
Immediate Tracing

Semester project, SYSTEMF laboratory, EPFL

Valentin Aebi, IN-Ma2

Supervisors:
Clément Pit-Claudel,
Shardul Chiplunkar

Spring semester 2023

Abstract

This semester project report describes a prototype tracing tool that records the behavior of a
Java program during its execution. It explains the two methods that were attempted to im-
plement the tool, one using the Java debug interface, which gave poor results, the other using
JVM bytecode instrumentation, which gave much better results. The tracer is able to record
which lines are visited during the execution, what values the variables and fields have before
and after the execution of each line and what values are given as arguments to functions or
returned by them. We also describe a GUI to visualize the data collected during the execution.

Project proposal: https://gitlab.epfl.ch/systemf/systemf-lab/-/blob/main/projects/

2023%20-%20Loop%20backtraces.md

GitHub repository: https://github.com/epfl-systemf/JumboTrace

1 Introduction

When a computer program does not behave as intended, or when one wants to deeply understand
how an unfamiliar piece of code works, the most reasonable thing to do is usually to execute it in
a debugger. This makes it possible to see which control flow paths are taken by the program, and
what value the variables have at some point during the execution.

Furthermore, when a program crashes or is stopped in a debugger, it is usually possible to see
the position of the control flow, and sometimes also the values of the variables, by looking at its
stacktrace.

However, both of these solutions only display one state of the program, or at least one at a time.
Yet, this state is not independent of the others: most of the time, the value of a variable depends
on its previous value, as well as on the value of other variables or fields.

This project is an attempt to solve this problem by generating a detailed trace of the execution
of a program. More precisely, the execution of the program should produce a trace that shows the
lines of code that were executed along with the value of the variables read or written at these lines.

1

https://gitlab.epfl.ch/systemf/systemf-lab/-/blob/main/projects/2023%20-%20Loop%20backtraces.md
https://gitlab.epfl.ch/systemf/systemf-lab/-/blob/main/projects/2023%20-%20Loop%20backtraces.md
https://github.com/epfl-systemf/JumboTrace

To this end, we describe and implement a tool, named JumboTrace, which allows generating
such traces for the execution of Java programs. Due to the sequential nature of traces and since
the goal is not to solve concurrency issues, we focus on single-threaded Java programs.

2 Architecture of the tracer

Conceptually, the tracer consists of two parts: a backend, which handles the execution of the Java
program, and a GUI frontend, which displays the trace generated by the backend. The original
plan was that the backend would be an executor for Java programs. It would periodically stop the
program to save its state, and generate a trace with this information.

However, due to technical issues that are explained in the Implementation and results section
of this report, this approach failed. The backend therefore consists of an instrumenter that takes
Java class files and produces copies of them, augmented with instructions that save the state of the
program. To reduce the amount of code injected into the modified classes (because it is challenging
to avoid introducing bugs when injecting code in the form of individual bytecode instructions), it
adds additional code to the program in the form of other class files. The so modified programs
generate traces as JSON files. The instrumenter is written in Scala, while the additional classes are
compiled Java code. This architecture is described in Figure 1.

The GUI is a Scala program that parses the JSON files and the source files of the program, and
generates a displayable trace as an HTML file. As a few features of the UI are dynamic, the HTML
file also includes Javascript code.

Figure 1: Architecture of the tracer. The orange arrows are the modules implemented in this
project.

3 Timeline

Planned and actual timelines: figures 2 and 3.
The project was planned for one semester, i.e. 15 weeks including the Easter break. The first

part of the semester (until week 5) was devoted to writing the project proposal, searching for

2

Figure 2: Planned timeline. The colors have no particular meaning. The two rectangles at the
bottom are the programs that should be working at that point in time.

Figure 3: Actual timeline

existing projects that are similar to this one and, most importantly, understanding the basics of
the Java Debug Interface (JDI), that we expected to be the basis of the project.

The second part, until week 8, consisted of implementing the first version of the tracer (both the
backend and the corresponding GUI). At the end of week 8, the tool under development was able
to generate and display traces. However, these traces were incomplete: some bugs were preventing
the evaluation of some values (see the Implementation and results section for the details of these
bugs). Until that point, the workflow was approximately following the planned timeline, except for
these missing values, but the presence of minor bugs during the development was not surprising at
all.

