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Abstract

Deep learning has achieved remarkable success in various challenging tasks such as generating

images from natural language or engaging in lengthy conversations with humans. The success

in practice stems from the ability to successfully train massive neural networks on massive

datasets. This thesis studies the theoretical foundations of the simplest architecture, that is, a

deep (feedforward) neural network, with a particular emphasis on the role of width.

We first focus on a simple model of finite-width neural networks to study generalization, a

central inquiry in machine learning and statistical learning theory. Our study delves into the

expected generalization error of a Gaussian random features model in terms of the number of

features, number of data points, the kernel that it approximates, and the input distribution.

Our formulas closely match numerical experiments.

Next, we explore another simplification of finite-width neural networks to study their training

dynamics. We assume a linear activation function, resulting in a linear predictor. However,

the training dynamics remain non-trivial. In particular, the loss function is non-convex: the

orthogonal symmetry gives rise to manifolds of saddle points at various loss levels. Never-

theless, these saddle points exhibit a unique arrangement, wherein the escape direction of a

saddle channels the trajectory towards a subsequent saddle. By gluing the local trajectories

between saddles, we describe a so-called saddle-to-saddle dynamics that provably kicks in for

very small initializations.

To study finite-width neural networks without devising a simple model, we shift our focus

to the structure of network parameterization and permutation symmetry among hidden

neurons. We identify a neuron-splitting technique that maps a critical point of a network

to a manifold of symmetry-induced critical points of a wider network. By considering all

possible neuron partitions and their permutations, we establish the precise scaling law for the

number of critical manifolds. The scaling laws behave as ec(α)mm for large m where m is the

width of the wider network and α is shrinkage factor, i.e. is the ratio between the number of

distinct neurons to m. Notably, the maximum of c(α) is attained at α∗ = 1
2log(2) , hence it is the

shrinkage factor inducing the most numerous symmetry-induced critical manifolds. We then

give an application of this scaling law for overparameterized networks.

The key question is: can we give a rule of thumb for how much overparameterization is

needed to ensure reliable convergence to a zero-loss solution? Our approach is based on

studying the geometry and topology of the zero-loss solutions in overparameterized neural

networks. We prove that all zero-loss solution manifolds are identical up to neuron splitting,

zero neuron addition, and permutation for input distributions with full support. Additionally,
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Abstract

we give the scaling law of the zero-loss manifolds. The ratio between the two scaling laws

yields a measure of the landscape complexity which decays with overparameterization. We

observe that the complexity decreases rapidly until reaching an overparameterization factor

of approximately 2log(2), beyond which the complexity becomes smaller than one. Overall,

we find it recommendable to use at least a factor of 2 to 4 of overparameterization to ensure

reliable convergence to a zero-loss solution.

While the scaling laws apply to arbitrary settings, a more detailed analysis is needed to study

generalization. We shift our focus to the study of neural networks with few neurons for learning

from a standard Gaussian input distribution and a unit-orthonormal teacher network with

more neurons. We reformulate the weight-space minimization problem as a constrained opti-

mization problem by factoring out symmetries due to the input distribution. As a non-trivial

application, we provide a closed-form expression of the optimal solution and its general-

ization error for the one-neuron network for ReLU activation. Our reformulation applies

to networks with arbitrary width and may be the key to finding the generalization error of

underparameterized networks.

Key words: Neural Networks, Machine Learning, Deep Learning, Random Feature Models,

Generalization, Loss Landscape, Random Matrix Theory, Combinatorics, Constrained Opti-

mization
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Résumé

L’apprentissage profond a connu un succès remarquable dans diverses tâches complexes

telles que la génération d’images à partir de textes naturels ou l’engagement dans de longues

conversations avec des humains. Ce succès en pratique provient de la capacité à entraîner

avec des réseaux immenses sur d’énormes ensembles de données. Cette thèse étudie les

fondements théoriques de la plus simple des architectures, à savoir les réseaux neuronaux

profonds (feedforward), en mettant l’accent particulier sur le rôle de la largeur.

Nous commençons par nous concentrer sur un modèle simple de réseaux neuronaux de

largeur finie afin d’étudier la généralisation, qui a été un sujet central dans l’apprentissage

automatique et la théorie de l’apprentissage statistique. Notre étude explore l’erreur de gé-

néralisation attendue d’un modèle de caractéristiques aléatoires gaussiennes en fonction du

nombre de caractéristiques, du nombre de points de données, du noyau qu’il approche et de

la distribution d’entrée. Nos formules correspondent de près aux expériences numériques.

Ensuite, nous explorons une autre simplification des réseaux neuronaux de largeur finie pour

étudier leur dynamique d’apprentissage. Nous supposons une fonction d’activation linéaire,

ce qui conduit à un prédicteur linéaire. Cependant, la dynamique d’apprentissage reste non

triviale. En particulier, la fonction de perte n’est pas convexe : la symétrie orthogonale donne

naissance à des points selles à différents niveaux de perte. Néanmoins, ces points selles

présentent un agencement unique, où la direction d’échappement d’un point selle canalise la

trajectoire vers un prochain point selle. En reliant les trajectoires locales entre les points selles,

nous décrivons une dynamique dite de « point selle à point selle » dont nous prouvons qu’elle

entre en jeu pour de très petites initialisations.

Pour étudier les réseaux neuronaux de largeur finie sans établir de modèle simple, nous

déplaçons notre attention vers la structure de la paramétrisation du réseau et la symétrie de

permutation parmi les neurones de la couche cachée. Nous identifions une technique de

division des neurones qui envoie un point critique d’un réseau vers une multitude de points

critiques induits par la symétrie d’un réseau plus large. En considérant toutes les partitions

possibles de neurones et leurs permutations, nous établissons une loi d’échelle précise pour le

nombre de variétés critiques. Celui-ci se comportent comme ec(α)mm pour de grandes valeurs

de m, où m représente la largeur du réseau le plus étendu et α est le facteur de réduction,

c’est-à-dire le rapport entre le nombre de neurones distincts et m. Notamment, le maximum

de c(α) est atteint à α∗ = 1
2log(2) , ce qui en fait le facteur de réduction induisant le plus grand

nombre de variétés critiques induites par la symétrie. Nous donnons ensuite une application

de cette loi d’échelle pour les réseaux sur-paramétrisés.
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Résumé

La question clé est : pouvons-nous établir une règle empirique sur la sur-paramétrisation né-

cessaire pour une convergence fiable vers une solution sans perte ? Notre approche repose sur

l’étude de la géométrie et de la topologie des solutions sans perte dans les réseaux neuronaux

sur-paramétrisés. Nous prouvons que toutes les solutions sans perte sont identiques à division

des neurones, à ajout de neurones nuls et à permutation près, pour les distributions d’entrée

avec un support complet. De plus, nous donnons la loi d’échelle des variétés à perte nulle. Le

rapport entre les deux lois d’échelle définit une mesure de la complexité du paysage qui décroît

avec la sur-paramétrisation. Nous observons que la complexité diminue rapidement jusqu’à

atteindre un facteur de sur-paramétrisation d’environ 2log(2), au-delà duquel la complexité

devient inférieure à un. Dans l’ensemble, il s’avère recommandable d’utiliser un facteur de

sur-paramétrisation d’au moins 2 à 4 pour garantir une convergence fiable vers une solution

sans perte.

Alors que les lois d’échelle s’appliquent à des contextes arbitraires, une analyse plus détaillée

est nécessaire pour étudier la généralisation. Nous concentrons notre attention sur l’étude des

réseaux neuronaux avec quelques neurones pour l’apprentissage à partir d’une distribution

d’entrée gaussienne standard et d’un réseau enseignant unitaire orthonormal avec plus de

neurones. Nous reformulons le problème de minimisation de l’espace des poids sous la

forme d’un problème d’optimisation contraint en prenant en compte les symétries dues à

la distribution d’entrée. Comme application non triviale, nous fournissons une expression

analytique de la solution optimale et de son erreur de généralisation pour le réseau à un seul

neurone avec une activation ReLU. Notre reformulation s’applique aux réseaux de largeur

arbitraire et pourrait être une clé pour trouver l’erreur de généralisation des réseaux sous-

paramétrisés.
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1 Introduction

Deep learning has achieved unprecedented success in learning from massive amounts of

data (LeCun, Bengio, and G. Hinton, 2015; Devlin et al., 2018; Brown et al., 2020; Dosovitskiy

et al., 2020; Brown et al., 2020). The success stems from the combination of increasingly cheap

computing power, billion-parameter architectures capable of leveraging parallelization and

learning from massive datasets. Deep learning today empowers technology we use in daily life

such as image recognition in our smartphones and generating text on demand with chatbots.

In particular the recent generative deep learning models such as DALL-E and ChatGPT work

unexpectedly well in the difficult tasks of generating realistic images from natural language

and engaging in lengthy conversations with humans.

The current practice in deep learning is simple: scale up the dataset and scale up the model

to enable learning from the massive dataset (J. Kaplan et al., 2020; Bahri et al., 2021). Scaling

up works often well in practice. However, it is very costly, and the resulting models are very

complex. The complexity of the models makes it difficult to understand their inner workings

and to identify the failure modes.

Explaining the success of deep learning through a theoretical framework seems far away at

this early stage. The current general questions and approaches that fall within the scope of

this thesis can be listed as follows:

• Tractable models. Relevant models can help us understand how neural networks are

trained and make predictions on unseen samples. It is possible to completely solve the

simplest models. In particular, for simple models such as linear regression, we have the

closed-form solution of training since the loss is convex. Then the question of interest is

generalization: in particular, how does it scale as a function of parameters and training

samples? We study this question in the context of a Gaussian random features model in

Chapter 2 and give partial answers. If the loss is not convex, then training is the pressing

question which needs to be addressed. Can we find the set of optimal solutions? Can

we study training regimes depending on the network initialization? We study these

questions in the context of deep linear networks in Chapter 3 and give partial answers.
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Chapter 1. Introduction

• Properties of mid-size and large networks. Some general properties of neural network

families can be studied precisely. An example are novel scaling laws of the loss landscape

derived from the permutation symmetries of deep neural networks. This is the topic of

Chapter 4 and Chapter 5 of this thesis. This approach is strong as it applies broadly, since

permutation-symmetry is an inherent property of neural networks. The implications of

such global properties on training dynamics and generalization are yet to be discovered.

• Toy models. Neural networks on a tiny scale serve as toy models of their larger versions.

We partially address the question of finding the closed-form solution of a non-convex

problem in the context of neural networks with few neurons in Chapter 6. This approach

is motivated by the scaling studies which show that neural networks improve gradually

as they grow larger.

Before we go into details of the particular questions addressed in this thesis, we would like to

motivate the study of deep learning theory.

1.1 Why a Theory of Neural Networks?

To understand the role of theory in deep learning, it is instructive to make a comparison with

the traditional scientific fields. Generally speaking, physics seeks to explain the laws of nature,

and biology looks for answers to underpin the mechanisms running alive beings. Theory has

been central for the development of science in understanding the nature of things. Analogous

to the role of theory in physics and biology, a theory of deep learning might bring important

insights, but still has to be developed.

Additionally, theory can play an important role in developing deep learning models in practice

and making them efficient. For instance, theory in deep learning can help make important

design choices such as data (sub)selection and hyperparameter selection that would relieve

the computational burden of grid search in a high-dimensional space. In this sense, it is an

exciting time for theory in deep learning due to the potential impact it may have in the close

future.

For a theoretician with an eye towards experimentation, deep learning can also be a delightful

playground compared to the classic scientific fields. Biological experiments often take very

long time, and may be contaminated and flawed, while doing large scale studies is hard due to

ethical concerns. Simulations of a physical process, for example, in cosmology and particle

physics, take a huge amount of time and compute power. In comparison, in deep learning, it

is easy to run a simple experiment on a computer, ideally on a GPU, which is accessible much

more broadly. Scaling studies are important to answer the following question: does the simple

model trained on a personal computer represent deep learning employed in practice to some

extent?

There are many challenging theoretical questions in deep learning requiring a large variety
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of tools, some already successfully addressed, and many more begging for an answer. In

fact, thanks to phenomena found in the context of deep learning, our understanding of the

more classic models have significantly improved. For instance, the classic problem of linear

regression demonstrates the so-called double-descent curve which can be captured with

a random matrix theory analysis (Hastie et al., 2022). More generally, the random features

model of Rahimi and Recht, 2008a offers a family of interesting problems that can be solved

via high-dimensional probability or statistical physics tools. This is relevant because a neural

network which has frozen weights except for the last layer corresponds to a random features

model. Moreover, neural networks in a particular training regime converge to a so-called

Neural Tangent Kernel predictor in the infinite-width limit (Jacot, Gabriel, and Hongler, 2018b).

This correspondence between neural networks and kernel methods has sparked a renewed

interest in the study of kernel methods (Belkin, Ma, and Mandal, 2018; Jacot, Şimşek, et al.,

2020d). At the other end of the spectrum, there are low-dimensional problems of neural

networks that may require precise, and rather problem-specific analysis using tools from

geometry, topology, and dynamical systems.

1.2 Thesis Focus & General Questions

We study the questions related to generalization, loss landscape, and training dynamics of

neural networks and their simpler models covering three loosely related topics:

• Generalization. We assume that the input data samples xi ∈Rd are drawn independently

from an input distribution D and that there is a true function f ∗ generating targets, i.e.

yi = f ∗(xi ) (say, without noise). Given N samples and problem parameters such as the

number of random features P , or a ridge parameter λ, we are interested in giving an

approximation of the generalization error (i.e., the mismatch between the predictor and

the true function with respect to the input distribution). It is possible to obtain such

formulas for linear regression (Hastie et al., 2022), for kernel ridge regression (KRR), and

for random features (RF) regression as the optimization problem is convex. Moreover,

for square loss, there is a closed-form expression for the optimal parameter vector and

the corresponding predictor. It is then possible to get approximation for the quantities

of interest such as the generalization error, using random matrix theory.

• Loss Landscape. Let us consider a shallow neural network f :Rd →Rdout , that is f (x) =∑m
j=1 a jσ(w j · x). The loss can be written as 1

N

∑N
i=1 c( f (xi ), f ∗(xi )) where c : Rdout ×

Rdout → R is a single-sample cost. The loss function L measures the quality of the

parameter1 θ = (w1, a1)⊕ ...⊕ (wm , am) ∈ R(d+dout)m on the training data (xi , yi ) for i =
1, ..., N . This is a non-convex optimization problem for m ≥ 2 since there is always

a permutation-symmetric solution. Finding the critical points (i.e. ∇L(θ) = 0) of the

loss landscape is an important question as well as describing whether they are strict

1⊕ denotes the concatenation of two vectors.
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saddles, non-strict saddles, local minima, or global minima. Due to the symmetries of

network parameterization, the loss function of neural networks exhibits the so-called

symmetry-induced critical points (Fukumizu and Amari, 2000; Şimşek, Ged, et al., 2021).

Another question of interest is the scaling of the number of critical points to understand

the difficulty of the non-convex high-dimensional optimization problem as done in

complex systems (Auffinger, Arous, and Čern, 2013).

• Training. The scaling analysis of the loss landscape is particularly insightful for finite-

width neural networks where, in general, we do not have convergence guarantees. There

are three main exceptions:

1. Infinite-Width Neural Networks. Although the loss function is non-convex, an

equivalent optimization problem can be formulated either in function space or

in measure space, where the loss is then convex in its domain (assuming c is

convex). These equivalent formulations allow studying training dynamics either

for large initialization through the so-called Neural Tangent Kernel (Jacot, Gabriel,

and Hongler, 2018b; S. S. Du, Zhai, et al., 2018) or for small initialization through

mean-field dynamics (Chizat and Bach, 2018c; Mei, Montanari, and P.-M. Nguyen,

2018a). Both approaches have received substantial success in explaining training

dynamics and establishing convergence guarantees in their respective regimes.

2. One-Neuron Network. In this case, there is neither permutation symmetry between

the hidden neurons, nor a non-strict saddle on the line of symmetry-induced

critical points. Hence the loss function does not violate the so-called Morse prop-

erty (Mei, Y. Bai, and Montanari, 2018) and convergence to a global minimum is

guaranteed (Tian, 2017; Yehudai and Ohad, 2020).

3. Deep Linear Networks. The loss function in this case is non-convex. Nevertheless,

the global loss landscape can be characterized exactly (the network matrix of all

critical points of the loss function is given by Baldi and Hornik, 1989) and it is

simple in the sense that there are only symmetry-induced saddles and the global

minima. Relatedly, it is possible to analyze training dynamics even for finite-width

networks in this case, as well as the effect of depth, and the low-rank bias (Saxe,

McClelland, and Ganguli, 2014; Arora, Cohen, W. Hu, et al., 2019).

