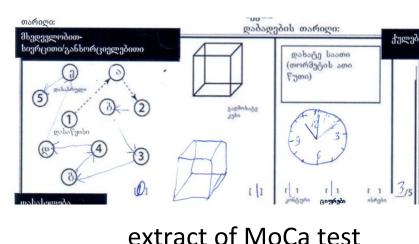
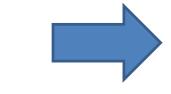
Is there an association between cognitive and visual decline?

Simona Garobbio¹, Karin Pilz², Marina Kunchulia³, and Michael H. Herzog¹


¹Laboratory of Psychophysics, EFPL, Lausanne, Switzerland; ²Cito Institute for Educational Measurement, Arnhem, The Netherlands; ³Free University of Tbilisi & Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.

Introduction

Aging is associated with both cognitive and visual impairments.


hopeospice.com

The risk to suffer from cognitive decline is associated with visual impairments Reviews: Shang, Zhu, Wang, Ha, & He, 2021; Vu et al., 2021

Visual impairments = decreased visual acuity, visual field size or contrast sensitivity Tran et al., 2020; Mine et al., 2016; Ariswala et al., 2021; Varadaraj et al., 2021

24 MoCa score

Go beyond visual acuity Gupta, Vu & Lamoureux, 2021

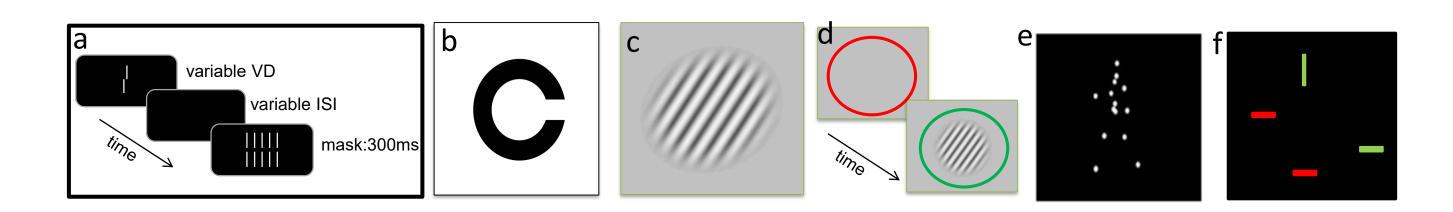
(Dis)prove common cause theory

 No evidence in healthy younger and older adults for common factors underlying visual abilities

Current study:

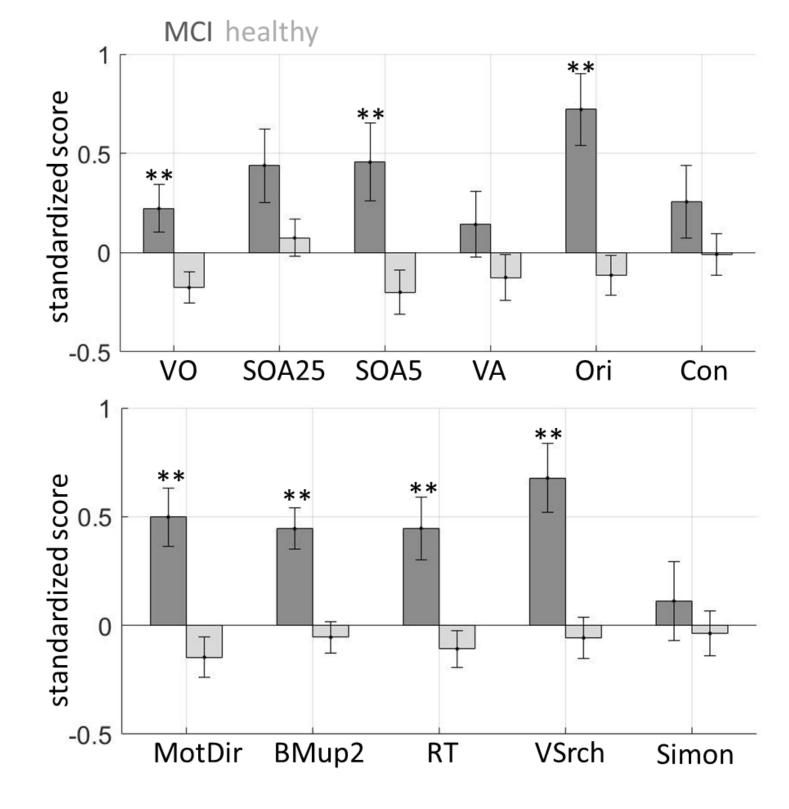
Reviews: Mollon et al., 2017; Peterzell, 2016; Tulver, 2019

