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ABSTRACT

The monumental progress in the development of machine learning models has led to a

plethora of applications with transformative effects in engineering and science. This has also

turned the attention of the research community towards the pursuit of constructing artificial

intelligence (AI) models with general reasoning capabilities. Yet, despite the staggering success

of artificial neural networks in a variety of tasks that involve language and image generation

or object detection and recognition, tasks that involve discrete and combinatorial problem-

solving are still a fundamental blind spot of those models and present a longstanding obstacle

in the road to general-purpose AI systems.

Combinatorial optimization problems are prominent representatives in that category as they

present fundamental challenges that are hard to tackle within the standard machine learn-

ing paradigm. Two fundamental obstacles in this pursuit are i) the difficulty of navigating

exponentially large discrete configuration spaces using continuous gradient-based optimiza-

tion, ii) our inability to procure large amounts of labeled data due to the high computational

budget that this requires. The subject of this thesis will be to develop a coherent approach

to combinatorial optimization with neural networks that focuses on directly tackling those

challenges.

In the first half of the thesis, we will present our proposal for neural combinatorial optimization

without supervision. We demonstrate how it is possible to design continuous loss functions

for constrained optimization problems in a way that enables training without access to labeled

data. We leverage the celebrated probabilistic method from the field of combinatorics to argue

about the existence of high-quality solutions within the learned representations of a neural

network that has been trained with our approach. We also show how to deterministically

recover those solutions using derandomization techniques from the literature.

In the second half, we expand the scope of our inquiry and design a general framework for

continuous extensions of set functions. This approach enables training neural networks for

discrete problems even when the objective and the constraints of the problem are given as a

black box. We develop extensions for domains like the hypercube but also higher-dimensional

domains like the cone of positive semi-definite matrices. This framework enables us to effi-

ciently incorporate problem-specific priors in the pipeline which leads to improved empirical

results. Finally, we show that the versatility of this approach extends beyond combinatorial

optimization as it can be used to define a novel continuous surrogate of the discrete training

error for classification problems. Overall, our proposed methods make progress in advancing

the state of the art for neural combinatorial optimization through principled loss function

design. Furthermore, by enabling the use of discrete functions in end-to-end differentiable

models they pave the way for improved combinatorial and reasoning capabilities for machine

learning algorithms.

iii



Abstract

Key Words: Combinatorial optimization, probabilistic method, unsupervised learning, set

function extensions, learning in higher dimensions

iv



RÉSUMÉ

Les progrès monumentaux réalisés dans le développement de modèles d’apprentissage auto-

matique ont conduit à une pléthore d’applications ayant des effets transformateurs dans les

domaines de l’ingénierie et de la science. Cela a également attiré l’attention de la communauté

des chercheurs sur la construction de modèles d’intelligence artificielle (IA) dotés de capacités

de raisonnement générales. Cependant, malgré le succès retentissant des réseaux neuronaux

dans une variété de tâches qui impliquent comme la génération de langage et d’images ou

encore la détection et la reconnaissance d’objets, les tâches qui impliquent la résolution de

problèmes discrets et combinatoires constituent toujours un angle mort fondamental de ces

modèles. Ils représentent depuis longtemps un obstacle de longue date sur la voie des sys-

tèmes d’intelligence artificielle à usage général. Les problèmes d’optimisation combinatoire

sont éminemment représentatifs de cette catégorie, car ils posent des défis fondamentaux

difficiles à relever dans le cadre du paradigme standard de l’apprentissage automatique. Deux

obstacles fondamentaux dans cette quête sont i) la difficulté de naviguer dans des espaces de

configuration discrets exponentiellement grands en utilisant l’optimisation continue basée

sur le gradient, ii) notre incapacité à obtenir de grandes quantités de données annotées en

raison du coût de calcul élevé que cela nécessite. Le sujet de cette thèse sera de développer

une approche cohérente de l’optimisation combinatoire avec des réseaux de neurones qui

se concentre sur la résolution directe de ces défis. Dans la première moitié de la thèse, nous

présenterons notre proposition pour l’optimisation combinatoire neuronale sans supervision.

Nous démontrons comment il est possible de concevoir des fonctions de perte continues

pour des problèmes d’optimisation contraints afin de permettre l’apprentissage sans accès

à des données étiquetées. Nous nous appuyons sur la célèbre méthode probabiliste du do-

maine de la combinatoire pour argumenter l’existence de solutions de haute qualité dans

les représentations apprises d’un réseau neuronal qui a été entraîné avec notre approche.

Nous montrons également comment récupérer ces solutions de manière déterministe à l’aide

de techniques de dérandomisation issues de la littérature. Dans la deuxième partie, nous

élargissons le champ de notre enquête et concevons un cadre général pour les extensions

continues des fonctions ensemblistes. Cette approche permet d’entraîner des réseaux neu-

ronaux pour des problèmes discrets, même lorsque l’objectif et les contraintes du problème

sont donnés sous forme de boîte noire. Nous développons des extensions pour des domaines

tels que l’hypercube, mais aussi des domaines de plus haute dimension tels que le cône des

matrices semi-définies positives. Nous montrons que ce cadre nous permet d’incorporer des

éléments a priori spécifiques au problème dans le pipeline et améliore considérablement

sa polyvalence puisqu’il peut être utilisé pour générer un nouveau substitut continu pour

de l’erreur d’apprentissage dans la classification d’images. Dans l’ensemble, les méthodes

que nous proposons font progresser l’état de l’art en matière d’optimisation combinatoire

neuronale grâce à la conception de fonctions de perte fondées sur des principes. En outre, en
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permettant l’utilisation de fonctions discrètes dans des modèles différentiables de bout en

bout, elles ouvrent la voie à des capacités combinatoires et de raisonnement améliorées pour

les algorithmes d’apprentissage automatique.

Mots clés : Optimisation combinatoire, Méthode probabiliste, Apprentissage non supervisé,

Extension des fonctions de l’ensemble, apprentissage en haute dimension
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1 INTRODUCTION

1.1 Combinatorial Optimization and Machine Learning

Combinatorial optimization (CO) involves the study of problems where the goal is to find the

best possible configuration out of a finite collection of items. This includes problems like

boolean satisfiability (SAT), maximum independent set (MIS), and traveling salesperson (TSP).

Combinatorial optimization has important real-world applications including circuit design

and verification (Vizel et al., 2015), route scheduling (Toth and Vigo, 2002), communication

networks (Cheng et al., 2006) and molecular chemistry (Ehrlich and Rarey, 2011). The study of

combinatorial optimization problems has also had a tremendous impact in modern computer

science and mathematics. It has elucidated deep connections between (convex) geometry,

graph theory, optimization theory, and combinatorics (Lovász, 2019; Ardila, 2021). Combina-

torial problems have also been instrumental in formalizing notions of efficient computation

through the complexity class P (Edmonds, 1965), as well as developing central notions of

computational complexity theory like NP-Completeness (Karp, 1972; Cook, 1971).

1.1.1 Problem setting

CO problems over a set that consists of n items typically involve finding a feasible subset

S ⊆ [n] that minimizes (or maximizes) an objective function f : 2[n] → R. Here, [n] denotes

the set that contains all n items and 2[n] denotes its power set. The collection of all feasible

subsets of [n] will be denoted by Ω ⊆ 2[n]. This type of problem is known as a constrained

optimization problem. As an example, consider the maximum clique problem where we are

given an undirected graph on n nodes G = (V ,E), with V denoting a finite set of nodes and

E ⊆ V ×V the set of edges where each edge is a tuple of nodes. Then, Ω is defined as the

collection of all possible cliques in G , i.e., subsets S ⊆ V such that, for every S, all pairs of

nodes in S are connected by an edge in G . The goal is then to find the clique S ∈Ω that has the

largest number of nodes.

While several CO problems fit this description, it is also common to encounter CO problems

without an objective function. In those cases, it is sufficient to find any feasible solution to

the problem. The class of constraint satisfaction problems (CSPs) are precisely of this type.

We are given a set of variables and a set of constraints on those variables. The goal is to find

an assignment of values to the variables that satisfies all constraints. A classic example of

a constraint satisfaction problem is SAT. In the SAT problem, we are given a logic formula

that consists of Boolean variables (i.e., taking values “true” or “false”) and logical operations

between them (AND, OR, NOT). The goal is then to find an assignment of values to the

1



1 Introduction

variables such that the entire formula evaluates to “true”. If there exists such an assignment,

the formula is said to be satisfiable. The logical operations present in the formula naturally

constrain the feasible combinations of values that can be assigned to the variables. In this

problem, the notion of feasibility is equivalent to the notion of satisfiability, i.e., Ω may be

defined as the collection of variable assignments that evaluate to “true”. Constraint satisfaction

problems include games like Sudoku, graph coloring, and map coloring problems, as well

as crossword and logic puzzles. It is worth mentioning that constraint satisfaction problems

can be intimately connected to unconstrained optimization problems. Indeed, for any CSP

instance, one may consider the optimization problem of maximizing the number of constraints

that are being satisfied, or equivalently, minimizing the number of violated constraints. For a

more detailed discussion on CSPs and their application see Brailsford et al. (1999).

1.1.2 Solving CO problems

While important combinatorial problems like the matching problem can be solved efficiently

(i.e., are in P), many of the flagship combinatorial optimization problems are known to be NP-

Hard. This means no known polynomial time algorithm may solve arbitrary instances of those

problems. Therefore, a plethora of methods have been developed for different combinatorial

problems. Depending on the type of constraints and the type of objective that a given problem

has, different approaches may be adopted to solve it. For example, given a linear cost function

and linear constraints on the variables of a constrained optimization program, one may

employ a linear programming solver. More broadly, we may classify approaches to solving CO

problems into the following three categories (Festa, 2014):

• Exact methods. These methods provide guarantees for the optimality of the solution.

Branch and bound algorithms (Lodi, 2010) are a prominent example. They partition the

problem into smaller relaxed subproblems and by iteratively solving each subproblem a

better bound on the solution of the problem is obtained which progressively narrows

down the solution space.

• Approximation algorithms (Williamson and Shmoys, 2011). These methods cannot

guarantee optimality but they can guarantee that their solutions will be at most a given

factor away from the optimal. Randomized algorithms and convex relaxations often fall

in this category. A celebrated example is the (Goemans and Williamson, 1995) algorithm

for the maximum cut problem which returns cuts with expected weight at least 0.87x

the size of the optimal cut.

• (Meta)-Heuristics (Potvin and Gendreau, 2018). Those are algorithms that are efficient

in practice but do not provide any solution quality guarantees. This category includes

methods like tabu search (Glover, 1986) and genetic algorithms (Kramer, 2017).

Despite the large variety of methods that have been developed for solving those problems it is

still relatively easy to generate hard instances that will be challenging for most state-of-the-art
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algorithms. Examples include random synthetic cryptographic instances for SAT (Ganesh

and Vardi, 2020), and hard synthetic instances for other constraint satisfaction problems such

as coloring and independent set (Prosser, 2012; Xu et al., 2007; Xu, 2007). However, as we

will explain in the following paragraphs, those problems can still be carefully dissected and

efficient solutions can be found for many problem instances that are encountered in the real

world.

1.1.3 Motivation: “Nature is not an adversary”

While NP (or NP-Hard) problems are expected to be difficult, worst-case complexity can be

misleading. A famous example is that of the simplex algorithm, for which worst-case examples

were constructed and shown to take exponential time (Klee and Minty, 1972). Nevertheless,

the performance of the algorithm is known to be fast in practice and this discrepancy between

worst-case and average-case performance for the simplex algorithm has been extensively

studied and explained (Spielman and Teng, 2004). Conversely, it is to be expected that for any

hard problem, one can identify families of instances with special properties that make the

problem tractable. In fact, in certain cases, it is possible to even prove that the problem is

polynomial-time solvable for a given family of instances. Examples of such cases include the

maximum independent set which can be computed exactly for perfect graphs in polynomial

time (Grötschel et al., 1981) by calculating the theta number (Lovász, 1979), and SAT instances

with dependency graphs of sufficiently bounded maximum degree which makes them solvable

in polynomial time with a simple local resampling algorithm (Moser and Tardos, 2010). It is

said that “nature is not an adversary” (Cappart et al., 2021a) because real-world instances

often come with such additional structure that is imposed by the domain that generates

them. Several such cases have been documented in the literature. For example, the SAT

problem is NP-Complete and yet SAT Solvers perform “unreasonably well” in various sets of

industrial instances (Ganesh and Vardi, 2020), often due to the high modularity that is present

in their dependency structure (Ansótegui et al., 2012). Another interesting example is that

of the maximum clique problem, which is often solved fast in practice for large real-world

graphs due to their small clique-core gap (Walteros and Buchanan, 2020). These examples

suggest that with sufficient expertise, one may identify the properties of the data distribution

that make a hard problem tractable for a given set of instances and pick a suitable efficient

algorithm for it. This serves as a central motivation for neural combinatorial optimization, i.e.,

leveraging the abilities of machine learning models to identify patterns and relevant features

in data in order to solve combinatorial optimization problems.

1.1.4 Complementary perspectives on ML and CO

Machine learning (ML) aims to solve problems through a data-driven approach: the param-

eters of a model are updated to capture the properties of available observations with the

purpose of predicting properties of unseen data or even generating new data. In the past

decade, this approach has had a striking impact in several fields of science (Jumper et al., 2020;
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Larkoski et al., 2020) and engineering (Zhang and Yu, 2020; Fawzi et al., 2022) as well as in

industrial applications (Koumchatzky and Andryeyev, 2017; Ying et al., 2018). The most recent

example of the success of learning architectures is found in large language models (LLMs)

(Bommasani et al., 2021) like ChatGPT, which have demonstrated impressive capabilities in

numerous tasks including coding problems, interaction with humans, and complex games

(Karpas et al., 2022; Schick et al., 2023; Bubeck et al., 2023). In this thesis, our goal will be to use

machine learning models to solve combinatorial optimization problems. To better understand

the motivation behind this, we discuss two complementary perspectives on the topic. They

both highlight the potential benefits of the fusion between combinatorial optimization and

machine learning.

The ability of machine learning models to capture relevant patterns in data and exploit them

for downstream tasks motivates their use in combinatorial optimization. The powerful fea-

ture extraction capabilities of neural networks may circumvent the computational hardness

barrier of combinatorial problems by identifying and exploiting the structure that is present

in real-world instances. In that sense, they may prove helpful in the improvement of existing

algorithms and the discovery of new ones, therefore advancing the state of the art in the

field. Examples include the breakthroughs in strategy games like chess and GO (Schrittwieser

et al., 2020; Zhang and Yu, 2020) which combine trained models with Monte Carlo Tree Search

(Coulom, 2007).

The converse is also true: the study and use of combinatorial optimization problems and

algorithms in the context of machine learning can lead to improvements in the understanding

of neural network architectures and the construction of AI models with reasoning and algorith-

mic capabilities. A famous example is the graph isomorphism problem which has been central

in characterizing the expressive power of graph neural networks (GNNs) (Morris et al., 2019;

Loukas, 2020a). Other related results include bounds on the approximation ratios of GNNs for

several combinatorial problems on bounded degree graphs (Sato et al., 2020), impossibility

results for computing structural properties and solving decision problems (Loukas, 2019), and

the inability of graph neural networks to count substructures (Chen and Tian, 2019). These all

highlight certain limitations of modern learning architectures when it comes to performing

combinatorial tasks.

A crucial point regarding those two complementary perspectives is that progress in one

direction does not directly entail progress in the other. For example, consider a model that

learns to identify which heuristic to pick among a pool of heuristics for a given problem

instance (Nudelman et al., 2004). That model may learn to function as a metaheuristic and

improve the state-of-the-art results on a series of benchmarks. However, in that scenario,

this pipeline may not generalize to problems or instances for which an efficient heuristic is

not known. Therefore, the problem-solving abilities of such a pipeline are predicated on the

existence of classical heuristics but not on an improved ability of the actual machine learning

model to perform reasoning or combinatorial tasks. In the other direction, progress in the

development of combinatorial and reasoning capabilities of neural networks may not directly
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translate to state-of-the-art results for CO. The top-performing algorithms for combinatorial

problems are a product of painstaking engineering and clever combination of heuristics. It

is likely that improvement in combinatorial capabilities alone will not be sufficient and any

ML-driven algorithm for CO problems will have to be specifically engineered for the given

task in order to be competitive. Although both directions are worth pursuing independently,

meaningful progress will be certainly achieved in the “Goldilocks” zone between those two,

where the study of neural architectures from a combinatorial lens and the pursuit of state-of-

the-art CO results with the help of ML models will coalesce into architectures with improved

reasoning and combinatorial capabilities that can advance the state of the art.

1.2 Central challenges of ML for CO

So far we have seen how work at the intersection of CO and ML can be a fruitful endeavor for

both of those fields. This leads us to discuss the central challenges and developments in the

literature that have motivated the contributions of this thesis.

1.2.1 Fusing discrete and continuous computation

Despite the impressive progress that has been made in flagship machine learning pipelines

like LLMs, it is known that they can perform poorly when it comes to reasoning and plan-

ning (Valmeekam et al., 2022). Even for well-known computationally tractable problems like

sorting small lists of numbers, ChatGPT will not consistently produce correct solutions 1.

Those failures are not the byproduct of computational limitations, as LLMs are trained on vast

datasets and have access to powerful computational resources. More broadly, combinatorial

and algorithmic problem-solving has been one of the most challenging obstacles to overcome,

as ML models are still often outperformed by simple heuristics or exact algorithms (Boettcher,

2023a,b; Ciarella et al., 2023; Liu et al., 2022; Böther et al., 2022). This points to the significant

limitations of prominent neural network pipelines in performing reasoning and combinatorial

tasks. A fundamental challenge that underlies the lack of success in achieving those capabil-

ities for neural networks is the difficulty of fusing discrete computation and neural network

architectures trained with gradient descent. Neural networks generally operate on continuous

and differentiable representations while discrete computations typically require discrete data

and introduce non-differentiable computational nodes in the pipeline. Various techniques

have been proposed that smoothly incorporate discrete operations like sampling (Huijben

et al., 2022), sorting (Mena et al., 2018; Grover et al., 2018), convex optimization layers (Agrawal

et al., 2019), and logic gates (Petersen et al., 2022) in neural network architectures. These often

involve the use of stochastic gradient estimation (Grathwohl et al., 2018), reparametrization

techniques, and continuous relaxations (Niculae et al., 2023). Alas, these techniques tend to

be highly specialized. General-purpose reliable approaches for solving a wide range of existing

1As of April 2023, many failure modes for sorting can be found. A common example is to ask the model to sort
several numbers, each represented as a fraction.
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combinatorial and algorithmic problems are still not available. The focus of this thesis will be

to make progress on this challenge by designing a framework that enables the use of discrete

functions in differentiable machine learning pipelines.

1.2.2 Computational efficiency, generalization, and neural algorithmic reasoning

A critical consideration for machine learning models is their computational efficiency. Through

the use of continuous proxies for discrete combinatorial objectives, we will show how we can

train neural networks without any supervision. This eschews the need for labeled solutions

which can be time-consuming for hard combinatorial problems, thereby increasing computa-

tional efficiency. The absence of labels can also naturally help to avoid overfitting, leading to

better generalization. These are some of the key motivations for the work that we will present

in Chapter 2. Since the publication of the work in Chapter 2, several other methods have been

proposed in the literature that adopt a similar approach to solving combinatorial problems

(Schuetz et al., 2022; Dai et al., 2020; Sun et al., 2022; Xu et al., 2020a; Min et al., 2022), which

speaks to its viability.

Generalization has also motivated the study of inductive biases in machine learning models

(Goyal and Bengio, 2022). It is commonly argued that due to the no free lunch theorem,

it is impossible to have a general-purpose model that excels at all tasks; some degree of

specialization is required. That is precisely the role of inductive biases, which are the innate

assumptions that are built into the pipeline through various architectural and algorithmic

choices in order to effectively restrict the hypothesis space (i.e., the space of possible functions

the model can learn) (Baxter, 2000). A good example of this are graph neural networks, which

are often successful in tasks that involve relational reasoning, precisely because they have a

relational inductive bias (Battaglia et al., 2018). Therefore, it seems clear that providing some

innate structure to models depending on the task will be conducive to better generalization. A

formalization of this notion of compatibility between model biases and task structure comes

from the work on algorithmic alignment (Xu et al., 2020b). A model is said to align with an

algorithm if the model can efficiently learn to simulate that algorithm. Models which align

well with known algorithms are expected to enjoy better sample complexity and generalization

properties. Returning back to graph neural networks as an example, they are known to align

with the Bellman-Ford algorithm for dynamic programming (Xu et al., 2020b; Dudzik and

Veličković, 2022). This is backed up empirically as graph neural networks perform well on

dynamic-programming problems like shortest paths on graphs. Another benefit of such

alignment is that the internal operations of the model become more interpretable which may

lead to performance guarantees.

Those considerations have motivated the research program on neural algorithmic reasoning

(Veličković et al., 2020; Veličković et al., 2022) and related works that focus on the execution of

algorithms with neural networks (Yan et al., 2020; Li et al., 2020). They also form the primary

motivation behind the contribution of Chapter 3. Discrete operations and discrete functions
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form the building blocks of algorithms. The goal of our contribution in that chapter is to

provide a way to incorporate such building blocks in neural network pipelines by presenting

a general methodology for using discrete functions with the continuous high-dimensional

features of neural networks.

1.2.3 Solving discrete problems in high dimensional spaces

The neural algorithmic reasoning blueprint places additional emphasis on the neural execu-

tion of algorithms natively on the learned high-dimensional representations of the neural

network. This aims to avoid information bottlenecks in neural architectures and to take

full advantage of their feature-extracting capabilities. The use of algorithms in that context

will provide performance and reliability guarantees while maintaining the benefits of neural

representations. Conceptually, this is related to fundamental ideas in approximation algo-

rithms and graph theory which revolve around solving combinatorial problems on discrete

structures by embedding them in suitable high-dimensional spaces. The geometric properties

of the embeddings in that space are then used to determine the combinatorial properties

of the discrete structure. For example, it has been shown that certain connectivity proper-

ties of undirected graphs can be determined by showing that their embeddings in a suitable

high-dimensional space satisfy specific orthogonality and linear independence conditions

(Lovász et al., 1989). Another major achievement is the use of semidefinite programming for

approximation algorithms and in particular the celebrated Goemans-Williamson maximum

cut algorithm (Goemans and Williamson, 1995), which relies on embedding a graph in a higher

dimensional space and using a probabilistic argument to obtain a certificate for the size of the

maximum cut that can be recovered. In the same spirit, Chapter 3 will show how we can use

a discrete function directly on a continuous high-dimensional space by defining a suitable

continuous counterpart of the discrete function in that space.

1.3 A general approach to neural combinatorial optimization

The goal of this thesis will be to provide tools that enable machine learning pipelines to

successfully solve diverse combinatorial problems. Our methodology is directly motivated by

the considerations around generalization and efficiency that we described in our discussion.

To that end, we will propose a general framework for unsupervised neural combinatorial

optimization. We will describe an approach to creating differentiable loss functions that can

be used to train neural networks to solve combinatorial optimization problems on graphs

without access to labels. This is primarily achieved through a loss function derived using

the probabilistic method which represents the objective of the constrained optimization

problem. The neural network learns a distribution over solutions from which we are able to

deterministically recover a high-quality solution in a principled fashion. We show that this

leads to strong experimental results against neural baselines, heuristics, and even general-

purpose solvers. To demonstrate the generality of our approach we derive loss functions for
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numerous important combinatorial problems. Furthermore, we provide a detailed discussion

of the main limitations of the method and explain how more sophisticated probabilistic

techniques can be utilized to overcome them for the class of constraint satisfaction problems.

To tackle the more general problem of fusing discrete computation with neural networks, we

propose a framework for constructing continuous extensions of discrete functions that are

defined on sets. Extensions are continuous versions of the discrete functions that agree with

them at discrete points and can be used as drop-in replacements in differentiable end-to-

end pipelines. Our extensions can be viewed from a probabilistic perspective as efficiently

computable expectations of distributions over discrete function evaluations. We describe

several scalar extensions and provide guidelines on how to derive new ones. We also establish

important properties of extensions that allow them to be used in differentiable end-to-end

models. Motivated by ideas from approximation algorithms, semidefinite programming, and

neural algorithmic reasoning, we show how to define extensions on higher dimensional spaces.

This allows us to evaluate set functions on the high-dimensional representations learned

by neural networks. We use extensions to define loss functions which leads to improved

performance in combinatorial optimization. Additionally, we show how to build simple

constraints into our extensions. Going beyond combinatorial optimization, we build an

extension of the training error of a classifier for the purpose of image classification. In order

to further expand the scope of extensions, we show how they can be defined on different

geometries which further enhances their applicability. Finally, we will describe an extension-

based probabilistic penalty loss that overcomes some of the major limitations of the losses

described in Chapter 2.

1.4 Thesis outline

The rest of the thesis is organized as follows: In the second chapter, we describe our approach

to unsupervised neural combinatorial optimization which uses the Erdős probabilistic method

to construct differentiable loss functions for CO problems. We show how to obtain certificates

of solution quality from the network and how to obtain an efficient deterministic algorithm

that decodes discrete solutions from the learned distributions of the network. In the second

half of the chapter, we provide an extended discussion of the applicability and the limitations

of the method and discuss potential improvements.

In the third chapter, we build a general framework for learning with discrete functions in end-

to-end differentiable pipelines. We do this by defining continuous extensions, i.e., continuous

counterparts of discrete functions that agree with the original function on discrete points. We

then proceed to define extensions on higher dimensional domains and test them experimen-

tally on combinatorial optimization problems and classification problems. Furthermore, we

provide an extended discussion on the properties of extensions, how to derive new ones, and

how to generalize them to different geometries and different problems.

In the final chapter, we provide an overview of the contributions of the thesis and discuss
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some potential future directions.

List of contributions. This thesis is composed of the following published papers and articles:

• Chapter 2: Karalias, N. and Loukas, A. (2020). Erdos goes neural: an unsupervised

learning framework for combinatorial optimization on graphs. Advances in Neural

Information Processing Systems, 33:6659–6672.

• Chapter 3: Karalias, N., Robinson, J. D., Loukas, A., and Jegelka, S. (2022). Neural set

function extensions: Learning with discrete functions in high dimensions. In Oh, A. H.,

Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural Information Processing

Systems.

During my doctoral studies, I also co-authored the following paper, which I do not present in

this document:

• Bouritsas, G., Loukas, A., Karalias, N., and Bronstein, M. (2021). Partition and code:

learning how to compress graphs. Advances in Neural Information Processing Systems,

34:18603–18619.
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2 ERDŐS GOES NEURAL: AN UNSUPER-

VISED LEARNING FOR COMBINATORIAL

OPTIMIZATION ON GRAPHS

2.1 Introduction

Combinatorial optimization (CO) includes a wide range of computationally hard problems

that are omnipresent in scientific and engineering fields. Among the viable strategies to

solve such problems are neural networks, which were proposed as a potential solution by

Hopfield and Tank (1985). Neural approaches aspire to circumvent the worst-case complexity

of NP-hard problems by only focusing on instances that appear in the data distribution.

Since Hopfield and Tank, the advent of deep learning has brought new powerful learning

models, reviving interest in neural approaches for combinatorial optimization. A prominent

example is that of graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008), whose

success has motivated researchers to work on CO problems that involve graphs (Joshi et al.,

2019a; Yolcu and Poczos, 2019; Khalil et al., 2016; Gasse et al., 2019; Lemos et al., 2019; Nowak

et al., 2017; Bai et al., 2020; Prates et al., 2019) or that can otherwise benefit from utilizing a

graph structure in the problem formulation (Toenshoff et al., 2019) or the solution strategy

(Gasse et al., 2019). The expressive power of graph neural networks has been the subject of

extensive research (Xu et al., 2019; Loukas, 2020a; Chen et al., 2020b; Sato et al., 2019; Sato,

2020; Barceló et al., 2019; Garg et al., 2020). Encouragingly, GNNs can be Turing universal in

the limit (Loukas, 2020b), which motivates their use as general-purpose solvers.

Yet, despite recent progress, CO problems still pose a significant challenge to neural networks.

Successful models often rely on supervision, either in the form of labeled instances (Li et al.,

2018; Selsam et al., 2018; Joshi et al., 2019a) or of expert demonstrations Gasse et al. (2019).

This success comes with drawbacks: obtaining labels for hard problem instances can be

computationally infeasible (Yehuda et al., 2020), and direct supervision can lead to poor

generalization (Joshi et al., 2019b). Reinforcement learning (RL) approaches have also been

used for both classical CO problems (Chen and Tian, 2019; Yolcu and Poczos, 2019; Yao et al.,

2019; Kool et al., 2018; Deudon et al., 2018; Khalil et al., 2017; Bai et al., 2020) as well as for

games with large discrete action spaces, like Starcraft (Vinyals et al., 2019) and Go (Silver

et al., 2017). However, not being fully-differentiable, they tend to be harder and more time

consuming to train.

An alternative to these strategies is unsupervised learning, where the goal is to model the
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problem with a differentiable loss function whose minima represent the discrete solution

to the combinatorial problem (Smith, 1999; Bianchi et al., 2019; Amizadeh et al., 2018, 2019;

Toenshoff et al., 2019; Yao et al., 2019). Unsupervised learning is expected to aid in gener-

alization, as it allows the use of large unlabeled datasets, and it is often envisioned to be

the long term goal of artificial intelligence. However, in the absence of labels, deep learn-

ing faces practical and conceptual obstacles. Continuous relaxations of objective functions

from discrete problems are often faced with degenerate solutions or may simply be harder

to optimize. Thus, successful training hinges on empirically-identified correction terms and

auxiliary losses (Bianchi et al., 2019; Amizadeh et al., 2019; Van den Bout and Miller, 1989).

Furthermore, it is especially challenging to decode valid (with respect to constraints) discrete

solutions from the soft assignments of a neural network (Li et al., 2018; Toenshoff et al., 2019),

especially in the absence of complete labeled solutions (Selsam et al., 2018).

2.1.1 Contributions

Our framework aims to overcome some of the aforementioned obstacles of unsupervised

learning: it provides a principled way to construct a differentiable loss function whose minima

are guaranteed to be low-cost valid solutions of the problem. Our approach is inspired by Erdős’

probabilistic method and entails two steps: First, we train a GNN to produce a distribution

over subsets of nodes of an input graph by minimizing a probabilistic penalty loss function.

