perspective Aware
Road Obstacle Detection 1

Our previous efforts in Chapters 4 and 5 and many state-of-the-art deep learning approaches

[DBBSC21, CRG21b] rely on synthetically-generated training data such as achieved by cutting

out objects and inserting them into individual frames of the Cityscapes dataset.

However, these methods fail to leverage, both while generating training data and perform-

ing the actual detection, the predictable perspective foreshortening in images captured by

vehicles’ front-facing cameras. It is a standard practice [BKOS19, VŠA+21] to insert objects

of arbitrary sizes at any image location in the training data and to detect objects at multiple-

scales irrespective of where they appear in the image. This does not exploit the well-known

fact that more distant objects tend to be smaller and that, given a calibrated camera, the

relationship between real and projected sizes is known.

In this work, we show that leveraging the perspective information substantially increases

performance. To this end, as shown in Figure 6.1, we compute a scale map, whose pixel values

denote the apparent size in pixels of a hypothetical meter-wide object placed at that point on

the road. We then exploit this information in two complementary ways:

• Perspective-Aware Synthetic Object Injection. Instead of uniformly injecting synthetic

objects into road scenes to synthesize training data, as in Chapter 5 or [BKOS19, VŠA+21],

we use the perspective map to appropriately set the projected size of the objects we

insert.

• Perspective-Aware Architecture. We feed the perspective map at multiple levels of a

feature pyramid network, enabling it to learn the realistic relationship between distance

and size embodied in our training set and in real road scenes.

1© 2023 IEEE. Reprinted, with permission, from
Perspective Aware Road Obstacle Detection
Krzysztof Lis, Sina Honari, Pascal Fua, Mathieu Salzmann
IEEE Robotics and Automation Letters, 2023
https://doi.org/10.1109/LRA.2023.3245410
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(a) (b)

(c) (d)
Figure 6.1: Far and relevant vs close and irrelevant. (a) Original image. The green circle denotes a real
obstacle far away, and the red circle indicates nearby but harmless leaves. (b) The perspective map
indicates, at each pixel, the size in pixels of a hypothetical meter-wide object at that location. (c) Our
approach uses the perspective map to distinguish relevant objects from irrelevant ones. It correctly
flags in red the pixels of the real obstacle while ignoring the leaves. (d) Without the perspective aware
training set, a network with a similar architecture flags them all.

The bottom portion of Figure 6.1 illustrates the benefits of our approach. It not only detects

small far-away obstacles but also avoids false alarms arising from small irregularities near the

car, such as the leaves here, because their size at this image location does not match that of real

threats to the vehicle. Our results show that these strategies together contribute to significantly

improving the accuracy of road-obstacle detection, particularly in terms of instance-level

detection, which is critical for a self-driving car that need to identify all potential hazards on

the road.

We evaluate our approach on the obstacle track introduced in Chapter 3 and the Lost&Found

[PRG+16] test subset. We demonstrate that it significantly outperforms state-of-the-art tech-

niques that use architectures similar to ours, but without explicit perspective handling.

6.1 Related Work

We have discussed the monocular road anomaly detection methods in Chapter 2. WHere we

discuss other attempts at exploiting perspective information for diverse tasks.

6.1.1 Exploiting Perspective Information

Earlier works [HSB+07, HSB+09] propose a lightweight sliding-window classifier of drivable

space using a pyramid of input patches whose dimension depends on their distance from the

horizon. These patches are then rescaled according to their distance to the camera, ensuring

64



6.1 Related Work

that the similar obstacles have similar pixels sizes when presented to the classifier, regardless

of the effects of perspective in the original image. This application of perspective information

to overcome scale variance is effective, but it can not be easily combined with standard CNNs

which operate on the whole image rather than individually rescaled patches.

For any perspective camera, distortion depends on image position. A popular approach

to enabling a deep network to account for this in its predictions is to provide it with pixel

coordinates as input. In [LBH18, UVL18, LH18], this is achieved by treating normalized pixel

coordinates as two additional channels. In [CKC20] the pixel coordinates are used to compute

an attention map, to exploit the fact that the class distribution correlates with the image height,

for example the sky class is predominantly at the top of the image. Another way to implicitly

account for perspective effects is to introduce extra network branches that process the image

at different scales and fuse the results [LJW+17, HTLH21]. However, this strategy, as those

relying on pixel coordinates, does not explicitly leverage the perspective information available

when working with a calibrated camera, as is typically the case in self-driving.

None of obstacle-detection algorithms explicitly accounts for the relationship between pro-

jected object size and distance. This can be done by creating scale maps that encode the

expected size in the world of an image pixel depending on its position. Scale maps have been

used for obstacle and anomaly detection [BHL+19, PAK19]. In [BHL+19], the scale information

is used to crop and resize image regions before passing them to a vehicle detection network,

which then gets to view the cars at an approximately constant scale. This requires running

the detector multiple times on the crops. By contrast, our method processes the whole image

at once, and the model learns how to leverage the perspective information to adjust the fea-

tures. In [PAK19], the scale maps are used to rectify the road surfaces, and obstacles are then

detected in the rectified views. Unlike these methods, we exploit perspective maps as input

to our network, instead of using them for image pre-processing. This prevents the creation

of visual artifacts caused by image warping, which yields higher accuracy, as we will show in

experiments.

Scale maps have also been extensively investigated for crowd counting purposes [CLV08,

SYXC19, ZLWY15, YLW+20, LSF19, LLSF19]. In [CLV08, SYXC19], the models predict perspec-

tive information based on observed body and head size. In [ZLWY15], an unsupervised

meta-learning method is deployed to learn perspective maps, which are then used to warp the

input images so that they depict a uniform scale as in [YLW+20]. In [LSF19], a scale map serves

as an extra channel alongside the RGB image and is passed through the backbone feature

extractor, whereas in [LLSF19] an additional branch is added to the backbone to process the

single-channel scale map and to concatenate the resulting features afterwards. In short, per-

spective information is used during feature computation. In this paper, we follow a different

track and incorporate the scale map at different levels of a feature pyramid network. Our

experiments show this to be more effective. Furthermore, we argue and demonstrate that, for

anomaly detection, incorporating perspective information into the network is not enough;

one must also exploit it when synthesizing training data.
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horizon

1 m

Figure 6.2: Perspective map.Left: A 1-meter length overlaid at different image heights on an image from
the Lost&Found dataset. Right: The corresponding perspective map.

6.1.2 Fusing RGB and Depth for Road-Obstacle Detection

When depth information is available, from stereo camera disparity or RGB-D sensors, it can

be fused with the RGB appearance to improve obstacle detection. For example, [RGP+17]

combines semantic segmentation with stereo-based detections; MergeNet [GJGK18] extracts

complementary features from RGB-D; RFNet [SYH+20]’s two-stream backbone extracts RGB

and depth features and uses them to output joint segmentation of known classes and unusual

obstacles. Depth (or disparity) contains important geometric cues about the obstacles, which

protrude from the road plane, and the above-mentioned methods exploit these cues to detect

the obstacles. By contrast, we do not use stereo images and the associated precise scene

geometry; our perspective map is generated using a flat-road assumption and contains no

information about the obstacles. Our architecture uses perspective as context for analyzing

obstacle appearance, by taking it as an extra feature channel without any processing.

6.2 Approach

Our approach relies on a perspective map that captures scale change of objects on the road

plane. Therefore, we also refer to it as a scale map. In this section, we first describe its

construction and then how we use it both to control training data synthesis and as an input to

our detection network.

6.2.1 Computing the Perspective Map

A perspective map is a scalar field whose value at a given pixel denotes the width in pixels of a

hypothetical meter-wide object placed at that point on the road. Figure 6.2 depicts one. We

compute it from the camera calibration parameters, which are known in a self-driving setup

because a vehicle’s camera can be calibrated during its production. The camera parameters

are f , the camera’s focal length in pixels, H , its elevation above the ground in meters, and θ,

its pitch angle.
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y

z optical axis

camera

h0

Figure 6.3: Building the perspective map. Geometry of a front-facing camera viewing a planar road
surface. Here, the y coordinate of the orange point is negative because it is below the optical axis.

We assume the road to be planar, which, locally, is a good approximation in the majority of real

driving scenarios. Let us consider a 3D road point B = [x, y, z] in camera coordinates, which

projects onto [u, v] in the image space, as shown in Figure 6.3. For simplicity, we denote by

[0,0] the principal point that lies at the center of the image, which is also known in a calibrated

camera. Assuming the road to be planar, the pinhole camera model dictates that

v = f
y

z
. (6.1)

As B lies on the road plane, which is inclined by an angle θ w.r.t. the camera’s optical axis, we

can write

y = z tan(θ)−h0 , (6.2)

where h0 = H
cosθ , with H being the perpendicular distance from the camera to the road. Solving

for z by replacing y in Eq. 6.1 by its definition in Eq. 6.2 yields

z([u, v]) = h0
f

f tan(θ)− v
, (6.3)

where we indicate that z depends on the pixel location [u, v] by z([u, v]). The visible scale is

inversely proportional to the z coordinate in the camera frame, and so the scale value P ([u, v])

in the perspective map P is equal to

P ([u, v]) = f
1

z([u, v])
= cos(θ)

H
( f tan(θ)− v) . (6.4)

Note that this requires the pitch angle θ of the camera optical axis with respect to the road

surface to be known. When the car is stable on its four wheels, it only depends on how the

camera is mounted, which is known. If the pitch changes while driving, an online camera

calibration module, e.g., one that relies on vanishing points [CDI14], could be used to update

the value of θ. We also assume that various distortions have been corrected so that a pinhole

camera model applies.
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Figure 6.4: Left: Anchor points distributed along the road surface. We place obstacles at a random subset
of anchor points. Right: Frame with injected obstacles.

6.2.2 Perspective-Aware Synthetic Object Injection

Collecting a training database of all items that could potentially be left on the road and pose

a collision threat is impractical. Effective obstacle detection can thus only be achieved via

handling previously unseen objects. To this end, our approach from Chapter 5 or existing

methods [VŠA+21, BKOS19] generate synthetic training frames by injecting objects into the

road scenes. However, they use random object sizes and locations. Instead, we leverage the

perspective map so that the inserted object sizes are consistent with their locations on the

road plane.

Placement

We generate a rectangular grid on the road plane, with grid lines being 3.5 meters apart in the

direction along the road and 1 meter apart in the width direction. Once this grid is projected

onto the image, each grid intersection yields an anchor point offset from the grid point by a

random vector whose coordinates are drawn from a zero-centered normal distribution with

standard deviation of 0.5 meter. The anchor points are shown in Figure 6.4. We then place

obstacles at a random subset of these anchor points.

Size

We extract object instances – vehicles, pedestrians, traffic signs and lights – from the Cityscapes

dataset [COR+16]. These yield image cut-outs of diverse shapes, ranging from thin poles to

wide vehicles. We take an object’s overall pixel size pixobj to be the average of three values:

the square root of its pixel area, and its bounding box width and height. We aim to generate

synthetic objects within a range of physical sizes [phmin,phmax] in meters. To simulate the

corresponding visible pixel size of an object seen at an image point [u, v], we multiply the

physical range by the scale map value at [u, v]: pix(min,max)([u, v]) = ph(min,max)P ([u, v]). Then,

we randomly select an object from the training set whose size satisfies pixmin([u, v]) ≤ pixobj ≤
pixmax([u, v]) and paste it at [u, v]. Since we use known classes, such as humans or cars,

to later detect unknown classes, such as bottles or tires, we ignore the original size of the

known items, and instead choose the object size as a hyper-parameter using the validation-set.
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Perspective Aware Uniform (Chapter 5)

Figure 6.5: Distribution of injected object sizes. Left: Our Perspective Aware Strategy selects object sizes
based on the perspective map to ensure that objects look smaller when they are further away. There
are clusters because we inject objects at discrete grid points on the road-plane projected to the image.
Right: The Uniform Strategy chooses random objects from the whole instance database.

Figure 6.4-right depicts the resulting object insertion. Note that this does not involve scaling

the original cut-out objects. Instead, we simply select objects of the appropriate size, thus

avoiding scaling artifacts. In Figure 6.5, we visualize the resulting relationship between object

size and perspective map for both our perspective-aware approach and a uniform injection

one. We will compare these two approaches quantitatively.