However, it turned out that these were not minor bugs. After spending some time trying to
fix them between the Easter break and week 10, there were no improvements. Considering this, as
well as the lack of documentation and the apparent fragility of the JDI, we decided to try to build
a tracer with another approach, namely bytecode instrumentation.

The last part of the semester (weeks 12 to 14) was thus devoted to implementing the instru-
mentation approach. While it was expected that not everything would happen as initially planned,
this new approach basically meant restarting the development process. As this of course took a lot
of time, the writing of this report was postponed to the last week of the semester.

3

4 Implementation and results

4.1 JDI approach

(Corresponding code on the Github repository: jdi branch)

4.1.1 The Java debug interface

The Java Debug Interface (JDI) [7] is a high-level debugging framework that allows monitoring a
running Java virtual machine, which we will refer to as the debuggee. A client application, usually
a debugging tool, can request the JDI to send it notifications about what is happening in the
debuggee. The JDI does so by observing the debuggee and sending events to the client when an
action occurs that the client has requested to be notified of. For example, the client can send a
breakpoint request for some line in the program, and every time the control flow of the debuggee
reaches that line, the JDI will stop it and send a breakpoint event to the client. This event contains
information like the identity of the thread on which the breakpoint was reached, as well as the value
of the variables visible at that point. The execution of the debuggee is then suspended until the
client instructs the JDI to restart it.

In order to include the information needed by the JDI, Java programs must be compiled with the
debug flag enabled (javac -g). If the JDI encounters a class whose source file has been compiled
without this flag, an AbsentInformationException is thrown and must be handled by the client.

4.1.2 JDI-based tracer

The first version of the tracing tool uses the JDI, and is implemented in Kotlin. At startup, it
requests to be notified each time a class is loaded by the debuggee virtual machine. Then, when
such a notification arrives and the class being loaded comes from a source file that was provided to
the tracer, the tracer requests to be notified when a method of this class is entered or exited. Then,
when a method is called (resp. returns), the tracer receives an event, and extracts the name of the
method and its arguments (resp. return value). It then stores this information in a list of events.

We also want to record the lines that were visited. To do so, the first obvious solution is to use
breakpoints. We could indeed set breakpoints at all lines and record the lines that are visited and
the values of the variables. However, this only works when no request is made to monitor method
calls and method returns. When events are requested simultaneously for breakpoints, method calls
and method returns, some attempts to access the current stack frame (the JDI object containing
visible variables and their values, among others) when the program is stopped on a breakpoint
result in an IncompatibleThreadStateException. According to the code in the JDI that throws
this exception, it is due to the fact that the thread on which the event happens has reached state
JDWP.Error.INVALID THREAD. The reason why this happens is unknown to us.

Another approach is to use steps instead of breakpoints. “Step” is a JDI command that continues
the execution until the program flow moves to a new line. The principle here is to use this command
to execute the program line by line, and at each line save the values of variables, like in the
breakpoints solution. Unfortunately, this causes the same IncompatibleThreadStateException

to be thrown. Several variants of this solution have been tried (e.g. by deleting the step request
before processing the event and creating a new request afterward), without success.

This seems to indicate that the problem comes from the interaction between the requests for line
visited (either breakpoints or steps) and the ones for method-related events (both method calls and

4

returns). Therefore, another attempt was made that consisted of only saving the lines and variables,
and using that information to infer calls and returns. In this setting, it is quite straightforward, at
least in theory, to determine the values of the arguments that were given to a method: these are the
values of the variables visible at the first line of a new method. However, this approach prevents
the tracer from accessing the value returned by a method, which is usually provided by a method
return event. Furthermore, the detection of a call or return should be based on information about
the method contained in the stack frame accessed through the breakpoint event (or step event).
Thus, the distinction between returns and calls should rely on the size of the stack. In the case
where not all methods provide debug information (i.e. if their source file was compiled without
the -g option), this can cause issues. And this happens quite often, as the methods of the Java
standard library are not monitored by the tracer. For example, let a be a method compiled without
debugging information, and f and g be methods compiled with debugging information. If a calls f
and then g, and the stack size is larger at the time it calls g than when it calls f , the tracer may
believe that g was called from f . Solving that problem would require analyzing the program itself
(most probably the source files), and seems cumbersome, fragile and sensitive to edge cases.

