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Abstract— Due to the ever-increasing popularity of ride-
hailing services and the indisputable shift towards alterna-
tive fuel vehicles, the intersection of the ride-hailing market
and smart electric mobility provides an opportunity to trade
different services to achieve societal optimum. In this work,
we present a hierarchical, game-based, control mechanism
for balancing the simultaneous charging of multiple ride-
hailing fleets. The mechanism takes into account some-
times conflicting interests of the ride-hailing drivers, the
ride-hailing company management, and the external agents
such as power-providing companies or city governments
that will play a significant role in charging management in
the future. The upper-level control considers charging price
incentives and models the interactions between the exter-
nal agents and ride-hailing companies as a Reverse Stack-
elberg game with a single leader and multiple followers.
The lower-level control motivates the revenue-maximizing
drivers to follow the company operator’s requests through
surge pricing and models the interactions as a single
leader, multiple followers Stackelberg game. We provide a
pricing mechanism that ensures the existence of a unique
Nash equilibrium of the upper-level game that minimizes
the external agent’s objective at the same time. We pro-
vide theoretical and experimental robustness analysis of
the upper-level control with respect to parameters whose
values depend on sensitive information that might not be
entirely accessible to the external agent. For the lower-
level algorithm, we combine the Nash equilibrium of the
upper-level game with a quadratic mixed integer optimiza-
tion problem to find the optimal surge prices. Finally, we
illustrate the performance of the control mechanism in a
case study based on real taxi data from Shenzhen in China.
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I. INTRODUCTION

THE recent increase in affordability of alternative fuel
vehicles, and their prospective positive long-term effects

on the environment, have paved the way for a steep incline
in the number of electric vehicles (EVs) on the streets [2]. In
parallel, the growing popularity of the various services offered
by ride-hailing companies justifies the importance of their
existence among the transportation services offered within a
city. As a result, it is likely that EVs will soon constitute the
central part of the fleets operated by ride-hailing companies.
Inevitably, the charging management on a company level
will become an important factor in maintaining a successful
business in the ride-hailing market.

The availability of the charging infrastructure and the av-
erage charging duration remain some of the main reasons
preventing EVs’ overall dominance over gas-powered vehi-
cles [3]. In order to profitably operate large electric fleets,
it is likely that the ride-hailing companies would have to
devise intelligent coordinated charging strategies subject to
the constraints imposed by the temporal distribution of the
demand and the power grid supply. In a more distant future,
where the company would operate autonomous vehicles, the
operator would have the complete flexibility to minimize the
company’s operational costs. However, in the current society
where the driver’s daily profit is directly proportional to the
passenger kilometers travelled, it is clear that some monetary-
based incentives would have to be proposed in order to
motivate the drivers to follow the operator’s desires. The ride-
hailing companies already offer their drivers access to different
service facilities, so it is not unlikely that they will offer
discounted charging dictated by the subsidies provided by the
central authorities, e.g., the government or the power-providing
companies. On one hand, through charging incentives, the
company can maximize the availability of the services by
motivating the drivers to charge before the demand peaks. On
the other hand, the asymmetric spatial distribution of request
origins and destinations makes certain parts of the region less
attractive for the drivers. Through properly designed pricing
incentives, the central authority could try to increase the
coverage and help fight congestion due to a large number of
circulating vehicles without passengers [4], [5].
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Inspired by this vision, we present a demand-based, bi-level,
pricing system for load balancing the vehicles of different ride-
hailing fleets (such as Uber, Lyft, etc.) among public charging
stations. We study a scenario in which a central authority has
a clear preference about how the vehicles should spread out
among the stations, i.e., it defines the set points that describe
a desirable EV distribution in an attempt to either help fight
congestion or to balance the demand on the grid.

On the upper level, the central authority is incentivizing
the companies to follow the set points through pricing while
the company operators try to minimize their operational costs,
which among others, include the costs of charging. Due to
the limited capacity of the shared charging infrastructure, it is
in every company’s best interest to decrease the queuing time
at the stations. Since the charging stations in the demand-
attractive areas are more likely to become overcrowded, there
is an inherent competition between the companies, establishing
a fertile ground for game theoretic analysis.

On the lower level, the company’s objective is to convince
rational drivers to choose a particular charging station in order
to match the vehicle distribution dictated by the upper-level
algorithm. To do so, the company operator adjusts the ride
fares so that the drivers’ expected profit is maximized by
choosing the stations in accordance with the output of the
upper-level module. A complete schematic representation of
the problem is presented in Figure 1.

Various aspects of this problem have been separately studied
in the literature. Extensive research in the domain of game
theoretic control systems elucidates the effectiveness of such
models in solving the problems within the realm of smart
mobility. Pricing mechanisms are usually studied in the context
of maximizing revenue. Papers [6]–[8] model the charging
stations as selfish revenue-maximizing agents, whereas [9]
describes a game for modeling the regulatory aspects such
as taxes and transportation prices as well as the operational
matters for mobility service providers. From the perspective
of congestion control in urban networks, different tolling
mechanisms, congestion taxes, and congestion-aware routing
schemes have been proposed in [10]–[13] based on the conges-
tion game vehicle routing. Even though the upper-level goal of
our method could be identically chosen, our underlying pricing
model lies at the intersection of aggregative games and the
inherent leader-follower structure present in the Stackelberg
and reverse Stackelberg games [14]. The aggregative nature of
the competition between the companies is similar to the one
used in [13], [15]–[17] for charging control of a population of
EVs. The Stackelberg game setups in [7], [8] propose using
fixed prices for charging the users, whereas in our system
we utilize a feedback pricing method based on the decision of
the companies. On par with the Stackelberg-based approaches,
there is literature that proposes mechanisms based on reverse
Stackelberg games for solving the hierarchical control, bi-level
toll design, or coordinated electricity purchase from the power
grid for multiple EVs [18]–[20]. From the methodological
point of view, these works are similar to ours as they design
a decision function for the leader rather than a decision
value as in the conventional Stackelberg games. This kind
of approach allows us to directly influence the placement of

the Nash equilibrium through pricing incentives. However, it
also implies that the companies do not know the prices before
deciding how to direct their vehicles but rather how their joint
decision will influence the charging cost. Finally, the ride-
hailing company’s total operational cost in this paper combines
similar elements from the models found in [6], [7], [21], [22].

This paper is a continuation of the work presented in [1]
where the addressed upper-level problem was first introduced.
We adopt the game theoretic coordination of the ride-hailing
fleets under the pricing game as the upper-level controller
and use the computed Nash equilibrium as the set point for
the individual EVs-to-station matching controllers. We base
these controllers on the concept of surge pricing, which in
general refers to an opportunistic adjustment of the price of a
service directly depending on the demand for it. In the field
of transportation, it is mainly used by ride-hailing companies
for maximizing revenue with respect to the temporal and
spatial distribution of the demand [23]–[25]. In this paper,
the operator adjusts the ride fares for each vehicle such that
when drivers choose a charging station in order to maximize
their profit, the resulting vehicle distribution matches the one
dictated by the upper-level controller. Moreover, we assume
that the effects of introducing the additional fares are decou-
pled from the nominal operational cost of the companies in
the sense that the higher fares would not lead to a significant
change in the average ride-acceptance rate for the company.

To the best of our knowledge, the literature does not
provide a comprehensive end-to-end solution for coordinated
charging of EV fleets operated by ride-hailing companies so
as to achieve the objective of a central authority. The main
contributions of this paper can be summarized as follows:

• We analyze the ride-hailing market from the joint per-
spective of three hierarchical levels of agents and design a
decentralized bi-level game theoretic method that yields a
no regret solution for the central authority, the companies,
and the drivers under the reachability constraints imposed
by the battery state of the vehicles.

• In order to achieve its optimum, the central authority
needs to receive some information about the cumulative
state of the EV fleets. We provide a detailed robustness
analysis of the proposed solution when only an estimate
of the parameters is available to the central authority.

• The complete bi-level control system is tested on a new
case study developed based on real taxi data from the
city of Shenzhen.

The paper is outlined as follows: the rest of this section
is devoted to introducing some basic notation. In Section II
we introduce the model and state the main formulation. In the
following section, Section III, we revise the pricing mechanism
introduced in [1] along with the decentralized algorithm used
to compute the Nash equilibrium and perform a detailed
robustness analysis. We present the matching module based
on surge pricing in Section IV and demonstrate in Section V
the performance of the end-to-end bi-level model on a case
study based on real taxi data. Finally, Section VI concludes
the paper with some ideas for future research.
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Fig. 1. Schematic sketch of the problem setting with companies C = {C1, C2} and charging stations M = {M1,M2,M3}. The central body,
e.g., the government or the power company, wants to balance the vehicle load on different charging stations by properly setting the pricing policies
pi(x

1, x2) : X → R3 for i ∈ {1, 2}. Under the provided pricing policies, each ride-hailing company wants to minimize its own operational cost
by steering its set of vehicles Vi to different charging stations. The blocks Ki

F calculate the optimal splits xi∗ ∈ Xi ⊆ PM of the ride-hailing
fleets in a decentralized manner with little information exchange and based on the parameters Ai, Bi, ci, Di, fi. The blocks Ki

M calculate the
surge price vectors ρv

i ∈ R|M|
+ for every vehicle v ∈ Vi.

A. Notation

Let R denote the set of real numbers, R+ the set of non-
negative reals and Z+ the set of non-negative integers. Let 0m

and 1m denote the all zero and all one vectors of length m
respectively, and Im the identity matrix of size m × m. For
a finite set A, we let RA

(+) and ZA
(+) denote the sets of (non-

negative) real and integer vectors indexed by the elements of
A, |A| the cardinality of A and we let PA be the probability
space over the set, i.e., PA := {x ∈ RA

+ |
∑

i∈A xi = 1}.
Furthermore, for finite sets A, B and a set of |B| vectors
xi ∈ RA

(+), we define x :=
[
xi
]
i∈B ∈ R|A||B| to be their

concatenation and x−i :=
[
xj
]
j∈B\i to be the concatenation

of all vectors except the one indexed with i. For A ∈ Rn×n,
A ≻ 0(⪰ 0) on set X is equivalent to xTAx > 0(≥ 0) for all
x ∈ X . For a diagonal matrix A ∈ Rn×n, we let A∗ denote
its pseudo-inverse, i.e., we let A∗

ii := 1/Aii if Aii ̸= 0, else
A∗

ii = 0, for all i ≤ n.

