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A B S T R A C T
Bimanual grabbing and tossing of packages onto trays or conveyor belts remains a human activity
in the industry. For robots, such a dynamic task requires coordination between two arms and fast
adaptation abilities when the tossing target is moving and subject to perturbations. Thus, this paper
proposes a control framework that enables a bimanual robotic system to grab and toss objects
onto a moving target. We develop a mixed learning-optimization method that computes the tossing
parameters necessary to achieve accurate tossing tasks. Hence, we learn an inverse throwing map
(a closed-form solution of the inverse non-linear throwing problem) that provides minimum release
velocities of the object for given relative release positions. This map is embedded into a kinematics-
based bi-level optimization that determines the associated feasible release states (positions and
velocities) of the dual-arm robot. Additionally, we propose a closed-form modeling approach of the
robot’s tossable workspace (set of all positions reachable by an object if tossed by the robot) and
use the model to predict intercept or landing locations that yield high probabilities of task success.
Furthermore, we employ dynamical systems to generate the coordinated motion of the dual-arm
system and design an adaptation strategy to ensure robustness of the interception in the face of target’s
perturbations in speed or location. Finally, we validate experimentally the framework on two 7-DoF
robotic arms. We demonstrate the accuracy and robustness of the proposed approach. We also show
its speed and energy advantages when compared to the traditional pick-and-place strategy.

1. Introduction
Recently, there has been an increasing need for robotic

solutions in the logistics industry to address challenges
related to the booming of e-commerce. The current work-
force, although having better dexterity and flexibility than
automated solutions, cannot keep up with the industry de-
mands as the need for faster package handling solutions
continues to increase [1, 2]. In classical robotic solutions
such as pick-and-place, robots usually use a quasi-static
approach (with near zero relative velocities) for picking up
and releasing products, mainly to avoid impacts. In contrast,
humans often use dynamic manipulation approaches and
can safely interact with objects at non-zero relative contact
velocities. Humans can quickly grab an object by snatching
it and pass it along by throwing or tossing it. For instance,
in depalletizing or sorting facilities, it is common to find
humans picking up and tossing objects on trays or moving
conveyor belts. Similarly, robotic pick-and-toss has been
proposed as a faster and more energy efficient dynamic
alternative to pick-and-place operations [3, 4]. Additionally,
robotic throwing or tossing offers the benefit of extending
the robot’s reach beyond its physical boundaries [5]. For
example, in waste sorting applications, the potential of pick-
and-toss was demonstrated on a bimanual robot in [6] where
the arms working independently and with no physical in-
teraction between them use suction and blow mechanism
to achieve the task or a Delta parallel robot in [3] and
[7]. While in many applications, as in the aforementioned
works, the picking up of objects can be realized with a single
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robotic arm equipped with a suction cup mechanism, there
are however situations where bimanual grabbing of objects
from the sides in more suitable. For instance, when picking
up trays with open lid, lifting a case with too fragile cover to
support the case’ weight or when placing boxes on shelves
with limited vertical space, just to name a few.

Thus, this paper focuses on bimanual pick-and-toss ma-
nipulation tasks and considers this problem in a depalletiz-
ing context. Unlike [6], the application envisioned in this
paper extends the complexity of the pick-and-toss task as it
requires the coordination of the two robotic arms from the
grabbing of the object to its release. Although we previously
addressed such a problem in [4] with a fixed target, this paper
further extends the pick-and-toss task to the case where
the target of the tossed object is moving1 on a conveyor
belt. This is illustrated in Figure 1. In the industry, such
dynamic bimanual manipulation tasks are still largely done
by humans for lack of similarly fast, precise and robust
bimanual robotic systems. Thus, having bimanual robots
with similar dynamic manipulation abilities, adaptivity and
robustness would alleviate humans burden stemming from
these repetitive and physically demanding tasks.

For throwing to be useful in industry, it must be accurate.
The thrown object must land on the target within a given
tolerance. This implies the control of the throwing param-
eters, particularly the release position and velocity, which
must be appropriate for the thrown object to reach its target.
Indeed, once an object is thrown, the thrower can no longer
apply corrective action if the object does not follow the
desired trajectory. Thus, tossing accurately an object onto
a moving target using a robotic system is challenging. It
requires solution of the following main subproblems:

1The moving target might represent here a free spot on a loaded and
moving conveyor belt where the robot should put a depalletized object
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Figure 1: Illustration of a hybrid human-robot depalletizing chain of
dual-arm tossing tasks. In the upper depalletizing station, an object
is tossed onto a moving target (in green) partly located in the convex
hull of the tossable space (in cyan) of the dual-arm robot. In this
scenario, the robot needs adaptation and fast re-planning abilities
to face the perturbations induced by the human or conveyor belt on
the target’s speed and position.

1. Finding a feasible intercept position for the thrown
object to meet the moving target.

2. Finding feasible throwing parameters (release posi-
tion, release speed, and direction)

3. Generating the motion of the robot to grab the object
and successfully reach the desired release state on
time, such that the thrown object intercepts the target
at the desired location.

Achieving this paper’s objective requires solving an
interception problem between the moving target and the
thrown object. Finding a valid intercept point is straightfor-
ward; such a point lies along the path of the moving target
within the throwable workspace of the robot (the robot’s
extended reachable workspace when throwing objects). As
this point must be determined beforehand, on the target
side, it requires estimation and prediction of the trajectory.
On the robot side, it requires knowledge of the throwable
workspace.

The problem of finding feasible throwing parameters is
not trivial. It depends on the trajectory of the thrown object,
which is subjected to gravity, and to nonlinear aerodynamic
forces and phenomena that depend on its shape, speed,
and environment (air density, pressure, etc.). The object’s
motion can be complex by combining translation and ro-
tation around the object’s center of mass, which may be
geometrically eccentric, depending on the mass distribution.

Moreover, following the determination of the feasible
throwing parameters corresponding to the desired intercept
point, the motion of the robot must be generated and adapted
such that the object is not thrown too early or too late to
achieve the desired interception.

1.1. Related work
Precise throwing or tossing onto a moving target, whether

performed by a single arm or a multi-arm system, is an
interception problem, with challenges similar to robotic
catching [8]-[14], batting, or hitting flying objects [15]-[21],
or juggling [22]-[29]. Unlike these tasks, the interceptor
is not the robot but rather the thrown object, whose final
motion phase is governed by the projectile dynamics. Thus,
in addition to robotic throwing literature, we briefly review
a body of work on robotic interception tasks, with a focus on
how the intercept position (configuration) was determined
and how the robot motion was generated.
1.1.1. Robotic throwing

Robotic throwing is a dynamic manipulation task [30]
that offers the possibility of positioning objects within or
outside the physical workspace of a robot, and time and en-
ergy savings compared to non-dynamic manipulation meth-
ods [3, 4]. Since the dynamic manipulation work on robotic
catching of a thrown object [31], several researchers have in-
vestigated the robotic catching and throwing problem. Apart
from the dynamic aspects, research on robotic throwing is
also motivated by potential applications in industry. For ex-
ample, in [5], Frank et al. introduced the idea of using robotic
throwing as a flexible alternative transportation method for
certain types of products, and focused on a vision system to
detect and track the thrown objects for catching purposes.

Robotic throwing has been demonstrated in the literature
using different types of robotic systems that can be classified
into three main categories: throwing with specialized de-
vices such as 1-DoF or 2-DoF (degrees of freedom) launch-
ing mechanisms [30, 5, 32, 33, 34, 35, 36, 37], throwing
by industrial robots [38, 39, 40, 41, 3] and throwing by
humanoid robots [42, 43]. In the case of industrial robots,
[38] used the KUKA KR-16 robot to demonstrate accurate
throwing of a tennis ball to a target located approximately
2.5 m away. In [40] the TossingBot uses a UR5 robot to
throw various objects with different shapes. More recently,
an adaptive throwing solution was presented in [44] and
validated on a Franka robot.

From the motion generation perspective, there are three
main phases characterizing robotic throwing: an acceleration
phase, a release phase, and a free-flight phase [45]. The first
two phases are directly controlled by the robotic system,
which must transport the object in a prehensile or non-
prehensile manner to the desired release state (defined in
terms of position and velocity) before releasing the object.
This represents a trajectory generation problem with desired
intermediate or transitory states, often addressed through
motion planning [46, 39, 38], trajectory optimization [47,
41, 7] or methods based on optimal control [48], where
the torques necessary to bring the robot to the desired state
are directly computed. Unlike the planning-based methods
which are less reactive and prone to spatial and temporal
perturbations, this paper instead adopts an approach based
on dynamical systems for their real-time adaptivity and
robustness to perturbations.
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The free-flying phase is governed by projectile dynam-
ics. As no corrective action is possible after release of the
object, the throwing task accuracy depends on how well
the throwing parameters are determined, which depends
on the modeling approach used for the free-flying object.
In the literature, there are two main modeling approaches
for throwing motion, with a third between them. The first
approach relies on an analytical model of the object’s free-
flying dynamics, with or without nonlinear aerodynamic
phenomena; the second approach is data-based. For instance,
the authors of [38] used a simple ballistic motion to de-
termine the throwing parameters, neglecting aerodynamic
forces. Example of approaches that considered additionally
the Newton drag forces can be found in [33]. In a batting
application of free-flying objects, which can be seen as a
simultaneous catching and throwing task, Jia et al., [21]
considered the Magnus effect [49] and proposed a closed-
form expression approximating the solution of the result-
ing nonlinear dynamics. Although physics-based analytical
approaches can easily generalize to different conditions and
objects, their prediction accuracy depends on knowledge of
the object’s physical properties and aerodynamic phenom-
ena that occur. The latter are generally difficult to estimate,
as discussed in [30].

The estimation of throwing parameters has also been ad-
dressed from a learning perspective. In an early work along
this line, Aboaf et al. [50] directly exploited the object–target
landing error in throwing tasks to learn the correct throw-
ing parameters without modeling the underlying dynamics.
Other example of learning-based approach can be found in
[51, 52]. Although these approaches provide good accuracy,
they do not generalize well to conditions other than those
they were trained for. Approaches combining both physics
and learning-based solutions have also been proposed to
leverage their respective strengths. Such a hybrid approach
was proposed for instance in [40]; to improve the success
of throwing tasks, solution of a physics-based model was
complemented with data-based components that learned the
"residual physics" (unknown and unmodeled dynamics not
captured by the physics-based model). The authors used
deep neural networks to directly learn the residual physics
in the control space, considering the synergy between grasp-
ing and tossing. This approach was successfully applied in
tossing various small objects.

This paper also follows a hybrid modeling approach
where an inverse throwing map is learned from a param-
eterized physics-based model of the free-flying dynamics.
Unlike [40] and works that consider only the release speed
as the main throwing parameter, our approach considers the
full release state (position and velocity) and ensures their
kinematic feasibility.
1.1.2. Robotic interception

Robotic interception consists of approaching a moving
target to match its position and velocity in the shortest pos-
sible time [53]. This problem has been widely investigated
from different perspectives in the literature. The cited works

on catching, batting, and juggling addressed the interception
problem. For slowly moving targets or targets with long-
term predictable trajectories such as objects moving on a
conveyor belt, the solution can be cast into the general
prediction planning execution (PPE) framework [54, 55]. In
this framework, the motion of the target is predicted. The
robot’s motion to an intercept or rendezvous location along
the target trajectory is planned and executed. To address
uncertainty and prediction errors, these steps can be repeated
until interception, leading to an active PPE process (APPE).
Interception of objects on conveyor belts was addressed with
such a framework in [56] or [57] using a vision system.
Allen et al. [58] demonstrated a more reactive vision-based
hand–eye system with movement rates similar to human
movement to track and grasp a moving model train. Over
four decades, this topic has been addressed from different
perspectives. Optimal control of tasks with robot dynamics
and constraints was considered in [59], the optimal choice
of interception point in [60], time-optimal considerations
of tasks in [61], and the grasp reachability of the target in
[62]. While these works considered the interception problem
using a single robot, this paper focuses on the dual-arm
system case, which requires enforcing the coordination of
one robot with another when addressing the interception.