The “best” version of the JDI-based tracer is the one that is on the jdi branch of the repos-
itory. It uses breakpoints and monitors method entries and exits. It evaluates variables, but
replaces their value with an error message if this evaluation fails because of an exception thrown
by the JDI. Catching the IncompatibleThreadStateException allows the program to continue
its execution and thus to... throw other exceptions! The other kind of exception thrown by the
tracer is IllegalArgumentException (with error message “frame method different than variable’s
method”), because the JDI detects that a frame comes from a method other than the current one.
The exact mechanism by which this exception occurs is unknown to us, but it only occurs when
trying to access the arguments of a method that has just been called, which seems to indicate that
in some cases the first frame of the current method is not yet ready at the time the call event
is processed. Interestingly, this is not always the case, as the arguments are sometimes evaluated
correctly.

Also, the values missing in the trace are not always the same between two executions of the same
debuggee. The fact that these bugs are non-deterministic seems to indicate that they are related
to concurrency in the JVM. Unfortunately, I was not able to find documentation that would have
allowed me to understand and solve the problem. A part of a trace obtained by running the tracer
on the Graphs example from the repository is shown in Figure 4.

4.1.3 Comments on the issues with the JDI, and the decision not to use it

As explained in the previous paragraphs, the JDI caused a lot of problems in this project, some
of which I did not manage to solve. While I do not claim that anyone else would have so many
difficulties as I did trying to make it work, one of the reasons of this failure is the difficulty to find
documentation on the interactions between the JDI and the JVM, and more precisely multithreading
in the JVM. Relying on the JDI seems fragile in the sense that there are lots of ways of reaching
edge cases that will cause it to throw exceptions. Also, it is possible that some of the problems
encountered in this tracer are related to the heavy usage of the JDI: unlike a usual debugger where
the user usually sets a few breakpoints, or does one step and then pauses the program for some
time, the tracer repeatedly invokes the JDI and may cause several requests to be pending at the
same time, which possibly leads the debuggee to become unstable. Finally, the JDI noticeably slows
down the program being executed, which is one more reason to use another approach.

5

[52 (7)] CALL addEdge(from = 4,to = 3)

[53 (52)] VISIT DirectedGraph.java :11 => { graph = [DirectedGraph

-58: (V = { 1, 2, 3, 4, 5 } ; E = { 1 -> 2, 2 -> 4, 2 -> 5, 4

-> 3 })] }

[54 (52)] VISIT DirectedGraph.java :14 => { from = 3, to = 1 }

[55 (52)] VISIT DirectedGraph.java :15 => <?? missing vars >

[56 (52)] EXIT addEdge --> return <void >

[57 (7)] VISIT Main.java :29 => { from = 3, to = 1 }

[58 (7)] CALL addEdge(from = <??>,to = <??>)

[59 (58)] VISIT DirectedGraph.java :11 => { graph = [DirectedGraph

-58: (V = { 1, 2, 3, 4, 5 } ; E = { 1 -> 2, 2 -> 4, 2 -> 5, 3

-> 1, 4 -> 3 })] }

[60 (58)] VISIT DirectedGraph.java :14 => { args = [], graph = [

DirectedGraph -58: (V = { 1, 2, 3, 4, 5 } ; E = { 1 -> 2, 2 ->

4, 2 -> 5, 3 -> 1, 4 -> 3 })] }

[61 (58)] VISIT DirectedGraph.java :15 => <?? missing vars >

[62 (58)] EXIT addEdge --> return <void >

[63 (7)] VISIT Main.java :30 => <?? missing vars >

Figure 4: Part of the textual representation of the trace generated by the execution of theGraphs ex-
ample, monitored by the tracer. The missing values are represented by the <??> and <?? missing

vars> notations, the former being produced by an IllegalArgumentException on the evaluation
of an argument and the latter by an IncompatibleThreadStateException when trying to access a
stack frame. The numbers on the left of the events are the event identifier, followed by the identifier
of its parent event (in parenthesis), i.e. the identifier of the call to the method executing it.