6.2.3 Perspective-Aware Architecture

To distinguish obstacle pixels from the road surface ones, we rely on a U-Net type network

architecture, which we train using negative binary cross-entropy loss of pixel classification be-

tween the model’s prediction and the ground truth segmentation map. The input image is first

processed by a ResNeXt101 [XGD+17] feature extractor, pre-trained on ImageNet [DDS+09]

and frozen at training time. We extract four levels of features with increasing receptive fields.

In each block of our up-convolution pyramid, we concatenate the perspective map to the

backbone features, and we use it again before the transposed convolution, as depicted in

Figure 6.6. With such an insertion, the scale information presented to each level of the pyramid

can then influence the interpretation of the backbone features at different receptive fields

and hence locally adjust the effective receptive field of the detector. In practice, this allows

the network to distinguish between distant obstacles and small but harmless irregularities

such as wet patches, leaves, or tile edges, which ought to be ignored. As evidenced below,

our perspective-aware architecture shows its full advantage when used together with the

perspective-aware object injection.

In our experiments, the perspective map is scaled by 1
400 before being passed to the network,

following the normalization applied in [LLSF19], to bring it to an approximate value range

between 0 and 1, which improves convergence.
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Figure 6.6: Perspective-aware architecture. The perspective map is injected into the decoding blocks at
different resolutions. In each block it is appended twice; first to the backbone features, and second to
the intermediate activations preceding the transpose convolution for upsampling.

6.3 Experiments

In this section, we present the implementation details, datasets, metrics, and compare our

method with the state-of-the-art ones.

6.3.1 Datasets

We train our network on Cityscapes. During training, we sample patches of 768 × 384 pixels,

with random horizontal flipping. We also perform noise augmentation so that the network

generalizes to road surfaces rougher than those found in Cityscapes. We follow the evaluation

protocol introduced in Chapter 3 and test our network using the following two datasets.

Lost & Found - Test No Known

Lost & Found [PRG+16] is an established obstacle dataset captured by placing objects on

the road and taking images from an approaching vehicle. The No Known variant excludes

objects present in the Cityscapes training set, such as pedestrians or bicycles, to focus on

the methods’ ability to generalize to previously unseen obstacles. It contains 1043 frames
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Road Obstacles 21 Lost&Found - Test No Known
requires Component-level Pixel-level Component-level Pixel-level

Method OOD F1 ↑ sIoU ↑ PPV ↑ AuPRC ↑ F1 ↑ sIoU ↑ PPV ↑ AuPRC ↑
Ours No 67.1 ± 1.7 65.2 ± 0.6 60.2 ± 2.7 75.2 ± 0.1 68.6 ± 0.4 49.8 ± 0.6 87.6 ± 1.2 87.4 ± 0.4
DenseHybrid [GBŠ22] Yes 50.7 45.7 50.1 87.1 52.3 46.9 52.1 78.7
Maximized Entropy [CRG21b] Yes 48.5 47.9 62.6 85.1 49.9 45.9 63.1 77.9
SynBoost [DBBSC21] Yes 37.6 44.3 41.8 71.3 48.7 36.8 72.3 81.7
Road Inpainting (Chapter 5) No 36.0 57.6 39.5 54.1 52.3 49.2 60.7 82.9
JSRNet [VŠA+21] No 11.0 18.6 24.5 28.1 36.0 34.3 45.9 74.2
ODIN [LLS18] No 9.4 21.6 18.5 22.1 34.5 39.8 49.3 52.9
Image Resynthesis (Chapter 4) No 8.4 16.6 20.5 37.7 19.2 27.2 30.7 57.1
Maximum Softmax [HG17] No 6.3 19.7 15.9 15.7 10.3 14.2 62.2 30.1
Void Classifier [BSN+19] Yes 5.4 6.3 20.3 10.4 1.9 1.8 35.1 4.8
Mahalanobis [LLLS18b] No 4.7 13.5 21.8 20.9 22.1 33.8 31.7 55.0
Embedding Density [BSN+19] No 2.3 35.6 2.9 0.8 27.5 37.8 35.2 61.7
Ensemble [LPB17] No 1.3 8.6 4.7 1.1 2.7 6.7 7.6 2.9
MC Dropout [MG18b] No 1.0 5.5 5.8 4.9 13.0 17.4 34.7 36.8

Table 6.1: Obstacle detection scores on RoadObstacle21 and Lost&Found datasets. Both component-
level and pixel-level metrics are reported on each dataset. The primary metric is average component
detection F1 score. Requires OOD column indicates if a model is using out of distribution data by
training on additional datasets. Other methods train only on Cityscapes dataset.

Road Obstacles 21 Lost&Found - Test No Known

Architecture Object Injection F1 ↑ AuPRC ↑ F1 ↑ AuPRC ↑
1 Ours (perspective-aware) Ours (perspective-aware) 67.1 ± 1.7 75.2 ± 0.1 68.6 ± 0.4 87.4 ± 0.4
2 No perspective channel Ours (perspective-aware) 52.5 ± 6.7 70.6 ± 1.0 63.5 ± 3.9 86.0 ± 0.8
3 P-map backbone branch [LLSF19] Ours (perspective-aware) 65.0 ± 2.2 74.6 ± 1.2 63.5 ± 2.4 85.5 ± 0.7
4 P-map along RGB [LSF19] Ours (perspective-aware) 58.2 ± 4.1 64.6 ± 2.8 66.2 ± 3.5 73.9 ± 8.3
5 XY channels Ours (perspective-aware) 54.8 ± 4.2 71.1 ± 2.3 63.8 ± 0.8 86.1 ± 0.1
6 Image warping [PAK19, YLW+20] Ours (perspective-aware) 45.2 ± 0.5 65.5 ± 0.7 20.3 ± 0.6 43.5 ± 1.3
7 Ours (perspective-aware) Uniform (Chapter 5) 56.1 ± 1.7 77.1 ± 0.9 52.4 ± 2.6 82.1 ± 3.3
8 No perspective channel Uniform (Chapter 5) 43.7 ± 6.6 73.3 ± 1.7 48.5 ± 6.4 74.5 ± 10.2
9 P-map backbone branch [LLSF19] Uniform (Chapter 5) 53.3 ± 4.3 76.8 ± 0.5 55.2 ± 1.5 84.3 ± 0.2
10 P-map along RGB [LSF19] Uniform (Chapter 5) 50.8 ± 1.6 69.0 ± 2.4 50.6 ± 5.8 79.7 ± 1.5
11 XY channels Uniform (Chapter 5) 51.9 ± 1.4 75.7 ± 0.5 53.7 ± 2.1 78.7 ± 1.7

Table 6.2: Ablation study. We compare different variants of utilizing the perspective map and show their impact
while using either uniform or our perspective-aware object injection.

with 1709 occurrences of 7 unique lost cargo items placed in 12 parking lot and street scenes.

The camera calibration parameters required to compute the perspective map are part of the

dataset.

RoadObstacle21

Like Lost & Found, it contains photos of obstacles placed on roads, but it expands the number

of unique objects and the diversity of the scenes to include more road textures and weather

conditions. As previously discussed in Chapter 3, it comprises 327 frames containing 388

occurrences of 31 unique objects placed in 8 scenes. There are no camera calibration pa-

rameters. We therefore estimated them as follows. We assume f = 2265pix, that is, the same

focal length as in the Cityscapes training set, and H = 1.5m because the dataset was captured

using handheld cameras. We estimate the camera’s pitch angle by approximating the horizon

level - the image-space position of the road plane’s vanishing line. In the considered datasets,

the camera has no side-to-side roll, so we assume the line to be horizontal. The sides of

the road and not regular enough to fit lines to them, but with the images depicting forward

views along the roads, the horizon is slightly above the end of the visible road. Hence, we
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Object size [m] Road Obstacles 21 - Validation Lost&Found - Train

phmin phmax F1 ↑ AuPRC ↑ F1 ↑ AuPRC ↑
0.1 - 0.3 59.3 ± 3.4 80.2 ± 1.6 66.1 ± 1.1 77.5 ± 0.5

0.25 - 0.55 65.1 ± 3.0 95.7 ± 0.7 62.5 ± 0.3 89.4 ± 0.8
0.5 - 0.9 65.6 ± 1.4 96.6 ± 0.4 57.5 ± 0.1 87.6 ± 0.4

0.75 - 1.25 49.5 ± 1.7 94.2 ± 0.1 50.3 ± 2.4 86.8 ± 1.4
all sizes (Chapter 5) 56.1 ± 1.7 77.1 ± 0.9 52.4 ± 2.6 82.1 ± 3.3

Table 6.3: Effect of the size of the injected training objects.

first segmented the road using the semantic segmentation PSP network [ZSQ+17], and then

took the approximate horizon level to be 16 pixels above its uppermost edge. Given vhoriz,

the number of pixels between the image midpoint and the horizon level, the pitch angle is

retrieved as

θ = tan−1(
vhoriz

f
) .

Such an estimate is obviously very rough, but it is sufficient to inform our model of the scale

changes on the road, as we will empirically show when comparing to other variants of our

model that do not leverage perspective information.

6.3.2 Metrics

Our evaluation protocol introduced in Chapter 3 measures the methods’ performance at

both pixel and component levels. The pixel classification task involves distinguishing pixels

belonging to obstacles from those of the road surface. It is primarily evaluated with the

area under the precision-recall curve (AuPRC). However, pixel metrics give more importance

to nearby and big obstacles than to distant or small ones, because of the image area they

occupy. For the purpose of driving safety, it thus is more relevant to reason in terms of obstacle

instances and their detection regardless of distance and image size. This is addressed by

component-level metrics such as F1, sIoU and PPV.

6.3.3 Quantitative Evaluation

In Table 6.1, we compare our approach to the state-of-the-art methods featured in the Segment

Me benchmark. The requires OOD (out of distribution) column indicates whether the method

was trained using additional data beyond the commonly-used Cityscapes training set, for

example by using objects from COCO [LMB+14] as obstacles. Our method outperforms the

baselines in terms of instance metrics, and only performs worse than [CRG21b] and [GBŠ22]

on two metrics, which leverages OOD, thereby demonstrating the good generalization of our

approach without resorting to extra training data.
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6.3.4 Ablation study

Impact of Perspective

In Table 6.2, we report the results of an ablation study in which we altered either our architec-

ture to use the perspective map in different ways or the perspective-aware synthetic object

insertion strategy.

In particular, we consider the following variants:

• Ours (perspective-aware): Our full architecture using the perspective map as described

in Section 6.2.3.

• No perspective channel : This variant omits the perspective map from our complete

architecture.

• P-map backbone branch : We provide the perspective map as input to the network but

process it in a feature extractor separately from the RGB feature extractor, as in the

architecture of [LLSF19].

• P-map along RGB: We provide the perspective map along with RGB as input to the

network, following [LSF19]. In this variant, we unfreeze the backbone feature extractor

weights during training to let the network train on the perspective inputs.

• XY channels : We provide the image coordinates as two additional channels instead of

the perspective map, applying the idea from [LBH18, CKC20].

• Image warping: We follow the idea of [PAK19, YLW+20] and use the perspective map to

transform the image into a top-down view of the road.

For synthetic object insertion, we consider two variants; one with perspective-aware object

injection as described in Section 6.2.2, and another with uniform object insertion that injects

objects uniformly from the full object pool, without restricting it to the objects whose size are

inversely proportional to the location where they will be placed. In this variant, the obstacles

are placed uniformly in image space rather than on a grid in the road plane. This strategy is

identical to the one used in Chapter 5.

In each setup we provide the mean and standard deviations over three training runs. As

observed in Table 6.2, using our perspective-aware objection injection together with our

perspective-aware network architecture yields the best performance (row 1), and dropping

each one of them reduces the accuracy (rows 2, 7, 8). It is worth noting that using the P-

map backbone branch architecture with our perspective-aware object insertion (row 3) also

yields close, yet still inferior results, which indicates that, while there can be other ways of

using the perspective map in the architecture, the perspective-aware object insertion plays

a key role. The No perspective channel variant shows a noticeable drop (row 7), indicating
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Figure 6.7: Left, center: Perspective information guides our detector to ignore nearby small irregularities
on the road surface, while the variants without perspective map and perspective-aware object insertion
exhibit false positives in that area. The nearby false-positives and distant obstacles are of similar pixel
sizes, so the perspective map allows differentiating between them. Right: Our method finds both
obstacle instances despite imperfect segmentation. While Max entropy [CRG21b] achieves a better
pixel-classification score by perfectly segmenting the bigger object, it misses the smaller object.

that the network benefits from exploiting the perspective maps. While using the XY image

coordinates (row 5) yields reasonable results in Lost&Found, whose camera angle matches

that of the training set, its performance drops when faced with the different camera setup of

Road Obstacles. The P-map along RGB and Image warping variants also show a significant

drop (rows 4, 6), which indicates that the way the perspective map is used plays a role in

the network accuracy. In particular, the performance of Image warping, where the network

operates on the warped image, is much lower.