The robotic interception problem with dual-arm systems
is not new. Previous work by our group [63] addressed the
problem of robustly reaching moving objects with multi-
arm systems. In that approach, generation of coordinated
robot motion to perform reaching was based on dynamical
systems and used a virtual object. A virtual object was also
used in determination of intercept points by predicting object
progress using a forward model. To ensure kinematic fea-
sibility for the robots, the intercept points were determined
along the intersection between the predicted object motion
and the robot reachable space modeled with a Gaussian
mixture model (GMM). Using this approach, catching a
flying rod was demonstrated in [64] and reaching for various
car parts was demonstrated in [65].

Although dual-arm coordinated interception tasks in-
cluding grabbing and catching flying objects have been suc-
cessfully performed, previous works including [66] and [65]
were limited to fully controllable interceptors (the robots).
This paper, however, addresses a problem where the inter-
ceptor is only partially controllable (the thrown object is only
controllable up to the release).
1.1.3. Tossable workspace

Robotic throwing extends the robot workspace beyond
its physical boundary. The tossable workspace is the set
of all positions (within and outside the boundaries of the
physical workspace) reachable by a given object if thrown
by the robot. Unlike the normal robot reachable workspace,
which depends only on robot joint configuration, the toss-
able workspace also depends on the kinematic and dynamic
characteristics of the robot, and the properties (inertia, size,
aerodynamic characteristics) and desired landing orientation
of the object, making modeling difficult. Few studies have
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tackled the estimation problem of the tossable workspace
of a robot. For instance, Gallant [41] proposed an approach
for determining the maximum throwing reach of robots with
kinematic and dynamic feasibility constraints. A trajectory
optimization-based solution was proposed, with parameter-
ized trajectories including cubic splines, polynomial func-
tions, and Fourier series. The maximum throwing reach of
2-DoF, 3-DoF, and 5-DoF robots was determined. Although
this approach can be a step toward estimating the tossable
workspace, it was not explicitly determined. More recently,
Asgari and Nikoobin [48] proposed an indirect solution-
based optimal control approach to estimate the maximum set
of points to which robotic manipulators can throw an object.
They called such set the "maximum throw-able" workspace.
They modeled the throwing trajectory using the simple
ballistic motion and applied it as a moving boundary con-
ditions to optimize the release speed and angle. While this
approach could successfully estimate the feasible throw-able
workspace of 2 DoF planar and spatial robots, as highlighted
by the author themselves, it comes with high computation
burden which makes it difficult for online usage.

This paper considers more complex robots (dual-arm
of two 7 Dofs robots) and proposes to estimate the throw-
able space based on the kinematic feasibility of release
states associated with landing points spanning the robot
workspace and beyond. Unlike [48], this paper goes beyond
the mere estimation of the throwable points by proposing a
probabilistic model of their distribution and uses it to predict
intercept (landing) positions that yield a high probability of
task success.
1.2. Contribution

The above review of related work shows that an inte-
grated robotic framework that allows the interception of a
moving target by a thrown object using a dual-arm robotic
system is missing. Thus, this paper extends our previous
work [4] and offers, to our knowledge, the first example
of coordinated control of a bimanual arm platform to toss
objects so that they land on a moving target. Furthermore,
we show that the approach is fast to compute and hence
can re-plan a feasible trajectory on the fly in the face of
disturbances, such as a change in the trajectory of the target,
or displacement of one of the arms.

To achieve this, we propose to leverage on closed-form
representation of part of the planning problem to simplify
computation at run time and hence ensure online replanning.
We also propose appropriate coordination across the two
arms for them to toss in synchrony with one another and with
the moving target, so as to preserve this synchronization in
the face of delay in motion of either the arm or target.

The paper’s contributions can be summarized as follows:
1. we propose a method to compute kinematically fea-

sible throwing parameters (release position and ve-
locity) for a dual-arm robotic system using a learned
inverse throwing map combined with a kinematics-
based optimization framework.

Figure 2: Illustration of dual-arm robotic depalletizing task with fast
grabbing and tossing of an object. The overall motion can be split
into three main phases; the system motion is determined by the free
robot motion, the constrained robot–object motion, and the object
free-flying motion before interception of the target at landing.

2. we propose a method to derive a closed-form model
(probabilistic) of the tossable workspace of a robot
(set of all positions reachable by an object if tossed
by the robot). This model enables the prediction of in-
tercept locations with a higher probability of success.

3. we offer a systematic assessment of this approach in
a realistic scenario with a bimanual robot platform
tossing boxes on a conveyer belt. We demonstrate its
effectiveness in reducing task completion time and
energy expenditure when compared to a traditional
pick-and-place approach.

2. Modeling
Consider a dual-arm robot tasked to quickly grab an

object from a pallet and toss it onto a target moving on a
conveyor belt, as shown in Figure 2. The system motion
throughout the task is characterized by three main phases: a
free-motion phase where only the robot moves (from initial
time (𝑡0) to pick up time (𝑡𝑝)), a constrained robot–object
motion phase (from (𝑡𝑝) to the release time (𝑡𝑟)), and a free-
flying motion phase for the object (from (𝑡𝑟) to the landing
time (𝑡𝑙)).
2.1. Robot and object dynamic model

The dynamics of the dual-arm robot interacting with its
environment can be written as

𝐌(𝐪)�̈� + 𝐛(𝐪, �̇�) + 𝐉⊤e (𝐪)𝐹e = 𝝉 (1)
where 𝐌(𝐪) ∈ ℝ𝑛𝐷×𝑛𝐷 and 𝐛(𝐪, �̇�) ∈ ℝ𝑛𝐷 are block-
diagonal matrix inertia and block-diagonal matrix of cen-
trifugal, Coriolis, and gravity forces of the dual-arm robot,
respectively. The vectors 𝐪, �̇�, �̈� ∈ ℝ𝑛𝐷 are the vector of joint
position, velocity and acceleration of the dual-arm robot,
respectively. 𝑛𝐷 denotes the overall number of DoF, such
that 𝑛𝐷 = 𝑛𝐿 + 𝑛𝑅, where 𝑛𝐿 and 𝑛𝑅 are the DoF of the
left and right robotic arm, respectively. 𝐉e(𝐪) ∈ ℝ12×𝑛𝐷 and
𝐹e ∈ ℝ12 are block-diagonal Jacobian matrix of the inter-
acting end-effector(s) and the vector of associated wrenches,
respectively. 𝝉 ∈ ℝ𝑛𝐷 is the vector of joint torques.
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The dynamics of the object assumed to be rigid, with
mass 𝑚o and inertia o can be written as

[

𝑚o𝐈3 𝟎3
𝟎3 o

] [

�̈�o
�̇�o

]

+
[

−𝑚o𝐠
𝝎o × o𝝎o

]

=
[

𝐟𝑜
𝝉𝑜

]

(2)

where �̈�o ∈ ℝ3 and �̇�o ∈ ℝ3 are the object’s linear and
angular acceleration, respectively. 𝐠 ∈ ℝ3 represents the
gravity vector; 𝐟o ∈ ℝ3 and 𝝉𝑜 ∈ ℝ3 denote the effective
force and torque, respectively, acting at the object’s frame.

When the object is firmly grasped, the coupling between
the robot and the object can be written as

[

𝐟𝑜
𝝉𝑜

]

= 𝐆o𝐹e (3)

where 𝐆o ∈ ℝ6×12 denotes the bi-manual grasp matrix [67].
The rigid grasp imposes kinematic constraints such that

(𝐆+
o )

⊤𝐉e(𝐪)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐉o(𝐪)

�̇� =
[

�̇�o
𝝎o

]

and (𝐈 −𝐆+
o𝐆o)⊤𝐉e(𝐪)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉c(𝐪)

= 𝟎 (4)

where 𝐉o(𝐪) ∈ ℝ6×𝑛𝐷 and 𝐉c(𝐪) ∈ ℝ12×𝑛𝐷 denote the ob-
ject’s motion and contact constraint Jacobian, respectively.
𝐆+

o denotes the generalized inverse of 𝐆o.
Therefore, during the constrained motion, all states of the

dual-arm are restricted within the feasible set,  , defined by

 =

⎧

⎪

⎨

⎪

⎩

𝒔 =
[

𝐱(𝐪)
�̇�(𝐪, �̇�)

]

|

|

|

|

|

|

|

|

𝐪min ≤ 𝐪 ≤ 𝐪max
𝐉o(𝐪)�̇� = [�̇�o⊤ 𝝎o⊤]⊤

𝐉c(𝐪)�̇� = 𝟎
|�̇�| ≤ �̇�max

⎫

⎪

⎬

⎪

⎭

(5)

where 𝒔 = (𝐱(𝐪), �̇�(𝐪)) represents the task-space state of the
dual-arm robot; 𝐱(𝐪) and �̇�(𝐪, �̇�) are the pose and twist veloc-
ity vectors, respectively, obtained through forward kinemat-
ics. 𝐪min, 𝐪max and �̇�max are the joint position and velocity
limits, respectively.
2.2. Object free-flying motion

Assuming that the center of mass (CoM) of the object
corresponds to its geometric center, and when thrown, the
object does not rotate and is subjected only to gravity and
aerodynamic drag forces, its dynamics reduces to the first
raw of (2). Thus, its motion will be governed by

�̈�o = 𝐠 +
𝐟𝐷
𝑚o

(6)

where 𝐟𝐷 = 𝐟𝑜 and represents the aerodynamic drag force
(the lift force is neglected) expressed as

𝐟𝐷 = −
𝜌𝑎𝑖𝑟𝑐𝐷𝐴𝑜

2
�̇� ‖�̇�‖ (7)

where 𝜌𝑎𝑖𝑟 is the air density, 𝑐𝐷 denotes the drag coefficient
and 𝐴𝑜 represents the cross-sectional area of the object in the

motion direction. Eq. (6) can be simplified and written as a
function of the object’s states (𝐱o and �̇�o) as

𝑑
𝑑𝑡

(

𝐱o
�̇�o

)

=
(

�̇�o
−𝜂�̇�o ‖�̇�o‖ + 𝐠

)

(8)

where 𝜂 ≜ 𝜌𝑎𝑖𝑟𝑐𝐷𝐴𝑜
2𝑚𝑜

. With these assumptions, Eq. (8) allows
prediction of the object trajectory from a given initial state
that denoted as 𝒔o0 ≜ (𝐱o0, �̇�

o
0) to its landing state denoted as

𝒔o𝑙 ≜ (𝐱o𝑙 , �̇�
o
𝑙 ).

