
École Polytechnique Fédérale de Lausanne

Reconstructing lensless image with ML models and deploying them
onto embedded systems

by Jonathan Reymond

Master Thesis

Approved by the Examining Committee:

Dr. sc. Paolo Prandoni

Thesis Advisor

Prof. Nicholas Antipa

External Expert

Eric Bezzam

Thesis Supervisor

EPFL IC IINFCOM LCAV

BC 341 (Bâtiment BC)

Station 14

CH-1015 Lausanne

June 30, 2023

Dedicated to the ones who have prayed for me.

Acknowledgments

I would like to thanks everybody who have helped me to review this thesis, namely Hanna Schwéry,

Olin Bourquin and Noémie Reymond. I would also like to thanks to all my family for their constant

support within all these years. I am greatful for the LCAV lab for providing me a really pleasant

working environment. And finally, I would like to thanks Eric Bezzam for all the help is has given to

me these past months, by reviewing my work and giving me good advices.

Lausanne, June 30, 2023 Jonathan Reymond

1

Abstract

Lensless imaging provides a large panel of benefits : cost, size, weight, etc., that are crucial for

wearable application, IoT or medical devices. Such setups require the design of reconstruction

algorithms to recover the image from the captured measurements. Most of the current SoTA recon-

struction models use deep learning, but the results provided are hardly reproducible and mostly not

meant to be deployed into embedded systems.

In this work, we implement the work of Monakhova et al.[16] that use uniquely deep learning,

and the work of by Khan et al.[11]. We then present a way to transform these models to be deploy-

able using TensorFlow Lite, and evaluate the benefits of model optimization techniques such as

quantization-aware training(QAT), weight pruning, or weight clustering.

2

Contents

Acknowledgments 1

Abstract (English/Français) 2

1 Introduction 5

1.1 Related work . 6

2 Lensless imaging 7

2.1 Context . 7

2.2 Modeling . 9

2.2.1 Linear inverse problem . 9

2.2.2 Mask design . 10

2.2.3 Mask properties . 10

2.2.4 Optimization techniques . 12

3 Deep learning models 15

3.1 Monakhova et al. approach . 15

3.1.1 Lensless camera setup . 15

3.1.2 Model architecture . 16

3.1.3 Loss functions . 17

3.2 FlatNet . 18

3.2.1 Separable case . 18

3.2.2 Non-separable/convolutional case . 19

3.2.3 Model architecture . 19

3.2.4 Losses and discriminator . 20

4 Model optimization 22

4.1 Quantization . 22

4.1.1 Post-training quantization . 23

4.2 Pruning . 23

4.3 Clustering . 24

4.4 Collaborative optimization . 25

3

5 Design and implementation 26

5.1 General considerations . 26

5.2 Monakhova et al. approach . 27

5.3 FlatNet . 27

6 Implementation and Experiments 29

6.1 Setup . 29

6.2 Reproduction results . 30

6.2.1 Monakhova et al. comparison results . 30

6.2.2 FlatNet comparison results . 32

6.3 Comparison of different approaches . 33

6.4 Model optimization results . 34

6.4.1 Accuracy . 35

6.5 Comparison of different approaches . 36

6.5.1 Memory and running time . 36

7 Going further 38

8 Conclusion 40

Bibliography 41

4

Chapter 1

Introduction

In recent years, technology has been improving at incredible pace. In many fields this trend can be

observed: wearables, IoT, AI, medical, etc. With this also comes the need of miniaturizing hardware

components and lowering the cost to be affordable by most people. The imaging field is not an

exception, where we want to reduce the size of the system as much as possible. However, one major

problem emerges with our current cameras: the lens. It cannot be indefinitely miniaturized due to

physical/optical constraints, is expensive to produce, and is heavy compared to the whole system.

These considerations have pushed the research community to study lensless cameras exten-

sively in the past decade. Lensless imaging involves the use of algorithms to perform image forma-

tion in the digital post-processing, rather than directly on the sensor. Although a lot of work has

been made to explore the best ways to reconstruct these images, only a low amount of effort has

been deployed to make the results reproducible, and thus making the comparison between various

works very tedious. Also, most reconstruction techniques have a very long running time, and almost

all of them are currently not suitable to be deployed into an embedded system, taking into account

computational and memory constraints.

Concerning the running time of the reconstruction algorithms, some comparisons have been

made between classical methods (ADMM, Fista, ...) and deep learning methods, but the analyses

proposed are only comparing Graphics Processing Unit (GPU) running time, which is a setup that

we rarely encounter in practical edge computing scenarios. To our knowledge, no work has been

realized to try to take any reconstruction algorithm and deploy it to a constrained device.

To solve these two issues, we reimplement two approaches presented by Monakhova et

al.[16](the U-Net model), and by Khan et al.[11] and try to reproduce the results stated in their

paper. Both are purely deep learning based models. We have implemented a framework to be able

to deploy these models into any embedded system, and then we evaluate to see what are the costs

in terms of performance and accuracy. One of the motivations is that nowadays, reconstruction

5

solutions using machine learning are the ones producing the most realistic and/or accurate results,

and thus are the ones that will probably be considered for deployment for commercial use in the

future. Concerning the deployment phase, we have tested various techniques, such as pruning,

clustering, quantization aware training (QAT) to shrink the models so that the resulting model could

obtain better inference-time and satisfy the resource constraints of the targeted device.

1.1 Related work

For ML tasks having as input and as output of the model an image, as we have, there is image

segmentation, where multiple papers used U-Nets[18][27][7]. Another tasks related are image

denoising[28][24], or image super-resolution[25][22]. Various models have been successfully de-

ployed into embedded systems, such as DeepLab[8] for image segmentation, or ESRGAN[22] for

image super-resolution. No models for lensless reconstruction were made for deployment to our

knowledge.

In the context of lensless imaging, Bezzam et al.[4] built a privacy-preserving system that

captures the scene with a lensless camera and a programmable mask to encode the image, all within

an embedded system.

6

Chapter 2

Lensless imaging

2.1 Context

Before explaining the choice of using lensless cameras, let’s depict the context. At the beginning

of the history of cameras, it was basically only a box with, on one side, a pinhole, and on the other

side, an analog sensor, or a photographic film, to capture the image on the other side. As showed

in the Fig 2.1., the scene is projected directly at the back of the box, only reversed, but already in a

representation similar to the human eye. The drawback of this technique is that it requires a long

exposure time: since only a small amount of light passes through the pinhole, one needs to place the

camera for a long time to collect enough light to see the image clearly on the photographic film. As a

countermeasure, we have added to the system the lens with the idea of collecting a large amount

of light and thus reducing the exposure time. Naturally, other advantages of using a lens appear,

such as zooming, or increasing the field of view, but they are outside the scope of this master’s thesis.

There are, however, a lot of other problems with lenses, in particular their cost, representing more

than 90% of the cost of a whole camera. Furthermore, due to the lens, we can not reduce the size or

the weight of the system as far as we wanted.

At the time of analog cameras, we needed to use lenses, due to the type of light sensors: analog.

We were forced to directly produce an image that is the exact reproduction of the scene from the

human point of view. But with the apparition of digital sensors, this constraint is removed. Indeed,

one could think of a system that gathers light information from the scene, stores an image of it

that does not look like anything from the human perception, but contains all the information for a

computer to be able to reproduce the scene in a second step such as our eyes would see it. With

this idea in mind, the research community has begun to study lensless cameras in recent years.

When we remove the lens from the equation, what do we have ? A pinhole camera that suffers from

not collecting enough light in a short period of time. But what if instead of only one small hole,

one adds multiple holes in the box ? One would be able to capture way more light, and at the end,

7

(a) pinhole camera (b) lens camera

Figure 2.1: Basic camera principle

what would be captured by the sensor would be just a multiple images of the scene mixed together.