The results show that training with a uniform injection strategy (rows 7-11) yields a much

lower F1 score than with our perspective-aware approach (rows 1-5). However, the pixel

classification AuPRC values of the uniform strategy tend to be higher. We observe that the

networks trained with the uniform object insertion technique often better segment the large

objects (predicting more pixels on the object), but miss small objects and introduce small

false positive instances. By contrast, the higher F1 scores obtained with our perspective-aware

injection approach evidence the resulting networks’ reliability in detecting obstacles more

accurately and avoiding false-positives, which is more critical for self-driving cars.

We show qualitative examples in Figure 6.7. The first two columns evidence how the perspec-

tive map helps the model to distinguish distant obstacles from nearby harmless details, which

can span similar pixel sizes in the image. In the rightmost column, we show a difficult case

74



6.3 Experiments

Image Our architecture Uniform [LHFS20a] Max entropy [CRG21a]

Figure 6.8: Comparison of results: our method is capable of finding obstacles missed by other variants.

where Max-entropy [CRG21b] obtains higher AuPRC but lower F1 than us. While such models

can segment more pixels of the found objects, they entirely miss some of the objects on the

road. In Figure 6.8 we show examples where our network is capable of finding small distant

obstacles missed by other variants. In Figure 6.9 we depict our method using perspective

information to avoid false-positives near the ego-vehicle. Overall, our network detects the

obstacles more reliably, and learns to ignore small irregular regions.

This effect is quantified in Figure 6.10 where we plot the number of false-positives and true-

positives as a function of the distance to the camera, estimated as the inverse of the perspective

map. Using our training set and architecture strongly decreases the number of nearby false-

positives compared to a system without those contributions, and slightly increases the number

of correctly detected obstacles.

Object size

In Table 6.3, we show how the chosen range Obj[min,max] for synthetically injected objects

affects detection performance. To avoid overfitting to the benchmarks, we performed this

study using public validation sets, Road Obstacles 21 - Validation and Lost & Found - Train,

featuring different obstacles and scenes than the test sets.
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Figure 6.9: Comparison of results: our method avoids false-positives near the ego-vehicle thanks to
perspective information.
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Figure 6.10: Number of false positives (left) and true positives (right) as a function of the distance from
the camera for the Obstacle Track - test dataset. Our training set and architecture (Ours) yield much
fewer nearby false-positives and slightly more true-positives than a variant without the perspective
map (No perspective channel, p-synth) or one trained with the uniformly-injected synthetic obstacles
(No perspective channel, uniform). FP and TP are calculated for an IOU threshold of 0.5.
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Figure 6.11: Detector network architecture.

As described in Section 6.2.2, the minimum and maximum sizes in meters are multiplied by

the local perspective-map value at the site of injection, to determine how big the injected

object can be in pixels. We then select at random an object fitting within this pixel range. The

results in the table indicate that there is no size range that ideally fits all the circumstances;

the small 0.1-0.3 meter range is best for the Lost & Found - Train set, while the 0.5-0.9 m

range prevails in Road Obstacles 21 - Validation, presumably due to these ranges matching

the typical object sizes in those datasets. We choose the intermediate 0.25-0.55 meter range,

behaves well in both datasets. One might conclude that including objects of all sizes would be

best for generalization, but that would prevent expressing the perspective-size relationship, as

shown in the bottom row. Indeed, such a strategy, used in Chapter 5, yields lower performance

than our narrower ranges.

6.3.5 Implementation details

In this section, we present details on the detector network architecture and training.
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Detector Network Architecture

The architecture is shown in Figure 6.11. We use the pretrained ResNeXt101 network of [XGD+17]

as backbone feature extractor. We take the outputs of relu, layer1, layer2, layer3 layers

of the PyTorch implementation [PGM+19] of ResNeXt.

Training process

The training is done using 768×384 crops of the road area. We add noise to the images to adapt

to rough road surfaces not present in Cityscapes, the noise augmentation follows [LHFS20a].

We perform 50 epochs of training, each iterating over all the training frames. For the synthetic

dataset we generate one frame per source Cityscapes background, resulting in 2975 training

and 500 validation frames. We pre-define the crops and epoch ordering, so that all variants are

trained with the same sequence of samples.

We use a binary cross entropy loss penalizing the difference in pixel classification between the

prediction and ground-truth. We use the Adam [KB15] optimizer with an initial learning rate

to 10−4. If the validation loss does not decrease for 5 consecutive epochs, the learning rate is

reduced 10 times.

Inference Speed

Our network achieves inference at 12.1 frames of size 1920×1080 per second on an Nvidia

V100 GPU; it can be further sped up by network distillation, quantization or TensorRT.

6.4 Conclusion

We have shown that perspective-aware obstacle injection to generate training data, together

with incorporating perspective information in the decoding stages of a network outperforms

the state-of-the-art road-obstacle detection methods. Our results indicate that the perspective

information can guide the model to reduce false positives for small nearby irregularties while

still detecting small and far-away objects.
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7 Attention Entropy: Generalizing to
New Obstacles in New Domains

Figure 7.1: The attention-entropy extracted from a SETR [ZLZ+21] transformer trained on the urban driving
Cityscapes [COR+16] dataset lets us segment novel objects in novel scenes: Unusual road obstacles (Chapter 3),
maritime hazards [BMPK19], aircraft [FA20], and lunar rocks [PJI19].

In the previous chapters we have utilized specialized synthetic training to allow our detectors

to learn to find road anomalies and obstacles without seeing them previously. Here we try

to find road obstacles without extra training using only the semantic segmentation network

trained on Cityscapes. We find success with visual transformers and discover their impressive

capacity to generalize to completely new objects and domains.

In the past few years, vision transformers have become increasingly prominent in the com-

munity. In particular, they nowadays tend to outperform their convolutional counterparts.

Initially, such vision transformer models were developed for image recognition. However,

they now tackle many other tasks such as semantic segmentation [ZLZ+21, XWY+21, SGLS21,

CSK21], monocular depth estimation [CZX21, ZZP+22].

Transformers have demonstrated valuable properties when studied more closely. For example,

transformers trained for image recognition can be employed to segment the main object
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in the input image [SGLS21]. Similarly, several studies have evidenced that self-supervised

vision transformers can segment the foreground objects using the attention of the class-

token [CTM+21] or by partitioning a graph of inter-patch affinity [SPV+21, WSY+22]. Alto-

gether, these works highlight an interesting phenomenon: Models that were not trained for

segmentation encode information relevant to this task.

In this chapter, by contrast, we study the behavior of vision transformers that were explicitly

trained for semantic segmentation in a supervised fashion. In this context, one might expect

that, because they were trained to segment a specific set of categories, typically quite small for

most segmentation datasets, these models have learned to discard information about other

categories, essentially encompassing them in the background class. Our analyses show that

this is not the case; vision transformers trained to segment a small set of categories contain

information that can be leveraged to segment new object classes that were not seen during

training. Furthermore, we show that this behavior generalizes not only to new objects but also

to new domains; for example, as shown in Figure 7.1, a vision transformer trained to segment

traffic scenes contains information that can be exploited to segment boats in maritime scenes,

aircraft seen from aerial images, or even moon rocks in lunar landscapes.

To achieve this, we study in detail the intermediate spatial attention maps of segmentation

transformers. We then extract the Shannon entropy of spatial attentions and show that it can

be used for accurate segmentation of unknown objects in unknown contexts. Specifically,

the spatial concentration of attention is well suited to finding multiple small to moderate-

size objects, which is valuable in tasks such as obstacle avoidance and not addressed by

approaches designed for large foreground items [CTM+21, SPV+21, WSY+22]. We demonstrate

the effectiveness of our method quantitatively on our benchmark from Chapter 3, using a

model trained on the known categories of the Cityscapes dataset. We further show that the

same model, without any further training, can be leveraged to accurately segment unknown

objects in maritime scenes [BMPK19], bird’s eye views of airports [FA20], and images of lunar

scenes [PJI19].

Our contributions can be summarized as follows:

• We study the behavior of vision transformers trained in a supervised fashion for semantic

segmentation when faced with new objects and new domains.

• We extract the entropy of spatial attentions and show that it can be used to segment

unknown objects of small to moderate size in unknown context.

• We evidence the robustness of our approach by applying it to datasets with varying

degrees of domain shifts.

• We demonstrate the generality of our analysis using two semantic segmentation trans-

formers [ZLZ+21, XWY+21].
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Attention map of an obstacle patch

Attention map of a road patchEntropy of attention distributions

Figure 7.2: Entropy heatmaps. For each image patch, we compute the Shannon entropy of outgoing attentions.
The two images in the right column depict the spatial attention at two different image locations. The bottom left
images shows the Shannon entropy. Small objects receive concentrated attention and thus low corresponding
entropy. An interactive tool for attention visualization is included in the supplementary material.

7.1 From Attention to Segmentation

We first remind the reader of the attention mechanism that is at the heart of all transformer

architectures. We then show how to use the attention matrices to create entropy heatmaps

that highlight small to moderate-size objects. Finally, we discuss our implementation.

7.1.1 Attention Mechanism in Vision Transformers

The Vision Transformer (ViT) [DBK+20] is one of the first successful applications of the trans-

former self-attention mechanism to image inputs. With enough training data, it can be more

powerful than a traditional convolutional network for image classification. Furthermore, it

serves as a backbone feature extractor for the Segmentation Transformer (SETR) [ZLZ+21],

providing improvement in semantic segmentation of road scenes over comparable convo-

lutional backbones. We base the following description on the popular ViT architecture, but

will show at the end of the section how it can be implemented for the differently structured

Segformer [XWY+21].
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ViT first decomposes the image in a checkerboard fashion into N ×N image patches, each of

size 16×16 pixels, calculates their initial encodings and adds a learned spatial embedding,

which will allow nearby patches to attend strongly to each other. The patches serve as tokens

in the transformer: The attention mechanism connects all the patches to each other.

The backbone consists of L multi-head self-attention (MSA) blocks. Each attention block, or

layer, l receives as input a triplet (query Q, key K , value V ) computed from an input feature

map Z l−1 ∈RN 2×C , where C denotes the number of feature channels. The triplet is computed

from Z l−1 as

Q = Z l−1WQ , K = Z l−1WK , V = Z l−1WV , (7.1)

where WQ ,WK ,WV ∈ RC×d are learnable weight matrices and d ∈ N a parameter which we

specify below. The attention Al , which is the matrix that concerns us most in this paper, is

taken to be

Al (Z l−1) = softmax(Q ·K T /
p

d) . (7.2)

The softmax acts row-wise, so that the outgoing attention of each token sums up to 1. In

the multi-head scenario, the attention is in fact computed multiple times. This yields m

independent attention matrices Al
i , i = 1, . . . ,m. While we will later focus on the attention

matrices, for the sake of completeness, we derive the corresponding self-attention SA. It is

expressed as

SAl (Z l−1) = Al (Z l−1) ·V . (7.3)

Again, accounting for the multiple heads, this results in m independent self-attention matrices

SAl
i , i = 1, . . . ,m, that are concatenated

SAl
1:m(Z l−1) = [SAl

1(Z l−1), . . . ,SAl
m(Z l−1)] (7.4)

and then multiplied with another weight matrix WO ∈Rmd×C . Combined with a skip connec-

tion, this gives

MSAl (Z l−1) = SAl
1:m(Z l−1)+SAl

1:m(Z l−1)WO , (7.5)

and, as in [ZLZ+21], we choose d = C /m. Finally, MSAl (Z l−1) is again input to a multilayer

perceptron (MLP) block with a skip connection. This yields

Z l = MSAl (Z l−1)+MLP(MSAl (Z l−1)) ∈RN 2×C . (7.6)

Properties of the Attention Tensors

As described above, ViT [DBK+20] computes attention matrices Al
i (Z l−1) for layers l = 1, . . . ,L

and for multiple heads i = 1, . . . ,m. Due to the softmax activation and the decomposition of

the image into patches, these attentions can be viewed as probability distributions over the

N ×N image patches plus the extra class-token, which we discard due to its lack of a geometric

interpretation. For all j , j ′ ∈ {1, . . . , N 2} in layer l , the element Al
i (Z l−1) j , j ′ of the attention

matrix reflects how much attention patch j pays to patch j ′.
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These elements can therefore be visualized as heatmaps over the N ×N image patches, as

shown in Figure 7.2, where we visualize the attention averaged over the multiple heads

Āl (Z l−1) j , j ′ = 1

m

m∑
i=1

Al
i (Z l−1) j , j ′ . (7.7)

Attention is driven by visual similarity and, thanks to the spatial embedding, proximity. We

observe that the attention originating from a visually distinct, moderately sized object remains

concentrated sharply within the patches j overlapping to a greater extent with that object. By

contrast, for larger areas of visual coherence, such as the road in a traffic scene, the attention

is more dispersed over the entire region.