3. Problem Statement and Proposed
Approach

3.1. Problem statement
Assuming that a low-level robot controller of the form

𝝉 = 𝝉(�̇�d, 𝐹 d
e ) is available and it generates torque commands

based on desired manipulation task expressed in terms of
desired end-effector motion2 �̇�d and forces3 𝐹 d

e . Consider
now our task consisting of grabbing and tossing an object
onto a moving target with a dual-arm robot modeled by (1),
and with the dynamics of the object expressed in Eq. (2) and
(8). There are three problems to solve:

P1: how to determine a reachable intercept location (de-
noted by 𝐱𝐼 ∈ ℝ3) between the tossed object and the
moving target;

P2: how to determine the object’s release position and
velocity 𝒔𝑜∗𝑟 ≜ (𝐱o∗𝑟 , �̇�o∗𝑟 ) and the associated release
state of the dual-arm system 𝒔∗𝑟 ≜ (𝐱∗𝑟 , �̇�

∗
𝑟 ) that will

result in the tossed object landing at the intercept
location 𝐱𝐼 ;

P3: how to generate the desired robot motion �̇�d and
force 𝐹 d

e to grab the object and successfully reach the
desired release state 𝒔∗𝑟 on time such that the thrown
object intercepts the target at 𝐱𝐼 .

Addressing (P1) requires a model of the dual-arm robot
tossable workspace to predict the likelihood of reaching any
potential intercept location.

Solving (P2) requires finding a robot state that satis-
fies both kinematic feasibility constraints and grasping con-
straints on the object. Thus, according to (5), a valid release
state for the robot should satisfy 𝒔∗𝑟 ∈  .

Solving (P3) is nothing but developing a robust co-
ordinated motion and force control strategy for the dual-
arm system to reach, grab, and toss the object to ensure
successful interception of the moving target by the object
in the presence of spatial and temporal perturbations. Such
perturbations could consist of a live modification of the tar-
get motion (speeding up or slowing down) or a displacement
of the target location on the conveyor belt.

2The motion task can also be expressed in terms of �̈�d3On the object side, 𝐹 d
e is distributed between effective (𝐟𝑜, 𝜏𝑜) and

contact wrench
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In addressing Problems P1-P3, we make the following
assumptions regarding the system:

• the dual-arm robot establishes rigid contact with the
grasped object until release

• the object does not rotate or tumble during its free-
flying motion phase

• the post-landing impact of the object is negligible
3.2. Overview of proposed approach

Our proposed approach to achieve dual-arm grabbing
and precise tossing of an object onto a moving target consists
of three parts:

S1: devising a kinematics-based optimization algorithm
that computes constraint-satisfying throwing states
while minimizing the throwing speed (see Section 4);

S2: learning a model of the tossable workspace 𝑇 from a
distribution of reachable points determined using the
algorithm in S1 (see Section 5);

S3: generating the desired motion �̇�d and force 𝐹 d
e using

our previously developed dynamical system based on
a dual-arm controller for fast grabbing and tossing of
objects [4] with an adaptation factor 𝛽(𝐱) to compen-
sate for changes in the target motion, and prediction
and tracking inaccuracies in the robot motion (see
Section 6)

The proposed approach is summarized in the control ar-
chitecture illustrated in Figure 3. Target position measure-
ments are used to estimate target motion and predict target
trajectory (determined by the conveyor belt). The predicted
trajectory of the target and the learned tossable workspace of
the dual-arm robot and its predicted motion are used to deter-
mine an interception point updated over time. The computed
interception position is the desired landing position of the
thrown object, and is used in conjunction with the learned
projectile throwing map to determine feasible release state
of the object. The obtained feasible release state is sent as a
reference for the DS-based controller. The motion generated
by the DS-based controller is adapted to compensate for state
prediction and control error during execution of the desired
motion.

4. Estimation of Feasible Throwing States
In this section, we propose an approach for computing

kinematically feasible throwing release states (position and
velocity) for a dual-arm robotic system from desired landing
positions. Our approach focuses on solutions (essentially
local optimum) that primarily satisfy the feasibility con-
straints and then minimize the throwing speed rather than
finding the best solutions. Thus, with our approach encoding
optimal partial release states (velocities) in a learning model,
obtaining a corresponding feasible full release state will be
considered a success. Our approach’s emphasis on feasibility
allows rapid adaption by seeking a new feasible solution in
case of perturbations that requires fast replanning.

Figure 3: Block diagram showing processes and information flow in
proposed approach for dual-arm tossing of an object onto a moving
conveyor belt. The blocks "Learned Dual-Arm Tossable Space"
and "Learned Projectile Throwing Parameters" are trained offline.
The black continuous and dashed lines represent information flow
updated at 200 Hz and 10 Hz, respectively.

4.1. Learning an inverse throwing map
Unlike the forward dynamics in Eq. (8), we are now con-

cerned with the inverse throwing problem, which consists of
finding an initial throwing state (𝐱o0, �̇�o0) that yields a desired
landing position4 𝐱o𝑙 . As stated before, this problem is not
trivial and admits multiple solutions.

4.1.1. Proposed concept
To address this challenge, we propose a two-step ap-

proach.
Step 1: We determine a function �̇�o = 𝐯𝑟(�̄�o) ∈ ℝ3

that computes the release velocity from the relative position
�̄�o ∈ ℝ3 between the desired landing position and the release
position of the object (�̄�o = 𝐱o𝑙 −𝐱o0). We resolve the inherent
redundancy problem by adopting a throwing strategy that
seeks minimal throwing velocity. Such a strategy is also
beneficial for the robot as it requires less kinetic energy
for throwing. Other redundancy resolution strategies such
as minimum landing velocity (vertical or horizontal compo-
nents) can also be adopted.

However, except for linear projectile motion, �̇�o = 𝐯𝑟(�̄�)does not have a closed-form solution mainly due to the non-
linear aerodynamic forces. Thus, we propose a closed-form
expression of 𝐯𝑟(�̄�o) learned from data. To that end, we use
Gaussian mixture regression (GMR) [68] for its ability to
handle multi-dimensional input and output data. We define
throwing situations for a given object as v = {�̄�o, �̇�o} and
model a dataset of 𝑁 such throwing situations ({𝑖

v}𝑖=1…𝑁 )
using a GMM. The model is assumed to have 𝐾v Gaussian
functions, can be represented by its parameters as Ωvr ≡

4We leave the landing velocity �̇�o𝑙 as a free variable as we are more
concerned with the object’s landing accuracy on the target than the landing
speed.
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{𝝅𝑘,𝝁𝑘,𝚺𝑘}𝑘=1…𝐾v
, where 𝜋𝑘, 𝜇𝑘and Σ𝑘 are the prior, the

mean and the covariance of the 𝑘𝑡ℎ Gaussian distribution, re-
spectively. At any query time, given a desired relative release
position �̄�o∗, the desired release velocity �̇�o∗ is obtained by
computing the expectation over the conditional distribution
𝑝(�̇�o∗|�̄�o∗,Ωvr ). The resulting function can be written as

𝐯𝑟(�̄�o) ≈
𝐾
∑

𝑘=1
ℎ𝑘(�̄�o)�̃�𝑘

�̇�o|�̄�o (�̄�
o) (9)

with �̃�𝑘
�̇�o|�̄�o = 𝝁𝑘

�̇�o + Σ𝑘
�̇�o�̄�o

(

Σ𝑘
�̄�o�̄�o

)−1 (�̄�o − 𝝁𝑘
�̄�o ), where

𝝁𝑘
�̄�o and 𝝁𝑘

�̇�o are element vectors of the mean 𝝁𝑘 of the 𝑘𝑡ℎ
Gaussian function associated with input data �̄�o and output
data �̇�o, respectively. Similarly, Σ𝑘

�̄�o�̄�o and Σ𝑘
�̇�o�̄�o are element

matrices extracted from the covariance matrix 𝚺𝑘. In Eq. (9),
ℎ𝑘(�̄�o) weights the relative importance of the 𝑘𝑡ℎ Gaussian
function in the regression of 𝐯𝑟(�̄�o).

Step 2: Using the obtained expression of 𝐯𝑟(�̄�o), we seek
through an optimization process a value of the release posi-
tion 𝐱o0 that is reachable by the robot and yields a minimum
feasible �̇�o. To that end, we must derive the Jacobian between
variations of 𝐯𝑟 and �̄�o. With the smoothness of Gaussian
functions, this Jacobian can be derived in closed form. As
�̄�o is a function of the robot’s forward kinematics, such that

�̄�o = 𝐱o𝑙 − 𝐱o(𝐪) (10)
the Jacobian between variations of 𝐯𝑟 and 𝐪 can obtained as

d𝐯𝑟 = 𝐉𝐯𝑟 (𝐪)d𝐪 =
𝜕𝐯𝑟
𝜕�̄�o

⏟⏟⏟
𝐉𝐯𝑟 (�̄�

o)

𝜕�̄�o
𝜕𝐱o

⏟⏟⏟
−𝐈3×3

𝜕𝐱o
𝜕𝐪

⏟⏟⏟
𝐉ov(𝐪)

d𝐪 (11)

where the expression of 𝐉𝐯𝑟 (�̄�
o) is presented in Appendix

(9.1). The 𝐉ov(𝐪) ∈ ℝ3×𝑛𝐷 term is simply the translational
block component of the direction of the object’s motion
Jacobian 𝐉o(𝐪) in (4).

4.1.2. Data generation and model training
The inverse throwing map in Eq. (9) encodes solutions to

the estimation of throwing release velocity when the release
position is given and a minimum release speed strategy is
adopted. These are parameterized by 𝜂 (defined in Eq.(8)).

To train the model of the inverse throwing map, we need
examples of throwing situations (set of release positions and
release velocities). To that end, we proceed as follows.

First, we artificially generate 105 3D relative release po-
sitions within a spherical sector defined by a throwing reach
ranging from [0, 2.5]𝑚5, and throwing directions within a
cone angle of

[

± 5𝜋
12

]

𝑟𝑎𝑑 around the 𝑥 axis as shown in
Figure 6-(left). The data are generated for 20 values of the

5This restriction on the spatial span of data considers the robot limits;
for instance, a maximum reach of 2.5 m requires a minimum release speed
of 5 m/s, which is beyond the robot capability.

Figure 4: Geometric representation throwing variables. -(left):
throwing problem reduction from 3D to 2D using Cartesian to Cylin-
drical coordinates. -(right): resulting planar throwing parameters

aerodynamic parameter 𝜂 to capture the characteristics of
various objects (eg. change of mass and/or shape).

Second, to generate the release velocity ̇̄𝐱 corresponding
to the generated set of �̄�, we solve, for each point a two-
point boundary value problem (TPBVP) [69] defined by the
object’s free-flying dynamics (8) with the origin (0, 0, 0)
as initial position and �̄� the final position. We solve this
problem using a shooting algorithm.

We assume that the projectile motion lies in a plane
to reduce the dimensionality of the problem from 3D to
2D. We use a Cartesian-to-cylindrical coordinate transfor-
mation ((𝑥, 𝑦, 𝑧) to (𝑟, 𝜑, 𝑧))to extract the equivalent planar
coordinates (𝑟, 𝑧) lying in the vertical plane containing the
origin and the landing position. 𝑟 and 𝑧 represent the radial
distance and the height in the coordinates system, respec-
tively. This transformation yields a planar release velocity
parameterized by the release angle 𝜃0 and release speed 𝑣0.
The geometric representation of the 3D to 2D coordinates
transformation is illustrated in Figure 4.

To determine the release angle 𝜃∗0 and speed 𝑣∗0, we
initialize our shooting algorithm with the analytical solution
of the linear ballistic motion with minimal release speed.