It is clear that the captured image would be very blurry for us, but now since it is digitally stored,

one could develop a method to process it and demultiplex this image within the computer, and

showing only in the end the result of the process. As explained previously, using lensless-based

camera yields to multiple benefits: including the weight and the cost of the system, but also the

scalability of constructing such cameras due to their simplicity. Also, for some applications, for

instance microscopy, to increase the resolution, one has to reduce the field of view, which is not

the case with lensless cameras where the field of view only depends on the sensor size. There are

numerous fields of application where such cameras could be beneficial, such as 3D imaging, IoT

devices, wearable systems, microscopic imaging, etc...

Figure 2.2: Lensless camera process

8

Naturally, the crucial point of such cameras is their efficiency to reconstruct the scene from

the stored measurements is. Does it give a good resolution in the end? Also, one also needs to care

about the complexity of the method, does it take a sufficiently short amount of time to be usable

with the computational resources we have at our disposal for the application we are interested

in? All these questions have yielded multiple designs of lensless cameras. For example, instead of

adding multiple holes in the frontend of the box, one could replace it with a glass diffusing the light

instead. All these types of frontend apertures are called masks, and various designs have been made

to facilitate the reconstruction of the images. Also, various methods/algorithms were developed for

reconstruction, as we explain a bit later.

2.2 Modeling

2.2.1 Linear inverse problem

There are multiple ways to describe the problem of reconstructing the image from the measured

data. A common approach is to view it as an inverse problem: we know the process used to generate

the measured data, which is called the forward model, and we want to reverse it. Here in this paper,

we will simplify the problem by saying that the scene is only a 2D image, where each location of

the image depicts the light’s intensity. Then we go a step further by stating that the relationship

linking the measurement and the original scene is linear, which is the case for the system designs

we explore later. It yields the following relation:

y = H x,

where y is the measured image, x the original image, and H the forward operator, or forward model,

which is, simply a linear operator and is the part that depends on the camera design. Ideally, one

would try to find the inverse of H to get H−1 y = x, but this is infeasible since H−1 is undetermined,

and doing so could also amplify noise. Furthermore, taking the example in [6], if the original image

and the measured data have a shape of the order of one megapixel, then the number of elements of H

would be close to 1012 elements, so at least one Terabyte of flash memory to store it, and computing

the matrix product of H−1 y would require also 1012 multiplications, so O(N 2) in both cases where

N is the number of pixels, so clearly too complex to be considered.

We know that H depends on the choice of the aperture/mask we use. Do there exist masks that

simplify this relation? Thankfully, the answer is yes.

9

2.2.2 Mask design

Before detailing the theoretical properties of each mask, we will first show what type of mask we

have studied in the context of this project. The simplest one is the first we have considered, where

the idea is to have multiple holes at the surface. Called the amplitude mask, it lets the light pass

or not, and so modulates the received amplitude by 0 or 1. Then we have the phase modulation-

based mask family, where we have a transparent material, a thin glass or plastic, with a different

thickness on each location, slowing more or less the light and thus involving a phase modulation in

the frequency domain. We have the phase grating where the modulation is either 0 or π, the phase

mask where the modulation takes discrete values between 0 and π, and finally the diffuser one

where the modulation is continuous. See Fig. 2.3.

Figure 2.3: Different types of phase masks

2.2.3 Mask properties

Separable property

In this case, if the pattern in the mask is made by the cross-product of two vectors, then the relation

in 2.2.1 can be simplified as follows :

Y =ΦLXΦT
R ,

where Y is the 2D measured data, X the 2D original image, ΦL the linear operator modifying the

rows of the image andΦT
R the columns. To illustrate the memory and computational gains, if we take

the same settings as 2.2.1, we need to store only two 103×103 matrices, and doing the multiplication

in parallel yields to O(N). Amplitude, phase-gratings and phase masks could be designed to fall into

this category. This concept was first developed by DeWeert et al.[10], and one another example of a

lensless camera having a mask holding this property is the FlatCam[3].

10

Convolutional model

PSF The masks that we study can all be described using their Point-Spread Function (PSF). The

PSF of a mask is the measurement made with a constant, fixed single source point of light, see Fig.

2.4.

Figure 2.4: Point-spread-function (PSF) measurement

The idea behind this measurement is simply to evaluate the impulse response of the overall

system, i.e. how it alters the light that passes through.

Convolutional property To be able to use the conventional property, we have to assume that

the PSF is shift-invariant, that is, when we change the position of the point-source in Fig. 2.4, the

resulted image is the same as the original one, but transposed/shifted. This assumption is satisfied

under some conditions : the system has a narrow field of view, the scene we want to picture is

sufficiently far away and the distance between the mask and the sensor is not too big (see [6]). The

convolutional property approximates 2.2.1 to the following relation :

Y = X ∗h

Where Y and X are the 2D images representing the measurement and the original scene respectively,

and h being the measured PSF of the system. When regarding the memory consumption, one needs

to store only h, who has the same size as Y , so only O(N) where N is the number of pixels. And

computing the convolution in the Fourier domain instead results in a O(N l og N) complexity, so

undoubtedly manageable.

Not all applications are suited for this use, such as microscopy where the scene is not sufficiently

far away from the camera to hold the shift-invariant property. Kuo et al.[14] described a way to

handle this case by adapting slowly h to do local convolutions. Most of the diffuser mask-based

cameras attempt to satisfy this property, such as PhlatCam[5] or DiffuserCam[13]. As a side note,

some lensless cameras can satisfy both properties under certain conditions, such as the FlatCam

11

camera, while keeping in mind that the separable case is the strongest property between both.

2.2.4 Optimization techniques

There exist numerous ways to solve linear inverse problems. We will only name a few here, from the

more standard to the more AI-based.

Classical methods

Without dtailing too much, the classical way of solving inverse problems is to define an objective

function we want to minimize that measures or close is our reconstruction close to the target. In our

setup, we have the following objective function :

x̂ = argmin
xp∈RN

F (y , H xp)+λR(xp)

H being the forward operator, y the measured data, xp the tunable object that at the end of the

minimization gives our proposed reconstructed image, F the function that measures the data-fidelity

between the measured data and the proposed reconstruction passed through the forward model, R

the regularization function to favour some given set of possible solutions and λ a value controlling

how much we want to regularize our solution. The standard data-fidelity function used is the mean-

square error, that is 1
2∥y−Hxp∥2

2. Multiple types of regularizations are employed in the context

of images, such as the L0 (counting the number of non-zero elements in xp) and L1 norm (∥x∥1),

which enforce the solution to be sparse and therefore yield to more sharp images, or the Tikhonov

and the TV norm to control the smoothness of the image, etc. Depending on the data-fidelity and

regularization functions employed, different optimization algorithms can be applied, such as APGD,

Fista, or ADMM. As an example, in one of the papers we study[16], the optimization problem is

formulated as :

X̂ = argmin
Xp≥0

1

2
∥Y−h∗Xp∥2

2 +λ∥ΨXp∥1

WhereΨ is a transform operator, such as the one to get the TV norm. Practically, all these algorithms

are iterative and need a certain number of steps to converge to the minimum. Given a sufficiently

small step size and a convex objective function, these algorithms have the guarantee to converge to

the global minimum.

12

Deep learning

A radically different approach is to completely ignore the lensless setup and the inverse problem for-

mulation, and to try to reconstruct images given a dataset and a machine learning model. Practically,

the dataset has pairs of measurements and original images {(Yi , Xi)}N
i=1, it feeds the measurement

Yi through the ML model fw , where w are the learnable parameters/weights of the model. Then

we compute a given loss that measures how close is the output of our model with respect to the

target image Xi . Then we update the model with gradient-based optimizer via backpropagation so

that in the end it renders sufficiently good images. In contrary to the classical methods, the loss is

highly non-convex and therefore gives no guarantees that the final solution is a global minimum.