7.1.2 From Attention to Entropy Heatmaps

We quantify this behavior by estimating the Spatial Shannon Entropy

E l (Z l−1) j =−
N 2∑

j ′=1
Āl (Z l−1) j , j ′ · log(Āl (Z l−1) j , j ′) (7.8)

for each image patch j = 1, . . . , N 2. The overall spatial entropy El = [E l (Z l−1) j ] j∈{1,...,N 2} for

layer l can be viewed as an aggregated heatmap for layer l that can be used to segment objects

of moderate size, as discussed below.

Layer Selection and Averaging

Each self-attention layer yields its own entropy heatmap El . Inspecting the entropy heatmaps

reveals that objects, such as the obstacles in Figure 7.2, usually have low entropy, due to

their concentrated attention. Some isolated background patches, such as parts of the road

in Figure 7.2, nonetheless exhibit lower or higher entropy than their neighbors. Averaging

entropy across layers tends to suppress these artifacts.

The entropy segments the objects in roughly the first half of the layers of the ViT backbone.

In our experiments, we have observed that the attention maps of those layers are driven

primarily by spatial closeness and visual similarity. The second half of these layers, further

removed from the initial spatial embedding, appear to lose this property. Hence the object

segmentation capability can be further improved by selecting a subset L ⊆ {1, . . . , l } of layer

entropy heatmaps and averaging, i.e. , computing

Ē = 1

L

∑
l∈L

El . (7.9)

We study a different strategies to select layers L in Section 7.2.3 and provide a detailed

visualization of per-layer attentions and entropies in the supplementary material.
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Segmentation of Entropy Heatmaps

The averaged entropy is used as an object detection heatmap with minimal postprocessing.

First, we negate the entropy since objects exhibit lower entropy than their surroundings. Then

we linearly interpolate the entropy signal from the original resolution of N ×N to a per pixel

heatmap in the image resolution and apply a thresholding to it. This corresponds to

s(u, v) = δ(Link∈Neighbour(u,v)(−Ēk )) , (7.10)

where s(u, v) is the binary segmentation value for pixel location (u, v), δ is a threshold function

for binarization, Lin is the linear interpolation applied to the neighbouring elements k that

contribute to pixel (u, v). The chosen threshold for δ, which is applied to the segmentation

heatmap, makes a trade-off between precision and recall. In our quantitative evaluations, we

report the AuPRC over all possible thresholds following the benchmark evaluation protocol of

Chapter 3.

7.1.3 Interactive attention visualization

Please view the interactive attention visualization at https://liskr.net/attentropy. Hover

the cursor over the input image to choose the source patch j . The heatmap will display the

attention values from the chosen patch j to each other patch j ′, that is the value Āl
j , j ′ . The

attention values are extracted from the ViT [DBK+20] backbone of the SETR [ZLZ+21] network,

and have been truncated to the [0,0.005] range for visual readability.

• By selecting a source patch within an object, we can observe how its attention is con-

centrated. In contrast, the road and background areas exhibit diffuse attention. This

coincides with lower entropy of the attention map.

• Choose the layer shown using left and right arrow keys. We can observe how the earlier

layers’ attention is spatially localized, and therefore useful for small object segmentation.

The later layers show less localized attention and so we exclude them from the entropy

average.

7.1.4 Implementation

In our experiments, we evaluate the semantic segmentation transformers SETR [ZLZ+21]

and Segformer [XWY+21] implemented in the MMSegmentation framework [Con20]. Both

have been trained for semantic segmentation with the Cityscapes [COR+16] dataset. As

both architectures are designed to operate on square images, sliding window inference is

automatically performed on our rectangular images.

In the case of SETR [ZLZ+21], we extract the attention maps from its ViT backbone. We discard

the class token leaving the patch-to-patch attention and calculate the Shannon entropy for
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each patch. The entropy from each layer has a resolution of 48×48, and we perform linear

interpolation to upscale it to the input image resolution. We use the PUP variant of the SETR

decoder head as it has the best reported segmentation performance.

The Segformer [XWY+21] uses a pyramid of self-attention operations with the base of the

pyramid comprising 2562 patches. We use the MIT-B3 variant as a compromise between

performance and computation cost. It would not be feasible to calculate attention between

each pair of patches. Hence it performs a linear operation reducing r -times the number of

rows of K and V , where r is a chosen reduction ratio. As a consequence, the attention matrices

Al
i have only N 2

r rows instead of N 2. This essentially means the attention map’s resolution is

reduced. Nevertheless, we can calculate entropy over each row of A
l
, upscale the heatmaps to

a common shape and average them. The number of tokens, and thus the resolution of the

entropy maps, varies across layers from 256×256 to 32×32. We linearly interpolate all of them

to 256×256 before averaging, then resize the average heatmap to full image resolution.

7.2 Experiments

In this section we demonstrate that the attention layers trained in a supervised fashion to

segment specific categories carry the required information to segment new objects of small to

moderate size under varying degrees of domain shift and finally when changing the domain

completely. We do so by evaluating our method and several baselines, including the self-

supervised DINO, on a variety of datasets. We show that spatial attention information is

much more powerful than other widely used training-free strategies, and that DINO’s spatial

attention behaves differently from that of segmentation transformers trained in a supervised

fashion.

7.2.1 Datasets

In our study, we use segmentation transformers trained on Cityscapes [COR+16] due to their

availability and because there exist multiple datasets containing obstacles that are semantically

different from the objects present in Cityscapes. We then take these pre-trained transformer

models and evaluate them on the following datasets to detect new objects.

RoadObstacle21 and Lost and Found - test NoKnown. For road-obstacle detection we follow

the evaluation protocol described in Chapter 3.

MaSTr1325 [BMPK19] (Maritime) contains images of maritime scenes viewed from a small

unmanned surface vessel with semantic segmentation labels for water, sky and obstacles.

Artificial Lunar Landscape [PJI19] (Lunar) comprises synthetic lunar scenes where rocks act

as obstacles.

Airbus Aircraft Segmentation [FA20] (Aircraft) features satellite images of airports.
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Our networks are not trained on these datasets. Instead we apply SETR and Segformer with

publicly available Cityscapes checkpoints. On the latter 3 datasets, we show the model can de-

tect unseen objects in completely new domains compared to the trained dataset – Cityscapes.

7.2.2 Gradually Changing the Domain

In this section we start by evaluating road-segmentation models on unknown obstacles in

similar scenes and then gradually make a domain shift by first evaluating on challenging and

un-observed road environments and later on completely different domains such as maritime,

lunar, and aerial scenes.

No Domain Shift

We start by examining the obstacle segmentation performance and report results on LostAnd-

Found [PRG+16]. While the object are unseen by models the domain is similar to Cityscapes,

comprising of road scenes with no major environment differences. We report results in the left

section of Table 7.1. We follow the evaluation protocol and metrics introduced in Chapter 3.

The upper section of the table contains benchmark results of methods that do not train

specifically for the detection of road obstacles. Monte Carlo (MC) dropout and ensembles are

approximations to Bayesian inference, relying on multiple inferences. All the other methods

in that section, as well as ours, are purely based on post processing of either the network’s

output or embedded features. In particular our method applied to the SETR model clearly

outperforms all other baselines in the upper section w.r.t. both pixel-level and segment-level

metrics.

It can be observed that the Segformer [XWY+21] variant performs slightly worse. Possible

causes for the reduced performance are the sequence reduction applied to its attention layers,

resulting in coarse attention maps, along with the fact that Segformer does not use the standard

positional encoding found in most visual transformers. With the positional codes influencing

the query and key vectors, the tokens can easily learn to focus their attention on neighbors. In

lieu of such encoding, Segformer relies on 3×3 convolutions, interspersed with the attention

layers, to leak positional information from zero-padding on the image edges. Therefore,

attention concentrations on very small objects may be less likely to emerge. Illustrative

examples of the segmentation performance of our method are provided in Figure 7.3-left.

We have also observed that small obstacles close to the horizon can pose problem to our

method. Typically, the attention tends to concentrate in that region of the image as the street

narrows in. We expect that digging deeper into the attention structure, as well as utilizing an

auxiliary model supplied with our attention masks could yield a strongly performing overall

system.
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Lost and Found - test no known Road Obstacles 21 - test
Pixel-level Segment-level Pixel-level Segment-level

AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑

No
training

Ensemble [LPB17] 2.9 82.0 6.7 7.6 2.7 1.1 77.2 8.6 4.7 1.3
Embedding Density [BSN+19] 61.7 10.4 37.8 35.2 27.5 0.8 46.4 35.6 2.9 2.3
LOST [SPV+21] 1.1 94.7 8.6 6.0 6.0 4.7 93.8 17.0 8.3 11.0
MC Dropout [MG18b] 36.8 35.5 17.4 34.7 13.0 4.9 50.3 5.5 5.8 1.0
Maximum Softmax [HG17] 30.1 33.2 14.2 62.2 10.3 15.7 16.6 19.7 15.9 6.3
Mahalanobis[LLLS18b] 55.0 12.9 33.8 31.7 22.1 20.9 13.1 13.5 21.8 4.7
ODIN [LLS18] 52.9 30.0 39.8 49.3 34.5 22.1 15.3 21.6 18.5 9.4
DINO [CTM+21] 26.4 38.9 11.7 13.6 5.7 39.9 14.1 26.8 19.1 12.4
Ours Segformermanual 56.4 6.7 34.7 35.0 28.4 45.5 8.1 25.4 36.3 22.7
Ours SETRmanual 73.0 2.9 37.1 42.8 38.0 72.9 2.5 36.4 47.8 41.6

Obstacle
or anomaly

training

Void Classifier [BSN+19] 4.8 47.0 1.8 35.1 1.9 10.4 41.5 6.3 20.3 5.4
JSRNet [VŠA+21] 74.2 6.6 34.3 45.9 36.0 28.1 28.9 18.6 24.5 11.0
Image Resynthesis (Chapter 4) 57.1 8.8 27.2 30.7 19.2 37.7 4.7 16.6 20.5 8.4
Road Inpainting (Chapter 5) 82.9 35.7 49.2 60.7 52.3 54.1 47.1 57.6 39.5 36.0
SynBoost [DBBSC21] 81.7 4.6 36.8 72.3 48.7 71.3 3.2 44.3 41.8 37.6
Maximized Entropy [CRG21b] 77.9 9.7 45.9 63.1 49.9 85.1 0.8 47.9 62.6 48.5
DenseHybrid [GBŠ22] 78.7 2.1 46.9 52.1 52.3 87.1 0.2 45.7 50.1 50.7

Table 7.1: Obstacle detection scores. The primary metrics are Average Precision (AP↑) for pixel classification and
Average F1 (F1 ↑) for instance level detection. The evaluation protocol and metrics are described in Chapter 3.

Partial Domain Shift

Next we evaluate models on RoadObstacle21 (Chapter 3). While still being a road dataset, it

provides unseen objects in new weather, lighting and background environments compared to

Cityscapes. The observations from LostAndFound generalize to this dataset, see right-hand

section of Table 7.1. In the presence of slight to moderate domain shift, the performance of

our method is preserved. See visualization results in Figure 7.3-right, which further stress the

capabilities of our method when weather and lighting conditions change drastically. In these

visually difficult conditions, most of the obstacles present are still segmented well from the

background.