𝜃0 = 𝑎𝑟𝑐𝑡𝑎𝑛

(

𝑧
𝑟
+

√

(𝑧
𝑟

)2
+ 1

)

𝑣0 =

√

𝑔.𝑟2.(1 + 𝑡𝑎𝑛2(𝜃0))
2.(𝑟.𝑡𝑎𝑛(𝜃0) − 𝑧)

(12)

Our shooting algorithm has two stages. In the first stage,
using 𝑣0 and starting at 𝜃0, we search for the angle 𝜃∗0 that
yields the maximal reach with the velocity 𝑣0. Once 𝜃∗0 is
obtained, the second stage searches for the release speed
that leads to the landing position (𝑟𝑙, 𝑧𝑙), with the speed
iteratively updated as

𝑣0(𝑖 + 1) = 𝑣0(𝑖) + 𝜅(𝑟𝑑𝑙 − 𝑟𝑙) (13)
where 𝑟𝑑𝑙 is the desired landing position, while 𝜅 denotes the
update rate of the algorithm. The algorithm stops when the
predicted release position reach the desired landing position
within a small tolerance distance. Figure 5 illustrates the
obtained planar throwing parameters (Figure 5(a)), with
samples of three different values of 𝜂 (Figure 5-(b)).
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(a)

(b)

Figure 5: Illustration of optimal planar throwing parameters:
(a) 5000 samples of throwing parameters; (b) throwing param-
eters corresponding to three different values of non-linear drag
force 𝜂

Once the release speed 𝑣∗0 and angle 𝜃∗0 were obtained,
we reconstructed the 3D equivalent �̇�o, which together with
�̄�o constitute the dataset required for the training. The result-
ing dataset with position and velocity data points is shown
in Figure 6.

Figure 6: Example of dataset used to learn the inverse throwing
map. The left figure shows the desired landing position relative to
the frame origin; the right figure shows the corresponding 3D release
velocities obtained when using a minimal throwing release speed
strategy.

With the obtained dataset, we trained our GMM model
with two-thirds of the data using the expectation-maximization
(EM) algorithm initialized with k-means. Our model uses the
Bayesian information criterion (BIC) to choose the number
of Gaussian functions, 25 in this case. With the obtained
GMM, we can predict with GMR the throwing release
velocity based on the desired relative position �̄�o.

We validated our GMR model using the remaining one-
third of the data. We obtained an RMSE of 0.13 m/s for
the throwing velocities. Figure 7 shows error histograms
between velocities generated by the learned GMR model
and ground truth velocities (physics) in the 𝑥, 𝑦, and 𝑧
dimensions.

Figure 7: Validation errors between velocities generated by the
learned GMR model and ground truth velocities (physics): velocity
errors in 𝑥 (left), in 𝑦 (middle), and in 𝑧 (right)

The landing position errors corresponding to the testing
data set are illustrated in Figure 8 along with the ground
truth landing errors (physics-based model). It is observed
that the physics-based parameters are accurately predicted
by the GMR; 97% of the predicted landing positions fall
within 0.1m (4% of maximum reach of 2.5𝑚) of the target
and 80% fall within 0.05m. Figure 9 provides examples of
throwing trajectories for the learned model and the ground
truth.

Figure 8: Validation errors for desired landing positions obtained
using learned throwing parameters (GMR model) and ground truth
parameters: errors in 𝑥 (left), in 𝑦 (middle), and in 𝑧 (right)

4.2. Optimal feasible release state: Concept
To compute the optimal feasible release state, our main

idea is to define a throwing task-related cost function denoted
as 𝑙(𝐪, �̇�), and then compute its optimizer in terms of joint
position and velocity (𝐪∗, �̇�∗) that satisfy the task constraints.
The task-space release state is obtained through forward
kinematics as 𝒔∗𝑟 = (𝐱𝑟(𝐪∗), �̇�𝑟(𝐪∗)) with

𝐪∗, �̇�∗ = argmin
𝐪,�̇�

𝑙(𝐪, �̇�) (14)
𝑠.𝑡. 𝐉c(𝐪)�̇� = 𝟎 (15)

𝐪min ≤ 𝐪 ≤ 𝐪max (16)
|�̇�| ≤ �̇�max (17)
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Figure 9: Example of ten trajectories and landing positions
for throwing tasks using learned throwing parameters and those
obtained using physics: left: different desired landing positions from
the same release position at the origin; right: different release
positions for the same desired landing position

where Eq. (15), (16) and (17) enforce the feasibility con-
straints, for the grasp, joint position and joint velocity, re-
spectively.

To define the overall objective function 𝑙(𝐪, �̇�), we use
the previously learned throwing map 𝐯𝑟(𝐱𝑑𝑙 , 𝐱𝑟(𝐪)) ∈ ℝ3 that
computes the throwing velocity from the relative position
between the release position 𝐱𝑟(𝐪) and the desired landing
position 𝐱𝑑𝑙 . We aim at achieving throwing tasks with mini-
mal release speed as possible.

Based on the definition of the feasible set (5), we define
the cost function as

𝑙(𝐪, �̇�) = ‖

‖

𝐯𝑟(𝐪)‖‖
2
𝑤𝑝

+ ‖

‖

𝐉o(𝐪)�̇� − 𝐯𝑟(𝐪)‖‖
2
w𝑣

+ ‖

‖

‖

𝝁𝜃(𝐑𝑂(𝐪𝑘),𝐑𝑑
𝑂)
‖

‖

‖

2

𝑤𝑂
(18)

Thus, minimizing the first sub-objective in Eq. (18)
amounts to seeking joint configurations that yield minimal
release velocity; minimizing the second sub-objective pro-
duces (for configuration 𝐪) joint velocities �̇�, whose asso-
ciated task-space velocity approaches the desired throwing
velocity (𝐉vo(𝐪)�̇� = �̇�𝑟(𝐪) → 𝐯𝑟(𝐪)). The third sub-objective
helps resolve the redundancy by specifying desired end-
effector orientation during the throwing task.
4.3. Optimal feasible release state: Solution

Optimization of Eq. (14) with the cost function in Eq.
(18) is nonlinear in terms of joint configuration and does
not have a closed-form solution. Thus, we propose to solve
it iteratively using sequential quadratic programming [70]
with the joint acceleration as the decision variable. Such an
approach allows simultaneous updating of both the position
and velocity subjected to their respective constraints as
follows

𝐪∗ ← 𝐪𝑘+1 = 𝐪𝑘 + 𝛿𝑡�̇�𝑘 + (𝛿𝑡)2�̈�∗

�̇�∗ ← �̇�𝑘+1 = �̇�𝑘 + 𝛿𝑡�̈�∗ (19)
until convergence

where 𝛿𝑡 is the time step and represents the step length of the
algorithm; �̈�∗ is the optimal acceleration at the 𝑘𝑡ℎ iteration
and provides the stepping direction.

To compute the optimal acceleration �̈�∗, we reformulate
the problem as a bilevel optimization problem [71]; at the
top level, we compute the feasible release velocity �̇�𝑓𝑟 for the
configuration 𝐪𝑘 as

�̇�𝑓𝑟 = 𝐉o(𝐪𝑘)�̇�
𝑓
𝑘 with (20)

�̇�𝑓𝑘 = argmin
�̇�

‖

‖

𝐉o(𝐪𝑘)�̇� − 𝐯𝑟(𝐪𝑘)‖‖
2 (21)

𝑠.𝑡. |�̇�| ≤ �̇�max

The velocity �̇�𝑓𝑟 represents the closest throwing velocity to
𝐯𝑟(𝐪𝑘) that the robot can achieve from configuration 𝐪𝑘, with
�̇�𝑓𝑘 as its corresponding joint-space value.

At the bottom level of the optimization, we solve for the
acceleration �̈�∗𝑘 that minimizes: the difference between �̇�𝑓𝑟and 𝐯𝑟(𝐪𝑘), the module of 𝐯𝑟(𝐪𝑘) and the difference between
the current and desired end-effector orientation (𝐑𝑂(𝐪) and
𝐑𝑑
𝑂). Thus, following Eq. (14), the bottom level problem is

reformulated as
�̈�∗𝑘 = argmin

�̈�

∑

𝑖
𝑙′𝑖(𝐪𝑘, �̇�𝑘, �̈�𝑘) with 𝑖 = {p, 𝑂}

(22)
𝑠.𝑡. 𝐉c(𝐪𝑘)�̈�𝑘 + 𝐉c(𝐪𝑘)�̇�𝑘 = 𝟎 (23)

𝐪min ≤ 𝐪𝑘 + 𝛿𝑡�̇�𝑘 + (𝛿𝑡)2�̈�𝑘 ≤ 𝐪max (24)
�̇�min ≤ �̇�𝑘 + 𝛿𝑡�̈�𝑘 ≤ �̇�max (25)
𝐪min ≤ 𝐪𝑘 + 𝛿𝑡�̇�𝑘 + (𝛿𝑡)2�̈�𝑘 ± Δ𝐪 ≤ 𝐪max(26)

where Eqs. (23)-(25) enforce the feasibility constraints. The
constraint (26) ensures that the joint has motion range Δ𝐪 to
accelerate from zero to �̇�𝑓𝑘 . Δ𝐪 for each joint is expressed as

Δ𝑞𝑗 =
(�̇�𝑓𝑗 )

2

2𝑞𝑗,max
(27)

The term 𝑙′𝑖(𝐪𝑘, �̇�𝑘, �̈�𝑘) represents the redefined sub-objectives
at the acceleration level. Exploiting the kinematics of the
robots, we propose to formulate 𝑙′𝑖(𝐪𝑘, �̇�𝑘, �̈�𝑘) as in an
acceleration-based inverse kinematics such that

𝑙′𝑖(𝐪𝑘, �̇�𝑘, �̈�𝑘) ≜ ||𝐉𝑖(𝐪𝑘)�̈�𝑘 − (�̈�𝑑𝑖 − �̇�𝑖(𝐪𝑘)�̇�𝑘)||2𝐰𝑖
(28)

with 𝑖 = {p, 𝑂} where 𝑝 and 𝑂 relate to position and
orientation, respectively. 𝐉p(𝐪) and 𝐉𝑂(𝐪) = 𝐉𝜔(𝐪) are the
Jacobian matrices of the linear and angular velocity of the
end-effectors, respectively. �̈�𝑑𝑖 represents the desired task ac-
celerations, designed by defining error functions associated
with each sub-objective of Eq. (18) forcing the dynamics
of these error functions to exponentially decrease toward
zero to achieve minimization. For instance, to design �̈�𝑑𝑂,
we defined an orientation error function between the current
and desired end-effector (𝐑𝑂(𝐪𝑘) and 𝐑𝑑

𝑂) using axis-angle
representation of the relative orientation. We designed the
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dynamics of this error such that it exponentially converges
toward zero using a stable proportional-derivative (PD) con-
trol law. We designed �̈�𝑑p as a convex combination of two task
components associated with the throwing velocity as

�̈�𝑑p = 𝛾 �̈�𝑑fvr + (1 − 𝛾)�̈�𝑑mvr (29)
where �̈�𝑑fvr ∈ ℝ3 and �̈�𝑑mvr ∈ ℝ3 represent task accelerations
that provide directions toward feasibility of release velocity
and minimum throwing velocity, respectively; 𝛾 is a scalar
weighting their relative importance. We propose to define
�̈�𝑑fvr and �̈�𝑑mvr as

�̈�𝑑fvr = −𝐾𝑝(�̇�𝑓𝑟 − 𝐯𝑟(𝐪)) −𝐾𝑑𝐉p(𝐪)�̇�

�̈�𝑑mvr = −𝐾𝑑(𝐉p(𝐪)�̇� +𝐾𝑝𝐉−1𝑟 (𝐱)𝐯𝑟(𝐪))

where 𝐾𝑝 ∈ ℝ3×3 and 𝐾𝑑 ∈ ℝ3×3 are positive definite gain
matrices, and 𝐉𝑟(𝐱) =

𝜕𝐯𝑟(𝐱)
𝜕𝐱 ∈ ℝ3×3 is the Jacobian of the

throwing velocity with respect to the release position.
We mainly consider three stopping conditions for the

proposed iterative algorithm. The algorithm stops as soon
as a feasible trajectory is found, with a feasible state whose
predicted landing position is within a predefined tolerance of
the desired landing position. The algorithm stops when the
objective function reaches a plateau for number of iterations.
The algorithm also stops when the maximum number of
iterations is reached. The task–space release state 𝒔∗𝑟 =
(𝐱𝑟(𝐪∗), �̇�𝑟(𝐪∗)) is obtained through forward kinematics of
the joint-space state. Algorithm 1 summarizes the proposed
approach.