Zheng et al., 2018 Pevzner, 2017


- 1. Sensory deprivation: visual impairments cause Two theories: cognitive decline
 - 2. Common cause: general age-related decline

Methods

20


Montreal Cognitive assessment (MoCa) Participants were split into two groups according to their total score: MCI group <u>ک</u>15 (i.e., 17>MoCa<26; n=39) and Healthy nb. 10 group (i.e., MoCa \geq 26; n=91). The 2 groups did not significantly differ in age nor sex but they significantly differ in education.

Battery of 19 visual tasks: vernier discrimination (duration and offset), visual backward masking (with a 5-and a 25-element grating; a), Freiburg visual acuity (b), orientation discrimination (c), contrast sensitivity (d), motion direction sensitivity, biological motion (for 200 ms and 800 ms, upward and inverted; e), simple reaction time, visual search (for four, nine and 16 distractors; f) and the Simon task (center, congruent and incongruent).

MoCa performance and visual task performances

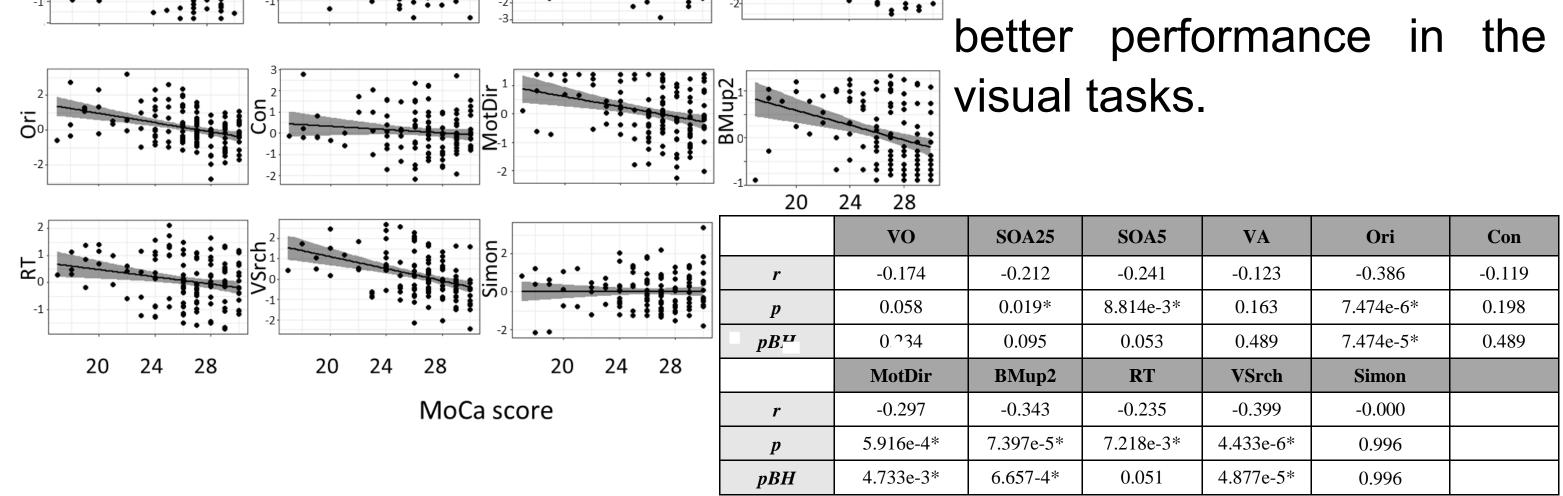
Low scores indicate better performance. (**) indicate a significant Asterisks difference in Welch's *t*-test between the after Bonferroni-Holm groups two correction for multiple comparisons (p < p0.05). Error bars represent standard errors of the mean (SE).