Complete Domain Shift

We evaluate here the segmentation capability of models on Maritime, Lunar, and Aircraft

datasets, which contain unseen objects in completely new domains compared to the road

scenes. The results obtained from Maritime dataset are presented in Table 7.2 and the ones

obtained from Lunar dataset are shown in Table 7.3. In both cases, our method outperforms

the training-free baselines in terms of AP. The results show that not only can the attention

entropy segment previously unseen road obstacles, but its small object detection property

holds in completely different domains.

On Maritime dataset, the objects on the water visually stand out from their surroundings, thus

our method achieves remarkable results, outperforming the self-supervised DINO transformer

backbone by a large margin. Visual examples are provided in Figure 7.4.

On the more challenging Lunar dataset where gray rocks are located on gray ground, the

performance of our method still outperforms the one of DINO, see Table 7.3. We observe that
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AP ↑ FPR95 ↓
Ours SETRmanual 63.9 35.0
Ours Segformermanual 54.6 36.7
DINO [CTM+21] 41.4 39.5
Maximum Softmax [HG17] 18.6 64.9
ODIN [LLS18] 16.6 70.8
SynBoost [DBBSC21] 14.9 80.0
LOST [SPV+21] 10.1 94.4
Mahalanobis [LLLS18b] 5.9 97.3

Table 7.2: Obstacle pixel segmentation performance in the MaSTr1325 [BMPK19] dataset. We do not measure
object-level metrics since the maritime scenes contain non-object obstacles such as land.

AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Ours Segformermanual 37.8 76.1 5.6 38.2 5.1
Ours SETRmanual 35.9 85.0 7.9 29.8 8.3
SynBoost [DBBSC21] 35.6 81.9 4.0 28.8 3.6
DINO [CTM+21] 32.5 93.0 6.1 22.4 4.3
ODIN [LLS18] 29.7 75.1 2.6 33.6 2.3
Maximum Softmax [HG17] 28.5 75.1 2.2 33.2 1.9
LOST [SPV+21] 18.4 94.9 0.6 39.4 0.5

Table 7.3: Obstacle pixel segmentation performance in the Artificial Lunar Landscape [PJI19] dataset. The
evaluation was performed on every 10-th image due to big dataset size.

our method tends to also segment shadows caused by uneven ground. Visual examples are

provided in Figure 7.5.

Furthermore, we also provide visual examples for the Aircraft dataset [FA20], where no seg-

mentation ground truth is available, see Figure 7.6. In this setting with a completely different

viewing angle, our method still segments the objects, as the planes clearly stand out in the

entropy maps. We expect this behavior to extend to most small salient objects that are visually

distinct from the surrounding environment.

7.2.3 Spatial Attention Study

Layer-Wise Study

In Figure 7.8 we show the attention-entropy heatmaps of each layer of the backbones of SETR

( ViT backbone ) and Segformer. As discussed in Section 7.1.2 attention is stronger between

similar patches. As a consequence, patches containing a distinct object attend strongly to each

other and weakly to the background. Thus the entropy of their narrow attention distributions

is low, shown as dark in the heatmaps. Meanwhile the attention of the uniform backgrounds is

distributed more evenly across the whole area of the image and the resulting entropy is high.

Visual inspection indicates that this concentration of attention within distinct objects is
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Figure 7.3: Qualitative results on obstacle detection in traffic scenes. The left two images are from LostAnd-
Found [PRG+16] and the right three images are from RoadObstacle21 (Chapter 3), including ones with difficult
weather and limited light. The middle and bottom rows show the averaged entropy of SETR and Segformer
respectively, both using manual layer averaging. The heatmap is overlaid in the evaluation ROI. Slight rectangular
artifacts arise from MMSegmentation’s sliding window inference.

Input Ours SETR Ours Segformer

Mahalanobis ODIN Maximum Softmax

LOST DINO SynBoost

Figure 7.4: Qualitative results on obstacle detection on Maritime Dataset [BMPK19]. The contour of the ground
truth obstacle areas is highlighted. Compared to the other training-free obstacle detection methods, our attention
entropy generalizes better to the distant domain of maritime scenes.
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Input Ours SETR Ours Segformer

ODIN Maximum Softmax

LOST DINO SynBoost

Figure 7.5: Qualitative results on obstacle detection on Lunar dataset [PJI19]. The contour of the ground truth
obstacle areas is highlighted.

Figure 7.6: Qualitative results on Aircraft [FA20] dataset. The middle and right columns show the averaged entropy
of SETR and Segformer respectively.
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Figure 7.7: Usefulness of individual layers’ entropy for obstacle detection, measured by the area under the precision-
recall curve of obstacle segmentation on Road Obstacles 21 - validation and Lost and Found - train datasets. In
addition to layers denoted by their 0-based index, we list the scores for layer averaging strategies discussed
in Section 7.2.3.

Road Obstacles 21 - test Lost and Found - test no known
Pixel-level Segment-level Pixel-level Segment-level

AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑

SETR
all layers 67.0 5.8 30.6 22.1 22.2 62.2 11.2 27.4 28.2 24.9
manual layers 72.9 2.5 36.4 47.8 41.6 73.0 2.9 37.1 42.8 38.0
regression weights 71.2 2.3 36.6 40.9 36.9 73.7 4.6 35.4 46.6 38.4

Segformer
all layers 34.7 12.0 22.2 35.9 19.9 47.4 15.6 30.2 35.6 25.1
manual layers 45.5 8.1 25.4 36.3 22.7 56.4 6.7 34.7 35.0 28.4
regression weights 57.4 6.3 34.2 33.8 29.1 62.8 5.3 35.4 34.5 29.5

Table 7.4: Obstacle detection scores for layer averaging strategies. The primary metrics are Average Precision
(AP↑) for pixel classification and Average F1 (F1 ↑) for instance level detection. The evaluation protocol and metrics
are described in Chapter 3.

stronger in some layers than others. For best object detection, we choose a subset of layers,

indicated by a green border in Figure 7.8.

We study the usefulness of individual layers’ entropy heatmaps for obstacle detection. We mea-

sure the area under the precision-recall curve of obstacle segmentation on the Road Obstacles

validation set and the Lost and Found training set – those datasets have publicly available

obstacle labels and do not intersect with the benchmark test sets used for comparisons. We

plot the layers’ scores in Figure 7.7, together with scores calculated for the following averaging

strategies:

• all layers: the output heatmap is the average of all attention-entropy heatmaps El , i.e. ,

L = {1, . . . , l }.

• manual layers: we average a subset of layers whose entropy corresponds well to obsta-
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SETR (Visual Transformer) Segformer

Figure 7.8: Attention-entropy heatmaps for layers of SETR’s Visual Transformer and Segformer backbone. The
individual layer entropies are denoted with a 0-based layer index. We observe that not all layers are equally useful
for segmenting obstacles from the road. Based on visual inspection of examples, we select a subset of useful layers,
marked here by a green border. In the case of SETR, roughly the earlier half of them (except the 0-th layer) exhibit
distinctly low entropy in the regions of obstacles. The attention of the later layers becomes less localized and
so the entropy differences across the image decrease. Segformer’s layers do not form such a clear pattern, but
still its layers vary in the extent to which their entropies segment the obstacles. Many layers have artifact tokens
with concentrated attention (thus low entropy) which do not correspond to any visible object. Averaging the
layers tends to suppress these noisy artifacts, as visible on the averaged heatmaps; The all, manual and optimized
averaging strategies are described in Sec. 4.3.

cles, as confirmed by visual inspection of example outputs. The chosen layers are shown

in the supplementary material.

• optimized weights: we use logistic regression to determine the optimal weights to mix

the layer entropy heatmaps, i.e. , σ(
∑

l∈L al El +b1), where σ is the sigmoid activation,

al ,b ∈ R and 1 ∈ RN×N is a matrix with all elements equal to one. The weights are

obtained using the frames from Road Obstacles - Validation and Lost and Found - train.

We compare the layer averaging strategies in Table 7.4. The results show that while averaging

entropy across all layers obtains decent results, a simple visual choice of layers yields further

improvement in manual layers. The regression weighting obtains either similar results as

manual (for SETR) or further improves compared to it (for Segformer). We used the manual

selection in our comparisons as it does not apply any fine-tuning or learning on top of pre-

trained network.

Concentration of Attention in Self-Supervision

In Figure 7.9 we visualize the attention-entropy sum of the self-supervised DINO [CTM+21]

transformer and the transformers trained for Cityscapes segmentation. Both DINO and SETR
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Input DINO [CTM+21] entropy sum

SETR entropy sum Segormer entropy sum

Figure 7.9: Sums of attention-entropy over all layers - comparison between DINO [CTM+21] trained in a self-
supervised manner on ImageNet versus SETR [ZLZ+21] and Segformer [XWY+21] trained for Cityscapes semantic
segmentation.

have a ViT [DBK+20] network as their backbones. Even though the self-supervised DINO’s

class-token attention of the last layer can segment foreground objects, its intermediate layer

attention does not exhibit the clear object segmenting property we observe in semantic

segmentation networks.

7.3 Conclusion

We performed an in-depth study of the spatial attentions of vision transformers trained in a su-

pervised manner for semantic segmentation [ZLZ+21, XWY+21, DBK+20]. For image patches

associated to salient objects, the attention of intermediate layers tends to concentrate on that

object, which we quantified via the Shannon entropy. On the other hand, for larger areas of

coherent appearance, the entropy diffuses around the given image patch under consideration.

This observation holds for many different layers of the transformer backbone and averaging

their attentions improves the segmentation performance. We demonstrated that the attention

in self-supervised trained transformers such as DINO exhibits a different behavior. Our ob-

servations hold for different degrees of domain shift, leading to a method that can segment

unknown objects of small to moderate size in unknown context. We demonstrated this on

several datasets with varying degrees of domain shift, up to a complete change of domain. Due

to the negligible computational overhead w.r.t. the supervised model, our method might be

suitable for automated driving applications, robotics applications and also for pre-segmenting

objects for the sake of data annotation.
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8 Benchmark Results

Having presented our anomaly and obstacle detection methods, in this chapter we return to

the benchmark introduced in Chapter 3 to present the comparative results of our approaches

as well as those of others. Since the beginning of our research project we have seen fast

growing interest in the field of road anomaly detection, including a significant number of new

methods submitted to the Segment Me If You Can benchmark after its release. The results

shown in this chapter have been updated to include the latest submissions and overall they

reflect tremendous progress in solutions to the problem.

8.1 Evaluated Methods

Several anomaly segmentation methods have already been evaluated on our benchmark and

constitute our initial leader board. In the original benchmark we evaluate at least one method

per type discussed in Chapter 2, namely

• Methods originating from image classification: maximum softmax probability [HG17],

ODIN [LLS18], Mahalanobis distance [LLLS18b];

• Bayesian model uncertainty: Monte Carlo (MC) dropout [MG18b], ensemble [LPB17];

• Learning to identify anomalies: learned embedding density [BSN+19], void classi-

fier [BSN+19], maximized softmax entropy [CRG21b];

• Reconstruction via generative models: image resynthesis (Chapter 4), SynBoost [DBBSC21]

and road inpainting (obstacle track only) (Chapter 5).

All methods have an underlying semantic segmentation DNN trained on Cityscapes and

provide pixel-wise anomaly scores. A semantic segmentation DNN trained on Cityscapes is

also our recommendation as underlying model, however, we leave it up to the participants

which network and training data they use. Furthermore, some evaluated methods additionally

employ out-of-distribution (OoD) data to tune the anomaly detector. For our set of methods,
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this would be any data with labels semantically different from the Cityscapes train classes.

OoD data is also allowed to be used to alleviate the effects of a potential domain shift.

All methods provide pixel-wise anomaly scores s(x) ∈R|Z |, x ∈X where anomalies correspond

to higher values. As a reminder, Z denotes the set of image coordinates and X ⊆ [0,1]N×|Z |×3

a dataset with N images. Below, we describe how s is obtained for the baselines in the original

benchmark.

Maximum softmax probability

Let f : X →R|Z |×|C | denote the output of a semantic segmentation DNN. The maximum soft-

max probability (MSP) is a commonly-used baseline for OoD detection at image level [HG17].