Successfully optimizing our loss is guaranteed to yield good integral solutions that obey the

problem constraints. After the network has been trained, we employ a well-known technique

from randomized algorithms to sequentially and deterministically decode a valid solution

from the learned distribution. The procedure is schematically illustrated in Figure 2.1.

We demonstrate the utility of our method in two NP-hard graph-theoretic problems: the max-

imum clique problem Bomze et al. (1999) and a constrained min-cut problem Bruglieri et al.

(2004); Svitkina and Fleischer (2011) that can perform local graph clustering (Andersen et al.,

2006; Wang et al., 2017). In both cases, our method achieves competitive results against neural

baselines, discrete algorithms, and mathematical programming solvers. Our method outper-

forms the CBC solver (provided with Google’s OR-Tools), while also remaining competitive

with the SotA commercial solver Gurobi 9.0 (Gurobi Optimization, 2020) on larger instances.

Finally, our method outperforms both neural baselines and well-known local graph clustering

algorithms in its ability to find sets of good conductance, while maintaining computational

efficiency. 1

2.1.2 Related work

Most neural approaches to CO are supervised. One of the first modern neural networks were

the Pointer Networks (Vinyals et al., 2015), which utilized a sequence-to-sequence model for

the travelling salesman problem (TSP). Since then, numerous works have combined GNNs

1Code available at: https://github.com/Stalence/erdos_neu
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with various heuristics and search procedures to solve classical CO problems, such as quadratic

assignment Nowak et al. (2017), graph matching (Bai et al., 2018), graph coloring (Lemos

et al., 2019), TSP (Li et al., 2018; Joshi et al., 2019a), and even sudoku puzzles (Palm et al.,

2018). Another fruitful direction has been the fusion with solvers. For example, Neurocore

(Selsam and Bjørner, 2019) incorporates an MLP to a SAT solver to enhance variable branching

decisions, whereas Gasse et al. (2019) learn branching approximations by a GNN and imitation

learning. Further, Wang et al. (2019) include an approximate SDP satisfiability solver as a

neural network layer and Vlastelica et al. (2019) incorporate exact solvers within a differentiable

architecture by smoothly interpolating the solver’s piece-wise constant output. Unfortunately,

the success of supervised approaches hinges on building large training sets with already solved

hard instances, resulting in a chicken and egg situation. Moreover, since it is hard to efficiently

sample unbiased and representative labeled instances of an NP-hard problem (Yehuda et al.,

2020), labeled instance generation is likely not a viable long-term strategy either.

Training neural networks without labels is generally considered to be more challenging. One

possibility is to use RL: Khalil et al. (2017) combine Q-Learning with a greedy algorithm and

structure2vec embeddings to solve max-cut, minimum vertex cover, and TSP. Q-Learning is

also used in Bai et al. (2020) for the maximum common subgraph problem. On the subject of

TSP, the problem was also solved with policy gradient learning combined with attention Kool

et al. (2018); Deudon et al. (2018); Bello et al. (2016). Attention is ubiquitous in problems that

deal with sequential data, which is why it has been widely used with RL for the problem of

vehicle routing Gao et al. (2020); Nazari et al. (2018); Peng et al. (2019); James et al. (2019).

Another interesting application of RL is the work of Yolcu and Poczos (2019), where the REIN-

FORCE algorithm is employed in order to learn local search heuristics for the SAT problem.

This is combined with curriculum learning to improve stability during training. Finally, Chen

and Tian (2019) use actor-critic learning to iteratively improve complete solutions to combina-

torial problems. Though a promising research direction, deep RL methods are far from ideal,

as they can be sample inefficient and notoriously unstable to train—possibly due to poor

gradient estimates, dependence on initial conditions, correlations present in the sequence of

observations, bad rewards, sub-optimal hyperparameters, or poor exploration (Thrun and

Schwartz, 1993; Nikishin et al., 2018; Irpan, 2018; Mnih et al., 2015).

The works that are more similar to ours are those that aim to train neural networks in a

differentiable and end-to-end manner: Toenshoff et al. (2019) model CO problems in terms

of a constraint language and utilize a recurrent GNN, where all variables that coexist in a

constraint can exchange messages. Their model is completely unsupervised and is suitable for

problems that can be modeled as maximum constraint satisfaction problems. For other types

of problems, like independent set, the model relies on empirically selected loss functions to

solve the task. Amizadeh et al. (2018, 2019) train a GNN in an unsupervised manner to solve

the circuit-SAT and SAT problems by minimizing an appropriate energy function. Finally, Yao

et al. (2019) train a GNN for the max-cut problem on regular graphs without supervision by

optimizing a smooth relaxation of the cut objective and policy gradient.
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Our approach innovates from previous works in the following ways: it enables training a neural

network in an unsupervised, differentiable, and end-to-end manner, while also ensuring that

identified solutions will be integral and will satisfy problem constraints. Crucially, this is

achieved in a simple and mathematically-principled way, without resorting to continuous

relaxations, regularization, or heuristic corrections of improper solutions. In addition, our

approach does not necessitate polynomial-time reductions, but solves each problem directly.

2.1.3 Background: the probabilistic method

The probabilistic method is a nonconstructive proof method pioneered by Paul Erdős. It is

used to demonstrate the existence of objects with desired combinatorial properties (Alon and

Spencer, 2004; Erdös, 1959; Szegedy, 2013) but has also served as the foundation for important

algorithms in the fields of computer science and combinatorial optimization (Moser and

Tardos, 2010; Raghavan, 1988).

Let us consider the common didactic example of the maximum cut problem on a simple

undirected graph (Mitzenmacher and Upfal, 2017). The goal is to bipartition the nodes of

the graph in such a way that the number of edges with endpoints in both partitions (i.e., the

cardinality of the cut-set) is maximized. For simplicity we will refer to the cardinality of the

cut-set as the cut. Suppose we decide the bipartition based on a fair coin flip, i.e., we split

the nodes of the graph by assigning them to a heads or a tails set. An edge belongs to the

cut-set when its endpoints belong to different sets. This happens with probability 1/2, which

implies that the expected cut will be equal to half of the edges of the graph. Thus, by Markov’s

inequality and given that the cut is non-negative, it follows that there exists a bipartitioning

that contains at least half of the edges of the graph.

To obtain such a solution deterministically, we will utilize the method of conditional expec-

tation (Raghavan, 1988): we sequentially visit every node vi in the graph and we compute

the expected cut conditioned on vi belonging to the heads or tails set (together with all the

decisions made until the i -th step) and add vi to the set (heads or tails) that yields smaller

conditional expected cut. Since the (conditional) expectation can only improve at every step,

the sets recovered are guaranteed to cut at least half the edges of the graph, as proved earlier.

Our goal is to re-purpose this classic approach to tackle combinatorial optimization prob-

lems with deep learning. Instead of using a naive probability assignment like in the maxcut

example, the probability distribution is learned by a GNN which allows us to obtain higher

quality solutions. Additionally, we show how this argument may be extended to incorporate

constraints within the learning paradigm.
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Sequential
Decoding

Figure 2.1: Illustration of the “Erdős goes neural” pipeline. First, a differentiable loss is
derived for a given problem using the probabilistic method. Next, a GNN is trained in an
unsupervised way using the derived loss to output a probability distribution over the nodes,
essentially providing a probabilistic certificate for the existence of a low cost feasible solution.
At inference time, a discrete solution satisfying the certificate is obtained in a sequential and
deterministic manner by the method of conditional expectation.

2.2 The Erdős probabilistic method for deep learning

We focus on combinatorial problems on weighted graphs G = (V ,E , w) that are modelled as

constrained optimization problems admitting solutions that are node sets:

min
S⊆V

f (S;G) subject to S ∈Ω. (2.1)

Above, Ω is a family of sets having a desired property, such as forming a clique or covering

all nodes. This yields a quite general formulation that can encompass numerous classical

graph-theoretic problems, such as the maximum clique and minimum vertex cover problems.

2.2.1 The “Erdős Goes Neural” pipeline

Rather than attempting to optimize the non-differentiable problem equation 2.1 directly, we

propose to train a GNN to identify distributions of solutions with provably advantageous

properties. Our approach is inspired by Erdős’ probabilistic method, a well known technique

in the field of combinatorics that is used to prove the existence of an object with a desired

combinatorial property.

As visualized in Figure 2.1, our method consists of three steps:

1. Construct a GNN gθ that outputs a distribution D = gθ(G) over sets.

2. Train gθ to optimize the probability that there exists a valid S∗ ∼D of small cost f (S∗;G).

3. Deterministically recover S∗ from D by the method of conditional expectation.

There are several possibilities in instantiating D. We opt for the simplest and suppose that

the decision of whether vi ∈ S is determined by a Bernoulli random variable xi of probability

pi . The network can trivially parametrize D by computing pi for every node vi . Keeping the

distribution simple will aid us later on to tractably control relevant probability estimates.
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2 Erdős Goes Neural: an unsupervised learning for combinatorial optimization on graphs

Next, we discuss how gθ can be trained (Section 2.2.2) and how to recover S∗ from D (Sec-

tion 2.2.3).

2.2.2 Deriving a probabilistic loss function

The main challenge of our method lies in determining how to tractably and differentiably train

gθ. Recall that our goal is to identify a distribution that contains low-cost and valid solutions.

The probabilistic loss

Aiming to build intuition, let us first consider the unconstrained case. To train the network,

we construct a loss function ℓ(D;G) that abides to the following property:

P ( f (S;G) < ℓ(D;G)) > t with D = gθ(G). (2.2)

Any number of tail inequalities can be used to instantiate such a loss, depending on the

structure of f . If we only assume that f is non-negative, Markov’s inequality yields

ℓ(D;G)≜
E
[

f (S;G)
]

1− t
for any t ∈ [0,1). (2.3)

If the expectation cannot be computed in closed-form, then any upper bound also suffices.

The main benefit of approaching the problem in this manner is that the surrogate (and possibly

differentiable) loss function ℓ(D;G) can act as a certificate for the existence of a good set in

the support of D. To illustrate this, suppose that one has trained gθ until the loss is sufficiently

small, say ℓ(D;G) = ϵ. Then, by the probabilistic method, there exists with strictly positive

probability a set S∗ in the support of D whose cost f (S∗;G) is at most ϵ.

The probabilistic penalty loss

To incorporate constraints, we take inspiration from penalty methods in constrained opti-

mization and add a term to the loss function that penalizes deviations from the constraint.

Specifically, we define the probabilistic penalty function fp (S;G)≜ f (S;G)+1S∉Ωβ, where β

is a scalar. The expectation of fp yields the probabilistic penalty loss:

ℓ(D;G)≜ E
[

f (S;G)
]+P (S ∉Ω)β. (2.4)

We prove the following:

Theorem 1. Fix any β> maxS f (S;G) and let ℓ(D;G) < (1− t )β. With probability at least t , set

S∗ ∼D satisfies

f (S∗;G) < ℓ(D;G)/(1− t ) and S∗ ∈Ω,
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2.2 The Erdős probabilistic method for deep learning

under the condition that f is non-negative.

Hence, similar to the unconstrained case, the penalized loss acts as a certificate for the

existence of a low-cost set, but now the set is also guaranteed to abide to the constraintsΩ.

The main requirement for incorporating constraints is to be able to differentiably compute

an upper estimate of the probability P (S ∉Ω). A worked out example of how P (S ∉Ω) can be

controlled is provided in Section 2.3.1.

The special case of linear box constraints

An alternative construction can be utilized when problem equation 2.1 takes the following

form:

min
S⊆V

f (S;G) subject to
∑

vi∈S
ai ∈ [bl ,bh], (2.5)

with ai , bl , and bh being non-negative scalars.

We tackle such instances with a two-step approach. Denote by D0 the distribution of sets

predicted by the neural network and let p0
1, . . . , p0

n be the probabilities that parametrize it. We

rescale these probabilities such that the constraint is satisfied in expectation:

∑
vi∈V

ai pi = bl +bh

2
, where pi = clamp

(
c p0

i ,0,1
)

and c ∈R.

Though non-linear, the aforementioned feasible re-scaling can be carried out by a simple

iterative scheme (detailed in Section A.3). If we then proceed as in Section 2.2.2 by utilizing a

probabilistic loss function that guarantees the existence of a good unconstrained solution, we

have:

Theorem 2. Let D be the distribution obtained after successful re-scaling of the probabilities.

For any (unconstrained) probabilistic loss function that abides to P ( f (S;G) < ℓ(D;G)) >
t , set S∗ ∼ D satisfies f (S∗;G) < ℓ(D;G) and

∑
vi∈S∗ ai ∈ [bl ,bh], with probability at least

t −2exp
(−(bh −bl )2/

∑
i 2a2

i

)
.

Section 2.3.2 presents a worked-out example of how Theorem 2 can be applied.

2.2.3 Retrieving integral solutions

A simple way to retrieve a low cost integral solution S∗ from the learned distribution D is by

monte-carlo sampling. Then, if S∗ ∼D with probability t , the set can be found within the first

k samples with probability at least 1− (1− t )k . However, our goal is to deterministically obtain

S∗ so we will utilize the method of conditional expectation that was introduced in Section

2.1.3.
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2 Erdős Goes Neural: an unsupervised learning for combinatorial optimization on graphs

Let us first consider the unconstrained case. Given D, the goal is to identify a set S∗ that satis-

fies f (S∗;G) ≤ E[
f (S;G)

]
. To achieve this, one starts by sorting v1, . . . , vn in order of decreasing

probabilities pi . Let Sreject =∅ be the set of nodes not accepted in the solution. Set S∗ =∅
is then iteratively updated one node at a time, with vi being included to S∗ in the i -th step if

E
[

f (S;G) | S∗ ⊂ S, S ∩Sreject =∅, and vi ∈ S
] < E[

f (S;G) | S∗ ⊂ S, S ∩Sreject =∅, and vi ∉ S
]
.

This sequential decoding works because the conditional expectation never increases.

In the case of the probabilistic penalty loss, the same procedure is applied w.r.t. the expectation

of fp (S;G). The latter ensures that the decoded set will match the claims of Theorem 1. For the

method of Section 2.2.2, a sequential decoding can guarantee either that the cost of f (S∗;G) is

small or that the constraint is satisfied.

2.3 Case studies

This section demonstrates how our method can be applied to two well known NP-hard prob-

lems: the maximum clique (Bomze et al., 1999) and the constrained minimum cut (Bruglieri

et al., 2004) problems.

2.3.1 The maximum clique problem

A clique is a set of nodes such that every two distinct nodes are adjacent. The maximum clique

problem entails identifying the clique of a given graph with the largest possible number of

nodes:

min
S⊆V

−w(S) subject to S ∈Ωclique, (2.6)

with Ωclique being the family of cliques of graph G and w(S) =∑
vi ,v j∈S wi j being the weight

of S. Optimizing w(S) is a generalization of the standard cardinality formulation to weighted

graphs. For simple graphs, both weight and cardinality formulations yield the same minimum.

We can directly apply the ideas of Section 2.2.2 to derive a probabilistic penalty loss:

Corollary 1. Fix positive constants γ and β satisfying maxS w(S) ≤ γ≤β and let wi j ≤ 1. If

ℓclique(D;G)≜ γ− (β+1)
∑

(vi ,v j )∈E
wi j pi p j + β

2

∑
vi ̸=v j

pi p j < (1− t )β,

then, with probability at least t , set S∗ ∼D is a clique of weight w(S∗) > γ−ℓclique(D;G)/(1− t ).

The loss function ℓclique can be evaluated in linear time w.r.t. the number of edges of G by

rewriting the rightmost term as
∑

vi ̸=v j
pi p j = (

∑
vi∈V pi )2 −∑

(vi ,v j )∈E 2pi p j .

A remark. One may be tempted to fix β→∞, such that the loss does not feature any hyper-
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2.3 Case studies

parameters. However, with mini-batch gradient descent it can be beneficial to tune the

contribution of the two terms in the loss to improve the optimization. This was also confirmed

in our experiments, where we selected the relative weighting according to a validation set.

Decoding cliques.After the network is trained, valid solutions can be decoded sequentially

based on the procedure of Section 2.2.3. The computation can also be sped up by replacing

conditional expectation evaluations (one for each node) by a suitable upper bound. Since

the clique property is maintained at every point, we can also efficiently decode cliques by

sweeping nodes (in the order of larger to smaller probability) and only adding them to the set

when the clique constraint is satisfied.

2.3.2 Graph partitioning

The simplest partitioning problem is the minimum cut: find set S ⊂ V such that cut(S) =∑
vi∈S, v j∉S wi j is minimized. Harder variants of partitioning aim to provide control on partition

balance, as well as cut weight. We consider the following constrained min-cut problem:

min
S

cut(S) subject to vol(S) ∈ [vl , vh],

where the volume vol(S) =∑
vi∈S di of a set is the sum of the degrees of its nodes.

The above can be shown to be NP-hard (Iyer et al., 2013) and exhibits strong connections with

other classical formulations: it is a volume-balanced graph partitioning problem (Andreev

and Racke, 2006) and can be used to minimize graph conductance (Chung and Graham, 1997)

by scanning through solutions in different volume intervals and selecting the one whose

cut-over-volume ratio is the smallest (this is how we test it in Section 2.4).

We employ the method described in Section 2.2.2 to derive a probabilistic loss function:

Corollary 2. Let the probabilities p1, . . . , pn giving rise toD be re-scaled such that
∑

vi∈V di pi =
vl+vh

2 and, further, fix ℓcut(D;G)≜
∑

vi∈V di pi −2
∑

(vi ,v j )∈E pi p j wi j . Set S∗ ∼D satisfies

cut
(
S∗)< ℓcut(D;G)/(1− t ) and vol

(
S∗) ∈ [vl , vh],

with probability at least t −2exp
(−(vh − vl )2/

∑
i 2d 2

i

)
.

The derived loss function ℓcut can be computed efficiently on a sparse graph, as its computa-

tional complexity is linear on the number of edges.

Decoding clusters.Retrieving a set that respects Corollary 2 can be done by sampling. Alterna-

tively, the method described in Section 2.2.3 can guarantee that the identified cut is at most as

small as the one certified by the probabilistic loss. In the latter case, the linear box constraint

can be practically enforced by terminating before the volume constraint gets violated.
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2 Erdős Goes Neural: an unsupervised learning for combinatorial optimization on graphs

2.4 Empirical evaluation

We evaluate our approach in its ability to find large cliques and partitions of good conductance.

2.4.1 Methods

We refer to our network as Erdős’ GNN, paying tribute to the pioneer of the probabilistic

method that it is inspired from. Its architecture comprises of multiple layers of the Graph

Isomorphism Network (GIN) (Xu et al., 2018) and a Graph Attention (GAT) (Veličković et al.,

2017) layer. Furthermore, each convolution layer was equipped with skip connections, batch

normalization and graph size normalization (Dwivedi et al., 2020). In addition to a graph, we

gave our network access to a one-hot encoding of a randomly selected node, which encourages

locality of solutions, allows for a trade-off between performance and efficiency (by rerunning

the network with different samples), and helps the network break symmetries (Seo et al.,

2019). Our network was trained with mini-batch gradient descent, using the Adam optimizer

(Kingma and Ba, 2014) and was implemented on top of the pytorch geometric API (Fey and

Lenssen, 2019).

Maximum clique. We compared against three neural networks, three discrete algorithms, and

two integer-programming solvers: The neural approaches comprised of RUN-CSP, Bomze

GNN, and MS GNN. The former is a SotA unsupervised network incorporating a reduction

to independent set and a post-processing of invalid solutions with a greedy heuristic. The

latter two, though identical in construction to Erdős’ GNN, were trained based on standard

smooth relaxations of the maximum clique problem with a flat 0.5-threshold discretization

(Motzkin and Straus, 1965; Bomze, 1997). Since all these methods can produce multiple

outputs for the same graph (by rerunning them with different random node attributes), we

fix two time budgets for RUN-CSP and Erdős’ GNN, that we refer to as “fast" and “accurate"

and rerun them until the budget is met (excluding reduction costs). On the other hand, the

Bomze and MS GNNs are rerun 25 times, since further repetitions did not yield relevant

improvements. We considered the following algorithms: the standard Greedy MIS Heur. which

greedily constructs a maximal independent set on the complement graph, NX MIS approx.

(Boppana and Halldórsson, 1992), and Toenshoff-Greedy (Toenshoff et al., 2019). Finally,

we formulated the maximum clique in integer form (Bomze et al., 1999) and solved it with

CBC (johnjforrest et al., 2020) and Gurobi 9.0 (Gurobi Optimization, 2020), an open-source

solver provided with Google’s OR-Tools package and a SotA commercial solver. We should

stress that our evaluation does not intend to establish SotA results (which would require a

more exhaustive comparison), but aims to comparatively study the weaknesses and strengths

of key unsupervised approaches.

Local partitioning. We compared against two neural networks and four discrete algorithms.

To the extent of our knowledge, no neural approach for constrained partitioning exists in

the literature. Akin to maximum clique, we built the L1 GNN and L2 GNN to be identical

to Erdős’ GNN and trained them based on standard smooth ℓ1 and ℓ2 relaxations of the cut
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combined with a volume penalty. On the other hand, a number of algorithms are known for

finding small-volume sets of good conductance. We compare to well-known and advanced

algorithms (Fountoulakis et al., 2018): Pagerank-Nibble (Andersen et al., 2006), Capacity

Releasing Diffusion (CRD) (Wang et al., 2017), Max-flow Quotient-cut Improvement (MQI)

(Lang and Rao, 2004) and Simple-Local (Veldt et al., 2016).

2.4.2 Data

Experiments for the maximum clique were conducted in the IMDB, COLLAB (Kersting et al.,

2020; Yanardag and Vishwanathan, 2015) and TWITTER (Leskovec and Krevl, 2014) datasets,

listed in terms of increasing graph size. Further experiments were done on graphs generated

from the RB model (Xu et al., 2007), that has been specifically designed to generate challenging

problem instances. We worked with three RB datasets: a training set containing graphs of up

to 500 nodes (Toenshoff et al., 2019), a newly generated test set containing graphs of similar

size, and a set of instances that are up to 3 times larger (Xu, 2007; Li et al., 2018; Toenshoff et al.,

2019). On the other hand, to evaluate partitioning, we focused on the FACEBOOK (Traud et al.,

2012), TWITTER, and SF-295 (Yan et al., 2008) datasets, with the first being a known difficult

benchmark. More details can be found in the Appendix.

Evaluation. We used a 60-20-20 split between training, validation, and test for all datasets,

except for the RB model data (details in paragraph above). Our baselines often require the

reduction of maximum clique to independent set, which we have done when necessary. The

reported time costs factor in the cost of reduction. During evaluation, for each graph, we

sampled multiple inputs, obtained their solutions, and kept the best one. This was repeated

for all neural approaches and local graph clustering algorithms. Solvers were run with multiple

time budgets.

2.4.3 Results: maximum clique

Table 2.1 reports the test set approximation ratio, i.e., the ratio of each solution’s cost over

the optimal cost. For simple datasets, such as IMDB, most neural networks achieve similar

performance and do not violate the problem constraints. On the other hand, the benefit of the

probabilistic penalty method becomes clear on the more-challenging Twitter dataset, where

training with smooth relaxation losses yields significantly worse results and constraint viola-

tion in at least 78% of the instances (see Appendix). Erdős’ GNN always respected constraints.

Our method was also competitive w.r.t. network RUN-CSP and the best solver, consistently

giving better results when optimizing for speed (“fast"). The most accurate method overall was

Gurobi, which impressively solved all instances perfectly given sufficient time. As observed,

Gurobi has been heavily engineered to provide significant speed up w.r.t. CBC. Nevertheless,

we should stress that both solvers scale poorly with the number of nodes and are not viable

candidates for graphs with more than a few thousand nodes.
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IMDB COLLAB TWITTER

Erdős’ GNN (fast) 1.000 (0.08 s/g) 0.982 ± 0.063 (0.10 s/g) 0.924 ± 0.133 (0.17 s/g)

Erdős’ GNN (accurate) 1.000 (0.10 s/g) 0.990 ± 0.042 (0.15 s/g) 0.942 ± 0.111 (0.42 s/g)

RUN-CSP (fast) 0.823 ± 0.191 (0.11 s/g) 0.912 ± 0.188 (0.14 s/g) 0.909 ± 0.145 (0.21 s/g)

RUN-CSP (accurate) 0.957 ± 0.089 (0.12 s/g) 0.987 ± 0.074 (0.19 s/g) 0.987 ± 0.063 (0.39 s/g)

Bomze GNN 0.996 ± 0.016 (0.02 s/g) 0.984 ± 0.053 (0.03 s/g) 0.785 ± 0.163 (0.07 s/g)

MS GNN 0.995 ± 0.068 (0.03 s/g) 0.938 ± 0.171 (0.03 s/g) 0.805 ± 0.108 (0.07 s/g)

NX MIS approx. 0.950 ± 0.071 (0.01 s/g) 0.946 ± 0.078 (1.22 s/g) 0.849 ± 0.097 (0.44 s/g)

Greedy MIS Heur. 0.878 ± 0.174 (1e-3 s/g) 0.771 ± 0.291 (0.04 s/g) 0.500 ± 0.258 (0.05 s/g)

Toenshoff-Greedy 0.987 ± 0.050 (1e-3 s/g) 0.969 ± 0.087 (0.06 s/g) 0.917 ± 0.126 (0.08 s/g)

CBC (1s) 0.985 ± 0.121 (0.03 s/g) 0.658 ± 0.474 (0.49 s/g) 0.107 ± 0.309 (1.48 s/g)

CBC (5s) 1.000 (0.03 s/g) 0.841 ± 0.365 (1.11 s/g) 0.198 ± 0.399 (4.77 s/g)

Gurobi 9.0 (0.1s) 1.000 (1e-3 s/g) 0.982 ± 0.101 (0.05 s/g) 0.803 ± 0.258 (0.21 s/g)

Gurobi 9.0 (0.5s) 1.000 (1e-3 s/g) 0.997 ± 0.035 (0.06 s/g) 0.996 ± 0.019 (0.34 s/g)

Gurobi 9.0 (1s) 1.000 (1e-3 s/g) 0.999 ± 0.015 (0.06 s/g) 1.000 (0.34 s/g)

Gurobi 9.0 (5s) 1.000 (1e-3 s/g) 1.000 (0.06 s/g) 1.000 (0.35 s/g)

Table 2.1: Test set approximation ratios for all methods on real-world datasets. For solvers,
time budgets are listed next to the name. Pareto-optimal solutions are indicated in bold,
whereas italics indicate constraint violation (we report the results only for correctly solved
instances).

Table 2.2 tests the best methods on hard instances. We only provide the results for Toenshoff-

Greedy, RUN-CSP, and Gurobi, as the other baselines did not yield meaningful results. Erdős’

GNN can be seen to be better than RUN-CSP in the training and test set and worse for larger,

out of distribution, instances. However, both neural approaches fall behind the greedy algo-

rithm and Gurobi, especially when optimizing for quality. The performance gap is pronounced

for small instances but drops significantly for larger graphs, due to Gurobi’s high computa-

tional complexity. It is also interesting to observe that the neural approaches do better on

the training set than on the test set. Since both neural methods are completely unsupervised,

the training set performance can be taken at face value (the methods never saw any labels).

Nevertheless, the results also show that both methods partially overfit the training distribu-

tion. The main weakness of Erdős’ GNN is that its performance degrades when testing it in

larger problem instances. Nevertheless, it is encouraging to observe that even on graphs of at

most 1500 nodes, both our “fast” method and RUN-CSP surpass Gurobi when given the same

time-budget. We hypothesize that this phenomenon will be more pronounced with larger

graphs.

2.4.4 Results: local graph partitioning

The results of all methods and datasets are presented in Table 2.3. To compare fairly with

previous works, we evaluate partitioning quality based on the measure of local conductance,

φ(S) = cut(S)/vol(S), even though our method only indirectly optimizes conductance. Nev-
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Training set Test set Large Instances

Erdős’ GNN (fast) 0.899 ± 0.064 (0.27 s/g) 0.788 ± 0.065 (0.23 s/g) 0.708 ± 0.027 (1.58 s/g)

Erdős’ GNN (accurate) 0.915 ± 0.060 (0.53 s/g) 0.799 ± 0.067 (0.46 s/g) 0.735 ± 0.021 (6.68 s/g)

RUN-CSP (fast) 0.833 ± 0.079 (0.27 s/g) 0.738 ± 0.067 (0.23 s/g) 0.771 ± 0.032 (1.84 s/g)

RUN-CSP (accurate) 0.892 ± 0.064 (0.51 s/g) 0.789 ± 0.053 (0.47 s/g) 0.804 ± 0.024 (5.46 s/g)

Toenshoff-Greedy 0.924 ± 0.060 (0.02 s/g) 0.816 ± 0.064 (0.02 s/g) 0.829 ± 0.027 (0.35 s/g)

Gurobi 9.0 (0.1s) 0.889 ± 0.121 (0.18 s/g) 0.795 ± 0.118 (0.16 s/g) 0.697 ± 0.033 (1.17 s/g)

Gurobi 9.0 (0.5s) 0.962 ± 0.076 (0.34 s/g) 0.855 ± 0.083 (0.31 s/g) 0.697 ± 0.033 (1.54 s/g)

Gurobi 9.0 (1.0s) 0.980 ± 0.054 (0.45 s/g) 0.872 ± 0.070 (0.40 s/g) 0.705 ± 0.039 (2.05 s/g)

Gurobi 9.0 (5.0s) 0.998 ± 0.010 (0.76 s/g) 0.884 ± 0.062 (0.68 s/g) 0.790 ± 0.285 (6.01 s/g)

Gurobi 9.0 (20.0s) 0.999 ± 0.003 (1.04 s/g) 0.885 ± 0.063 (0.96 s/g) 0.807 ± 0.134 (21.24 s/g)

Table 2.2: Hard maximum clique instances (RB). We report the approximation ratio (bigger
is better) in the training and test set, whereas the rightmost column focuses on a different
distribution consisting of graphs of different sizes. Execution time is measured in sec. per
graph (s/g). Pareto-optimal solutions are in bold.

ertheless, Erdős’ GNN outperforms all previous algorithms by a considerable margin. We

would like to stress that this result is not due to poor usage of previous methods: we rely

on a well-known implementation (Fountoulakis et al., 2018) and select the parameters of

all non-neural baselines by grid-search on a held-out validation set. We also do not report

performance when a method (Pagerank-Nibble) returns the full graph as a solution (Wang

et al., 2017).