II. SYSTEM MODEL

The problem setup assumes that a set of ride-hailing com-
panies operates in the same region and has access to common
charging stations for their EVs. We let C be the set of all
ride-hailing companies, and Ni > 0 the number of vehicles
belonging to each company i ∈ C that need to be charged. The
vector N ∈ RC

+ stores the number of EVs of every company
and mc = |C| is the number of ride-hailing companies. We
denote the set of all charging stations as M and their total
number as ms = |M|. We define Mj > 0 as the number of
available spots for simultaneous charging at the station j ∈M,
i.e., the charging station’s capacity and denote the vector of
all charging stations capacities as M ∈ RM

+ .
For every company i ∈ C, we let Vi be the set of its vehicles

with |Vi| = Ni. To describe how the company operator wants
to distribute the vehicles among charging stations, i.e., the

company’s decision variable, we use a continuous allocation
vector xi ∈ PM. Here, xij is the fraction of vehicles from
company i ∈ C that will be sent to charging station j ∈ M.
In addition, we define for each company a discrete allocation
vector ni ∈ ZM

+ , with nij ∈ Z+ describing the actual integer
number of vehicles that the operator of the fleet would send to
station j based on the value of xij . Since some drivers cannot
reach some of the charging stations due to their battery level
and hence not all choices of xi are feasible, we define for each
company the feasibility sets

F i
j := {v ∈ Vi | v can reach station j} . (1)

For each i ∈ C, we need to define how the company operator
can choose the discrete allocation vector ni in order to
achieve a many-to-one matching between the vehicles Vi and
the charging stations M. Hence, a proper set of admissible
continuous allocation vectors xi also has to be defined. In
general, the operator should always be able to assign either
nij =

⌊
Nix

i
j

⌋
or nij =

⌈
Nix

i
j

⌉
vehicles to station j ∈M in an

attempt to satisfy the global constraint 1T
ms
ni = Ni, without

the concern that the existence of the perfect matching between
the vehicles and the charging stations will be violated. We
summarize this in Definition 1 where we formally introduce
an admissible discrete allocation vector ni.

Definition 1: For each i ∈ C, a discrete allocation vector
ni ∈ ZM

+ is admissible to the operator if

• for every j ∈M, nij =
⌊
Nix

i
j

⌋
or nij =

⌈
Nix

i
j

⌉
,

• 1T
ms
ni = Ni,

• it is possible to assign each vehicle v ∈ Vi to exactly one
charging station in M in order to respect the discrete
vehicle distribution ni.

In Section III, we will analytically construct for every i ∈ C a
set Xi ⊆ PM of admissible continuous allocation vectors xi

that will respect the feasibility sets F i
j and guarantee existence
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of at least one admissible ni. With the existence of those sets,
we proceed to define X :=

∏
i∈C Xi and X−i :=

∏
j∈C\i Xj .

We stack the decision vectors of all companies into x :=[
xi
]
i∈C ∈ X and define x−i :=

[
xj
]
j∈C\i ∈ X−i as the

stacked decision vectors of all companies except the com-
pany i. The distribution of all vehicles among charging stations
is described by the vector σ (x) :=

∑
i∈C Nix

i ∈ RM
+ , i.e.,

σ (x)j denotes the total number of vehicles that are directed to
station j ∈M. In addition, we let σ

(
x−i
)
:=
∑

j∈C\iNjx
j ∈

RM
+ describe the distribution of all vehicles except for those

belonging to company i. Finally, for every vehicle v ∈ Vi,
we let xv ∈ {0, 1}M denote a one-hot encoding of driver’s
charging station choice and Ωv ⊂ {0, 1}M be the set of
all one-hot encodings that correspond to vehicle’s feasible
charging stations. Let us define sets Ωi :=

∏
v∈Vi

Ωv for every
i ∈ C. Then the vector µi := [xv]v∈Vi

∈ Ωi of stacked drivers’
decisions describes the perfect matching between the EVs and
the charging stations and the vector σ

(
µi
)

:=
∑

v∈Vi
xv

describes the integer number of vehicles directed to each
charging station.

A. Central authority’s objective
The central authority is ranked the highest in the agent

hierarchy and, as explained in the introductory section, is
interested in balancing the vehicles so as to optimize a system-
level objective, e.g., to try to help fight the congestion in the
city or to balance the demand on the power grid. In order to
ease the notation, throughout the rest of the paper we will refer
to the central authority as the government. The model that we
consider allows the government to balance the vehicles so as
to minimize any system-level objective of the form

JG(σ (x)) =
1

2
σ (x)

T
AGσ (x) + bTGσ (x) , (2)

for some diagonal weight matrix AG ≻ 0 and bG ∈ RM. We
analyze a special case of (2) that corresponds to balancing the
ride-hailing vehicles to help decrease the congestion induced
by the idle vehicles cruising around the charging stations
in demand-attractive regions. We assume that based on the
historical data about the demand, the government can a priori
decide on a desired total vehicle distribution Z ∈ PM and is
therefore interested in balancing the vehicles so that the total
number of vehicles directed to each of the charging stations
is given by N̂ ∈ RM

+ , i.e., to minimize

JG(σ (x)) =
1

2

∥∥∥σ(x)− N̂
∥∥∥
2

2,AG

, (3)

where the set point is given by N̂ = 1T
ms
NZ . By choosing

bG = −AGN̂ ∈ RM, we make the problem of minimizing (3)
a special case of (2).

The government interacts with the ride-hailing companies
through pricing policies. In order to steer the companies to
the system optimum, the government will assign an individual
pricing policy to each company for each charging station.
The policies announced to company i ∈ C are a function of
all companies’ choices and can be jointly represented by a
mapping pi

(
xi, x−i

)
: Xi ×X−i → RM.

B. Company’s objective
Every ride-hailing company is interested in minimizing its

operational cost under the feasibility constraints imposed by
the battery status of its vehicles. In Figure 1, the individual
blocks Ki

F represent the cost minimizing controllers in charge
of optimally splitting the ride-hailing fleets. Inspired by ob-
jective functions analyzed in [6], [7], [21], [22], we model the
cost as the sum of three terms: the expected queuing cost, the
charging cost, and the negative expected revenue.

The expected queuing cost of company i ∈ C depends on its
personal choice but also on the vehicle distribution of all other
companies, i.e., on xi and σ

(
x−i
)
. We adopt the expected

queuing cost model

J i
1

(
xi, σ(x−i)

)
= Ni

(
xi
)T
Q
(
Nix

i + σ(x−i)−M
)

= Ni

(
xi
)T
Q (σ(x)−M) ,

(4)

where Q ∈ RM×M is a positive definite diagonal scaling ma-
trix whose diagonal entries are used to depict how expensive
it is for a vehicle to queue in the regions around charging
stations. The charging stations located in the city’s more busy
areas should experience higher queuing costs and hence have
a higher corresponding diagonal entry in the Q matrix. In
addition, the more the capacity of the station is exceeded, the
higher the cost per vehicle should be, which is directly enabled
through the inner product with the vector σ (x)−M . Since we
take into account the total queuing cost for the whole fleet, it
is necessary that we calculate the inner product between the
vector describing the fleet’s distribution, i.e., Nix

i, and the
incurred cost per vehicle for choosing a particular station, i.e.,
Q (σ(x)−M). Note that for a particular charging station, the
queuing cost per vehicle could in rare cases be negative when
the total amount of vehicles there is less than the capacity of
the station. We opted to keep this functional form in order to
preserve the differentiability of the cost function. Given that
the negative value of the queuing cost can be interpreted as
an incentive to choose the less crowded stations, this can be
directly translated to a financial gain given that the vehicle
would spend less time being unoccupied.

For simplicity, we can now recast the queuing cost (4) into
a general form given by

J i
1

(
xi, σ(x−i)

)
=

1

2
(xi)TAix

i + (xi)TBiσ
(
x−i
)
+ cTi x

i ,

(5)
for adequately chosen diagonal matrices Ai ∈ RM×M, Bi ∈
RM×M and vector ci ∈ RM. It is clear that in order to cast (4)
in the form of (5), we just need to set

Ai := 2N2
i Q, Bi := NiQ, ci := −NiQM .

The charging cost of company i ∈ C depends on the
charging price policy assigned to it and its personal decision,
i.e., pi

(
xi, x−i

)
and xi. It can be written as

J i
2

(
xi, pi

(
xi, x−i

))
= (xi)TDipi

(
xi, x−i

)
, (6)

where Di ∈ RM×M is diagonal, Di ⪰ 0 and the entries
(Di)kk can be interpreted as the part of the total charging
demand of the company i to be served at the station k. The
value (Di)kk is calculated based on the average charging
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demand per vehicle, averaged over the set of vehicles that
can reach station k with their current battery level and under
the chosen battery discharge model.

We let the negative expected revenue encompass the infor-
mation about the difference between the cost of vehicles being
idle while travelling to the charging stations and the expected
profit in the regions around the charging stations. We consider
this an important aspect of the analysis as by integrating the
cost of being idle and the expected profit, we can model the
scenarios in which a company might decide to pay more for
charging in the regions of higher demand and hence, higher
expected profit. We assume the negative expected revenue is
a function of only the company’s personal choice xi that can
be modelled as a linear cost J i

3

(
xi
)
= fTi x

i. In Section V,
we provide a detailed description of how all the parameters
can be calculated for a real-world scenario.