Overall, healthy group performed better than the MCI group.

A better performance in the

MoCa test is associated to a

Preprocessing of visual variables:


 4 variables excluded for ceiling (VD, BMup8) or floor (BMinv8, BMinv2) effects

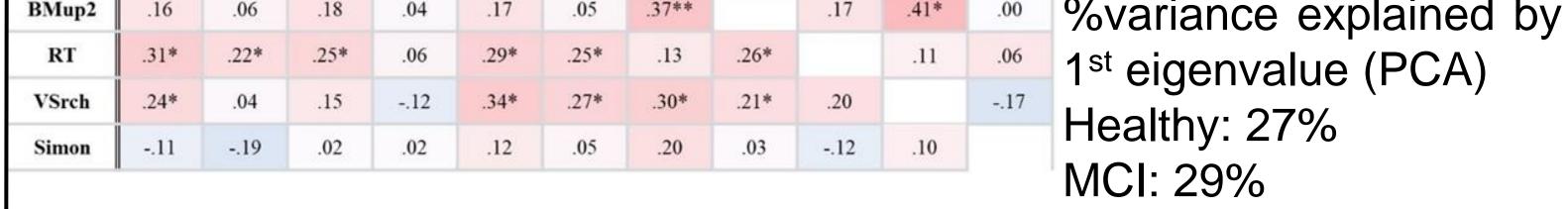
Variables were:

- Power transformed (Tukey)
- Standardized (modified z-scores)
- Outliers removed (3.5 criterium)
- Signs were flipped when needed so that low score = better performance
- Nb. Missing data (3 %) were NOT imputed

Conclusion

- Results show a strong association between visual impairments and mild cognitive impairment.
- Importantly, we found that not only visual acuity and contrast sensitivity correlate with the cognitive state but also more complex visual

Pearson's correlations (pairwise-deletion)


Asterisks (*) indicate a significant correlation (p < 0.05). P-values are reported before (p) and after (pBH) Bonferroni-Holm correction for multiple comparisons.

Corrolations

Correlations												
	ΛO	SOA25	SAOS	VA	Ori	Con	MotDir	BMup2	RT	VSrch	Simon	Significant corr:
vo		09	14	11	20	09	.12	08	.14	01	10	Healthy: 46% (3.6%)
SOA25	.28*		.64**	.23	.50*	.17	.26	.52*	.00	.34	37*	MCI : 22% (1.8%)
SOA5	.29*	.48**		.06	.20	.36	11	.37*	29	.33	20	
VA	.08	.19	.01		.39*	.27	.23	01	.26	.19	15	Percentiles:25 th ,50 th ,75 th
Ori	.34*	.22*	.29*	.21*		.45*	.44*	.44*	.24	.28	05	Healthy: 0.11,0.20,0.28
Con	.26*	.21	.31*	.28*	.34*		.08	.11	07	11	.04	MCI:0.10,0.20,0.33
MotDir	.18	.17	.24*	.08	.28*	.18		.39*	.37*	.33	.19	
BMup2	.16	.06	.18	.04	.17	.05	.37**		.17	.41*	.00	%variance evolained by

functions such as orientation discrimination and motion perception.

- In agreement with previous results with younger and healthy older adults, we found also weak correlations between most tests in older adults with mild cognitive impairment.
- Our results suggest that visual and cognitive abilities decline simultaneously, but they do so independently across visual and cognitive functions and across participants.

Between-variable Pearson correlation coefficients for healthy (bottom triangle) and MCI (upper triangle) groups. The color scale from blue to red reflects effect sizes from r = -1 to r = 1 (white corresponds to r = 0).

Perspective

• Visual functions that strongly relate to cognitive decline may open avenues for early detection and intervention of age-related impairments Vu et al., 2021; Zheng et al., 2018

http:/lpsy.epfl.ch Corresponding author: simona.garobbio@epfl.ch