It is also interesting to observe that, whereas all neural approaches perform well, GNN trained

with a probabilistic loss attains better conductance across all datasets. We remind the reader

that all three GNNs feature identical architectures and that the L1 and L2 loss functions are

smooth relaxations that are heavily utilized in partitioning problems (Bresson et al., 2013).

Furthermore, due to its high computational complexity and the extra overhead that is incurred

when constructing the problem instances for large graphs, Gurobi performed poorly in all

but the smallest graphs.We argue that the superior solution quality of Erdős’ GNN serves as

evidence for the benefit of our unsupervised framework.

2.4.5 Visual demonstration

Figure 2.2 provides a visual demonstration of the input and output of Erdős’ GNN in a simple

instance of the maximum clique problem.

We would like to make two observations. The first has to do with the role of the starting seed

in the probability assignment produced by the network. In the maximum clique problem, we

did not require the starting seed to be included in the solutions. This allowed the network to

flexibly detect maximum cliques within its receptive field without being overly constrained

by the random seed selection. This is illustrated in the example provided in the figure, where

the seed is located inside a smaller clique and yet the network is able to produce probabilities
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SF-295 FACEBOOK TWITTER

Erdős’ GNN 0.124 ± 0.001 (0.22 s/g) 0.156 ± 0.026 (289.28 s/g) 0.292 ± 0.009 (6.17 s/g)

L1 GNN 0.188 ± 0.045 (0.02 s/g) 0.571 ± 0.191 (13.83 s/g) 0.318 ± 0.077 (0.53 s/g)

L2 GNN 0.149 ± 0.038 (0.02 s/g) 0.305 ± 0.082 (13.83 s/g) 0.388 ± 0.074 (0.53 s/g)

Pagerank-Nibble 0.375 ± 0.001 (1.48 s/g) N/A 0.603 ± 0.005 (20.62 s/g)

CRD 0.364 ± 0.001 (0.03 s/g) 0.301 ± 0.097 (596.46 s/g) 0.502 ± 0.020 (20.35 s/g)

MQI 0.659 ± 0.000 (0.03 s/g) 0.935 ± 0.024 (408.52 s/g) 0.887 ± 0.007 (0.71 s/g)

Simple-Local 0.650 ± 0.024 (0.05 s/g) 0.955 ± 0.019 (404.67 s/g) 0.895 ± 0.008 (0.84 s/g)

Gurobi (10s) 0.105 ± 0.000 (0.16 s/g) 0.961 ± 0.010 (1787.79 s/g) 0.535 ± 0.006 (52.98 s/g)

Table 2.3: Cluster conductance on the test set (smaller is better) and execution time measured
in sec. per graph. Pareto-optimal solutions are in bold.

a) Input c) Integral solutionb) GNN output

Figure 2.2: Illustration of our approach in a toy instance of the maximum clique problem from
the IMDB dataset. a) A random node is selected to act as a ‘seed’. b) Erdős’ GNN outputs a
probability distribution over the nodes (color intensity represents the probability magnitude)
by exploring the graph in the vicinity of the seed. c) A set is sequentially decoded by starting
from the node whose probability is the largest and iterating with the method of conditional
expectation. The identified solution is guaranteed to obey the problem constraints, i.e., to be
a clique.

that focus on the largest clique. On the other hand, in the local graph partitioning problem

we forced the seed to always lie in the identified solution—this was done to ensure a fair

comparison with previous methods. Our second observation has to do with the sequential

decoding process. It is encouraging to notice that, even though the central hub node has a

considerably lower probability than the rest of the nodes in the maximum clique, the method

of conditional expectation was able to reliably decode the full maximum clique.

2.4.6 Maximum clique problem: ablations

The following experiments provide evidence that both the learning and decoding phases of

our framework are important in obtaining valid cliques of large size.
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Constraint violation

Table 2.4 reports the percentage of instances in which the clique constraint was violated in

our experiments. Neural baselines optimized according to penalized continuous relaxations

struggle to detect cliques in the COLLAB and TWITTER datasets, whereas Erdős’ GNN always

respected the constraint.

IMDB COLLAB TWITTER RB (all datasets)

Erdős’ GNN (fast) 0% 0% 0% 0%

Erdős’ GNN (accurate) 0% 0% 0% 0%

Bomze GNN 0% 11.8% 78.1% –

MS GNN 1% 15.1% 84.7% –

Table 2.4: Percentage of test instances where the clique constraint was violated.

Thus, decoding solutions by the method of conditional expectation is crucial to ensure that

the clique constraint is always satisfied.

Importance of learning

We also tested the efficacy of the learned probability distributions produced by our GNN on

the Twitter dataset. We sampled multiple random seeds and produced the corresponding

probability assignments by feeding the inputs to the GNN. These were then decoded with the

method of conditional expectation and the best solution was kept. To measure the contribu-

tion of the GNN, we compared to random uniform probability assignments on the nodes. In

that case, instead of multiple random seeds, we had the same number of multiple random

uniform probability assignments. Again, these were decoded with the method of conditional

expectation and the best solution was kept. The results of the experiment can be found in

Table 2.5.

Erdős’ GNN U ∼ [0,1]

1 sample 0.821 ± 0.222 0.513 ± 0.266

3 samples 0.875 ± 0.170 0.694 ± 0.210

5 samples 0.905 ± 0.139 0.760 ± 0.172

Table 2.5: Approximation ratios with sequential decoding using the method of conditional
expectation on the twitter dataset. The second column represents decoding with the probabil-
ities produced by the GNN. The third column shows the results achieved by decoding random
uniform probability assignments on the nodes.

As observed, the cliques identified by the trained GNN were significantly larger than those

obtained when decoding a clique from a random probability assignment.
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2.4.7 Local graph partitioning: additional results

We also attempted to find sets of small conductance using Gurobi. To ensure a fair comparison,

we mimicked the setting of Erdős’ GNN and re-run the solver with three different time-budgets,

making sure that the largest budget exceeded our method’s running time by approximately

one order of magnitude. We used the following integer-programming formulation of the

constrained graph partitioning problem:

min
x1,...,xn∈{0,1}

∑
(vi ,v j )∈E

(xi −x j )2 (2.7)

subject to

(
1− 1

4

)
vol ≤ ∑

vi∈V
xi di ≤

(
1+ 1

4

)
vol and xs = 1.

Above, vol is a target volume and s is the index of the seed node (see explanation in Sec-

tion A.2.3). Each binary variable xi is used to indicate membership in the solution set. In order

to encourage local solutions on a global solver like Gurobi, the generated target volumes were

set to lie in an interval that is attainable within a fixed receptive field (identically to the neural

baselines). Additionally, the seed node vs was also required to be included in the solution. The

above choices are consistent with the neural baselines and the local graph partitioning setting.

The results are shown in Table 2.6. Due to its high computational complexity, Gurobi per-

formed poorly in all but the smallest instances. In the FACEBOOK dataset, which contains

graphs of 7k nodes on average, Erdős’ GNN was impressively able to find sets of more than 6×
smaller conductance, while also being 6× faster.

SF-295 FACEBOOK TWITTER

Gurobi (0.1s) 0.107 ± 0.000 (0.16 s/g) 0.972 ± 0.000 (799.508 s/g) 0.617 ± 0.012 (3.88 s/g)

Gurobi (1s) 0.106 ± 0.000 (0.16 s/g) 0.972 ± 0.000 (893.907 s/g) 0.544 ± 0.007 (12.41 s/g)

Gurobi (10s) 0.105 ± 0.000 (0.16 s/g) 0.961 ± 0.010 (1787.79 s/g) 0.535 ± 0.006 (52.98 s/g)

Erdős’ GNN 0.124 ± 0.001 (0.22 s/g) 0.156 ± 0.026 (289.28 s/g) 0.292 ± 0.009 (6.17 s/g)

Table 2.6: Average conductance of sets identified by Gurobi and Erdős’ GNN (these results are
supplementary to those of Table 2.3).

It should be noted that the time budget allowed for Gurobi only pertains to the optimization

time spent (for every seed). There are additional costs in constructing the problem instances

and their constraints for each graph. These costs become particularly pronounced in larger

graphs, where setting up the problem instance takes more time than the allocated optimization

budget. We report the total time cost in seconds per graph (s/g).
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2.5 Learning with the probabilistic method: extended discussion

In the previous sections, we presented fundamental tools of the probabilistic method that

can be used for unsupervised training of neural networks and showed that they can lead to

empirically successful neural network pipelines for combinatorial optimization. Since the

publication of that work, the method has been utilized in several follow-up works to solve

numerous combinatorial optimization problems (McCarty et al., 2021; Wang et al., 2022; Lin

et al., 2022; Min et al., 2022; Dai et al., 2020). This has also brought to the surface some of the

common challenges that are faced when using the probabilistic method in a neural network

context. This motivates the topics discussed in this section, which aim to elucidate some

of the subtle details behind this probabilistic approach, some of the key challenges that the

framework is facing, and some directions that can improve over the recipe that was presented

in the original publication.

2.5.1 The unconstrained case

First, we begin by providing a more detailed discussion for the definition of the loss function

in the unconstrained case in section 2.2.2. Recall that we are seeking a formal characterization

for the quality of the solution generated by the neural network. In the unconstrained case, a

probabilistic guarantee would require that with some probability t , a solution of bounded cost

is found, i.e.,

P ( f (S;G) < ℓ(D;G)) > t , (2.8)

for some learned distribution D = gθ(G). Our goal will be to find a differentiable loss function

ℓ(D;G) that satisfies this property. This is achieved in 2.3. More concretely, if we assume that

f is non-negative, from Markov’s inequality we have

P
(

f (S;G) ≥ ℓ(D;G)
)≤ ES∼D[ f (S;G)]

ℓ(D;G)
. (2.9)

For convenience, we will suppress the subscript in ES∼D notation. But it should be clear that

throughout the chapter that the expectation is taken over the parametrized distribution of

sets for a given graph G . Then, from 2.8

1−P ( f (S;G) ≥ ℓ(D;G)) > t . (2.10)

Obviously, if the above inequality holds for the upper bound E[ f (S;G)]/ℓ(D;G), then it also

holds for P ( f (S;G) ≥ ℓ(D;G)). We may replace the probability with the upper bound to obtain

1− E[ f (S;G)]

ℓ(D;G)
> t ,
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and consequently

ℓ(D;G) > E[ f (S;G)]

1− t
, t ∈ [0,1).

Now, let us consider the case where ℓ(D;G) = ϵ. This implies

ϵ(1− t ) > E[ f (S;G)].

The fact that f is nonnegative and the inequality above imply that there exists a set S with cost

at most ϵ. This leads us to the definition presented in 2.3.

2.5.2 The minima of the probabilistic penalty function

An important consideration has to do with the minima of the probabilistic penalty loss. Recall

that the minimum of a given problem is given by S∗ = minS∈Ω f (S;G), and that the probabilistic

penalty loss is given by

ℓ(D;G) = E[
f (S;G)

]+βP (S ∉Ω).

Theorem 3. The minima of the probabilistic penalty loss are the minima of the constrained

optimization problem:

min
D

ℓ(D;G) = min
S∈Ω

f (S;G).

See proof in Appendix A.1.4.

Of course, the fact that the minima of the functions match does not provide any guarantees for

the optimization landscape itself or the performance of the model. However, it does guarantee

that our continuous relaxation of the problem does not introduce spurious minima and that

the loss “faithfully” represents the problem.

2.6 Modelling constraints: case studies

In this section, we will briefly go over a list of commonly encountered combinatorial problems

and work out the corresponding derivations for their loss functions. Some of the examples

follow naturally from the derivations that have already been provided in the case studies

on maximum clique and partitioning. Here we make these connections explicit. The list of

problems that are covered here is by no means exhaustive, but the goal of the section is to

serve as a demonstration for the applicability of the method to some of the most well-known

combinatorial problems and to make the methodology completely transparent. These demon-

strations will also serve as a motivation to discuss the central challenges of the framework

later in this chapter.
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2.6.1 Constrained optimization: cliques, covers, and more

Maximum independent set. In the simple unweighted case of the maximum independent set

problem, we are given a graph G = (V ,E) and we are looking for the largest set S that contains

nodes that are not connected to each other, i.e., i ̸∼ j for all i , j ∈ S. The problem is known to

be NP-Hard. This can be written as the following optimization problem:

max
S

|S| subject to S ∈Ωindep.

Recall that the probabilistic penalty loss is defined as

ℓ(D;G)≜ E[ f (S;G)]+βP (S ∉Ω).

Let γ > maxS∈G |S|. Then the unconstrained cost will be f (S;G) = γ− |S|. The probability

of constraint violation (i.e., the probability that the set is not independent), is equal to the

probability that sets S will contain at least one edge. Formally,

P (S ∉Ωindep) = P

( ∑
vi ,v j∈S

1{(vi ,v j )∈E } ≥ 1

)

≤ E
[ ∑

vi ,v j∈S
xi x j wi j

]
(Markov’s Inequality)

= E [w(S)]

= ∑
vi ,v j∈S

pi p j (wi j ).

Here, E [w̄(S)] denotes the “expected weight” of the graph, i.e., the expected number of edges

contained by sets S. This leads to the following loss

ℓindep(D;G)≜ γ− ∑
i∈V

pi +β
∑

vi ,v j∈S
pi p j (wi j ).

Observe how the probability constraint violation resembles the one derived for the maximum

clique problem. As we have pointed out earlier, there exists a straightforward reduction from

maximum clique to the independent set problem: the maximum clique in a graph G is equal

to the maximum independent set in the complement Ḡ . This means that we can rewrite the
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clique constraint in A.6 with respect to the complement graph,

P (S ∉Ωclique) = P

( ∑
vi ,v j∈S

1{(vi ,v j )∉E } ≥ 1

)

≤ E
[ ∑

vi ,v j∈S
xi x j w̄i j

]
(Markov’s Inequality)

= E [w̄(S)]

= ∑
vi ,v j∈S

pi p j w̄i j

= ∑
vi ,v j∈S

pi p j (1−wi j ).

For simple unweighted graphs we have wi j = 1 if vi , v j ∈ E and wi j = 0 otherwise.

Maximum cut. In the maximum cut problem, given a graph G = (V ,E), we are tasked with

finding the set of nodes S with the maximum cut, i.e., with the maximum number of edges in

E that have exactly one endpoint in S and one in V \ S. Recall the expected value of the cut

from A.11,

E [cut(S)] = ∑
vi∈V

di pi −2
∑

(vi ,v j )∈E
pi p j wi j .

Then we may use γ= |E | to obtain the cut loss:

ℓmaxcut(D;G) = γ−E[cut(S)] = |E |− ∑
vi∈V

di pi −2
∑

(vi ,v j )∈E
pi p j wi j .

Minimum vertex cover. In the minimum vertex cover, we are tasked with finding the smallest

set S in a graph G = (V ,E) such that for all edges (vi , v j ) ∈ E in the graph, we have that either

vi ∈ S or v j ∈ S. The corresponding optimization problem can be written as:

min
S

|S| subject to S ∈Ωcover.

We may calculate the probability of constraint violation,

P (S ∉Ωcover) = P

( ∑
(vi ,v j )∈E

1{vi∉S and v j∉S} ≥ 1

)

≤ E
[ ∑

(vi ,v j )∈E
(1−xi )(1−x j )wi j

]
= ∑

(vi ,v j )∈E
(1−pi )(1−p j )wi j
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Therefore, the derived loss for the minimum vertex cover problem will be

ℓmincover(D;G)≜
∑
i∈V

pi +β
∑

vi ,v j∈S
(1−pi )(1−p j )wi j .

It is worth pointing out that the vertex cover is also related to the independent set and clique

problems through a simple reduction. This can be observed in the formal similarities be-

tween the constraints as well. More concretely, for any independent set S of a graph G , its

complement S̄ forms a vertex cover.

Minimum Dominating Set. The minimum dominating set problem is closely related to the

vertex cover problem. We are asked to find the smallest set S in a graph G = (V ,E) such that

every node in the graph is either part of S or adjacent to some vertex in S. Again, we write the

optimization problem as

min
S

|S| subject to S ∈Ωdomset.

To calculate the probability of constraint violation, let N+
i = {v j : v j ∈V , (v j , vi ) ∈ E }∪ {vi }.

P (S ∉Ωdomset) = P

 ∑
(vi )∈V

⋂
j∈N +

i

1v j∉S ≥ 1


≤ E

 ∑
vi∈V

∏
j∈N +

i

(1−x j )


= ∑

(vi )∈V

∏
j∈N +

i

(1−p j ).

This leads to the derived loss for the minimum dominating set problem,

ℓmindomset(D;G)≜
∑
i∈V

pi +β
∑

vi∈V

∏
j∈N +

i

(1−p j ).

Again, the apparent formal similarity to the vertex cover problem is not an accident. It is

known that for a connected graph, any vertex cover is also a dominating set. On the other

hand the converse is not always true.

The case of multiple constraints In real world problems, it is often the case that multiple types

of constraints have to be imposed simultaneously. LetΩ=Ω1 ∪Ω2 ∪·· ·∪Ωk be the feasible

set for a collection of k different constraints. Furthermore, assume that the each constraint

admits a differentiable upper bound, i.e., P (S ∉Ωi ) can be differentiable for all i = 1,2, . . . ,k.

Then the corresponding probabilistic penalty loss is written as

ℓ(D;G) = E[ f (S;G)]+βP (S ∉
n⋃

i=1
Ωi ).
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It is straightforward to apply the union bound and obtain the following loss

ℓ(D;G) = E[ f (S;G)]+β
n∑

i=1
P (S ∉Ωi ). (2.11)

2.6.2 Constraint satisfaction and boolean satisfiability

In the most general setting, we are dealing with problems defined over a finite collection

of variables, with a given set of constraints over these variables, and our goal is to find an

assignment of values to the variables such that all the constraints are satisfied. Formally, we are

given a problem instance I = (X,c1, . . . ,cm) which consists of variables X = (X1, X2, . . . , Xn) ∈Xn

that are defined over a discrete finite domain, and constraints c1,c2, . . . ,cm , with c j : Xn →
{True,False}. We say that a problem instance is satisfiable by an assignment of variables X if⋂m

j=1 c j (X) = True. The variables involved in a constraint c j will be denoted as vbl(c j ), and

are typically a subset of X. It will be instructive to keep CNF-SAT as a working example as

it will help us concretely the central points of this section. Boolean satisfiability is a central

problem in computer science that has served as the foundation of the theory of computational

complexity while also being intimately connected to important applications like software

verification and computer chip design (Biere et al., 2009).

In its standard form, we are given a formula composed of a set of m clauses and a set of n

Boolean variables. More specifically, each clause contains literals, i.e., variables vi or their

negation ¬vi . A clause is said to be satisfied if it evaluates to TRUE. Each clause imposes

logical constraints between literals, and the formula is said to be satisfiable if there exists an

assignment of values to the variables that satisfies all the clauses.

For the rest of this discussion, we will be focusing on one of the most well-known versions

of Boolean satisfiability, the CNF-SAT problem. In CNF-SAT, the formula is presented in

conjunctive normal form. That means that each clause in the formula consists of a disjunction

of literals (logical OR) and the formula consists of a conjunction (logical AND) of such clauses.

Then, a formula is said to be satisfiable if there exists an assignment of values to the variables

that makes all clauses simultaneously true. For example, the formula

(X1 ∨X2)∧ (¬X1 ∨X3)

admits multiple assignments that satisfy the formula, e.g., X1 = True, X2 = False, X3 = True.

The Boolean satisfiability problem can be viewed both from a constraint satisfaction and an

optimization lens. First, we replace logical variables Xi with discrete variables xi ∈ {0,1}. Let C
be the set of clauses in a given formula and let vbl+(ci ),vbl−(ci ) be the sets of variables in ci

that appear as Xi and as their negations ¬Xi respectively. We may then describe the number of

unsatisfied clauses by an assignment to the variables x1, x2, . . . , xn using a function f , defined
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as

funsat(x1, x2, . . . , xn) = ∑
ci∈C

 ∏
x j∈vbl+(ci )

(1−x j )
∏

x j∈vbl−(ci )
x j

 .

Note that defining f using the number of unsatisfied clauses is a matter of convenience and

helps simplify some expressions, as it will become apparent soon.

We begin with the optimization setting by looking at MAX-SAT. In this version of the problem,

regardless of the satisfiability of the formula as a whole, we are looking to maximize the

number of clauses that are true. The problem is known to be NP-Hard, even in the case of the

2-SAT (Garey et al., 1974). Therefore, the problem boils down to maximizing f and we can

apply a similar probabilistic argument as we did in the unconstrained case to obtain a loss

function. Namely, we have

ℓmaxSAT(D; I) = E[ funsat(x1, x2, . . . , xn)],

with a learned distribution D over possible assignments {0,1}n . Similar to our previous exam-

ples, it is instantiated through probabilities pi corresponding to each independent xi variable.

Therefore, from the linearity of expectation, we obtain

E[ funsat(x1, x2, . . . , xn)] = ∑
ci∈C

 ∏
x j∈vbl+(ci )

(1−p j )
∏

x j∈vbl−(ci )
p j

 .

Boolean satisfiability may also be described as a constraint satisfaction problem. In that case,

we are looking to decide whether the formula is satisfiable, i.e., to determine whether there

exist assignments S ∈ {0,1}n that satisfy the entire formula (i.e., satisfy all the clauses jointly).

This gives rise to classic problems like k-SAT, where each formula is composed of clauses that

contain k literals.

We may again employ the probabilistic method in this scenario in order to tackle formula

satisfiability. More concretely, if we show that the probability that all the clauses can be

satisfied is positive, i.e., P (S ∈ΩSAT) > 0, we have shown that the formula is satisfiable.

To do so, may consider only the constraint violation term in 2.4, i.e., we write

ℓSAT(D; I)≜ P (S ∉ΩSAT).

From this, it is clear that if ℓSAT(D; I) < 1, then the formula is satisfiable. Now, all we need is to

find a differentiable upper bound for P (S ∉ΩSAT). Leveraging Markov’s inequality yet again,
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we obtain

P (S ∉ΩSAT) = P ( funsat(x1, x2, . . . , xn) ≥ 1)

≤ E[ funsat(x1, x2, . . . , xn)]

= ∑
ci∈C

 ∏
x j∈vbl+(ci )

(1−p j )
∏

x j∈vbl−(ci )
p j

 .

As we can see the losses obtained for the unconstrained optimization version and the con-

straint satisfaction version are the same up to rescaling. This is due to the decomposability

of the problem in terms of clause events. More concretely, let bi = {S : ci (S) = FALSE}, i.e., bi

is the set of assignments that lead to the failure of clause i (clause i being unsatisfied). Each

clause ci can be then seen to define a feasible region Ωi and bi = Ω̄i its complement. This

means we may calculate the probability as p(S ∈ bi ) =∏
x j∈vbl+(ci )(1−p j )

∏
x j∈vbl−(ci ) p j . This

follows easily from the observation that a CNF clause fails only if all literals in that clause

simultaneously evaluate to false.

Indeed, we can use the union bound strategy from 2.11 and bound the probability of satisfia-

bility

P (S ∉ΩSAT) = P

( ⋃
ci∈C

S ∈ bi

)
≤ ∑

ci∈C
P (S ∈ bi )

= ∑
ci∈C

 ∏
x j∈vbl+(ci )

(1−p j )
∏

x j∈vbl−(ci )
p j

 .

Again, we arrive at the same expression. This is a direct consequence of the fact that when

we use Markov’s inequality, we leverage the linearity of expectation to calculate the expected

values of sums. Those sums can also be seen to emerge by taking the union bound over the

union of events over edges (or clauses in the case of SAT).

2.7 Challenges of learning with the probabilistic method

The previous sections have shown how the probabilistic method may be used to successfully

model a plethora of combinatorial problems. Naturally, there are properties that make certain

problems more amenable to the probabilistic method approach and others more challenging

to deal with. In this section, we will provide an in depth discussion of the most challenging

aspects of applying the probabilistic method in combinatorial problems along with how they

could potentially be addressed. First, we summarize the 3 most significant challenges:

• Challenge 1. The method, as it has been proposed, relies on rather simple bounds which

may not adequately capture the problem structure.
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• Challenge 2. The method requires explicit access to the objective, i.e., it cannot work in

a setting where the objective of the problem is provided as a black box.

• Challenge 3. The method requires the derivation of an efficiently computable and differ-

entiable expectation for the objective, and a differentiable upper bound or expectation

for the constraint violation. This becomes harder to achieve with the product measure

when the constraints or the objective are more complicated (e.g., nonlinear) functions.

Note that there is an overlap between the challenges. For example, the requirement for a

differentiable expectation for the cost and a differentiable bound for the constraint violation

(challenge 3) cannot be satisfied in the case of black box objectives and constraints (challenge

2). On the other hand these challenges are presented separately as it is not clear whether

dealing with challenge 3 necessarily implies a solution to challenge 2. One could plausibly

develop techniques for analytically computing differentiable bounds for more complicated

constraints by using more sophisticated probabilistic tools while keeping the product measure

and ignoring the black-box issue altogether.

2.7.1 Challenge 1: On the limitations of simple bounds

We will illustrate this challenge by focusing on the problem of boolean satisfiability, where

some of the limitations of using bounds like Markov’s inequality and the union bound can

become immediately apparent. To make this more concrete, consider the following example.

Let pi = 1
2 be the probability that the variable vi is True for all vi and consider the problem of

3-SAT, where each clause contains a disjunction of precisely 3 literals. Then, for any clause ci ,

P (S ∈ bi ) = 1
23 . In that case, the union bound implies

P (S ∉ΩSAT) ≤ m

23 .

This bound depends directly on the size of the formula (number of clauses). Clearly, as the size

of the formulae gets larger, if we were to use this as a loss function, the neural network would

have to increasingly get closer to the correct assignment in order to obtain a satisfiability

certificate.

Another issue that is brought by the use of simple bounds has to do with the dependencies

between events. For example, the union bound will be tight only in the case of independent

events. However, this is clearly not the case for any non-trivial formula, as the satisfiability

of a clause can provide information about the satisfiability of neighboring clauses due to the

fact that variables may occur in several clauses. We will make this observation precise in the

following section. It will motivate a different probabilistic approach that will be able to deal

with both scalability and dependency issues.
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2.7.2 Challenges 2 & 3: Black box functions and complex constraints

It may be apparent to some readers that the challenges that were listed earlier are more closely

connected than what they might appear. For example, the use of a product measure commits

us to certain types of bounds (challenge 1) which may limit our ability to model particular

kinds of constraints (challenge 3). As another example, if we could handle the black-box

setting (challenge 2), then that could potentially provide (partial) solutions to the rest of the

challenges. To highlight these connections we will be discussing the remaining two challenges

jointly.

To model an arbitrary combinatorial problem, a starting point is to consider its integer pro-

gramming formulation, if available. For example, consider the integer program for the Travel-

ling Salesperson Problem (TSP)(Dantzig et al., 1954) on a complete graph with distances wi j

and variables xi j per edge:

min
∑

(vi ,v j )∈E
xi j wi j , (2.12)

subject to
∑

i
xi j =

∑
j

xi j = 1, for all i , j , (2.13)∑
i∈T

∑
j∈T

xi j ≤ |T |−1 for all S ⊂V and S ̸=∅, xi j ∈ {0,1}. (2.14)

First, we consider the cost function and the equality constraints in 2.13. Since the cost function

is linear, its expectation for the probabilistic penalty loss can be easily derived from the linearity

of expectation. The way to compute the probability of constraint violation for the equality

constraints in 2.13 with a differentiable expression is not trivial but may be achieved through

a more elaborate argument. The inequality in 2.14 requires checking exponentially many sets

to enforce the subtour constraint. Various heuristics may be considered in order to effectively

deal with this constraint, e.g., a parametric connectivity constraint was recently utilized by

Gaile et al. (2023) to facilitate an unsupervised learning pipeline for the TSP. In the case of the

probabilistic method, it is nontrivial to determine how one could obtain a valid upper bound

on the probability of constraint violation through heuristics. Furthermore, if we commit

to some problem-specific heuristic, then clearly we would have to repeat that process on a

case-by-case basis which harms the overall applicability of our method.

Here, the central vulnerability of the approach we described so far becomes transparent. The

expectations of objective functions and the probabilities of constraint violations under a

product measure may not be efficiently expressible and computable in closed form. They

may depend on polynomially many terms (for a polynomial of a sufficiently large degree) or

may even require exponentially many terms to calculate. This is not only the case for the TSP

problem. Other related examples include:

• Spanning tree, acyclicity Zheng et al. (2018), and subgraph connectivity constraints.
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2.8 Improved bounds: local conditions and local search

• Spectral constraints, i.e., constraints on the eigenvalues of induced subgraphs.

• Sequence and ordering constraints, e.g., learning permutations.

Observe that the challenging constraints tend to involve global properties of the solution.

Indeed, for the problems that we have been able to provide clear derivations, a key property is

that the constraints (and the objective) are locally-decomposable and/or linear combinations

of the decision variables. This generally allows us to leverage the linearity of expectation and

union bounds over collections of local events (e.g., clause failure in CNFSAT) to bound the

probability of infeasible solutions. However, global constraints such as connectivity tend to

involve polynomials over the variables which complicates derivations, and in the hardest

cases, might even be computationally intractable. This difficulty is also due to the fact that

the product measure over n items is supported on 2n sets. Therefore, the expectation, unless

derivable in close form as we have shown already, might have to be estimated.

It is worth noting that for some constraints we may have access to algorithms and heuristics

that allow us to efficiently compute some metric of constraint violation. Unfortunately, in

those cases, the algorithm in general is a black box and derivatives can clearly not be calculated

for backpropagation. A potential approach there is to use stochastic gradient estimation to

differentiate through the black box REINFORCE or other related techniques (Grathwohl et al.,

2018). Another issue, is that those algorithms are generally defined for discrete inputs and

not continuous distributions so it is not clear how to use them as a proxy for the probability

of constraint violation that the probabilistic penalty loss requires. This leaves us with a set

of challenges that a general framework for unsupervised combinatorial optimization should

be able to address in order for it to be applicable to problems with diverse objectives and

constraints.

2.8 Improved bounds: local conditions and local search

We are going to discuss how the probabilistic method can be used in a way that captures

problem structure in order to alleviate some of the difficulties discussed in 2.7.1. This can lead

to theoretically stronger guarantees for the large class of constraint satisfaction problems.