It will be shown in the next section that the system optimal
pricing policies pi

(
xi, x−i

)
require that the company shares

information about the parameters of the cost function. We
assume the government provides a large enough fixed subsidy
to every company that is willing to help attain the system
optimum. Consequently, we assume it is in every company’s
best interest to disclose true information about the private pa-
rameters. Nevertheless, as the parameter Di provides sensitive
information about the charging cost, in Section III we provide
a detailed robustness analysis when only an estimate of this
parameter is available. Because we assume a fixed subsidy, it
does not take part in the optimization procedure so the total
cost of the company is given by

J i
(
xi, x−i, pi

(
xi, x−i

))
=

J i
1

(
xi, σ(x−i)

)
+ J i

2

(
xi, pi

(
xi, x−i

))
+ J i

3

(
xi
)
. (7)

C. Driver’s objective
For any i ∈ C, the drivers v ∈ Vi, are ranked the lowest in

the agent hierarchy. After the upper-level controllers Ki
F of all

i ∈ C determine the optimal car fleet splits x∗, each operator
will pick ni and calculate the vector of charging prices p∗i :=
p∗i
(
xi∗, x−i∗). In order to achieve the optimal cost imposed by

the output of the upper-level controller Ki
F , the operator has to

motivate the drivers in the fleet to pick charging stations such
that ni is attained. To do so, we assume the operator utilizes
an additional degree of freedom in its operation management,
i.e., the surge pricing.

Within a particular company i ∈ C, we let the operator
pick for every driver v ∈ Vi a vector ρv ∈ Ωv

ρ ⊆ RM
+ such

that (ρv)j ∈ R+ represents the value of a supplementary fare
added to the standard one if the driver chooses to operate
in the region around the charging station j. The achieved
vehicle distribution after matching EVs with charging stations
is determined by µi so the lower-level controller Ki

M , as
shown in Figure 1, has to determine the optimal values of
ρv for all v ∈ Vi so as to minimize the cost function

J i
M

(
σ
(
µi
)
| ni
)
=

1

2

∥∥σ
(
µi
)
− ni

∥∥2
2
. (8)

where J i
M

(
· | ni

)
means that the company operator’s objective

function is parameterized by ni.

On the other hand, we assume each driver chooses a
charging station so as to minimize the personal cost that
comprises three terms: the charging cost, the negative expected
revenue should the driver choose to operate for a predefined
time interval τv ∈ R+ in the same region where it charged and
the bonus profit due to surge pricing. For any driver v ∈ Vi,
the general form of its cost is given by

Jv (xv, ρv) = (xv)
T
Dvp

∗
i + (xv)

T
gv − (xv)

T
Hvρ

v , (9)

where Dv ∈ RM×M is diagonal, Dv ⪰ 0 and (Dv)kk
describes the vehicle’s expected charging demand if it chooses
the charging station k, gv ∈ RM is the original negative
expected revenue if operating for a time interval of τv and
Hv ∈ RM×M

+ describes the expected bonus profit the driver
will receive due to surge pricing. A detailed description of all
parameters in a realistic scenario is given in Section V.

Having defined the objectives and the decision variables of
all agents in the system, we proceed to formally define the
problem in the next section.

D. Problem formulation

Figure 1 shows a detailed schematic representation of dif-
ferent interactions between the agents. Each company i ∈ C
would like to allocate its vehicles according to

xi∗ ∈ argmin
xi∈Xi

J i
(
xi, x−i, pi

(
xi, x−i

))
. (10)

with the individual objective functions defined as in (7). If the
pricing policies pi

(
xi, x−i

)
are fixed for every i ∈ C, then

solving (10) boils down to allocating the vehicles according
to a game defined by

G0 :=

{
min
xi∈Xi

J i
(
xi, x−i

)
,∀i ∈ C

}
, (11)

whose Nash equilibrium x∗ is given in Definition 2.
Definition 2 (ε-Nash equilibrium): A joint strategy x∗ ∈ X

is an ε-Nash equilibrium of the game G0, if there exists an
ε > 0 such that for all i ∈ C and for all xi ∈ Xi it holds that

J i
(
xi∗, x−i∗) ≤ J i

(
xi, x−i∗)+ ε . (12)

If (12) holds with ε = 0 then x∗ is a Nash equilibrium.

We say that the companies admit a system optimum x∗

under the pricing policies pi
(
xi, x−i

)
if x∗ minimizes (2) and

is a Nash equilibrium of the game G0 at the same time. Let
the concatenation of all the pricing policies be denoted as

π (x) :=
[
pi
(
xi, x−i

)]
i∈C ,

and ΩG be the space of concatenated pricing policies. The
problem of finding the system optimal pricing policies that
minimize (2) falls under the category of reverse Stackelberg
games (RSG) [26] with one leader, i.e., the government, and
multiple followers, i.e., the companies.

Definition 3 (Reverse Stackelberg game): Let xi∗ ∈ Xi and
π∗ (x) : X → RNms . Then a tuple (π∗ (x) , x∗) is a solution
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of a reverse Stackelberg game with one leader and multiple
followers if it solves a bi-level optimization problem G1:

G1 :=





π∗ (·) ∈ argmin
π(·)∈ΩG

JG (σ (x∗))

s.t. xi∗ ∈ argmin
xi∈Xi

J i
(
xi, x−i, p∗i (·)

)
,∀i ∈ C



 .

The Nash equilibrium of game G0 under the system optimal
pricing policies will provide the set points for the lower-level
controllers Ki

M . Let Ωi
ρ :=

∏
v∈Vi

Ωv
ρ and ρi := [ρv]v∈Vi

∈
Ωi

ρ. Then for every company i ∈ C, the problem of finding ρv

for every v ∈ Vi corresponds to centralized computation of
the leader’s optimal strategy in a Stackelberg game with one
leader, i.e., the company operator, and multiple followers, i.e.,
the drivers, formally introduced in Definition 4.

Definition 4 (Stackelberg game): Let µi∗ ∈ Ωi and ρi∗ ∈
Ωi

ρ. Then a tuple
(
ρi∗, µi∗) is a solution of a Stackelberg game

with one leader and multiple followers if it solves a bi-level
optimization problem G2:

G2 :=





ρi∗ ∈ argmin
ρi∈Ωi

ρ

J i
M

(
σ
(
µi∗) | ni

)

s.t. xv∗ ∈ argmin
xv∈Ωv

Jv (xv, ρv∗) ,∀v ∈ Vi




.

In the next section, we will show that it is possible to
construct a pricing mechanism that solves G1 and yields a
unique system optimum if the constraint sets Xi are compact
and convex. Furthermore, we will show in Section IV that for
the Nash equilibrium of G0 induced by the system optimal
pricing policies, it is always possible to solve game G2 such
that

(
ρi∗, µi∗) is a global minimizer of J i

M

(
σ
(
µi∗) | ni

)

defined in (8). In other words, we will show that it is always
possible to find surge prices ρi∗ for all i ∈ C such that the
resulting EV distribution described by µi∗ perfectly matches
the desired one, i.e., σ

(
µi∗) = ni.

III. UPPER-LEVEL CONTROL – PRICING MECHANISM

At the beginning of this section, we propose the admissible
sets Xi for each i ∈ C. They will guarantee that for any
xi ∈ Xi, the operator will have at least one admissible discrete
allocation ni ∈ ZM

+ corresponding to Definition 1. Moreover,
we will later show that these admissible sets allow us to
construct pricing policies yielding a unique system optimum.

A. Admissible continuous allocation vectors
We start by analyzing the conditions guaranteeing that each

company operator i ∈ C will be able to perfectly match each
vehicle v ∈ Vi with a charging station in M. Assuming
that each vehicle can reach at least one charging station with
the current battery level, the following theorem provides a
necessary and sufficient condition on the discrete allocation
vector ni that guarantees the existence of a perfect matching.

Theorem 1: For each company i ∈ C, let feasibility sets F i
j

be defined as in (1) and ni ∈ ZM
+ denote the discrete allocation

vector. There exists a many-to-one matching between the
vehicles v ∈ Vi and the charging stations M if and only if
for every subset S ⊆M it holds that

∑

j∈S
nij ≤

∣∣∣∣∣∣
⋃

j∈S
F i

j

∣∣∣∣∣∣
. (13)

Proof We look at a bipartite graph Gi = (Vi ∪ Si, Ei)
where Si is defined as Si =

⋃
j∈M S

j
i such that for all

j1, j2 ∈ M, j1 ̸= j2 it holds that Sj1i ∩ Sj2i = ∅. Each Sji is
comprised of nij copies of the vertex that corresponds to the
charging station j. The set of edges Ei is formed such that
v ∈ Vi is connected to s ∈ Sji if v ∈ F i

j . The two sets have
equal number of vertices |Vi| = Ni =

∑
j∈M nij = |Si| which

means that desired matching is possible if and only if there
exists an Si-perfect matching on graph Gi. Since condition
(13) corresponds exactly to the condition of Hall’s marriage
theorem [27], the equivalence is proved.

The inequality (13) is intuitive as it states that for any subset of
the charging stations, the company operator must not allocate
more vehicles than what is available. With this in mind, in the
following proposition we show how to analytically construct
sets Xi ⊆ PM.

Proposition 1: For each company i ∈ C, define the set Xi ⊆
PM such that xi ∈ Xi if for all proper subsets S of M, it
holds that

Ni

∑

j∈S
xij ≤ max



0,

∣∣∣∣∣∣
⋃

j∈S
F i

j

∣∣∣∣∣∣
− |S|



 . (14)

If the state of the car fleet does not correspond to a degenerate
case for which Xi = ∅, then every xi ∈ Xi yields an
admissible ni corresponding to Definition 1.