1.3 State of the Art

Theory of neural networks can be traced back to the study of perceptron learning (Gardner

and Derrida, 1989; Seung, Sompolinsky, and Tishby, 1992) and learning with a few neurons

in the hidden layer (Rumelhart, G. E. Hinton, and Williams, 1986). Some classic works have

studied the problem of learning with a few neurons with the objective of approximating a sum

of neurons (Saad and Solla, 1995) whereas some others studied the organization of critical

points of the loss landscape (Fukumizu and Amari, 2000). On another front, approximation

theory has been developed for neural networks (Cybenko, 1989; Funahashi, 1989; Hornik,
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Stinchcombe, and White, 1989) also in relation to kernels (Poggio and Girosi, 1990; Girosi,

Jones, and Poggio, 1995), and the properties at initialization have been studied (R. M. Neal,

1996). It is a delicate task to do justice to the great early works that have contributed to the

study of neural networks, which is beyond our scope here. In recent years, the theory of

neural networks has taken off and reemerged as an exciting field (J. Lee, Bahri, et al., 2017a;

Jacot, Gabriel, and Hongler, 2018b; S. S. Du, Zhai, et al., 2018; Chizat and Bach, 2018c; Mei,

Montanari, and P.-M. Nguyen, 2018a; G. M. Rotskoff and Vanden-Eijnden, 2018a; Goldt et al.,

2019; J. Lee, Xiao, et al., 2019; Arora, S. Du, et al., 2019; Fan and Z. Wang, 2020; Bordelon,

Canatar, and Pehlevan, 2020b; Jacot, Şimşek, et al., 2020b; Şimşek, Ged, et al., 2021; Abbé,

Boix-Adserà, Brennan, et al., 2021; Abbé, Adserà, and Misiakiewicz, 2022; Veiga et al., 2022;

Arous, Gheissari, and Jagannath, 2022).

Despite much exciting progress, the current approaches to studying finite-width behavior are

limited. Systematic empirical studies focus on measuring deviations of the network function

from the infinite-width limit (Geiger, Jacot, Spigler, Gabriel, Sagun, d’Ascoli, et al., 2020; J.

Lee, Schoenholz, et al., 2020; Vyas, Bansal, and Nakkiran, 2022). For finite-width networks,

convergence results to a global minimum are only established when the gradient flow is

initialized close to a global minimum (Oymak and Soltanolkotabi, 2020; I. M. Safran, Yehudai,

and Shamir, 2021) which requires a priori knowledge of the global minimum as opposed

to the random initialization near the origin as done in practice. More precise results are

obtained under the assumption that the activation function is quadratic (S. Du and J. Lee,

2018; Sarao Mannelli, Vanden-Eijnden, and Zdeborová, 2020). However, the network function

is then limited to a polynomial of the input. In general, it is known that studying models with a

finite size might depend on specific problem parameters in comparison to their infinite limits.

This thesis focuses on the rich and broad question of learning in finite-width neural networks.

1.3.1 Random Features Model

The conventional wisdom suggests that to ensure good generalization performance, one

should choose a model class that is complex enough to learn the signal from the training data,

yet simple enough to avoid fitting spurious patterns therein (Bishop, 2006). This view has

been questioned by recent developments in machine learning. First, C. Zhang et al., 2016

observed that modern neural network models can perfectly fit randomly labeled training

data, while still generalizing well. Second, the test error as a function of parameters exhibits a

so-called ‘double-descent’ curve for many models including neural networks, random forests,

and random features models (Advani, Saxe, and Sompolinsky, 2020; Spigler et al., 2018; Belkin,

Hsu, Ma, et al., 2018; Mei and Montanari, 2019; Belkin, Hsu, and Xu, 2019; Nakkiran et al., 2019).

In general, the risk (i.e. test error) is a random variable with two sources of randomness: the

usual one due to the sampling of the training set, and the second one due to the randomness

of the model itself.

Kernel Ridge Regression. Despite decades of intense mathematical progress, the rigorous
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analysis of the generalization of kernel methods remains a very active and challenging area of

research. In recent years, many new kernels have been introduced for both regression and

classification tasks; notably, a large number of kernels have been discovered in the context of

deep learning, in particular through the so-called Scattering Transform (Mallat, 2012), and

in close connection with deep neural networks (Cho and L. K. Saul, 2009; Jacot, Gabriel, and

Hongler, 2018b), yielding ever-improving performance for various practical tasks (Arora, S. S.

Du, et al., 2019; S. S. Du, Zhai, et al., 2019; Z. Li, R. Wang, et al., 2019; Shankar et al., 2020).

Currently, theoretical tools to select the relevant kernel for a given task, i.e. to minimize the

generalization error, are however lacking. While a number of bounds for the risk of Linear

Ridge Regression (LRR) or KRR (Caponnetto and De Vito, 2007; Gerfo et al., 2008; Sridharan,

Shalev-Shwartz, and Srebro, 2009; Marteau-Ferey et al., 2019) exist, most focus on the rate of

convergence of the risk: these estimates typically involve constant factors which are difficult

to control in practice. Recently, a number of more precise estimates have been given (Louart,

Liao, and Couillet, 2017; Dobriban and Wager, 2018; Mei and Montanari, 2019; Liu and

Dobriban, 2020; Bordelon, Canatar, and Pehlevan, 2020a).

1.3.2 Deep Linear Networks

DLNs have a non-convex loss landscape and the behavior of training dynamics can be subtle.

For shallow networks, the convergence of gradient descent is guaranteed by the fact that the

saddles are strict and that all minima are global (Baldi and Hornik, 1989; Kawaguchi, 2016;

J. D. Lee, Simchowitz, et al., 2016; J. D. Lee, Panageas, et al., 2019a). In contrast, the deep case

features non-strict saddles (Kawaguchi, 2016) and no general proof of convergence exists at

the moment, though convergence to a global minimum can be guaranteed in some cases

(Arora, Cohen, Golowich, et al., 2019; Eftekhari, 2020).

A recent line of work focuses on the implicit bias of DLNs, and consistently reveals some

form of incremental learning and implicit sparsity as in Gissin, Shalev-Shwartz, and Daniely,

2020. Diagonal networks are known to learn minimal L1 solutions (Moroshko et al., 2020;

Woodworth et al., 2020). With a specific initialization and the MSE loss, DLNs learn the

singular components of the signal one by one (Saxe, McClelland, and Ganguli, 2014; Advani

and Saxe, 2017; Saxe, McClelland, and Ganguli, 2019; Gidel, Bach, and Lacoste-Julien, 2019;

Arora, Cohen, W. Hu, et al., 2019). Recently, it has been shown that with losses such as the

cross-entropy and the exponential loss, the parameters diverge towards infinity, but end

up following the direction of the max-margin classifier w.r.t. the Lp -Schatten (quasi-)norm

(Gunasekar, J. Lee, et al., 2018; Gunasekar, J. D. Lee, et al., 2018; Soudry et al., 2018; Ji and

Telgarsky, 2018; Ji and Telgarsky, 2020; Chizat and Bach, 2020; Lyu and J. Li, 2020; Moroshko

et al., 2020; Yun, Krishnan, and Mobahi, 2021).

In parallel, recent works have shown the existence of two regimes in large-width DNNs: a

kernel regime (also called NTK or lazy regime) where learning is described by the so-called

Neural Tangent Kernel (NTK) guaranteeing linear convergence (Jacot, Gabriel, and Hongler,
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2018b; S. S. Du, Zhai, et al., 2018; Chizat and Bach, 2018a; Arora, S. S. Du, et al., 2019; J. Lee,

Xiao, et al., 2019; Huang and Yau, 2020) and an active regime where the dynamics is nonlinear

(Chizat and Bach, 2018b; G. Rotskoff and Vanden-Eijnden, 2018; Mei, Montanari, and P.-M.

Nguyen, 2018b; Mei, Misiakiewicz, and Montanari, 2019; Chizat and Bach, 2020). For DLNs,

both regimes can be observed as well, with evidence that while the linear regime exhibits no

sparsity, the active regime favors solutions with some kind of sparsity (Woodworth et al., 2020;

Moroshko et al., 2020).

1.3.3 The Loss Landscape of Non-Linear Neural Networks

Neural network landscapes are highly non-convex landscapes, where non-optimal critical

points may harm gradient-descent by slowing it down (due to saddles) or making it stop

at local minima. Earlier works have argued in favor of a proliferation of saddles in high-

dimensional neural network landscapes through an analogy with random error functions

(Dauphin et al., 2014). One of the earliest attempts to build a theory of modern neural networks

was made by drawing a connection between neural networks and spherical spin glasses

(Choromanska et al., 2015). However, later numerical work showed that this analogy could

lead to incorrect conclusions by revealing fundamental phenomenological differences (Baity-

Jesi et al., 2018). The Kac-Rice formula from probability theory is commonly used for giving

an estimate for the landscape complexity in high dimensions such as spherical spin glasses

and spiked matrix tensor models (Auffinger, Arous, and Čern, 2013; Arous, Mei, et al., 2019).

However, this methodology cannot be directly applied to neural networks beyond the one-

neuron case (Maillard, Arous, and Biroli, 2020) because of the presence of degenerate critical

points emerging due to symmetries in network parameterization (Fukumizu and Amari, 2000).

1.3.4 Overparameterized Neural Networks

Neural network landscapes in practice are found to exhibit surprising properties, such as the

connectivity of global minima (Draxler et al., 2018; Garipov et al., 2018) and the convergence

to a global minimum in the so-called overparameterized regime (Jacot, Gabriel, and Hongler,

2018b), thereby ruling out proliferating saddles as a problem in this regime. Yet, in mildly

overparameterized networks, gradient descent may find a global minimum only for a small

fraction of random initializations (Sagun, Guney, et al., 2014; Chizat and Bach, 2018c; Frankle

and Carbin, 2018). Neural networks that have more parameters than needed to interpolate the

dataset are shown to reach a zero-loss solution more easily (Neyshabur, Bhojanapalli, et al.,

2017; Neyshabur, Z. Li, et al., 2018; Geiger, Jacot, Spigler, Gabriel, Sagun, d’Ascoli, et al., 2020).

1.3.5 Neural Networks with Few Neurons

Our theoretical understanding of the neural network training can be improved by studying

different, tractable limits, like infinitely-wide networks (Jacot, Gabriel, and Hongler, 2018b;

7
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Chizat and Bach, 2018c; S. S. Du, Zhai, et al., 2018; Mei, Montanari, and P.-M. Nguyen, 2018a;

G. M. Rotskoff and Vanden-Eijnden, 2018b; Arora, S. Du, et al., 2019; Sirignano and Spiliopou-

los, 2020). However, a theoretical understanding of under-parametrized neural networks is

still lacking. We are interested in the following fundamental algorithm-free question: Can we

characterize the optimal solution of a neural network with few neurons?

In this chapter, we focus on the opposite end: the one-neuron network. There is a large body of

work on the one-neuron case with notable examples of Tian, 2017; Mei, Y. Bai, and Montanari,

2018; Yehudai and Ohad, 2020. Our paper develops it further by giving a characterization

(closed-form formula) of the optimal solution for unit-orthonormal teacher networks and for

standard Gaussian input. Our approach is likely to be generalizable to two and more neurons

as we neither assume that the loss function has the Morse property as in Mei, Y. Bai, and

Montanari, 2018 (requires that all critical points are isolated; two-neuron network breaks it)

nor track the L2-distance between student and teacher parameters as in Tian, 2017; Yehudai

and Ohad, 2020 (fails due to permutation symmetry).

1.4 Main Thesis Contributions

In the first part of this thesis, we will present results from tractable and simplified models of

finite-width neural networks.

In Chapter 2, we study the Gaussian random features model. This is a simplification of neural

networks where every layer except for the last layer is frozen at initialization hence training

happens only in the last layer. Note that when the number of hidden neurons goes to infinity

and when the weights are initialized with large values, the neural networks in fact operate in

this regime. The closed-form expression of the resulting training dynamics is then captured

by the so-called Neural Tangent Kernel (Jacot, Gabriel, and Hongler, 2018b). Importantly,

we do not argue for any direct correspondence between the random features model and

neural networks beyond this limit. Indeed, Ba et al., 2022 showed that even one step of

gradient descent moves the first hidden layer parameters by a non-negligible amount from

their random initialization when the numbers of neurons and data points approach infinity at

a constant rate.

In Chapter 3, we study deep linear networks, i.e. neural networks with linear activation

function. While it is true that the network function expressed by a deep linear network is

simply linear, the training dynamics is non-trivial (Saxe, McClelland, and Ganguli, 2014; Arora,

Cohen, Golowich, et al., 2019). Moreover, the saddles of linear networks are arranged in a

special way: the typical escape direction of a rank ` saddle (that is, the network matrix has rank

`) falls within the stable manifold of a next saddle of rank `+1 and visits its neighborhood.

In particular, we study the very small initialization regime, so that the parameter vector falls

in the proximity of the known saddle at the origin. In this regime, the training dynamics

traverses from one saddle to the next following the so-called saddle-to-saddle training regime.

Numerically, for finite-width networks that are initialized in the NTK scaling, i.e. parameters
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have variance m−γ with γ< 1 (Jacot, Ged, Şimşek, et al., 2021), the trajectories are drawn to

the first few saddles which is manifested as learning plateaus in the loss curves.

In the second part of this thesis, we study finite-width neural networks (neural networks of

fixed width, and with a non-linear activation function).

In Chapter 4, we focus on permutation symmetry and the so-called symmetry-induced saddles

of the loss landscape. Splitting one of the neurons into two with a mixing ratio µ ∈R

(w j , a j ) → (w j ,µa j )⊕ (w j , (1−µ)a j ) (1.1)

does not only preserve the network function but also preserves criticality (Fukumizu and

Amari, 2000). By splitting multiple neurons into many neurons, a critical point θ of a network

induces symmetry-induced critical points in any wider network (Şimşek, Ged, et al., 2021).

The symmetry-induced critical points form manifolds (i.e. affine subspaces in the base case

without the scaling symmetry of ReLU) as the mixing ratios are arbitrary. Hence, they are

relevant objects to count to measure the complexity of the loss landscape. Our main result of

the chapter is a scaling law of critical manifolds of finite-width neural networks derived from

counting all partitions and permutation due to neuron splittings from an initial set of neurons.

Due to permutation symmetry, the scaling law in neural networks behaves as a factorial in the

number of neurons m but the parameter space also grows linearly in m. This is faster than the

exponential growth of the number of critical points of other high-dimensional complex loss

landscapes (Auffinger, Arous, and Čern, 2013; Ros et al., 2019; Arous, Mei, et al., 2019).

zero-neuron group
neuron splitting

(a) initial neurons (b) equivalent neurons

Figure 1.1 – The two symmetry opera-
tions generate an equivalent set of neu-
rons in a wider network: neuron split-
ting 1.1 (orange and blue neurons) and
zero-neuron addition 1.5 (gray neurons
cancel out each other).

In Chapter 5, we give an analysis of overparame-

terization independent of the optimization algo-

rithm, from the landscape complexity point of view.

On the one end, this applies to overparameterized

networks of any width; on the other end, it does

not give convergence guarantees. We assume that

the true function is a sum of k neurons, that is

f ∗(x) =∑k
`=1 b`σ(v` ·x). Said differently, we assume

that the dataset can be ‘solved’ by a finite-width

network, i.e. f ∗(xi ) = yi . The target function is

also called a teacher network (Saad and Solla, 1995)

or a multi-index model (Mousavi-Hosseini et al.,

2022). We focus on overparameterized neural networks with width m ≥ k (including zero-

overparameterization) and give the scaling law of the zero-loss manifolds that comes from

neuron splitting and zero-neuron addition (see Figure 1.1). Importantly, the scaling law is

exact for the global minima manifold of the population loss: we show that all zero-loss solu-

tions are identical up to neuron splitting, zero neuron addition, and permutation. We then

compare the scaling law of the symmetry-induced saddles with the scaling law of the zero-loss

manifolds. The resulting measure of landscape complexity gradually decreases and drops to

9



Chapter 1. Introduction

zero for infinitely wide networks.

In Chapter 6, we study the problem of learning with a few neurons. We assume that the true

function is a unit-orthonormal teacher network with k neurons and the input data is standard

Gaussian. We study the optimal loss given n < k neurons, assuming we have access to the

input distribution. The classic problem of learning with a few neurons is challenging, and

only the one-neuron case is studied in detail in the literature (Tian, 2017; Yehudai and Ohad,

2020; Mei, Montanari, and P.-M. Nguyen, 2018a). We also study the one-neuron case in detail

and give a closed-form expression for the optimal solution for ReLU activation function in

this thesis. Moreover, for odd activation functions such as erf, the extension to the whole

underparameterized regime and also n = k has been developed in Şimşek, Bendjeddou, et al.,

2023. Our approach includes a reformulation of the problem in the weight space in terms of

angular variables and study of the problem in terms of the so-called interaction functions for

which in general we do not have analytical formula. Our formulation is applicable to neural

networks with arbitarily many neurons and may be the key to characterizing the optimal

solutions of underparameterized neural networks.

This thesis includes a variety of methods to study finite-width neural networks to understand

their generalization and the loss landscape. Note that not all of the original papers are written

with the objective of studying finite-width neural networks, nevertheless, the results are closely

linked to the study of finite-width neural networks. In this thesis, we will reinterpret the results

accordingly.