In order to describe key structural properties of a constraint satisfaction problem instance, we

will utilize the concept of a dependency graph. A dependency graph GI = (C I ,E I ) encodes the

relational structure of constraints in the instance I , where each node ci represents a constraint,

and two nodes ci and c j are adjacent when {vbl(ci )
⋂

vbl(c j )} ̸=∅.

Intuitively, for any given formula we can make the following observation: a formula is more

highly constrained, and therefore harder to satisfy, when the clauses are densely connected.

For example, suppose a variable appears as X1 in a clause c1 and as ¬X1 in a clause c2. In that

case, clauses c1 and c2 are connected in the dependency graph. Furthermore, fixing X1 in

clause c1 to True implies that we fix the corresponding literal in C2 to False. This means now
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that we have one fewer degree of freedom in C2 if we want to satisfy it; at least one of the rest

of its variables will have to be true.

Building on that intuition, we can use a technique from the probabilistic method toolkit called

the Lovasz Local Lemma (LLL) Alon and Spencer (2004) which can provide a certificate of

satisfiability for constraint satisfaction problems by exploiting the sparsity of the dependency

graph. The most well-known formulation of the lemma states that if bad events bi occur with

bounded probability p, i.e., P (S ∈ bi ) ≤ p for i = 1,2, . . . ,m and if

p ≤ 1

e(∆+1)
, (2.15)

then P (S ∈⋂
i∈C b̄i ) > 0, where ∆ is the maximum degree of the dependency graph. In other

words, if bad events are not very likely and their dependencies are sufficiently sparse, a

satisfying assignment of variables exists. Here, the importance of the dependency graph

becomes explicit. Compared to the union bound that scales with the number of clauses, the

LLL bound scales with the maximum degree of the dependency graph.

Let us consider again the 3-SAT example from before, where each variable is decided based on

a fair coin toss. In that case, recall that P (S ∈ bi ) = 1
23 for any i . From the LLL, we can argue

that if

1

23 ≤ 1

e(∆+1)
(2.16)

then the formula is satisfiable. This also means that we can extract a sufficient condition for

satisfiability that depends on the maximum degree. More concretely, from 2.16, we can see

that if ∆≤ 8/e −1, then the instance is satisfiable. For 3-SAT using uniform probabilities over

the variables we see that this yields a rather weak condition, as it demands that each clause

is connected with at most one other clause. On the other hand, extending this argument for

k-SAT for k > 3 can lead to much more useful bounds, i.e., for arbitrary k we get e(∆+1) ≤ 2k .

So for uniform assignments, as long as the maximum degree of the dependency graph does

not grow faster than 2k , the LLL could effectively provide satisfiability certificates.

Comparison with the union bound. To highlight the utility of the symmetric LLL compared

to the Union bound we may consider the following argument. Since the union bound requires

P (S ∈⋃m
i=1 bi ) < 1, an extrapolation of the bound to a symmetric local condition would be to

require p(S ∈ bi ) < 1
m . Comparing with the bound of p(S ∈ bi ) ≤ 1/e(∆+1) it is easy to see that

when ∆< m−e
e the symmetric LLL yields a strictly easier condition to satisfy for each event bi .

Improving over the symmetric LLL. Unfortunately, while more promising than the union

bound, this bound still has some clear weaknesses, which can be evident from the 3-SAT

example. Namely, the maximum degree of the dependency graph may lead to quite strict

conditions that are hard to satisfy in practice. In the 3-SAT case, a maximum degree of 1 is
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unrealistic for any case of practical interest. More generally, when one highly connected node

exists in an otherwise sparse dependency graph we obtain a rather strict bound. An additional

problem is that this version of the local lemma imposes the same condition for all events bi .

Ideally, we would like to tailor each bound to the local dependency structure of each event.

This leads us to the general version of the lemma, known as the asymmetric Lovasz Local

Lemma which can rectify those shortcomings.

Theorem 4 (Asymmetric Lovász local lemma (Spencer, 1977)). Let λ1,λ2, . . . ,λm ∈ [0,1) be

parameters associated with bad events b1,b2, . . . ,bm and Ni denote the neighborhood of bi in

the dependency graph. If

P (S ∈ bi ) ≤λi
∏

j∈Ni

(1−λ j ), (2.17)

then

P (S ∈ ⋂
i=1m

b̄i ) =
m∏

j=1
(1−λ j ) > 0. (2.18)

At first glance, the condition may appear arbitrary due to the presence of additional free pa-

rameters. As long as an assignment of values is found for each λi that satisfies each inequality,

the probabilistic certificate may be recovered. The second thing to note is that the bound now

is tailored to each event, depending on the choice of the parameters. Intuitively, the right-hand

side of 2.17 parametrizes an independence condition. Suppose that the dependency graph

contains only isolated nodes. Then we may freely pick λi arbitrarily close to 1 which will

guarantee satisfiability for any formula. However, as soon as dependencies are introduced, if

λi values get arbitrarily close to 1, the bound of P (b j ) for j ∼ i in the dependency graph will

get arbitrarily close to 0, making it effectively impossible to satisfy. This decomposition of

dependencies into local condition is precisely what makes the asymmetric LLL more versatile.

Indeed, the asymmetric version has yielded proofs in settings where the symmetric version

fails, like the case of proving the existence of certain constrained (frugal) graph colorings (Hind

et al., 1997) where the symmetric LLL is inadequate precisely because of the existence of a few

highly connected nodes on an otherwise sparse dependency graph.

On the choice of parameters of the asymmetric LLL. It is important to note that the choice of

parameters λi for each event bi can lead to significantly different bounds. This is crucial both

in a classical context for providing proofs of existence but also important in the sense that the

probability of finding the desired object from the LLL depends directly on the parameters λ.

Let us briefly consider a couple of different formulations that follow from 2.17.

Corollary 3. Let di be the degree of clause ci in the dependency graph G I . If

p(bi ) ≤ 1

di +1

∏
j∈Ni

(
d j

d j +1

)
, (2.19)
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then P (S ∈⋂
i∈C b̄i ) =∏m

j=1

(
1

di+1

)
> 0.

See proof in Appendix A.1.

This bound explicitly encodes the sparsity structure of each clause. This bound can also make

clear the connection between the asymmetric LLL and its symmetric version. Indeed, we may

substitute di =∆ in the above abound. Then(
∆∏

j=1

∆

∆+1

)
→ 1

e
, as ∆→∞.

Plugging this in 2.19 condition yields the condition of the symmetric LLL. This shows how

the symmetric condition is a weaker version of the asymmetric condition and is obtained by

taking an upper bound on the degrees of each clause in the dependency graph.

Next, consider a different form of the local lemma which is of computational interest.

Corollary 4 (Dobrushin’s condition (Scott and Sokal, 2005)). Let y1, y2, . . . , ym > 0 be parame-

ters corresponding to bad events b1,b2, . . . ,bm . Let P (bi ) be the probability of a bad event bi

and let N+
i . If for all bi , we have

P (S ∈ bi ) ≤ yi∏
j∈N +(y j +1)

,

Then P (S ∈⋂
i∈C b̄i ) > 0.

For the proof, see appendix A.1.

Observe that the parameters of each bound are not constrained in the [0,1) interval. This may

be preferable from a computational standpoint, as the products in the original asymmetric

LLL can lead to numerical instability and machine precision issues when the parameters λi

are numbers close to 0.

Constructive and algorithmic aspects of the local lemma. While proving that the constraints

can be satisfied may be enough in certain applications like model checking, it is often useful

to find the variable assignment that satisfies them. In their seminal work, Moser and Tardos

(2010) showed that if the conditions of the LLL are satisfied, then the variable assignment

can be efficiently found with a simple local resampling routine. The Moser-Tardos algorithm

proceeds as follows:

1. Sample a variable assignment according to the learned distribution D.

2. Select arbitrarily a constraint ci violated by the assignment and resample vbl(ci ) accord-

ing to D.
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2.8 Improved bounds: local conditions and local search

3. Repeat step 2 until no violated constraints remain.

The constructive LLL guarantees that this algorithm will terminate whenever the conditions

of the lemma are satisfied. Let T be the total number of resampling steps the algorithm takes

until all constraints are repaired. Moser and Tardos showed that

E [T ] ≤
∑

bi∈B

λi

1−λi
, (2.20)

which provides a running time certificate.

Learning with local bounds. The probabilistic and algorithmic aspects of the LLL lend

themselves to a versatile toolkit for learning algorithm design. Here we briefly describe how

one could leverage the bound to efficiently solve instances while obtaining performance

guarantees for constraint satisfaction problems. We maintain the standard setup where a set

of variables S is assigned the value True and the rest of the variables are set to False. Then

the aim is to find S such that all constraints are satisfied. As before, our goal is to learn a

parametric distribution D = gθ(I ) for each problem instance I which contains such a set with

some positive probability.

There are many possible approaches to learning with local bounds. For example, given a

dependency graph G , we may train a neural network with

ℓ(D;G) :=
m∑

i=1
σ

(
P (bi )−λi

∏
j∈Ni

(1−λ j )

)
. (2.21)

Here, σ is a non-linearity (e.g., relu). By minimizing the loss the network the network finds

a distribution that satisfies the conditions of the LLL and proves that there exists a variable

assignment that satisfies all the constraints of the instance. Since λi are free parameters in

the loss function, their choice will be crucial for the success of the neural network. They

may be manually chosen based on properties of the input as in 2.19. Alternatively, the free

parameters could also be jointly learned with the distribution over the variables with another

neural network, i.e., one could opt for learnable yi from corollary 4. Here it is important to

note that in this approach, the neural network may generate a certificate of satisfiability but

to recover the satisfying assignment one would then have to use the learned distribution on

the Moser-Tardos local search algorithm. In that sense, this approach could be viewed as

parametrizing a local search heuristic, similar to the work by Yolcu and Poczos (2019). Such

techniques have been successful in the past and the added benefit here would be that one

could obtain explicit guarantees that the solution will be found as well as guarantees on the

running time of the heuristic via the inequality 2.20. Furthermore, the Moser-Tardos algorithm

may be efficiently parallelized, leading to further performance improvements in practice.
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More powerful local conditions and additional benefits. It has been noted that the Moser-

Tardos algorithm tends to “outperform” the asymmetric LLL in practice. That is, in instances

where the asymmetric LLL bound may fail, the Moser-Tardos algorithm may still successfully

recover a solution (Catarata et al., 2017). Indeed, the asymmetric LLL is not the most powerful

local condition in this context. Other examples include the cluster expansion lemma (Bissacot

et al., 2011) and Shearer’s criterion (Shearer, 1985). Shearer’s criterion is the best known bound

and relies on the (generally intractable) function qT (G ,D) which is given by

qT (G ,D) = ∑
J∈Indep(G),T⊆J

(−1)|J |−|T | ∏
i∈J

pi ,

where Indep(G) is the set of all independent sets of the graph G . Then Shearer’s criterion for a

set of m bad events is the following:

Theorem 5 (Shearer’s criterion). Let G be a dependency graph on m nodes and P (S ∈ bi ) for

i = 1,2, . . . ,m the non-zero probabilities of bad events according to a variable distribution D.

The following are equivalent:

• P (S ∈⋂m
i=1 bi ) >0.

• qT (G ,D) > 0 for all T ∈ Indep(G).

Observe that Shearer’s criterion leverages the independence structure of the graph. Note that

the property in the second bullet point cannot be efficiently checked as it requires brute force

enumeration of the independent sets of the graph which requires exponential time. On the

other hand, it turns out that the Moser-Tardos algorithm will match the effectiveness of the

Shearer condition, i.e., the following holds

Theorem 6 (Kolipaka and Szegedy (2011)). Let T be the total number of resampling steps that

the Moser-Tardos algorithm takes when resampling on a dependency graph G according to a

variable distribution D. If Shearer’s criterion holds for D, then we have the following:

E[T ] ≤
m∑

i=1

q{i }(G ,D)

q∅(G ,D)
.

This guarantees that the Moser-Tardos algorithm is effective up to Shearer’s criterion. It also

provides an explanation regarding the empirical discrepancy between the effectiveness of the

asymmetric LLL and the ability of the Moser-Tardos algorithm to solve instances.

Other concentration inequalities. Another possibility towards improving the probabilistic

penalty loss is to leverage concentration inequalities in order to further guide the learning pro-

cess towards high quality solutions. For instance, consider the simple example of Chebyshev’s
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inequality with an unconstrained objective function f : 2n →Rwith variance σ2

P (| f (S)−E[ f (S)]| ≥ασ) ≤ E[( f (S)−E[ f (S))2]

(ασ)2 .

Inevitably, were such a component to be introduced in the loss function for training a neural

network, we would need to calculate higher-order moment terms like E[ f (S)2]. Unfortunately,

those calculations become increasingly challenging under a product measure, and compact

closed-form expressions are not generally available for arbitrary objectives. Finding a co-

herent and efficient approach to higher-order terms that can yield differentiable losses for a

sufficiently wide class of problems is a promising avenue for future research.

2.9 Conclusion

We have presented a principled framework for solving constrained combinatorial problems on

graphs that utilizes a probabilistic argument to provide solution quality guarantees. We have

demonstrated how this approach can be applied to a plethora of combinatorial problems. We

have also discussed in detail the central limitations of the framework and more sophisticated

tools of the probabilistic method that could lead to significant improvements. In the next

chapter, we will see how we may overcome some of the outstanding obstacles that we have

not addressed here and that involve complex constraints and black-box differentiation.
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3 NEURAL SET FUNCTION EXTENSIONS:

LEARNING WITH DISCRETE FUNCTIONS

IN HIGH DIMENSIONS

3.1 Introduction

While neural networks are highly effective at solving tasks grounded in basic perception (Chen

et al., 2020a; Vaswani et al., 2017), discrete algorithmic and combinatorial tasks such as parti-

tioning graphs, and finding optimal routes or shortest paths have proven more challenging.

This is, in part, due to the difficulty of integrating discrete operations into neural network

architectures (Battaglia et al., 2018; Bengio et al., 2021; Cappart et al., 2021a). One immediate

difficulty with functions on discrete spaces is that they are not amenable to standard gradient-

based training. Another is that discrete functions are typically expressed in terms of scalar

(e.g., Boolean) variables for each item (e.g., node, edge to be selected), in contrast to the high-

dimensional and continuous nature of neural networks’ internal representations. A natural

approach to addressing these challenges is to carefully choose a function on a continuous

domain that extends the discrete function, and can be used as a drop-in replacement.

There are several important desiderata that such an extension should satisfy in order to be

suited to neural network training. First, an extension should be valid, i.e., agree with the dis-

crete function on discrete points. It should also be amenable to gradient-based optimization,

and should avoid introducing spurious minima. Beyond these requirements, there is one addi-

tional critical consideration. In both machine learning and optimization, it has been observed

that high-dimensional representations can make problems “easier”. For instance, neural

networks rely on high-dimensional internal representations for representational power and to

allow information to flow through gradients, and performance suffers considerably when un-

desirable low-dimensional bottlenecks are introduced into network architectures (Belkin et al.,

2019; Veličković and Blundell, 2021). In optimization, lifting to higher-dimensional spaces can

make the problem more well-behaved (Goemans and Williamson, 1995; Shawe-Taylor et al.,

2004; Du et al., 2018). Therefore, extending discrete functions to high-dimensional domains

may be critical to the effectiveness of the resulting learning process, yet remains largely an

open problem.

With those considerations in mind, we propose a framework for constructing extensions of

discrete set functions onto high-dimensional continuous spaces. The core idea is to view

a continuous point x in space as an expectation over a distribution (that depends on x)

supported on a few carefully chosen discrete points, to retain tractability. To evaluate the
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discrete function at x, we compute the expected value of the set function over this distribution.

The method resulting from a principled formalization of this idea is computationally efficient

and addresses the key challenges of building continuous extensions. Namely, our extensions

allow gradient-based optimization and address the dimensionality concerns, allowing any

function on sets to be used as a computation step in a neural network.

First, to enable gradient computations, we present a method based on a linear programming

(LP) relaxation for constructing extensions on continuous domains where exact gradients can

be computed using standard automatic differentiation software (Abadi et al., 2016; Bastien

et al., 2012; Paszke et al., 2019). Our approach allows task-specific considerations (e.g., a

cardinalilty constraint) to be built into the extension design. While our initial LP formulation

handles gradients, and is a natural formulation for explicitly building extensions, it replaces

discrete Booleans with scalars in the unit interval [0,1], and hence does not yet address poten-

tial dimensionality bottlenecks. Second, to enable higher-dimensional representations, we

take inspiration from classical SDP relaxations, such as the celebrated Goemans-Williamson

maximum cut algorithm (Goemans and Williamson, 1995), which recast low-dimensional

problems in high-dimensions. Specifically, our key contribution is to develop an SDP analog

of our original LP formulation, and show how to lift LP-based extensions into a corresponding

high-dimensional SDP-based extensions. Our general procedure for lifting low-dimensional

representations into higher dimensions aligns with the neural algorithmic reasoning blueprint

(Veličković and Blundell, 2021), and suggests that classical techniques such as SDPs may be

effective tools for combining deep learning with algorithmic processes more generally.

3.2 Problem Setup

Consider a ground set [n] = {1, . . . ,n} and an arbitrary function f : 2[n] →R∪ {∞} defined on

subsets of [n]. For instance, f could determine if a set of nodes or edges in a graph has some

structural property, such as being a path, tree, clique, or independent set (Bello et al., 2016;

Cappart et al., 2021a). Our aim is to build neural networks that use such discrete functions f

as an intermediate layer or loss. In order to produce a model that is trainable using standard

auto-differentiation software, we consider a continuous domain X onto which we would

like to extend f , with sets embedded into X via an injective map e : 2[n] →X . For instance,

when X = [0,1]n we may take e(S) = 1S , the Boolean vector whose i th entry is 1 if i ∈ S, and 0

otherwise. Our approach is to design an extension

F :X →R

of f and consider the neural network NN2 ◦F◦NN1 (if f is used as a loss, NN2 is simply the

identity). To ensure that the extension is valid and amenable to automatic differentiation, we

require that 1) it agrees with f on all discrete points: F(e(S)) = f (S) for all S ⊆ [n] with f (S) <∞,

and 2) F is continuous.
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Figure 3.1: SFEs: Fractional points x are reinterpreted as expectations x = ES∼px [1S] over
the distribution px(S) on sets. A value is assigned at x by exchanging the order of f and
the expectation: F(x)S∼px [ f (S)]. Unlike f , the extension F is amenable to gradient-based
optimization.

There is a rich existing literature on extensions of functions on discrete domains, particularly

in the context of discrete optimization (Lovász, 1983; Grötschel et al., 1981; Calinescu et al.,

2011; Vondrák, 2008; Bach, 2019; Obozinski and Bach, 2012; Tawarmalani and Sahinidis, 2002).

These works provide promising tools to reach our goal of neural network training. Building

on these, our method is the first to use semi-definite programming (SDP) to combine neural

networks with set functions. There are, however, different considerations in the neural network

setting as compared to optimization. The optimization literature often focuses on a class of

set functions and aims to build extensions with desirable optimization properties, particularly

convexity. We do not focus on convexity, aiming instead to develop a formalism that is as

flexible as possible. Doing so maximizes the applicability of our method, and allows extensions

adapted to task-specific desiderata (see Section 3.3.1).

3.3 Scalar Set Function Extensions

We start by presenting a general framework for extending set functions onto X = [0,1]n , where

a set S ⊆ [n] is viewed as the Boolean indicator vector e(S) = 1S ∈ {0,1}n whose i th entry is 1 if

i ∈ S and 0 otherwise. We call extensions onto [0,1]n scalar since each item i is represented by

a single scalar value—the i th coordinate of x ∈X . These scalar extensions will become the

core building blocks in developing high-dimensional extensions in Section 3.4.

A classical approach to extending discrete functions on sets represented as Boolean indicator

vectors 1S is by computing the convex-envelope, i.e., the point-wise supremum over linear

functions that lower bound f (Falk and Hoffman, 1976; Bach, 2019). Doing so yields a convex
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function whose value at a point x ∈ [0,1]n is the solution of the following linear program (LP):

F̃(x) = max
z,b∈Rn×R

{x⊤z+b} subject to 1⊤
S z+b ≤ f (S) for all S ⊆ [n]. (primal LP)

The set P f of all feasible solutions (z,b) is known as the (canonical) polyhedron of f (Obozin-

ski and Bach, 2012) and can be seen to be non-empty by taking the coordinates of z to be

sufficiently small (possibly negative). Variants of this optimization program are frequently

encountered in the theory of matroids and submodular functions (Edmonds, 2003) where

P f is commonly known as the submodular polyhedron (see Appendix 3.7 for an extended

discussion). By strong duality, we may solve the primal LP by instead solving its dual:

F̃(x) = min
{yS≥0}S⊆[n]

∑
S⊆[n]

yS f (S) subject to
∑

S⊆[n]
yS 1S = x,

∑
S⊆[n]

yS = 1, for all S ⊆ [n], (dual LP)

whose optimal value is the same as the primal LP. The dual LP is always feasible (see e.g., the

Lovász extension in Section 3.3.1). However, F̃ does not necessarily agree with f on discrete

points in general, unless the function is convex-extensible (Murota, 1998).

To address this important missing piece, we relax our goal from solving the dual LP to instead

seeking a feasible solution to the dual LP that is an extension of f . Since the dual LP is defined

for a fixed x, a feasible solution must be a function yS = px(S) of x. If px were to be continuous

and a.e. differentiable in x then the value
∑

S px(S) f (S) attained by the dual LP would also be

continuous and a.e. differentiable in x since gradients flow through the coefficients yS = px(S),

while f (S) is treated as a constant in x. This leads us to the following definition:

Definition (Scalar SFE). A scalar SFE F of f is defined at a point x ∈ [0,1]n by coefficients px(S)

such that yS = px(S) is a feasible solution to the dual LP. The extension value is given by

F(x)≜
∑

S⊆[n]
px(S) f (S)

and we require the following properties to hold for all S ⊆ [n]: 1) px(S) is a continuous function

of x and 2) F(1S) = f (S) for all S ⊆ [n].

Efficient evaluation of F requires that px(S) is supported on a small collection of carefully

chosen sets S. This choice is a key inductive bias of the extension, and Section 3.3.1 gives many

examples with only O(n) non-zero coefficients. Examples include well-known extensions,

such as the Lovász extension, as well as a number of novel extensions, illustrating the versatility

of the SFE framework.

Thanks to the constraint
∑

S yS = 1 in the dual LP, scalar SFEs have a natural probabilistic

interpretation. An SFE is defined by a probability distribution px such that fractional points x

can be written as an expectation ES∼px [1S] = x over discrete points using px. The extension

itself can be viewed as arising from exchanging f and the expectation operation: F(x) =
ES∼px [ f (S)]. This interpretation is summarized in Figure 3.1.
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Scalar SFEs also enjoy the property of not introducing any spurious minima. That is, the

minima of F coincide with the minima of f up to convex combinations. This property is

especially important when training models of the form f ◦NN1 (i.e., f is a loss function) since

F will guide the network NN1 towards the same solutions as f .

Proposition 1 (Scalar SFEs have no bad minima). If F is a scalar SFE of f then:

1. minx∈X F(x) = minS⊆[n] f (S)

2. argminx∈X F(x) ⊆ Hull
(

argmin1S :S⊆[n] f (S)
)

See Appendix 3.8 for proofs.

Obtaining set solutions. Given an architectureF◦NN1 and input problem instance G , we often

wish to produce sets as outputs at inference time. To do this, we simply compute x = NN1(G),

and select the set S in suppS{px(S)} with the smallest value f (S). This can be done efficiently

if, as is typically the case, the cardinality of suppS{px(S)} is small.

3.3.1 Constructing Scalar Set Function Extensions

A key characteristic of scalar SFEs is that there are many potential extensions of any given f . In

this section, we provide examples of scalar SFEs, illustrating the capacity of the SFE framework

for building knowledge about f into the extension. See Appendix ?? for all proofs and further

discussion.

Lovász extension. Re-indexing the coordinates of x so that x1 ≥ x2 . . . ≥ xn , we define px to be

supported on the sets S1 ⊆ S2 ⊆ ·· · ⊆ Sn with Si = {1,2, . . . , i } for i = 1,2, . . . ,n. The coefficient

are defined as ySi = px(Si ) := xi − xi+1 and px(S) = 0 for all other sets. The resulting Lovász

extension—known as the Choquet integral in decision theory (Choquet, 1954; Marichal, 2000)—

is a key tool in combinatorial optimization due to a seminal result: the Lovász extension is

convex if and only if f is submodular (Lovász, 1983), implying that submodular minimization

can be solved in polynomial-time (Grötschel et al., 1981).

Bounded cardinality Lovász extension. A collection {Si }n
i=1 of subsets of [n] can be encoded

in an n×n matrix S ∈ {0,1}n×n whose i th column is 1Si . In this notation, the dual LP constraint∑
S⊆[n] yS 1S = x can be written as Sp = x, where the i th coordinate of p defines px(Si ). The

bounded cardinality extension generalizes the Lovász extension to focus only on sets of

cardinality at most k ≤ n. Again, re-index x so that x1 ≥ x2 . . . ≥ xn . Use the first k sets

S1 ⊆ S2 ⊆ ·· · ⊆ Sk , where Si = {1,2, . . . , i }, to populate the first k columns of matrix S. We add

further n −k sets: Sk+i = { j + i | j ∈ Sk } for i = 1, . . . ,n −k, to fill the rest of S. Finally, px(Si )

can be analytically calculated from p = S−1x, where S is invertible since it is a Toeplitz banded

upper triangular matrix.

Permutations and involutory extensions. We use the same S,p notation. Let S be an elemen-

tary permutation matrix. Then it is involutory, i.e., SS = I, and we may easily determine p = Sx

49



3 Neural set function extensions: Learning with discrete functions in high dimensions

given S and x. Note that px(Si ) = pi must be non-negative since x and S are non-negative

entry-wise. Finally, restricting x to the n-dimensional Simplex guarantees that ∥p∥1 ≤ 1, which

ensures px is a probability distribution (any remaining mass is placed on the empty set). The

extension property can be guaranteed on singleton sets as long as the chosen permutation

admits a fixed point at the argmax of x. Any elementary permutation matrix S with such a

fixed point yields a valid SFE.

Singleton extension. Consider a set function f for which f (S) =∞ unless S has cardinality

one. To ensure F is finite valued, px must be supported only on the sets Si = {i }, i = 1, . . . ,n.

Assuming x is sorted so that x1 ≥ x2 . . . ≥ xn , define px(Si ) = xi −xi+1. It is shown in Appendix

?? that this defines a scalar SFE, except for the dual LP feasibility. However, when using F as a

loss function, minimization drives x towards the minima minxF(x) which are dual feasible. So

dual infeasibility is benign in this instance and we approach the feasible set from the outside.

Multilinear extension. The multilinear extension, widely used in combinatorial optimization

(Calinescu et al., 2011), is supported on all sets with coefficients px(S) =∏
i∈S xi

∏
i∉S(1−xi ),

the product distribution. In general, evaluating the multilinear extension exactly requires

2n calls to f , but for several interesting set functions, e.g., graph cut, set cover, and facility

location, it can be computed efficiently in Õ(n2) time (Iyer et al., 2014).

3.4 Neural Set Function Extensions

This section builds on the scalar SFE framework—where each item i in the ground set [n] is

represented by a single scalar—to develop extensions that use high-dimensional embeddings

to avoid introducing low-dimensional bottlenecks into neural network architectures. The core

motivation that lifting problems into higher dimensions can make them easier is not unique

to deep learning. For instance, it also underlies kernel methods (Shawe-Taylor et al., 2004)

and the lift-and-project method for integer programming (Lovász and Schrijver, 1991).

Our method takes inspiration from prior successes of semi-definite programming for combi-

natorial optimization (Goemans and Williamson, 1995) by extending onto X =Sn+, the set of

n ×n positive semi-definite (PSD) matrices. With this domain, each item is represented by a

vector, not a scalar.

3.4.1 Lifting Set Function Extensions to Higher Dimensions

We embed sets into Sn+ via the map e(S) = 1S 1⊤
S . To define extensions on this matrix do-

main, we translate the linear programming approach of Section 3.3 into an analogous SDP

formulation:

max
Z⪰0,b∈R

{Tr(X⊤Z)+b} subject to
1

2
Tr((1S 1⊤

T +1T 1⊤
S )Z)+b ≤ f (S ∩T ) for all S,T ⊆ [n],

(primal SDP)
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3.4 Neural Set Function Extensions

where we switch from lower case letters to upper case since we are now using matrices. Next,

we show that this choice of primal SDP is a natural analog of the original LP that provides

the right correspondences between vectors and matrices by proving that primal LP feasible

solutions correspond to primal SDP feasible solutions with the same objective value (see

Appendix 3.7 for a discussion on the SDP and its dual). To state the result, note that the

embedding e(S) = 1S 1⊤
S is a particular case of the correspondence x ∈ [0,1]n 7→p

x
p

x⊤.

Proposition 2. (Containment of LP in SDP) For any x ∈ [0,1]n , define X =p
x
p

x⊤ with the

square-root taken entry-wise. Then, for any (z,b) ∈Rn+×R that is primal LP feasible, the pair

(Z,b) where Z = diag(z), is primal SDP feasible and the objective values agree: Tr(X⊤Z) = z⊤x.

Proposition 2 establishes that the primal SDP feasible set can be obtained from a linear map

of the positive primal LP feasible set, i.e., feasible solutions of the primal LP lead to feasible

solutions of the primal SDP. As with scalar SFEs, to define neural SFEs we consider the dual

SDP:

min
{yS,T ≥0}

∑
S,T⊆[n]

yS,T f (S ∩T ) subject to X ⪯ ∑
S,T⊆[n]

1

2
yS,T (1S 1⊤

T +1T 1⊤
S ) and

∑
S,T⊆[n]

yS,T = 1

(dual SDP)

We demonstrate that for suitable X this SDP has feasible solutions via an explicit construction

in Section 3.4.2 1. This leads us to define a neural SFE which, as with scalar SFEs, is given by a

feasible solution to the dual SDP that satisfies the extension property whose coefficients are

continuous in X:

Definition (Neural SFE). A neural set function extension of f at a point X ∈Sn+ is defined as

F(X)≜
∑

S,T⊆[n]
pX(S,T ) f (S ∩T ),

where yS,T = pX(S,T ) is a feasible solution to the dual SDP and for all S,T ⊆ [n]: 1) pX(S,T ) is

continuous at X and 2) it is valid, i.e., F(1S 1⊤
S ) = f (S) for all S ⊆ [n].