Algorithm 1: computing optimal feasible throwing state
1 Input: 𝐱𝑑𝑓 , 𝐑𝑑

𝑂 , 𝐆o, 𝐪𝑚𝑖𝑛, 𝐪𝑚𝑎𝑥, �̇�𝑚𝑎𝑥, 𝐯𝑟(𝐱𝑑𝑓 , 𝐱𝑟(𝐪))
2 Output : desired release state 𝐪∗, �̇�∗ and

𝒔∗𝑟 = (𝐱𝑟(𝐪∗), �̇�𝑟(𝐪∗, �̇�𝑓 ))
3 Initialization: 𝐪𝑘 ← 𝐪0, �̇�𝑘 ← 𝟎, �̈�𝑘 ← 𝟎, 𝑖𝑡𝑒𝑟 = 0;
4 |
5 if (𝐱𝑑𝑓 is reachable)
6 | while (true) do
7 | | 1: update model: 𝐱𝑟(𝐪𝑘), 𝐉𝑖(𝐪𝑘), �̇�𝑖(𝐪𝑘) with 𝑖 = {p, 𝑂}
8 | | 2: compute �̄� = 𝐱𝑑𝑓 − 𝐱𝑟(𝐪𝑘), 𝐯𝑟(�̄�), 𝐉𝑟(�̄�)
9 | | 3: compute feasible velocity: �̇�𝑓𝑘 and �̇�𝑓𝑟 (𝐪𝑘) following (20)

10 | | 4: compute task acceleration: �̈�𝑑𝑖 with 𝑖 = {p, 𝑂} (29)
11 | | 5: compute �̈�∗𝑘: solve optimization (22)
12 | | 6: update state:𝐪𝑘, �̇�𝑘 ← (19)
13 | | 7: compute cost function: ∑ 𝑙′𝑖 (𝐪𝑘, �̇�𝑘)
14 | |
15 | | if ((|Δ𝓁′

𝑖 (𝐪𝑘, �̇�𝑘)| ≈ 0, ∀𝑘 = {𝑘… 𝑘 + 𝑛plateau})
16 | | or (𝑖𝑡𝑒𝑟 ≥ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥))
17 | | | 𝐪∗ ← 𝐪𝑘, �̇�∗ ← �̇�𝑓𝑘
18 | | | 𝒔∗𝑟 = (𝐱𝑟(𝐪∗), �̇�𝑟(𝐪∗, �̇�𝑓 ))
19 | | | break;
20 | | end if
21 | | 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
22 end if

4.4. Generation of best feasible release states
Once the inverse throwing map is validated and its

corresponding Jacobian is obtained following Eq. (11), we
can solve the optimization in Eq. (23) for the best feasible
release configurations of the dual-arm robot for tossing the
object. Figure 10 shows ten release configurations and the
corresponding free-flying trajectories of the object to the
desired landing position in task-space.

Figure 10: Illustration of ten computed feasible release configura-
tions in 3D (green dot) and corresponding object trajectories (black)
to the desired landing position (cyan points). The magenta circle
represents a tolerance radius of 0.05𝑚 around the landing position.
The red arrows indicate the directions of the 3D release velocities.

The corresponding joint–space release configurations for
position and velocity are shown in Figure 11. It is observed
that the computed configurations are within the robot joint
limits, and thus are kinematically feasible, with some joints
reaching their maximum velocities.

Figure 11: Illustration of joint–space configurations corresponding
to ten computed feasible release states: top: joint positions for left
and right robotic arms; bottom: joint velocities for left and right
arms. The joint limits for position and velocity are shown in red and
black dashed lines, respectively.
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5. Learning Tossable Space
In this section, we address modeling of the tossable

workspace of the dual-arm robotic system. The tossable
workspace is the set of all positions reachable by an object
if thrown by the robot. We propose to approximate it by
modeling the distribution of the reachable positions. Such
modeling provides a probability map of the reachability of
possible landing positions. It is useful for selecting the best
interception positions, chosen as points that represent a high
probability of success.

We sampled the forward half space6 of the robot by
randomly generating 105 uniformly distributed 3D positions
within a radius of 0.2−1.75𝑚 and within a cone of (±𝜋

3 𝑟𝑎𝑑)around the x axis, as shown in Figure 12. We determined the
throwing-reachability of the generated points using the op-
timization in Eq. (23), which checks for each point whether
or not the robot admits a feasible release state. We modeled
the probability distribution of the obtained feasible points
using a GMM. As with the previously learned projectile
dynamics, the number of Gaussian functions, here 13 was
determined using the BIC, and the model was trained with
the expectation–maximization algorithm initialized with k-
means. The likelihood contours are shown in Figure 13.

Thus, a given target position 𝐱𝑡 is considered in the
robot tossable space if its likelihood (or probability density
function) expressed as

(𝐱𝑡|𝑡𝑜𝑠𝑠) =
𝐾𝑡
∑

𝑘=1
𝜋𝑘 (𝐱𝑡|𝜇𝑘,Σ𝑘) (30)

exceeds a threshold 𝛿𝑡𝑜𝑠𝑠. We chose this likelihood threshold
such that it yields 99% prediction accuracy on the training
set of feasible configurations (we obtained a 𝛿𝑡𝑜𝑠𝑠 = 0.15).

Once the tossable space is learned, it is used to determine
the interception point. Valid interception points are restricted
to the region defined by the intersection of the robot tossable
space and the target path, mainly determined by the conveyor
belt. We described the target through a set of points and
predicted their future positions along the conveyor belt. We
chose the best interception location as the position along the
target trajectory with the set of points yielding the highest
tossable likelihood.

6. Dual-arm Throwing Task Control
Once the interception point is selected and a feasible

release configuration is found, the next step is to generate
the motion of the robot to execute the throwing task. We con-
trolled the coordinated motion of the dual-arm robot using
our previously proposed modulated DS-based controller [4],
which allows us to leverage the kinetic energy of the robot
through quick grabbing and tossing of the object. In this way,
we ensure the dynamic feasibility of the task, which requires
that the robot, from its current state with its inertia and that
of the grasped object, can accelerate quickly enough to reach

6without loss of generality, we only consider the space beyond the
forward half plane of the robot’s workspace

Figure 12: Example of 4000 samples from the generated dataset
to learn the tossable space of the dual-arm robot. The red points
indicate feasible solutions; the blue points are not feasible according
to our algorithm.

the desired release state while remaining within its hardware
limits. Thus, we avoid conditions in which the robot holds
the object and waits before tossing to intercept the target.
6.1. Dual-arm coordinated control

The desired motion of the dual-arm robot in the control
framework [4] can be written as

�̇� = 𝑀(𝐱)𝑓𝑛(𝐱) + 𝑓𝑔(𝐱) (31)

where 𝐱 =
[

𝐱𝐿
𝐱𝑅

]

∈ ℝ6 is the state vector of the DS, with
𝐱𝐿 and 𝐱𝑅 representing the position of the left and right robot
arms, respectively, in the dual-arm system. 𝑓𝑛(𝐱) ∈ ℝ6 is
the nominal DS, and 𝑀(𝐱) ∈ ℝ6×6 is the state-dependent
modulation matrix that locally shapes the motion generated
by 𝑓𝑛(𝐱). The 𝑓𝑔(𝐱) term represents the equivalent grasping
force projected in the motion space.

In that framework, we proposed a tossing task that con-
sisted of releasing a grabbed object at a desired position with
a desired velocity by generating appropriate absolute and
relative velocities (�̇�𝑎𝑏𝑠𝑑 and �̇�𝑟𝑒𝑙𝑑 ) for the dual-arm system
(see [4] for more details).

However, regardless of the control strategy, the problem
of when to release the target for successful interception must
be addressed. To that end, we propose to determine a state
of the target that should trigger the robot’s movement (reach,
pick and toss). We will refer to such a state as the target’s
"state-to-go".
6.2. Estimation of the target’s state-to-go

We assume that the target and thrown object intercept at
a position 𝐱∗𝐼 and time 𝑡∗. Thus,

𝐱𝑡(𝑡∗) = 𝐱𝑜(𝑡∗) = 𝐱∗𝐼 (32)
where 𝐱𝑡 denotes the target’s position, and 𝐱𝑜 denotes the
object position. From the robot-object perspective 𝑡∗ is ex-
pressed as the sum of: 1) the duration of the robot motion
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(a) (b) (c)

(d) (e) (f)

Figure 13: Representation of 2D projections of 3D tossable positions (top) and corresponding likelihood contours obtained by modeling the
distribution of tossable points using a GMM with 13 Gaussian functions: (a)–(d): projection on XY plane; (b)–(e): projection on YZ plane;
(c)–(f): projection on YZ plane. The likelihood of finding tossable states is lowest in blue regions and highest in red regions. The spread
of these regions is not uniform across the workspace, and not symmetric with respect to the two robots (in our configuration, the second
and sixth joints are not symmetric between the robots), as they are dependent on the highly nonlinear joint configurations for position and
velocity.

from its starting time up to the release time (𝑡𝑟) of the object,
and 2) the free-flying time of the object. Hence

𝑡∗ = 𝑡𝑟 + Δ𝑡𝑓𝑓 (33)
where Δ𝑡𝑓𝑓 is the object’s free flying duration from the
release time 𝑡𝑟 to the landing. We can also express 𝑡∗ as
function of the robot’s path to the release position and the
robot’s average speed along that path as

𝑡∗ =
𝐿(𝐱𝑟(𝑡𝑟), 𝐱𝑟(𝑡0))

�̄�𝑟
+ Δ𝑡𝑓𝑓 (34)

where 𝐱𝑟 is the robot position7, and 𝐿(𝐱𝑟(𝑡𝑟), 𝐱𝑟(𝑡0)) denotes
the robot path length from its position at time 𝑡0 (𝐱𝑟(𝑡0)) to
its position at the release time 𝑡𝑟 (𝐱𝑟(𝑡𝑟)), expressed as

𝐿(𝐱𝑟(𝑡𝑟), 𝐱𝑟(𝑡0)) =
𝑡𝑟

∫
𝑡0

‖�̇�𝑟(𝑡)‖ 𝑑𝑡 (35)

where ‖�̇�𝑟(𝑡)‖) denotes the 𝐿2-norm of the robot’s velocity.
In Eq. (34), �̄�𝑟 represents the average speed of the robot along
its path (�̄�𝑟 = 1

𝑡𝑟−𝑡0
∫ 𝑡𝑟
𝑡0

‖�̇�𝑟(𝑡)‖ 𝑑𝑡).
Given that the target moves along a rectilinear path (the

conveyor belt), for the interception to ideally happen at 𝐱∗𝐼 if
7for the dual-arm robot, this position refers to the absolute position of

the two end-effectors.

the robot motion starts at the time 𝑡0, the target’s state-to-go
or the state corresponding to 𝑡0 can be determined as

𝐱𝑡(𝑡0) = 𝐱∗𝐼 −
�̇�𝑡

‖�̇�𝑡‖
𝐿(𝐱∗𝐼 , 𝐱

𝑡(𝑡0)) (36)

where �̇�𝑡
‖�̇�𝑡‖

accounts for the target’s direction of motion.
𝐿(𝐱∗𝐼 , 𝐱

𝑡(𝑡0)) denotes the path length (distance) covered by
the target during the interval from 𝑡0 to 𝑡∗, it is expressed as
a function of the robot’s motion as

𝐿(𝐱∗𝐼 , 𝐱
𝑡(𝑡0)) = �̄�𝑡

[

𝐿(𝐱𝑟(𝑡𝑟), 𝐱𝑟(𝑡0))
�̄�𝑟

+ Δ𝑡𝑓𝑓

]

(37)

where �̄�𝑡 = 1
𝑡𝑟−𝑡0

∫ 𝑡𝑟
𝑡0

‖

‖

�̇�𝑡(𝑡)‖
‖

𝑑𝑡 represents the average speed
of the target along the path from 𝐱𝑡(𝑡0) to 𝐱𝑡(𝑡∗) = 𝐱∗𝐼 .