It computes an anomaly score for each pixel z ∈Z as

sz (x) = 1−max
c∈C

σ( f c
z (x)), x ∈X , (8.1)

where σ(·) :R|C | → (0,1)|C | denotes the softmax function over the non-anomalous class set C .

ODIN

Let t ∈R\ {0} be a temperature scaling parameter and ε ∈R a perturbation magnitude. Follow-

ing [LLS18] small perturbations are added to every pixel z ∈Z of image x by

x̃z = xz −εsign

(
− ∂

∂xz
logmax

c∈C
σ( f c

z (x)/t )

)
. (8.2)

Then, an anomaly score is obtained analogously to Equation (8.1) via the MSP as

sz (x) = 1−max
c∈C

σ( f c
z (x̃)/t ) . (8.3)

Mahalanobis distance

Let hL−1(·) denote the output of the penultimate layer of a DNN with L ∈N layers, i.e. f (x) =
hL(x), x ∈X . Under the assumption that

P (hL−1
z (x) | yz (x) = c) =N (hL−1

z (x) | µc ,Σc ) , (8.4)

an anomaly score for each pixel z can be computed as the Mahalanobis distance [LLLS18b]

sz (x) = min
c∈C

(hL−1
z (x)− µ̂c )T Σ̂c−1

(hL−1
z (x)− µ̂c ) , (8.5)

where µ̂c and Σ̂c are estimates of the class mean µc and class covariance Σc , respectively, of

the latent features in the penultimate layer. This Mahalanobis distance yields an estimate of
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the likelihood of a test sample with respect to the closest class distribution in the training data,

which are assumed to be class-conditional Gaussians.

Monte Carlo dropout

Let M ∈N denote the number of Monte Carlo sampling rounds and q̂c
m :=σ( f c

z (x)) the softmax

probability of class c ∈C for sample m ∈ {1, . . . , M }. The predictive entropy is computed as

Ê( f (x)) =− ∑
c∈C

(
1

M

M∑
m=1

q̂c
m

)
log

(
1

M

M∑
m=1

q̂c
m

)
. (8.6)

As suggested in [MG18b], the mutual information can then be used to define an anomaly score

sz (x) = Ê( f (x))− 1

M

∑
c∈C

M∑
m=1

q̂c
m log

(
q̂c

m

)
. (8.7)

Ensemble

Similar to Monte Carlo dropout, multiple samples of softmax probabilities q̂c
m :=σ( f c

z (x)),c ∈
C ,m ∈ {1, . . . , M } are drawn from multiple semantic segmentation models. Those models have

the same network architecture but are trained with different weights initialization [LPB17].

Again, the mutual information is used as anomaly score

sz (x) = Ê( f (x))− 1

M

∑
c∈C

M∑
m=1

q̂c
m log

(
q̂c

m

)
. (8.8)

Void classifier

In [DT18], an approach to learning the confidence with respect to the presence of anomalies

was proposed. Here, we adapt this by using the Cityscapes void class to approximate the

anomaly distribution. We then trained a Cityscapes DNN f : X 7→ R|Z |×(|C |+1) with an addi-

tional class such as a trash can [ZL17], and compute the anomaly score for each pixel z ∈Z as

the softmax score for the void class, which yields

sz (x) =σ( f void
z (x)), x ∈X . (8.9)

Learned embedding density

Let hl (x) ∈R|Z ′|×nl , nl ∈N, Z ′ ⊂Z , be the embedding vector of a segmentation DNN at layer

l ∈ {1, . . . ,L} for image x ∈X . The true distribution p∗(hl (x)), x ∈Xtrain ⊂X can be approxi-

mated with a normalizing flow p̂(hl (x)) ≈ p∗(hl (x)). At test time, the negative log-likelihood

− log p̂z ′(hl (x)) ∈ (0,∞) for each embedding location z ′ ∈Z ′ then measures the discrepancy of

a test embedding with respect to training embeddings, where higher discrepancies indicate
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anomalies [BSN+19]. The resulting anomaly score map are of size |Z ′| = 1
n |Z |, with n ∈N the

rescaling factor for Z ′ to match the size of Z , and hence bring back latent features to the full

image resolution |Z | via bilinear interpolation u :R|Z ′| →R|Z |. This yields an anomaly score

for each z ∈Z as

sz (x) = uz

(
(− log p̂(hl

z ′(x)))z ′∈Z ′
)

, x ∈X . (8.10)

SynBoost

This approach follows a similar idea as image resynthesis but includes further inputs in the

discrepancy module. In particular, for all z ∈Z the pixel-wise softmax entropy

Hz (x) =− ∑
c∈C

σ( f c
z (x)) log

(
σ( f c

z (x))
)

(8.11)

and the pixel-wise softmax distance

Dz (x) = 1−max
c∈C

σ( f c
z (x))+ max

c ′∈C \{argmaxc∈C }
σ( f c ′

z (x)) (8.12)

are included. The anomaly score for x ∈X is then obtained via

sz (x) = dz
(

ŷ(x), g (ŷ(x)), x, H(x),D(x)
)

. (8.13)

Maximized entropy

Starting from a pretrained DNN, a second training objective is introduced to maximize the

softmax entropy on OoD pixels [CRG21b, HMD19, JRF20]. This yields the multi-criteria loss

function

(1−λ)E(x,y)∼Di n

[
ℓi n(σ( fz (x)), yz (x))

]+λEx ′∼Dout

[
ℓout (σ( fz (x ′)))

]
, λ ∈ [0,1] , (8.14)

where ℓi n is the empirical cross entropy and ℓout the averaged negative log-likelihood over all

classes for the in-distribution data Di n and the out-distribution data Dout , respectively. To

approximate Dout , a subset of the COCO dataset [LMB+14] is used whose images do not depict

any object classes also available in Di n , which is the Cityscapes dataset [COR+16]. The COCO

subset together with the Cityscapes training data are then included into a tender retraining

of the pretrained Cityscapes model. The anomaly score is then computed via the softmax

entropy as

sz (x) =− ∑
c∈C

σ( f c
z (x)) log

(
σ( f c

z (x))
)

. (8.15)
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8.2 Numerical Experiments

Pixel-level Component-level

requires Anomaly scores k ∈K k̂ ∈ K̂ τ= 0.25 τ= 0.50 τ= 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F∗

1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Ensemble [LPB17] No 17.7 91.1 27.8 16.4 20.8 197 1454 7.3 233 1511 3.2 254 1553 0.9 3.4
Mahalanobis [LLLS18b] No 20.0 87.0 31.9 14.8 10.2 206 1564 6.0 241 1602 2.2 257 1619 0.5 2.7
Maximum Softmax [HG17] No 28.0 72.0 34.2 15.5 15.3 204 778 10.6 233 810 5.3 256 833 1.1 5.4
MC Dropout [MG18b] No 28.9 69.5 39.1 20.5 17.3 175 1592 9.0 225 1640 3.8 252 1667 1.0 4.3
ODIN [LLS18] No 33.1 71.7 39.1 19.5 17.9 182 1123 10.9 226 1163 4.9 254 1191 1.1 5.2
JSRNet [VŠA+21] No 33.6 43.9 42.6 20.2 29.3 180 331 24.3 218 362 13.2 250 383 3.7 13.7
Void Classifier [BSN+19] Yes 36.6 63.5 44.3 21.1 22.1 181 987 12.2 219 1034 6.4 253 1066 1.3 6.5
Embedding Density [BSN+19] No 37.5 70.8 48.7 33.9 20.5 107 1750 14.3 176 1811 8.0 250 1884 1.1 7.9
PEBAL [TLP+22] Yes 49.1 40.8 54.5 38.9 27.2 98 981 23.3 161 1024 14.6 229 1089 4.8 14.5
Image Resynthesis (Chapter 4) No 52.3 25.9 60.5 39.7 11.0 94 1242 20.1 153 1287 13.1 231 1364 3.7 12.5
SynBoost [DBBSC21] Yes 56.4 61.9 58.0 34.7 17.8 111 1255 18.1 179 1317 10.0 248 1387 1.7 10.0
NFlowJS [GBŠ21a] No 56.9 34.7 58.4 36.9 18.0 103 792 26.2 173 840 14.9 241 936 3.4 14.9
ObsNet [BBPA21] No 75.4 26.7 79.7 44.2 52.6 104 175 53.1 126 182 46.9 181 209 29.3 45.1
DenseHybrid [GBŠ22] Yes 78.0 9.8 78.6 54.2 24.1 59 557 39.7 99 577 32.5 180 642 16.6 31.1
Maximized Entropy [CRG21b] Yes 85.5 15.0 77.4 49.2 39.5 85 563 35.3 115 586 29.5 163 626 20.1 28.7
RbA [NYHG23] No 86.1 15.9 79.1 56.3 41.4 67 339 49.0 93 352 43.2 147 380 30.4 42.0
EAM [Mat23] Yes 93.7 4.1 91.0 67.1 53.8 54 167 65.3 68 175 61.5 94 180 55.1 60.9

Table 8.1: Benchmark results for our RoadAnomaly21 dataset. This dataset contains 262 ground-truth components
in total. The main performance metrics are highlighted with gray columns. The rows corresponding to our
methods are highlighted. The results have been updated since the original publication of the papers to reflect new
submissions and slight changes in the evaluation protocol.

Image & annotation Mahalanobis MC dropout SynBoost Maximized entropy

Figure 8.1: Qualitative comparison of the anomaly scores produced by the methods introduced in Section 8.1
for one example image of RoadAnomaly21 (top row) and one example image of RoadObstacle21 (bottom row).
Here, red indicates higher anomaly / obstacle scores and blue lower ones. The ground-truth anomaly / obstacle
component is indicated by green contours.

8.2 Numerical Experiments

In our benchmark suite we integrate a default method to generate the anomaly segmentation

from pixel-wise anomaly scores. We choose the threshold δ∗, at which one pixel is classified

as anomaly, by means of the optimal pixel-wise F1-score, that we denote with F∗
1 . Then, δ∗ is

computed as

δ∗ = argmax
δ∈R

2 ·precision(δ) · recall(δ) / (precision(δ)+ recall(δ)) , (8.16)

subject to precision(δ)+ recall(δ) > 0 ∀ δ.

Moreover, for the anomaly track, components smaller than 500 pixels are discarded from the

predicted segmentation, and for the obstacle track, components smaller than 50 pixels are dis-

carded. These sizes are chosen based on the smallest ground-truth components. All methods
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Pixel-level Component-level

requires Anomaly (obstacle) scores k ∈K k̂ ∈ K̂ τ= 0.25 τ= 0.50 τ= 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F∗

1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Embedding Density [BSN+19] No 0.8 46.4 2.0 35.6 2.9 145 11166 4.1 244 11271 2.4 370 11393 0.3 2.3
Ensemble [LPB17] No 1.1 77.2 3.1 8.6 4.7 335 3758 2.5 365 3768 1.1 382 3782 0.3 1.3
MC Dropout [MG18b] No 4.9 50.3 9.0 5.5 5.8 356 2322 2.3 375 2339 0.9 387 2351 0.1 1.0
PEBAL [TLP+22] Yes 5.0 12.7 9.1 29.9 7.6 199 3508 9.3 284 3529 5.2 342 3567 2.3 5.5
Void Classifier [BSN+19] Yes 10.4 41.5 23.3 6.3 20.3 350 403 9.2 365 421 5.5 381 435 1.7 5.4
Maximum Softmax [HG17] No 15.7 16.6 22.5 19.7 15.9 255 1673 12.1 326 1738 5.7 372 1783 1.5 6.3
Mahalanobis [LLLS18b] No 20.9 13.1 25.8 13.5 21.8 295 1265 10.7 353 1321 4.0 385 1352 0.3 4.7
ODIN [LLS18] No 22.1 15.3 30.1 21.6 18.5 260 1226 14.7 307 1271 9.3 360 1324 3.2 9.4
JSRNet [VŠA+21] No 28.1 28.9 30.3 18.6 24.5 267 768 19.0 315 772 11.8 375 788 2.2 11.0
Image Resynthesis (Chapter 4) No 37.7 4.7 38.8 16.6 20.5 286 895 14.7 334 940 7.8 374 978 2.0 8.4
AttEntropy Segformer (Chapter 7) No 45.5 8.1 47.3 25.8 35.1 226 404 34.0 282 414 23.3 347 437 9.5 22.6
Road Inpainting (Chapter 5) No 54.1 47.1 67.4 57.6 39.5 79 674 45.1 131 731 37.4 240 847 21.4 36.0
SynBoost [DBBSC21] Yes 71.3 3.2 70.8 44.3 41.8 136 388 49.0 185 440 39.4 283 538 20.4 37.6
AttEntropy SETR (Chapter 7) No 72.9 2.5 70.9 36.4 47.8 156 120 62.7 217 170 46.9 343 276 12.7 41.6
Perspective Aware (Chapter 6) No 75.2 53.7 73.4 65.2 60.2 68 223 68.7 95 228 64.5 174 269 49.1 67.1
DaCUP [VM23] No 81.5 1.1 75.9 37.7 60.1 156 124 62.4 216 134 49.6 335 160 17.6 46.0
Maximized Entropy [CRG21b] Yes 85.1 0.8 79.6 47.9 62.6 136 202 59.9 177 250 49.7 247 321 33.2 48.5
NFlowJS [GBŠ21a] No 85.5 0.4 79.1 45.5 49.5 143 197 59.0 171 201 53.8 271 276 30.0 50.4
DenseHybrid [GBŠ22] Yes 87.1 0.2 81.9 45.7 50.1 113 151 67.6 164 187 56.1 309 289 20.9 50.7
RbA [NYHG23] No 87.8 3.3 83.1 47.4 56.2 142 211 58.2 170 212 53.3 253 220 36.3 50.4
EAM [Mat23] Yes 92.9 0.5 90.4 65.9 76.5 71 83 80.5 86 83 78.1 167 92 63.1 75.6

Table 8.2: Benchmark results for our RoadObstacle21 dataset. This dataset contains 388 ground-truth components
in total. The main performance metrics are highlighted with gray columns. The rows corresponding to our
methods are highlighted. The results have been updated since the original publication of the papers to reflect new
submissions and slight changes in the evaluation protocol.