6

4.2 Code instrumentation approach

(Corresponding code on the GitHub repository: main branch)
The fact that the tool being designed is a tracer instead of a classical debugger makes it possible

to use another approach than a debugging interface. Indeed, since no interaction with the user
is needed at runtime, one can act on the program before it starts executing, instead of during
execution. This could be done before compilation, by modifying the source files; during compilation,
using a modified compiler; or after compilation, by modifying the bytecode. Assuming that the
code is compiled with the -g flag to include debugging information in the bytecode, the simplest
way to do that is probably to instrument the bytecode, as it requires little analysis.

4.2.1 Java ASM

Java ASM [2] is a bytecode manipulation library for JVM bytecode. Following the visitor pattern,
it allows its users to define vistors that traverse a class file to analyze and/or modify it. More
precisely, to modify a method, one has to define a subclass of ClassVisitor, which will override
the visitMethod method to let it return an instance of a user-defined MethodVisitor. This
MethodVisitor in turn overrides methods corresponding to the changes that need to be performed.
For example, if we want to replace all calls to a static method named “foo” by calls to another
static method named “bar”, we will override visitMethodInsn in the MethodVisitor as follows:

public void visitMethodInsn(int opcode , String owner , String name ,

String descriptor , boolean isInterface) {

/* INVOKESTATIC is the opcode for calls to static methods */

var newName =

(name == "foo" && opcode == INVOKESTATIC)

? "bar" : name;

/* By default , the methods in the superclass copy the bytecode

without any modification. Here we simply replace the name if

needed */

super.visitMethodInsn(opcode , owner , newName , descriptor ,

isInterface);

}

4.2.2 Recorded events

The events recorded by the tracer, implemented as the TraceElement algebraic data type in the
traceElements package, are the following:

• LineVisited: records the class name and line number of a line that has been executed by the
program, as well as the other events taking place during this execution of the line (e.g. VarSet);

• VarSet: assignment to a variable, recording the identifier of the variable and the value assigned
to it;

• VarGet: read access to a variable, also recording the identifier and value of the variable;

• ArrayElemSet: assignment of an array element, recording the array, the index of the updated
element and the value;

7

• ArrayElemGet: symmetric to ArrayElemSet;

• StaticFieldSet and StaticFieldGet: assignment/access to a static field of a class;

• InstanceFieldSet and InstanceFieldGet: assignment/access to a field of an object;

• Return: method return with return value, records the name of the method and the return
value;

• ReturnVoid: method return without return value, records the name of the method exiting;

• MethodCalled: beginning of the execution of a method. Records the name of the method,
the class it belongs to, the arguments passed to it, a flag indicating whether the method is
static or not, and all the events that happen during the execution of the method;

• Initialization: the very first element of the trace, containing the date and time at which the
execution starts (more precisely at which the JumboTracer class (see below) is loaded);

• Termination: the very last element of the trace, containing a message explaining whether
the program exited normally or with an exception.

4.2.3 The JumboTracer class

The JumboTracer class (in the injected directory) is added to the program before its exe-
cution starts and performs most of the work regarding the recording of the events. It maintains a
list of events in a static field, and adds the events to this list when they happen in the program.
The role of the instrumentation is therefore “only” to call the method of JumboTracer that
corresponds to the event taking place in the program.

One technical issue is that most of these methods take values generated by the program as
arguments. E.g. the variableSetmethod of JumboTracer , which records a write to a variable,
takes as arguments the identifier of the variable and its value. The value can be both a primitive
or an object. In a usual situation, Java would handle this case by boxing the primitive values
automatically, and a method that takes an Object as an argument could fit any kind of value.
However, this is not a usual situation, in the sense that the method will be called by code generated
by the instrumentation, which means that the instrumenter would have to explicitly box the values.
In order to reduce the amount of injected code and improve performance, it is preferable to provide
specialized versions of each of these methods. However, Java has 8 primitive types. Along with
the Object type that handles all references, this implies that each method should be replicated 9
times, changing only the type of one parameter. This is a lot of code and thus implies a high risk
of introducing a bug. The safest solution I could think of to solve this problem is to use macros.
Unfortunately, Java has no macros, so the file includes C-like macros that should be expanded
using the preprocessor of C before running the Java compiler. Despite being a hack, I think that
this is the best solution since it drastically reduces the amount of code that has to be written and
guarantees that the code is exactly the same for each type, which helps prevent difficult-to-spot
bugs that occur with only one type.