1.4.1 Gaussian Random Features Model

Implicit Regularization of Random Features

We consider the Random Feature (RF) model (Rahimi and Recht, 2008b) with features sam-

pled from a Gaussian Process (GP) and study the RF predictor f̂ minimizing the regularized

least squares error, isolating the randomness of the model by considering fixed training data

points. RF models have been the subject of intense research activity: they are (randomized)

approximations of Kernel Methods aimed at easing the computational challenges of Kernel

Methods while being asymptotically equivalent to them (Rahimi and Recht, 2008b; T. Yang

et al., 2012; Sriperumbudur and Szabó, 2015; Yu et al., 2016). Unlike the asymptotic behavior,

which is well studied, RF models with a finite number of features are much less understood.

Random Feature (RF) models are used as efficient parametric approximations of kernel meth-

ods. We investigate, by means of random matrix theory, the connection between Gaussian RF

models and Kernel Ridge Regression (KRR). For a Gaussian RF model with P features, N data

points, and a ridge λ, we show that the average (i.e. expected) RF predictor is close to a KRR

predictor with an effective ridge λ̃. We show that λ̃>λ and λ̃↘λ monotonically as P grows,

thus revealing the implicit regularization effect of finite RF sampling. We then compare the risk

(i.e. test error) of the λ̃-KRR predictor with the average risk of the λ-RF predictor and obtain a
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precise and explicit bound on their difference. Finally, we empirically find an extremely good

agreement between the test errors of the average λ-RF predictor and λ̃-KRR predictor.

Generalization of KRR

KRR is a widely-used statistical method to learn a function from its values on a training

set (Schölkopf, Smola, and Müller, 1998a; Shawe-Taylor and Cristianini, 2004). It is a non-

parametric generalization of linear regression to infinite-dimensional feature spaces. Given a

positive-definite kernel function K and (noisy) observations yε of a true function f ∗ at a list of

points X = {x1, . . . , xN }, the λ-KRR estimator f̂ ε
λ

of f ∗ is defined by

f̂ ελ(x) = 1

N
K (x, X )

(
1

N
K (X , X )+λIN

)−1

yε,

where K (x, X )=(K (x, xi ))i=1,..,N ∈RN and K (X , X )=(K (xi , x j ))i , j=1,..,N ∈RN×N .

We study the generalization error of KRR for a kernel K with ridge λ> 0 and i.i.d. observations.

For this, we introduce a so-called Signal Capture Threshold (SCT), which is a function of the

data distribution: it can be used to identify the components of the data that the KRR predictor

captures, and to approximate the (expected) KRR risk.

1.4.2 Deep Linear Networks

The dynamics of Deep Linear Networks (DLNs) is dramatically affected by the variance σ2 of

the parameters at initialization θ0. For DLNs of width m, we show a transition w.r.t. the scaling

γ of the variance σ2 = m−γ as m →∞: for large variance (γ< 1), θ0 is very close to a global

minimum but far from any saddle point, and for small variance (γ> 1), θ0 is close to a saddle

point and far from any global minimum. While the first case corresponds to the well-studied

NTK regime, the second case is less understood. This motivates the study of the case γ→+∞,

where we conjecture a so-called saddle-to-saddle dynamics: throughout training, gradient

flow visits the neighborhoods of a sequence of saddles, each corresponding to linear maps of

increasing rank, until reaching a sparse global minimum (Z. Li, Y. Luo, and Lyu, 2020; Jacot,

Ged, Şimşek, et al., 2021). We support this conjecture with a theorem for the dynamics between

the first two saddles, as well as some numerical experiments. Saddle-to-saddle dynamics

are also observed and studied in (non-linear) neural networks (Boursier, Pillaud-Vivien, and

Flammarion, 2022; Abbé, Boix-Adserà, and Misiakiewicz, 2023).

1.4.3 The Loss Landscape of (Non-Linear) Neural Networks

It is crucial to understand the loss landscapes of neural networks to study various training

regimes (Jacot, Gabriel, and Hongler, 2018b; Chizat and Bach, 2018c; Jacot, Ged, Şimşek, et al.,

2021), to find the optimal solutions with closed-form expressions, and to characterize the
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possible failure modes (I. Safran and Shamir, 2018).

We give a detailed second-order analysis of the so-called symmetry-induced critical points

originating from the optimal solution of a narrower neural network building upon Fukumizu

and Amari, 2000; Şimşek, Ged, et al., 2021. In particular, we specify the conditions under

which the splitting of neurons leads to local minima, strict saddles, or non-strict saddles.

We analyze the second-order derivatives of a line of critical points in the network with n +1

neurons induced by neuron splitting of a minimum of the network with n neurons. The line

always contains two non-strict saddles, a continuum of strict saddles, and potentially also

local minima on line segments forming a plateau saddle since there is an escape direction via

a non-strict saddle at its boundary. Overall, the loss functions of neural networks with more

than one neuron are qualitatively different from the complex loss landscapes with isolated

critical points and non-convex loss functions satisfying the strict saddle property.

We also derive a new scaling law for the number of critical manifolds for finite-width neural

networks (Şimşek, Ged, et al., 2021). The number of splittings of n neurons onto m neurons

including the permutation symmetry between the latter is given by the expansion factor

G(n,m) =
n∑

i=1

(
n

i

)
(−1)n−i i m =

{
m

n

}
n! (1.2)

where the curly brackets denote Stirling numbers of the second kind. Numerically, we observe

that

lim
m→∞

1

m logm
G(αm,m) → c(α) (1.3)

for α ∈ [0,1] where c(α) is a unimodal curve with peak at 1
2log 2 (clearly, the exact constant

is not possible to determine numerically; it is taken from the exciting mathoverflow post).

Importantly, studying the scaling law and the hiererchical organization of the saddles gives a

lens to see the stucture of the loss landscape of finite-width neural networks.

1.4.4 Overparameterized Networks

We propose a notion of landscape complexity that measures the competition between the scal-

ing law of the saddle manifolds and that of the global minima. In particular, assuming a teacher

network2generates the targets, we call any network with a larger width overparameterized. For

networks with a few neurons more than the teacher, so-called mild overparameterization, we

proved that the landscape complexity approaches to infinity in the case of complex targets (i.e.

infinite teacher width). With further overparameterization, it decreases and drops to zero for

infinite-width networks. Our average-case analysis of finite-width networks provides fresh

insights into understanding overparameterization that is impossible to obtain with worst-case
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analysis.

Our approach to study landscape complexity of neural networks is based on permutation

symmetry (Brea, Şimşek, et al., 2019). Consider a two-layered neural network function f :

Rd →Rdout with n neurons

f (x) =
n∑

j=1
a jσ(w j · x) (1.4)

where w j and a j are incoming and outgoing vectors to the hidden neurons respectively, and

σ is the activation function. For the critical points at zero loss, i.e. global minima, we need to

include the zero-neuron addition symmetry

(w ′,0), (w ′, a)⊕ (w ′,−a), . . . (1.5)

which preserves the network function, but breaks criticality when applied to a critical point

that has greater than zero loss. Under the assumption that a finite-width network, say with k

neurons, achieves a zero-loss solution, the number of zero-loss manifolds in an overparame-

terized network with m>k neurons is given by the scaling law denoted by T (k,m) (Şimşek,

Ged, et al., 2021). We can view these scaling laws G and T as a generalization of the usual

factorial: in the case m=n=k, there is neither room to split neurons nor to add zero neurons,

hence both expansion factors reduce to k !.

According to our numerics, the critical factor 2log(2) is relevant for the trainability of neural

networks for difficult teachers (Martinelli et al., 2023). An exciting future direction is a charac-

terization of difficult teachers/datasets, as it could potentially be used in practice for choosing

the optimal network width for reliable convergence to a zero-loss solution. In the case of deep

networks, the landscape complexity grows exponentially with the number of hidden layers

since permutation symmetry applies to every one of them. We therefore expect a sharper

crossover at the critical factor of overparameterization.

Ensembling

In practice, the best performance is typically obtained by an ensemble of the same deep

network where the variability comes from the randomness in initialization and the ordering of

data samples. In our idealized setting of the population loss limit, if the training algorithm

converges to zero loss, ensembling randomly initialized networks would not improve any

accuracy since we proved that the network function at convergence is unique. Indeed in

practical settings, the solutions reached by stochastic gradient descent can be mapped to

the same linear region of the landscape up to a permutation of hidden neurons as shown by

(S. P. Singh and Jaggi, 2020; Entezari et al., 2021; Ainsworth, Hayase, and Srinivasa, 2022; K.

Jordan et al., 2022; Benzing et al., 2022) through large-scale experiments. These recent results

2This is a natural assumption as any target function can be approximated arbitrarily well with a neural network
thanks to the universal approximation theorem.
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point to an exciting research direction towards bridging the gap between weight averaging

and ensembling with substantial implications in distributed training and federated learning

which might be studied theoretically by generalizing our symmetry analysis to finite training

dataset scenarios.

1.4.5 Neural Networks with Few Neurons

In this chapter, we consider a student network of n neurons that learns from data generated

by a teacher network with k > n neurons. There is little work focused on the study of under-

parameterized networks, i.e. n < k, with the exception of a recent empirical study by Elhage

et al., 2022. In particular, we prove the closed-form formula of the optimal solution of the

one-neuron network for ReLU and erf activations when learning from a unit-orthonormal

teacher network with multiple neurons, going beyond the realizable case of the one-neuron

teacher (i.e. single-index model). More generally, our work offers a novel approach to studying

the classic teacher-student model as a concrete step toward understanding finite-width neural

networks exhibiting rich and intriguing phenomena.

Our approach relies on reparameterizing the loss in terms of the so-called interactions that

can be expressed as a function of the standard deviations and correlation of two Gaussian

random variables. The interactions in general do not have an explicit formula except for the

activation functions such as erf, ReLU, and linear (Saad and Solla, 1995; Goldt et al., 2019).

We show that the fixed point equation corresponding to the zero-derivative constraints at a

critical point should satisfy some bounds on the norm of the incoming vector and outgoing

weight for softplus activation for which the interaction does not admit an analytical formula:

the incoming vector computes a damped average of the teacher incoming vectors, and the

outgoing weight compensates for the missing neurons.
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2 Gaussian Random Features Model

In this chapter, we study the generalization of the random features predictor learning from a

finite data set of size N , finite number of features P , and with ridge λ. We present the main

results in Section 2.1 and related works in Section 2.2. We first introduce the λ-RF predictor

considering a fixed dataset in Section 2.3 following our paper Jacot, Şimşek, et al., 2020b. In

Subsection 2.4.1, preliminary results on the distribution of the λ-RF model are provided. In

Subsection 2.4.2, the first main theorem is stated (Theorem 2.4.3): the average (expected) λ-RF

predictor is close to the λ̃-KRR predictor for an explicit λ̃> λ. As a consequence (Corollary

2.4.5), the test errors of these two predictors are close; and numerical experiments show

that the test errors are in fact virtually identical (Figure 2.2). In Subsection 2.4.3, the second

main theorem is stated (Theorem 2.4.6): a bound on the variance of the λ-RF predictor is

given, which shows that it concentrates around its average. The ridgeless λ↘ 0 case is then

investigated: a lower bound on the variance of the λ-RF predictor is given, suggesting an

explanation for the double-descent curve in the ridgeless case.

To study the risk of the expected RF predictor, we need to study the generalization error of the

Kernel Ridge Regression (KRR) predictor with the effective ridge. In Section 2.5, we introduce

the KRR predictor, then introduce the relevant operators (Section 2.5) to study its train error

and risk. The rest of the chapter is then devoted to obtaining approximations for the KRR

risk. In Section 2.6.1, the Signal Capture Threshold (SCT) is introduced and used to study the

mean and variance of the KRR predictor in Subsection 2.6.1. In Section 2.6.3, the expected risk

is approximated in terms of the SCT and its derivative w.r.t. the ridge λ. This second part is

based on our paper Jacot, Şimşek, et al., 2020c.

2.1 Main Results

We consider a model of Random Features (RF) approximating a kernel method with kernel K .

This model consists of P Gaussian features, sampled i.i.d. from a (centered) Gaussian process

with covariance kernel K . For a given training set of size N , we study the distribution of the RF

predictor f̂ (RF ) with ridge parameter λ> 0 (L2 penalty on the parameters) and denote it by

17



Chapter 2. Gaussian Random Features Model

λ-RF. We show the following in Jacot, Şimşek, et al., 2020a:

• The distribution of f̂ (RF ) is that of a mixture of Gaussian processes.

• The expected RF predictor is close to the λ̃-KRR (Kernel Ridge Regression) predictor for

an effective ridge parameter λ̃>λ.

• The effective ridge λ̃ is determined by the number of features P , the ridge λ and the

Gram matrix of K on the dataset; λ̃ decreases monotonically to λ as P grows, revealing

the implicit regularization effect of finite RF sampling. Conversely, when using random

features to approximate a kernel method with a specific ridge λ∗, one should choose a

smaller ridge λ<λ∗ to ensure λ̃(λ) =λ∗.

• The test errors of the expectedλ-RF predictor and of the λ̃-KRR predictor are numerically

found to be extremely close, even for small P and N .

• The RF predictor’s concentration around its expectation can be explicitly controlled

in terms of P and of the data; this yields in particular E[R( f̂ (RF )
λ

)] = R( f̂ (K )
λ̃

)+O (P−1) as

N ,P →∞ with a fixed ratio γ= P/N where R is the MSE risk.

Since we compare the behavior of λ-RF and λ̃-KRR predictors on the same fixed training set,

our result does not rely on any probabilistic assumption on the training data (in particular, we

do not assume that our training data is sampled i.i.d.) in Jacot, Şimşek, et al., 2020a.

To study the generelization of the expected RF predictor, we need to study the generaliza-

tion error of the Kernel Ridge Regression (KRR) predictor with the effective ridge parameter.

We consider the KRR predictor f̂ (K ): one tries to reconstruct a true function f ∗ from noisy

observations yε = (
f ∗(x1)+εe1, ..., f ∗(xN )+εeN

)
, where the observations xi are data points

sampled from a distribution D, ε is the level of noise, and the e1, ...,eN are centered of unit

variance. We work under the universality assumption that, for large N , only the first two

moments of φ(x) and f ∗(x) determine the behavior of the first two moments of f̂ (K ) where

φ : Rd →H is the feature map to the corresponding RKHS H , i.e. K (x, x ′) = 〈φ(x),φ(x ′)〉H .

We obtain the following results in Jacot, Şimşek, et al., 2020d:

• We introduce the Signal Capture Threshold (SCT) ϑ, which is determined by the ridge λ,

the size of the training set N , the kernel K , and the data distribution D (more precisely,

the dependence on D is only through its first two moments). We give approximations

for the expectation and variance of the KRR predictor in terms of the SCT.

• Decomposing f ∗ along the kernel principal components of the data distribution, we

observe that in expectation, the predictor f̂ (K ) captures only the signal along the prin-

cipal components with eigenvalues larger than the SCT. If N increases or λ decreases,

the SCT ϑ shrinks, allowing the predictor to capture more signal. At the same time, the

variance of f̂ (K ) scales with the derivative ∂λϑ, which grows as λ→ 0, supporting the

classical bias-variance tradeoff picture (Geman, Bienenstock, and Doursat, 1992a).
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• We give an explicit approximation for the expected MSE risk Rε( f̂ (K )) and expected

empirical MSE risk R̂ε( f̂ (K )). We find that, surprisingly, the expected risk and expected

empirical risk are approximately related by

E[Rε( f̂ (K )
λ

)] ≈ ϑ2

λ2 E[R̂ε( f̂ (K )
λ

)].

Our proofs rely on a generalized and refined version of the finite-size analysis of Jacot, Şimşek,

et al., 2020a of generalized Wishart matrices, obtaining sharper bounds and generalizing the

results to operators. Our analysis relies in particular on the complex Stieltjes transform mG (z),

evaluated at z =−λ, and on fixed-point arguments.

2.2 Related works

Generalization of Random Features. The generalization behavior of Random Feature models

has seen intense study in the Statistical Learning Theory framework. Rahimi and Recht, 2009

find that O (N ) features are sufficient to ensure the O (1/
p

N ) decay of the generalization error

of Kernel Ridge Regression (KRR). Rudi and Rosasco, 2017 improve on their result and show

that O (
p

N log N ) features is actually enough to obtain the O (1/
p

N ) decay of the KRR error.

Hastie et al., 2022 use random matrix theory tools to compute the asymptotic risk when

both P, N →∞ with P/N → γ> 0. When the training data is sampled i.i.d. from a Gaussian

distribution, the variance is shown to explode at γ= 1. In the same linear regression setup,

Bartlett et al. (2019) establish general upper and lower bounds on the excess risk. Mei and

Montanari (2019) prove that the double-descent (DD) curve also arises for random ReLU

features, and adding a ridge suppresses the explosion around γ= 1.