Proof We now show that if xi satisfies (14) then any ni

in accordance with Definition 1 satisfies the assumption given
by (13). We distinguish 2 cases: S ⊂ M and S = M. For
S ⊂M we can write

∑

j∈S
nij =

∑

j∈P1

⌊
Nix

i
j

⌋
+
∑

j∈P2

⌈
Nix

i
j

⌉

where P1∪P2 = S ∧P1∩P2 = ∅. We have
∑

j∈P1

⌊
Nix

i
j

⌋
≤∑

j∈P1
Nix

i
j and

∑
j∈P2

⌈
Nix

i
j

⌉
=
∑

j∈P2
Nix

i
j +

{
Nix

i
j

}

where ∀j ∈ P2 it holds that
{
Nix

i
j

}
≤ 1. We have

∑

j∈S
nij ≤

∑

j∈P1∪P2

Nix
i
j +

∑

j∈P2

{
Nix

i
j

}
≤
∑

j∈S
Nix

i
j + |P2|

which combined with (14) finally gives

∑

j∈S
nij ≤

∣∣∣∣∣∣
⋃

j∈S
F i

j

∣∣∣∣∣∣
− |S|+ |P2| ≤

∣∣∣∣∣∣
⋃

j∈S
F i

j

∣∣∣∣∣∣

because |P2| ≤ |S|. For S =M we have that the condition
given by (13) is fulfilled with the equality since

∑
j∈S n

i
j =

Ni =
∣∣∣
⋃

j∈S F i
j

∣∣∣. The case when for some S it holds that∣∣∣
⋃

j∈S F i
j

∣∣∣− |S| ≤ 0 leads to xij = 0 for all j ∈ S , which in
return leads to nij = 0, so no matching is required.

In general, the degenerate states of the ride-hailing fleet man-
ifest that the drivers have very limited options when choosing
which charging station to take due to their current battery level.
These cases are not of interest to us so from this point on we
assume Xi ̸= ∅ for every i ∈ C. This means that for each
company, the set of admissible continuous allocations defined
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as in Proposition 1, represents the intersection of a probability
space and 2m − 2 linear inequalities given by (14) making it
compact and convex. As a result, for the constraint sets Xi as in
Proposition 1, the pricing policies in the following subsection
will give rise to a unique system optimum.

B. System optimal pricing policies
This section introduces the pricing mechanism that will

solve the reverse Stackleberg game G1 between the govern-
ment and the ride-hailing companies given in Definition 3.
We will show that for the admissible sets Xi defined as in
Proposition 1 and under the proposed pricing mechanism, the
game G0 introduced in Definition 2, will have a unique Nash
equilibrium that simultaneously minimizes the government
cost given by (2). Hence, solving for the Nash equilibrium
of the game between the companies will directly correspond
to minimizing the government’s objective explaining why we
refer to the proposed pricing policies as the system optimal.

Definition 5 (System Optimal Pricing Policies): For each
company i ∈ C, let D∗

i be the pseudo-inverse of Di and

pi
(
xi, x−i

)
= D∗

i

[
1

2
Aix

i + Biσ
(
x−i
)
+∆i

]
, (15)

where Ai = N2
i AG − Ai , Bi = NiAG − Bi and ∆i =

NibG − ci − fi.
For every company i ∈ C, it could be the case that some
stations are unreachable for every vehicle v ∈ Vi. In such
a scenario, we let the corresponding diagonal entry in the
matrix Di be equal to zero, making the matrix non-invertible.
Conversely, since the company i will not use these charging
stations, letting the prices for them be equal to zero through
the pseudo-inverse defined in Section I-A will not affect the
solution of the problem. In reality, this pricing would corre-
spond to a case where the central authority is the only energy
stakeholder in the city or each company has a designated
station in each area and the central authority is able to adjust
the charging prices by interacting with the energy stakeholders
that the charging stations buy their energy from.

In the following theorem, we show that the system optimal
pricing policies adhere to a unique Nash equilibrium of the
game played between the companies.

Theorem 2: For all companies i ∈ C, let the sets Xi be
designed as in Proposition 1. Then, with the system optimal
pricing policies in Definition 5, the game G0 in (11) has a
unique Nash equilibrium.

Proof We start by inserting policy (15) into (7) and observing
that for xi ∈ Xi it holds that DiD

∗
i x

i = xi. This transforms
the cost of each company i ∈ C into:

J i(xi, x−i) =
1

2

(
xi
)T
N2

i AGx
i+

+
(
xi
)T
NiAGσ

(
x−i
)
+

+
(
xi
)T
NibG .

(16)

It is evident that the cost function (16) is continuous in
x ∈ X , but because AGNi ≻ 0 by design, it is also
quadratic and convex in xi ∈ Xi for any fixed x−i ∈ X−i.

For non-degenerate states of the car fleets, the action spaces
Xi are compact, convex, and satisfy Slater’s constraint by
construction, hence, the game admits a Nash equilibrium [28,
T.1]. Let us define

g(x, r) :=
[
−ri∇xi

J i(x)
]
i∈C , (17)

where x ∈ X and r = [ri]i∈C ∈ RC
>0. A sufficient condition

for the uniqueness of the Nash equilibrium [28, T.2] is that
the matrix Γ ∈ Rmc×mc , Γ := G(x, r)+GT (x, r) be negative
definite for all x ∈ X and some r ∈ RC

>0, with G(x, r) being
the Jacobian of g(x, r) with respect to x. For r = 1mc

and
any x ∈ X we have

xTΓx = −2
(∑

i∈C
Nix

i

)T

AG

(∑

i∈C
Nix

i

)
.

Since Xi ⊆ PM for all i ∈ C, we have that
∑

i∈C Nix
i ̸=

0|M|. Because AG ≻ 0, we have xTΓx < 0 for all x ∈ X
which proves that Γ is negative definite on X and that the
Nash equilibrium is unique.

Remark 1: For r = −1mc
, equation (17) represents the

pseudo-gradient of the game G0, i.e., F (x) :=
[
∇xi

J i(x)
]
i∈C .

If we define AT := [NiIms
]i∈C ∈ Rmsmc×ms , then the

pseudo-gradient can be written as

F (x) = ATAGAx+AT bG , (18)

which is affine in x, i.e., F (x) = F1x+F2 for F1 := ATAGA
and F2 := AT bG. Based on the properties of F1, we will later
present a decentralized computation scheme that is sure to
converge to a Nash equilibrium of the game.

In the following theorem, we proceed to show that the unique
Nash equilibrium of the game G0 will minimize the govern-
ment objective given by (2).

Theorem 3: For all companies i ∈ C, let the sets Xi be
designed as in Proposition 1. Then, with the system optimal
pricing policies in Definition 5, the Nash equilibrium x∗ of
G0 defines a tuple (π (x) , x∗) that solves the game G1, i.e.,

x∗ ∈ argmin
x∈X

JG (σ(x)) .

Proof For the matrix A defined in Remark 1, the government
optimization problem is equivalent to

min
x∈X

JG(x) :=
1

2
xTATAGAx+ bTGAx . (19)

The Hessian of the government loss is given by

∇2
xJG(x) = ATAGA .

Since for all xi ∈ Xi ⊆ PM we have
∑

i∈C Nix
i ̸= 0ms

and

xTATAGAx =

(∑

i∈C
Nix

i

)T

AG

(∑

i∈C
Nix

i

)
> 0 ,

the government loss function is convex since ∇2
xJG(x) ⪰ 0.

According to [29, 4.21], the Nash equilibrium x∗ of the game
G0 will be the minimizer of (19) on X if and only if

⟨∇xJG(x) |x=x∗ , y − x∗⟩ ≥ 0, ∀y ∈ X . (20)
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Under the pricing policies defined in (15), JG(x) is the exact
potential [30] for game G0, satisfying for any fixed x−i ∈ X−i

∇xiJ i
(
xi, x−i

)
= ∇xiJG

(
xi, x−i

)
, ∀xi ∈ Xi . (21)

Inserting (21) into (20) transforms the condition into
∑

i∈C

〈
∇xiJ i(x) |x=x∗ , yi − xi∗

〉
≥ 0, ∀yi ∈ Xi . (22)

Because x∗ is the Nash equilibrium, we have that for all i ∈ C
it holds that xi∗ ∈ argminxi∈Xi

J i
(
xi, x−i∗). Consequently,

we have that
〈
∇xiJ i(x) |x=x∗ , yi − xi∗

〉
≥ 0 holds for all

yi ∈ Xi and all i ∈ C according to [29], which ensures that
the optimality condition (22) is satisfied.

C. Decentralized computation of the Nash equilibrium

The decisions spaces Xi reflect the current state of the car
fleets, i.e., their battery status and world position. In reality,
these sets are in general private, hence not known to the
government, which calls for a decentralized algorithm for com-
putation of the Nash equilibrium. Algorithms that require little
information exchange between the agents have been analyzed
in [31]. Based on the properties of the pseudo-gradient of the
game G0, different, distributed, iterative schemes can converge
to a Nash equilibrium of an aggregative game. Because the
game map in (18) is not strictly monotonic since F1 =
ATAGA ⪰ 0, the commonly used Picard-Banach iteration
procedure used for finding a fixed point of a mapping will
not guarantee convergence to a Nash equilibrium. Instead,
we use an algorithm based on the Krasnoselskij iteration that
guarantees convergence for non-expansive mappings [32]. The
procedure is described in the following proposition.

Proposition 2: Under the system optimal pricing policies
and for sets Xi as in Proposition 1, for every γ such that

0 < γ <
2

λmax (F1)
, (23)

a distributed iterative scheme given by

xik+1 =
1

2

(
xik +ΠXi

[
xik − γ∇xiJ i

(
xik, x

−i
k

)])
,

where ΠXi
denotes the projection operator onto Xi, converges

to the Nash equilibrium of the game G0.

Proof According to the theory of Variational Inequali-
ties [33], a point x∗ ∈ X is a Nash equilibrium of game
G0 with the game map F (x) defined by (18) if and only if

F (x∗)T (y − x∗) ≥ 0 , (24)

holds for all y ∈ X . Condition (24) is equivalent to

x∗ = ΠX [x∗ − γF (x∗)] . (25)

Indeed, (25) is equivalent to

x∗ ∈ argmin
z∈X

∥z − (x∗ − γF (x∗))∥22 . (26)

According to [33], since X is convex, (26) is equivalent to

2 (z − (x∗ − γF (x∗)))T (y − z) ≥ 0 , ∀y ∈ X .