8

4.2.4 Bytecode instrumentation

As explained above, the methods of JumboTracer are called by code that is injected into
the class files of the program. To achieve this result, the program is first traversed by the
ClassExplorer and MethodExplorer classes of the instrumenter package. This “analysis pass”
collects all the information needed to instrument the code. The instrumentation is then done by
the MethodTransformer class, which seeks the instructions performing actions that need to be
recorded (variable/field write/read, method return, etc.) and adds instructions to call the methods
of JumboTracer , after having loaded their arguments on the stack. For example, an ISTORE

instruction, that writes an integer to a variable, is replaced by the following sequence of instructions:

DUP // duplicate top stack element

LDC <variable name > // load a constant

SWAP

INVOKE_STATIC ___JumboTracer___.variableSet(String ,int)->void

ISTORE

The name of the variable is obtained from the data collected by the “analysis pass” performed
before the beginning of the instrumentation. This code basically duplicates the value of the integer
and passes one of the copies to variableSet, along with the name of the variable, which is known
at the time of instrumentation and thus loaded as a constant (using LDC). Note that a slight
improvement would be to swap the arguments of the variableSet method in order to get rid of
the SWAP instruction, which has not been done here.

Other store instructions (xSTORE, where x is a letter that depends on the type of the value
it stores) are of course instrumented similarly. The same holds for accesses to variables (xLOAD)
and reads and writes to arrays (xALOAD, xASTORE). Accesses to and modifications of field values
(PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC) work similarly.

Array stores use a different approach: as it would be complicated to duplicate all 3 arguments
to the store (the array, the index and the value), the instrumentation replaces the store instruction
with a call to a method of JumboTracer that saves the event and preforms the array write
itself. For array loads, the injected code only takes as arguments the array and the index, and loads
the value itself before saving it.

The recording of method calls is a bit more complicated. Instructions are inserted at the
beginning of each method to save the arguments using an xLOAD of the variable containing the
argument. They are saved using the saveArgument method of JumboTracer . Finally, when
all arguments have been loaded, terminateMethodCall is called by the instrumentation to write
an event containing the values of the arguments and the name of the method.

Method returns work in the same way as loads and stores: the return value is duplicated and
then a method is called to store it. The case of returning void is treated separately since here we
do not even need to save any value from the program.

Finally, the code of the main method is wrapped in a try-finally, the finally containing
instructions that call the method of JumboTracer that writes the saved events to a JSON file.
That way, if the program crashes with an exception, these instructions will be executed and the
JSON file will be written. Also, any return in the main method is preceded by similar instructions
that trigger the writing of the JSON file, so that non-exceptional executions also produce a trace
file.

9

4.2.5 Limitations and assumptions

Due to the way instrumentation is implemented, the tool has a few limitations, and therefore the
following assumptions must hold on the instrumented program for the process to work correctly:

• The first limitation, and probably the most problematic one, is that the instrumented program
should never exit through a call to System.exit (either directly or by calling methods that
call System.exit). If it does so, the instructions that cause the JSON file to be written will
not be executed and no trace will be produced. A straightforward solution would be to inject
these instructions before any call to System.exit, but this would not work if System.exit
is called from a non-instrumented method, itself called from the instrumented program. A
better solution would probably be to trigger the writing of the JSON file from the finalizer of
the main class, as suggested by my supervisors. But this has not been attempted yet.

• The second limitation is that the toString method of any object used in the program should
not have side effects. The code that saves events in JumboTracer often calls toString
to save only a textual description of the object, so having side-effects in this method could
cause the tracer to modify the program behavior.

• The third limitation is rather straightforward: to avoid a name clash, the instrumented pro-
gram should not define or use a class named JumboTracer .

Finally, only events happening in instrumented methods are recorded. In particular, calls to
methods from the Java standard library are not recorded because the MethodCalled event is gen-
erated by the callee, which in this case is not an instrumented method.

4.2.6 ASM DSL

While Java ASM greatly facilitates the modification of Java bytecode, it still has a few drawbacks.
Firstly, using it usually means writing long sequences of calls to methods that add new instructions
to a visitor. These methods often take a lot of arguments, and the result can be difficult to read.
Secondly, and more importantly, it does not completely handle the distinction between single-slot
and double-slot values. Indeed, on the JVM, most values, when pushed to the stack, take only one
stack slot. But doubles and longs need two slots. As a result, the same operation may have to be
implemented with different instructions depending on which types of values are on the stack. E.g.,
DUP, that duplicates the topmost stack element, works fine with integers, floats, etc., but needs to
be changed to DUP2 when the element to duplicate is a double or a long.