Double-descent and the effect of regularization. For the cross-entropy loss, Neyshabur,

Tomioka, and Srebro (2014) observed that for two-layer neural networks the test error exhibits

the double-descent (DD) curve as the network width increases (without regularizers, without

early stopping). For MSE and hinge losses, the DD curve was observed also in multilayer

networks on the MNIST dataset (Spigler et al., 2018; Advani, Saxe, and Sompolinsky, 2020).

B. Neal et al. (2018) study the variance due to stochastic training in neural networks and find

that it increases until a certain width, but then decreases down to 0. Nakkiran et al. (2019)

establish the DD phenomenon across various models including convolutional and recurrent

networks on more complex datasets (e.g. CIFAR-10, CIFAR-100).

Belkin, Hsu, Ma, et al., 2018; Belkin, Hsu, and Xu, 2019 find that the DD curve is not peculiar

to neural networks and observe the same for random Fourier features and decision trees. In

Geiger, Jacot, Spigler, Gabriel, Sagun, d’Ascoli, et al., 2019, the DD curve for neural networks is

related to the variance associated with the random initialization of the Neural Tangent Kernel

(Jacot, Gabriel, and Hongler, 2018a); as a result, ensembling is shown to suppress the DD

phenomenon in this case, and the test error stays constant in the overparameterized regime.
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Recent theoretical work (d’Ascoli et al., 2020) study the same setting and derive formulas for

the asymptotic error, relying on the so-called replica method.

Generalization of Kernel Ridge Regression. The theoretical analysis of the risk of KRR has

seen tremendous developments in the recent years. In particular, a number of upper and

lower bounds for kernel risk have been obtained in various settings (Caponnetto and De

Vito, 2007; Sridharan, Shalev-Shwartz, and Srebro, 2009; Marteau-Ferey et al., 2019): notably,

convergence rates (i.e. without control of the constant factors) are obtained in general settings.

This allows one to abstract away a number of details about the kernels (e.g. the lengthscale),

which don’t influence the asymptotic rates. However, this does not give access to the risk at

finite data size (crucial to pick e.g. the correct lengthscale or the NTK depth).

We introduce the Signal Capture Threshgold (SCT) to study the risk achieved when learning

from finite data that is related to a number of objects from previous works, such as the effective

dimension of T. Zhang, 2003; Caponnetto and De Vito, 2007, the companion Stieltjes transform

of Dobriban and Wager, 2018; Liu and Dobriban, 2020, and particularly the effective ridge of

Jacot, Şimşek, et al., 2020a. The SCT can actually be viewed as a direct translation to the KRR

risk setting of Jacot, Şimşek, et al., 2020a.

General Wishart Matrices. A number of recent results have given precise descriptions of the

risk for ridge regression (Dobriban and Wager, 2018; Liu and Dobriban, 2020), for random

features (Mei and Montanari, 2019), and in relation to neural networks (Louart, Liao, and

Couillet, 2017; Bordelon, Canatar, and Pehlevan, 2020a). These results rely on the analysis

of the asymptotic spectrum of general Wishart random matrices, in particular through the

Stieltjes transform Silverstein, 1995; Z. Bai and Z. Wang, 2008. The limiting Stieltjes transform

can be recovered from the formula for the product of freely independent matrices (Gabriel,

2015; Speicher, 2017). To extend these asymptotic results to finite-size settings, we generalize

and adapt the results of (Jacot, Şimşek, et al., 2020a).

While these techniques have given simple formulae for the KRR predictor expectation, ap-

proximating its variance has remained more challenging. For this reason the description

of the expected risk in Louart, Liao, and Couillet, 2017 is stated as a conjecture. In Liu and

Dobriban, 2020 only the bias component of the risk is approximated. In Dobriban and Wager,

2018 the expected risk is given only for random true functions (in a Bayesian setting) with

a specific covariance. In Bordelon, Canatar, and Pehlevan, 2020a, the expected risk follows

from a heuristic spectral analysis combining a PDE approximation and replica tricks. In this

paper, we approximate the variance of the predictor along the principal components, giving

an approximation of the risk for arbitrary true functions.

Our analysis relies on the study of the spectrum of the general Wishart matrices of the form

WΣW T (for a fixed square matrix Σ and a rectangular matrix W with i.i.d. standard Gaussian

entries) and in particular their Stieltjes transform mP (z) = 1
P Tr

(
WΣW T − zIP

)−1
. In this paper,

we provide non-asymptotic variants of these results for an arbitrary matrix Σ (which in our

setting is the kernel Gram matrix or the kernel integral operator); the proofs in our setting are
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detailed in Appendix A.2.

2.3 Setup

Linear regression is a parametric model consisting of linear combinations

fθ =
1p
P

(
θ1φ

(1) +·· ·+θPφ
(P ))

of (deterministic) features φ(1), . . . ,φ(P ) : Rd → R. We consider an arbitrary training dataset

(X , y) with X = [x1, ..., xN ] ∈ Rd×N and y = [y1, . . . , yN ] ∈ RN , where the labels could be noisy

observations. For a ridge parameter λ> 0, the linear estimator corresponds to the parameters

θ̂ = [θ̂1, . . . , θ̂P ] ∈RP that minimize the (regularized) Mean Square Error (MSE) functional R̂λ

defined by

R̂λ( fθ) = 1

N

N∑
i=1

(
fθ(xi )− yi

)2 + λ

N
‖θ‖2. (2.1)

The data matrix F is defined as the N ×P matrix with entries Fi j = 1p
P
φ( j )(xi ). The minimiza-

tion of (2.1) can be rewritten in terms of F as

θ̂ = argminθ‖Fθ− y‖2 +λ‖θ‖2. (2.2)

The optimal solution θ̂ is then given by

θ̂ = F T (
F F T +λIN

)−1
y (2.3)

and the optimal predictor f̂ = fθ̂ by

f̂ (x) = 1p
P

P∑
j=1

φ( j )(x)F T
:, j

(
F F T +λIN

)−1
y. (2.4)

In this paper, we consider linear models of Gaussian random features associated with a

kernel K : Rd ×Rd → R. We take φ( j ) = f ( j ), where f (1), . . . , f (P ) are sampled i.i.d. from a

Gaussian Process of zero mean (i.e. E[ f ( j )(x)] = 0 for all x ∈ Rd ) and with covariance K (i.e.

E[ f ( j )(x) f ( j )(x ′)] = K (x, x ′) for all x, x ′ ∈Rd ). In our setup, the optimal parameter θ̂ still satisfies

(2.3) where F is now a random matrix. The associated predictor, called λ-RF predictor, is then

given by

Definition 2.3.1 (Random Feature Predictor). Consider a kernel K :Rd ×Rd →R, a ridge λ> 0,

and random features f (1), . . . , f (P ) sampled i.i.d. from a centered Gaussian Process of covariance

K . Let θ̂ be the optimal solution to (2.1) taking φ( j ) = f ( j ). The Random Feature predictor with

ridge λ is the random function f̂ (RF )
λ

:Rd →R defined by

f̂ (RF )
λ

(x) = 1p
P

P∑
j=1

θ̂ j f ( j )(x). (2.5)
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The λ-RF can be viewed as an approximation of kernel ridge predictors: observing from

(2.4) that f̂ (RF )
λ

only depends on the scalar product KP (x, x ′) = 1
P

∑P
j=1 f ( j )(x) f ( j )(x ′) between

datapoints, we see that as P →∞, KP → K and hence f̂ (RF )
λ

converges (Rahimi and Recht,

2008b) to a kernel predictor with ridge λ (Schölkopf, Smola, and Müller, 1998b), which we call

λ-KRR predictor.

Definition 2.3.2 (Kernel Predictor). Consider a kernel function K : Rd ×Rd → R and a ridge

λ> 0. The Kernel Predictor is the function f̂ (K )
λ

:Rd →R

f̂ (K )
λ

(x) = K (x, X )(K (X , X )+λIN )−1 y (2.6)

where K (X , X ) is the N ×N matrix of entries K (X , X )i j = K (xi , x j ) and K ( · , X ) :Rd →RN is the

map K (x, X )i = K (x, xi ).

Bias-Variance Decomposition of the Risk

Let us assume that there exists a true regression function f ∗ : Rd → R and an input data

generating distribution D on Rd . The risk of a predictor f :Rd →R is measured by the MSE

defined as (in the noiseless setting)

R( f ) = ED

[
( f (x)− f ∗(x))2] .

Let π denote the joint distribution of the i.i.d. sample f (1), ..., f (P ) from the centered Gaussian

process with covariance kernel K . The risk of f̂ (RF ) can be decomposed into a bias-variance

form as

Eπ
[
R( f̂ (RF ))

]=R
(
Eπ[ f̂ (RF )]

)+ED

[
Varπ( f̂ (RF )(x))

]
.

This decomposition into the risk of the average RF predictor and of the D-expectation of

its variance will play a crucial role in the next sections. This is in contrast with the classical

bias-variance decomposition in Geman, Bienenstock, and Doursat (1992b)

ED⊗N [R( f )] = R(ED⊗N [ f ])+ED[VarD⊗N [ f (x)]]

where D⊗N denotes the joint distribution on x1, ..., xN , sampled i.i.d. from D. Note that in our

decomposition no probabilistic assumption is made on the data, which is fixed.

Additional Notation

In this paper, we consider a fixed dataset (X , y) with distinct data points and a kernel K (i.e. a

positive definite symmetric function Rd ×Rd →R).

Let U DU T be the spectral decomposition of the kernel matrix K (X , X ), with D = diag(d1, . . . ,dN ).

Let D
1
2 = diag(

√
d1, . . . ,

√
dN ) and set K

1
2 =U D

1
2 U T . The law of the (random) data matrix F is

now that of 1p
P

K
1
2 W T where W is a P ×N matrix of i.i.d. standard Gaussian entries, so that
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Figure 2.1 – Distribution of the RF Predictor. Red dots represent a sinusoidal dataset yi =
sin(xi ) for N = 4 points xi in [0,2π). For selected P and λ, we sample ten RF predictors (blue
dashed lines) and compute empirically the average RF predictor (black lines) with ±2 standard
deviations intervals (shaded regions).

E[F F T ] = K (X , X ).

We will denote by γ= P/N the parameter-to-datapoint ratio: the underparameterized regime

corresponds to γ< 1, while the overparameterized regime corresponds to γ≥ 1. In order to

stress the dependence on the ratio parameter γ, we write f̂ (RF )
λ,γ instead of f̂ (RF )

λ
.

2.4 Implicit Regularization of Random Features

2.4.1 First Observations

The distribution of the RF predictor features a variety of behaviors depending on γ and λ, as

displayed in fig. 2.1. In the underparameterized regime P < N , sample RF predictors induce

some implicit regularization and do not interpolate the dataset (2.1a); at the interpolation

threshold P = N , RF predictors interpolate the dataset but the variance explodes when there

is no ridge (2.1b), however adding some ridge suppresses variance explosion (2.1c); in the

overparameterized regime P ≥ N with large P , the variance vanishes thus the RF predictor

converges to its average (2.1d). We will investigate the average RF predictor (solid lines) in

detail in Section 2.4.2 and study its variance in Section 2.4.3.

We start by characterizing the distribution of the RF predictor as a Gaussian mixture:

Proposition 2.4.1. Let f̂ (RF )
λ,γ (x) be the random features predictor as in (2.5) and let ŷ = F θ̂

be the prediction vector on training data, i.e. ŷi = f̂ (RF )
λ,γ (xi ). The process f̂ (RF )

λ,γ is a mixture

of Gaussians: conditioned on F , we have that f̂ (RF )
λ,γ is a Gaussian process. The mean and

covariance of f̂ (RF )
λ,γ conditioned on F are given by

E[ f̂ (RF )
λ,γ (x)|F ] = K (x, X )K (X , X )−1 ŷ , (2.7)

Cov[ f̂ (RF )
λ,γ (x), f̂ (RF )

λ,γ (x ′)|F ] = ‖θ̂‖2

P
K̃ (x, x ′), (2.8)

with K̃ (x, x ′) = K (x, x ′)−K (x, X )K (X , X )−1K (X , x ′) denoting the posterior covariance kernel.
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Figure 2.2 – Comparison of the test errors of the average λ-RF predictor and the λ̃-KRR predictor.
We train the RF predictors on N = 100 MNIST data points where K is the RBF kernel, i.e.
K (x, x ′) = exp

(−‖x −x ′‖2/`
)
. We approximate the average λ-RF on 100 random test points for

various ridges λ. In (a), given γ and λ, the effective ridge λ̃ is computed numerically using
(2.10). In (b), the test errors of the λ̃-KRR predictor (blue lines) and the empirical average of
the λ-RF predictor (red dots) agree perfectly.

The proof of Proposition 2.4.1 relies on the fact that f ( j ) conditioned on
(

f ( j )(xi )
)

i=1,...,N is a

Gaussian Process. Note that (2.7) and (2.8) depend on λ and P through ŷ and ‖θ̂‖2; in fact,

as the proof shows, these identities extend to the ridgeless case λ↘ 0. For the ridgeless case,

when one is in the overparameterized regime (P ≥ N ), one can (with probability one) fit the

labels y and hence ŷ = y :

Corollary 2.4.2. When P ≥ N , the average ridgeless RF predictor is equivalent to the ridgeless

KRR predictor

E
[

f̂ (RF )
λ↘0,γ(x)

]
= K (x, X )K (X , X )−1 y = f̂ (K )

λ↘0(x).

This corollary shows that in the overparameterized case, the ridgeless RF predictor is an

unbiased estimator of the ridgeless kernel predictor. The difference between the expected loss

of ridgeless RF predictor and that of the ridgeless KRR predictor is hence equal to the variance

of the RF predictor. As will be demonstrated in this article, outside of this specific regime, a

systematic bias appears, which reveals an implicit regularizing effect of random features.

2.4.2 Average Predictor

In this section, we study the average RF predictor E[ f̂ (RF )
λ,γ ]. As shown by Corollary 2.4.2 above,

in the ridgeless overparmeterized regime, the RF predictor is an unbiased estimator of the

ridgeless kernel predictor. However, in the presence of a non-zero ridge, we see the following

implicit regularization effect: the average λ-RF predictor is close to the λ̃-KRR predictor for

an effective ridge λ̃>λ (in other words, sampling a finite number P of features amounts to

taking a greater kernel ridge λ̃).
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Theorem 2.4.3. For N ,P > 0 and λ> 0, we have

∣∣∣E[ f̂ (RF )
λ,γ (x)]− f̂ (K )

λ
(x)

∣∣∣≤ c
p

K (x, x)yT K (X , X )−1 y

P
(2.9)

where the effective ridge λ̃(λ,γ) >λ is the unique positive number satisfying

λ̃=λ+ λ̃

γ

1

N

N∑
i=1

di

λ̃+di
, (2.10)

and where c > 0 depends on λ,γ, and 1
N TrK (X , X ) only.

Proof. (Sketch; see Supp. Mat. for details) Set Aλ = F (F T F +λIP )−1F T . The vector of the

predictions on the training set is given by ŷ = Aλy and the expected predictor is given by

E
[

f̂ (RF )
λ,γ (x)

]
= K (x, X )K (X , X )−1E [Aλ] y.

By a change of basis, we may assume the kernel Gram matrix to be diagonal, i.e. K (X , X ) =
diag(d1, . . . ,dN ). In this basis E [Aλ] turns out to be diagonal too. For each i = 1, . . . , N we can

isolate the contribution of the i -th row of F : by the Sherman-Morrison formula, we have

(Aλ)i i = di gi

1+di gi
, where

gi = 1

P
W T

i (F T
(i )F(i ) +λIP )−1Wi ,

with Wi denoting the i -th column of W =p
PF T K − 1

2 and F(i ) being obtained by removing the

i -th row of F . The gi ’s are all within O (1/
p

P ) distance to the Stieltjes transform

mP (−λ) = 1

P
Tr

(
F T F +λIP

)−1
.

By a fixed point argument, the Stieltjes transform mP (−λ) is itself within O (1/
p

P ) distance to

the deterministic value m̃(−λ), where it is is the unique positive solution to

γ= 1

N

N∑
i=1

di m̃(−λ)

1+di m̃(−λ)
+γλm̃(−λ).

(The detailed proof in the Supp. Mat. uses non-asymptotic variants of arguments found in

(Z. Bai and Z. Wang, 2008); the constants in the O bounds are in particular made explicit).

As a consequence, from the above results, we obtain

E [(Aλ)i i ] = E
[

di gi

1+di gi

]
≈ di m̃

1+di m̃
= di

λ̃+di
,

revealing the effective ridge λ̃= 1/m̃(−λ). This implies that E [Aλ] ≈ K (X , X )(K (X , X )+ λ̃IN )−1
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and

E
[

f̂ (RF )
λ,γ (x)

]
≈K (x, X )(K (X , X )+ λ̃IN )−1 y= f̂ (K )

λ
(x),

yielding the desired result.

Note that asymptotic forms of equations similar to the ones in the above proof appear in

different settings (Dobriban and Wager, 2018; Mei and Montanari, 2019; Liu and Dobriban,

2020), related to the study of the Stieltjes transform of the product of asymptotically free

random matrices.