3.4.2 Constructing Neural Set Function Extensions

We constructed a number of explicit examples of scalar SFEs in Section 3.3.1. For neural SFEs

we employ a different strategy. Instead of providing individual examples of neural SFEs, we

develop a single recipe for converting any scalar SFE into a corresponding neural SFE. Doing

so allows us to build on the variety of scalar SFEs and provides an additional connection

between scalar and neural SFEs. In Section 3.5 we show the empirical superiority of neural

SFEs over their scalar counterparts.

Our construction is given in the following proposition:

1We may also formulate a primal-dual pair that relies entirely on rank one matrices, see 3.7.3 for more details.
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3 Neural set function extensions: Learning with discrete functions in high dimensions

Proposition 3. Let px induce a scalar SFE of f . For X ∈ Sn+, consider a decomposition X =∑n
i=1λi xi x⊤i and fix

pX(S,T ) =
n∑

i=1
λi pxi (S)pxi (T ) for all S,T ⊆ [n]. (3.1)

Then, pX defines a neural SFE F at X.

See Appendix B.2 for proof. The choice of decomposition will give rise to different extensions.

Here, we instantiate our neural extensions using the eigendecomposition of X. Since eigenvec-

tors may not belong to [0,1]n we reparameterize by first applying a sigmoid function before

computing the scalar extension distribution px. In practice we found that neural SFEs work

just as well even without this sigmoid function—i.e., allowing scalar SFEs to be evaluated out-

side of [0,1]n . The continuity of the neural SFE F when using the eigendecomposition follows

from a variant of the Davis–Kahan theorem (Yu et al., 2015), which requires the additional

assumption that the eigenvalues of x are distinct. For efficiency, in practice we do not use all n

eigenvectors, and use only the k with largest eigenvalue. This is justified by Figure 3.4, which

shows that in practical applications X often has a rapidly decaying spectrum.

Evaluating a neural SFE requires an accessible closed-form expression, the precise form of

which depends on the underlying scalar SFE. Further, from the definition of Neural SFEs we

see that if a scalar SFE is supported on sets with a property that is closed under intersection

(e.g., bounded cardinality), then the supporting sets of the corresponding neural SFE will also

inherit that property. This implies that the neural counterparts of the Lovász, bounded cardi-

nality Lovász, and singleton/permutation extensions have the same support as their scalar

counterparts. An immediate corollary is that we can easily compute the neural counterpart of

the Lovász extension which has a simple closed form:

Corollary 5. For X ∈Sn+ consider the eigendecomposition X =∑n
i=1λi xi x⊤

i . Let pxi be as in

the Lovász extension: pxi (Si j ) =σ(xi , j )−σ(xi , j+1), where σ is the sigmoid function, and xi is

sorted so xi ,1 ≥ . . . ≥ xi ,n and Si j = {1, . . . , j }, with pxi (S) = 0 for all other sets. Then, the neural

Lovász extension is:

F(X) =
n∑

i , j=1
λi pxi (Si j ) ·

(
pxi (Si j )+2

∑
ℓ:ℓ> j

pxi (Siℓ)

)
· f (Si j ). (3.2)

Complexity and obtaining sets as solutions.In general, the neural SFE relies on all pairwise

intersections S ∩T of the scalar SFE sets, requiring O(m2) evaluations of f when the scalar

SFE is supported on m sets. However, when the scalar SFE is supported on a family of sets that

is closed under intersection—e.g., the Lovász and singleton extensions—the corresponding

neural SFE requires only O(m) function evaluations. Discrete solutions can be obtained

efficiently by returning the best set out of all scalar SFEs pxi .
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3.5 Experiments

Maximum Clique

ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through (Bengio et al., 2013) 0.725±0.268 0.722±0.26 0.917±0.253 0.965±0.162 0.856±0.221

Erdős (Karalias and Loukas, 2020) 0.883±0.156 0.905±0.133 0.936±0.175 1.000±0.000 0.852±0.212

REINFORCE (Williams, 1992) 0.751±0.301 0.725±0.285 0.881±0.240 1.000±0.000 0.781±0.316

Lovász scalar SFE 0.723±0.272 0.778±0.270 0.975±0.125 0.977±0.125 0.855±0.225

Lovász neural SFE 0.933±0.148 0.926±0.165 0.961±0.143 1.000±0.000 0.864±0.205

Maximum Independent Set

ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through (Bengio et al., 2013) 0.505±0.244 0.430±0.252 0.701±0.252 0.721±0.257 0.331±0.260

Erdős (Karalias and Loukas, 2020) 0.821±0.124 0.903±0.114 0.515±0.310 0.939±0.069 0.886±0.198

REINFORCE (Williams, 1992) 0.617±0.214 0.579±0.340 0.899±0.275 0.744±0.121 0.053±0.164

Lovász scalar SFE 0.311±0.289 0.462±0.260 0.716±0.269 0.737±0.154 0.302±0.238

Lovász neural SFE 0.775±0.155 0.729±0.205 0.679±0.287 0.854±0.132 0.392±0.253

Table 3.1: Unsupervised neural combinatorial optimization: Approximation ratios for com-
binatorial problems. Values closer to 1 are better (↑). Neural SFEs are competitive with other
methods, and consistently improve over vector SFEs.

3.5 Experiments

We experiment with SFEs as loss functions in neural network pipelines on discrete objectives

arising in combinatorial and vision tasks. For combinatorial optimization, SFEs network

training with a continuous version of the objective without supervision. For supervised image

classification, they allow us to directly relax the training error instead of optimizing a proxy

like cross entropy.

3.5.1 Unsupervised Neural Combinatorial Optimization

We begin by evaluating the suitability of neural SFEs for unsupervised learning of neural

solvers for combinatorial optimization problems on graphs. We use the ENZYMES, PROTEINS,

IMDB, MUTAG, and COLLAB datasets from the TUDatasets benchmark (Morris et al., 2020),

using a 60/30/10 split for train/test/val. We test on two problems: finding maximum cliques,

and maximum independent sets. We compare with three neural network based methods.

We compare to two common approaches for backpropogating through discrete functions:

the REINFORCE algorithm (Williams, 1992), and the Straight-Through estimator (Bengio

et al., 2013). The third is the recently proposed probabilistic penalty relaxation (Karalias and

Loukas, 2020) for combinatorial optimization objectives. All methods use the same GNN

backbone, comprising a single GAT layer (Veličković et al., 2018) followed by multiple gated

graph convolution layers Li et al. (2015).
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Figure 3.2: k-clique constraint satisfaction: higher F1-score is better. The k-bounded car-
dinality Lovasz extension is better aligned with the task and significantly improves over the
Lovász extension.

In all cases, given an input graph G = (V ,E ) with |V | = n nodes, a GNN produces an embedding

for each node: X ∈Rn×d . For scalar SFEs d = 1, while for neural SFEs we consider XX⊤ in order

to produce an n ×n PSD matrix, which is passed as input to the SFE F. The set function f

used is problem dependent, which we discuss below. Finally, see Appendix B.5 for training

and hyper-parameter optimization details, and Appendix B.4 for details on data, hardware,

and software.

Maximum Clique. A set S ⊆V is a clique of G = (V ,E ) if (i , j ) ∈ E for all i , j ∈ S. The MaxClique

problem is to find the largest set S that is a clique: i.e., f (S) = |S| ·1{S a clique}.

Maximum Independent Set (MIS). A set S ⊆V is an independent set of G = (V ,E) if (i , j ) ∉ E

for all i , j ∈ S. The goal is to find the largest S in the graph that is independent, i.e., f (S) =
|S| ·1{S an ind. set}. MIS differs significantly from MaxClique due to its high heterophily.

Results. Table 3.1 displays the mean and standard deviation of the approximation ratio

f (S)/ f (S∗) of the solver solution S and an optimal S∗ on the test set graphs. The neural

Lovaśz extension outperforms its scalar counterpart in 8 out of 10 cases, often by significant

margins, for instance improving a score of 0.778 on PROTEINS MaxClique to 0.926. The

neural SFE proved effective at boosting poor scalar SFE performance, e.g., 0.311 on ENZYMES

MIS, to the competitive performance of 0.775. Neural Lovaśz outperformed or equalled and

straight-through in 9 out of 10 cases, and the method of Karalias and Loukas (2020) in 6 out of

10.

3.5.2 Constraint Satisfaction Problems

Constraint satisfaction problems ask if there exists a set satisfying a given set of conditions

(Kumar, 1992; Cappart et al., 2021b). In this section, we apply SFEs to the k-clique problem:

given a graph, determine if it contains a clique of size k or more. We test on the ENZYMES and

PROTEINS datasets. Since satisfiability is a binary classification problem we evaluate using F1

score.

Results. Figure 3.2 shows that by specifically searching over sets of size k using the cardinality

constrained Lovász extension from Section 3.3.1, we significantly improve performance com-

pared to the Lovász extension, and REINFORCE. This illustrates the value of SFEs in allowing
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Figure 3.3: Left: Runtime and performance of neural SFEs on MaxClique using different
numbers of eigenvectors. Right: Histogram of spectrum of matrix X, outputted by a GNN
trained on MaxClique.
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Figure 3.4: Left: Runtime and performance of neural SFEs on MaxClique using different
numbers of eigenvectors. Right: Histogram of spectrum of matrix X, outputted by a GNN
trained on MaxClique.

task-dependent considerations (in this case a cardinality constraint) to be built into extension

design.

3.5.3 Training Error as a Classification Objective

During training the performance of a classifier h is typically assessed using the training error
1
n

∑n
i=1 1{yi ̸= h(xi )}. Since the training error itself is non-differentiable, it is standard to train h

to optimize a differentiable surrogate such as the cross-entropy loss. Here we offer an alterna-

tive training method by continuously extending the non-differentiable mapping ŷ 7→ 1{yi ̸= ŷ}.

This map is a set function defined on single item sets, so we use the singleton extension

(definition in Section 3.3.1). Our goal is to demonstrate that the resulting differentiable loss

function closely tracks the training error, and can be used to minimize it. We do not focus on

test time generalization. Figure B.1 shows the results. The singleton extension loss (left plot)

closely tracks the true training error at the same numerical scale, unlike other common loss

functions (see Appendix B.6 for setup details). While we leave further consideration to future

work, training error extensions may be useful for model calibration (Kennedy and O’Hagan,

2001) and uncertainty estimation (Abdar et al., 2021).
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Figure 3.5: Obtaining a neural SFE improves performance over an ensemble of low-
dimensional extensions.
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Figure 3.6: Top: CIFAR10. Bottom: SVHN. The singleton extension loss (left) is the only loss
that approximates the true non-differentiable training error at the same numerical scale.

3.5.4 Ablations

Number of Eigenvectors. Figure 3.4 compares the runtime and performance of neural

SFEs using only the top-k eigenvectors from the eigendecomposition X =∑n
i=1λi xi x⊤

i with

k ∈ {1,2,3,4,5,6} on the maximum clique problem. For both ENZYMES and PROTEINS, perfor-

mance increases with k—easily outperforming scalar SFEs and REINFORCE—until saturation

around k = 4, while runtime grows linearly with k. Histograms of the eigenvalues produced by

trained networks show a rapid decay in the spectrum, suggesting that the smaller eigenvalues

have little effect on F.

Comparison to Naive High-Dimensional Extension. We compare neural SFEs to a naive

high-dimensional alternative which, given an n ×d matrix X simply computes a scalar SFE on

each column independently and sums them up. This naive function design is not an extension,

and the dependence on the d dimensions is linearly separable, in contrast to the complex

non-linear interactions between columns of X in neural SFEs. Figure 3.5 shows that this naive
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extension, whilst improving over one-dimensional extensions, performs considerably worse

than neural SFEs.

3.6 Related Work

Neural combinatorial optimization Our experimental setup largely follows recent work on un-

supervised neural combinatorial optimization (Karalias and Loukas, 2020; Schuetz et al., 2022;

Xu et al., 2020a; Toenshoff et al., 2021; Amizadeh et al., 2018), where continuous relaxations

of discrete objectives are utilized. In that context, it is important to take into account the key

conceptual and methodological differences of our approach. For instance, in the unsuper-

vised Erdős goes neural (EGN) framework from Karalias and Loukas (2020), the probabilistic

relaxation and the proposed choice of distribution can be viewed as instantiating a multilinear

extension. As explained earlier, this extension is costly in the general case (since f must be

evaluated 2n times, and summed) but can be computed efficiently in closed form in certain

cases. On the other hand, our extension framework offers multiple options for efficiently com-

putable extensions without imposing any further conditions on the set function. For example,

one could efficiently (linear time in n) compute the scalar and neural Lovász extensions of

any set function with only black-box access to the function. This renders our framework more

broadly applicable. Furthermore, EGN incorporates the problem constraints additively in the

loss function. In contrast to that, our extension framework does not require any commitment

to a specific formulation in order to obtain a differentiable loss. This provides more flexibility

in modelling the problem, as we can combine the cost function and the constraints in various

other ways (e.g., multiplicatively). For general background on neural combinatorial optimiza-

tion, we refer the reader to the surveys (Bengio et al., 2021; Cappart et al., 2021a; Mazyavkina

et al., 2021).

Lifting to high-dimensional spaces. Neural SFEs are heavily inspired by the Goemans-

Williamson (Goemans and Williamson, 1995) algorithm and other SDP techniques (Iguchi

et al., 2015), which lift problems onto higher dimensional spaces, solve them, and then project

back down. Our approach to lifting set functions to high dimensions is motivated by the algo-

rithmic alignment principle (Xu et al., 2019): neural networks whose computations emulate

classical algorithms often generalize better with improved sample complexity (Yan et al., 2020;

Li et al., 2020; Xu et al., 2019). Emulating algorithmic and logical operations is the focus of

Neural Algorithmic Reasoning (Veličković et al., 2019; Dudzik and Veličković, 2022; Deac et al.,

2021) and work on knowledge graphs (Hamilton et al., 2018; Ren et al., 2019; Arakelyan et al.,

2020), which also emphasize operating in higher dimensions.

Extensions. Scalar SFEs use an LP formulation of the convex closure (El Halabi, 2018, Def. 20),

a classical approach for defining convex extensions of discrete functions (Murota, 1998, Eq.

3.57). See Bach (2019) for a study of extensions of submodular functions. The constraints of

our dual LP arise in contexts from global optimization (Tawarmalani and Sahinidis, 2002) to

barycentric approximation and interpolation schemes in computer graphics (Guessab, 2013;
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Hormann, 2014). Convex extensions have also been used for combinatorial penalties with

structured sparsity (Obozinski and Bach, 2012, 2016), and general minimization algorithms

for set functions (El Halabi and Jegelka, 2020).

Stochastic gradient estimation. SFEs produce gradients for f requiring only black-box access.

There is a wide literature on sampling-based approaches to gradient estimation, for instance

the REINFORCE algorithm (Williams, 1992) (i.e., score function estimator). However, sam-

pling introduces noise which can cause unstable training and convergence issues, prompting

significant study of variance reducing control variates (Gu et al., 2017; Liu et al., 2018; Grath-

wohl et al., 2018; Wu et al., 2018; Cheng et al., 2020). SFEs can avoid sampling (and noise)

all-together, as our extensions are differentiable and can be computed deterministically. A

closely related, yet distinct, task is to produce gradients through sampling operations, which

introduce non-differentiable nodes in neural network computation graphs. The Straight-

Through Estimator (Bengio et al., 2013), arguably the simplest solution, treats sampling as the

identity map in the backward pass, yielding biased gradient estimates. The Gumbel-Softmax

trick (Maddison et al., 2017; Jang et al., 2017), provides an alternative method to sample from

categorical distributions (also benefiting from variance reduction (Paulus et al., 2020b)). The

trick can be seen through the lens of the more general Perturb-and-MAP framework that

treats sampling as a perturbed optimization program. This framework has since been used to

generalize the trick to more complex distributions (Paulus et al., 2020a) and to differentiate

through the parameters of exponential families for learning and combinatorial tasks (Niepert

et al., 2021). Broadly, these techniques relax a discrete distribution into a continuous one

by utilizing a noise distribution and assuming access to a continuous loss function. SFEs are

complementary to this setup, addressing the problem of designing continuous extensions.

Differentiating through convex programs and algorithms. Recent years have seen a surge

of interest in combining neural networks with solvers (e.g., LP solvers) and/or algorithms

in differentiable end to end pipelines (Agrawal et al., 2019; Amos and Kolter, 2017; Paulus

et al., 2021; Vlastelica et al., 2019; Wang et al., 2019). Whilst sharing the algorithmic alignment

motivation of SFEs, the convex programming connection is mostly cosmetic: these works

directly embed solvers into network architectures, while SFEs use convex programs as an

analytical tool, without requiring solver access.

3.7 Fundamentals of extensions: extended discussion

In this section, we provide an extended discussion of the key components of our LP and SDP

formulations and the relationships between them. Apart from supplying derivations, another

goal of this section is to illustrate that there is flexibility in the exact choice of formulation

for the LP (and consequently the SDP). In fact, since the publication of this work, further

connections with literature in convex optimization and semi-definite programming have

become apparent. We will delve into them in more detail and discuss some of the tradeoffs

when considering which formulation is the appropriate one for defining extensions.

58



3.7 Fundamentals of extensions: extended discussion

3.7.1 Related linear programs

Our LP formulation depends on a linear program known to correspond to the convex closure

(Murota, 1998, Eq. 3.57) (convex envelope) of a discrete function. Some readers may recognize

the formal similarities of this formulation with the one used to define the Lovász extension

(Bilmes, 2022). Namely, for x ∈Rn we can define the Lovász Extension as

F(x) = max
z∈B f

x⊤z, (3.3)

where the feasible set, known as the base polytope of a submodular function, is defined as

B f = {z ∈ Rn : z⊤1S ≤ f (S) S ⊂ [n], and z⊤1S = f (S) when S = [n]}. Base polytopes are also

known as generalized permutahedra and have rich connections to the theory of matroids,

since matroid polytopes belong to the class of generalized permutahedra Ardila et al. (2010).

An alternative option is to consider x ∈Rn+, then the Lovász extension is given by

F(x) = max
z∈P f

x⊤z, (3.4)

where P f is the submodular polyhedron as defined in our original primal LP. The subtle

differences between those formulations lead to differences in the respective dual formulations.

In principle, those formulations can be just as easily used to define set function extensions.

Overall, there are three key considerations when defining a suitable LP:

• The constraints of the primal.

• The domain of the primal variables z,b and the cost x.

• The properties of the function being extended.

Below, we describe a few illustrative example cases for different choices of the above:

• Adding the constraint z⊤1S = f (S) when S = [n] leads to y[n] ∈ Rn for the dual. This

implies that the coefficients cannot be interpreted as probabilities in general which is

what provides the guarantee that the extension will not introduce any spurious minima.∑
S⊆[n] yS = 1 is just an affine hull constraint in that case.

• For b = 0, the constraint
∑

S⊆[n] yS = 1 is not imposed in the dual and the probabilistic

interpretation of the extension cannot be guaranteed. Examples that do not rely on this

constraint include the homogeneous convex envelope (El Halabi et al., 2018) and the

Lovász extension as presented above. However, even for b = 0, from the definition of

the Lovász extension it is easy to see that it retains the probabilistic interpretation when

x ∈ [0,1].

• Consider a feasible set defined by P f
⋂
Rn+ and let x ∈Rn+. If the function f is submodular,

non-decreasing and normalized so that f (∅) = 0 (e.g., the rank function of a matroid),
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3 Neural set function extensions: Learning with discrete functions in high dimensions

then the feasible set is called polymatroid and f is a polymatroid function. Again, in

that case the Lovász extension achieves the optimal objective value (Schrijver et al.,

2003, Eq. 44.32). In that case, the constraint
∑

S⊆[n] yS 1S = x of the dual is relaxed to∑
S⊆[n] yS 1S ≥ x. This feasible set of the dual will allow for more flexible definitions of an

extension but it comes at the cost of generality. For instance, for a submodular function

that is not non-decreasing, one cannot obtain the Lovász extension as a feasible solution

to the primal LP, and the solutions to this LP will not be the convex envelope in general.

3.7.2 Efficient scalar extensions through matrix inverses.

Historically, the Lovász extension has been one of the most prominent examples of extensions

in the literature. It was originally described by Choquet (1954) in the context of the theory of

capacities, where it is known as the Choquet integral. Its connections to the greedy algorithm

and to submodular functions were made explicit later by Lovász (1983). Indeed, the derivation

by Lovász is based on greedily constructing a solution to the optimization problem in 3.4.

Here, we will discuss a slightly different perspective on the Lovász extension which facilitates

a more general approach to constructing efficient extensions.

Setup. The starting point of this discussion will be the constraint of our dual LP

n∑
i=1

px(Si )1Si = x. (3.5)

Without loss of generality, let the entries of x ∈ [0,1] be sorted in non-increasing order. First,

we rewrite equation 3.5 in matrix form:

Sp = x. (3.6)

Here we have stacked the supporting set vectors in a matrix S and their probabilities in a vector

p, i.e., S = [
1S1 ,1S2 , . . . ,1Sn

]
and p = [

px(S1), px(S2), . . . , px(Sn)
]
. An important consideration

when designing extensions is their support. If an extension is supported on a sufficiently

small number of sets, then it may be efficiently computed as well. It is worth noting that the

number of sets need not be n; any number of supporting sets may be chosen. However, as it

will become clear soon, beyond the practical benefits there are also mathematical benefits

to selecting n sets for the support of the extension. To construct an extension, we have the

following desiderata:

• A binary matrix S whose columns are the sets that support the extension at point x and

that satisfies equation 3.6.

• Find suitable probabilities px(Si ) for each Si . We should be able to backpropagate

through px(Si ) to x.
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In order for 3.6 to be satisfied for all x ∈ [0,1]n , a starting point is to identify a matrix S that

spans Rn . Since we are working with n sets, this implies that the columns of S have to be

linearly independent. It will be instructive to consider a simple example in order to build

intuition.

Example (Dual feasible singleton extension). The singletons Si = {i } for i = 1,2, . . . ,n can be

used to define a dual feasible extension. Indeed, in that case, the matrix S is populated by the

standard basis vectors ei and from equation 3.6 we obtain Ip = x, where I is the n ×n identity

matrix. As long as we ensure that
∑n

i=1 xi ≤ 1 holds for x, then px(Si ) = xi is a feasible solution

to the dual LP and therefore defines an extension.

The fact that we require n linearly independent vectors for S also leads to the following

observation. S will be invertible, so we can write

Ix = x

S S−1x︸ ︷︷ ︸
px

= x.

Therefore, we can cast the problem of finding extensions supported on n sets as the problem

of finding S ∈ {0,1}n×n such that x⊤(S⊤)−11 ≤ 1 and the entries of p are in [0,1], for x in some

suitably chosen subset of [0,1]n . This is both practically appealing and mathematically conve-

nient. We can backpropagate through S−1x since it is a linear operation on x. Furthermore,

the inverses of several classes of binary matrices are known and have been studied extensively,

which simplifies the process of constructing new extensions.

It is clear that the constraints we described above trivially hold for our last singleton example

since the identity matrix is its own inverse. In fact, we can also show how the Lovász extension

is naturally obtained with this strategy. In the Lovász extension we choose the support sets

to be Si = {1,2, . . . , i } which leads to a binary upper-triangular matrix S where all the entries

above (and including) the main diagonal are ones. It can be shown that the inverse of that

binary upper triangular matrix is also upper triangular and it has the following form:

S−1(i , j ) =


1, j = i

−1, j = i +1

0, otherwise.

Then, we can see that the i th entry of S−1x is px(Si ) = xi −xi+1 which are precisely the coeffi-

cients of the Lovász extension.

Constructing novel extensions. The bounded cardinality Lovász extension can be derived

because the matrix S is a banded Toeplitz matrix with a known inverse. Finally, the involutory

extension is also supported on singleton sets and relies on the observation that elementary

permutation matrices are involutory (i.e., self-inverse) and therefore, as long as the permuta-
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3 Neural set function extensions: Learning with discrete functions in high dimensions

tion has a fixed point at the maximum element of x, then similar to the singleton example, if∑n
i=1 xi ≤ 1 we obtain a feasible solution to the dual.

3.7.3 Neural extensions: Intuition and rank one formulation.

In order to motivate the SDP formulation, first we have to identify the essential ingredients of

the LP formulation. First, the constraint
∑

S⊆[n] yS 1S = x captures the simple idea that each

continuous point is expressed as a combination of discrete ones, each representing a different

set, which is at the core of our extensions. Then, ensuring that the continuous point lies in the

convex hull of those discrete points confers additional benefits w.r.t. optimization and offers a

probabilistic interpretation.

Consider the following example. The Lovász extension identifies each continuous point

in the hypercube with a simplex. Then the continuous point is viewed as an expectation

over a distribution supported on the simplex corners. The value of the set function at a

continuous point is then the expected value of the function over those corners under the

same distribution, i.e., ES∼px [1S] = x leads to ES∼px [ f (S)] = F(x). As long as the distribution

px can be differentiated w.r.t x, we obtain an extension that can be used with gradient-based

optimization. It is clear that the construction depends on being able to identify a small convex

set of discrete vectors that can express the continuous one.

This can be formulated in higher dimensions, particularly in the space of PSD matrices. A

natural way to represent sets in high dimensions is through rank one matrices that are outer

products of the indicator vectors of the sets, i.e., 1S 1⊤
S is the matrix representation of S similar

to how 1S is the vector representation. Hence, in the space of matrices, our goal will be again

to identify a PSD matrix with linear combinations of matrices that represent sets. This is done

through an expansion of the PSD matrix as a convex combination of outer products between

set indicator vectors, which we obtain via the eigendecomposition of the PSD matrix.

The above considerations set the stage for a transition from linear programming to semidefi-

nite programming, where the feasible sets are spectrahedra. Our SDP formulation attempts

to capture the intuition described in the previous paragraphs while also maintaining formal

connections to the LP by showing that feasible LP regions correspond to feasible SDP regions

by simply projecting the LP regions on the space of diagonal matrices (see Proposition 2).

Rank one formulation. The SDP formulation we have described so far maps terms of the form

1S 1⊤
T +1T 1⊤

S to evaluations f (S ∩T ). When S = T , this maps outer products (up to suitable

rescaling) to f (S ∩S) = f (T ) = f (S), which secures the extension property. The convention

of using rank two matrices happens to be mathematically convenient and practically viable.

However, it can be argued that those rank two matrices do not represent set intersections

naturally; a standard way to represent set intersections with matrices would be to use rank

one matrices 1S∩T 1⊤
S∩T . The question then is whether we can reformulate our SDP in terms of
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rank one matrices so that the additional rank two correspondence with intersections is not

imposed. The challenge is to achieve this while also ensuring that feasible solutions to the

corresponding dual can give rise to extensions in the same fashion as our current formulation.

As we will show, this is actually possible. We begin with the primal SDP.

max
Z⪰0,b∈R

{Tr(X⊤Z)+b} subject to 1⊤
S Z1S +b ≤ f (S) for all S ⊆ [n]. (rank-one primal SDP)

Following standard conversion rules we obtain the dual

min
{yS≥0}

∑
S⊆[n]

yS f (S) subject to X ⪯ ∑
S⊆[n]

yS 1S 1⊤
S and

∑
S⊆[n]

yS = 1. (rank-one dual SDP)

Proposition 4. The rank-one dual SDP is feasible.

Proof. The proof strategy that we follow is similar to the one provided for neural extensions,

with an additional step that relies on the following lemma.

Lemma 1. Let V be a set of n elements. Let Si ,S j ⊆ V , and 1Si ,1S j be their corresponding

characteristic vectors. We have

1Si 1⊤
S j
+1S j 1⊤

Si
= 1Ui j 1⊤

Ui j
+1Ii j 1⊤

Ii j
− (1S j \Ii j )(1S j \Ii j )⊤− (1Si \Ii j )(1Si \Ii j )⊤, (3.7)

where Ui j = Si
⋃

S j , Ii j = Si
⋂

S j .

See B.2.2 for proof.

To complete the proof of the proposition, consider a decomposition X = ∑n
i=1λi xi x⊤

i with

xi ∈ [0,1]n and
∑n

i=1λi = 1. Also, let UST be the union of sets S and T , and IST their intersection.

Let xi =∑
S pxi (S) be the coefficients of a feasible scalar SFE. Then,

xi x⊤i = (∑
S

pxi (S)1S
)(∑

T
pxi (T )1T

)⊤
=∑

S
pxi (S)21S 1⊤

S + ∑
S ̸=T

pxi (S)pxi (T )(1T 1⊤
S +1S 1⊤

T )

3.7= ∑
S

pxi (S)21S 1⊤
S + ∑

S ̸=T
pxi (S)pxi (T )(1UST 1⊤

UST
+1IST 1⊤

IST
−1S\IST 1⊤

S\IST
−1T \IST 1⊤

T \IST
)

⪯∑
S

pxi (S)21S 1⊤
S + ∑

S ̸=T
pxi (S)pxi (T )(1UST 1⊤

UST
+1IST 1⊤

IST
). (3.8)

Thus, the LMI in the constraint is being satisfied. We can also verify that the constraint∑
S⊆[n] yS = 1 holds because

∑n
i=1λi

(∑
S pxi (S)2 +2

∑
S ̸=T pxi (S)pxi (T )

)= 1.

It should be apparent from the proof technique that we may build neural extensions based on

any feasible scalar ones in this setting again. Now each rank-one matrix that corresponds to a

set S is paired to a corresponding function evaluation f (S). Another difference that emerges,

63



3 Neural set function extensions: Learning with discrete functions in high dimensions

in this case, is that for the properties of the scalar extension sets to be maintained in the neural

extension, they would have to be closed both under union and intersection. For example, a

neural extension that is based on a cardinality-constrained scalar extension will not preserve

the cardinality constraint. This issue may be alleviated by carefully tweaking 3.8 to replace the

union terms while preserving the LMI so that a feasible solution is achieved.

Sum of squares and related optimization programs. An interesting aspect of this version of

the optimization program is its formal similarity with SDPs that can be formulated for function

minimization using the sum of squares (SOS) hierarchy (Lasserre, 2001). Since Z is a PSD

matrix, we can see that the constraints of the rank-one primal SDP can be written as

n∑
i=1

λi (1⊤
S xi)

2 ≤ f (S)−b S ⊆ [n].