To mitigate these issues, the transformation code uses a small “DSL”, defined in the AsmDsl

object. It consists of slightly higher-level “assembly” instructions that take as arguments the types
of the stack values that they have to manipulate and use these values to decide which actual JVM
bytecode instruction(s) to use. It is important to note here that using these instructions sometimes
leads to unnecessarily long sequences of actual ASM instructions like DUP, DUP X1 (duplicate the
top stack element and place the result below the second element), SWAP, etc., because they are
generated at a higher level of abstraction.

5 GUI

The GUI is fairly simple. The javaHtmlFrontend package is a program that parses the Java
source files and the JSON trace and produces an HTML page displaying the trace. HTML code is

10

generated by the j2html library [4]. Java source code is parsed using the Javaparser library [6], and
the JSON trace file is parsed by Play Json [9].

The GUI displays line visited events as lines of code. When the string representation of the
value of a variable appearing in a line is not too long (i.e. no more than a few characters), it inserts
this value into the line of code, next to the variable name. Clicking on such a line reveals all the
variables and their values. These are obtained from the events like VarSet, FieldGet, etc. that
occured at that line. E.g. if the event is a variable x set to 42, it will display x := 42. If the
variable is read instead of written, it will be displayed as x:42. Similarly, clicking on a method call
reveals the events that happened during the execution of the method.

The generated HTML page has very few dynamic features. It is able to expand or collapse
all method calls at the press of a button. When the mouse is on a line of code, it also highlights
the parent calls of this line visited event (see Figure 5). This is implemented as a few JavaScript
functions. As this script is short, it is simply hardcoded as a string in the Scala code generating
the HTML page, for simplicity.

6 Further work

JumboTrace is currently a prototype. In particular, it has almost no automated test, which is a
problem. Testing the instrumenter should probably be done by comparing the trace it generates
with a hand-crafted trace. The debugCmdlineFrontend module, which essentially performs basic
formatting on a trace would probably be helpful for such tests. The purpose of the PrintStream

passed as an argument to the formatting methods of this module was exactly to be able to inject
a mock stream for testing, even though this has not been done yet because of time constraints.

Apart from the correctness of the tracing, the usefulness of the concept should also be evaluated.
It would be interesting to see how this tool can be used to debug or understand a program, or to
teach programming to beginners. A good first step would likely be to test the tool on programs
slightly larger than the ones we used until now.

The GUI could be improved in lots of ways. The values displayed in the HTML page could be
made easier to read. A possibly useful feature to add would be a search system that would be able
to answer queries like “go to a call to the method named ‘foo’ where its argument ‘x’ has value 1”.

Another useful feature would be to save not only the values of the fields and variables, but also
those of the expressions evaluated during the execution. This would probably require modifying
the program before or during compilation instead of instrumenting the bytecode, and the size of
the traces generated by such a program would probably be truly gigantic.

Furthermore, the bytecode instrumenter should be able to handle not only Java programs, but
also programs resulting from the compilation of other JVM languages. In particular, I made some
quick tests with Scala (see the Geom2D example on the repository), and it seemed to work, even
though Scala traces would probably contain a lot of closures passed as values, and thus be difficult
to read if not handled properly. But it looks like implementing a module to display Scala traces in
an HTML file, analogously to the javaHtmlFrontend, would be doable. Kotlin would possibly be
worth a try too.

Last but not least, getting a better understanding of the JDI-related problems would be a good
thing.

11

Figure 5: Screenshot of the GUI for the trace generated for the Graphs example (the mouse is
artificial but its position corresponds to the highlighting). Not all events are expanded. At that
point of the program, a graph is being initialized by the initGraph method. The part of the trace
displayed here shows how the vertices set of the graph grows as the addVertex method is called
repeatedly.