Pixel-level Component-level

requires Anomaly scores k ∈K k̂ ∈ K̂ τ= 0.25 τ= 0.50 τ= 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F∗

1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Ensemble [LPB17] No 2.9 82.0 8.2 6.7 7.6 1523 5633 4.9 1604 5649 2.8 1695 5705 0.4 2.7
Void Classifier [BSN+19] Yes 4.8 47.0 13.7 1.8 35.1 1661 864 3.7 1686 887 1.8 1704 905 0.4 1.9
Maximum Softmax [HG17] No 30.1 33.2 32.5 14.2 62.2 1256 1222 26.8 1575 1522 8.0 1701 1647 0.5 10.3
MC Dropout [MG18b] No 36.8 35.5 42.0 17.4 34.7 1204 2072 23.6 1428 2279 13.2 1635 2484 3.5 13.0
ODIN [LLS18] No 52.9 30.0 55.7 39.8 49.3 701 1552 47.2 954 1803 35.4 1319 2163 18.3 34.5
Mahalanobis [LLLS18b] No 55.0 12.9 54.8 33.8 31.7 777 2559 35.8 1126 2911 22.4 1527 3309 7.0 22.1
AttEntropy Segformer (Chapter 7) No 56.4 6.7 56.1 34.6 36.1 736 1675 44.7 1073 1821 30.5 1543 2024 8.5 29.0
Image Resynthesis (Chapter 4) No 57.1 8.8 55.1 27.2 30.7 947 2379 31.4 1232 2667 19.7 1560 2989 6.1 19.2
Embedding Density [BSN+19] No 61.7 10.4 61.7 37.8 35.2 646 2205 42.7 963 2562 29.7 1526 3103 7.3 27.5
AttEntropy SETR (Chapter 7) No 73.0 2.9 67.9 37.1 42.8 745 932 53.5 1008 1091 40.0 1424 1332 17.1 38.0
JSRNet [VŠA+21] No 74.2 6.6 68.7 34.3 45.9 864 1168 45.4 1032 1187 37.9 1363 1246 21.0 36.0
Maximized Entropy [CRG21b] Yes 77.9 9.7 76.8 45.9 63.1 639 777 60.2 781 911 52.3 1113 1244 33.6 49.9
DenseHybrid [GBŠ22] Yes 78.7 2.1 78.0 46.9 52.1 579 761 62.8 720 808 56.4 1202 1089 30.7 52.3
DaCUP [VM23] No 81.4 7.4 75.6 38.3 67.3 765 395 61.9 930 409 53.8 1293 476 32.0 51.1
SynBoost [DBBSC21] Yes 81.7 4.6 75.2 36.8 72.3 775 292 63.6 942 459 52.3 1381 898 22.4 48.7
Road Inpainting (Chapter 5) No 82.9 35.7 79.1 49.2 60.7 631 816 59.8 749 944 53.1 958 1163 41.5 52.3
Perspective Aware (Chapter 6) No 85.8 2.5 79.3 47.2 86.1 648 155 72.5 777 158 66.6 1015 167 54.0 65.5
NFlowJS [GBŠ21a] No 89.3 0.7 82.8 54.6 59.7 478 622 69.1 612 658 63.3 939 795 47.0 61.8

Table 8.3: Benchmark results for the Lost and Found test-NoKnown dataset. This dataset contains 1709 ground-truth
components in total. The main performance metrics are highlighted with gray columns. The rows corresponding
to our methods are highlighted. The results have been updated since the original publication of the papers to
reflect new submissions and slight changes in the evaluation protocol.
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8.2 Numerical Experiments

presented in Section 8.1 produce anomaly scores for which we apply the default segmentation

method. We emphasize that using our proposed default method for anomaly segmentation

masks is completely optional. We allow and encourage competitors in the benchmark to

submit their own anomaly segmentation masks generated via more sophisticated image

operations.

In our evaluation, we additionally include the average sIoU per component sIoU, which

can be computed by averaging sIoU over all ground-truth components k ∈K . Analogously,

we also include the average PPV per component PPV for all predicted components k̂ ∈ K̂ .

As the number of component-wise TP, FN and FP depends on some threshold τ for sIoU

and PPV, respectively (see Section 3.5), we average these quantities over different thresholds

τ ∈T = {0.25,0.30, . . . ,0.75}, similarly to [LMB+14], yielding the averaged component-wise F1

score F1 = 1
|T |

∑
τ∈T F1(τ).

Discussion of the Results

Our benchmark results for RoadAnomaly21 and RoadObstacle21 are summarized in Table 8.1

and Table 8.2, respectively. The tables have been updated since the original publication of

the papers to reflect new submissions and slight changes in the evaluation protocol. The

benchmark receives continuous new submissions presented on the website1. In general,

we observe that methods originally designed for image classification, including maximum

softmax, ODIN, and Mahalanobis, do not generalize well to anomaly and obstacle segmenta-

tion. For methods based on statistics of the Cityscapes dataset, such as Mahalanobis as well

as learned embedding density, anomaly detection is typically degraded by the presence of

a domain shift. This results in a poor performance, particularly in RoadObstacle21, where

various road surfaces can be observed. Interestingly, learned embedding density, MC dropout

and the void classifier yield worse performance than maximum softmax on RoadObstacle21,

whereas we observe the opposite on RoadAnomaly21.

The detection methods based on generative models, namely image resynthesis and SynBoost,

appear to be better suited to both anomaly and obstacle segmentation at pixel as well as

component level, clearly being superior to all the approaches discussed previously. This

observation also holds for road inpainting in the obstacle track. These autoencoder-based

methods are nonetheless limited by their discrepancy module, and they are outperformed

in our experiments by maximized softmax entropy, which peaks at an AuPRC of 86% and a

component-wise F1 of 49%. This highlights the importance of anomaly and obstacle proxy

data. Illustrative example score maps produced by the discussed methods are shown in

Figure 8.1.

The recent methods based on mask segmentation [NYHG23, Mat23] have shown a great

improvement in both anomaly and obstacle detection. These approaches are also powered by

1Segment Me If You Can leaderboard: https://segmentmeifyoucan.com/leaderboard/
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Chapter 8. Benchmark Results

new transformer-based semantic segmenters. Overall this direction is very promising for the

future of anomaly and obstacle detection.

A very promising approach to anomaly detection has been enabled by mask-based semantic

segmentation [CSK21, CMS+22, HOLH21] around the time of the conclusion of this thesis.

These methods forgo outputting a simple one-hot logit distribution from the network’s final

layer. Instead, one branch produces per-pixel embeddings while a transformer branch creates

query embeddings. The dot product of pixel and query embeddings yields a collection of

masks. These masks are trained to respond to different semantic classes, or object instances

in the case of panoptic segmentation.

Since the masks respond only to their chosen class, the anomaly areas are not covered by any

mask. Anomalies are found simply as areas where the sum of all masks is very low [NYHG23].

The performance is even better when false-positives at semantic borders are reduced [Mat23].

The rejection approach is particularly impressive since it achieves great anomaly detection

performance without need for retraining or modification of the mask-based segmentation

system.

In summary, the component-level evaluation highlights the methods’ weaknesses even more

clearly than the pixel-wise evaluation, the latter giving a stronger weight to larger anomalies

and obstacles. All methods indeed tend to face difficulties in the presence of smaller anoma-

lies and obstacles. In addition, we observe a much lower component-wise F1 score than a

pixel-wise F∗
1 , demonstrating the importance of evaluating at component level. The results

w.r.t. the different categories of methods are challenging for models, hence leaving room for

improvement.

Our benchmark suite enables a unified evaluation across different datasets whenever ground

truth is available.

In Table 8.3 we summarize our results for the LostAndFound test split, with original labels

fitting the obstacle track. We filtered out all images that contain humans and bicycles labeled

as obstacles (therefore called LostAndFound test-NoKnown) because we applied anomaly

segmentation methods out of the box to the task of obstacle segmentation, and these methods

focus on previously-unseen objects.

In comparison to our datasets, for the LostAndFound dataset we observe a less pronounced

gap, in terms of both main performance metrics, the pixel-level AuPRC and component-level

F1 scores, between the methods orignially designed for image classification, especially ODIN

and Mahalanobis, and those specifically designed for anomaly segmentation, especially road

inpainting and maximized entropy. This signals that both of our datasets contribute new

challenges for anomaly and obstacle segmentation.

Finally, we also applied our benchmark suite to the LiDAR guided Small obstacle Segmenta-

tion dataset [SKGMK20]. Our main findings are that our whole set of methods yields weak
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8.3 Extra evaluations

Pixel-level Component-level

requires Anomaly scores k ∈K k̂ ∈ K̂ τ= 0.25 τ= 0.50 τ= 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F∗

1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [HG17] ✗ 0.7 57.1 2.2 0.5 1.5 1196 1652 0.5 1202 1653 0.1 1203 1653 0.0 0.2
ODIN [LLS18] ✗ 1.7 51.7 5.7 2.7 3.9 1151 1829 3.4 1176 1834 1.8 1197 1841 0.4 1.9
Mahalanobis [LLLS18b] ✗ 1.4 45.5 2.4 7.1 4.0 1039 4863 5.3 1137 4882 2.1 1198 4907 0.2 2.4
MC dropout [MG18b] ✗ 0.5 82.2 2.1 0.5 2.8 1191 1406 0.9 1200 1407 0.2 1203 1408 0.0 0.3
Void classifier [BSN+19] ✓ 0.8 59.6 2.1 1.5 4.9 1169 813 3.3 1193 816 1.0 1200 819 0.3 1.5
Embedding density [BSN+19] ✗ 0.5 66.0 1.1 9.8 1.8 1010 12421 2.8 1122 12502 1.2 1200 12587 0.0 1.3
SynBoost [DBBSC21] ✓ 12.5 62.8 22.8 11.5 14.4 1009 1204 14.9 1040 1217 12.6 1116 1234 6.9 12.0
Maximized entropy [CRG21b] ✓ 4.9 63.1 11.6 2.0 9.7 1159 586 4.8 1184 586 2.1 1202 586 0.1 2.4

Table 8.4: Benchmark results for the LiDAR guided Small obstacle Segmentation dataset. This dataset contains
1203 ground truth components in total.

performance on that dataset. The main purpose of this dataset is the detection of small

obstacles from multiple sensors including LiDAR. Hence, the conditions for the other sensor

modalities are purposely challenging (e.g., low illumination), making this dataset less suitable

to camera-only methods. We present the corresponding results in Section 8.3.1.

Through the course of the project our methods have pushed the state of the art in obstacle

and anomaly segmentation and we are glad that further work has continued the impressive

progress in the field.