It is clear that setting z = x∗ in equation (26) shows that
x∗ is a Nash equilibrium of game G0 if and only if it is a
fixed point of the mapping H(x) = ΠX [x− γF (x)]. For the
Krasnoselskij iteration xk+1 = 0.5 (xk +H (xk)) to converge,
H(x) has to be non-expansive and x0 ∈ X . The projection
operator is non-expansive so for H(x) to be non-expansive,
it suffices to choose γ such that H̄(x) = Ix − γF (x) =
(I− γF1)x − γF2 is non-expansive. Since H̄(x) is affine,
it suffices to choose γ such that ∥I− γF1∥2 ≤ 1. Because F1

is symmetric, this is equivalent to

max
i
|λi (I− γF1)| ≤ 1 . (27)

Since F1 ⪰ 0, then for γ given in (23) the condition (27)
is satisfied because −1 ≤ 1 − γλi (F1) ≤ 1 holds for all
eigenvalues of F1. Therefore, H̄(x) is non-expansive and thus
H(x) is non-expansive too.

D. Robustness analysis

As introduced in the previous section, the system optimal
pricing mechanism depends on the willingness of the company
operators to share information about the personal cost func-
tions. The parameters Ai, Bi, and ci are inherently known
to the government as they are either a government’s personal
choice or they characterize the charging infrastructure and the
region in which the ride-hailing companies operate. On the
other hand, the parameters Di and fi describe the average
state of the company’s fleet, i.e., the average battery level and
the average position of the vehicles, and as such constitute
privacy-sensitive pieces of information that, in general, need
not be at the government’s disposal. In Section V, we will
explain in detail how fi can be calculated if the position of
the ride-hailing vehicles is known. In this section, however,
we will focus on the parameter Di, as it represents an even
more sensitive piece of information. Apart from knowing the
vehicles’ position, calculating the charging demand through
matrix Di necessitates providing information about the current
battery level of the vehicles in the fleet. In this section, we aim
to investigate the consequences of not using the true value
of the parameter Di when announcing the pricing policies
to the companies. In reality, this scenario could arise if the
government has only an estimate of the parameter, or if some
companies try to deliberately deceive the central authority.

For every i ∈ C, let D∆
i ∈ RM×M be a diagonal matrix

that describes the discrepancy between the true value of the
pseudo-inverse of Di and the estimated value known to the
government. In the following definition, we introduce the
approximate system optimal pricing policies.

Definition 6 (Approximate Optimal Pricing Policies): For
each company i ∈ C, let D∆

i ∈ RM×M and

p̃i
(
xi, x−i

)
=
(
D∗

i +D∆
i

) [1
2

Aix
i + Biσ

(
x−i
)
+∆i

]
,

where Ai = N2
i AG − Ai , Bi = NiAG − Bi and ∆i =

NibG − ci − fi.
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The cost function of each company i ∈ C under the approxi-
mate optimal pricing policies is now given by:

J̃ i
(
xi, x−i

)
= J i

(
xi, x−i

)
+
(
xi
)T
D2

iD
∆
i pi

(
xi, x−i

)
.

(28)
The derivative of the company’s cost function under the
approximate optimal policies with respect to the personal
decision variable is given by

∇xi J̃ i (·) = ∇xiJi (·) +DiD
∆
i

[
Aix

i + Biσ
(
x−i
)
+∆i

]
.

Hence, the pseudo-gradient of the game G0 under the approx-
imate optimal prices can be written as

F̃ (x) = F (x) + Φ (L1x+ L2) = F (x) + ∆F (x) , (29)

where L1, L2 and Φ are given by:

L1 :=




D1A1 B1N2 · · · B1Nmc

B2N1 D2A2 · · · B2Nmc

...
...

. . .
...

Bmc
N1 · · · Bmc

Nmc−1 Dmc
Amc


 ,

Φ := blockdiag
(
{D∆

i }i∈C
)

and L2 := [Di∆i]i∈C . In The-
orem 2, we exploited the convexity of the company’s loss
function to prove the existence of the Nash equilibrium. With
approximate optimal pricing policies as in Definition 6, the
existence is not guaranteed as D∆

i alters the quadratic term of
the cost given in (28). Hence, for the robustness analysis we
adopt the following assumption.

Assumption 1: For every company i ∈ C, it holds that

N2
i

(
Imc +DiD

∆
i

)
AG −DiD

∆
i Ai ⪰ 0 . (30)

With an analogous line of thought as in Theorem 2, As-
sumption 1 guarantees the cost functions given by (28) are
convex in xi. Hence, the existence of a Nash equilibrium of
game G0 with the approximate optimal pricing policies as in
Definition 6 is also guaranteed. Even though Assumption 1
does not have a direct real-world interpretation, it essentially
ensures that the parameter error, ∆Di, is not extremely large,
which would render the robustness analysis infeasible. Note
that Assumption 1 is not unrealistic as AG is a design choice
that can be tuned to suit any quadratic objective of the central
authority while at the same time maintaining the robustness
analysis viable. Since all matrices Di, D∆

i , AG and Ai are
diagonal, verifying condition (30) boils down to checking if
the diagonal elements of the resulting matrix on the left-hand
side of (30) are positive.

We can now show that the Nash equilibrium of the game
G0 under the approximate optimal pricing is an ε-Nash equi-
librium of G0 under the system optimal pricing policies. Let

tix :=
[
Ni

(
xi
)T
, σ
(
x−i
)T ]T ∈ Ti .

Since Xi is compact and convex, then Nix
i also belongs to a

compact and convex set. Moreover, since the Minkovski sum
preserves convexity, σ

(
x−i
)

also belongs to a compact and
convex set making Ti compact and convex as well. The cost
function J i

(
xi, x−i

)
is quadratic in tix

J i
(
xi, x−i

)
=

1

2

(
tix
)T
AGt

i
x +

(
tix
)T
bG ,

where AG :=

[
AG AG

AG 0ms×ms

]
and bG :=

[
bTG,0

T
ms

]T
.

Hence, J i
(
tix
)
:= J i

(
xi, x−i

)
is ηi-Lipschitz continuous over

the set Ti for some ηi ∈ R+, i.e.,
∥∥J i

(
tix
)
− J i

(
tix
)∥∥

2
≤ ηi

∥∥tix − tix
∥∥
2
,

for any tix, t
i
x ∈ Ti. If we denote η := max

i
ηi, then the upper

bound on ε is provided in the following proposition.
Proposition 3: For all companies i ∈ C, let the sets Xi

be designed as in Proposition 1. Then, with the approximate
optimal pricing policies in Definition 6, the Nash equilibrium
x̃ of G0 is an ε-Nash equilibrium of G0 with the system optimal
pricing policies in Definition 5 with

ε ≤ 4η

(
N∑

i=1

Ni −
1

2
min
i
Ni

)
.

Proof Let us define ∆J i
(
x̃, xi

)
:= J i

(
x̃i, x̃−i

)
−

J i
(
xi, x̃−i

)
. According to Definition 2, x̃ is an ε-Nash equi-

librium of G0 if for every i ∈ C, ∆J i
(
x̃, xi

)
≤ ε holds for

every xi ∈ Xi. Let x∗ ∈ X be the Nash equilibrium of G0
under the system optimal pricing policies. We can now write:

∆J i
(
x̃, xi

)
= J i

(
xi, x−i∗)− J i

(
xi, x̃−i

)
+

+ J i
(
x̃i, x̃−i

)
− J i

(
xi∗, x−i∗)+

+ J i
(
xi∗, x−i∗)− J i

(
xi, x−i∗) .

Because x∗ ∈ X is the Nash equilibrium of G0, we have that

J i
(
xi∗, x−i∗)− J i

(
xi, x−i∗) ≤ 0 .

Therefore, we can write

∆J i
(
x̃, xi

)
≤
∥∥J i

(
xi, x−i∗)− J i

(
xi, x̃−i

)∥∥
2
+

+
∥∥J i

(
x̃i, x̃−i

)
− J i

(
xi∗, x−i∗)∥∥

2
.

(31)

Because xij ≥ 0 for all j ∈ M, it holds that
∥∥Nix

i
∥∥
2
≤∥∥Nix

i
∥∥
1
= Ni,

∥∥σ
(
x−i
)∥∥

2
≤
∥∥σ
(
x−i
)∥∥

1
≤ ∑j ̸=iNj and∥∥tix

∥∥
2
≤
∥∥tix
∥∥
1
=
∑j

i=1Ni. Combining with (31), we get

∆J i
(
x̃, xi

)
≤ ηi

∥∥σ
(
x−i∗)− σ

(
x̃−i
)∥∥

2
+ ηi ∥tx̃ − tx∗∥2 ≤

≤ 2η
∑

j ̸=i

Nj + 2η

N∑

i=1

Ni =

= 4η

N∑

i=1

Ni − 2ηNi ,

which completes the proof.

From the government perspective, it is important to quantify
the gap between the values of the government loss function in
the Nash equilibrium when the system optimal and approxi-
mate optimal pricing mechanisms are applied. Let us assume
the following Krasnoselskij iteration procedure is applied

xik+1 =
1

2

(
xik +ΠXi

[
xik − γ̃∇xi J̃ i

(
xik, x

−i
k

)])
. (32)

Analogously to Proposition 2, for (32) to converge to a Nash
equilibrium, it suffices to choose γ̃ such that

0 < γ̃ <
2

λmax (F1 +ΦL1)
. (33)
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Let K ∈ N denote the number of executed updated steps
according to iterative scheme given in (32) with γ̃ given
in (33). The best attained government loss with the iterative
procedure based on (32) and (33) is the one closest to the
value of the government loss function in the Nash equilibrium
of G0 with the system optimal pricing policies. We have
shown in Theorem 3 that x∗ is the global minimizer of
the government’s loss, hence for all k ∈ N it holds that
JG (σ (xk)) − JG (σ (x∗)) ≥ 0. Therefore, the best attained
government loss with the approximate system optimal pricing
policies is defined as

Jbest
G := min

k≤K
JG (σ (xk)) .