In other words, the function is lower bounded by a sum of squares. For example, in binary

optimization with SOS over the Boolean hypercube, one typically encounters the following

formulation (Slot and Laurent, 2023) for a tractable lower bound on the function f

fr
..= max b subject to f (1S)−b = g (1S), for all 1S ∈ {0,1}n ,

where g (x) is a sum of squares polynomial of degree at most 2r . The sum of squares constraint

enables framing this as a semi-definite program and therefore makes it solvable in polynomial

time.

Another work that shares formal similarities with the SOS approach and our rank-one primal

SDP formulation is the one in Rudi et al. (2020). There, the function being minimized is

defined over Rd and a regularization term is added to the objective, so b −αTr(Z) is being

maximized, for some PSD matrix Z and some positive coefficient α. This is particularly close

to the SDP we have presented, as the Z in that paper is also decomposed as a product of two

factors. However, in contrast to our treatment, the product in Rudi et al. (2020) allows for

controlled function approximation using kernels and through subsampling of the SOS-style

constraints at a few points in order to formulate the primal SDP.

3.7.4 Generalizing extensions to different geometries.

Conic programming. Due to the impact that semi-definite programming has had in the field

of combinatorial optimization (Lovász, 2003; Goemans, 1997), the choice of the cone of PSD

matrices is a rather natural one for our extensions. On the other hand, it is interesting to

test whether the main ideas behind extensions can be generalized to other geometries. The

motivation behind this is twofold. In terms of formal limitations, it has been shown that

there are compact convex semi-algebraic sets (i.e., convex sets that can be written as a finite

union of sets defined by polynomial equalities and inequalities) that are not representable

by a semi-definite program. As an example, minimizing a polynomial of n ≥ 3 variables
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and degree at least 4 over the unit ball in Rn cannot be modeled exactly by a semi-definite

program (Scheiderer, 2018). There are also practical considerations that motivate us to pursue

formulations beyond the PSD cone. Recall that an important element of our approach is to

obtain a feasible solution to the dual SDP through a suitable decomposition of X in terms

of vectors xi ∈ [0,1]n . Clearly, not all PSD matrices can guarantee this decomposition so

we construct it by tweaking the eigendecomposition of the Gram matrix. However, this

decomposition is captured accurately by the cone of completely positive matrices. We will

shortly see how we can define an optimization program that will make this requirement

explicit.

First, we provide some background information about conic programming (Vandenberghe

and Boyd, 2004), which will help us formalize a more general approach. Let K be a cone. The

set

K ∗ = {y |〈z, y〉 ≥ 0 for all z ∈ K }

is called the dual cone of K . Here, 〈·, ·〉 denotes the standard Euclidean inner product. The

cone of PSD matrices, is known to be self-dual, i.e., its dual is also the cone of PSD matrices. In

conic programming, duality dictates that if the primal inequalities are over the cone K , then

the dual inequalities will be over its dual K ∗.

Therefore, a general convex optimization program for extensions over arbitrary cones, given

suitable embeddings e(S) into the cone, may be written as

min
{yS≥0}

∑
S⊆[n]

yS f (S) subject to
∑

S⊆[n]
ySe(S)−X ∈ K ∗ and

∑
S⊆[n]

yS = 1. (3.9)

Connections to copositive programming. We now return to our earlier consideration re-

garding completely positive matrices. The cone of completely positive matrices is defined

as

C∗ = conv{xx⊤ : x ∈Rn
+}.

The dual of the completely positive matrix cone (C∗)∗ = C is called the cone of copositive

matrices and is defined as

C = {Z ∈Sn : x⊤Zx ≥ 0, x ∈Rn
+}.

Similarly, because both cones are closed convex cones, by taking the dual of the cone of

copositive matrices we obtain the cone of completely positive matrices. The area of coposi-

tive programming has been developed to study optimization programs formulated over the

copositive cone and its dual. Copositive programming has a long history in combinatorial

optimization and famous problems like the maximum clique and maximum independent set

may be formulated exactly as copositive programs. Copositive programs have several inter-
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esting properties. While they are convex optimization problems, they can still be NP-Hard.

Since they do not admit efficiently computable self-concordant barrier functions, they cannot

be solved with interior point methods (Dür, 2010). Deciding whether a matrix belongs to the

cone of completely positive matrices is also known to be NP-Hard (Dickinson and Gijben,

2014). Furthermore, it has recently been shown that the cones of copositive matrices of size

more than 5 cannot be represented as spectrahedral shadows (i.e., feasible regions of SDPs)

(Bodirsky et al., 2022).

Thankfully, those challenging aspects of copositive programming will not be of issue in our

approach, since we do not need to solve the optimization problem. As long as we can efficiently

construct completely positive matrices within our neural network pipeline in a differentiable

way, we will be able to construct neural extensions. Using the general formulation for cone

programming we described above, we may define the following optimization problem

max
Z∈C,b∈R

{Tr(X⊤Z)+b} subject to 1⊤
S Z1S +b ≤ f (S) for S ⊆ [n]. (copositive primal)

min
{yS≥0}

∑
S⊆[n]

yS f (S) subject to
∑

S⊆[n]
yS 1S 1⊤

S −X ∈ C∗ and
∑

S⊆[n]
yS = 1. (copositive dual)

Proposition 5. The copositive dual is feasible.

The proof of this proposition is identical to the feasibility proof for the rank-one dual SDP.

Feasible solutions of this version of the optimization problem provide a more natural definition

for extensions that precisely match the proof technique. Since our construction from the proof

of Proposition 4 requires X =∑n
i=1λi xi x⊤i with xi ∈ [0,1]n and

∑n
i=1λi = 1, this is equivalent to

requiring that X is a suitably normalized completely positive matrix, which is what is imposed

now by the constraints of the copositive dual.

Alternative formulations in the space of matrices. So far, we have provided concrete exam-

ples of high-dimensional extensions on cones of symmetric matrices. However, there are

problems where modeling via neural extensions on the cones of symmetric matrices may

not be convenient. Consider the task of finding the optimal tour for the Euclidean TSP. Our

approaches so far have been designed for the purpose of learning to find sets as solutions to

combinatorial problems. On the other hand, an important ingredient of this TSP problem is

predicting the correct order of a set of nodes, which can be elegantly captured by predicting a

permutation matrix.

We will discuss how we may define an extension in the space of permutation matrices for

the purpose of solving routing problems like the euclidean TSP. We start by setting up the

following primal problem. Let Pn be the set of all n ×n permutation matrices. For an input
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doubly stochastic matrix X ∈ [0,1]n×n and a function over permutations f :Pn →R, we have

max
Z∈Rn×n ,b∈R

{Tr(X⊤Z)+b} subject to Tr(P⊤Z)+b ≤ f (P) for all P ∈Pn . (permutation primal LP)

Duality can be carried out in the same way in matrix variable linear programs (Craven and

Mond, 1981). Therefore, we may write the following dual:

min
{yP≥0}

∑
P∈Pn

yP f (P) subject to X = ∑
P∈Pn

yPP, and
∑

P∈Pn

yP = 1. (permutation dual LP)

Proposition 6. The permutation dual LP is feasible.

Proof. Since X is doubly stochastic, the Birkhoff-von Neumann theorem (Birkhoff, 1946;

Von Neumann, 1953) states that it is in the convex hull of all permutation matrices of the same

size. Therefore, there exist ai ∈ [0,1] and corresponding permutation matrices Pi such that

X =∑
i ai Pi ,

∑
i ai = 1. Thus, by taking ai = yPi we obtain a feasible solution.

In this formulation, the decomposition into permutation matrices consists of O(n2) terms

in general. Conveniently, it can be efficiently approximated with coefficients that are dif-

ferentiable functions of the entries of X (Dufossé and Uçar, 2016). This allows us to define

extensions of functions whose domain consists of the extremal points of the Birkhoff poly-

tope. Finally, to satisfy the requirement that X is a doubly stochastic matrix, we may employ

Sinkhorn’s algorithm (Sinkhorn, 1964) to convert a matrix of neural network embeddings to a

doubly stochastic matrix. This has been extensively used in the machine learning literature in

the context of learning permutations (Mena et al., 2018; Emami and Ranka, 2018).

3.8 Optimization aspects of extensions

In this section, we will discuss the minima and continuity properties of extensions that can be

critical to their success in the context of solving tasks with neural networks. In this process, we

will also (re)-state and prove some results for SFEs.

3.8.1 The minima of extensions

The first result concerns the minima of F, showing that the minimum value is the same as

that of f , and no additional minima are added (besides convex combinations of discrete

minimizers). These properties are especially desirable when using an extension F as a loss

function (see Section 3.5) since it is important that F drive the neural network NN1 towards

producing discrete 1S outputs.

Proposition 7 (Scalar SFEs have no bad minima). If F is a scalar SFE of f then:

1. minx∈X F(x) = minS⊆[n] f (S)
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2. argminx∈X F(x) ⊆ Hull
(

argmin1S :S⊆[n] f (S)
)

Proof. The inequality minx∈X F(x) ≤ minS⊆[n] f (S) automatically holds since minS⊆[n] f (S) =
min1S :S⊆[n]F(1S), and {1S : S ⊆ [n]} ⊆ X . So it remains to show the reverse. Indeed, letting

x ∈X be an arbitrary point we have,

F(x) = ES∼px [ f (S)]

≥ ∑
S⊆[n]

px(S) · min
S⊆[n]

f (S)

= min
S⊆[n]

f (S)

where the last equality simply uses the fact that
∑

S⊆[n] px(S) = 1. This proves the first claim.

To prove the second claim, suppose that x minimizes F(x) over x ∈X . This implies that the

inequality in the above derivation must be tight, which is true if and only if

px(S) · f (S) = px(S) · min
S⊆[n]

f (S) for all S ⊆ [n].

For a given S, this implies that either px(S) = 0 or f (S) = minS⊆[n] f (S). Since x = ES∼px [1S] =∑
S⊆[n] px(S) ·1S =∑

S:px(S)>0 px(S) ·1S . This is precisely a convex combination of points 1S for

which f (S) = minS⊆[n] f (S). Since F is a convex combination of exactly this set of points 1S ,

we have the second claim.

3.8.2 Smoothness and continuity of extensions

It is useful to identify conditions that guarantee that an extension will be “well-behaved”

in practice when used in a neural network pipeline. Certainly, one of the conditions that

must be met is that F can be used with automatic differentiation that is routinely done in

machine learning packages. Almost everywhere differentiability is generally desirable in that

context, as in practice, the existence of a measure-zero set of non-differentiabilities (e.g.,

ReLUs) does not seem to be impactful in modern learning pipelines. Indeed, the extensions

we have presented are piece-wise linear, which guarantees that they are almost everywhere

differentiable. On the other hand, the continuity properties of the extensions are slightly more

complicated. A sufficient condition for continuity (and almost everywhere differentiability) is

to show that F is Lipschitz. A straightforward calculation demonstrates that it suffices to show

that x ∈X 7→ px(S) is Lipschitz continuous.

Lemma 2. If the mapping x ∈ [0,1]n 7→ px(S) is Lipschitz continuous and f (S) is finite for all S

in the support of px, then F is also Lipschitz continuous. In particular, F is continuous and

almost everywhere differentiable.
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Proof. The Lipschitz continuity of F(x) follows directly from the definition:

∣∣F(x)−F(x′)
∣∣= ∣∣∣∣ ∑

S⊆[n]
px(S) · f (S)− ∑

S⊆[n]
px′(S) · f (S)

∣∣∣∣
=

∣∣∣∣ ∑
S⊆[n]

(
px(S)−px′(S)

) · f (S)

∣∣∣∣≤ (
2kL max

S⊆[n]
f (S)

)
· ∥x−x′∥,

where L is the maximum Lipschitz constant of x 7→ px(S) over any S in the support of px, and

k is the maximal cardinality of the support of any px.

In general, k can be trivially bounded by 2n , so F is always Lipschitz. However in many cases

the cardinality of the support of any px is much smaller than 2n , leading to a smaller Lipschitz

constant. For instance, k = n in the case of the Lovász extension.

In light of this observation, it is worth examining whether Lipschitzness can be guaranteed in

our approach to constructing extensions that we presented in 3.7.2. Recall that our strategy

hinges on the ability to find a binary square matrix of supporting sets whose inverse maps the

input vector x to a probability distribution.

In this context, it is useful to consider the comparison between the Lovász extension and its

bounded cardinality version. Based on the proof of Lemma 3 of the Lipschitzness of the Lovász

extension, we can make the following observation. Due to piecewise linearity, the extension

will be Lipschitz at each piece. On the other hand, depending on how the supporting sets

S are chosen, we may have discontinuities at the boundaries between pieces. This means

that we cannot guarantee that the extension generated by our construction will be Lipschitz

without imposing additional conditions on how the support of F varies between pieces (i.e.,

how changes in the coordinate ranking of x lead to changes in S).

It should also be noted that recent work has shown that a condition stronger than almost

everywhere differentiability called piecewise analyticity under analytic partition (PAP) can

guarantee the formal correctness of modern automatic differentiation packages when those

are applied to functions with non-differentiabilities (Lee et al., 2020). Investigating the PAP

conditions in the context of SFEs to obtain formal guarantees of correctness is an interesting

future direction.

3.9 Revisiting the probabilistic method

In the previous chapter, subsection 2.7.2 discussed two of the key limitations of the probabilis-

tic method for deriving differentiable losses using the product measure. Briefly summarized,

the two unaddressed limitations from that chapter were

• learning with black box objectives and constraints

• differentiating through complicated expressions for the objective or the probability of
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constraint violation P (S ∉Ω).

Many of the SFEs we have discussed require only black-box access to the function so the

first bullet point is immediately addressed. The second bullet point concerns the difficulty of

obtaining differentiable closed-form expressions for complicated objectives and constraints,

even when their explicit description is available.

Recall that the probabilistic penalty loss for some nonnegative cost function f , a sufficiently

large penalty coefficient β ∈R+, and a graph G = (V ,E) is

ℓ(D;G) = E[
f (S;G)

]+βP (S ∉Ω).

As we have already mentioned earlier on, our construction from the previous chapter can

be viewed as a special case of a multilinear extension. Indeed, theorem 3 from the previous

chapter relies on the fact that the probabilistic penalty loss is an extension of the cost function

on the feasible set.

The challenge in the second bullet point originates in the choice of distribution for the ex-

tension. Indeed by abandoning the product measure, we can use extensions supported on

a smaller number of sets (e.g., n sets for the Lovász extension). This in turn allows us to

easily compute the term E
[

f (S;G)
]

for any cost function. For P (S ∉Ω), we may use any (suit-

ably normalized) function g (S;G) : 2n →R+ that measures constraint violation. Then, from

Markov’s inequality we can straightforwardly bound P (S ∉Ω) with E
[
g (S;G)

]
by computing

the extension of g . This leads to the following extension-based probabilistic penalty loss

ℓ(D;G)sfe = E
[

f (S;G)
]+βE[

g (S;G)
]

.

As long as g (S;G) = 0 if and only if S ∈Ω, this modified version of the loss can be efficiently

computed for all functions, even in a black box setting, while also maintaining the properties

of the probabilistic penalty loss. Specifically, we can prove that the minima of this loss match

the minima of the constrained optimization problem.

Proposition 8. ℓ(D;G)sfe has no bad minima.

Proof. For D supported only on S ∈Ω, ℓ(D;G)sfe = E
[

f (S;G)
]

and is therefore an extension.

Proposition 7 then implies that ℓ(D;G)sfe has the same minima as f over the feasible set. If D
supports infeasible solutions then

ℓ(D;G)sfe ≥ min
S∈Ω

f (S;G)+βE[
g (S;G)

]+ ∑
S∉Ω

P (S) f (S;G).

We know that βE
[
g (S;G)

]+∑
S∉ΩP (S) f (S;G) > 0 because β> 0 and E

[
g (S;G)

]> 0 (g is 0 only

at feasible solutions) which completes the proof.
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3.10 Conclusion

One of the primary limitations of the probabilistic method was the use of the product distri-

bution. Using extensions supported on different distributions as we have described in this

chapter circumvents some of the central limitations of the approach. Nevertheless, there are

tradeoffs to consider in this context. While other distributions allow us to tractably compute

expectations, this may come at a cost of sufficiently exploring an exponentially large space.

Indeed, carefully considering the choice of extension depending on prior knowledge about

the task will be crucial in successfully applying extensions in realistic settings.

3.10 Conclusion

We introduced Neural Set Function Extensions, a framework that enables evaluating set func-

tions on continuous and high-dimensional representations. We showed how to define such

extensions so that they can be used in end-to-end differentiable models and demonstrated

their viability in a range of tasks including combinatorial optimization and image classification.

Notably, neural extensions deliver good results and improve over their scalar counterparts,

further affirming the benefits of problem-solving in high dimensions.
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4 CONCLUSION

4.1 Summary

In this thesis, we have designed tools that enable the use of discrete functions in end-to-end

differentiable models, and that can train neural networks to solve combinatorial optimization

problems without supervision.

To achieve this, we leveraged the probabilistic method to construct differentiable loss functions

that can be used for unsupervised training. We were able to show that by minimizing those

loss functions the network learns a distribution that provably contains high-quality feasible

solutions. The proof of the existence of those solutions was then derandomized using the

method of conditional expectation. This provided us with a deterministic way to decode

high-quality solutions out of the neural network outputs at inference time. Empirically, this

method has established the state of the art in unsupervised combinatorial optimization with

neural networks. It was evaluated on a series of datasets involving real-world instances and

hard synthetic problems. For the case of problems with linear box constraints, we provided an

additional iterative algorithm that updates the learned distribution until the constraints are

satisfied. Moreover, we demonstrated how we can derive probabilistic penalty loss functions

for several landmark problems in combinatorial optimization like the maximum independent

set, CNF-SAT, and minimum dominating set. We then provided an extended discussion of the

limitations in the proposed methodology. Finally, we explained how more powerful tools of

the probabilistic method like the Lovász local lemma can be used with ML models to overcome

some of those limitations by exploiting the sparsity of instances to obtain existence proofs of

constraint satisfiability. Furthermore, we described how the proofs can be made constructive

and practical via the Moser-Tardos algorithm.

In order to tackle some of the limitations of the approach in Chapter 2 and to provide a method

for using discrete set functions in differentiable models we described a general framework for

continuous extensions. Through the linear programming formulation of the convex closure,

we defined scalar set function extensions which extend the domain of discrete functions from

{0,1}n to the entire hypercube [0,1]n . Our extensions have a probabilistic interpretation since

they can be viewed as efficiently computable expectations over function evaluations on the

corners of the hypercube. We showed that our extensions do not introduce bad minima and

can be used effectively in end-to-end differentiable neural network pipelines. The versatility of

our approach extends beyond combinatorial optimization as we were able to train a competi-

tive image classifier through an extension of the training error function. In order to facilitate

the discovery of new extensions, we described a methodology for constructing extensions

through matrix inverses that can be used to derive known extensions like the Lovász extension.
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4 Conclusion

The same methodology allowed us to create a cardinality-constrained generalization of the

Lovász extension that is supported on sets of cardinality at most k. The use of this extension

led to improved experimental results for constraint satisfaction problems. In order to tackle

the problem of discrete computation in high dimensions, we proposed defining extensions on

the cone of positive semidefinite matrices via a suitable semidefinite program and showed

how extensions may be built there on top of scalar extensions. Extensions defined on higher

dimensional domains improved over their lower dimensional counterparts and outperformed

REINFORCE on combinatorial optimization problems without any significant computational

overhead. We also discussed how to define extensions on other higher dimensional geometries

like the cone of completely positive matrices and the Birkhoff polytope. Finally, we showed

how the formalism of extensions can be used to improve probabilistic penalty losses by mak-

ing the expectation of any constraint function tractable, which in turn enables the use of the

probabilistic penalty loss even for complex or black-box constraints.

4.2 Future directions

There are several directions that may be explored in order to augment and expand the method-

ologies we have described. At a finer-grained level, exploring ways to include concentration

inequalities in the probabilistic penalty loss in a differentiable way could lead to better control

of the properties of the learned distribution. Moreover, it could secure stronger guarantees for

the solutions that are being recovered. Another avenue that requires further exploration is the

derandomization procedure. The method of conditional expectation requires recalculating

expected values after each discretization step which can be costly (e.g., for the product mea-

sure). Developing faster variants or stopping criteria, e.g., via pessimistic estimators (Alon and

Spencer, 2016), could significantly improve the practical appeal of the method.

Regarding extensions, even though we have discussed general guidelines on how to generate

new extensions under specific conditions, those guidelines are by no means exhaustive.

The methodology described in 3.7.2 is inherently limited to n supporting sets. Ideally, we

would like to be able to control the tradeoff between efficiency and exploration by varying

the number of sets in the support of the extension, while also accommodating sets with

more complex constraints. Furthermore, providing a consistent design methodology while

ensuring properties like Lipschitz continuity remains an open problem. Beyond the use case

of extensions as loss functions that we have demonstrated in our experiments, an interesting

prospect is to explore extensions for neural algorithmic reasoning (Velickovic et al., 2020)

and more broadly as a tool in the design of differentiable algorithms (Petersen, 2022). In

that context, extensions may provide differentiable substitutes for the internal operations

of algorithms. Alternatively, extensions could also serve as powerful extractors of structural

features (e.g., structural properties of induced subgraphs) which could be leveraged to increase

the expressivity of neural network architectures (Chen and Tian, 2019; Bouritsas et al., 2022).

Finally, a direction that merits further investigation involves building problem symmetries

into our extensions. In that vein, it would be interesting to thoroughly study and build (neural)
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4.2 Future directions

extensions on convex bodies generated from group representations, which in certain cases

admit spectrahedral representations (Sanyal et al., 2011; Saunderson et al., 2015).
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A APPENDIX OF CHAPTER 2

A.1 Proofs and Experimental Details

A.1.1 Proof of Theorem 1

Theorem 1. Fix any β> maxS f (S;G) and let ℓ(D;G) < (1− t )β. With probability at least t , set

S∗ ∼D satisfies

f (S∗;G) < ℓ(D;G)/(1− t ) and S∗ ∈Ω,

under the condition that f is non-negative.

Proof. In the constrained case, the focus is on the probability P ({ f(S;G) < ϵ}∩ {S ∈Ω}). Define

the following probabilistic penalty function:

fp (S;G) = f (S;G)+1S∉Ωβ, (A.1)

whereβ is any number larger than maxS{ f (S;G)}. The key observation is that, if ℓ(D,G) = ϵ<β,

then there must exist a valid solution of cost ϵ. It is a consequence of f (S;G) > 0 and β being

an upper bound of f that

P ( fp (S;G) < ϵ) = P ( f(S;G) < ϵ∩S ∈Ω). (A.2)

Similar to the unconstrained case, for a non-negative f , Markov’s inequality can be utilized to

bound this probability:

P ({ f(S;G) < ϵ}∩ {S ∈Ω}) = P ( fp (S;G) < ϵ)

> 1− 1

ϵ
E
[

fp (S;G)
]

= 1− 1

ϵ

(
E
[

f(S;G)
]+E[

1S∉Ωβ
])

= 1− 1

ϵ

(
E
[

f(S;G)
]+P (S ∉Ω)β

)
. (A.3)

The theorem claim follows from the final inequality.

A.1.2 Proof of Theorem 2

Theorem 2. Let D be the distribution obtained after successful re-scaling of the probabilities.

For any (unconstrained) probabilistic loss function that abides to P ( f (S;G) < ℓ(D;G)) >
t , set S∗ ∼ D satisfies f (S∗;G) < ℓ(D;G) and

∑
vi∈S∗ ai ∈ [bl ,bh], with probability at least
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t −2exp
(−(bh −bl )2/

∑
i 2a2

i

)
.

Proof. Set b = (bl +bh)/2 and δ= (bh −bl )/2. By Hoeffding’s inequality, the probability that a

sample of D will lie in the correct interval is:

P

(∣∣∣∣∣ ∑
vi∈S

ai −E
[ ∑

vi∈S
ai

]∣∣∣∣∣≤ δ
)
= P

(∣∣∣∣∣ ∑
vi∈S

ai −b

∣∣∣∣∣≤ δ
)
≥ 1−2exp

(
− 2δ2∑

i a2
i

)
.

We can combine this guarantee with the unconstrained guarantee by taking a union bound

over the two events:

P

(
f (S;G) < ℓ(D,G) AND

∑
vi∈S

ai ∈ [bl ,bh]

)

= 1−P

(
f (S;G) ≥ ℓ(D,G) OR

∑
vi∈S

ai ∉ [bl ,bh]

)

≥ 1−P
(

f (S;G) ≥ ℓ(D,G)
)−P

( ∑
vi∈S

ai ∉ [bl ,bh]

)

≥ t −2exp

(
− 2δ2∑

i a2
i

)

The previous is positive whenever t > 2exp
(−2δ2/(

∑
i a2

i )
)
.

Proof of Corollary 1

Corollary 1. Fix positive constants γ and β satisfying maxS w(S) ≤ γ≤β and let wi j ≤ 1. If

ℓclique(D;G)≜ γ− (β+1)
∑

(vi ,v j )∈E
wi j pi p j + β

2

∑
vi ̸=v j

pi p j < (1− t )β,

then, with probability at least t , set S∗ ∼D is a clique of weight w(S∗) > γ−ℓclique(D;G)/(1− t ).

Proof. To ensure that the loss function is non-negative, we will work with the translated

objective function f (S;G) = γ−w(S), where the term γ is any upper bound of w(S) for all S.

Theorem 1 guarantees that if

E
[

f (S;G)
]+P (S ∉Ω)β= ℓclique(D;G) < (1− t )β (A.4)

and as long as maxS f (S;G) = γ−minS w(S) ≤ γ≤β, then with probability at least t , set S∗ ∼D
satisfies γ−ℓclique(D;G)/(1− t ) < w(S∗).
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Denote by xi a Bernoulli random variable with probability pi . It is not difficult to see that

E [w(S)] = E
[ ∑

(vi ,v j )∈E
wi j xi x j

]
= ∑

(vi ,v j )∈E
wi j pi p j (A.5)

We proceed to bound P (S ∉Ωclique). Without loss of generality, suppose that the edge weights

have been normalized to lie in [0,1]. We define w̄(S) to be the weight of S on the complement

graph:

w̄(S)≜
∑

vi ,v j∈S
1{(vi ,v j )∉E }

By definition, we have that P
(
S ∉Ωclique

)= P (w̄(S) ≥ 1) . Markov’s inequality then yields

P
(
S ∉Ωclique

)≤ E [w̄(S)] = E
[ |S|(|S|−1)

2

]
−E [w(S)] (A.6)

= 1

2
E

[( ∑
vi∈V

xi

)2

− ∑
vi∈V

xi

]
−E [w(S)]

= 1

2

∑
vi ̸=v j

E
[
xi x j

]+ 1

2

∑
vi∈V

E
[
x2

i

]− ∑
vi∈V

E [xi ]− 1

2
E [w(S)]

= 1

2

∑
vi ̸=v j

pi p j + 1

2

∑
vi∈V

pi − 1

2

∑
vi∈V

pi −E [w(S)] = 1

2

∑
vi ̸=v j

pi p j −E [w(S)] . (A.7)

It follows from the above derivations that

γ−E [w(S)]+P (S ∉Ω)β≤ γ−E [w(S)]+ β

2

∑
vi ̸=v j

pi p j −βE [w(S)]

= γ− (1+β)E [w(S)]+ β

2

∑
vi ̸=v j

pi p j

= γ− (1+β)
∑

(vi ,v j )∈E
wi j pi p j + β

2

∑
vi ̸=v j

pi p j . (A.8)

The final expression is exactly the probabilistic loss function for the maximum clique problem.

A.1.3 Proof of Corollary 2

Corollary 2. Let the probabilities p1, . . . , pn giving rise to D be re-scaled such that
∑

vi∈V di pi =
vl+vh

2 and, further, fix ℓcut(D;G)≜
∑

vi∈V di pi −2
∑

(vi ,v j )∈E pi p j wi j . Set S∗ ∼D satisfies

cut
(
S∗)< ℓcut(D;G)/(1− t ) and vol

(
S∗) ∈ [vl , vh],

with probability at least t −2exp
(−(vh − vl )2/

∑
i 2d 2

i

)
.
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Proof. Denote by S the set of nodes belonging to the cut, defined as S = {vi ∈V , such that xi =
1}. Our first step is to re-scale the probabilities such that, in expectation, the following is

satisfied:

E [vol(S)] = vl + vh

2
.

This can be achieved by noting that the expected volume is

E [vol(S)] = E
[ ∑

vi∈V
di xi

]
= ∑

vi∈V
di pi

and then using the procedure described in Section A.3.

With the probabilities p1, . . . , pn re-scaled, we proceed to derive the probabilistic loss function

corresponding to the min cut.

The cut of a set S ∼D can be expressed as

cut(S) =
∑

vi∈S

∑
v j∉S

wi j =
∑

(vi ,v j )∈E
wi j zi j , (A.9)

where zi j is a Bernoulli random variable with probability pi which is equal to one if exactly

one of the nodes vi , v j lies within set S. Formally,

zi j = |xi −x j | =
1 with probability pi −2pi p j +p j

0 with probability 2pi p j − (pi +p j )+1
(A.10)

It follows that the expected cut is given by

E [cut(S)] =
∑

(vi ,v j )∈E
wi j E

[
zi j

]
= ∑

(vi ,v j )∈E
wi j (pi −2pi p j +p j )

= ∑
(vi ,v j )∈E

wi j (pi +p j )−2
∑

(vi ,v j )∈E
pi p j wi j =

∑
vi∈V

di pi −2
∑

(vi ,v j )∈E
pi p j wi j . (A.11)

We define, accordingly, the min-cut probabilistic loss as

ℓcut(D;G) = ∑
vi∈V

di pi −2
∑

(vi ,v j )∈E
pi p j wi j

Then, for any t ∈ (0,1], Markov’s inequality yields:

P

(
cut(S) < ℓcut(D;G)

1− t

)
> t

The proof then concludes by invoking Theorem 2.
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A.1.4 Proof of theorem 3

Theorem 3. The minima of the probabilistic penalty loss are the minima of the constrained

optimization problem:

min
D

ℓ(D;G) = min
S∈Ω

f (S;G).