12

7 Related work

It seems that not much prior work exists on tracers similar to the one described in this report.
However, debugging and program visualization have been the subject of numerous projects. One
of those closest to this one is PythonTutor [3], especially its implementation for Java [5]. It is an
online tool that displays the state of the stack and the values of the variables during the execution
of a program. It allows visualizing the execution line-by-line and moving to the previous or next
lines to see how the program state evolves. Interestingly, this tool seems to successfully use the JDI
in a similar way as what I tried to do. However, the setup of the environment to execute this tool
seems quite complicated, and the online tool is restricted to Java 8.

Another related tool is REMV (Repeatedly-Executed-Method Viewer) [8], a tool that also uses
bytecode instrumentation to record what happens in a Java program and provides a GUI to visualize
the execution. In particular, it focuses on comparing distinct executions of the same method and
allows displaying in parallel several paths taken by the control flow at different times during the
execution.

Finally, the visual tracing plugin for Eclipse described in [1] uses disabled JDI breakpoints to
record what its authors call silent hits, and record information about the state of a program without
stopping its execution. The tool also allows recording hits on watchpoints (a kind of breakpoints
triggered when an object or variable is accessed and/or updated), and is able to display the history
of modifications of a variable, which, among other benefits, makes it possible to visualize race
conditions.

8 Conclusion

This project mostly consisted of searching for ways of recording what happens in a Java program
during its execution, in order to be able to display its state and modifications as a readable trace. A
first attempt using the Java debug interface did not work as expected at all. A second attempt using
bytecode instrumentation, which at first seemed much more complicated than using a debugging
interface, turned out to give better results. It is able to record the history of the execution of a Java
program, which helps understand how a program works, or why it does not behave as intended.
It is also able to display this history in a GUI that makes it reasonably easy to read. The tool
has limitations, but it seems reasonable to expect that further work on this topic can get rid of
them and produce easy-to-use tools that perform advanced analyses of the traces and facilitate the
understanding of program behaviors.

13

A Appendix: Project proposal

A.1 Abstract

This project proposal describes a debugging tool that displays an interactive trace of the execution
of a program. The trace is presented as an indented list of program statements, with the value of
the variables when the statement was executed shown inline.

A.2 Problem

When a computer program does not behave as intended, or when one wants to deeply understand
how an unfamiliar program works, the most reasonable thing to do is usually to run the program
in a debugger. This makes it possible to see how data is propagated across the functions and
data structures, and possibly to spot the place where the actual behavior starts deviating from the
intended one.

Furthermore, when a program crashes because of a bug, it usually tries to help the programmer
find out what went wrong by displaying stacktraces, showing the sequence of function calls that
lead to the crash.

However, even using these techniques, debugging can be very difficult on some occasions. Stack-
traces usually show nothing more (and often less) than the values of variables at the time of the
crash. A debugger usually allows displaying the values of variables during the execution of the
program, but it only focuses on a small part of the program at a time, instead of giving an overview
of its execution.

A.3 Solution outline

The goal of this project would be to design a debugging tool that, given a program to execute,
displays the execution of each line of the program. More precisely, for each execution of a line, it
should display the line along with the value of each variable. These lines should be indented to
make the resulting execution trace more readable (see Example section below). It would consist of
a command-line program (alternatively: an IDE plugin) that takes as an argument the program to
execute, executes it, and displays the resulting trace in a GUI. Ideally, the GUI should be interactive
and allow the user to select an expression and display its value:

Ideally again, it should include a search function that finds points in the program where some
event happened. For example, given a function ‘def foo(i: Int, j: Int, k: Int)‘ and assuming that
we suspect an error to occur when ‘i=2‘ and ‘j=5‘, it should be possible to search for points in
the program where ‘foo‘ has been called with these values of the arguments. Finally, it should be
possible to highlight the parent stack frames of a selected line (i.e. the lines where the function
calls and/or loop statements enclosing the selected line were executed).

14

A.4 Example

An implementation of bubble sort in Scala is used as an example, but the exact language for which
the debugger will be designed remains to be determined.