While the above theorem does not make assumptions on P, N , and K , the case of interest is

when the right hand side c
P

p
K (x, x)yT K (X , X )−1 y is small. The constant c > 0 is uniformly

bounded whenever γ and λ are bounded away from 0 and 1
N TrK (X , X ) is bounded from above.

As a result, to bound the right hand side of (2.9), the two quantities we need to bound are

T = 1
N TrK (X , X ) and yT K (X , X )−1 y .

• The boundedness of T is guaranteed for kernels that are translation-invariant, i.e. of the

form K (x, y) = k(‖x − y‖): in this case, one has T = k(0).

• If we assume ED [K (x, x)] <∞ as is commonly done in the literature (Rudi and Rosasco,

2017), T converges to ED [K (x, x)] as N →∞ (assuming i.i.d. data points).

• For yT K (X , X )−1 y , under the assumption that the labels are of the form yi = f ∗(xi ) for

a true regression function f ∗ lying in Reproducing Kernel Hilbert Space (RKHS) H of

the kernel K (Schölkopf, Smola, and Müller, 1998b), we have yT K (X , X )−1 y ≤ ‖ f ∗‖H .

Our numerical experiments in Figure (2.2b) show excellent agreement between the test error

of the expected λ-RF predictor and the one of the λ̃-KRR predictor suggesting that the two

functions are indeed very close, even for small N ,P .

Thanks to the implicit definition of the effective ridge λ̃ (which depends on λ,γ, N and on the

eigenvalues di of K (X , X )) we obtain the following:

Proposition 2.4.4. The effective ridge λ̃ satisfies the following properties:

1. for any γ> 0, we have λ< λ̃(λ,γ) ≤λ+ 1
γT ;

2. the function γ 7→ λ̃(λ,γ) is decreasing;

3. for γ> 1, we have λ̃≤ γ
γ−1λ;

4. for γ< 1, we have λ̃≥ 1−pγp
γ

mini di .

The above proposition shows the implicit regularization effect of the RF model: sampling

fewer features (i.e. decreasing γ) increases the effective ridge λ̃.
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Furthermore, as λ→ 0 (ridgeless case), the effective ridge λ̃ behave as follows:

• in the overparameterized regime (γ> 1), λ̃ goes to 0;

• in the underparameterized regime (γ< 1), λ̃ goes to a limit λ̃0 > 0.

These observations match the profile of λ̃ in Figure (2.2a).

Remark. When λ↘ 0, the constant c in our bound (2.9) explodes (see Supp. Mat.). As a result,

this bound is not directly useful when λ= 0. However, we know from Corollary 2.4.2 that in

the ridgeless overparametrized case (γ> 1), the average RF predictor is equal to the ridgeless

KRR predictor. In the underparametrized case (γ< 1), our numerical experiments suggest that

the ridgeless RF predictor is an excellent approximation of the λ̃0-KRR predictor.

Effective Dimension

The effective ridge λ̃ is closely related to the so-called effective dimension appearing in

statistical learning theory. For a linear (or kernel) model with ridge λ, the effective dimension

N (λ) ≤ N is defined as
∑N

i=1
di

λ+di
(T. Zhang, 2003; Caponnetto and De Vito, 2007). It allows

one to measure the effective complexity of the Hilbert space in the presence of a ridge.

For a given λ> 0, the effective ridge λ̃ introduced in Theorem 2.4.3 is related to the effective

dimension N (λ̃) by

N (λ̃) = P

(
1− λ

λ̃

)
.

In particular, we have that N (λ̃) ≤ min(N ,P ): this shows that the choice of a finite number of

features corresponds to an automatic lowering of the effective dimension of the related kernel

method.

Note that in the ridgeless underparameterized case (λ↘ 0 and γ< 1), the effective dimension

N (λ̃) equals precisely the number of features P .

Risk of the Average Predictor

A corollary of Theorem 2.4.3 is that the loss of the expected RF predictor is close to the loss of

the KRR predictor with ridge λ̃:

Corollary 2.4.5. If ED [K (x, x)] <∞, we have that the difference of errorsδE =
∣∣∣L(E[ f̂ (RF )

λ,γ ])−L( f̂ (K )
λ̃

)
∣∣∣

is bounded from above by

δE ≤ C yT K (X , X )−1 y

P

(
2

√
L

(
f̂ (K )
λ̃

)
+ C yT K (X , X )−1 y

P

)
,

where C is given by c
p
ED[K (x, x)], with c the constant appearing in (2.9) above.
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Figure 2.3 – Average test error of the ridgeless vs. ridge λ-RF predictors. In (a), the average test
errors of the ridgeless and the ridge RF predictors (solid lines) and the effect of ensembling
(dashed lines) for N = 100 MNIST data points. In (b), the variance of the RF predictors and in
(c), the evolution of ∂λλ̃ in the ridgeless and ridge cases. The experimental setup is the same
as in Figure 2.2.

As a result, δE can be bounded in terms of λ,γ,T, yT K (X , X )−1 y , which are discussed above,

and of the kernel generalization error L( f (K )
λ̃

). Such a generalization error can be controlled in

a number of settings as N grows (Caponnetto and De Vito, 2007; Marteau-Ferey et al., 2019).

For instance, the loss is shown to vanish as N →∞. Figure (2.2b) shows that the two test losses

are indeed very close.

2.4.3 Bounding the Variance of the Predictor

In the previous sections, we analyzed the loss of the expected predictor E[ f̂ (RF )
λ,γ ]. In order to

analyze the expected loss of the RF predictor f̂ (RF )
λ,γ , it remains to control the variance of the RF

predictor: this follows from the bias-variance decomposition

E
[

L( f̂ (RF )
λ,γ )

]
=L

(
E[ f̂ (RF )

λ,γ ]
)
+ED

[
Var( f̂ (RF )

λ,γ (x))
]

,

introduced in Section 2.3. The variance Var
(

f̂ (RF )
λ,γ (x)

)
of the RF predictor can itself be written

as the sum

Var
(
E
[

f̂ (RF )
λ,γ (x) | F

])
+E

[
Var

(
f̂ (RF )
λ,γ (x) | F

)]
.

By Proposition 2.4.1, we have

E
[

f̂ (RF )
λ,γ (x) | F

]
= K (x, X )K (X , X )−1 ŷ , Var

(
f̂ (RF )
λ,γ (x) | F

)
= ‖θ̂‖2

P
K̃ (x, x).

RF Predictor Concentration

The following theorem allows us to bound both terms:
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2.4. Implicit Regularization of Random Features

Theorem 2.4.6. There are constants c1,c2 > 0 depending on λ,γ,T only such that

Var
(
K (x, X )K (X , X )−1 ŷ

)≤ c1K (x, x)(yT K (X , X )−1 y)2

P
,

∣∣E[‖θ̂‖2]−∂λλ̃yT Mλ̃y
∣∣≤ c2(yT K (X , X )−1 y)2

P
,

where ∂λλ̃ is the derivative of λ̃ with respect to λ and for Mλ̃ = K (X , X )(K (X , X )+ λ̃IN )−2. As a

result

Var
(

f̂ (RF )
λ,γ (x)

)
≤ c3K (x, x)(yT K (X , X )−1 y)2

P
,

where c3 > 0 depends on λ,γ,T .

Putting the pieces together, we obtain the following bound on the difference∆E = |E[L( f̂ (RF )
λ,γ )]−

L( f̂ (K )
λ

)| between the expected RF loss and the KRR loss:

Corollary 2.4.7. If ED [K (x, x)] <∞, we have

∆E ≤ C1 yT K (X , X )−1 y

P

(√
L( f̂ (K )

λ
)+C2 yT K (X , X )−1 y

)
.

where C1 and C2 depend on λ,γ,T and ED[K (x, x)] only.

Double Descent Curve

We now investigate the neighborhood of the frontier γ= 1 between the under- and overparam-

eterized regimes, known empirically to exhibit a double descent curve, where the test error

explodes at γ= 1 (i.e. when P ≈ N ) as exhibited in Figure 2.3.

Thanks to Theorem 2.4.6, we get a lower bound on the variance of f̂ (RF )
λ,γ :

Corollary 2.4.8. There exists c2 > 0 depending only on λ,γ,T (same as in Theorem 2.4.6) such

that Var( f̂ (RF )
λ,γ (x)) is bounded from below by

∂λλ̃
yT Mλ̃y

P
K̃ (x, x)− c2(yT K (X , X )−1 y)2

P 2 K̃ (x, x).

If we assume the second term of Corollary A.6.2 to be negligible, then the only term which

depends on P is the first term. The derivative ∂λλ̃ has an interesting behavior as a function of

λ and γ:

Proposition 2.4.9. For γ > 1, as λ→ 0, the derivative ∂λλ̃ converges to γ
γ−1 . As λγ→∞, we

have ∂λλ̃(λ,γ) → 1.

The explosion of ∂λλ̃ in (γ= 1,λ= 0) is displayed in Figure (2.3c). Corollary A.6.2 can be used

to explain the double-descent curve numerically observed for small λ > 0. It is natural to
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Figure 2.4 – Average test error of the λ-RF predictor for two values of N and λ = 10−4. For
N = 1000, the test error is naturally lower and the cusp at γ= 1 is narrower than for N = 100.
The experimental setup is the same as in Figure 2.2.

assume that in this case ∂λλ̃À 1 around γ= 1, dominating the lower bound in Corollary A.6.2.

In turn, by Proposition A.4.2 this implies that the variance of f̂ (RF ) gets large. Finally, by the

bias-variance decomposition, we obtain a sharp increase of the test error around γ= 1, which

is in line with the results of (Hastie et al., 2022; Mei and Montanari, 2019).

2.5 Additional Setup

Given a compact Ω ⊂ Rd , let C denote the space of continuous f : Ω→ R, endowed with

the supremum norm
∥∥ f

∥∥∞ = supx∈Ω
∣∣ f (x)

∣∣. In the classical regression setting, we want to

reconstruct a true function f ∗ ∈ C from its values on a training set x1, . . . , xN , i.e. from the

noisy labels yε = (
f ∗(x1)+εe1, . . . , f ∗(xN )+εeN

)
for some i.i.d. centered noise e1, . . . ,eN of

unit variance and noise level ε≥ 0.

In the paper Jacot, Şimşek, et al., 2020d, the observed values (without noise) of the true

function f ∗ consist in observations o1, . . . ,oN ∈C ∗, where C ∗ is the dual space, i.e. the space

of bounded linear functionals C → R. We thus represent the training set of N observations

o1, . . . ,oN by the sampling operator O : C →RN which maps a function f ∈C to the vector of

observations O ( f ) = (o1( f ), . . . ,oN ( f ))T . We refer the reader to the paper Jacot, Şimşek, et al.,

2020d for the statement of the results and proofs in the general setting.

The classical setting corresponds to the case where the observations are evaluations of f ∗ at

points x1, . . . , xN ∈Ω, i.e. oi
(

f ∗)= f ∗(xi ) for i = 1, . . . , N . We will restate the operators and the

results from Jacot, Şimşek, et al., 2020d that we are interested in this chapter in the classical

setting.

The regression problem in the noisy setting is now stated as follows: given noisy observations

yεi = f ∗(xi )+εei with i.i.d. centered noises e1, . . . ,eN of unit variance, how can one reconstruct
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2.5. Additional Setup

f ∗? The Kernel Ridge Regression (KRR) predictor with ridge λ is the function f̂ ε
λ

:Ω→R

f̂ ελ = 1

N
K (x, X )(

1

N
K (X , X )+λIN )−1 yε

where we introduced the rescaling factor of 1
N in comparison to the KRR predictor in (2.6). We

call the N ×N matrix G = K (X , X ) the Gram matrix.

Remark. The KRR predictor arises naturally in the following setup: assuming a (centered)

Gaussian Bayesian prior on the true function with covariance operator K and noise amplitude

ε, the expected posterior, for observed labels yε is given by f̂ ε
λ

for λ= ε2.

Useful Operators

We consider the least-squares error (MSE loss) of the KRR predictor, taking into account

randomness of: (1) the test point (x, f ∗(x)+εe) which is added a noise εe (2) the training data,

made of N points (xi , f ∗(xi )+εei ) where x, x1, . . . , xn ∼D and e,e1, . . . ,eN ∼ ν are i.i.d. (ν has

zero mean and unit variance). The expected risk of the KRR predictor is thus taken w.r.t. the

test and training observations and their noises. Unless otherwise specified, the expectations

are taken w.r.t. all these sources of randomness.

For fixed x1, . . . , xN , the empirical risk or training error of the KRR predictor f̂ ε
λ

is

R̂ε( f̂ ελ) = 1

N

N∑
i=1

( f̂ ελ(xi )− yεi )2 = 1

N

∥∥ f̂ ελ(X )− yε
∥∥2

.

For a test point x sampled from D and a noise εe (where e ∼ ν is centered of unit variance as

before), the risk Rε( f̂ ε
λ

) of the KRR predictor f̂ ε
λ

is defined by

Rε( f̂ ελ) = Ex∼D,e∼ν
[
( f̂ ελ(x)− f ∗(x)−εe)2] .

The risk can be rewritten as Rε( f̂ ε
λ

) = ∫
( f̂ ε
λ

(x)− f ∗(x))2D(d x)+ε2. The following three operators

enable expressing the risk and empirical risk hence are central to our analysis:

Definition 2.5.1. The KRR Integral Operator TK : C → C , its empirical version T N
K : C → C ,

the KRR reconstruction operator Aλ : C →C are defined by

[TK f ](x) = Ex ′∼D

[
f (x ′)K (x, x ′)

]
, [T N

K f ](x) = 1

N

N∑
i=1

f (xi )K (x, xi ),

Aλ = T N
K (T N

K +λIC )−1.

As N →∞, we have that T N
K → TK , and it follows that

Aλ→ Ãλ := TK (TK +λIC )−1. (2.11)
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Chapter 2. Gaussian Random Features Model

Eigendecomposition of the Kernel

We will assume that the kernel K can be diagonalized by a countable family of eigenfunc-

tions ( f (k))k∈N in C with eigenvalues (dk )k∈N, orthonormal with respect to the scalar product∫
f (k)(x) f (`)(x)D(d x) = δk`, such that we have (with uniform convergence):

K (x, x ′) =
∞∑

k=1
dk f (k)(x) f (k)(x ′).

It will be handy to introduce the scalar product notation

〈 f , g 〉D =
∫

f (x)g (x)D(d x). (2.12)

The functions f (k) are also eigenfunctions of TK : we have TK f (k) = dk f (k). We will also assume

that Tr[TK ] =∑∞
k=1 dk is finite. Note that in the classical setting K can be diagonalized as above

by Mercer’s theorem in the domainΩ, and Tr[TK ] = Ex∼D [K (x, x)] is finite if D has compact

support.

Computing the eigendecomposition of TK is difficult for general kernels and data distributions,

but explicit formulas exist for special cases, such as for the RBF kernel and isotropic Gaussian

inputs as described in Section 1.5 of the Appendix of Jacot, Şimşek, et al., 2020c.

2.6 Generalization of Kernel Ridge Regression

2.6.1 Predictor Moments and Signal Capture Threshold (SCT)

A central tool in our analysis of the KRR predictor f̂ ε
λ

is the Signal Capture Threshold (SCT):

Definition 2.6.1. For λ> 0, the Signal Capture Threshold ϑ is the unique positive solution (see

Section 2.2 in the Appendix) to the equation:

ϑ=λ+ ϑ

N
Tr

[
TK (TK +ϑIC )−1] .

In this section, we use ϑ and the derivative ∂λϑ for the estimation of the mean and variance of

the KRR predictor f̂ ε
λ

.

Mean predictor

The expected KRR predictor can be expressed in terms of the expected reconstruction operator

Aλ

E[ f̂ ελ] = E [Aλ] f ∗,

where we used the fact that Ee1,...,eN∼ν[yε] = f ∗(X ).
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2.6. Generalization of Kernel Ridge Regression

Theorem 2.6.1. The expected reconstruction operator E[Aλ] is approximated by the operator

Ãϑ = TK (TK +ϑIC )−1 in the sense that for all f , g ∈C ,

∣∣〈 f ,
(
E [Aλ]− Ãϑ

)
g 〉D

∣∣≤ (
1

N
+P 0(

Tr[TK ]

λN
)

)∣∣〈 f , Ãϑ(IC − Ãϑ)g 〉D
∣∣ ,

for a polynomial P 0 with nonnegative coefficients and P 0(0) = 0.

This theorem gives the following motivation for the name SCT: if the true function f ∗ is an

eigenfunction of TK , i.e. TK f ∗ = δ f ∗, then we have Ãϑ f ∗ = δ
ϑ+δ f ∗ which implies

• if δÀϑ, then δ
ϑ+δ ≈ 1 and E [Aλ] f ∗ ≈ f ∗, i.e. the function is learned on average,

• if δ¿ϑ, then δ
ϑ+δ ≈ 0 and E [Aλ] f ∗ ≈ 0, i.e. the function is not learned on average.

More generally, if we decompose a true function f ∗ along the principal components (i.e.

eigenfunctions) of TK , the signal along the k-th principal component f (k) is captured whenever

the corresponding eigenvalue dk Àϑ and lost when dk ¿ϑ.