More specifically, if we take again the mean-square error as the loss, the function that we want to

minimize in this context would be :

min
w

1

N

N∑
i=1

∥Xi − fw (Yi)∥2
2

and since fw itself in the deep learning context where we pass the input through multiple non-linear

layers, it results that the whole function is highly non-convex. Nevertheless, using deep learning in

this area leads to more realistic results, often at the cost of data-fidelity . And having at our disposal

a GPU, the time it takes to run one inference, i.e. passing one measurement through the model to

get the reconstruction, is a few order of magnitude smaller than the classical methods (see [16]).

Unrolled optimization

Even though classical algorithms give convergence guarantees, the time the algorithm takes to

converge relies directly upon the parameters controlling the step size, and the appearance of the

resulted image depends highly on the chosen regularization and its factor λ. All these parameters

must be fine-tuned to suit the given instance we want to reconstruct. But what if at each step we

could choose the best hyperparameters for our specific problem if we know how the results should

look like? For instance, having a large step size at the beginning, and smaller ones at the end of

the process, or having at our disposal the regularization that suits perfectly the data we want to

reconstruct. We would first decrease significantly the number of steps needed to converge, but

also produce more realistic results due to this new regularization term. And that is what unrolled

optimization tries to do. The basic concept of this method is to combine machine learning and the

classical approach by building first a neural network with a fixed amount of layer where each layer is

the implementation of one step of a given classical algorithm like Fista or ADMM, where the step

size and also possibly the regularization is learnable, that is can be adapted. Naturally, we need to

have at our disposal a dataset of pairs (Xi ,Yi) to train this model for our task so that the model learns

how to produce a realistic X ′ given at input any Y ′. On top of that, Monakhova et al.[16] has also

suggested to add another model after the unrolled ML model that they call the "learned denoiser".

13

This model acts as a perceptual enhancer, so that the output looks closer to the human perception

of nature.

14

Chapter 3

Deep learning models

The methods we have implemented were the ones presented in the papers [16], and [11]. The goal,

as written previously, is first making their works reproducible, usable for other datasets and problem

instances. Secondly, prepare them to be deployed into embedded systems, and to evaluate properly

the practical inference time and precision.

3.1 Monakhova et al. approach

The paper from Monakhova et al.[16] presents multiple models. We study here only the fully-based

deep learning model, namely the U-Net model. But foremost, let’s consider the lensless camera

setup used.

3.1.1 Lensless camera setup

The lensless camera employed is the DiffuserCam presented in [13]. As its name suggests, it is a

lensless camera with a diffuser mask, and it has been set up to satisfy the convolutional property

2.2.3, i.e. at a sufficiently far distance so that a single PSF can be used for reconstruction. As a side

note, even though for the U-net architecture described below the PSF nor the convolution property

are used, they are used when we evaluate the FlatNet model [11] over this dataset. To generate

the dataset of measurements Y and original/ground truth images X , the images were displayed

by a screen and at one side the lensless system measures Y and a lensed camera at the other side

captures X as showed in Fig. 3.1.

15

Figure 3.1: DiffuserCam dataset acquisition, from [16]
.

3.1.2 Model architecture

The U-net architecture presented first in 2015 by Ronneberger et al.[18] has been widely used on

various image tasks, such as image segmentation, denoising , or even super-resolution. The principle

relies on the autoencoder concept: we have the first part, the encoder that takes as input the image

and reduces its dimension to a much smaller space that we call the latent space. The objective is to

extract all the relevant information from the image in a very compressed way. This encoder part is

typically a convolutional neural network (CNN) based model. It consists of multiple stages, where

each stage contains multiple stacked convolutional layers followed by an activation function such

as ReLU and a max-pooling layer. After each stage, the image height and width are reduced by a

factor of two, while the number of channels/features are increased, leading at the end to a vector

containing the features of the image. The second part of the U-Net is what we call the decoder. The

decoder tries to reconstruct the image from the feature vector of the input. In our case, where the

input is the measurement Y , the decoder tries to reconstruct an image close to the ground truth X

from the feature vectors of Y generated by the encoder. The decoder architecture has also multiple

stages, the same number as the encoder, with stacked convolutions layers and an activation, but

instead of a pooling layer, it has an upsampling or a transposed convolution layer to expand again

the height and the width of the signal to get at the end an output with the same shape as the target

X . The manner in which the features are extracted by the encoder comes at a cost, namely, we lose

the localization of these features within the image. Therefore, we add skip connections at the end of

each encoder stages and before the decoder stages, where the temporal representation of the image

at the given stage is concatenated to the temporal reconstruction of the decoder at the same stage,

see Fig. 3.2. The number of stages, the model depth, as well as the number of filters used for each

convolution define the representation power (or capacity) of the model.

In the context of our paper, the chosen U-Net has 5 stages, where the number of stacked

convolutional layers is 2 for the encoder part, and 3 for the decoder part. For each stage, we define

16

3 32 64

64 128

128 256

256

256 + 512 256

128 + 256 128

64 + 128 64 64 3

Skip connections

Concat

Conv (+BN) + ReLU

Max Pool

Upsample/Transp. Conv

Conv

Figure 3.2: U-Net: basic architecture
.

an increasing number of filters : [24, 64, 128, 256, 512]. The kernel size is fixed at 3×3. To increase

the height and the width, the upsampling method was used. We add two convolutions at the end

of the model, the first one with 12 filters, and the last one with a kernel size of 1 and 3 filters to get

3 channels for RGB images. We designate in the following chapters this specific architecture as

U-Netwaller.

Multiple more complex variants of the U-Net were elaborated since then, and some of them were

incorporated in our implementation.

3.1.3 Loss functions

To evaluate the reconstruction made by the ML model against the ground truth image, one has to

properly define the metrics and losses. In fact, we need a linear combination of different losses to

capture all the desired properties at the end. The first part of the loss is the mean squared error

(MSE) that enforces the solution to be close, in a pixel-wise sense, to the ground truth. Once we look

more closely at the MSE, it gives smoother results: since the error is computed pixelwise, the best

way for the algorithm to reduce the loss is to average the colour intensity with the neighbouring

pixels. Furthermore, MSE, also due to this pixelwise behaviour, is unable to quantify the overall

structure of the image. So, only this component is not sufficient to produce results that are satisfying

and acceptable for the human perception.

To capture this feature, we introduce the Learned Perceptual Image Patch Similarity (LPIPS)[26].

17

The central concept is to pass the ground truth and the reconstructed output to a machine learning

model that was trained over an external dataset of real images for another task, like classification.

Then we take the output of different layers within this ML model, compute the MSE between the

output of the reconstruction and the ground truth, and average the results, weighting each term by

a certain factor. The main motivation behind this process is that the output of the image at a given

layer is a compressed representation that is no more pixelwise dependent, but seek to extract the

useful features of an image for the given classification task, e.g. edges or shapes within the image.

For CNNs, it is commonly accepted that early layers capture more general features of the image, and

as we go deeper, it becomes more specific for the given task [23]. So by computing the difference

between the respective two representations at a given layer, we are effectively evaluating how close

are their features. And since the ground truth features are perceptually realistic, the LPIPS enforces

our model to enhance the realism of the output.

There exists therefore multiple type of LPIPS losses depending on the model chosen. The two

popular choices are AlexNet[12], and a more recent CNN, VGG-16[20]. Both were trained on the

ImageNet dataset[9]. ImageNet is a very large dataset having 3.2 million samples annotated with

more than 5000 different labels. So any model trained over it has to extract extremely different and

general features to be able to differentiate between all these classes, which is exactly what we want

for our problem. As is the trend in machine learning, newer models quickly arise that outperform

previous models. However, these newer ones are often more complex, making them very unpractical

since we have to pass the samples through the model during training and backpropagate, and also

store this model to the RAM of our system. We have decided to employ the VGG-16 LPIPS version as

it has a better accuracy than the AlexNet for the ImageNet classification task.