We are interested in analyzing the difference Jbest
G −

JG (σ (x∗)), where x∗ ∈ X is the Nash equilibrium of G0
under the system optimal pricing policies. Because X is
compact and convex, there exists some Rx ∈ R+ such that
∥x∥2 ≤ Rx ≤ mc. Note that the pseudo-gradient map of G0
under the approximate optimal pricing policies satisfies
∥∥∥F̃ (x)

∥∥∥
2
≤ ∥F1 +ΦL1∥2Rx + ∥F2 +ΦL2∥2 = RF̃ . (34)

If we define a mapping ψ (x) := ∆FT (x) (x− x∗), then the
main robustness result is stated in the following proposition.

Proposition 4: For all companies i ∈ C, let the sets Xi be
defined as in Proposition 1. Let the Krasnoselskij procedure
be defined by (32) and (33), x0 ∈ X be the initial value and
x∗ ∈ X denote the Nash equilibrium of G0 with the system
optimal pricing policies as in Definition 5. Then after K ∈ N
iterations of the update procedure it holds that

Jbest
G − JG (σ (x∗)) ≤ ∥x0 − x

∗∥22
γ̃
(
K + 1

) +
γ̃R2

F̃

2
−
∑K

k=0 ψ(xk)

γ̃
(
K + 1

) .

Proof We start by analysing ∥xk+1 − x∗∥22 and using the
equality 2uT v = ∥u∥2 + ∥v∥2 − ∥u− v∥2. Let the mapping
H (x) be defined as H (x) = ΠX

[
x− γ̃F̃ (x)

]
. Then we have

∥xk+1 − x∗∥22 =
1

4
∥xk − x∗∥22 +

1

4
∥H (xk)− x∗∥22 +

+
1

2
(xk − x∗)T (H (xk)− x∗) .

(35)

Equation (35) is equivalent to

∥xk+1 − x∗∥22 =
1

2
∥xk − x∗∥22 +

1

2
∥H (xk)− x∗∥22−

− 1

4
∥H (xk)− xk∥22 .

(36)

Because the set X is compact and convex, for every x ∈
Rmcms

+ and every y ∈ X , it holds that

∥ΠX (x)− y∥22 ≤ ∥x− y∥
2
2 . (37)

Combining (37) with (36) gives

∥xk+1 − x∗∥22 ≤
1

2
∥xk − x∗∥22 +

1

2

∥∥∥xk − x∗ − γ̃F̃ (xk)
∥∥∥
2

2
.

(38)

Expanding the right-hand side gives

∥xk+1 − x∗∥22 ≤ ∥xk − x∗∥
2
2 +

γ̃2

2

∥∥∥F̃ (xk)
∥∥∥
2

2

− F̃T (xk) (xk − x∗) .
(39)

Combining (21) with the first-order convexity condition for
the government’s loss function gives

JG (σ (x∗)) ≥ JG (σ (xk))− FT (xk) (xk − x∗) . (40)

Plugging (29) into 40 yields

−F̃T (xk) (xk − x∗) ≤ JG (σ (x∗))− JG (σ (xk))−
−∆FT (xk) (xk − x∗)

(41)

Applying the inequality (39) recursively and combining it
with (41) and (34), we get

∥xk+1 − x∗∥22 ≤ ∥x0 − x∗∥
2
2 +

K∑

k=0

(
γ̃2RF̃

2
− ψ (xk)

)
+

+ γ̃

K∑

k=0

(JG (σ (x∗))− JG (σ (xk))) .

(42)

Finally, combining (42), ∥xk+1 − x∗∥22 ≥ 0 and JG (σ (xk))−
JG (σ (x∗)) ≥ Jbest

G − JG (σ (x∗)) completes the proof.

Remark 2: Mapping ψ (x) is quadratic in x. Because it is
a continuous map into R, it always attains a finite minimum
and maximum value over the compact and convex set X .

With this we complete the theoretical robustness analysis
of the upper-level control modules Ki

F , for all i ∈ C. In
Section V, we will illustrate the robustness behaviour of the
system optimal pricing policies in a scenario based on the
real taxi data from the city of Shenzhen, China. Regardless
of the extent to which the upper-level control mechanism
succeeds in minimizing the government’s objective, the lower-
level matching controllers Ki

M will always be just in charge
of tracking the reference set by Ki

F . In the following section
we will show that the matching controllers can always choose
the surge prices so as to achieve perfect tracking.

IV. LOWER-LEVEL CONTROL – MATCHING MECHANISM

In Section II, we touch upon the problem of motivating the
drivers to pick the stations such that the vehicle distribution
dictated by the Ki

F controllers is attained. We assume that
the drivers are rational and interested in maximizing their
daily profit, hence we let the lower-level controllers Ki

M play
the game G2 in Definition 4. The modules Ki

M essentially
constitute a reference tracking mechanism making G2 param-
eterized by the output of the upper-level controllers Ki

F and
constrained by the feasibility sets of the companies.

If the ni value is chosen such that (13) holds for every i ∈
C, then the unconstrained minimization of J i

M

(
σ
(
µi
)
| ni
)

always yields the optimal value of zero. However, the company
operator and the drivers play a game so it is the job of Ki

M

block to make sure the same minimum is attained. The solution
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of the game G2 can be found in a centralized manner by
solving a mixed integer program with bilinear constraints

minimize
xv, ρv, v ∈ Vi

J i
M

(
σ
(
µi
)
| ni
)

subject to xv ∈ argmin
x̃v∈Ωv

Jv (x̃v, ρv) ,∀v ∈ Vi,

ρv ≥ ρmin,∀v ∈ Vi,
xv ∈ Ωv,∀v ∈ Vi,
µi =

∑

v∈Vi

xv

(43)

where ρmin ∈ RM
+ represents the vector of minimal surge

prices per region and for every v ∈ Vi, the condition xv ∈
argminx̃v∈Ωv

Jv (x̃v, ρv) can be expressed as, at most, ms

bilinear inequalities. In the following theorem, we will show
that the optimal value of the optimization problem (43) is zero.

Theorem 4: For all companies i ∈ C, let the surge-pricing
optimization problem be defined as (43) and let ni ∈ ZM

+

satisfy (13). If the solution of (43) is given by a tuple
(
ρi∗, µi∗)

then it holds that

J i
M

(
σ
(
µi∗) | ni

)
= 0 . (44)

Proof It is clear that J i
M

(
σ
(
µi∗) | ni

)
≥ 0 so we will show

that we can always find xv, ρv for all v ∈ Vi such that (44)
holds. For any ni chosen under the condition (13) there exists
a perfect matching. This means that there exists a set of Ni

vectors xvopt ∈ Ωv , where v ∈ Vi, such that
∑

v∈Vi

xvopt − ni = 0 .

Here, choosing vector xvopt corresponds to choosing the charg-
ing station jvopt. For every vehicle v and j ̸= jvopt, we let
xvj ∈ Ωv \

{
xvopt

}
. For a particular choice xvj of a charging

station, the cost function of the driver can be simplified to

Jv
(
xvj , ρ

v
)
= αv

j −
(
βv
j

)T
ρv ,

for some αv
j ∈ R and βv

j ∈ RM. Notice from the structure
of the loss function of each vehicle that for each j, the vector
βv
j has all entries equal to 0 except for the j-th component

which is positive. The vector xvopt will be a solution of the
problem (43) if for every j ∈M \

{
jvopt

}
it holds that

αv
j −

(
βv
j

)T
ρv ≥ αv

opt −
(
βv

opt

)T
ρv . (45)

If bj > 0 denotes the j-th element of vector βv
j and δj =

αv
j −αv

opt, then rearranging (45) gives an equivalent system of
ms − 1 linear inequalities

bjvopt
(ρv)jvopt

≥ bj (ρv)j − δj .
This system always has a solution such that ρv ≥ ρmin as we
can arbitrarily choose all (ρv)j ≥ (ρmin)j and pick the (ρv)jvopt

component such that the following holds:

(ρv)jvopt
≥ 1

bjvopt

max

{
(ρmin)jvopt

,max
j

{
bj (ρ

v)j − δj
}}

.

This means that it is always possible to construct a vector ρv

such that xvopt is part of the solution of (43), which in return
yields an optimal value J i

M

(
σ
(
µi∗) | ni

)
= 0.

Note that in this setup the company operator does not place
any constraints on the surge price distribution among the
vehicles. The operator could be interested in maintaining
absolute fairness in a sense that all the vehicles should receive
the same surge prices. Therefore, the operator could impose
a constraint that for every v1, v2 ∈ Vi such that v1 ̸= v2,
it should hold that ρv1 = ρv2 . This would correspond to
changing the optimality constraint in (43) into (46):

xv ∈ argmin
x̃v∈Ωv

Jv (x̃v, ρ) ,∀v ∈ Vi (46)

However, under this constraint, the new Ni optimality condi-
tions will no longer result in a set of Ni uncoupled systems of
linear inequalities given by (45). In fact, they will result in a
system of Nims linear inequalities whose parameters directly
depend on the state of the fleet and might in certain scenarios
lead to having the optimal value of (8) greater than 0. With
this in mind, we propose that each company first tries to find
the unique surge prices for every region and if the attained
value of (8) is greater than 0, solve (43) to find surge prices
for individual vehicles. The procedure for solving the complete
bi-level game is presented in Algorithm 1.

In the following section we will introduce in detail a case
study based on taxi data from the city of Shenzhen and
demonstrate the performance of both control levels.