Variance of the predictor

We now estimate the variance of f̂ ε
λ

along each principal component in terms of the SCT ϑ

and its derivative ∂λϑ. Along the eigenfunction f (k), the variance is estimated by Vk , where

Vk = ∂λϑ

N

(∥∥(IC − Ãϑ) f ∗∥∥2
D +ε2 +〈 f (k), f ∗〉2

D

ϑ2

(ϑ+dk )2

) d 2
k

(ϑ+dk )2 .

Theorem 2.6.2. There is a constant C 1 > 0 and a polynomial P 1 with nonnegative coefficients

and with P 1(0) = 0 such that∣∣∣Var
(
〈 f (k), f̂ ελ〉D

)
−Vk

∣∣∣≤ (
C 1

N
+P 1(

Tr[TK ]

λN
1
2

)

)
Vk .

Understanding the variance along the principal components (rather than the covariances

between the principal components) is enough to describe the risk.

2.6.2 Behavior of the SCT

The behavior of the SCT can be controlled by the following (agnostic of the spectrum of TK )

Proposition 2.6.3. For any λ> 0, we have

λ<ϑ≤λ+ 1

N
Tr[TK ], 1 ≤ ∂λϑ≤ 1

λ
ϑ,

moreover ϑ is decreasing as a function of N .
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Figure 2.5 – Signal Capture Threshold and its Derivative. We consider the RBF Kernel on the
standard d-dimensional Gaussian with `= d = 20. In blue lines, exact formulas for the SCT ϑ
and ∂λϑ, computed using the explicit formula for the eigenvalues dk of the integral operator
TK given in Section 1.5 of the Appendix of the paper Jacot, Şimşek, et al., 2020c.

Remark. As N →∞, we have ϑ decreases down to λ (see also Figure 2.5), in agreement with the

fact that Aλ→ Ãλ.

As λ→ 0, the above upper bound for ∂λϑ becomes useless. Still, assuming that the spectrum

of K has a sufficiently fast power-law decay, we get:

Proposition 2.6.4. If dk =Θ(k−β) for some β> 1, there exist c0,c1,c2 > 0 such that for any λ> 0

λ+ c0N−β ≤ϑ≤ c2λ+ c1N−β, 1 ≤ ∂λϑ≤ c2.

2.6.3 Expected Risk

The expected risk is approximated, in terms of the SCT and the true function f ∗, by

R̃ = ∂λϑ(‖(IC − Ãϑ) f ∗‖2
D +ε2),

as shown by the following:

Theorem 2.6.5. There exists a constant C 2 > 0 and a polynomial P 2 with nonnegative coeffi-

cients and with P 2(0) = 0, such that we have

∣∣E[Rε( f̂ ελ)]− R̃
∣∣≤ (

C 2

N
+P 2(

Tr[TK ]

λN
1
2

)

)
R̃.

Proof. (Sketch). From the bias-variance decomposition:

E[R( f̂ ελ)] = R(E[ f̂ ελ])+
∞∑

k=1
Var(〈 f (k), f̂ ελ〉D).

By Theorem 2.6.1 and a small calculation, the bias is approximately ‖(IC − Ãϑ) f ∗‖2
D
+ε2. By

Theorem 2.6.2 and a calculation, the variance is approximately (∂λϑ−1)(‖(IC − Ãϑ) f ∗‖2
D
+

ε2).
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2.7. Conclusion

The approximate expected risk R̃ is increasing in both ϑ and ∂λϑ. As λ increases, the bias

increases withϑ, while the variance decreases with ∂λϑ: this leads to the bias-variance tradeoff.

On the other hand, as a function of N , ϑ is decreasing but ∂λϑ is generally not monotone: this

can lead to so-called multiple descent curves in the risk as a function of N (Liang, Rakhlin,

and Zhai, 2020).

Note also that if the true function is in RKHS, we can decompose it along the principal

components f ∗ =∑∞
k=1 bk f (k). The risk is then approximated by

R̃( f ∗) = ∂λϑ
( ∞∑

k=1

ϑ2

(ϑ+dk )2 b2
k +ε2

)
.

Remark. For a decaying ridge λ= cN−γ for 0 < γ< 1
2 , as N →∞, by Proposition 2.6.3, we get

ϑ→ 0 and ∂λϑ→ 1: this implies that E[R( f̂ ε
λ

)] → ε2 if f ∗ is in the RKHS associated with K .

Remark. In a Bayesian setting, assuming that f ∗ is random with zero mean and covariance

kernel Σ, the optimal choices for the KRR predictor are K =Σ and λ= ε2/N . When K =Σ and

λ= ε2/N , the formula of R̃ simplifies to

E
[
R

(
f̂ ελ

)]≈ Nϑ.

The empirical risk (or train error) R̂( f̂ ε
λ

) = λ2(yε)T ( 1
N G +λIN )−2 yε can be analyzed with the

same theoretical tools. Its approximation in terms of the SCT is given as follows:

Theorem 2.6.6 (Theorem 17 in the Appendix). There exists a constant C 3 > 0 and a polynomial

P 3 with nonnegative coefficients and with P 3(0) = 0 such that we have∣∣∣∣E[R̂( f̂ ελ)]− λ2

ϑ2 R̃

∣∣∣∣≤ (
1

N
+P 3(

Tr[TK ]

λN
)

)
R̃.

2.7 Conclusion

In the first part, we have identified the implicit regularization arising from the finite sampling

of Random Features (RF): using a Gaussian RF model with ridge parameter λ> 0 (λ-RF) is in

expectation equivalent to using a Kernel Ridge Regression with effective ridge λ̃>λ (λ̃-KRR)

which we characterize explicitly (Theorem 2.4.3). The λ-RF predictor concentrates around its

expectation when λ is bounded away from zero for large P (Theorem 2.4.6); this implies in

particular that the risks of the λ-RF and λ̃-KRR predictors are close to each other (Corollary

A.6.1). Both theorems are proven using tools from random matrix theory, in particular finite-

size results on the concentration of the Stieltjes transform of general Wishart matrix models.

Our numerical verifications on the expected λ-RF predictor and the λ̃-KRR predictor have

shown that both are in excellent agreement. This shows in particular that in order to use RF

predictors to approximate KRR predictors with a given ridge, one should choose both the
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Chapter 2. Gaussian Random Features Model

number of features and the explicit ridge appropriately.

Finally, we investigate the ridgeless limit case λ↘ 0. In this case, we see a sharp transition

at γ = 1: in the overparameterized regime γ > 1, the effective ridge goes to zero, while in

the underparameterized regime γ< 1, it converges to a positive value. At the interpolation

threshold γ = 1, the variance of the λ-RF explodes, leading to the double descent curve

emphasized in (Advani, Saxe, and Sompolinsky, 2020; Spigler et al., 2018; Belkin, Hsu, Ma,

et al., 2018; Nakkiran et al., 2019). We investigate this numerically and prove a lower bound

yielding a plausible explanation for this phenomenon.

In the second part, we studied the Kernel Ridge Regression (KRR) predictor and its risk. We

obtain new precise estimates for the test and train error in terms of a new object, the Signal

Capture Threshold (SCT), which identifies the components of a true function that are being

learned by the KRR. Our estimates reveal a remarkable relation between the expected risk and

expected empirical risk of the KRR predictor.

While our current proofs require the Gaussianity assumption, it seems natural to postulate that

the results and the proofs extend to more general setups, along the lines of Louart, Liao, and

Couillet, 2017; Benigni and Péché, 2019. To complete the study of the risk of the RF predictor

of the gaussian random features model, what remains is the study of the variance of the RF

predictor.
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3 Deep Linear Networks

In this chapter, we present the preprint Jacot, Ged, Şimşek, et al., 2022, focusing on the parts

where the thesis author has more contributions than the other parts, in particular the loss

landscape. We present the main results in Section 3.1, related works in Section 3.2, and

problem setup in Section 3.3. We present the first main theorem on the scaling of the distance

from a typical initialization to the closest saddle point and to the closest global minimum in

terms of width in Section 3.4. The proof is presented in Section B. Section 3.5 presents a new

training regime called Saddle-to-Saddle which may be relevant to the training of non-linear

networks too, due to symmetry-induced saddles (see Chapter 4). The main theorem here

shows that the typical gradient flow path initialized very small follows the path followed by the

width 1 linear network up to an inclusion and rotation (see the preprint Jacot, Ged, Şimşek,

et al., 2022 for the proof).

In Section 3.6, we compare the saddle-to-saddle regime with the commonly studied limiting

training dynamics of Mean-Field and the Neural Tangent Kernel. We note here that our main

theorem in Section 3.5 applies to finite-width networks and we conjecture that the gradient

flow follows the trajectories of the narrower networks for general widths. In this thesis, we

argue that this is due to the particular arrangement of the saddles in linear networks: where

the typical escape path of a saddle is within the attractive manifold of the next saddle. It

remains an open question whether the hiererchy of the saddles follow the same specialized

structure in non-linear networks. We present the conclusions in Section 3.7.

3.1 Main Results

We study deep linear networks x 7→ Aθx of depth L ≥ 1 and widths n0, ...,nL , that is Aθ =
WL ...W1 where W1, ...,WL are matrices such that Wi ∈Rni×ni−1 and θ is a vector that consists

of all the (learnable) parameters of the DLN, i.e. the components of the matrices W1, ...,WL .

For any general convex cost C : RnL×n0 → R on matrices, we investigate the gradient flow

minimizing the loss L (θ) =C (Aθ). To ease the notation, suppose that the hidden layers have

the same size, that is w = n1 = ... = nL−1.
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The variance of the parameters at initialization has a profound effect on the training dynamics.

If the parameters are initialized with variance σ2 = w−γ, where w is the size of the hidden

layers, we observe a transition in the infinite width limit as w →∞ as shown in Theorem 3.4.1:

• when γ< 1, the random initialization θ0 is (with high probability) very close to a global

minimum and very far from any saddle,

• when γ> 1, the initialization is very close to a saddle and far from any global minimum.

The case γ< 1 corresponds to the NTK regime (or kernel/lazy regime of Jacot, Gabriel, and

Hongler, 2018a) and the case γ = 1 corresponds to the Mean-Field limit (or the Maximal

Update parametrization of G. Yang, 2019). It appears that the case γ> 1 has been much less

studied in previous works.

To understand this regime, we investigate in Section 3.5 the case γ→+∞. More precisely,

we fix the width of the network and let the variance at initialization go to zero. We show in

Theorem 3.5.1 that the gradient flow trajectory asymptotically goes from the saddle at the

origin ϑ0 = 0 to a rank-one saddle ϑ1, i.e. a saddle where the matrices W1, . . . ,WL are of rank 1.

The proof is based on a new description, in the spirit of the Hartman-Grobman theorem, of

the so-called fast escape paths at the origin. This theorem may be of independent interest.

We propose the Conjecture 3.5.2, backed by numerical experiments, describing the full gradi-

ent flow when the variance at initialization is very small, suggesting that it goes from saddle

to saddle, visiting the neighborhoods of a sequence of critical points ϑ0, . . . ,ϑK (the first K

ones being saddle points, the last one being either a global minimum or a point at infinity)

corresponding to matrices of increasing ranks. This is consistent with Gissin, Shalev-Shwartz,

and Daniely, 2020 which shows that incremental learning occurs in a toy model of DLNs and

that gradient-based optimization hence has an implicit bias towards simple (sparse) solutions.

In Section 3.5, we show how this Saddle-to-Saddle dynamics can be described using a greedy

low-rank algorithm which bears similarities with that of Z. Li, Y. Luo, and Lyu, 2020 and leads

to a low-rank bias of the final learned function. This is in stark contrast to the NTK regime

which features no low-rank bias.

3.2 Related Works

The existence of distinct regimes in the training dynamics of DNNs has been explored in

previous works, both theoretically (Chizat and Bach, 2018a; G. Yang, 2019) and empirically

(Geiger, Spigler, Jacot, et al., 2020). The loss landscape of shallow linear neural networks has

been characterized by Baldi and Hornik, 1989. The recent theoretical works (Chizat and Bach,

2018a; G. Yang, 2019) have mostly focused on the transition from the NTK regime (γ< 1) to the

Mean-Field regime (γ= 1). This paper is focused on the regime beyond the critical one (γ> 1).

Our study of the Saddle-to-Saddle dynamics can also be understood as a generalization of the
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works (Saxe, McClelland, and Ganguli, 2014; Advani and Saxe, 2017; Saxe, McClelland, and

Ganguli, 2019; Gidel, Bach, and Lacoste-Julien, 2019; Arora, Cohen, W. Hu, et al., 2019) which

describe a similar plateau effect in a very specific setting and with a very carefully chosen

initialization.

Shortly after the initial publication of this article, we came aware of the paper of Z. Li, Y.

Luo, and Lyu, 2020 which provides a similar description to our Saddle-to-Saddle dynamics.

For shallow networks, the results are almost equivalent, although the techniques are very

different, especially when dealing with the fact that the escape directions (and escape paths)

are unique only up to rotations. Z. Li, Y. Luo, and Lyu, 2020 use a clever trick that allows them

to both study the dynamics of the output matrix Aθ(t ), without the need to keep track of the

parameters, and obtain a unicity property for the asymptotic dynamics. Instead, we focus

on the dynamics of the parameters, give an identification of all optimal escape paths, and

show that the path followed by the parameters’ dynamics is unique up to symmetries of the

network. Note also that, as in our paper, Z. Li, Y. Luo, and Lyu, 2020 only prove the first step of

the Saddle-to-Saddle regime: for the subsequent steps, it is assumed that the next saddle is

not approached along a ‘bad’ direction. For deep networks, our results are more general as

they hold for more general initializations than in Z. Li, Y. Luo, and Lyu, 2020. Indeed, in order

to avoid the non-uniqueness problem of the escape paths in the space of parameters, their

analysis relies heavily on the assumption that the network is balanced at initialization. Our

analysis does not rely on this trick which is a crucial step to generalize this type of result to

nonlinear networks, where balancedness cannot be used.

3.3 Setup

A DLN of depth L and widths n0, . . . ,nL is the composition of L matrices

Aθ =WL · · ·W1

where W` ∈ Rn`×n`−1 . The number of parameters is P = ∑L
`=1 n`−1n` and we denote by θ =

(WL , . . . ,W1) ∈RP the vector of parameters. The input dimension, resp. the output dimension

is n0, resp. nL . All parameters are initialized as i.i.d. N (0,σ2) Gaussian random variables.

We will focus on the so-called rectangular networks, in which the number of neurons in all

hidden layers is the same, i.e. n1 = ·· · = nL−1 = w . Such rectangular network is called a (L, w)-

DLN, and its number of parameters is denoted by P = n0w+(L−2)w2+wnL . The proofs given

in this article can be extended to the non-rectangular case.

We study the dynamics of gradient descent on the loss L (θ) = C (Aθ) for a general twice-

differentiable and convex cost C on nL ×n0 matrices. To ensure a non-trivial minimisation

problem, we assume that the null matrix is not a global minimum of C : in this case, the origin

in the parameter space is a saddle of L . Given a point θ0 ∈ RP , we denote by t 7→ Γ(t ,θ0)

the gradient flow path on the cost L(θ) starting from θ0, i.e. Γ(0,θ0) = θ0 and ∂tΓ(t ,θ0) =
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−∇L (Γ(t ,θ0)).

While our analysis applies to general costs, some typical costs used in practice are:

Mean-Squared Error (MSE): C (A) = 1
N ‖AX −Y ‖2

F for some inputs X ∈ Rn0×N and labels Y ∈
RnL×N , where || · ||F is the Frobenius norm.

Matrix Completion (MC): C (A) = 1
N

∑N
i=1(Aki ,mi −A∗

ki ,mi
)2 for some true matrix A∗ of which we

observe only the N entries A∗
k1,m1

, ..., A∗
kN ,mN

.

3.4 The Loss Landscape

Symmetries and Invariance

A key tool in this paper is the use of two important symmetries of the parametrization map

θ 7→ Aθ in DLNs: rotations of hidden layers and inclusions in wider DLNs.

Rotations: A L −1 tuple R = (O1, . . . ,OL−1) of orthogonal w ×w matrices is called a w-width

network rotation, or in short a rotation. A rotation R acts on a parameter vector θ = (WL , . . . ,W1)

as Rθ = (WLOT
L−1,OL−1WL−1OT

L−2, . . . ,O1W1). The space of rotations is an important symmetry

of DLN: indeed, for any parameter θ and any cost C , the two following important properties

hold:

ARθ = Aθ, ∇θC (ARθ) = R∇θC (Aθ),

where we considered ∇θC (Aθ) ∈ RP as another vector of parameters. This property implies

that if θ(t ) = Γ(t ,θ0) is a gradient flow path, then so is Rθ(t ) = Γ(t ,Rθ0).

Inclusion: The inclusion I (w ′→w)(θ) = (VL , . . . ,V1) of a network of width w into a wider network

(w > w ′) simply adds zero neurons

V1 =
(

W1

0

)
,V` =

(
W` 0

0 0

)
,VL =

(
WL 0

)
.