3.2 FlatNet

A more developed, fully-based deep learning approach was proposed in [11]. A key contribution

is to add a custom machine learning layer, that explicitly inverts the one-to-many mapping of the

lensless camera system in Fig.2.2.1. In their paper, they consider two cases: arbitrary masks and the

special case where we have a separable mask.

3.2.1 Separable case

The inversion operation we have to reverse is Y =ΦLXΦT
R as stated previously in section 2.2.3, where

ΦR andΦL are linear operators in matrix form, i.e. express X as a function of Y . It yields the following

expression :

Xi nter m = f (W1Y W2),

18

where W1 and W2 are representing the adjoint ofΦL andΦT
R respectively, and f a non-linear function,

in our case the leaky ReLU. Practically, W1 and W2 are learnable weights initialized with the values

of their corresponding adjoint so that they can be better learnt to invert the lensless camera system,

and f is here to help by allowing the inversion process to be also non-linear.

To evaluate this case, they have generated a dataset with the FlatCam setup. We refer to the

induced ML model as FlatNet.

3.2.2 Non-separable/convolutional case

Here the system is modelled by Y = X ∗h (see 2.2.3). The inversion is best done in the Fourier

domain for computational efficiencyL

F (Y) =F (X)⊙H ,

where H is the Fourier transform of the PSF h. The inversion is done in the Fourier domain and

brought back to the spatial domain:

Xinterm =F−1(F (W)⊙F (Y)).

For the initialization of W , we set it to F−1(H∗
K+|H |2), H being the Fourier transform of the PSF and

K a calibration parameter to avoid noise amplification. As you can observe, there is no non-linear

function like the separable case. Experimentally, the authors of [11] have found that it does not have

a large impact on their results.

To evaluate this case, they have generated a dataset with the PhlatCam setup. We refer to the

induced ML model as PhlatNet.

3.2.3 Model architecture

As the Monakhova et al. approach, the FlatNet approach also uses the U-Net after their inversion

layer, but with a different depth and number of stacked convolutions. Multiple models were tested,

namely U-Net32, U-Net64 and U-Net128 where the index refers to the first number of filters of the

first stage. More precisely we have the following number of filters for each model, from the smallest

to the largest model:

1. U-Net32 : [32, 64, 128, 256]

2. U-Net64 : [64, 128, 256, 512]

3. U-Net128 : [128, 256, 512, 1024]

19

There are also only two stacked convolutions for both the encoder and the decoder. Another major

difference is that no max-pooling layers are employed, but instead to reduce the dimension they

have for the first convolution in each stage a stride of 2, cutting the height and width size by two as

the max-pooling would do.

3.2.4 Losses and discriminator

-1 Perceptual
enhancer

Discriminator

MSE

LPIPS

Discr. loss

xinterm xout

input

Figure 3.3: FlatNet architecture and process
.

The FlatNet approach also utilizes the MSE and the LPIPS loss, but in addition, it is constructed

as a conditional generative adversarial (cGAN)[15]. To recap this technique, there are two ML models:

on one side the generator, here our reconstruction model, and on the other side the discriminator.

The goal of the discriminator is to differentiate between a real image (here the ground truth image),

and the image generated by the generator, and the goal of the generator is to fool the discriminator.

We train them together in a concurrent way. This framework is commonly used to generate realistic

images from noise. Here, the "conditional" of cGAN means that the generator has more insights on

what type of image it has to generate. In our case, the conditional part is simply the measurement

sample, as showed in Fig. 3.3.

The discriminator model is a CNN with 4 blocks containing a convolution of a kernel size of

3×3 followed by a swish activation[17], defined as :

swish(x) = x sigmoid(βx) = x

1+e−βx
,

then an average pooling, and finally a convolution with a kernel size of 1 to obtain at the end only

one value, either a probability between 0 and 1 if we add a sigmoid function at the end, evaluating

how likely is the input to be real, or the logit of this probability without the sigmoid. For training, the

discriminator has its own loss :

20

Ldisc =− log(D (Ytrue))− log
(
1−D

(
Ygen

))
,

where D is the discriminator model and Ygen the output of the generator. The generator needs also

to take into account the discriminator output to be able to mislead the discriminator in the future. It

is done with another term called the adversarial loss:

Ladv =−log(D(Ygen)).

As the LPIPS loss, this adversarial loss also enforces the model to generate more realistic results

for human perception. In their proposed GAN implementation, they use label smoothing [21] to

regularize the discriminator loss.

21

Chapter 4

Model optimization

When we want to deploy a ML model to an embedded device, one has to handle multiple challenges

due to the hardware constraints of the targeted device, and also the given application. Firstly,

for most edge devices, all machine learning frameworks such as TensorFlow or PyTorch are not

supported as it. Indeed, most of such devices, such as microcontrollers, do not have a very developed

operating system and a proper set of operation to handle such frameworks and support all operations

that can be done on a CPU. The reason depends on for what purpose the device has been designed:

low-memory footprint, low-cost, low energy consumption. All these constraints are not taken

into account when we train a ML model on a server or on a computer. For example, in basic

microcontrollers, the available RAM are only a few kilobytes, orders of magnitude smaller than a

basic computer; the same for the flash memory, the computational power, etc... To be able to deploy

any model to an edge device, we use the TensorFlow Lite library.

To reduce the model for memory efficiency, accelerate the inference time, we have explored

various techniques.

4.1 Quantization

In our context, quantization implies converting a 32 bits floating point value stored into an 8 bits

integer value. More specifically, we quantize the weights of our model, what we call "quantized

weight". Furthermore, if needed, one can also do the operations in the integer form, what we call

"Quantized inference". To explain a bit more the last point, in a "quantized weight", we compress

the weights in an 8 bits representation and store them. When we have to compute the operation

with the input, which is in a floating point representation, we decompress the weights and do the

computation in the floating point representation. This method reduces the size of the model by a

factor of (roughly) 4, and also reduces the bandwidth of moving data from flash to RAM. But the

22

RAM memory consumption during inference does not change since we still do the computation

with floats. Furthermore, some microcontrollers do not support floating-point multiplication. For

these reasons, the "quantized inference" makes a step further by not only quantizing the weights,

but also performing the operations in the integer representation as follow :

out put = quanti ze(i nput , step)∗quanti ze(wei g ht , step),

where

quanti ze(x, step) = r ound(x ∗ step)/step

and with step handling the number of decimals we want. So setting it to 1 returns the nearest

integer. Naturally, all quantization techniques come with an accuracy cost, since conversion from a

floating point value to an integer value is not for free. There is also the possibility to not quantize

everything in the model, what we call "Hybrid quantization", in opposition of "Pure/Full integer

quantization". For instance, we can keep only the biases and activations in their 32 bits floating

point format, because practically these values are very sensitive to quantization, and also in terms

of memory footprint their number is very low compared to the number of weights in general, so

storing them with 32 bits does not dramatically increase the overall model size. For convolutional

models, hybrid quantization can speed up the inference time from 10 to 50%, and pure integer

quantization around 50%. One can quantize the model after having trained it, what we call post-

training quantization, or consider it during training, what we call Quantization Aware Training

(QAT).

4.1.1 Post-training quantization

In the quantized weight case, to compress the weight value, we need to scale the floating point

value to the 8 bits integer, we therefore need to find the minimum and maximum floating value

encountered as depicted in Fig. 4.1.

4.2 Pruning

The idea of pruning is to remove unnecessary weights, i.e. weights that do not have a big influence

on the output. Practically, the weights in our case can be seen as a matrix, and pruning is to force

some of these values to be zero. We get at the end a sparse matrix that can be efficiently stored with

a reduction of the model. There exists multiple ways to do this pruning. The most common one is

the magnitude pruning. It consists of setting to zero the smallest weights in the network. Formally,

we have this formula :

23

Figure 4.1: Scale float and integer representation

wi =
{

wi : if |wi | >λ

0 : if |wi | ≤λ

Where λ is a threshold parameter that adjust how much we want to prune the model. A clever

variant called sensitivity pruning is to set λ to s ∗σl where σl is the standard deviation of the layer

l measured in the dense model and s a tunable parameter. On top of that, instead of considering

individual weights, one can consider groups of weights such as channels or filters. This is structured

pruning. As an example, in some cases, magnitude pruning can reduce a model size up to 6 times

with a negligible loss of accuracy. Pruning can be done after training, offline, but the most efficient

way is to retrain a model and to consider pruning at this moment.