8.3 Extra evaluations

Here we present several additional evaluations performed for the original benchmark. We

don’t perform them for all the new submitted methods but they still offer interesting insights.

8.3.1 LiDAR Guided Small Obstacle Dataset

The results corresponding to the LiDAR guided Small obstacle Segmentation dataset [SKGMK20]

are given in Table 8.4. In general, the given set of methods exhibits poor performance on this

dataset. As discussed in Section 3.4.3, the dataset is designed for multi-sensor detection and

very challenging in a pure-vision setting. More precisely, obstacles are mostly overlooked,

even SynBoost as best-performing method still misses 1100 of 1203 components in total at the

lowest sIoU threshold τ= 0.25. This dataset can easily be included into our benchmark and it

also fits the obstacle track, however, from our experiments we conclude that this dataset is less

suitable to camera-only obstacle segmentation as obstacles are not well captured via cameras.

8.3.2 Evaluation per Environment Category

We already emphasized that in our RoadObstacle21 dataset a wide variety of road surfaces are

available, representing different scenes which might pose unique challenges. In this section,

we provide more insights by evaluating our set of methods on each of these surfaces. In total,
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road cracked asphalt dark road gravel

asphalt gray motorway sun reflection

road bricks asphalt night snowstorm

Figure 8.2: The scenes of our RoadObstacle21 dataset feature a variety of road surfaces.

we split our datasets into 9 different scenes, shown in Figure 8.2:

1. cracked road, surrounded by snow (road cracked)

2. dark asphalt after rain, with leaves (asphalt dark)

3. gravel road, no snow (road gravel)

4. gray asphalt in village and forest (asphalt gray)

5. motorway with side railing (motorway)

6. sun reflection off wet road (sun reflection)

7. road made of bricks (road bricks)

8. night images (asphalt night)

9. and snowstorm images .

We evaluate each subset using our benchmark suite and report the results in Table 8.5. This

more detailed evaluation shows that the reported set of methods perform differently across

the data splits, with no method having consistent performance on each of these subsets. Our
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8.3 Extra evaluations

road cracked asphalt dark road gravel asphalt gray motorway sun reflection road bricks

OoD N = 40 N = 47 N = 33 N = 66 N = 30 N = 72 N = 39
Method data AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1

Maximum softmax [HG17] ✗ 11.7 3.2 69.3 25.7 39.5 21.0 43.4 14.9 4.8 0.8 2.1 4.4 32.7 26.8
ODIN [LLS18] ✗ 14.9 4.8 74.8 30.8 65.3 37.0 73.8 22.5 9.9 7.2 2.8 5.4 48.8 22.0
Mahalanobis [LLLS18b] ✗ 25.9 1.6 46.7 18.3 65.8 21.9 84.7 53.8 61.2 35.6 13.9 0.5 83.6 41.0
MC dropout [MG18b] ✗ 6.5 1.0 21.7 4.9 27.9 5.5 11.4 1.7 0.6 0.0 0.2 0.2 18.5 3.6
Ensemble [LPB17] ✗ 34.3 0.0 5.6 0.8 33.4 0.0 17.3 12.3 1.2 4.3 0.2 0.0 17.6 0.6
Void classifier [BSN+19] ✓ 15.9 6.4 35.0 15.4 6.3 3.1 38.2 11.0 18.7 8.4 10.7 0.6 13.4 10.1
Embedding density [BSN+19] ✗ 2.5 0.8 3.3 0.8 2.7 2.2 1.8 2.4 1.1 3.0 0.1 1.1 18.3 2.7
Image resynthesis [LNSF19] ✗ 48.2 9.6 42.0 12.3 77.0 42.4 66.6 22.2 23.7 12.9 34.4 9.0 12.1 2.4
Road inpainting [LHFS20b] ✗ 21.0 18.4 77.0 47.2 88.4 74.7 93.5 79.8 83.1 78.1 29.4 22.0 93.5 73.7
SynBoost [DBBSC21] ✓ 46.1 14.7 89.3 66.5 84.7 54.5 81.2 54.0 53.8 48.8 43.1 25.4 89.8 70.3
Maximized entropy [CRG21b] ✓ 77.1 42.5 96.9 71.9 98.6 88.7 94.8 70.2 64.3 35.1 43.2 30.6 93.9 61.0

asphalt night snowstorm

OoD N = 30 N = 55
Method data AuPRC F1 AuPRC F1

Maximum softmax [HG17] ✗ 6.0 2.5 1.6 0.8
ODIN [LLS18] ✗ 8.0 1.8 6.7 4.6
Mahalanobis [LLLS18b] ✗ 14.2 5.5 21.2 13.2
MC dropout [MG18b] ✗ 4.2 1.1 0.5 0.6
Ensemble [LPB17] ✗ 11.5 16.9 0.6 0.0
Void classifier [BSN+19] ✓ 5.9 5.5 3.0 5.1
Embedding density [BSN+19] ✗ 16.7 3.6 0.9 2.6
Image resynthesis [LNSF19] ✗ 16.5 6.3 19.2 4.0
Road inpainting [LHFS20b] ✗ 51.2 28.0 55.3 35.0
SynBoost [DBBSC21] ✓ 14.5 10.2 46.4 20.7
Maximized entropy [CRG21b] ✓ 41.0 12.1 30.5 17.5

Table 8.5: Effect of different of scenes in the RoadObstacle21 dataset. Here, N denotes the number of images in a
subset. As main evaluation metrics we consider the pixel-wise AuPRC and the component-wise F1.

dataset offers extra difficulty caused by the diversity of road texture, surrounding environ-

ments, weather and lighting variations. Cracks and leaves may trigger false positives, and

a gravel or wet road surface may itself be sufficiently different from training images to be

mistaken for an anomaly.
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9 Conclusion

Our research offers an extensive study of the topic of anomaly and obstacle detection in road

scenes for the purpose of improving self-driving safety. We were one of the pioneers in the

field as before the start of this project anomaly detection was primarily focused on classifying

whole images rather than segmenting anomalies within the scene composed of known objects.

We define anomalies in semantic segmentation as objects outside of the predefined semantic

classes used in training. This is a uniquely challenging topic since most the deep learn-

ing methods most successful in computer vision are powered by labeled training examples.

Motivated by the practical needs of the industry we then explored unusual obstacles - any

objects on the road which might cause a collision, with the added challenge of lack of training

examples of these particular items.

In this document we have presented several solutions to these problems. One line of thought

is to reconstruct the input image in a way which removes the anomalies and obstacles. To this

end we applied an information bottleneck of a semantic map (Section 4.1), or inpainted the

road surface (Section 5.1.2). The anomalies can be then found by comparing the input and

reconstructed image. The comparison can be performed by a discrepancy network.

Another idea pertains to training anomaly and obstacle detectors in the absence of training

examples. To this end, we have devices synthetic training schemes where anomalies are

introduced into the usual urban scenes by altering object class labels (Section 4.1.2) or by

injecting object cut-outs onto the road (Section 5.1.3). Taking perspective warping into account

can further improve the synthetic generation process (Section 6.2.2).

We have also explored the valuable information that happens to be encoded by transformer

self-attention maps which can be used to segment small objects in a variety of domains even

though the networks were never trained to perform that task (Chapter 7).

But perhaps the most lasting impact is the introduction of the anomaly and obstacle bench-

mark (Chapter 3) which has inspired a wealth of quality research and has measured the

impressive progress made in the span of just a few years (Section 8.2).
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Chapter 9. Conclusion

9.1 Future Directions

We have explored several interesting ideas but there are many more to try. Likewise the recent

works published in the field inspire further investigation.

Automated anomaly and obstacle example gathering

To collect the anomaly and obstacle examples for the benchmark described in Chapter 3,

we sought out published photos of unusual objects on the road, or placed obstacles and

photographed them ourselves. Examples of real obstacles found while driving are still rare,

even though collisions with animals or debris are a cause of traffic accidents. The next step to

finding impactful data in that domain could be to detect obstacles automatically within a vast

amount of video captured by vehicles. A system capable of segmenting new objects in new

domains, such as the one we proposed in Chapter 7, could reveal obstacles which would later

be integrated into testing sets for self-driving perception. The distribution of objects captured

this way would have the benefit of being aligned with what dangers are most common in real

situations.

However indiscriminate recording and storage of video would pose a threat to privacy and risk

aiding surveillance. To avoid that, a detection system could run onboard the vehicle and only

capture images where anomalies and obstacles are present. Using a detector operating only

on the road surface (Chapters 5 and 6) could also help by ensuring the capture only happens

when the objects are relevant the driving area.

Perspective-aware visual transformer

A visual transformer backbone such as ViT [DBK+20] differs significantly from a traditional

convolutional neural network in that the first step involves extracting patches from the image

without overlap. These patches become tokens for the transformer architecture and an

additional spatial embedding is added to retain the information on which part of the image

they originate from.

In Chapter 6 we have discussed the significant impact of perspective forshortening on obstacle

detection from vehicle forward cameras - a detector needs to be capable of processing obsta-

cles at wildly different pixel sizes. The works of [HSB+07, HSB+09] address this by extracting

patches of different sizes (big patches nearby, small patches far away) and resizing them to

a common dimension. Therefore the detector operates constantly at the same scale. This

approach is difficult to apply to a CNN with its overlapping convolution kernels. However it

would be a great fit for the ViT which does not need a grid of patches but can work with any

sequence of them. Patches would be resized before passing them on into the transformer. The

spatial embedding could contain further valuable perspective scale information.
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9.1 Future Directions

Performance

The end goal of anomaly and obstacle detection in road scenes is deployment in vehicles for

the purpose of enhancing safety, whether in the form of reliable self-driving or driver assistance.

In a driving scenario decisions need to be made quickly, therefore computational cost is a key

concern. Many of the current solutions rely on expensive operations: full-resolution semantic

segmentation, resynthesis, inpainting, transformer self-attention, or even combine multiple

thereof. Further work is needed to refine these methods to run in real time on onboard

computational devices. It is worth exploring architectural changes and network distillation

and quantization.

Mask-based segmentation

The results shown in Section 8.2 indicate the extraordinary ability of the recent mask-based seg-

menters [CSK21, CMS+22, HOLH21] to distinguish anomalies from known categories [NYHG23,

Mat23]. And this is usually achieved by the semantic segmentation network itself without

retraining or extra anomaly branches. Therefore we consider those to be the most promising

direction in anomaly detection. It the future it would be worth investigating the reliability

of these approaches, in particular in the presence of stronger domain shift such as difficult

weather and lighting conditions, or a variety of different locations and landscapes. Finding

where their limitations lie will inform the future direction of research in the field.

The nature of the query mechanism is promising for domain adaptation. Queries produce

embeddings and taking the dot product of a query embedding with the pixel embedding yields

the mask. It may be possible to adjust to domain shift by merely altering the query vectors

and keeping most of the network unchanged.

It would also be interesting to see if the masks can reveal insights for which they were not

specifically trained - analogously to how in Chapter 7transformer attention was capable of

segmenting previously unseen objects in new domains. For example, Mask2Former [CMS+22]

predicts 64 masks but only 19 become assigned to semantic classes in the case of Cityscapes

training according to the analysis performed in [NYHG23]. The other masks could reveal

valuable information as well.

Medical applications

While driving safety is important, health concerns affect everyone and so medical applica-

tions have unique value. The methods discussed here could be adapted to segmentation of

anomalous areas in medical imaging where the training data is also often limited.
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Chapter 9. Conclusion

Exploring failure cases

In this project I have learned the value of taking an active effort to seek out the failure cases of

the system one is developing. This way we can know the capabilities and limitations of the

system during deployment as well as focus the development efforts in the area where they

matter most.

9.2 Summary

In this project we have explored the task of locating semantic anomalies and unusual obstacles

within diverse road scenes using cameras and computer-vision techniques. While this topic

is only recently gaining attention, it is important to the safety of self-driving and driving-

assistance systems. We have proposed several novel detection methods involving information

bottlenecks, synthetic training, and transformer self-attention. To address the scarcity of data

inherent to the problem, we introduce a new dataset and protocol for benchmarking anomaly

and obstacle detection methods.

Our findings bear significance in a broader context; when machine-learning methods are used

in a safety-critical setting, they require testing against out-of-distribution samples and domain

shift.
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