For any parameters θ and any cost C , we have AI (w ′→w)θ = Aθ and∇C (AI (w ′→w)θ) = I (w ′→w)∇C (Aθ).

This property implies that if θ(t ) = Γ(t ,θ0) is a gradient flow path of the (w ′,L) network, then

I (w ′→w)θ(t) = Γ(t , I (w ′→w)θ0) is a gradient flow path of the (w,L) network (as well as any

rotation RI (w ′→w)θ(t ) thereof).

Proximity of Critical Points at Initialization

It has already been observed that in the infinite width limit, when the width w of the network

grows to infinity, the scale at which the variance σ2 of the parameters at initialization scales

with the width can lead to very different behaviors (Chizat and Bach, 2018a; Geiger, Spigler,

Jacot, et al., 2020; G. Yang, 2019). Let us consider scaling of the variance σ2 = w−γ for γ≥ 1− 1
L .
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The reason we lower bound γ is that any smaller γ would lead to an explosion of the variance

of the matrix Aθ at initialization as the width w grows.

Let dm and ds be the Euclidean distances between the initialization θ and, respectively, the set

of global minima and the set of all saddles. For random variables f (w), g (w) which depend

on w , we write f ³ g if both f (w)/g (w) and g (w)/ f (w) are stochastically bounded as w →∞.

The following theorem studies how dm and ds scale as w →∞:

Theorem 3.4.1. Suppose that the set of matrices that minimize C is non-empty, has Lebesgue

measure zero, and does not contain the zero matrix. Let θ be i.i.d. centered Gaussian r.v. of

variance σ2 = w−γ where 1− 1
L ≤ γ<∞. Then:

1. if γ< 1, then dm ³ w− (1−γ)(L−1)
2 and ds ³ w

1−γ
2 ,

2. if γ= 1, then dm,ds ³ 1,

3. if γ> 1, then dm ³ 1 and ds ³ w− γ−1
2 .

This theorem shows an important change of behavior between the case γ< 1 and γ> 1. When

γ < 1, the network is initialized very close to a global minimum and far from any saddle.

When γ> 1, the parameters are initialized very close to a saddle but far away from any global

minimum. The critical case γ= 1 is the unique limit where both types of critical points are at

the same distance from the initialization.

Hence, the landscape of the loss near the initialization displays distinct features in the three

regimes highlighted in the previous theorem, and this leads to very different gradient dynamics.

In Appendix B.1, we show that the largest initialization, corresponding to the choice γ= 1− 1
L ,

is equivalent to the so-called NTK parametrization of Jacot, Gabriel, and Hongler, 2018b, up to

a rescaling of the learning rate. In the range 1− 1
L < γ< 1, G. Yang and E. J. Hu, 2020 obtain a

similar, yet slightly different, kernel regime. The initialization γ= 1 corresponds to the Mean-

Field limit for shallow networks (Chizat and Bach, 2018b; G. Rotskoff and Vanden-Eijnden,

2018) or, more generally, to the Maximal Update parametrization of G. Yang and E. J. Hu, 2020

(see Appendix B.1). The case γ> 1 is however much less studied and is difficult to study since

the initialization approaches a saddle as w →∞. Thus, in this regime, the wider the network,

the longer it takes to escape this nearby saddle and, in the limit as w →∞, nothing happens

over a finite number of gradient steps. With the right time parametrization, we will observe

interesting Saddle-to-Saddle dynamics in this regime, leading to some low-rank bias. This is

regime is related to the condensed regime identified in T. Luo et al., 2021.

3.5 Saddle-to-Saddle Training Dynamics

In contrast to the NTK regime (γ< 1) where gradient flow never approaches any saddle, we

will see how in the Saddle-to-Saddle regime gradient flow is affected not only by the saddle it is
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Figure 3.1 – Saddle-to-Saddle dynamics: A DLN (L = 4, w = 100) with a small initialization
(γ= 2) trained on a MC loss fitting a 10×10 matrix of rank 3. Left: Projection onto a plane of
the gradient flow path θα in parameter space (in blue) and of the sequence of 3 paths θ1,θ2,θ3

(in orange, green and red), described by Algorithm Aε,T,η, starting from the origin (+) and
passing through 2 saddles (·) before converging. Middle: Train (solid) and test (dashed) MC
costs through training. We observe three plateaus, corresponding to the three saddles visited.
Right: The train (solid) and test (dashed) losses of the three paths plotted sequentially, in the
saddle-to-saddle limit; the dots represent an infinite amount of steps separating these paths.

initialized close to but by a sequence of saddles. This leads to a bias towards learning low-rank

matrices which is absent in the NTK regime (Woodworth et al., 2020).

We now study the dynamics of DLN during training as the variance at initialization goes to

zero, under the assumption that it is representative of the whole Saddle-to-Saddle regime.

Specifically, we sample some random parameters θ0 with i.i.d. N (0,1) entries, consider the

gradient flow θα(t ) = Γ(t ,αθ0), and let α↘ 0. Since the origin is a saddle, for all fixed times t ,

limα↘0θα(t ) = 0. We will show however that there is an escape time tα, which grows to infinity

as α↘ 0, such that the limit limα↘0θα(tα+ t ) is non-trivial for all t ∈R.

The study of shallow networks (L = 2) is facilitated by the fact that the saddle at the origin is

strict: its Hessian has negative eigenvalues. For deeper networks (L > 2), the saddle is highly

degenerate: the L−1 first order derivatives vanish.

First Path

It turns out that gradient flow paths naturally escape the saddle at the origin along so-called

optimal escape paths. We say that a gradient flow path θ(·) : R→ RP is an escape path of a

critical point θ∗ if limt→−∞θ(t) = θ∗. Informally, the optimal escape paths, are the escape

paths that allow the fastest exit from a saddle. In DLNs, these optimal escape paths are of the

form RI (1→w)θ1(t ) where θ1(t ) is a path of a width 1 DLN which escapes from the origin:

Theorem 3.5.1. Assume that the largest singular value s1 of the gradient of C at the origin

∇C (0) ∈RnL×n0 has multiplicity 1. There is a deterministic gradient flow path θ1 in the space of

width-1 DLNs such that, with probability 1 if L ≤ 3, and probability at least 1/2 if L > 3, there
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exists an escape time t 1
α and a rotation R such that

lim
α→0

θα(t 1
α+ t ) = RI (1→w)θ1(t ).

The unicity of the largest singular value of the gradient at the origin guarantees the unicity

(up to rotation) of the optimal escape paths. For example, with the MSE loss, the gradient

at the origin is 2Y X T : for generic Y and X , the largest singular value of the gradient has a

multiplicity of 1.

The reason why, for DLN with L > 3, we can only guarantee a probability of 1
2 in the previous

theorem, is that we need to ensure that gradient descent does not get stuck at the saddle at the

origin or at other saddles connected to it. For L = 2, this follows from the fact that the saddle is

strict. When L > 2, the saddle is not strict and we were only able to prove it in the case where

L = 3. We conjecture that Theorem 3.5.1 is true with probability 1 for all L ≥ 2.

As shown in the Appendix of our paper (Jacot, Ged, Şimşek, et al., 2022), the escape time

tα is of order − logα for shallow networks and of order α−(L−2) for networks of depth L > 2.

Hence, the deeper the network, the slower the gradient flow escapes the saddle. Besides, the

norm
∥∥θ1(t )

∥∥ of the limiting escape path θ1(t ) = RI (1→w)θ1(t ) grows at an optimal speed: as

e s∗(t+T ) for some T when L = 2; and as (s∗(T − t))−
1

L−2 for some T when L > 2, where s∗ is

the optimal escape speed s∗ = L− L−2
2 s1. These are optimal in the sense that given another

gradient flow path θ(t ) which exits from the origin, there exists a ball B centered at the origin

such that, for any small ε, if t1 and t2 are the times such that
∥∥θ1(t1)

∥∥ = ε = ‖θ(t2)‖, then∥∥θ1(t + t1)
∥∥≥ ‖θ(t + t2)‖ for any positive t , until one of the paths exits the ball B .

Subsequent Paths

What happens after this first path? The width-1 gradient flow path θ1(t ) converges to a width-1

critical point ϑ1 as t → ∞. While ϑ1 may be a local minimum amongst width-1 DLNs, its

inclusion ϑ1 = RI (1→w)(ϑ1) will be a saddle assuming it is not a global minimum already and

that the network is wide enough, since if w ≥ min{n0,nL} all critical points are either global

minima or saddles (Laurent and Brecht, 2018; Nouiehed and Razaviyayn, 2021).

Theorem 3.5.1 guarantees that, as α↘ 0, the gradient flow path θα(t ) will approach a saddle

ϑ1. It is then natural to assume that θα(t ) will escape this saddle along an optimal escape path

(which is the inclusion of a width-2 path). Repeating this process, we expect gradient flow to

converge as α↘ 0 to the concatenation of paths going from saddle to saddle of increasing

width:

Conjecture 3.5.2. With probability 1, there exist K +1 critical points ϑ0, . . . ,ϑK ∈ RPL,w (with

ϑ0 = 0) and K gradient flow paths θ1, . . . ,θK : R → RPL,w connecting the critical points (i.e.

limt→−∞θk (t ) =ϑk−1 and limt→+∞θk (t ) =ϑk ) such that the path θα(t ) converges as α→ 0 to

the concatenation of θ1(t), . . . ,θK (t) in the following sense: for all k < K , there exist times t k
α
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(which depend on θ0) such that

lim
α→0

θα(t k
α+ t ) = θk (t ).

Furthermore, for all k < K , there is a deterministic path θk (t) and a local minimum ϑk of a

width-k network such that for some rotation R (which depends on θ0), θk (t ) = RI (k→w)(θk (t ))

and ϑk = RI (k→w)(ϑk ) for all k and t.

This Saddle-to-Saddle behavior explains why for small initialization scale, the train error gets

stuck at plateaus during training (Figures 3.1 and 3.2). Conjecture 3.5.2 suggests that these

plateaus correspond to the saddle visited.

Note that for losses such as the cross-entropy, the gradient descent may diverge towards

infinity, as studied in Soudry et al., 2018; Gunasekar, J. Lee, et al., 2018. From now on, we

focus on the case where ϑK is a finite global minimum. By the invariance under gradient flow

of Im[I (k→w)] (the image of the inclusion map), the inclusion of a width-k local minimum

ϑk into a larger network is a saddle ϑk (if Aϑk is not a global minimum of C ). These types of

saddles are closely related to the symmetry-induced saddles studied in Şimşek, Ged, et al.,

2021 in nonlinear networks.

Greedy Low-Rank Algorithm

Conjecture 3.5.2 suggests that the gradient flow with vanishing initialization implements a

greedy low-rank algorithm which performs a greedy search for a lowest-rank solution: it first

tries to fit a width 1 network, then a width 2 network and so on until reaching a solution.

Thus, we expect that as α↘ 0, the dynamics of gradient flow corresponds, up to inclusion

and rotation, to the limit of the algorithm Aε,T,η as sequentially T →∞, η→ 0 and ε→ 0. In

particular, we used the Algorithm Aε,T,η, with large T and small η and ε to approximate the

paths θk and points ϑk in Figure 3.1. Note how this limiting algorithm is deterministic. This

implies that even for finite widths the dynamics of gradient flow converge to a deterministic

limit (up to random rotations R) as the variance at initialization goes to zero.

A similar algorithm has already been described in Z. Li, Y. Luo, and Lyu, 2020, however thanks

to our different proof techniques, we are able to give a more precise description of the evolution

of the parameters.

Remark. To prove Conjecture 3.5.2, one needs to apply a similar argument to understand how

gradient flow escapes the subsequent saddles ϑ1, . . . ,ϑK . There are two issues:

First, even though Theorem 3.5.1 guarantees that gradient descent will come arbitrarily close to

the next saddle ϑ1, it may not approach it along a generic direction: it could approach along

a “bad” direction. For the first path, we relied on the fact that θ0 is Gaussian to guarantee that

these bad directions are avoided with probability 1 (or 1/2). Note that this problem could be

addressed using the so-called perturbed stochastic gradient descent described in Jin et al., 2017a;

S. S. Du, Jin, J. D. Lee, M. I. Jordan, Póczos, et al., 2017 since, in this learning algorithm, once in
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Algorithm 1 Aε,T,η

# Compute the first singular vectors of ∇C (0):
u, s, v ← SVD1(∇C (0))
θ← (−εvT ,ε, . . . ,εu)
w ← 1
while C (Aθ) <Cmi n +ε do

# T steps of GD on the loss of width-w DLN with lr η
θ← SGDw,T,η(θ)
u, s, v ← SVD1(∇C (Aθ))

θ←
((

W1

−εvT

)
,

(
W2 0
0 ε

)
, . . . ,

(
WL εu

))
w ← w +1

end while

the vicinity of the saddle, a small Gaussian noise is added to the parameters: as a consequence,

they end up being in a generic position in the neighborhood of the saddle.

Second, for deep networks (L > 2), the saddle ϑ1 has a different local structure to ϑ0. Indeed,

at the origin, the L−1 first derivatives vanish, leading to an (approximately) L-homogeneous

saddle at the origin. On the contrary, at the rank 1 saddle ϑ1 = RI (1→w)(ϑ1), if ϑ1 is a local

minimum of the width 1 network, the Hessian is positive along the inclusion Im
[
RI (1→w)

]
. This

implies that the dynamics can only escape the saddle through the Hessian null-space, along

which the first L−1 derivatives vanish. Although the loss restricted to this null-space around ϑ1

has a similar structure to the loss around the origin, the fact that the Hessian at ϑ1 is not null

complexifies the analysis.

Description of the paths that escape a saddle

Our proof relies on a theorem which relates the escape paths of the saddle at the origin

of the cost L and the escape paths of the L-th order Taylor approximation H of L . This

correspondence only applies to paths which escape the saddle sufficiently fast.

We define the set of fast escaping paths FL (s) of the cost L with speed at least s as follows:

• for shallow networks (L = 2), it is the set of gradient flow paths that satisfy ‖θ(t )‖ =O(e st )

as t →−∞,

• for deep networks (L > 2), it is the set of gradient flow paths that satisfy ‖θ(t )‖ ≤
(s(T − t ))−

1
L−2 for some T and any small enough t .

The optimal escape speed is s∗ = L− L−2
2 s1 where s1 is the largest singular value of ∇C (0). It is

the optimal escape speed in the sense that there are no faster escape paths: FL (s) =; if s > s∗.

Escape paths which exit the saddle at the optimal escape speed are called optimal escape

paths. There is a bijection between fast escaping paths of the loss L and those of its L-th order
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Figure 3.2 – Training in (a) NTK, (b) mean-field, (c) saddle-to-saddle regimes in deep linear
networks for three widths w = 10,100,1000, L = 4, and 10 seeds. Parameters are initialized with
varianceσ2 = w−γ. We observe that (a) in the NTK regime, the training loss shows typical linear
convergence behavior for w = 1000 and w = 100; (b) in the mean-field regime, we observe that
even the large width networks approach to a saddle at the beginning of the training and that
the length of the plateaus remains constant between widths w = 1000 and w = 100; (c) in the
saddle-to-saddle regime, the plateaus become longer as the width grows. In all cases, we see a
reduction in the variation between the different seeds as w →∞.

Taylor approximation H in the paper of Jacot, Ged, Şimşek, et al., 2022 that is similar to the

Hartman-Grobman Theorem and might be of independent interest.

3.6 Regimes of Training

In light of the results presented in this paper, we discuss the three regimes that can be obtained

by varying the initialization. We expect these characteristics to translate to the nonlinear case.

The NTK limit (γ = 1− 1
L ) (Jacot, Gabriel, and Hongler, 2018b; J. Lee, Xiao, et al., 2019) is

representative of the other scalings 1− 1
L ≤ γ < 1 (G. Yang and E. J. Hu, 2020). The critical

regime γ = 1 corresponds to the Mean-Field limit for shallow networks (Chizat and Bach,

2018b; G. Rotskoff and Vanden-Eijnden, 2018) or the Maximal Update parametrization for

deep networks (G. Yang and E. J. Hu, 2020). Finally, we conjecture that the last regime where

γ > 1, displays features very akin to the γ = +∞ case studied in this article. Under this

assumption, we obtain the following characterizations of the regimes:

In the NTK regime (1− 1
L ≤ γ< 1):

1. During training, the parameters converge to a nearby global minimum, and do not

approach any saddle (Figure 3.2a shows how the plateaus disappear as w grows).

2. If the cost on matrices C is strictly convex, one can guarantee exponential decay of the

loss.

3. The NTK is asymptotically fixed during training.

4. No sparsity/low-rank bias in the learned matrix.
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The Saddle-to-Saddle regime (γ> 1):

1. The parameters start in the vicinity of a saddle and visit a sequence of saddles during

training. They come closer to each of these saddles as the width grows.

2. As the width grows, it takes longer to escape each saddle, leading to long plateaus for

the training error. The training time is therefore asymptotically infinite (see Figure 3.2c).