Eqs. (36) and (37) indicate that given the intercept point
𝐱∗𝐼 and the feasible release position 𝐱𝑟𝑟 = 𝐱𝑟(𝑡𝑟), the target’s
state-to-go can be easily estimated with few assumptions.
Indeed, what is left to be estimated is: 1) the average speed
of the target �̄�𝑡, which can be approximated from velocity
measurements over a time window; 2) the average speed of
the robot �̄�𝑟, which can be approximated from the forward
integration of the velocity norm of the stable DS that drives
the robot from its current position 𝐱𝑟(𝑡) until the release posi-
tion 𝐱𝑟𝑟 is reached; 3) the robot’s path length 𝐿(𝐱𝑟(𝑡𝑟), 𝐱𝑟(𝑡0)),which can also be approximated, as in 2), from the DS; 4) the
object’s free-flying duration Δ𝑡𝑓𝑓 , which can be estimated
from forward integration of the projectile dynamics given
the desired intercept location and the computed release state.
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6.3. Motion Adaptation
The target’s state-to-go estimated in the previous section

was based on the average speed of the target and the DS
motion. It does not account for possible perturbation of the
target motion (slowing down or speeding up). Moreover,
errors in motion tracking and prediction (through forward
integration) will create divergence between the computed
and actual states of the robot. Consequently, the interception
will not happen as planned.

To ensure successful completion of the task, we propose
a twofold adaptation strategy with, first, a velocity modula-
tion strategy and second, an attractor adaptation strategy.
6.3.1. Velocity modulation

The DS can be accelerated or decelerated at will by
multiplying the function by a positive scalar. This does not
affect the stability properties at the attractor. Thus, we can
adapt the robot’s DS-based velocity at run time to adapt to
changes in the velocity of the moving target as follows:

�̇�𝑑 = 𝛽(𝐱)𝑀(𝐱)𝑓𝑛(𝐱) + 𝑓𝑔(𝐱) (38)
where 𝛽(𝐱) is the adaptation factor, which is simply a state-
depend scaling factor computed as

𝛽(𝐱) = �̄�𝑡

�̄�𝑟
|

|

|

|

|

𝐿(𝐱𝑟(𝑡𝑟), 𝐱𝑟(𝑡))
𝐿(𝐱∗𝐼 , 𝐱𝑡(𝑡)) − �̄�𝑡.Δ𝑡𝑓𝑓

|

|

|

|

|

(39)

with 𝛽(𝐱) ‖
‖

�̇�𝑑‖‖ ≤ ‖�̇�‖𝑚𝑎𝑥, such that the adapted robot
velocity does not exceed the maximum allowable velocity.
𝛽(𝐱) ≥ 0 to preserve the stability of the DS.
6.3.2. Adaptation of attractor

Although the velocity modulation strategy can slow
down or speed up the velocity of the robot, it cannot,
however, reverse the robot’s motion direction. Such reversal
may be useful, for instance to force the robot to retract to
an initial position. The robots needs to quickly accelerate to
toss at the desired throwing speed. It may not be able to do
so, if the path is too short, as joint limits may be reached. we
propose additionally an adaptation strategy that adapts the
attractor of the nominal DS 𝑓𝑛(𝐱) when the target’s velocity
changes its direction. Hence, we define the attractor as

𝐱∗ = 𝛼(𝐱𝑡, �̇�𝑡)𝐱𝑑 + (1 − 𝛼(𝐱𝑡, �̇�𝑡))𝐱𝑠𝑡𝑏 (40)
where 𝐱𝑑 is the desired attractor of the nominal DS, and
𝐱𝑠𝑡𝑏 denotes a standby attractor to which the robot should
retract to. 𝛼(𝐱𝑡, �̇�𝑡) ∈ [0, 1] is a target’s state-dependent
scalar function that goes to 1 or 0 depending on whether the
target moves in the direction of the interception or not. We
defined 𝛼(𝐱𝑡, �̇�𝑡) as

𝛼(𝐱𝑡, �̇�𝑡) = 1
1 + 𝑒−𝑎((𝐱

∗
𝐼−𝐱

𝑡)⊤�̇�𝑡)
(41)

where 𝑎 > 0 represents the steepness factor of the function
defined by 𝛼(𝐱𝑡, �̇�𝑡).

Figure 14: Experimental setup used for validating the proposed
control scheme. The image shows the two KUKA robots, the
conveyor belt, some Optitrack cameras, the target, and the
object on a pallet.

7. Experimental Validation
To validate the proposed approach, we used the same

robotic setup as in our previous work [4], a dual-arm system
consisting of a pair of KUKA LBR IIWA7 and IIWA14
robots. To move the target, we used a conveyor belt with
velocity ranging from 0.05 m/s to 1.5 m/s. The object and
target position were measured using an Optitrack motion
capture system; velocity information was estimated using a
Savitzky-Golay [72] smoother and a Kalman filter. We used
a 1.9-kg cubic box with dimensions of 0.26 m on each side.

The target speed ranged from 0.10 m/s to 0.450 m/s,
determined experimentally to avoid collision between the
moving object after landing and a robot while retracting after
releasing the object. Speeds of up to 0.65 m/s were reached
with a smaller box (see video). We used a flat tray with
dimensions of 0.40 m × 0.30 m as the target. Figure 14 shows
the robotic setup used for our experimental validation.

In the implementation, the DS and the feasible release
state are updated every 5 ms and 100 ms, respectively. We
used qpOASES [73] to solve the optimizations (20) and (22).
The whole feasibility algorithm is solved between 3 to 25 ms
on a 𝐼𝑛𝑡𝑒𝑙(𝑅) Core i7, 3.4 GHz and 7.8 GB RAM PC.

The validation process was both simulated and con-
ducted using an actual robot. Three main tasks were consid-
ered: (i) tossing an object to a target moving at a constant
velocity; (ii) tossing an object to a target moving with a
changing velocity; (iii) comparison of placing an object and
tossing an object onto a moving target. A video (https:
//youtu.be/8a4AFDYfrXo) of the corresponding experiments
is provided as supplementary material8 and the code9 made
available.

8https://youtu.be/8a4AFDYfrXo
9https://github.com/epfl-lasa/iam_dual_arm_control
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Figure 15: Snapshots of dual-arm grabbing and object tossing (white cubic box) onto a moving target (white tray on conveyor
belt). At first, the robots wait for the target to reach the estimated state-to-go before moving toward the object to grab it and
toss it to the target moving on the conveyor belt. From left to right, the snapshots show the dual-arm system waiting, approaching
the object, grabbing the object, tossing the object, intercepting the moving target and landing, and both moving together.

7.1. Tossing object to target moving at constant
velocities

The goal of this task is to evaluate the accuracy and
repeatability of dual-arm based positioning through tossing
of an object to a target that moves at different constant
velocities. This task simulates a hypothetical depalletizing
task on an already loaded conveyor belt, where the robot
must place an object in available free space moving on the
conveyor belt.

Initially, the robot remains stationary as the target ap-
proaches until the target reaches the state-to-go as deter-
mined in Eq. (36) in Section 6.2. Once reached, the dual-arm
system moves, grabs the object, and throws it to the desired
intercept position as shown in Figure 15; task sequences
such as initiation of target movement and robot movement,
throwing of the object, interception, and unified movement
of the object and target are observed in the snapshots.

Corresponding plots of positions and velocities of the
object and target are shown in Figure 16 (top) and (bottom),
respectively. In Figure 16-(top), the initial position offset and
correspondence between the object and target after landing
are shown; the y-coordinates (representing the direction of
conveyor belt movement) decrease continuously (negative
speed). The constant offset of the z-coordinate results from
measurement of the object position at the center, producing
a height offset with the target on the conveyor belt. Small
oscillations result from bouncing of the object on the target
caused by landing impact before stabilizing. In Figure 16-
(bottom), one can notice that the object’s release velocity is
relatively small10. Afterward, the object decelerates rapidly
under gravity before changing suddenly its velocity direction
from negative to positive at the landing impact.

A 3D illustration is shown in Figure 17, including the
trajectories described by the robotic system during the task,
the object, and the target, indicated in red, black, and green,
respectively. The end-effector trajectories indicate complete
cycles from standby positions and back after grabbing and
tossing the object.

10In such a case, the aerodynamic drag force on the object is negligible.

Figure 16: Position and velocity plots of object and target
throughout the task. The target moves in the y-direction at
a speed of -0.3 m/s (green dashed line in bottom plot); its
starting position [0.75 m, 2.0 m, 0.25 m] decreases linearly
in the y-direction (green dashed line in top plot); all other
coordinates remain constant. The object starts moving only
after contact with the robots.

The accuracy of the proposed scheme in intercepting
moving targets is shown in Figure 18, which reports intercept
position errors across the XY plane for ten experiments for
each target speed. The norms of the errors per speed are
shown in Figure 18-(a); the x and y components of the error
contributing to the norm are shown in Figure 18-(b). The
mean of the intercept error norm for each speed was less
than 0.06 m, representing one-fifth of the target width (0.30
m). The variance in black indicates that few cases exceeded
0.06 m, remaining within a tolerance of 0.10 m.

The 3D distribution of intercept positions defined by the
target and object at release and landing is shown in Figure 19.
Intercept locations are indicated with respect to feasibility
and tossable workspace described in Sections 4 and 5.

M. Bombile and A. Billard: Preprint submitted to Elsevier Page 14 of 22



dual-arm object tossing on a moving target

Figure 17: 3D trajectories of system in grabbing and tossing
an object onto a moving target. The trajectories described by
the end-effectors are shown in red (solid for left, dashed for
right); the target trajectory is represented in green, the object
trajectory in black. The initial position of the object is shown
in black, the release position in magenta. The rest position
when the conveyor belt stops is shown in cyan.

(a)

(b)

Figure 18: Intercept position error per speed across the XY
plane (the z coordinate is not considered as the object height
offset from its center is constant): (a) norm of intercept error
per target speed; (b) intercept error per coordinate and per
target speed. The intercept error for x-coordinates is denoted
as 𝑒𝑥; the error for y-coordinates is denoted as 𝑒𝑦

7.2. Tossing object on target moving with
changing velocities

The goal of this experiment is to assess the robustness
and adaptivity of the proposed algorithm to changes in the
target velocity. In other words, we evaluate how the proposed
control strategy adapts the motion of the dual-arm system

Figure 19: Relative 3D distribution of intercept positions
defined by the target (black), the object release position
(magenta), and the object landing location on the conveyor
belt (red) for the dual-arm system and its kinematically feasible
tossing workspace (light black)

carrying the object for successful interception in presence
of changes in the target motion.