Algorithm 1: Bi-level game algorithm

input : AG, bG, Q, M , {Ni}, fi, ρmin, k, γ, {xi0}
Companies i ∈ C in parallel:
Fi = CompanyFeasibilitySet();
Xi = ConvertToLinearConstraint(Fi);

for t← 0 to k do
σ (xt) = CollectCurrentIteration({xit});
Companies i ∈ C in parallel:
σ
(
x−i
t

)
= GetFromCentralAggregator();

∇xiJ i = ∇xiJ i
(
xit, σ

(
x−i
t

))
;

xit+1 = 1
2

(
xit +ΠXi

[
xit − γ∇xiJ i

])
;

{xi∗} ← {xik};
Companies i ∈ C in parallel:
ni = ChooseDiscreteAllocation(xi∗);
Ωv = OneHotFeasibleSet(), ∀v ∈ Vi;
{xv}, {ρv} = FindSurge(ni, ρmin, {Ωv});

V. CASE STUDY

We consider 3 ride-hailing companies C = {C1, C2, C3} with
fleet sizes given by Nfleet = [450, 400, 350]

T that operate in
the Shenzhen region with 4 public charging stations M =
{M1,M2,M3,M4}. The stations are described by the vector
of their capacities M = [15, 60, 35, 50]

T and are located
in parts of Shenzhen with different demands for ride-hailing
services as shown in Figure 2. We consider a 3 hour long
simulation that represents one of the two peak-hour periods
during the day. New passengers constantly arrive in the system
and either increase the number of private vehicles in the
system or request a ride-hailing vehicle to be assigned to them.
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Fig. 2. Map of Shenzhen - The network topology used in the case study consists of 1858 intersections connected by 2013 road segments divided
in 4 regions around charging stations M = {M1,M2,M3,M4} according to the Voronoi partitioning of the city. Color of the nodes within each
region indicates the total number of ride-hailing requests whose origin is in that region. From the left part of the figure, it is clear that the highest
number of ride-hailing requests occurs in the region around charging station M1 and the lowest number of requests occurs in the region around
M4. The right part of the figure shows the macroscopic fundamental diagram (MFD) for the city of Shenzhen according to [34].

The demand profile represents the real taxi demand that we
assume is now served by the ride-hailing companies [5]. The
passengers are matched with the vehicles such that the total
number of served requests is maximized, the total waiting time
of passengers is minimized and no passenger has to wait for
more than ∆τ = 10 min for the ride-hailing vehicle to arrive.
If the passenger is not matched with a taxi, he will opt for
using the private vehicle. To better represent the congested
conditions, the space mean speed of the vehicles is modelled
as a decreasing function of the total vehicle accumulation
n in the region and according to the network Macroscopic
Fundamental Diagram (MFD) [35] obtained from [34]. Under
the assumption of homogeneous congestion in the city, the
MFD of the region is given by:

vspace(n) =





36 exp
(
− 29n

60000

)
, if n

1000 ≤ 36

6.31− 0.28
(

n
1000 − 36

)
, if 36 < n

1000 ≤ 60

0, if n
1000 > 60

.

To prevent the ride-hailing vehicles from flocking in the busiest
parts of the city, the desired distribution of the ride-hailing
vehicles Z is formed so as to match the spatial distribution of
the ride-hailing service requests. To approximate this distribu-
tion, the city region is divided into 4 cells according to the
Voronoi [36] partitioning of the map. The charging stations are
chosen as the centroids of the Voronoi cells and Z is chosen
to correspond to the total number of requests in each cell.

For every company i ∈ C, the state of each vehicle v ∈ Vi
to be charged is described by a tuple

(
scurr
v , sdes

v , dmax
v

)
where

scurr
v represents the current battery level in percentage, sdes

v is
set to 100% and dmax

v is the maximal range of the vehicle. We
assume that each vehicle starts the simulation with a battery
level chosen uniformly at random between 90% and 95%.
After 3 hours of operation, the ride-hailing vehicles whose
battery level dropped below their personal threshold tv opt for
charging. For each vehicle v, the threshold is sampled from a
uniform distribution tv ∼ U [55, 60]. For simplicity, we assume

a linear discharge model of the battery given by

scurr
v (t+∆T ) = scurr

v (t)− 100

dmax
v

vspace (t)∆T .

A charging station k is considered to be feasible for vehicle
v if it is within reach given the current battery status, i.e.,
if scurr

v − 100
dmax
v
dv,k > 0 where dv,k denotes the shortest path

between the vehicle v and the charging station k. For every
company i ∈ C, the charging cost (6) is modelled by setting
Di := NiRi where diagonal matrix Ri ∈ R4×4 captures the
average charging demand per vehicle when choosing each of
the charging stations. If a station is infeasible, the average
demand is set to 0. Conversely, if the charging station k is
feasible to vehicle v ∈ Vi, then vehicle’s charging demand if
k is chosen for charging is defined as

δv,k = βv

(
sdes
v −

(
sstart
v − 100

dmax
v

dv,k

))
,

where βv ∈ R is a scaling coefficient that tells how many
units of charge corresponds to 1% of the vehicle’s battery.
The diagonal element of Ri that corresponds to station k is
then given by

(Ri)kk =
1∣∣F i
k

∣∣
∑

v∈Fi
k

δv,k .

The term that describes the negative expected revenue in (7)
is given by setting

fi := Ni

(
earr
i − epro

i

)
,

where the parameter earr
i ∈ RM represents the average cost

of a vehicle being unoccupied while traveling to a charging
station, and the parameter epro

i ∈ RM denotes the expected
profit in regions around different charging stations estimated
from historical data. If station k is infeasible for company
i ∈ C, then we set (earr

i )k = 0, otherwise it is equal to:

(earr
i )k = ui · Pk ·


 1∣∣F i

k

∣∣
∑

v∈Fi
k

dv,k


 ,
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where ui ∈ R is the monetary value of a vehicle being
occupied while driving for 1 km, given in [$/km] and Pk is the
probability of a vehicle being occupied in the region around
charging station k. We also set the vector epro

i ∈ R3 according
to the desired distribution Z such that

(
epro
i

)
k
= φ · (Z)k + wk ,

where φ ∈ R+ is a scaling coefficient and wk ∼ U [−10, 10].
For every vehicle v ∈ Vi, the parameters Dv , gv and Hv

describe driver’s loss function (9) when choosing which station
to pick. The diagonal element of Dv that corresponds to station
k is given by (Dv)kk = δv,k. If we assume the expected
profit epro

i is estimated for a work shift of Tdaily hours, then
the parameter vector gv that describes the standard negative
expected revenue for operating τv hours in the regions around
charging stations is given by

gv = earr
i −

τv
Tdaily

epro
i .

The diagonal entries of the matrix Hv that describe the
additional profit due to surge pricing are given by

(Hv)kk = τv · vspace · Pk ,

where vspace ∈ R+ is the driver’s estimate of the space mean
speed in the network.

In this particular scenario, we fix the values of other
parameters to βv = 1.0, Q = 0.1 · diag(4, 1, 3, 2), φ = 300.0
and AG = 2.5Q, vector of probabilities of being occupied
P = [0.35, 0.1, 0.2, 0.15], ui = 1.0,∀i ∈ C, τv = 2 for all
vehicles, Tdaily = 8, vspace = 20.0 and set the number of
iterations for the upper-level control algorithm to k = 1000.

A. Numerical results – upper-level control

After a 3 hour simulation, the total number of vehicles that
need to go and recharge is given by N = [194, 181, 157]

T . In
order to illustrate the merits of using the reverse Stackelberg
pricing mechanism, we will compare it against two baselines:

• A scenario in which the government does nothing, i.e.,
sets the same prices of charging for all stations. In this
particular scenario, we set the baseline prices to pbase =
[3.0, 3.0, 3.0, 3.0]

T .
• A scenario in which the prices of charging at each station

can be different but are the same for all companies, i.e.,
for every station k and any two i, j ∈ C, it holds that(
pi
(
xi, x−i

))
k
=
(
pj
(
xj , x−j

))
k
.

The two baseline scenarios essentially correspond to playing a
Stackelberg game between the government and the ride-hailing
companies. Analogous to the proof outlined in Theorem 2,
since for all i ∈ C the matrix Ai is positive semi-definite, the
Stackelberg game played for any fixed pricing vector p ∈ RM

+

will have a unique Nash equilibrium. The second scenario is
a more intuitive pricing approach as the price of charging
depends only on the choice of charging station. However,
it experiences reduced flexibility in terms of minimizing
the central operator’s objective and additional computational
complexity. Namely, in order to compute the optimal pricing

0 200 400 600 800 1,000

0
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Iteration [k]

σ
(x
)

σ1(x)

σ2(x)

σ3(x)

σ4(x)

Fig. 3. Evolution of the total number of vehicles at each charging station
when no action is taken, i.e., p = pbase = [3.0, 3.0, 3.0, 3.0]T . The
dashed line represents the desired value of the vehicle accumulation
whereas the solid line represents the attained value.

TABLE I
COMPANY DECISIONS AND CHARGING PRICES

Station M1 Station M2 Station M3 Station M4

xi
1 pi xi

2 pi xi
3 pi xi

4 pi

C1 0.38 3.99 0.19 3.00 0.27 3.54 0.16 2.37
C2 0.37 4.06 0.20 2.99 0.27 3.57 0.16 2.38
C3 0.36 4.22 0.20 3.03 0.27 3.64 0.17 2.41

N̂/σ (x∗) 1 1 1 1

vector p̄ ∈ P ⊆ RM for the Stackelberg-based mechanism,
we would in general have to solve

p̄∗ = argmin
p∈P

1

2
σ (x∗ (p̄))T AGσ (x

∗ (p̄)) + bTGσ (x
∗ (p̄)) ,

(47)
where x∗ (p̄) ∈ X is the Nash equilibrium of the game (11)
for a particular fixed price choice p̄. However, the closed form
x∗ (p̄) is in general not known. Instead, in order to approximate
the optimal p̄, we choose a fixed maximum price pmax ∈ R+,
set P = [0, pmax ]

M and perform extensive local grid search.
Figure 3 shows the attained Nash equilibrium of the game

when no action is taken, i.e., for every i ∈ C we use
pi
(
xi, x−i

)
= pbase = [3.0, 3.0, 3.0, 3.0]

T . As expected, the
regions around the charging stations M1 and M3, that are
more popular in terms of demand, will attract more ride-
hailing vehicles when the prices of charging are the same
for different stations. This, in return, results in very small
occupancy of the charging station M4 that is located in the
region with the smallest number of ride-hailing requests and
hence provides the smallest expected profit.