4.3 Clustering

Another way to compress a ML model is instead to limit the number of possible values. These values

are the centroids of each possible clusters. In the weight matrix, we replace then each value with

the index of the closest centroid. By doing so, we can also reduce the model size up to a factor 6 by

setting the number of clusters to a small value. As pruning, it is better to retrain a pre-trained model

and consider clustering within the training process.

24

4.4 Collaborative optimization

Collaborative optimization consists of combining the above methods one after the other to add

all the benefits of each technique while still keeping a good overall model. The main collaborative

methods are PQAT, CQAT and PCQAT, where P and C stand for pruned and clustered respectively.

Their processes follow the same steps. For instance, PCQAT first takes the original trained model,

retrains with pruning, then retrains the resulted model with clustering while maintaining what has

done the pruning method, and finally retrains again the resulting model with the quantize aware

training method while maintaining the work done by the two previous steps.

25

Chapter 5

Design and implementation

Practically, when evaluating the Phlatnet models, we faced GPU memory issues.

5.1 General considerations

The provided code is aimed to take the advantages of the GPU use. Each possible component of the

ML model was made to be modular, that is, one can easily add, change or remove the discriminator,

the camera inversion, the U-Net for a given dataset.

All the project was written in Tensorflow even though the original papers studied were imple-

mented with PyTorch. This extra work needed was motivated by multiple reasons. There exists the

PyTorch Mobile[1] to deploy models, but supports only IOS, Android and Linux operating systems,

whereas Tensorflow Lite could be deployed into any microcontroller and is globally a more mature

framework. It is possible to convert a PyTorch model to a TensorFlow graph by passing through the

ONNX[2] format. But passing through this format could yield to another major problem : The set of

possible operators in TensorFlow Lite is a subset of all the operators in Tensorflow, and TensorFlow

Lite Micro (for microcontrollers) a very constrained subset of TensorFlow Lite. During the conver-

sion, the current version of ONNX optimizes the given model operations used beneath, and can

introduce some operators unknown to the TensorFlow Lite Micro set of operations.

Still special functions, such as the inversion of the Fourier transform, are not supported by

TensorFlow Lite at this date, but could be available in the future, and already implementing the

model in TensorFlow facilitates the integration and also keep the compliance in any future scenarios.

Currently, it is possible to do any model optimization (QAT, PQAT,...) with the camera inversion layer,

but for now, for inference, the camera inversion has to be handled differently, outside the Tflite

library. Practically, for the moment, this is done by loading the weights into a Numpy matrices and

26

the layer computation performed in Numpy. The last reason to use TensorFlow is that it provides a

large variety of possible model optimizations not available in PyTorch, such as clustering.

Due to the overall RAM memory consumption, one has to reduce drastically the batch size,

leading to increasing the training time. To attempt to resolve this issue, one has tried to rewrite

the code so that it is able to training with a multi-GPU setup. Unfortunately, even though we could

observe a significant speed-up, the validation loss we finally obtained tended to diverge, in contrary

to the training loss. We have therefore decided to train all our models with only a single GPU.

Both papers have utilized a learning rate scheduler to reduce the learning rate of the optimizer,

that is, after a fixed number of epochs or batch step, we multiply the learning rate by a factor below

1. In our configuration, we have preferred to employ another mechanism reducing the learning rate

only when the loss does not improve after a certain amount of epochs, because it generates better

loss values.

The weights of theLPIPS model were trained in PyTorch, therefore to be exploitable in a Tensor-

Flow project, we have converted it via ONNX to get a TensorFlow executable graph. One has also to

be aware that the images feeding into it range lies between -1 and 1 instead of 0 and 1, otherwise the

value outputted is lowered with respect to the real value.

5.2 Monakhova et al. approach

In their paper, it is said that they modify the factors of the MSE and LPIPS in the loss, reducing the

MSE factor and augmenting the LPIPS factor as the epoch pass. But it is not explained how, if this

was done by adding or multiplying the factor by a certain value. We have decided to include the

possibility to add and subtract with the same value the corresponding loss factor. Nevertheless, in

our experiments we have kept these values fixed as in FlatNet[11]. Our motivation is when the MSE

validation reaches a very low, the ML model training loss is naturally driven by the other term, the

LPIPS loss. Also, in their evaluation, the ground truth samples are not cropped to have only the

picture of the screen, and thus having a large proportion of the image being only dark. Therefore,

the evaluation metrics will give better results, since it will be straightforward for the ML model to

localize the dark area and always predict an intensity of zero for all this area.

5.3 FlatNet

In their paper, they do not use the official version of the LPIPS metric, but rather a simplification

of it: they only consider the output of two layers rather than five as the original, and simply sum

their l2 distance without reweighing the two terms. We have decided to only consider the official

version in our implementation, so that it becomes more meaningful and easier to compare across

27

completely different lensless camera setups with the same standard.

When training with the corresponding datasets, more particularly with the PhlatCam one,

we faced very frequently RAM consumption issues. Both datasets (FlatCam and PhlatCam) raw

measurements were stored in their Bayer representation, with a dimension of respectively 512×640×
4 and 1518×2012×4. In a setup where we have to store in RAM the computation of three models, of

the reconstruction model, the LPIPS model and of the discriminator, it was already barely feasible

with the FlatCam with the U-Net64 (so not even the largest model) a batch-size of only 4 samples,

and with 12 GB of GPU memory. Therefore, in our experiments, we had to reduce drastically the

measurements dimensions. For the FlatCam dataset, we have cropped the dataset in the same way

the code they provide to get a dimension of 500×620×4. For the PhlatNet dataset, we converted the

measurements to RGB data, and downsampled by 4, leading to a shape of 759×1006×3. Having

RGB data instead of Bayer allow us to straightforwardly resize our images to shrink the shape even

more.

In their implementation, for PhlatNet, they crop their dataset to shape and then pad the samples in

the inversion layer. Doing a zero-padding so that the convolution in the Fourier domain remains

valid in the borders of the image, that is augmenting the size of the image by 3 was not conceivable.

So we kept the data uncropped, but we don’t pad the data in the inversion layer.

For the non-separable inversion layer in 3.2.2, we have explored ways not to learn W in the spatial

domain, but rather in the frequency domain, that is WF =F (W). The motivation behind this was to

decrease the training time by not having to compute the Fourier transform. The first issue is that we

have to store the real and imaginary part of each variable, increasing the memory by a factor 2. The

second one was that, if we decide to pad the data to get a valid convolution in the Fourier domain,

we increase the shape by 3, and thus we would increase the total number of variables by a factor 27

for RGB images (since we have three channels, and each channel having a padded image of 3×3 the

original image), so unscalable for training. But this idea could be implemented for inference, that is,

after having trained W , store directly F (W) to not have to recompute at each reconstruction this

Fourier transform.

We have faced multiple training issues while training with GANs, having the discriminator and

adversarial losses remaining quickly constant over the epochs. We have first tested with two fully

independent optimizers for the generator and the discriminator. After a few tests, we found that it

was better that the learning rate of both optimizer remain equals.

28

Chapter 6

Implementation and Experiments

Here we present the results we have generated. We first describe the setup utilized, then analyze

the results compared with the paper’s work we have implemented, and finally show an analysis of

model optimization for deployment.