To that end, while changing the velocity of the target, we
started by testing the algorithm without adaptation (𝛽(𝐱) = 1
in Eq. (38)) and then activated the adaptation scheme.

The changing target speed was designed with a constant
nominal component 𝑣𝑡𝑛𝑜𝑚 as in the previous experiment, and
with a changing perturbation component 𝑣𝑡𝑝𝑒𝑟𝑡, defined as
𝑣𝑡𝑝𝑒𝑟𝑡 = 𝑎𝑝𝑒𝑟𝑡 ⋅𝑠𝑖𝑛((𝜔𝑝+0.2 ⋅ rand(𝜔𝑝))𝑡), where 𝑎𝑝𝑒𝑟𝑡 denotes
the maximum amplitude of the perturbation; 𝜔𝑝 denotes its
angular frequency, and 𝑡 is the running time of the algorithm.
We have conducted 20 experiments for each case; we set
the following target speed parameters: 𝑣𝑡𝑛𝑜𝑚 = 0.30 m/s,
𝑎𝑝𝑒𝑟𝑡 = 0.15 m/s and 𝜔𝑝 = 2𝜋.
7.2.1. Case without adaptation

Controlling robot motion based only on the state-to-go
generally leads to failed interception of the target as soon
as perturbation affects the system. Such a strategy amounts
to open-loop control of interception, which only works if
the conditions that predicted the state-to-go remain the same
after the dual-arm system has initiated motion.

An example is illustrated in Figure 20. The 𝑋 and 𝑌
position and velocity plots for the object and target are
presented in Figure 20-(a). The norm of the linear velocities
of the two robots triggered when the target reached the
estimated state-to-go is shown in Figure 20-(b). The tossed
object fails to intercept the target as the dual-arm motion
generation ignores the changes in target speed.
7.2.2. Case with adaptation

In this case, the adaptation scheme modulates the motion
of the robot, slowing it down or speeding it up based on a
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(a) (b)

Figure 20: Position and velocity plots of dual-arm system grabbing and tossing an object onto a moving target with motion
perturbation and without adaptation of robot motion: (a) X and Y evolution over time for position (top) and velocity (bottom)
of the target (red) and object (black); (b) norm of linear velocities of left robot (top), right robot (middle), and adaptation factor
𝛽(𝐱) (bottom). The robot motion remains unaffected by changes in target speed.

(a) (b)

Figure 21: Position and velocity plots of dual-arm system grabbing and tossing an object onto a moving target with motion
perturbation and adaptation of robot motion: (a) X and Y evolution over time for position (top) and velocity (bottom) of the
target (red) and object (black); (b) norm of linear velocities of left robot (top), right robot (middle), and adaptation factor
𝛽(𝐱) (bottom). (bottom). The robot motion was modulated based on estimated changes in target speed to ensure successful
interception.

continuously updated prediction of interception using cur-
rent target and robot states. We evaluated adaptation with
two types of perturbation. The first perturbation of target
motion was similar to that in the case without adaptation;
the second perturbation was caused by manually stopping,
pulling back, or pushing forward the target as it moved on
the conveyor belt.
Velocity-based perturbation The position and velocity
plots of the object and target are shown in Figure 21-(a). The
object successfully intercepts the target despite changes in its

speed (see accompanying video). Velocity plots of the left
and right robot end-effectors and the adaptation factor 𝛽(𝐱)
are shown in Figure 21-(b), at the top, middle, and bottom,
respectively.

Compared to the case without perturbation, the effect
of 𝛽(𝐱) on the dual-arm velocities is clearly observed. The
intercept position errors between the object and target with
and without adaptation are shown in Figure 22; error his-
tograms in the x-direction are shown in the left plot, and error
histograms in the y-direction are shown in the right plot for
20 experiments for each case.
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Figure 22: Distribution of intercept position errors in the x-
direction (left) and y-direction (right) in tossing an object onto
a moving target with motion perturbation without adaptation
(black) and with adaptation (orange). The distributions were
derived from 20 experiments with and without adaptation.
The x-direction represents the main tossing direction; the y-
direction represents the interception direction in which the
target moves.

In both cases, the mean of the error is about 0. However,
considering the variance, the error in the interception direc-
tion (Y) ranges from -0.45 m to 0.20 m without adaptation,
and between -0.10 m and 0.10 m with adaptation; 13 out of
20 Y-position errors are within [-0.05, 0.05] m. However, in
the main tossing direction (X), the error with adaptation is
slightly greater than the error without adaptation; 10 out of
20 experiments had an absolute error between 0.05 m and
0.10 m (two had errors of 0.11 m). This is mainly due to the
change in momentum of the object before its release as the
robot velocities are modulated. One solution to mitigate this
effect is to stop modulation (set 𝛽(𝐱) = 1) as soon as the
object is near the release position.

Without adaptation, the object successfully intercepted
the target with a position error within the tolerance of 0.10
m in five out of 20 experiments. However, as the system
was in open loop, the observed interceptions had a stochastic
nature, stemming from the randomness introduced in the
speed perturbation, and may have yielded target positions
near the desired intercept location at the landing time of the
tossed object.
Human interaction-based perturbation In this case,
the target speed perturbation was manually induced through
interaction with the target (see accompanying video). Figure
23 shows position and velocity plots for the target–object–robot
system with perturbation and with adaptation to compensate
for it. The y-components of the positions and velocities of the
target and object are shown at the top-left and bottom-left,
respectively. The linear velocity norm of the left end-effector
is shown on the top-right (the right end-effector is not shown,
but follows a similar pattern); the adaptation factor 𝛽(𝐱) and
the y-velocity of the target that drives it are shown at the
bottom-right.

Figure 23: Position and velocity plots of dual-arm system with
motion adaption while grabbing and tossing an object onto a
moving target with manual perturbation: left: y-evolution of
position (top) and velocity (bottom) of target (red) and object
(black), respectively, over time; (right): norm of linear velocity
of left robot (top) and adaptation factor 𝛽(𝐱) and y-velocity
of target (bottom). The robot motion was modulated based
on estimated changes in target speed to ensure successful
interception.

Unlike the previous perturbation cases, the target veloc-
ity changes in sign from negative to positive and vice versa
according to the perturbation. As 𝛽(𝐱) ≥ 0, the modulation
cannot reverse the motion direction of the robot (a negative
𝛽(𝐱) will make the system unstable). Thus, retraction of the
robot is achieved by smoothly changing the attractors of the
dual-arm system between the grabbing points on the box and
the predefined standby position of the end-effectors.

Human interaction with the target, and which induced
speed perturbation shown previously in Figure 23-(bottom)
is illustrated in snapshots of Figure 24. The target is pulled
back three times, as shown in Figures 24(b)–(c), (d)–(e), and
(f)–(g), at 𝑡 = 5.95𝑠, 𝑡 = 8.08𝑠, and 𝑡 = 9.98𝑠, respectively,
producing the three velocities shown in Figure 23-(bottom).
7.3. Comparison of placing and tossing object

onto moving target
The goal of this experiment was to compare the kinetic

and energy efficiencies of the widely used picking and plac-
ing operation with those of the proposed picking and tossing
of objects onto a moving target (on conveyor belt). The
overall energy consumption is estimated as follows

𝐸𝑑𝑢𝑎𝑙 =
𝑛𝐷𝑜𝐹
∑

𝑖

{

∫

𝑇𝑐

0
|�̇�𝑖||𝜏𝑖|𝑑𝑡

}

(42)

where �̇�𝑖 and 𝜏𝑖 represent the joint velocity and torque,
respectively. 𝑇𝑐 denotes the cycle time of the dual-arm task.
Unlike our previous study [4], where such a comparison
was conducted from the standby position to the release of
the object, in this study, the comparison includes the entire
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 24: Snapshots illustrating adaptation of dual-arm system to manual perturbations of target motion in grabbing and tossing
of an object onto a moving target: (a): dual-arm in standby, waiting for target to reach estimated state-to-go; (b)–(c), (d)–(e),
and (f)–(g): perturbation introduced by manually pulling back moving target, causing retraction of robots; (h)–(i): grabbing and
tossing of object as target moves; (j): motion of object and target after successful interception.

cycle (from the standby position and back after executing the
motion), at target speeds ranging from 0.1 m/s to 0.450 m/s
in increments of 0.05 m/s. We conducted ten experiments
at each target speed and estimated the cycle time and
energy consumption of the dual-arm robotic system. The
comparison results are shown in Figure 25; Figure 26 shows
the energy consumption comparison. The results indicate
that the proposed picking and tossing produces a shorter
cycle time and consumes less energy than the picking and
placing operation, consistent with our previous research [4].
Similar consistent results were observed across target speeds
for cycle time and energy expenditure. These experiments
were conducted with no perturbation of target speed; thus,
the main control variable was the estimated state-to-go, with
adaptation having little effect. Slight variations in results
were caused by noise, state estimation, and control errors.

Figure 25: Comparison of cycle time for picking and placing
and picking and tossing of an object onto a moving target at
different speeds

The main results of the comparison of picking and plac-
ing and picking and tossing are summarized in the histogram

Figure 26: Comparison of total energy consumption for picking
and placing and picking and tossing of an object onto a moving
target at different speeds

shown in Figure 27. The proposed picking and tossing is
approximately 5.5% faster and consumes approximately 11%
less energy than the picking and placing operation for the
same positioning task.

Figure 27: Histograms summarizing cycle time and energy
expenditure comparisons in picking and placing and picking
and tossing of an object onto a moving target
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8. Discussion and Conclusion
In this paper, we have presented a control strategy en-

abling a dual-arm robotic system to pick up and toss an
object onto moving target locations on a conveyor belt.
Positioning objects on moving conveyor belts is common
in industry, and can represent depalletizing of parcels in a
sorting facility. To achieve precise dynamic positioning, we
addressed this problem from an interception perspective; a
bi-manually tossed object governed by projectile dynamics
was intended to land at a desired position along the path of a
moving target. Using GMR, we learned an inverse throwing
map from the nonlinear projectile dynamics to determine the
tossing parameters (release position and velocity) necessary
to reach the desired landing position, which serve as refer-
ence inputs for the robotic system (Section 4.1). To ensure
feasibility of the release state, we embedded the learned
throwing map into a bi-level kinematics-based optimiza-
tion framework. We translated and solved such a problem
at the acceleration level allowing to enforce concurrently
velocity and position feasibility constraints with off-shelves
solvers (Section 4.3). Building upon the obtained release
state feasibility algorithm, we proposed a method to model
the tossable workspace of a dual-arm robot, representing
the set of all positions reachable by an object tossed by
the robot. We generated 105 desired positions within and
outside the dual-arm system workspace and determined for
each whether our algorithm could find a corresponding
feasible kinematic release state. We derived a closed-form
model of the tossable workspace by learning the distribu-
tion of all feasible landing positions using a GMM. The
obtained model allows us to predict the the probability of
reaching potential intercept positions of the object with the
target before initiating the robot motion (Section 6). For
robust tossing, we used our previously developed dynamical
system-based control framework [4], we complemented it
with an adaptation strategy to modulate the generated motion
of the dual-arm system and enable grabbing and tossing of
an object onto a moving target under live perturbations in
speed or in position. Moreover, to accommodate objects with
different masses and shapes, the learned inverse throwing
map (Eq. (9) and Eq. (43)) was parameterized by 𝜂 (an
aerodynamic parameter defined in Eq. (8) that captures the
object’s characteristics). For each new object, one needs only
to update the parameter 𝜂 with the corresponding new mass,
aerodynamic coefficient 𝐶𝐷, and the cross-sectional area
𝐴o. Thus, the learned model can generalize as long as the
obtained value of 𝜂 is within its training range.