When system optimal pricing policies in Definition 5 are
used, the distribution of the car fleets over the charging stations
and the resulting charging prices are presented in Table I
whereas the evolution of the government loss JG and the
total number of vehicles over the iterations is presented in
Figure 4. From the figure it is clear that the iterative procedure
converged to a Nash equilibrium that is simultaneously the
global optimum of the government’s objective and that attains
JG (σ (x∗)) = 0. It is noteworthy to mention here that the
vehicle configuration tested in this scenario facilitated the
possibility to obtain the minimal possible value of JG. As
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Fig. 4. Performance of the reverse Stackelberg game pricing mech-
anism. The upper subplot shows the convergence of the government’s
loss function whereas the lower shows the evolution of the total number
of vehicles at each station. Here, σj (x) corresponds to the total
number of vehicles at charging station Mj , dash line corresponds to
desired and solid line to attained value of the total number of vehicles.

TABLE II
COMPARISON OF DIFFERENT PRICING MECHANISM

JG
σ1 (x∗) σ2 (x∗) σ3 (x∗) σ4 (x∗)

N̂1 = 198 N̂2 = 103 N̂3 = 144 N̂4 = 87

pbase 6677.9 283.9 43.03 196.0 8.999
p1 13.585 200.8 98.43 147.9 84.81
p2 18.579 198.2 111.1 140.2 82.49

RSG 0.0000 198.0 103.0 144.0 87.00

shown in [1], it is just as probable that the battery level and
the position of the ride-hailing vehicles, encoded in constraint
sets Xi, will not allow to perfectly match desired vehicle
accumulations around different charging stations. As expected,
the prices of charging are higher for the two most demand
attractive regions, i.e., the ones centered at M1 and M3.
Station M4 is the least attractive hence, it has the smallest
charging prices in the Nash equilibrium. Looking at the prices
at a particular station, it is clear that the good performance
of the system when minimizing the government’s objective
comes at the expense of utilizing different prices of charging
at a particular station for different ride-hailing companies.
Because there is no constraint on how big the price difference
for individual companies can be, there is a risk of having unfair
prices for certain companies. Though this is not the case in
the displayed scenario, it is important to theoretically examine
the question of fair prices across companies in the future.

The complete performance comparison of the system using
the system optimal pricing policies given in Definition 5
against the Stackelberg based pricing mechanisms with pbase,
p1 = [2.75, 1.625, 2.208, 1.0] and p2 = [4.03, 2.8, 3.49, 2.24]
is given in Table II. Values p1 and p2 are obtained via local
grid search. They attain the government’s losses JG in the
Nash equilibrium that are close in value making them both a
viable choice for charging prices. It is evident that the reverse

Stackelberg-based pricing mechanism outperforms every other
baseline scenario in terms of minimizing the government’s loss
function. However, in light of the robustness analysis presented
in Section III-D, we next compare the performance of the
system optimal pricing policies against the two Stackelberg-
based pricing mechanisms p1 and p2 when different levels of
uncertainty are introduced in the parameter Di.

According to the system structure used in this case study,
apart from Ri and earr

i , all other parameters are inherently
known to the government as they characterize the available
charging infrastructure and the dynamics of the ride-hailing
market in the region where the companies operate. As pre-
viously noted, the government optimum is attainable if the
companies are willing to share Ri and earr

i that encompass the
information about the average charging demand and position
of the company’s fleet. Ri is considered a more sensitive piece
of information compared to earr as the latter one only depends
on the vehicles’ distances to charging stations. Hence, we show
how the system optimal pricing mechanism behaves in the
same scenario when the government has only an estimate Di

of the average charging demand Di = NiRi. For a feasible
station k, i.e., (Di)kk > 0, we let

(
Di

)
kk

= (Di)kk + wk

where wk is a noise sample drawn from a normal distribu-
tion such that wk ∼ N

(
0, (αDmin/4)

2
)

with Dmin being
the minimal, non-zero, diagonal element of Di. For every
magnitude of uncertainty α, we sample wk 100 times and
report the mean value of the government’s loss in the Nash
equilibrium. The corresponding plots are shown in Figure 5.
For moderate discrepancies (α < 0.15) between the true and
the estimated value of Di, the attained Nash equilibrium with
system optimal pricing policies is close to the government’s
optimum. Moreover, the enlarged part of Figure 5 suggests
that utilizing system optimal pricing policies results in a more
robust mechanism with respect to parameter Di.

It is particularly interesting to analyze what happens for
larger discrepancies, i.e., α > 0.15. Based on the local
minimum in which the minimization procedure (47) lands, we
observe significantly different robustness characteristics of the
system when the magnitude of the perturbation is increased.
Even though both Stackelberg prices p1 and p2 yield similar
government objective values when parameter Di is perfectly
known, using p2 seems to significantly underperform com-
pared to the system optimal pricing policies for any magnitude
of the perturbation α. Conversely, the prices p1 on average
match the performance of the system optimal pricing policies.
It is important to note here that in order to compute the
local optima of (47) we only perform an extensive grid search
procedure over the space of charging price vectors defined by
P . Without a heuristic and a verification method to help us
find the local optima for which the robustness with respect to
Di can be verified, using a local search to approximate the
optimal p can result in poor robustness performance.

B. Numerical results – lower-level control

Next, we present the results of using the surge pricing
mechanism to motivate the drivers v ∈ Vi of a particular
company i ∈ C to follow the company operator’s desired value
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Fig. 6. Distribution of surge prices used by the ride-hailing companies. With a slight abuse of notation, the label ρv on the x-axis denotes a single
real number, not the whole vector of surge prices for a vehicle v ∈ Vi. For clarity, the surge price of zero has been removed from the plot as there
is a significant number of vehicles that do not need to be proposed a surge price in order to match the company operator’s desired ni.

of the discrete allocation vector ni. For the ride-hailing fleet
configurations used in this study, it was required to perform
the complete two-step mixed-integer optimization procedure
proposed in Section IV. With a slight abuse of notation, if
ρv ∈ R+ denotes the value of a surge price proposed for a
region around a single charging station and not the complete
surge price vector ρv ∈ RM

+ offered to a particular driver
v ∈ Vi, then the distribution of non-zero surge prices used
by each company operator is given in Figure 6. We observe
that for all ride-hailing companies, most of the proposed surge
prices are localised in the lower end of the price spectrum.
However, there are also vehicles that need to be offered large
surge prices for certain regions which in return can result in
the cancellation of the ride-hailing request. A naive way to
overcome this would be to introduce an empirically determined
upper bound on the surge price. However, similarly to making
surge prices equal per vehicle, this could result in J i

M > 0.

C. Scalability analysis
Finally, we analyze the scalability of the proposed bi-level

algorithm implemented using the off-the-shelf optimization
library [37]. The results are shown in Figure 7. For the
upper-level game G1, we measure the execution time of a

centralized implementation for a different number of ride-
hailing companies. The plot shows very fast execution mea-
sured in seconds. Moreover, as the algorithm allows for a
completely decentralized implementation, this can be deemed
as an overestimation of the actual execution time. On the other
hand, the time complexity of the lower-level game depends on
the number of vehicles that need to be recharged. For the
commercially available optimization library, we observe an
exponential trend in the plot. However, taking into account that
playing the complete bi-level game more frequently implies
having to assign a smaller number of vehicles at each game
instance, the plot suggests a reasonable computational time
even for large numbers of vehicles to be matched.

VI. CONCLUSION

In this work, we developed a bi-level model for balancing
the demand of electric ride-hailing fleets on the charging
stations in a particular region at a particular point in time,
after a peak-hour service period during the day. On the
upper control level, our approach is a reverse Stackelberg
game between a central authority interested in optimizing a
personal objective such as balancing the load on the power
grid, reducing congestion, etc., and a set of companies in
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Fig. 7. The orange line shows the execution time of the upper-level
game for a centralized implementation of the algorithm and different
number of ride-hailing companies. The blue line shows the execution
time of the lower-level game for different number of charging vehicles.

the ride-hailing market. It is a one-leader, multiple-followers
game firstly introduced in [1] that we adapt for a case study
based on the real taxi data from the city of Shenzhen. Apart
from theoretically analyzing the robustness of the upper-
level control algorithm in this paper, we also compare its
performance against three baseline scenarios with fixed prices
per company. One scenario corresponds to having the same
prices of charging at each station whereas the other two
baselines are obtained based on the local computation of the
optimal leader strategy in Stackelberg games. We illustrate
that with a naive local search, we can obtain a Stackelberg-
based pricing mechanism that significantly underperforms in
terms of robustness with respect to the parameter that describes
the total charging demand of a company to be served at
particular charging stations. Finally, on the lower control level,
we introduce a Stackelberg-based surge pricing mechanism to
provide financial incentives to drivers within a company in
order to make them follow the company operator’s desires.

This work opens numerous future research directions. For
instance, it is of paramount importance to address the notion
of fairness, be it among the ride-hailing companies on the
upper level or among the drivers within a company on the
lower level. On the other hand, increasing the complexity of
the model by introducing coupling constraints, e.g., imposed
by the power grid, should be investigated in order to make
the model more realistic. So far, we have not taken into
account the negative effects that surge prices could have on
the ride-acceptance rate. Therefore, it would be beneficial to
also investigate other ways to control the decision sets of
individual drivers for the lower-level game. Finally, this work
analyzes a static scenario in the sense that the state of the
system is analyzed for only one particular point of time during
the day. In the future, we plan to investigate if combining
this framework with the ride-hailing demand prediction could
result in a dynamic setup that would allow the companies to
be proactive when planning when and how much to charge
their fleets during the day.
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