6.1 Setup

During all the evaluation, we have used the following setup. The Adam optimizer was used both

for the reconstruction model and the discriminator model with a learning rate of 10−3 (each model

has its own independent optimizer). On top of that, we reduce the learning rate by half when the

corresponding loss stagnates with a minimal learning rate of 6∗10−8 . By "stagnates", we mean that

in a window of 4 epochs, if the loss function has not reduced by at least 10−4, then we reduce the

learning rate by half. We have trained all the models for 75 epochs. We split the dataset into two sets,

80% for the training, and 20% for testing. We do not split further the testing set into two sets, for

validation and test, since we do not use the test set for fine-tuning our model, as we would normally

do in a standard ML task, since the goal is only to make the two paper results reproducible.

For the LPIPS loss, we have only considered the VGG based version, as performs better than

the AlexNet one. When considering the weights of the losses, we have kept the same weights as

the PhlatNet paper : λmse = 1, λl pi ps = 1.2 and λdi scr = 0.6 , in the case where we do not use

the discriminator during training, we set the λl pi ps to 1.2+ 0.6 = 1.8 to enforce the same way

the loss for the perception. Concerning the dataset processing, for the phlatnet dataset, we have

chosen to center-crop each image like stated in their paper. We do the same for the PSF since our

reconstruction model expects that the raw measurements has the same shape as the PSF, which

should be the case.

29

In the PhlatNet paper for the non-separable case, the intermediate result given by the camera

inversion is given by:

Xinterm =F−1(F (W)⊙F (Y))

Where W is a trainable matrix. But practically, computing the Fourier transform is expensive during

training. So instead, we study if learning directly the Fourier transform of W within the model, i.e.

learning the matrix W f =F (W). We expect to get a runtime improvement, in the training and in the

inference time. We also evaluate if this approach reduces the accuracy of the model. Furthermore, if

we choose to pad the matrix, then the resulting matrix will have more parameters.

6.2 Reproduction results

6.2.1 Monakhova et al. comparison results

we first compare the results we obtained compared to the results in the paper using the AlexNet

LPIPS as their paper. Also, just for this case, we do not crop the ground truth samples to get only the

display screen to compare faithfully with the paper results. As observed in Fig. 6.1, the MSE value we

have obtained is greater than the one of the paper, in contrary to the LPIPS value which is quite lower.

LPIPS ranges over 0 and 1, 0 meaning that the two images are very similar. This can be explained by

the weights of the loss terms. Also, it is important to note that for our evaluation, as said previously,

we use 20 percent of the dataset for testing, in contrary to the paper taking only 4 percent from the

total dataset, a clearly weaker statistical value and not representing robustly the true performance

of the model. We also show the results where we crop the ground truth images to get only the

display screen. As a matter of course, both errors increase, since the cropping area, containing

only zeros and thus easily identifiable for any ML model, corresponds 38.4% of the original image.

From now on, we only employ cropped data. The reconstruction images are shown in 6.1 together

with the reconstruction showed in the original paper. We can see that our implementation can

reconstruct faithfully some images, but as we look more closely, some artefacts appear, especially

for the butterfly image. This could be due to the fact that in training we may be weighting the MSE

and LPIPS losses differently than in the original paper (they do not publish how they do it).

As showed in Fig. 6.2, the validation accuracy tends to be unstable in the first epochs, due to

the larger learning rate we employ at the beginning to converge faster. The proposed model tends

to create a significant difference between the training LPIPS loss and the validation one, with a

minimal training loss value of 0.2551 compared to 0.3143. This could mean that there exists a gap of

improvement, either by changing the model architecture, or by adding weight regularization, such

as the L1 norm.

30

(a) (b) (c) (d)

(e) Raw measurements (f) Expected
reconstruction

(g) Current reconstruction (h) Ground truth

Figure 6.1: Results of Monakhova et al. U-net over DiffuserCam.

Original Ours (not cropped) Ours (cropped)
Mean-squared error 0.0154 0.0379 0.0702

LPIPS (Alex) 0.2461 0.2314 0.3143

Table 6.1: Comparison of results of U-Netwaller over DiffuserCam

0 10 20 30 40 50 60 70

0.25

0.3

0.35

0.4

0.45

0.5

0.55 validation

train

LPIPS(AlexNet) loss

epochs

LP
IP

S
 l
o
ss

(a) MSE loss

0 10 20 30 40 50 60 70

0.05

0.1

0.15

0.2

0.25

0.3
validation

train

MSE Loss

epochs

M
S
E
 l
o
ss

(b) LPIPS(AlexNet)

Figure 6.2: Results of Wallerlab with cropping

31

(a) (b)

(c) (d)

(e) Proposed reconstruction (f) Ground truth

Figure 6.3: Reconstruction for FlatNet.

6.2.2 FlatNet comparison results

As said previously, we have preferred to employ the standard VGG LPIPS loss rather than their

proposed (unconventional) loss, therefore we do not compare the LPIPS values we obtained with

theirs. For the separable case, the results are showed here in Table 6.2. For both SSIM and PSNR,

an higher value demonstrates better results. The results are similar, even getting a better PSNR for

our model. The difference of SSIM can be explained by the change of LPIPS function. We show

here Fig.6.3 some reconstructions we have obtained. They look surprisingly well compared to the

Monakhova et al. approach. But one needs to remember that the ground truth images in this dataset

were not captured by a lens camera, but are the original image files.

32

Original Our implementation
PSNR (in dB) 19.62 19.80

SSIM 0.64 0.53

Table 6.2: Comparison of results for FlatNet dataset

(a) (b) (c)

(d) Simple model (e) Pruned model (f) Ground truth

Figure 6.4: Camera inversion intermediate output over DiffuserCam

But for the non-separable with the PhlatCam dataset, we were unable to reproduce values even

approaching theirs. Multiple reasons can be presented, such as how we preprocess the datasets

for memory allocation purposes (downsampling, transforming to RGB, resizing), or the differences

or implementation, like the LPIPS loss function. Nevertheless, we have applied the ideas of their

proposed inversion layer in the following section, and show its benefits.

6.3 Comparison of different approaches

For this section, we evaluate different ML models/frameworks only with the DiffuserCam dataset.

We do not use label smoothing for the discriminator. As the table Fig. 6.3, it is clear that the inversion

layer3.2.2 helps greatly to improve the output (the inversion layer used was the one for the non-

separable case). But the assumption that the inversion layer is trying to invert the forward model

explicitly does not hold, as shown in Fig. 6.4: we expect to see an intermediate image resembling

the ground truth, which is clearly not the case. We evaluate here two different models based on

U-Netwal-64 that is introduced later (the simple model, and the pruned), only to show that the

intermediate result also greatly change across different models.So this layer mainly helps the model

by augmenting its representation power. Indeed, practically, the number of weights within the

inversion layer represents almost 40% of the total. The results using the discriminator do not show

33

U-Net Simple Only discr. Only inversion Discr. + inversion
Parameters 11,784,211 11,784,211 18,005,012 18,005,012

PSNR (in dB) 18.5271 16.8318 19.6237 16.4251
SSIM 0.5128 0.4876 0.5597 0.4822

LPIPS (VGG) 0.4606 0.4821 0.4322 0.4900
MSE 0.0676 0.1024 0.0528 0.1056

Table 6.3: DiffuserCam results with U-Net (Monakhova et al.)

distinctly real benefits. It is relevant to say that in general, training GANs can be extremely unstable,

depending on the discriminator, the generator architecture and other hyperparameters. Here we

have employed the same discriminator architecture as the FlatNet paper, and thus could not be

perfectly suited for the DiffuserCam dataset.

We also compare the results with another model that has the same architecture as the U-

Netwaller, with the difference that the list of filters is the same as U-Net64, with the idea to see if

changing slightly the model to look like the U-Nets of the FlatNet. We also add to it the non-separable

inversion layer. We refer to this model as U-Netwal-64.It gives us the best results so far, obtaining

correspondingly the following values:

• PSNR: 21.0883

• SSIM: 0.6639

• LPIPS: 0.3779

• MSE 0.0386.