To demonstrate the validity of the proposed approach,
in addition to simulations, we conducted experiments using
a pair of actual KUKA robots. We evaluated the accuracy
and repeatability of interception at different target speeds,
with and without motion perturbations. To highlight the
benefits of our approach with respect to classical positioning
tasks based on pick-and-place operations, we implemented
a picking and placing strategy for an object on a moving
target and compared it in terms of cycle time and energy
consumption with the proposed picking and tossing strategy.

We found that in the absence of target’s motion perturbation
and for the selected release configurations shown in Figure
19, the object landed within a radius of 0.05 m from the
center of the target in 67 out of 80 tossing cases, that is 77%;
the remaining tosses were within a radius of 0.10 m.

With target motion perturbation and no adaptation of
the robot motion, the ratio of tosses with interception error
norms less than 0.10 m decreased to 20%, mainly due to
increased errors in the intercept direction (direction of target
velocity); 75% of tosses were between 0.10 and 0.45 m
from the target; in the tossing direction (object’s release
velocity direction), 95% of tosses were within 0.10 m of
the target center. With the proposed adaptation scheme,
although errors in the tossing direction may slightly increase,
we demonstrated that the intercept error norms decreased
significantly; 90% of tosses were within a 0.10 m radius of
target.

When compared to the traditional pick and place strat-
egy, we found that the proposed pick and toss approach leads
to a shorter cycle time (5.5% in our experiments). This is
consistent with previous results in [3, 7, 4]. Moreover, as in
[4], we also found that the proposed approach consumes less
energy (11%).

It is worth noting that a systematic comparison of our
approach to state-of-the-art pick-and-toss solutions could not
be performed as none of them use a dual-arm robotic system
for tossing. The same is true for the industry, where most
of the automated depalletizing solutions use either special-
ized equipment or single robotic arms equipped with tools
specially adapted to the types of products to be depalletized.
The current dual-arm solutions to depalletizing rely mainly
on human operators, whose average depalletizing speed of
cases is 500 picks per hours (pph) [74]. This translates into
a cycle time of about 7.2s, whereas our approach with its
current setup and non-optimized robot trajectories has a
cycle time of 4s.

Although the effectiveness of the proposed method was
demonstrated using actual robots, there are some limitations
in the approach and implementation that need to be consid-
ered. For example, to handle moving targets with different
orientations, our current implementation focuses essentially
on the landing position rather than the landing pose (position
and orientation). It has been developed assuming a fixed
release orientation of the thrown object with no rotation or
tumbling motion. If the landing orientation of the thrown
object is required to match a desired target’s orientation,
the proposed approach can only handle such a requirement
if there exists a feasible release pose of the object that has
the desired orientation of the target. In such a case, the best
interception point (point with the highest likelihood of task
success) obtained from the learned tossable workspace when
ignoring the target’s orientation might no longer be valid. To
address the latter problem, a possible solution to consider in
future work could be expanding the dimensionality of the
learned tossable workspace (used for the determination of
the interception point) from three dimensions (3D positions)
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to four dimensions by including the planar orientation of the
target.

Moreover, while our current approach focuses on com-
puting kinematically feasible release states, their dynamical
feasibility is not guaranteed. Dynamical feasibility depends
on the initial robot configuration and the inertia of the object.
Moreover, the geometric properties of the object and dual-
arm grabbers may limit the feasible states due to collisions at
the release time if the robot cannot retract fast enough. The
uncertainty in the release time should also be considered as
it affects interception accuracy.

In learning the inverse throwing map, we assumed a
more complex object’s dynamics by considering the non-
linear aerodynamic drag force. This was justified by the
necessity to generate rich data capable of describing the be-
havior of objects with different aerodynamic characteristics
(shapes and masses) captured by the parameter 𝜂. However,
in our experiments, the tossing velocities were relatively
low, thus yielding negligible drag forces for the considered
objects. Therefore, for similar situations, one could have
used a simpler linear throwing model without compromising
accuracy.

In determining the release configurations, we considered
the free-flying dynamics of the object after release but did
not consider the impact dynamics of the object at landing.
Thus, we observed that for some feasible release states
determined by our algorithm, the tossed object bounced on
the conveyor belt and fell from it instead of resting on it.
To prevent this, we constrained the search space of feasible
release configurations to a small set of task-space release
positions near the conveyor belt. Thus, the associated release
velocities were reduced and the landing impacts too. A
more general solution in determining the release state should
therefore consider the desired post-landing impact state of
the object beyond its simple landing state. In the meantime,
with our current scheme’s inability to forecast the effects of
landing impacts on the tossed objects, application-wise, it
should be used only for objects that will not break under the
induced impact or for cases where such damage has no se-
rious implications for the objects, as discussed in [4]. When
the landing impact is deemed unsuitable, we recommend
using instead the dual-arm grabbing and placing strategy.
Such a situation has been illustrated in the accompanying
video, where a grabbing and tossing strategy was used for the
open box of loose bottles (waste to be recycled or disposed
of), whereas a grabbing and placing strategy was used for a
pack of filled beer bottles.

Thus, to guarantee optimal and safe behavior using the
proposed approach and promote its use in industry, future
research should consider the full dynamics of the robots
and the dynamics of their interactions with the environment.
Moreover, the flexibility of dual-arm systems needs to be
increased as they have a major drawback when mounted on
fixed bases. Their joint workspace is reduced and this limits
their sphere of operations. The solution to expand their joint
workspace is to augment the degrees of freedom of their

common base, or better endow the dual-arm system with
mobility.
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9. Appendix
9.1. Jacobian of Inverse throwing map

To account for objects with different mass and aerodynamic properties,
the inverse throwing map is parameterized by 𝜂 and can be written as

𝐯𝑟 ≈
𝐾
∑

𝑘=1
ℎ𝑘(�̄�o; 𝜂)�̃�𝑘

�̇�o|(�̄�o;𝜂)(�̄�
o; 𝜂) (43)

where �̃�𝑘
�̇�o|(�̄�o;𝜂) = 𝝁𝑘

�̇�o + Σ𝑘
�̇�o �̄�oΦ

𝑘
�̄�o �̄�o (�̄�

o − 𝝁𝑘
�̄�o ) + 𝜉𝑘�̇�o𝜂 and where 𝜉𝑘�̇�o𝜂 is

defined as

𝜉𝑘�̇�o𝜂 = Σ𝑘
�̇�o𝜂Φ

𝑘
𝜂�̄�o (�̄�

o − 𝝁𝑘
�̄�o )

+ [Σ𝑘
�̇�o �̄�oΦ

𝑘
�̄�o𝜂 + Σ𝑘

�̇�o𝜂Φ
𝑘
𝜂𝜂](𝜂 − 𝝁𝑘

𝜂 )

The Jacobian of 𝐯𝑟 with respect to �̄�o and parametrized by 𝜂 can be written
as

𝐉𝐯𝑟 (�̄�
o) =

𝜕𝐯𝑟
𝜕�̄�o

=
𝐾v
∑

𝑘=1

[

(𝑐𝑘𝐯�̄� + S𝑘𝐯�̄� �̄�
o)
𝜕ℎ𝑘(�̄�o)
𝜕�̄�o

+ ℎ𝑘(�̄�o)S𝑘𝐯�̄�

]

(44)

where the matrices S𝑘𝐯�̄� and vectors 𝑐𝑘𝐯�̄� are given by

S𝑘𝐯�̄� = Σ𝑘
�̇�o �̄�oΦ

𝑘
�̄�o �̄�o + Ξ𝑘

𝐯𝜂

𝑐𝑘𝐯�̄� = 𝝁𝑘
�̇�o − S𝑘𝐯�̄�𝝁

𝑘
�̄�o + 𝜁𝑘𝐯𝜂

with

Ξ𝑘
𝐯𝜂 = Σ𝑘

�̇�o𝜂Φ
𝑘
𝜂�̄�o

𝜁𝑘𝐯𝜂 = S𝑘𝐯𝜂(𝜂 − 𝝁𝑘
𝜂 )

where S𝑘𝐯𝜂 = Σ𝑘
�̇�o �̄�oΦ

𝑘
�̄�o𝜂 + Σ𝑘

�̇�o𝜂Φ
𝑘
𝜂𝜂 with the Φ𝑘

𝑖𝑖 defined as

(Σ𝑘
�̄�)

−1 =

[

Σ𝑘
�̄�o �̄�o Σ𝑘

�̄�o𝜂
Σ𝑘
𝜂�̄�o Σ𝑘

𝜂𝜂

]−1

≜

[

Φ𝑘
�̄�o �̄�o Φ𝑘

�̄�o𝜂
Φ𝑘

𝜂�̄�o Φ𝑘
𝜂𝜂

]

(45)

The expressions of 𝜋𝑘(�̄�) and 𝜕𝜋𝑘(�̄�)
𝜕�̄� in the Jacobian are computed as follows

ℎ𝑘(�̄�o) =
𝛼𝑘𝑝(�̄�o|𝝁𝑘

�̄� ,Σ
𝑘
�̄�)

∑𝐾
𝑘=1 𝛼𝑘𝑝(�̄�o|𝝁

𝑘
�̄� ,Σ

𝑘
�̄�)

(46)

and

𝜕ℎ𝑘(�̄�o)
𝜕�̄�o

= 1
𝐷2

( 𝜕𝑁
𝜕�̄�o

.𝐷 −𝑁. 𝜕𝐷
𝜕�̄�o

) (47)

where the terms 𝑁(�̄�), 𝐷(�̄�), 𝜕𝑁𝑘

𝜕𝐱 , and 𝜕𝐷𝑘

𝜕𝐱 are respectively given by

𝑁(�̄�o) = 𝛼𝑘

(2𝜋)
𝑁
2
|Σ𝑘

|

1
2

𝑒−
1
2 (𝜒

𝑘
𝜇 )

⊤(Σ𝑘)−1(𝜒𝑘
𝜇 ) (48)

𝐷(�̄�o) =
𝐾
∑

𝑘=1

𝛼𝑘

(2𝜋)
𝑁
2
|Σ𝑘

|

1
2

𝑒−
1
2 (𝜒

𝑘
𝜇 )

⊤(Σ𝑘)−1(𝜒𝑘
𝜇 ) (49)
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𝜕𝑁𝑘

𝜕�̄�o
= − 𝛼𝑘

(2𝜋)
𝑁
2
|Σ𝑘

|

1
2

𝑒−
1
2 (𝜒

𝑘
𝜇 )

⊤(Σ𝑘)−1(𝜒𝑘
𝜇 )(𝜒𝑘

𝜇 )
⊤(Σ𝑘)−1𝑆x̄ (50)

𝜕𝐷𝑘

𝜕�̄�o
= − 1

(2𝜋)
𝑁
2

𝐾
∑

𝑘=1

𝛼𝑘

|Σ𝑘
|

1
2

𝑒−
1
2 (𝜒

𝑘
𝜇 )

⊤(Σ𝑘)−1(𝜒𝑘
𝜇 )(𝜒𝑘

𝜇 )
⊤(Σ𝑘)−1𝑆x̄ (51)

where 𝐱𝑘𝜇 is defined as 𝜒𝑘
𝜇 =

[

�̄�o − 𝝁𝑘
�̄�o

𝜂 − 𝝁𝑘
𝜂

]

and 𝑆x̄ =
[

𝐼3×3 03×1
01×3 01×1

]
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