Proof. First, observe that for D = δS , where δS is the point mass on any set S ⊆ V , we have

ES∼D[ f (S)] = f (S). Therefore, for any S ∈Ω and D = δS , the constraint term is zero and we see

that

ℓ(D;G) = ES∼D[ f (S)] = f (S;G), (A.12)

and consequently

min
D=δS∈Ω

ℓ(D;G) = min
S∈Ω

f (S;G). (A.13)

More generally, for any distribution Dfeasible supported only on feasible solutions we have

ℓ(Dfeasible;G) = E[ f (S;G)]

≥ ∑
S∈Ω

P (S)min
S∈Ω

f (S;G)

= min
S∈Ω

f (S;G).

In the general case, for any D, we have

ℓ(D;G) = ∑
S⊆V

P (S) f (S;G)+βP (S ∉Ω)

= ∑
S∈Ω

P (S) f (S;G)+ ∑
S∉Ω

P (S) f (S;G)+βP (S ∉Ω)

= ∑
S∈Ω

P (S) f (S;G)+ ∑
S∉Ω

P (S) f (S;G)+β ∑
S∉Ω

P (S)

≥ ∑
S∉Ω

P (S)( f (S;G)+β)+ ∑
S∈Ω

P (S)min
S∈Ω

f (S;G)

= ∑
S∉Ω

P (S)
(

f (S;G)+β)+min
S∈Ω

f (S;G)(1− ∑
S∉Ω

P (S))

= ∑
S∉Ω

P (S)

(
f (S;G)+β−min

S∈Ω
f (S;G)

)
︸ ︷︷ ︸

α≥0

+min
S∈Ω

f (S;G).

Thus, the probabilistic penalty function is bounded from below by the minimum of the

constrained optimization problem. If the support of D contains only feasible solutions,

then P (S) = 0 for S ∉Ω. This implies ℓ(Dfeasible;G) ≥ minS∈Ω f (S). From A.13 we know that

equality with the lower bound can be achieved for D = δS∈Ω. When infeasible solutions are

supported, then ℓ(D;G) ≥ minS∈Ω f (S;G)+α for α ∈R+. This establishes that the minima of

81



A Appendix of chapter 2

the probabilistic penalty loss are the same as the minima of the constrained optimization

problem.

A.1.5 Proof of Corollary 4.

Let y1, y2, . . . , ym > 0 be parameters corresponding to bad events b1,b2, . . . ,bm . Let P (bi ) be

the probability of a bad event bi and let N+
i be the neighborhood of bi in the dependency

graph, including bi . If for all bi , we have

P (S ∈ bi ) ≤ yi∏
j∈N +(y j +1)

,

Then P (S ∈⋂
i∈C b̄i ) > 0.

Proof. The proof can be obtained from the conditions of the asymmetric LLL.

P (S ∈ bi ) ≤λi
∏

j∈Ni

(1−λ j ),

= λi∏
j∈Ni

(
1

(1−λ j )

)
= λi

(1−λi )
∏

j∈N +
i

(
1

(1−λ j )

)
= λi

(1−λi )
∏

j∈N +
i

(
1+ λ j

(1−λ j )

) ,

By setting yi = λi
1−λi

for all i we obtain Dobrushin’s condition. Therefore, it follows from the

asymmetric LLL that if Dobrushin’s condition holds, then P (S ∈⋂
i∈C b̄i ) > 0.

A.2 Experimental details

A.2.1 Datasets

The following table presents key statistics of the datasets that were used in this study:

To speed up computation and training, for the Facebook dataset, we kept graphs consisting of

at most 15000 nodes (i.e., 70 out of the total 100 available graphs of the dataset).

The RB test set can be downloaded from the following link: https://www.dropbox.com/

s/9bdq1y69dw1q77q/cliques_test_set_solved.p?dl=0. The latter was generated using the

procedure described by Xu (2007). We used a python implementation by Toenshoff et al. (2019)

that is available on the RUN-CSP repository: https://github.com/RUNCSP/RUN-CSP/blob/

master/generate_xu_instances.py. Since the parameters of the original training set were not
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A.2 Experimental details

IMDB COLLAB TWITTER RB (Train) RB (Test) RB (Large Inst.) SF-295 FACEBOOK

nodes 19.77 74.49 131.76 216.673 217.44 1013.25 26.06 7252.71

edges 96.53 2457.78 1709.33 22852 22828 509988.2 28.08 276411.19

reduction time 0.0003 0.006 0.024 0.018 0.018 0.252 – –

number of test graphs 200 1000 196 2000 500 40 8055 14

Table A.1: Average number of nodes and edges for the considered datasets. Reduction time
corresponds to the average number of seconds needed to reduce a maximum clique instance
to a maximum independent instance. Number of test graphs refers to the number of graphs
that the methods were evaluated on, in a given dataset.

available, we selected a set of initial parameters such that the generated dataset resembles

the original training set. As seen in Table A.1, the properties of the generated test set are close

to those of the training set. Specifically, the training set contained graphs whose size varied

between 50 and 500 nodes and featured cliques of size 5 to 25. The test set was made out

of graphs whose size was between 50 and 475 nodes and contained cliques of size 10 to 25.

These minor differences provide a possible explanation for the drop in test performance of all

methods (larger cliques tend to be harder to find).

All other datasets are publicly available.

A.2.2 Neural network architecture

In both problems, Erdős’ GNN and our own neural baselines were given as node features a one-

hot encoding of a random node from the input graph. For the local graph partitioning setting,

our networks consisted of 6 GIN layers followed by a multi-head GAT layer. The depth was

kept constant across all datasets. We employed skip connections and batch-normalization at

every layer. For the maximum clique problem, we also incorporated graph size normalization

for each convolution, as we found that it improved optimization stability. The networks in

this setting did not use a GAT layer, as we found that multi-head GAT had a negative impact

on the speed/memory of the network, while providing only negligible benefits in accuracy.

Furthermore, locality was enforced after each layer by masking the receptive field. That

is, after 1 layer of convolution only 1-hop neighbors were allowed to have nonzero values,

after 2 layers only 2-hop neighbors could have nonzero values, etc. The output of the final

GNN layer was passed through a two layer perceptron giving as output one value per node.

The aforementioned numbers were re-scaled to lie in [0,1] (using a graph-wide min-max

normalization) and were interpreted as probabilities p1, . . . , pn . In the case of local graph

partitioning, the forward-pass was concluded by the appropriate re-scaling of the probabilities

(as described in Section 2.2.2).

83



A Appendix of chapter 2

A.2.3 Local graph partitioning setup

Following the convention of local graph clustering algorithms, for each graph in the test set

we randomly selected d nodes of the input graph to act as cluster seeds, where d = 10,30,

and 100 for SF-295, TWITTER, and FACEBOOK, respectively. Each method was run once

for each seed resulting in d sets per graph. We obtained one number per seed by averaging

the conductances of the graphs. Table 2.3 reports the mean and standard deviation of these

numbers. The correct procedure is the one described here.

The volume-constrained graph partitioning formulation can be used to minimize conductance

as follows: Perform grid search over the range of feasible volumes and create a small interval

around each target volume. Then, solve a volume-constrained partitioning problem for each

interval, and return the set of smallest conductance identified.

We used a fast and randomized variant of the above procedure with all neural approaches and

Gurobi (see Section 2.4.7 for more details). Specifically, for each seed node we generated a ran-

dom volume interval within the receptive field of the network, and solved the corresponding

constrained partitioning problem. Our construction ensured that the returned sets always

contained the seed node and had a controlled volume. For L1 and L2 GNN, we obtained the

set by sampling from the output distribution. We drew 10 samples and kept the best. We found

that in contrast to flat thresholding (like in the maximum clique), sampling yielded better

results in this case.

For the parameter search of local graph clustering methods, we found the best performing

parameters on a validation set via grid search when that was appropriate. For CRD, we

searched for all the integer values in the [1,20] interval for all 3 of the main parameters of the

algorithm. For Simple Local, we searched in the [0,1] interval for the locality parameter. Finally,

for Pagerank-Nibble we set a lower bound on the volume that is 10 % of the total graph volume.

It should be noted, that while local graph clustering methods achieved inferior conductance

results, they do not require explicit specification of a receptive field which renders them more

flexible.

A.2.4 Hardware and software

All methods were run on an Intel Xeon Silver 4114 CPU, with 192GB of available RAM. The

neural networks were executed on a single RTX TITAN 25GB graphics card. The code was

executed on version 1.1.0 of PyTorch and version 1.2.0 of PyTorch Geometric.

A.3 Iterative scheme for non-linear re-scaling

Denote by D0 the distribution of sets predicted by the neural network and let p0
1, . . . , p0

n be

the probabilities that parameterize it. We aim to re-scale these probabilities such that the
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constraint is satisfied in expectation:

∑
vi∈V

ai pi = bl +bh

2
, where pi = clamp

(
c p0

i ,0,1
)

and c ∈R.

This can be achieved by iteratively applying the following recursion:

pτ+1
i ← clamp

(
cτpτ

i ,0,1
)
, with cτ = b −∑

vi∈Qτ ai∑
vi∈V \Qτ ai pτ

i

and Qτ = {vi ∈V : pτ
i = 1},

where b = bl+bh
2 .

The fact that convergence occurs can be easily deduced. Specifically, consider any iteration

τ and let Qτ be as above. If pτ+1
i < 1 for all vi ∈V \Qτ, then the iteration has converged.

Otherwise, we will have Qτ ⊂Qτ+1. From the latter, it follows that in every τ (but the last), set

Qτ must expand until either clamp
(
cτpτ

i ,0,1
)= b or Qτ =V . The latter scenario will occur if∑

vi∈V ai ≤ b.
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B APPENDIX OF CHAPTER 3

B.1 Examples of extensions, proofs, and experimental details

B.1.1 Lovász extension.

Recall the definition: x is sorted so that x1 ≥ x2 ≥ . . . ≥ xd . Then the Lovász extension corre-

sponds to taking Si = {1, . . . , i }, and letting px(Si ) = xi −xi+1, the non-negative increments of

x (where recall we take xn+1 = 0). All other sets have zero probability. For convenience, we

introduce the shorthand notation ai = px(Si ) = xi −xi+1

Feasibility.Clearly all ai = xi −xi+1 ≥ 0, and
∑n

i=1 ai =∑n
i=1(xi −xi+1) = x1 ≤ 1. Any remaining

probability mass is assigned to the empty set: px(∅) = 1−x1, which contributes nothing to the

extension F since f (∅) = 0 by assumption. All that remains is to check that

n∑
i=1

px(Si ) ·1Si = x.

For a given k ∈ [n], note that the only sets Si with non-zero kth coordinate are S1, . . . ,Sk , and

in all cases (1Si )k = 1. So the kth coordinate is precisely
∑k

i=1 px(Si ) = ∑k
i=1(xi − xi+1) = xk ,

yielding the desired formula.

Extension.Consider an arbitrary S ⊆ [n]. Since we assume x = 1S is sorted, it has the form

1S = (1,1, . . . ,1︸ ︷︷ ︸
k times

,0,0, . . .0)⊤. Therefore, for each j < k we have a j = x j −x j+1 = 1−1 = 0 and for

each j > k we have a j = x j −x j+1 = 0−0 = 0. The only non-zero probability is ak = xk −xk+1 =
1−0 = 1. So,

F(1S) =
n∑

i=1
ai f (Si ) = ∑

i :i ̸=k
ai f (Si )+ak f (Sk ) = 0+1 · f (Sk ) = f (S)

where the the final equality follows since by definition Sk corresponds exactly to the vector

(1,1, . . . ,1︸ ︷︷ ︸
k times

,0,0, . . .0)⊤ = 1S and so Sk = S.

Continuity.The Lovász extension is well-known and its properties have been carefully studied.

In particular, it is known to be a Lipschitz function (Bach, 2019). For completeness, we provide

a simple proof here.

Lemma 3. Let px be as defined for the Lovász extension. Then x 7→ px(S) is Lipschitz for all
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S ⊆ [n].

Proof. First note that px is piecewise linear, with one piece per possible ordering x1 ≥ x2 ≥
. . . ≥ xn (so n! pieces in total). Within the interior of each piece px is linear, and therefore

Lipschitz. So in order to prove global Lipschitzness, it suffices to show that px is continuous at

the boundaries between pieces (the Lipschitz constant is then the maximum of the Lipschitz

constants for each linear piece).

Now consider a point x with x1 ≥ . . . ≥ xi = xi+1 ≥ . . . ≥ xn . Consider the perturbed point

xδ = x−δei with δ> 0, and ei denoting the i th standard basis vector. To prove continuity of px

it suffices to show that for any S we have pxδ(S) → px(S) as δ→ 0+.

There are two sets in the support of px whose probabilities are different under pxδ , namely:

Si = {1, . . . , i } and Si+1 = {1, . . . , i , i +1}. Similarly, there are two sets in the support of pxδ whose

probabilities are different under px, namely: S′
i = {1, . . . , i −1, i +1} and S′

i+1 = {1, . . . , i , i +1} =
Si+1. So it suffices to show the convergence pxδ(S) → px(S) for these four S. Consider first Si :∣∣pxδ(Si )−px(Si )

∣∣= ∣∣0− (xi −xi+1)
∣∣= 0

where the final equality uses the fact that xi = xi+1. Next consider Si+1 = S′
i+1:∣∣pxδ(Si+1)−px(Si+1)

∣∣= ∣∣(x ′
i+1 −x ′

i+2)− (xi+1 −xi+2)
∣∣= ∣∣(x ′

i+1 −xi+1)− (x ′
i+2 −xi+2)

∣∣= 0

Finally, we consider S′
i :∣∣pxδ(S′

i )−px(S′
i )

∣∣= ∣∣(x ′
i −x ′

i+1)− (xi −xi+1)
∣∣

= ∣∣(x ′
i+1 −xi+1)− (x ′

i+1 −xi+1)
∣∣

= ∣∣(xi+1 −δ−xi+1)− (x ′
i+1 −xi+1)

∣∣
= δ→ 0

completing the proof.
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B.1.2 Bounded cardinality Lovaśz extension.

The bounded cardinality extension considers n sets S of cardinality at most k, with n ≥ k ≥ 2.

We collect {Si }n
i=1 of subsets of [n] in an n ×n matrix S ∈ {0,1}n×n whose i th column is 1Si :

S =



k︷ ︸︸ ︷
1 . . . 1 0 0

0
. . .

. . .
. . . 0

0 0
. . .

. . . 1
...

...
. . .

. . .
...

0 0 0 0 1


.

The matrix will contain k sets of gradually increasing cardinality, from 1 up until k, and n −k

sets of cardinality exactly k. In this notation, the dual LP constraint
∑

S⊆[n] yS 1S = x can be

written as Sp = x, where the i th coordinate of p defines px(Si ). Then, the bounded cardinality

extension coefficients px(S) are the coordinates of the vector y, where y = S−1x. To calculate

the inverse, we will leverage the fact that S will be triangular Toeplitz by construction. Clearly,

its inverse will also be triangular.

Lemma 4. The entries (i , j ) of the inverse are

S−1(i , j ) =


1, if ( j − i ) mod k = 0 and i ≤ j ,

−1, if ( j − i ) mod k = 1 and i ≤ j ,

0, otherwise,

(B.1)

for i = 1,2, . . . ,n.

Proof. The proof relies on known results for banded Toeplitz matrices. A banded Toeplitz

matrix of bandwidth r and superdiagonal s is an n ×n matrix that has the following form:

Tr,s =



cs+1 cs . . . c1 0

cs+2 cs+1 cs . . .
. . .

...
. . .

. . .
. . . c1

cr
. . .

. . .
...

. . .
. . .

. . .
...

0 cr . . . . . . cs+1


.

Note here that the (i , j ) entry of T, due to its Toeplitz structure, is going to be T(i , j ) = ci− j+s+1.

For convenience, we are going to invert S⊤ and the result straightforwardly transfers to S. For

S⊤, we have superdiagonal s = 0 and bandwidth r = k. It is known (Meek, 1983; Trench, 1974)
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that the entries gi− j+1 = (S⊤)−1(i , j ) of the inverse will obey the following difference equation:

ck gl−k + ck−1gl−k+1 +·· · = 0, l ≥ 3, g1 = 1,

with g0 = g−1 = ·· · = g3−k = 0. Considering the conditions above and the fact that c1 = c2 =
·· · = ck = 1, the difference equation simplifies to

k−1∑
t=0

gl−k+t = 0. (B.2)

As an example, let us compute the case for k = 3, l = 3. We obtain g0+g1+g2 = 0, which implies

g2 = −1. It is easy to see that for any k, computing the difference equation for l = 3 yields

g2 =−1 since all the negative indices do not contribute to the sum, reducing it to g1 + g2 = 0.

We continue with k = 3, l = 4 and obtain g1+g2+g3 = 0, which implies g3 = 0. By incrementing

l , observe that we are shifting the terms in the sum by one, so this straightforwardly implies

that l = 5 yields g4 = 1 for k = 3, and so on. Generalizing this observation, we obtain the

following cases:

• g t = 1, for t = mk +1,

• g t =−1, for t = mk +2,

• g t = 0, otherwise.

Here, m is a non-negative integer. The lemma follows straightforwardly from that observation.

Equivalence to the Lovaśz extension. We want to show that the bounded cardinality extension

is equivalent to the Lovaśz extension when k = n. Let Ti ,k = { j | ( j−i ) mod k = 0, for i ≤ j ≤ n, },

i.e., Ti ,k stores the indices where j − i is perfectly divided by k. From the analytic form of the

inverse, observe that the i -th coordinate of y is px(Si ) =∑
j∈Ti ,k

(x j −x j+1). For k = n, we have

Ti ,n = { j | ( j − i ) mod n = 0} = {i }, and therefore px(Si ) = xi − xi+1, which are the coefficients

of the Lovász extension.

Feasibility. The equation y = S−1x guarantees that the constraint x = ∑n
i=1 ySi 1Si is obeyed.

Recall that x is sorted in descending order like in the case of the Lovász extension. Then, it is

easy to see that px(Si ) =∑
j∈Ti ,k

(x j − x j+1) ≤ xi , because xi − xi+1 is always contained in the

summation for px(Si ). We also have px(Si ) ≥ 0 because xi −xi+1 ≥ 0. Therefore, by restricting

x in the probability simplex we could ensure
∑n

i=1 px(Si ) ≤∑n
i=1 xi = 1. To secure tight equality,

we allocate the rest of the mass to the empty set, i.e., px(∅) = 1−∑n
i=1 px(Si ), which does not

affect the value of the extension since the corresponding Boolean is the zero vector. However, x

in the simplex implies that we cannot obtain binary vectors of cardinality larger than 1 which is
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necessary for the extension property to hold for sets of size up to k. The following proposition

provides a sufficient condition for the feasibility and extension property.

Proposition 9. Let x ∈ [0,1] with
∑n

i=k+1 xi ≤ 1−x1. Then px(Si ) =∑
j∈Ti ,k

(x j −x j+1) defines a

feasible solution to the scalar extension dual LP.

Proof. To guarantee feasibility, we need that
∑n

i=1 px(Si ) ≤ 1. It is easy to see that
∑k

i=1 px(Si ) =
x1 because the first k coefficients of the extension are identical to those of the Lovasz ex-

tension. This means that if
∑n

i=k+1 px(Si ) ≤ 1 − x1, then feasibility is guaranteed. Since

px(Si ) = ∑
j∈Ti ,k

(x j − x j+1), each coefficient px(Si ) depends on differences x j − x j+1 for j ≥
i . Hence, we have that

∑n
i=k+1 px(Si ) ≤ ∑n

i=k+1 xi . Therefore,
∑n

i=k+1 xi ≤ 1 − x1 implies∑n
i=k+1 px(Si ) ≤ 1−x1. This guarantees that

∑n
i=1 px(Si ) ≤ 1 and concludes the proof.

Extension. To prove the extension property we need to show that F(1S) = f (S) for all S with

|S| ≤ k. Consider any such set S and recall that we have sorted 1S with arbitrary tie breaks, such

that xi = 1 for i ≤ |S| and xi = 0 otherwise. Due to the equivalence with the Lovaśz extension,

the extension property is guaranteed when k = n for all possible sets. For k < n, consider the

following three cases for Ti ,k .

• When i > |S|, Ti ,k =∅ because for sorted x of cardinality at most k, we know for the

coordinates that xi = xi+1 = 0. For i > k, this implies that px(Si ) = 0.

• When i < |S|, ∑
j∈Ti ,k

(x j −x j+1) = 0 because x j = x j+1 = 1 and we have again px(Si ) = 0.

• When i = |S|, observe that
∑

j∈Ti ,k
(x j − x j+1) = xi − xi+1 = xi . Therefore, px(Si ) = 1. in

that case.

Bringing it all together, F(1S) =∑n
i=1 px f (Si ) = px(S) f (S) = f (S) since the sum contains only

one nonzero term, the one that corresponds to i = |S|.

Continuity. Similar to the Lovaśz extension, px in the bounded cardinality extension is piece-

wise linear and therefore a.e. differentiable with respect to x, where each piece corresponds to

an ordering of the coordinates of x. On the other hand, unlike the Lovaśz extension, the map-

ping x 7→ px(S) is not necessarily globally Lipschitz when k < n, because it is not guaranteed to

be Lipschitz continuous at the boundaries.

B.1.3 Singleton extension.

Feasibility.The singleton extension is not dual LP feasible. However, one of the key reasons

why feasibility is important is that it implies Proposition 1, which show that optimizing F is a

reasonable surrogate to f . In the case of the singleton extension, however, Proposition 1 still
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holds even without feasibility for f . This includes the case of the training accuracy loss, which

can be viewed as minimizing the set function f ({ŷ}) =−1{yi = ŷ}.

Here we give an alternative proof of Proposition 1 for the singleton extension. Consider the

same assumptions as Proposition 1 with the additional requirement that minS f (S) < 0 (this

merely asserts hat S =∅ is not a trivial solution to the minimization problem, and that the

minimizer of f is unique. This is true, for example, for the training accuracy objective we

consider in Section 3.5.

Proof of Proposition 1 for singleton extension. For x ∈X = [0,1]n ,

F(x) =
n∑

i=1
px(Si ) f (Si )

=
n∑

i=1
(xi −xi+1) f (Si )

≥
n∑

i=1
(xi −xi+1) min

j∈[n]
f (S j )

≥ (x1 −xn+1) min
j∈[n]

f (S j )

≥ x1 ·min
j∈[n]

f (S j )

≥ min
j∈[n]

f (S j )

where the final inequality follows since min j∈[n] f (S j ) < 0. Taking x = (1,0,0, . . . ,0)⊤ shows that

all the inequalities can be made tight, and the first statement of Proposition 1 holds. For the

second statement, suppose that x ∈X = [0,1]n minimizes F. Then all the inequality in the

preceding argument must be tight. In particular, tightness of the final inequality implies that

x1 = 1. Meanwhile, tightness of the first inequaliity implies that xi −xi+1 = 0 for all i for which

f (Si ) ̸= min j∈[n] f (S j ), and tightness of the second inequality implies that xn+1 = 0. These

together imply that x = 1⊕0n−1 where 1 is a 1×1 vector with entry equal to one, and 0n−1 is

an all zeros vectors of length n −1, and ⊕ denotes concatenation. Since f (S1) = min j∈[n] f (S j )

is the unique minimizer we have that x = 1S1 ∈ Hull
(

argmin1Si :i∈[n] f (Si )
)
, completing the

proof.

Extension.Consider an arbitrary i ∈ [n]. Since we assume x = 1{i } is sorted, we are without loss

of generality considering 1{1} = (1,0, . . . ,0,0, . . .0)⊤. Therefore, we have px(S1) = x1−x2 = 1−0 =
1 and for each j > 1 we have px(S j ) = x j − x j+1 = 0−0 = 0. The only non-zero probability is

px(S1), and so

F(1{1}) =
n∑

j=1
px(S j ) f (S j ) = f (S1) = f ({1}).
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Continuity.The proof of continuity of the singleton extension is a simple adaptation of the

proof used for the Lovaśz extension, which we omit.

B.1.4 Permutations and Involutory Extension.

Feasibility.It is known that every elementary permutation matrix is involutory, i.e., SS = I.

Given such an elementary permutation matrix S, since S(Sx) = Spx = x, the constraint
∑

S⊆[n] yS 1S =
x is satisfied. Furthermore,

∑
S⊆[n] yS = 1 can be secured if x is in the simplex, since the sum of

the elements of a vector is invariant to permutations of the entries.

Extension.If the permutation has a fixed point at the maximum element of x, i.e., it maps

the maximum element to itself, then any elementary permutation matrix with such a fixed

point yields an extension on singleton vectors. Without loss of generality, let x = e1, where e1

is the standard basis vector in Rn . Then Se1 = e1 and therefore px(e1) = 1. This in turn implies

F(e1) = 1 · f (e1). This argument can be easily applied to all singleton vectors.

Continuity.The permutation matrix S can be chosen in advance for each x in the simplex.

Since px = Sx, the probabilities are piecewise-linear and each piece is determined by the fixed

point induced by the maximum element of x. Consequently, px depends continuously on x.

B.1.5 Multilinear extension.

Recall that the multiliniear extension is defined via px(S) =∏
i∈S xi

∏
i∉S(1−xi ) supported on

all subsets S ⊆ [n] in general.

Feasibility.The definition of px(S) is equivalent to:

px(S) =
n∏

i=1
x yi

i (1−xi )1−yi

where yi = 1 if i ∈ S and zero otherwise. That is, px(S) is the product of n independent

Bernoulli distributions. So we clearly have px(S) ≥ 0 and
∑

S⊆[n] px(S) = 1. The final feasibility

condition, that
∑

S⊆[n] px(S) ·1S = x can be checked by induction on n. For n = 1 there are only

two sets: {1} and the empty set. And clearly px({1}) ·1{1} = x1(1−x1)0 = x1, so we have the base

case.

Extension.For any S ⊆ [n] we have p1S (S) = ∏
i∈S xi

∏
i∉S(1− xi ) = ∏

i∈S 1
∏

i∉S(1−0) = 1. So

F(1S) = ET∼px f (T ) = f (S).
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Continuity.Fix and S ⊆ [n]. Again we check Lipschitzness. We use ∂xk to denote the derivative

operator with respect to xk . If k ∈ S we have

∣∣∂xk p1S (S)
∣∣= ∣∣∣∣∣∂xk

∏
i∈S

xi
∏
i∉S

(1−xi )

∣∣∣∣∣= ∏
i∈S\{k}

xi
∏
i∉S

(1−xi ) ≤ 1.

Similarly, if k ∉ S we have,

∣∣∂xk p1S (S)
∣∣= ∣∣∣∣∣∂xk

∏
i∈S

xi
∏
i∉S

(1−xi )

∣∣∣∣∣=
∣∣∣∣∣−∏

i∈S
xi

∏
i∉S∪{k}

(1−xi )

∣∣∣∣∣≤ 1.

Hence the spectral norm of the Jacobian J px(S) is bounded, and so x 7→ px(S) is a Lipschitz

map.

B.2 Neural Set Function Extensions

B.2.1 Containment and Extension properties

This section re-states and proves the results from Section 3.4. To start, recall the definition of

the primal LP:

max
z,b

{x⊤z+b}, where (z,b) ∈Rn ×R and 1⊤
S z+b ≤ f (S) for all S ⊆ [n].

and primal SDP:

max
Z⪰0,b∈R

{Tr(X⊤Z)+b} subject to
1

2
Tr((1S 1⊤

T +1T 1⊤
S )Z)+b ≤ f (S ∩T ) for S,T ⊆ [n]. (B.3)

Proposition 10. (Mapping LP feasible solutions to SDP feasible solutions) For any x ∈ [0,1]n ,

define X =p
x
p

x⊤ with the square-root taken entry-wise. Then, for any (z,b) ∈Rn+×R that is

primal LP feasible, the pair (Z,b) where Z = diag(z), is primal SDP feasible and the objective

values agree: Tr(X⊤Z) = z⊤x.

Proof. We start with the feasibility claim. Suppose that (z,b) ∈Rn+×R is a feasible solution to

the primal LP. We must show that (Z,b) is a feasible solution to the primal SDP with X =p
x
p

x⊤

and where Z = diag(z).

Recall the general formula for the trace of a matrix product: Tr(AB) =∑
i , j Ai j B j i . With this in

mind, and noting that the (i , j ) entry of 1S 1⊤
T is equal to 1 if i , j ∈ S∩T , and zero otherwise, we
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have for any S,T ⊆ [n] that

1

2
Tr((1S 1⊤

T +1T 1⊤
S )Z)+b = Tr(1S 1⊤

T Z)+b =
n∑

i , j=1
(1S 1⊤

T )i j ·diag(z)i j +b

= ∑
i , j∈S∩T

(1S 1⊤
T )i j ·diag(z)i j +b

= ∑
i , j∈S∩T

diag(z)i j +b

= ∑
i∈S∩T

zi +b

= 1⊤
S∩T z+b

≤ f (S ∩T )

showing SDP feasibility. That the objective values agree is easily seen since:

Tr(ZX) =
n∑

i , j=1
diag(z)i j ·pxi

√
x j =

n∑
i=1

zi ·pxi
p

xi = x⊤z.

Next, we provide a proof for the construction of neural extensions. Recall the statement of the

main result.

Proposition 11. Let px induce a scalar SFE of f . For X ∈Sn+ with distinct eigenvalues, consider

the decomposition X =∑n
i=1λi xi x⊤i and fix

pX(S,T ) =
n∑

i=1
λi pxi (S)pxi (T ) for all S,T ⊆ [n]. (B.4)

Then, pX defines a neural SFE F at X.

Proof. We begin by showing through the eigendecomposition of X that the F defined by

pX(S,T ) is dual SDP feasible. It is clear that
∑

S,T pX(S,T ) = 1 as long as
∑n

i=1λi = 1, which can

be easily enforced by appropriate normalization of X. Recall from the eigendecomposition we

have X =∑n
i=1λi vi v⊤i where we have fixed each vi ∈ [0,1]n through a sigmoid. Using the scalar

SFE px we may write each vi as a convex combination vi =∑
S pvi (S)1S . For each i we may use

this representation to re-express the outer product of vi with itself:

vi v⊤i = (∑
S

pvi (S)1S
)(∑

T
pvi (T )1T

)⊤
=∑

S
pvi (S)21S 1⊤

S + ∑
S ̸=T

pvi (S)pvi (T )(1T 1⊤
S +1S 1⊤

T )

Summing over all eigenvectors vi yields the relation X =∑
S,T⊆[n] pX(S,T )(1S 1⊤

T +1T 1⊤
S ), prov-

ing dual SDP feasibility.
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Next, consider an input X = 1S 1⊤
S . In this case, the only eigenvector is 1S with eigenvalue

λ= |S| since X1S = 1S(1⊤
S 1S) = 1S |S|. That is, pX(T ′,T ) = p1S (T ′)p1S (T ).