Some graphical results are showed in the following section, where we compare the output with other

models.

6.4 Model optimization results

During this section, we have decided to use the U-Netwal-64, as it gave best results. One of the reasons

of not using directly to U-Net64 was to avoid the PixelShuffle part, as it could be not compliant with

the Tensorflow Lite Micro library available operators. We then evaluate over this model how model

optimization techniques could change the model performance, and what are the gains in terms of

runtime and memory.

34

U-Net Normal
Clustered

128 centroids
Pruned QAT

LPIPS (VGG) 0.3779 0.7478 0.4047 0.4642
PSNR 21.0883 9.332 20.23 17.08
SSIM 0.6639 0.2978 0.624 0.5068
MSE 0.0386 0.5008 0.04495 0.0953
Disk storage (MB) 62.682 16.741 32.171 38.72

Table 6.4: DiffuserCam and model optimization results

6.4.1 Accuracy

We first evaluate how the given model performs in terms of accuracy/loss. As showed in Fig. 6.4,

we compare the results where the first model (Normal) is the model without any modification and

memory constraints, then a model trained with clustering, a model trained with pruning, and a last

model trained with QAT. We also show the FLASH memory they use in TensorFlow. We have decided

to not evaluate any collaborative optimizations methods, as it would even more deteriorate the

results. As the results show, we suffer from a loss for each metric and each model. For the clustered

model, the results are not even usable. As told previously, 128 centroids mean 128 different values

for each layer, which is in this case not sufficient. We were unable to increase this amount due to

RAM consumption and how clustering training works. The pruned case was the one having the

best values among the optimized models. Looking at the disk storage, we can observe a decrease of

memory by a factor 2: here the model was trained to have at the end 50% of sparsity, so half of the

weights being zero. The QAT model does not perform very well, but still decently regarding how is

built, as we will show later. Its disk storage in TensorFlow is an upper bound on the real value, since

the TensorFlow models contains also all layer wrappers to be able to train the model with QAT.

Now, for the illustrations showed in Fig. 6.5, we compare various cases: The normal case,

where the weights are not quantized, the second case where the weights are post-quantized, but

the operations are kept in floating-point, and the last case where the weights are post-quantized

and operations are made in 8 bits. As a reminder, QAT trains a model so that it can the weights can

be quantized, and the operations in 8 bits without deteriorating too much the results. As a remark,

we do not quantize the inversion layer, as it is outside the Tflite model (since some operators are

not supported, as told previously). As the picture shows, quantizing the weights degrades slightly

the image, but the results are still good overall. But the problem is when we want to do also the

operations in the integer domain: both the pruned and the normal model can simply not reconstruct

the images at all, in contrary to the QAT model that was train particularly for this case, and thus

giving usable results.

35

File size (MB) RAM (MB) Init. time[us] Inference time[us]
Normal 44.15 316.65 112600 558700
Normal + quant 11.11 771.75 200900 521900
normal + quant + op. 11.11 134.0 63800 699300
Camera inversion 24.9 285.0 70000 3110000

Table 6.5: Memory and running time of perceptual model through optimization

6.5 Comparison of different approaches

6.5.1 Memory and running time

The results for Tensorflow Lite were generated using the benchmark provided directly by Tensorflow.

We show here multiple inference times with 8 threads, as it corresponds to the number of cores

that have most of the mobile phones. The table shows only the perceptual part, the U-Net, as

only this part can be quantized in Tflite. We evaluate the camera inversion layer separately: it

is not part of the quantized Tensorflow Lite model. We only evaluate it by converting to another

Tflite model separately that can support some Tensorflow operations for completeness (but that

cannot be deployed to most of the devices, and cannot be quantized, just for analysis purposes).

The results are showed in Fig.6.5. We only evaluate the "normal", i.e. the unmodified U-Netwal-64.

The As expected, quantizing the weights reduces by a factor 4 the file size of the Tflite model. But

surprisingly, the model performing in floating-point value, but with quantized weights has a larger

RAM memory consumption than the unquantized one. This is probably do to the fact that is has to

allocate memory to convert back these weights from integer to floats. Therefore, the initialization

time is larger, as it has to allocate more memory. The model with quantization and computing with

integer operations use therefore the less RAM. It is also relevant to look at the inference time of

the camera inversion layer: it is almost 5 times larger compared to the others, due to the Fourier

transforms it has to perform.

36

(a) Ground truth (b) Ground truth

(c) (d)

(e) Normal (f) Pruned

(g) (h)

(i) Normal + Quant. (j) Pruned + Quant.

(k) (l) (m)

(n) Normal + Quant. + Op-quant. (o) Pruned + Quant + Op-quant. (p) QAT

Figure 6.5: Results of model trained with optimization
37

Chapter 7

Going further

We have explored various ways to reduce the model size with techniques such as pruning, quantizing

or clustering, but there exists another approach that could be relevant to study, radically different,

called Knowledge Distillation. The idea is to begin with a trained model that has a good accuracy

that we call the "teacher network", and to build another smaller model called the "student network"

that is trained to mimic the teacher network output.

Other more advanced U-Nets models were incorporated into the project and tested properly

thanks to the work provided in [19], but due to lack of time, they were not extensively evaluated.

Evaluating them could improve the performance of these models, as it is not clear at this date which

architecture is the most suited for lensless image reconstruction.

To be even more memory efficient in the PhlatNet dataset, one could consider converting the

Bayer measurements to RGB before training, in other words processing 3-channels data instead of

4-channels data, reducing the model size by about 25%. It is unclear for now how much the model

accuracy decreases when doing so.

Currently, it is clear that none of the models are neither sufficiently small or efficient to be

deployed into microcontrollers. Due to the task itself, the model has to produce a large and detailed

output. This constraint limits the model size reduction, as well as the performance. But it does not

hold for all ML tasks: one could think of applications like image classification, where we could port

more robust Tflite models into smaller embedded systems.

As showed in the results, the camera inversion layer proposed by FlatNet does not really provide

an intermediate result that looks similar to the ground truth in any ways when applied to the DiffCam

dataset. To really enforce this property to hold, and also improve the results based on the theory

behind this idea, one can consider computing also the loss over this intermediate representation

and do deep supervision. This idea can also be applied for the Monakhova et al. paper where they

38

use ADMM-based models with a U-Net.

39

Chapter 8

Conclusion

In this thesis, we have implemented the Monakhova et al. approach[16], as well as the FlatNet

paper[11]. We were able to reproduce the results of the first paper, and even improving them by

using a slightly different U-Net. We were also able to generate convincing results for the FlatCam

dataset used for the separable case presented in the FlatNet paper, but not for PhlatCam, the non-

separable case. We have showed that the inversion layer applied in the dataset used by Monakhova

et al. was beneficial and improves consequently the model. Nevertheless, when studying the output

at this stage, i.e. before the U-Net, it does not show clear characteristics of the ground truth image,

and its representation varies across different architectures.

For the model optimization part, we have analysed various model optimization techniques, so

that the model can be efficiently deployed. QAT and weight pruning can be used for reconstruction,

which is not the case of the clustering technique. The resulted memory consumption could be

handled by mobile phones, but hardly for most microcontrollers. The disk storage can be lowered by

a factor 4 with an acceptable reduction of accuracy when performing the operation in floating-point

arithmetic. Having a model performing integer arithmetic to reduce the RAM consumption involves

a large cost in terms of model accuracy, and can only be done with a model trained with QAT.

40

Bibliography

[1] U R L: https://pytorch.org/mobile/home/.

[2] U R L: https://onnx.ai/.

[3] M. Salman Asif, Ali Ayremlou, Aswin Sankaranarayanan, Ashok Veeraraghavan, and Richard

Baraniuk. FlatCam: Thin, Bare-Sensor Cameras using Coded Aperture and Computation. 2016.

arXiv: 1509.00116 [cs.CV].