A.4.1 Source code

def swap(a: Array[Int], i: Int , j: Int): Unit = {

val tmp = a(i)

a(i) = a(j)

a(j) = tmp

}

def bubbleSort(a: Array[Int]): Unit = {

var continue = true

while (continue) {

continue = false

for i <- a.indices.dropRight (1) do {

if (a(i) > a(i+1)) {

swap(a, i, i+1)

continue = true

}

}

}

}

def main(args: Array[String]): Unit = {

val array = Array(10, 15, 12, 2, 7, 19, 4, 3, 12, 21, 0, 3)

bubbleSort(array)

println(array.mkString("[", ", ", "]"))

}

A.4.2 Trace

CALL main(args=[]) {

val array = Array(10, 15, 12, 2, 7, 19, 4, 3, 12, 21, 0, 3)

CALL bubbleSort(a-->[10,15,12,2,7,19,4,3,12,21,0,3]) {

var continue = true

// start while loop: while (continue)

while continue-->true {

while (continue-->true) {

continue = false

// start for loop: for i <- a.indices.dropRight(1)-->Range 0 to 10

for i-->0 <- a.indices.dropRight(1) {

if [a(i-->0)-->10] > [a(i+1-->1)-->15]-->false

}

15

for i-->1 <- a.indices.dropRight(1) {

if [a(i-->1)-->15] > [a(i+1-->2)-->12]-->true {

CALL swap(a-->[10,15,12,2,7,19,4,3,12,21,0,3], i-->1, j-->2) {

val tmp = a(i-->1)-->15

a(i) = a(j-->2)-->12

a(j) = tmp-->15

RETURN () from swap

}

continue = true

}

}

for i-->2 <- a.indices.dropRight(1) {

if [a(i-->2)-->15] > [a(i+1-->3)-->2]-->true {

CALL swap(a-->[10,12,15,2,7,19,4,3,12,21,0,3], i-->2, j-->3) {

val tmp = a(i-->2)-->15

a(i) = a(j-->3)-->2

a(j) = tmp-->15

RETURN () from swap

}

continue = true

}

}

for i-->3 <- a.indices.dropRight(1) {

if [a(i-->3)-->15] > [a(i+1-->4)-->7]-->true {

CALL swap(a-->[10,12,2,15,7,19,4,3,12,21,0,3], i-->3, j-->4) {

val tmp = a(i-->3)-->15

a(i) = a(j-->4)-->7

a(j) = tmp-->15

RETURN () from swap

}

continue = true

}

}

for i-->4 <- a.indices.dropRight(1) {

if [a(i-->4)-->15] > [a(i+1-->5)-->19]-->false

}

for i-->5 <- a.indices.dropRight(1) {

if [a(i-->5)-->19] > [a(i+1-->6)-->4]-->true {

CALL swap(a-->[10,12,2,7,15,19,4,3,12,21,0,3], i-->5, j-->6) {

...

16

A.5 Timeline

17

References

[1] Bilal Alsallakh, Peter Bodesinsky, Alexander Gruber, and Silvia Miksch. Visual Tracing for
the Eclipse Java Debugger. In 2012 16th European Conference on Software Maintenance and
Reengineering, pages 545–548, 2012.

[2] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. 01 2002.

[3] Philip J. Guo. Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Ed-
ucation. In Proceeding of the 44th ACM Technical Symposium on Computer Science Education,
SIGCSE ’13, page 579–584, New York, NY, USA, 2013. Association for Computing Machinery.

[4] J2html JSON parsing library. https://j2html.com/.

[5] Java jail backend for the Java version of the Python tutor.
https://github.com/daveagp/java jail.

[6] Javaparser Java parsing library. https://javaparser.org/.

[7] Documentation of the Java Debug Interface.
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/.

[8] Toshinori Matsumura, Takashi Ishio, Yu Kashima, and Katsuro Inoue. Repeatedly-Executed-
Method Viewer for Efficient Visualization of Execution Paths and States in Java. In Proceedings
of the 22nd International Conference on Program Comprehension, ICPC 2014, page 253–257,
New York, NY, USA, 2014. Association for Computing Machinery.

[9] Play JSON library.
https://github.com/playframework/play-json.

18

	Introduction
	Architecture of the tracer
	Timeline
	Implementation and results
	JDI approach
	The Java debug interface
	JDI-based tracer
	Comments on the issues with the JDI, and the decision not to use it

	Code instrumentation approach
	Java ASM
	Recorded events
	The ___JumboTracer___ class
	Bytecode instrumentation
	Limitations and assumptions
	ASM DSL

	GUI
	Further work
	Related work
	Conclusion
	Appendix: Project proposal
	Abstract
	Problem
	Solution outline
	Example
	Source code
	Trace

	Timeline