For X = 1S 1⊤
S , 1S is clearly an eigenvector with eigenvalue λ= |S| because X1S = 1S(1⊤

S 1S) =
1S |S|. So, taking 1̄S = 1S/

p|S| to be the normalized eigenvector of X, we have X = |S|1̄S 1̄⊤
S =

|S|
(

1Sp|S|

)(
1Sp|S|

)⊤
= pX(S,S)1S 1⊤

S for pX(S,S) = 1. Therefore, the corresponding neural SFE is

F(1S 1⊤
S ) = pX(S,S) f (S ∩S) = f (S).

All that remains is to show continuity of neural SFEs. Since the scalar SFE px is continuous in x

by assumption, all that remains is to show that the map sending X to its eigenvector with i -th

largest eigenvalue is continuous. We handle sign flip invariance of eignevectors by assuming a

standard choice for eigenvector signs—e.g., by flipping the sign where necessary to ensure

that the first non-zero coordinate is greater than zero. The continuity of the mapping X 7→ vi

follows directly from Theorem 2 from Yu et al. (2015), which is a variant of the Davis–Kahan

theorem. The result shows that the angle between the i -th eigenspaces of two matrices X and

X′ goes to zero in the limit as X → X′.

B.2.2 The cross term lemma

Lemma 5. Let V be a ground set of n elements. Let Si ,S j ⊆V , and 1Si ,1S j be their correspond-

ing characteristic vectors. We have

1Si 1⊤
S j
+1S j 1⊤

Si
= 1Ui j 1⊤

Ui j
+1Ii j 1⊤

Ii j
− (1S j \Ii j )(1S j \Ii j )⊤− (1Si \Ii j )(1Si \Ii j )⊤, (B.5)

where Ui j = Si
⋃

S j , Ii j = Si
⋂

S j .

Proof. First, note that The claim of the lemma can then be obtained by carefully expanding

the terms on its right-hand side. We group the terms in the following manner

1Si 1⊤
S j
+1S j 1⊤

Si
= 1Ui j 1⊤

Ui j
+1Ii j 1⊤

Ii j︸ ︷︷ ︸
A

− ((1S j −1Ii j )(1S j −1Ii j )⊤+ (1Si −1Ii j )(1Si −1Ii j )⊤︸ ︷︷ ︸
B

). (B.6)

Starting with term A, from the definition of the union 1Ui j = 1Si +1S j −1Ii j , we have

1Ui j 1⊤
Ui j

+1Ii j 1⊤
Ii j

= (1Si +1S j −1Ii j )(1Si +1S j −1Ii j )⊤+1Ii j 1⊤
Ii j

= (1Si 1⊤
Si
+1Si 1⊤

S j
−1Si 1⊤

Ii j
)+ (1S j 1⊤

Si
+1S j 1⊤

S j
−1S j 1⊤

Ii j
)+ (−1Ii j 1⊤

Si
−1Ii j 1⊤

S j
+1Ii j 1⊤

Ii j
)+1Ii j 1⊤

Ii j

= (1Si 1⊤
Si
+1S j 1⊤

S j
)+ (1Si 1⊤

S j
+1S j 1⊤

Si
)− (1Si 1⊤

Ii j
+1S j 1⊤

Ii j
)− (1Ii j 1⊤

Si
+1Ii j 1⊤

S j
)+2(1Ii j 1⊤

Ii j
).

(B.7)
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Expanding term B we obtain

(1S j −1Ii j )(1S j −1Ii j )⊤+ (1Si −1Ii j )(1Si −1Ii j )⊤ =
= (1S j 1⊤

S j
−1S j 1⊤

Ii j
−1Ii j 1⊤

S j
+1Ii j 1⊤

Ii j
)+ (1Si 1⊤

Si
−1Si 1⊤

Ii j
−1Ii j 1⊤

Si
+1Ii j 1⊤

Ii j
)

= (1Si 1⊤
Si
+1S j 1⊤

S j
)− (1Si 1⊤

Ii j
+1S j 1⊤

Ii j
)− (1Ii j 1⊤

Si
+1Ii j 1⊤

S j
)+2(1Ii j 1⊤

Ii j
)

B.7= 1Ui j 1⊤
Ui j

+1Ii j 1⊤
Ii j

− (1Si 1⊤
S j
+1S j 1⊤

Si
). (B.8)

Returning to the righthand side of equation B.6 we have

1Ui j 1⊤
Ui j

+1Ii j 1⊤
Ii j

− ((1S j −1Ii j )(1S j −1Ii j )⊤+ (1Si −1)(1Si −1Ii j )⊤)

B.8= 1Ui j 1⊤
Ui j

+1Ii j 1⊤
Ii j

−1Ui j 1⊤
Ui j

−1Ii j 1⊤
Ii j

+ (1Si 1⊤
S j
+1S j 1⊤

Si
)

= 1S j 1⊤
Si
+1Si 1⊤

S j
.

which concludes the proof.

B.3 Primal and dual LP and SDP derivations

Derivation of the dual LP.

max
z,b∈Rn×R

{x⊤z+b} subject to 1⊤
S z+b ≤ f (S) for all S ⊆ [n].

The dual is

min
{yS≥0}S⊆[n]

∑
S⊆[n]

yS f (S) subject to
∑

S⊆[n]
yS 1S = x,

∑
S⊆[n]

yS = 1, for all S ⊆ [n].

In order to standardize the derivation, we first convert the primal maximization problem into

minimization (this will be undone at the end of the derivation). We have

min
z,b∈Rn×R

{−x⊤z−b} subject to 1⊤
S z+b ≤ f (S) for all S ⊆ [n]. (B.9)

The Lagrangian is

L(z, yS ,b)
yS≥0

=−x⊤z−b − ∑
S⊆[n]

yS( f (S)−1⊤
S z−b) (B.10)

=− ∑
S⊆[n]

yS f (S)+ (
∑

S⊆[n]
yS 1⊤

S −x⊤)z+b(
∑

S⊆[n]
yS −1) (B.11)
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The optimal solution p∗ to the primal problem is then

p∗ = min
z,b

max
yS≥0

L(z, yS ,b) (B.12)

= max
yS≥0

min
z,b

L(z, yS ,b) (strong duality)

= d∗, (B.13)

where d∗ is the optimal solution to the dual. From the Lagrangian,

min
z,b

L(z, yS ,b) =
−∑

S⊆[n] yS f (S), if
∑

S⊆[n] yS 1S = x and
∑

S⊆[n] yS = 1,

−∞, otherwise.
(B.14)

Thus, we can write the dual problem as

d∗ = max
yS≥0

− ∑
S⊆[n]

yS f (S) subject to
∑

S⊆[n]
yS 1S = x and

∑
S⊆[n]

yS = 1. (B.15)

Our proposed dual formulation is then obtained by switching from maximization to mini-

mization and negating the objective. It can also be verified that by taking the dual of our dual,

the primal is recovered (see El Halabi (2018, Def. 20) for the derivation).

Derivation of the dual SDP.The dual of our primal SDP can be straightforwardly obtained by

following the standard conventions. To facilitate the discussion that will follow, we provide a

complete derivation first. Recall that our primal SDP is defined as

max
Z⪰0,b∈R

{Tr(X⊤Z)+b} subject to
1

2
Tr((1S 1⊤

T +1T 1⊤
S )Z)+b ≤ f (S ∩T ) for S,T ⊆ [n]. (B.16)

We will show that the dual is

min
{yS,T ≥0}

∑
S,⊆[n]

yS,T f (S ∩T ) subject to X ⪯ ∑
S,T⊆[n]

1

2
yS,T (1S 1⊤

T +1T 1⊤
S ) and

∑
S,T⊆[n]

yS,T = 1.

(B.17)

As before, we convert the primal to a minimization problem:

max
Z⪰0,b∈R

{−Tr(X⊤Z)−b} subject to
1

2
Tr((1S 1⊤

T +1T 1⊤
S )Z)+b ≤ f (S ∩T ) for S,T ⊆ [n]. (B.18)

First, we will standardize the formulation by converting the inequality constraints into equality

constraints. This can be achieved by adding a positive slack variable dS,T to each constraint

such that

1

2
Tr((1S 1⊤

T +1T 1⊤
S )Z)+b +dS,T = f (S ∩T ). (B.19)
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In matrix notation this is done by introducing the positive diagonal slack matrix D to the

decision variable Z, and extending the symmetric matrices in each constraint

Z′ =
Z 0

0 D

 , X′ =
X 0

0 0

 , A′
S,T =

1
2 (1S 1⊤

T +1T 1⊤
S ) 0

0 diag(eS,T )

 , (B.20)

where diag(eS,T ) is a diagonal matrix where all diagonal entries are zero except at the diagonal

entry corresponding to the constraint on S,T which has a 1. Using this reformulation, we

obtain an equivalent SDP in standard form:

max
Z′⪰0,b∈R

{−Tr(X′⊤Z′)−b} subject to Tr(A′
S,T Z′)+b = f (S ∩T ) for S,T ⊆ [n]. (B.21)

Next, we form the Lagrangian which features a decision variable yS,T for each inequality, and

a dual matrix variableΛ. We have

L(Z′,b, yS,T ,Λ) =−Tr(X′⊤Z′)−b − ∑
S,T⊆[n]

yS,T
(
2 f (S ∩T )−Tr(A′

S,T Z′)−b
)−Tr(ΛZ′) (B.22)

= Tr

(
((

∑
S,T⊆[n]

yS,T A′
S,T )−X′−Λ)Z′

)
+b(

∑
S,T⊆[n]

yS,T −1)− ∑
S,T⊆[n]

yS,T f (S ∩T )

(B.23)

For the solution to the primal p∗, we have

p∗ = min
Z′,b

max
Λ,yS,T

L(Z′,b, yS,T ,Λ) (B.24)

≥ max
Λ,yS,T

min
Z′,b

L(Z′,b, yS,T ,Λ) (weak duality)

= d∗. (B.25)

For our Lagrangian we have the dual function

min
Z′,b

L(Z′,b, yS,T ,Λ) =
0, ifΛ⪰ 0,

−∞, otherwise .
(B.26)

Thus, the dual function min
Z′,b

L(Z′,b, yS,T ,Λ) takes non-infinite values under the conditions

(
∑

S,T⊆[n]
yS,T A′

S,T )−X′−Λ= 0, (B.27)

Λ⪰ 0, (B.28)

and
∑

S,T⊆[n]
yS,T −1 = 0. (B.29)
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The first two conditions imply the linear matrix inequality (LMI)∑
S,T⊆[n]

yS,T A′
S,T −X′ ⪰ 0. (Λ⪰ 0)

From the definition of A′
S,T we know that its additional diagonal entries will correspond to the

variables yS,T . Combined with the conditions above, we arrive at the constraints of the dual

yS,T ≥ 0, (B.30)∑
S,T⊆[n]

1

2
yS,T (1S 1⊤

T +1T 1⊤
S ) ⪰ X, (B.31)∑

S,T⊆[n]
yS,T = 1. (B.32)

This leads us to the dual formulation

max
yS,T ≥0

− ∑
S,T⊆[n]

yS,T f (S ∩T ) subject to
∑

S,T⊆[n]

1

2
yS,T (1S 1⊤

T +1T 1⊤
S ) ⪰ X and

∑
S,T⊆[n]

yS,T = 1.

(B.33)

Then, we can obtain our original dual by switching to minimization and negating the objective.

B.4 General Experimental Background Information

B.4.1 Hardware and Software Setup

All training runs were done on a single GPU at a time. Experiments were either run on 1) a

server with 8 NVIDIA RTX 2080 Ti GPUs, or 2) 4 NVIDIA RTX 2080 Ti GPUs. All experiments

are run using Python, specifically the PyTorch (Paszke et al., 2019) framework (see licence

here). For GNN specific functionality, such as graph data batching, use the PyTorch Geometric

(PyG) (Fey and Lenssen, 2019) (MIT License).

We shall open source our code with MIT License, and have provided anonymized code as part

of the supplementary material for reviewers.

B.4.2 Data Details

This paper uses five graph datasets: ENZYMES, PROTEINS, IMDB-BINARY, MUTAG, and

COLLAB. All data is accessed via the standardized PyG API. In the case of COLLAB, which has

5000 samples available, we subsample the first 1000 graphs only for training efficiency. All

experiments Use a train/val/test split ratio of 60/30/10, which is done in exactly one consistent

way across all experiments for each dataset.
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B.5 Unsupervised Neural Combinatorial Optimization Experiments

B.5 Unsupervised Neural Combinatorial Optimization Experiments

All methods use the same GNN backbone: a combination of GAT Veličković et al. (2018) and

Gated Graph Convolution layer (Yujia et al., 2016). We use the Adam optimizer Kingma and

Ba (2014) with initial l r = 10−4 and default PyTorch settings for other parameters Paszke et al.

(2019). We use grid search HPO over batch size {4,32,64}, number of GNN layers {6,10,16}

network width {64,128,256}. All models are trained for 200 epochs. For the model with the

best validation performance, we report the test performance and the standard deviation of

performance over test graphs as a measure of method reliability.

B.5.1 Discrete Objectives

Maximum Clique.For the maximum clique problem, we could simply take f to compute the

clique size (with the size being zero if S is not a clique). However, we found that this objective

led to unstable training dynamics. So, instead, we select a discrete objective that yielded the

much more stable results across datasets. It is defined for a graph G = ([n],E) as,

fMaxClique(S;G) = w(S)qc (S), (B.34)

where w is a measure of size of S and q measures the density of edges within S (i.e., distance

from being a clique). The scalar c is a constant, taken to be c = 2 in all cases except REINFORCE

for which c = 2 proved ineffective, so we use c = 4 instead. Specifically, w(S) =∑
i , j∈S 1{(i , j ) ∈

E } simply counts up all the edges between nodes in S, and q(S) = −2w(S)/(|S|2 −|S|) is the

ratio (with a sign flip) between the number of edges in S, and the number of undirected edges

(|S|2 −|S|)/2 there would be in a clique of size |S|. If G were directed, simply remove the factor

of 2.

Maximum Independent Set.Similarly for maximum independent set we use the discrete

objective,

fMIS(S;G) = w(S)qc (S), (B.35)

where w is a measure of size of S and q measures the number of edges between nodes in S

(the number should be zero for an independent set), and c = 2 as before. Specifically, we take

w(S) = |S|/n, and q(s) = 2
∑

i , j∈S 1{(i , j ) ∈ E }/(|S|2 −|S|), as before.

B.5.2 Neural SFE details.

All Neural SFEs, unless otherwise stated, use the top k = 4 eigenvectors corresponding to the

largest eigenvalues. This is an important efficiency saving step, since with k = n, i.e., using all

eigenvectors, the resulting Neural Lovaśz extension requires O(n2) set function evaluations,

compared to O(n) for the scalar Lovaśz extension. By only using the top k we reduce the
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number of evaluations to O(kn). Wall clock runtime experiments given in Figure 3.4 show

that the runtime of the Neural Lovaśz extension is around ×k its scalar counterpart, and that

the performance of the neural extension gradually increases then saturates when k gets large.

To minimize compute overheads we pick the smallest k at which performance saturation

approximately occurs.

Instead of calling the pre-implemented PyTorch eigensolver torch.linalg.eigh, which

calls LAPACK routines, we use the power method to approximate the first k eignevectors

of X. This is because we found the PyTorch function to be too numerically unstable in our

case. In contrast, we found the power method, which approximates eigenvectors using simple

recursively defined polynomials of X, to be significantly more reliable. In all cases we run the

power method for 5 iterations, which we found to be sufficient for convergence.

B.5.3 Baselines.

This section discusses various implementation details of the baseline methods we used. The

basic training pipeline is kept identical to SFEs, unless explicitly said otherwise. Namely, we

use nearly identical model architectures, identical data loading, and identical HPO parameter

grids.

REINFORCE.We compared with REINFORCE (Williams (1992)) which enables backpropaga-

tion through (discrete) black-box functions. We opt for a simple instantiation for the score

estimator

ĝREINFORCE = f (S)
∂

∂θ
log p(S|θ), (B.36)

where p(S|θ) =∏
i∈S pi

∏
j∉S(1−p j ), i.e., each node is selected independently with probability

pi = gθ(y) for i = 1,2, . . . ,n, where gθ is a neural network and y some input attributes. We

maximize the expected reward, i.e.,

LREINFORCE(θ) = ES∼θ[ĝREINFORCE]. (B.37)

For all experiments with REINFORCE, the expected reward is computed over 250 sampled

actions S which is approximately the number of function evaluations of neural SFEs in most

of the datasets. Here, f is taken to be the corresponding discrete objective of each problem

(as described earlier in section B.5.1). For maximum clique, we normalize rewards f (S) by

removing the mean and dividing by the standard deviation. For the maximum independent set,

the same strategy led to severe instability during training. To alleviate the issue, we introduced

an additional modification to the rewards: among the sampled actions S, only the ones that

achieved higher than average reward were retained and the rewards of the rest were set to 0.

This led to more stable results in most datasets, with the exception of COLLAB were the trick

was not sufficient.
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These issues highlight the instability of the score function estimator in this kind of setting.

Additionally, we experimented by including simple control variates (baselines). These were:

i) a simple greedy baseline obtained by running a greedy algorithm on each input graph ii)

a simple uniform distribution baseline, where actions S were sampled uniformly at random.

Unfortunately, we were not able to obtain any consistent boost in either performance or

stability using those techniques. Finally, to improve stability, the architectures employed

with REINFORCE were slightly modified according to the problem. For example, for the

independent set we additionally applied a sigmoid to the outputs of the final layer.

Erdos Goes Neural.We compare with recent work on unsupervised combinatorial optimization

(Karalias and Loukas, 2020). We use the probabilistic methodology described in the paper to

obtain a loss function for each problem. For the MaxClique, we use the loss provided in the

paper, where for an input graph G = ([n],E) and learned probabilities p it is calculated by

LClique(p;G) = (β+1)
∑

(i , j )∈E
wi j pi p j + β

2

∑
vi ̸=v j

pi p j . (B.38)

We omit additive constants as in practice they not affect the optimization. For the maximum

independent set, we follow the methodology from the paper to derive the following loss:

LIndepSet(p;G) =β ∑
(i , j )∈E

wi j pi p j −
∑

vi∈V
pi . (B.39)

βwas tuned through a simple line search over a few possible values in each case. Following the

implementation of the original paper, we use the same simple decoding algorithm to obtain a

discrete solution from the learned probabilities.

Straight Through Estimator.We also compared with the Straight-Through gradient estimator

(Bengio et al., 2013). This estimator can be used to pass gradients through sampling and

thresholding operations, by assuming in the backward pass that the operation is the identity.

In order to obtain a working baseline with the straight-through estimator, we generate level sets

according to the ranking of elements in the output vector x of the neural network. Specifically,

given x ∈ [0,1]n outputs from a neural network, we generate indicator vectors 1Sk , where

Sk = { j | x j ≥ xk } for k = 1,2, . . . ,n. Then our loss function was computed as

LST (x;G) = 1

n

n∑
k=1

f (1Sk ), (B.40)

where f is the corresponding discrete objective from section B.5.1. At inference, we select the

set that achieves the best value in the objective while complying with the constraints.

Ground truths.We obtain the maximum clique size and the maximum independent set size

s for each graph by expressing it as a mixed integer program and using the Gurobi solver
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Figure B.1: Top: Additional experimental results on the tinyImageNet dataset. Bottom: test
accuracies of different losses. The singleton extension performs broadly comparably to other
losses.

(Gurobi Optimization, 2020).

B.5.4 k-Clique Constraint Satisfaction

Ground truths.As before, we obtain the maximum clique size s for each graph by expressing it

as a mixed integer program and using the Gurobi solver (Gurobi Optimization, 2020). This is

converted into a binary label 1{s ≥ k} indicating if there is a clique of size k or bigger.

Implementation details.The training pipeline, including HPO, is identical to the MaxClique

setup. The only difference comes in the evaluation—at test time the GNN produces an

embedding x, and the largest clique S in the support of px is selected. The model prediction

for the constraint satisfaction problem is then 1{|S| ≥ k}, indicating whether the GNN found a

clique of size k or more. Since this problem is. binary classification problem we compute the

F1-score on a validation set, and report as the final result the F1-score of that same model on

the test set.

B.6 Training error as an objective

Recall that for a K -way classifier h :X →RK with ŷ(x) = argmaxk=1,...,K h(x)k , we consider the

training error 1
n

∑n
i=1 1{yi ̸= ŷ(xi )} calculated over a labeled training dataset {(xi , yi )}n

i=1 to be a

discrete non-differentiable loss. The set function in question is y 7→ 1{yi ̸= y}, which we relax

using the singleton method described in Section 3.3.1.

Training details.For all datasests we use a standard ResNet-18 backbone, with a final layer to

output a vector of the correct dimension depending on the number of classes in the dataset.

CIFAR10 and tinyImageNet models are trained for 200 epochs, while SVHN uses 100 (which
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is sufficient for convergence). We use SGD with momentum mom = 0.9 and weight decay

wd = 5×10−4 and a cosine learning rate schedule. We tune the learning rate for each loss via

a simple grid search of the values l r ∈ {0.01,0.05,0.1,0.2}. For each loss we select the learning

rate with highest accuracy on a validation set, then display the training loss and accuracy for

this run.

B.7 Pseudocode: A forward pass of Scalar and Neural SFEs

To illustrate the main conceptual steps in the implementation of SFEs, we include two torch-

like pseudocode examples for SFEs, one for scalar and one for neural SFEs. The key to the

practical implementation of SFEs within PyTorch is that it is only necessary to define the

forward pass. Gradients are then handled automatically during the backwards pass.

Observe that in both Algorithm, 1 and Algorithm 2, there are two key functions that have

to be implemented: i) getSupportSets, which generates the sets on which the extension is

supported. ii) getCoeffs, which generates the coefficients of each set. Those depend on the

choice of the extension and have to be implemented from scratch whenever a new extension

is designed. The sets of the neural extension and their coefficients can be calculated from the

corresponding scalar ones, using the definition of the Neural SFE and Proposition 3.

Algorithm 1: Scalar set function extension

def ScalarSFE(setFunction, x):
# x: n x 1 tensor of embeddings, the output of a neural network
# n: number of items in ground set (e.g. number of nodes in
graph)

setsScalar = getSupportSetsScalar(x) # n x n, i-th column is Si .
coeffsScalar = getCoeffsScalar(x) # 1 x n: coefficients ySi .
extension = (coeffsScalar*setFunction(setsScalar)).sum()
return extension
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Algorithm 2: Neural set function extension

def NeuralSFE(setFunction, X):
# X: n x d tensor of embeddings, the output of a neural network
# n: number of items in ground set (e.g. number of nodes in
graph)

# d: embedding dimension
X = normalize(X, dim=1)
Gram = X @ X.T # n x n
eigenvalues, eigenvectors = powerMethod(Gram)
extension = 0 # initialize variable
for (eigval,eigvec) in zip(eigenvalues,eigenvectors):

# Compute scalar extension data.
setsScalar = getSupportSetsScalar(eigvec)
coeffsScalar = getCoeffsScalar(eigvec)
# Compute neural extension data from scalar extension data.
setsNeural = getSupportSetsNeural(setsScalar)
coeffsNeural = getCoeffsNeural(coeffsScalar)
extension +=
eigval*((coeffsNeural*setFunction(setsNeural)).sum())

return extension

106



BIBLIOGRAPHY

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467.

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P.,

Cao, X., Khosravi, A., Acharya, U. R., et al. (2021). A review of uncertainty quantification in

deep learning: Techniques, applications and challenges. Information Fusion, 76:243–297.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., and Kolter, J. Z. (2019). Differentiable

convex optimization layers. Advances in Neural Information Processing Systems, 32:9562–

9574.

Alon, N. and Spencer, J. H. (2004). The probabilistic method. John Wiley & Sons.

Alon, N. and Spencer, J. H. (2016). The probabilistic method. John Wiley & Sons.

Amizadeh, S., Matusevych, S., and Weimer, M. (2018). Learning to solve circuit-sat: An

unsupervised differentiable approach.

Amizadeh, S., Matusevych, S., and Weimer, M. (2019). Pdp: A general neural framework for

learning constraint satisfaction solvers.

Amos, B. and Kolter, J. Z. (2017). Optnet: Differentiable optimization as a layer in neural

networks. In International Conference on Machine Learning, pages 136–145. PMLR.

Andersen, R., Chung, F., and Lang, K. (2006). Local graph partitioning using pagerank vectors.

In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages

475–486. IEEE.

Andreev, K. and Racke, H. (2006). Balanced graph partitioning. Theory of Computing Systems,

39(6):929–939.

Ansótegui, C., Giráldez-Cru, J., and Levy, J. (2012). The community structure of sat formulas.

In Theory and Applications of Satisfiability Testing–SAT 2012: 15th International Conference,

Trento, Italy, June 17-20, 2012. Proceedings 15, pages 410–423. Springer.

Arakelyan, E., Daza, D., Minervini, P., and Cochez, M. (2020). Complex query answering with

neural link predictors. arXiv preprint arXiv:2011.03459.

Ardila, F. (2021). The geometry of geometries: matroid theory, old and new. arXiv preprint

arXiv:2111.08726.

107



Bibliography

Ardila, F., Benedetti, C., and Doker, J. (2010). Matroid polytopes and their volumes. Discrete &

Computational Geometry, 43(4):841–854.

Bach, F. (2019). Submodular functions: from discrete to continuous domains. Mathematical

Programming, 175(1):419–459.

Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., and Wang, W. (2018). Graph edit distance computa-

tion via graph neural networks. arXiv preprint arXiv:1808.05689.

Bai, Y., Xu, D., Wang, A., Gu, K., Wu, X., Marinovic, A., Ro, C., Sun, Y., and Wang, W.

(2020). Fast detection of maximum common subgraph via deep q-learning. arXiv preprint

arXiv:2002.03129.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P. (2019). The log-

ical expressiveness of graph neural networks. In International Conference on Learning

Representations.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N.,

Warde-Farley, D., and Bengio, Y. (2012). Theano: new features and speed improvements.

arXiv preprint arXiv:1211.5590.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,

Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational inductive biases,

deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

Baxter, J. (2000). A model of inductive bias learning. Journal of artificial intelligence research,

12:149–198.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning

practice and the classical bias–variance trade-off. Proceedings of the National Academy of

Sciences, 116(32):15849–15854.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial opti-

mization with reinforcement learning. arXiv preprint arXiv:1611.09940.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gradients through

stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.

Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combinatorial optimization:

a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421.

Bianchi, F. M., Grattarola, D., and Alippi, C. (2019). Mincut pooling in graph neural networks.

Biere, A., Heule, M., and van Maaren, H. (2009). Handbook of satisfiability, volume 185. IOS

press.

Bilmes, J. (2022). Submodularity in machine learning and artificial intelligence. arXiv preprint

arXiv:2202.00132.

108



Bibliography

Birkhoff, G. (1946). Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A,

5:147–154.

Bissacot, R., Fernández, R., Procacci, A., and Scoppola, B. (2011). An improvement of the

lovász local lemma via cluster expansion. Combinatorics, Probability and Computing,

20(5):709–719.

Bodirsky, M., Kummer, M., and Thom, A. (2022). Spectrahedral shadows and completely

positive maps on real closed fields. arXiv preprint arXiv:2206.06312.

Boettcher, S. (2023a). Deep reinforced learning heuristic tested on spin-glass ground states:

The larger picture. arXiv preprint arXiv:2302.10848.

Boettcher, S. (2023b). Inability of a graph neural network heuristic to outperform greedy

algorithms in solving combinatorial optimization problems. Nature Machine Intelligence,

5(1):24–25.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S.,

Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation

models. arXiv preprint arXiv:2108.07258.

Bomze, I. M. (1997). Evolution towards the maximum clique. Journal of Global Optimization,

10(2):143–164.

Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum clique

problem. In Handbook of combinatorial optimization, pages 1–74. Springer.

Boppana, R. and Halldórsson, M. M. (1992). Approximating maximum independent sets by

excluding subgraphs. BIT Numerical Mathematics, 32(2):180–196.

Böther, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., and Friedrich, T. (2022). What’s wrong with

deep learning in tree search for combinatorial optimization. In International Conference on

Learning Representations.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M. (2022). Improving graph neural

network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 45(1):657–668.

Bouritsas, G., Loukas, A., Karalias, N., and Bronstein, M. (2021). Partition and code: learning

how to compress graphs. Advances in Neural Information Processing Systems, 34:18603–

18619.

Brailsford, S. C., Potts, C. N., and Smith, B. M. (1999). Constraint satisfaction problems:

Algorithms and applications. European journal of operational research, 119(3):557–581.

Bresson, X., Laurent, T., Uminsky, D., and Von Brecht, J. (2013). Multiclass total variation

clustering. In Advances in Neural Information Processing Systems, pages 1421–1429.

109



Bibliography

Bruglieri, M., Maffioli, F., and Ehrgott, M. (2004). Cardinality constrained minimum cut

problems: complexity and algorithms. Discrete Applied Mathematics, 137(3):311–341.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T.,

Li, Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence: Early experiments

with gpt-4. arXiv preprint arXiv:2303.12712.

Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2011). Maximizing a submodular set

function subject to a matroid constraint. SIAM J. Computing, 40(6).

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., and Veličković, P. (2021a). Com-
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Supervised Pierre Vandergheynst at École polytechnique fédérale de Lausanne (EPFL)

Master’s Degree in Informatics | Thesis: Spectral Graph Theory and Deep Learning on Graphs 2015 – 2017
Supervised by Anastasios Tefas at Aristotle University of Thessaloniki (AUTH)

Bachelor’s Degree in Informatics | Thesis: Graph Spectra and Signal Processing on Graphs 2011 – 2015
Supervised by Ioannis Pitas at Aristotle University of Thessaloniki (AUTH)

RESEARCH

• Nikolaos Karalias, Joshua David Robinson, Andreas Loukas, Stefanie Jegelka ”Neural Set Function
Extensions: Learning with Discrete Functions in High Dimensions.” NeurIPS 2022

• Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, Michael M. Bronstein. “Partition and Code:
learning how to compress graphs.” NeurIPS 2021
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