[4] Eric Bezzam, Martin Vetterli, and Matthieu Simeoni. Privacy-Enhancing Optical Embeddings

for Lensless Classification. 2022. arXiv: 2211.12864 [cs.CV].

[5] Vivek Boominathan, Jesse K. Adams, Jacob T. Robinson, and Ashok Veeraraghavan. “PhlatCam:

Designed Phase-Mask Based Thin Lensless Camera”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 42.7 (2020), pp. 1618–1629. D O I: 10.1109/TPAMI.2020.2987489.

[6] Vivek Boominathan, Jacob T. Robinson, Laura Waller, and Ashok Veeraraghavan. “Recent

advances in lensless imaging”. In: Optica 9.1 (Jan. 2022), pp. 1–16. D O I: 10.1364/OPTICA.
431361. U R L: https://opg.optica.org/optica/abstract.cfm?URI=optica-9-1-1.

[7] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L.

Yuille, and Yuyin Zhou. TransUNet: Transformers Make Strong Encoders for Medical Image

Segmentation. 2021. arXiv: 2102.04306 [cs.CV].

[8] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution,

and Fully Connected CRFs. 2017. arXiv: 1606.00915 [cs.CV].

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet: A large-scale

hierarchical image database”. In: 2009 IEEE Conference on Computer Vision and Pattern

Recognition. 2009, pp. 248–255. D O I: 10.1109/CVPR.2009.5206848.

[10] Michael J. DeWeert and Brian P. Farm. “Lensless coded-aperture imaging with separable

Doubly-Toeplitz masks”. In: Optical Engineering 54.2 (2015), p. 023102. D O I: 10.1117/1.OE.
54.2.023102. U R L: https://doi.org/10.1117/1.OE.54.2.023102.

41

https://pytorch.org/mobile/home/
https://onnx.ai/
https://arxiv.org/abs/1509.00116
https://arxiv.org/abs/2211.12864
https://doi.org/10.1109/TPAMI.2020.2987489
https://doi.org/10.1364/OPTICA.431361
https://doi.org/10.1364/OPTICA.431361
https://opg.optica.org/optica/abstract.cfm?URI=optica-9-1-1
https://arxiv.org/abs/2102.04306
https://arxiv.org/abs/1606.00915
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1117/1.OE.54.2.023102
https://doi.org/10.1117/1.OE.54.2.023102
https://doi.org/10.1117/1.OE.54.2.023102

[11] Salman Siddique Khan, Varun Sundar, Vivek Boominathan, Ashok Veeraraghavan, and Kaushik

Mitra. “FlatNet: Towards Photorealistic Scene Reconstruction from Lensless Measurements”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020), pp. 1–1. D O I:

10.1109/tpami.2020.3033882. U R L: https://arxiv.org/pdf/2010.15440.pdf.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep

Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems.

Ed. by F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger. Vol. 25. Curran Associates,

Inc., 2012. U R L: https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[13] Grace Kuo, Nick Antipa, Ren Ng, and Laura Waller. “DiffuserCam: Diffuser-Based Lensless

Cameras”. In: Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP). Optica

Publishing Group, 2017, CTu3B.2. D O I: 10.1364/COSI.2017.CTu3B.2. U R L: https:
//opg.optica.org/abstract.cfm?URI=COSI-2017-CTu3B.2.

[14] Grace Kuo, Fanglin Linda Liu, Irene Grossrubatscher, Ren Ng, and Laura Waller. “On-chip

fluorescence microscopy with a random microlens diffuser”. In: Opt. Express 28.6 (Mar. 2020),

pp. 8384–8399. D O I: 10.1364/OE.382055. U R L: https://opg.optica.org/oe/abstract.
cfm?URI=oe-28-6-8384.

[15] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. 2014. arXiv:

1411.1784 [cs.LG].

[16] Kristina Monakhova, Joshua Yurtsever, Grace Kuo, Nick Antipa, Kyrollos Yanny, and Laura

Waller. “Learned reconstructions for practical mask-based lensless imaging”. In: Optics

Express 27.20 (Sept. 2019), p. 28075. D O I: 10.1364/oe.27.028075. U R L: https://arxiv.
org/pdf/1908.11502.pdf.

[17] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Functions. 2017.

arXiv: 1710.05941 [cs.NE].

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for

Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[19] Yingkai Sha. Keras-unet-collection. https://github.com/yingkaisha/keras-unet-
collection. 2021. D O I: 10.5281/zenodo.5449801.

[20] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale

Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[21] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.

Rethinking the Inception Architecture for Computer Vision. 2015. arXiv: 1512.00567 [cs.CV].

[22] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-ESRGAN: Training Real-World

Blind Super-Resolution with Pure Synthetic Data. 2021. arXiv: 2107.10833 [eess.IV].

[23] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks.

2013. arXiv: 1311.2901 [cs.CV].

42

https://doi.org/10.1109/tpami.2020.3033882
https://arxiv.org/pdf/2010.15440.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1364/COSI.2017.CTu3B.2
https://opg.optica.org/abstract.cfm?URI=COSI-2017-CTu3B.2
https://opg.optica.org/abstract.cfm?URI=COSI-2017-CTu3B.2
https://doi.org/10.1364/OE.382055
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-6-8384
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-6-8384
https://arxiv.org/abs/1411.1784
https://doi.org/10.1364/oe.27.028075
https://arxiv.org/pdf/1908.11502.pdf
https://arxiv.org/pdf/1908.11502.pdf
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1505.04597
https://github.com/yingkaisha/keras-unet-collection
https://github.com/yingkaisha/keras-unet-collection
https://doi.org/10.5281/zenodo.5449801
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/2107.10833
https://arxiv.org/abs/1311.2901

[24] Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. “Plug-and-

Play Image Restoration with Deep Denoiser Prior”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 44.10 (2021), pp. 6360–6376.

[25] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. “Designing a Practical Degrada-

tion Model for Deep Blind Image Super-Resolution”. In: IEEE International Conference on

Computer Vision. 2021, pp. 4791–4800.

[26] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unreason-

able Effectiveness of Deep Features as a Perceptual Metric. 2018. arXiv: 1801.03924 [cs.CV].

[27] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.

UNet++: A Nested U-Net Architecture for Medical Image Segmentation. 2018. arXiv: 1807.
10165 [cs.CV].

[28] Wangmeng Zuo, Kai Zhang, and Lei Zhang. “Convolutional Neural Networks for Image

Denoising and Restoration”. In: Denoising of Photographic Images and Video: Fundamentals,

Open Challenges and New Trends. Ed. by Marcelo Bertalmío. Cham: Springer International

Publishing, 2018, pp. 93–123. I S B N: 978-3-319-96029-6. D O I: 10.1007/978-3-319-96029-
6_4. U R L: https://doi.org/10.1007/978-3-319-96029-6_4.

43

https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1807.10165
https://arxiv.org/abs/1807.10165
https://doi.org/10.1007/978-3-319-96029-6_4
https://doi.org/10.1007/978-3-319-96029-6_4
https://doi.org/10.1007/978-3-319-96029-6_4

	Acknowledgments
	Abstract (English/Français)
	Contents
	Introduction
	Related work

	Lensless imaging
	Context
	Modeling
	Linear inverse problem
	Mask design
	Mask properties
	Optimization techniques

	Deep learning models
	Monakhova et al. approach
	Lensless camera setup
	Model architecture
	Loss functions

	FlatNet
	Separable case
	Non-separable/convolutional case
	Model architecture
	Losses and discriminator

	Model optimization
	Quantization
	Post-training quantization

	Pruning
	Clustering
	Collaborative optimization

	Design and implementation
	General considerations
	Monakhova et al. approach
	FlatNet

	Implementation and Experiments
	Setup
	Reproduction results
	Monakhova et al. comparison results
	FlatNet comparison results

	Comparison of different approaches
	Model optimization results
	Accuracy

	Comparison of different approaches
	Memory and running time

	Going further
	Conclusion
	Bibliography