3. The rate of change ‖Θ(θT )−Θ(θ0)‖ (where T ∈ R is the stopping time) of the NTK is

infinitely larger than the NTK at initialization ‖Θ(θ0)‖. This follows from the fact that

the NTK at initialization goes to zero, while it has finite size at the end of training.

4. The learned matrix is the result of a greedy algorithm that finds a low rank solution.

The Mean-Field regime γ= 1 lies at the transition between the two previous regimes and is

more difficult to characterize:

1. In this critical regime, the constant factor c in the variance at initialization σ2 = cw−γ

can have a strong effect on the dynamics.

2. Plateaus can still be observed (see Figure 3.2b), however in contrast to the Saddle-to-

Saddle regime, the length of the plateaus does not increase as the width grows, but

remains roughly constant.

3. The NTK and its rate of change are of same order.

In general, we observe some tradeoff: the NTK regime leads to fast convergence without

low-rank bias, while the Saddle-to-Saddle regime leads to some low-rank bias, but at the cost

of an asymptotically infinite training time.

3.7 Conclusion

We propose a simple criterion to identify three regimes in the training of large DLNs: the

distances from the initialization to the nearest global minimum and to the nearest saddle.

The NTK regime (1− 1
L ≤ γ< 1) is characterized by an initialization which is close to a global

minimum and far from any saddle, the Saddle-to-Saddle regime (γ> 1) is characterized by an

initialization which is close to a saddle and (comparatively) far from any global minimum and,

finally, in the critical Mean-Field regime (γ= 1), these two distances are of the same order as

the width grows.

While the NTK and Mean-Field limits are well-studied, the Saddle-to-Saddle regime is less

understood. We therefore investigate the case γ=+∞ (i.e. we fix the width and let the variance

at initialization go to zero). In this limit, the initialization converges towards the saddle at
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the origin ϑ0 = 0. We show that gradient flow naturally escapes this saddle along an ‘optimal

escape path’ along which the network behaves as a width-1 network. This leads the gradient

flow to subsequently visit a second saddle ϑ1 which has the property that the matrix Aϑ1 has

rank 1. We conjecture that the gradient flow next visits a sequence of critical points ϑ2, . . . ,ϑK

of increasing rank, implementing some form of greedy low-rank algorithm. These saddles

explain the plateaus in the loss curve which are characteristic of the Saddle-to-Saddle regime.
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4 The Loss Landscape of (Non-Linear)
Neural Networks

In this chapter, we present a novel and comprehensive study of the loss landscape of neural

networks from a symmetry point of view. This chapter uses some material from Şimşek, Ged,

et al., 2021 but it largely is based on unpublished material. Typically, statistical physics and

probability tools are used to study high-dimensional landscapes in the limit when one of

the problem parameter goes to infinitity. Our approach is constructive, and it applies to any

neural network of finite-width, any dataset, and any twice-differentiable cost function. We

first present the main results in Section 4.1 and related works in Section 4.2. In Section 4.3, we

discuss (permutation-)symmetric losses and introduce operations to grow the neural network

size without changing the network function as well as the so-called symmetry-induced critical

points. A symmetry-induced critical point is always degenarate in the sense that it is one of

the points of a continuum (i.e. line) of critical points. In Section 4.4, we present a precise

second-order characterization of the line of critical points which form exotic constellations.

We introduce the notion of ‘plateau saddles’: a connected manifold of constant loss such that

the points in its interior are local minima and each point on its boundary is a non-strict saddle

which enable an escape via Langevin dynamics. Zooming out, we then study the scaling law of

manifolds of critical points which give a lens to see the global structure of the loss landscape

in Section 4.5. We then study the hiererchical organization of the symmetry-induced saddles

forming loss-levels where each level corresponds to an optimal solution of the tiny network of

width n in Section 4.6. In the loss landscape of neural networks, high-loss saddles correspong

to splitting many neurons of an optimal solution a tiny network, which in turn yields many

escape directions. This is consistent with the typical hiererchical organization of saddles

(high-loss saddles have high index) in other high-dimensional loss landscapes. We close by

conclusions in Section 4.7.

4.1 Main Results

1. We introduce the concept of an irreducible parameter in Section 4.3 and a neuron

splitting which characterizes all symmetry-induced critical points.
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2. In particular, splitting one neuron creates a line of critical points due to symmetries

in the network parameterization. In Section 4.4, we study the Hessian of the critical

points on the line and find exotic constellations of saddles and local minima on the line

connected through non-strict saddles. Our main Theorem 4.4.1 gives the signs of the

Hessian spectrum in terms of the signs of the original Hessian spectrum and the signs

of a submatrix that is given by the splitted neuron and the network function. We present

the proof and further discussions in Appendix C.3.

3. Next we focus on the global structure of the loss landscape. We give the scaling law of

the manifolds of symmetry-induced critical points by counting partitions of neurons

and permutation of the generated neurons in Section 4.5. We observe that the scaling

law grows factorially that is slightly faster than the exponential growth.

4. In Section 4.6, we present the index of symmetry-induced critical points by applying

Theorem 4.4.1 to all splitted neurons. This gives a rigorous account for the formation

of the hiererchical organization of saddles: high-loss saddles have many escape direc-

tions thus allowing an escape; whereas low-loss saddles have a tiny fraction of escape

directions hence posing a danger for training in practice.

4.2 Related Works

A large body of work focuses on the geometric investigation of neural network landscapes.

Dauphin et al., 2014 suggested a proliferation of saddles in neural network landscapes through

an analogy with high-dimensional Gaussian Processes. Other models have been proposed to

understand the general structure of the loss landscape inspired by statistical physics (Geiger,

Spigler, d’Ascoli, et al., 2019), and via high-dimensional wedges (Fort and Jastrzebski, 2019).

These model-based empirical works focus mainly on the Hessian spectrum at the critical

points.

The focus on symmetries in our work is similar to that of Fukumizu and Amari, 2000; Brea,

Şimşek, et al., 2019; Fukumizu, Yamaguchi, et al., 2019 regarding the critical points coming

from neuron replications. In an orthogonal direction, Kunin et al., 2020; Głuch and Urbanke,

2021 present a catalog of symmetries appearing in deep networks, which however does not

include the permutation symmetry.

An orthogonal line of work studies the neuron splitting in neural networks from a small width

into a large width. Fukumizu and Amari, 2000 study the splitting of a single neuron into two

neurons at a critical point and the resulting line of critical points; Fukumizu, Yamaguchi,

et al., 2019 generalizes it to the splitting into many neurons. We study the combinatorics

of the problem by splitting all neurons into many others: the scaling law of the manifolds

of symmetry-induced critical points. Y. Zhang, Z. Zhang, et al., 2021 provide some further

discussions and numerics. Jacot, Ged, Şimşek, et al., 2021; Boursier, Pillaud-Vivien, and

Flammarion, 2022 analyze a training regime where the gradient flow visits a sequence of
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Figure 4.1 – No gradient pointing outside of a symmetry subspace. The gradient flow of
a permutation-symmetric loss L(w1, w2) = log( 1

2 ((w1 + w2 − 3)2 + (w1w2 − 2)2) + 1). Red:
permutation-symmetric global minima, purple: saddle, dashed line: the symmetry subspace.

saddles. More generally, flat saddles where the escape direction has a very low curvature form

an obstacle for non-convex optimization (Pascanu et al., 2014; Y. Zhang, Qu, and Wright, 2020).

We show the existence of a continuum of strict saddles of constant loss that may transit into

local minima via non-strict saddles for any neural network with more than one neuron.

4.3 Setup

For m ≥ 1, set [m] = {1, . . . ,m} and let Sm denote the symmetric group on m symbols, i.e. the

set of permutations of [m]. For a permutation π ∈ Sm and D ≥ 1, the map Pπ :RDm →RDm per-

mutes the units ϑi ∈RD of a vector θ = (ϑ1, . . . ,ϑm) according to π, i.e. Pπθ = (ϑπ(1), . . . ,ϑπ(m));

we sometimes use θπ := Pπθ. With a slight abuse of notation, we will refer to permutations of

affine subspaces defined as

PπV = {Pπθ : θ ∈V }.

Symmetric Losses

Numerous machine learning models involve permutation-symmetric parameterizations: mix-

ture models, matrix factorization, and neural networks. In this section, we abstract away the

particular parameterization of these models and focus on the implications of permutation

symmetry on the gradient flow. In particular, the discussion here is general and applies to

neural networks.

Definition 4.3.1. A loss function Lm : RDm → R is a symmetric loss1 on m units if for any

π ∈ Sm and any θ = (ϑ1,ϑ2, . . . ,ϑm) with ϑi ∈RD , we have

Lm(θ) = Lm(Pπθ).

1When the units are 1-dimensional, symmetric losses are symmetric functions (Kung, Rota, and Yan, 2009;
Sagan, 2013).
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The term unit may refer to a Gaussian vector in the context of Gaussian mixture models, to a

factor in the context of matrix factorization, or to a neuron in the context of neural networks.

The symmetry subspaces are defined by the constraint that at least two units are identical:

Definition 4.3.2. Let i1, . . . , ik ∈ [m] be distinct indices. The symmetry subspace H i1,...,ik is

defined as

H i1,...,ik := {(ϑ1, . . . ,ϑm) ∈RDm :ϑi1 = ·· · =ϑik }.

As each constraint ϑi =ϑ j suppresses D degrees of freedom, we have dim(H i1,...,ik ) = D(m −
k + 1). The largest symmetry subspaces are H i , j ’s: any other symmetry subspace is the

intersection of such subspaces. Let Γ :R≥0 ×RDm →RDm denote the gradient flow

∂tΓ(t ,θ0) =−∇Lm(Γ(t ,θ0)) (4.1)

for t ≥ 0 and for a given initialization θ0. The gradient on the symmetry subspace is tangent to

it. In general, the gradient components of a symmetry subspace pointing to neighbor regions

cancel out due to permutation symmetry

Lemma 4.3.1. We assume that Lm :RDm →R is a symmetric loss on m units and a C 1 function.

Let Γ :R≥0 ×RDm →RDm be its gradient flow. If Γ(0,θ0) ∈H i1,...,ik , the gradient flow stays inside

the symmetry subspace, i.e. Γ(t ,θ0) ∈H i1,...,ik for all t > 0. If Γ(0,θ0) ∉H i , j for all i 6= j ∈ [m],

the gradient flow does not visit any symmetry subspace in finite time.

Remark. Lemma 4.3.1 does not exclude the following scenario: if there is a critical point on the

symmetry subspace that is attractive in some directions orthogonal to the symmetry subspace,

the gradient flow can reach it in infinite time (i.e. at convergence).

Neural Network Losses

Let f (2) :Rd0 →Rdout be a two-layer neural network of width m

f (2)
θ

(x) =
m∑

j=1
a jσ(w j · x)

and θ = (w1, a1)⊕ ...⊕ (wm , am) is a point in the parameter space RDm with wi ∈Rd0 , ai ∈Rdout ,

and D = d0 +dout.

The training dataset of size N is denoted by {(xi , yi )}N
i=1 where xk ∈Rd0 , yk ∈Rdout . The training

loss Lm :RDm →R is

Lm(θ) = 1

N

N∑
i=1

c( f (2)
θ

(xi ), yi ) (4.2)

where c :Rdout ×Rdout → [0,+∞) is a twice differentiable cost in its first component. We assume

that the activation function σ is twice differentiable.
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Since f (2) is invariant under the permutation of neurons ϑi := [wi , ai ] ∈RD , the concatenation

of the incoming and outgoing weight vectors, Lm is a symmetric loss (Def. 4.3.1). Therefore

the symmetry subspaces ϑi =ϑ j are invariant under the gradient flow (Lemma 4.3.1). Neural

network functions exhibit further invariances.

Definition 4.3.3. We call a point θ ∈ RDm irreducible no two incoming vectors are equal to

each other.

We are interested in the simplest case of irreducibility in this chapter in relation to the study of

symmetry-induced critical points. Note that in general, groups of neurons can be reduced

to a single neuron, which is the general form of irreducibility. We will work with the general

definition in Chapter 5.

Symmetry-Induced Critical Points

Let us assume that θ is a critical point of the loss of a neural network with n neurons, i.e.

∇Ln(θ) = 0, and that it does not achive zero-loss. Let us define the neuron splitting matrix

⊕µ, j :RDn →RD(n+1)

⊕µ, jθ = (w1, a1)⊕ ...⊕ (w j ,µa j )⊕ ...⊕ (wn , an)⊕ (w j , (1−µ)a j ). (4.3)

where µ is the mixing ratio and j is the index of the neuron splitted.

The seminal paper of Fukumizu and Amari, 2000 shows that ∇L(n+1)(⊕µ, j (θ)) = 0 with a simple

gradient calculation; hence ⊕µ, j maps a critical point to another critical point. Moreover, by

varying the (arbitrary) mixing ratio µ, we get a line of critical points with the same loss as the

original network with parameter θ. More recent paper of Fukumizu, Yamaguchi, et al., 2019

studied the splitting of a single neuron into multiple ones. We are intested in the most general

form of neuron splitting: splitting many neuron types into multiple others with arbitrary

mixing ratios.

We call all critical points that can be represented as ⊕µ, jθ symmetry-induced critical points.

Note that all symmetry-induced critical points are reducible (that is, not irreducible) according

to definition 4.3.3.

We first focus on splitting a single neuron and studying the second-order derivatives of the

loss at the critical points on the line in Section 4.4. We then derive the scaling law of the affine

subspaces of symmetry-induced critical points in Section 4.5.

4.4 Second-Order Characterization

We reviewed that a critical point of the loss of the network with n neurons turns, after neuron

splitting, into a critical point of the loss of the network with n +1 neurons. In this section, we

consider the question of whether this critical point is a saddle or a local minimum.
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Classification of Critical Points and Plateau Saddles

We consider a critical point θ of the loss of a neural network with n neurons. Since both the

activation function and cost are twice differentiable, the Hessian of the loss is well-defined

and denoted by HLn(θ) which is a matrix of size Dn ×Dn. In Section 4.3, we reviewed that

splitting any of the neurons of θ creates symmetry-induced critical points denoted by ⊕j ,µθ

that form a line as we vary the mixing ratio µ ∈R. To identify whether these points are local

minima, strict saddles, or non-strict saddles, we study their second-order derivatives. First, let

us lay out the definitions to classify critical points with different characteristics:

1. Strict saddle: A critical point with at least one positive and one negative eigenvalue in

the Hessian (which assures an escape direction in a neighborhood towards decreasing

loss).

2. Local minimum: A critical point with no negative eigenvalues in the Hessian and the

loss is non-decreasing in all directions of small perturbations.

3. Non-strict saddle: A critical point with no negative eigenvalues in the Hessian and there

is an escape direction towards decreasing loss in a neighborhood.

If the Hessian does not have a negative eigenvalue at the critical point, it can be either a

non-strict saddle or a local minimum; thus a higher-order analysis is needed for classification

(Anandkumar and Ge, 2016). This is important because first- and second-order optimization

algorithms may get stuck at non-strict saddles (Anandkumar and Ge, 2016).

More generally, due to symmetries of the neural network parameterization, symmetry-induce

critical points are always degenerate in the sense that they form affine subspaces of critical

points. As we will see, it is possible to have exotic structures in the neural network loss

functions with transitions from local minima to strict saddles through non-strict saddles. In

particular, we define the following critical manifold of interest

Definition 4.4.1 (Plateau saddle). A connected line segment of constant loss, possibly infinite on

one side, such that each point in its interior is a local minimum and each point on its boundary

is a non-strict saddle.

The non-strict saddles at the boundary provide escape directions pointing outside of the

local minima manifold. When initialized near a one-dimensional plateau saddle that is a line

segment (Fig. 4.2-A), a deterministic algorithm such as gradient descent gets stuck at a local

minimum in its interior whereas a stochastic algorithm such as Langevin dynamics escapes

it eventually with probability one (Mertikopoulos et al., 2020; Kamalaruban et al., 2020). An

analogous case occurs when the plateau saddle is a half-line (Fig. 4.2-B): if initialized near the

plateau saddle a random walk eventually escapes it, too.

For one output neuron (i.e. dout=1), Fukumizu and Amari, 2000 proved that the second-order

characteristics of the symmetry-induced critical points is determined by the mixing ratioµ and

56



4.4. Second-Order Characterization

1

0

mA B

1

0

m

escape

direction

escape

direction

Figure 4.2 – Gradient flow in the neighborhood of plateau saddles (red ∪ orange) in the param-
eter space of a neural network. Strict saddles (blue) transit into local minima (red) through
non-strict saddles (orange). Plateau saddles induced by neuron splitting may arrive (A) either
on the line segment [0,1] (B) or on two half-lines of the mixing coefficient µ (vertical axis). The
loss along the vertical axis is constant. Only two other directions are shown, one of them being
the direction of escape. At the local minima (red), the loss increases in all other directions
since the Hessian has, apart from the zero eigenvalue along the vertical line, only positive
eigenvalues so that the flow is towards the vertical line. Sample trajectories are shown in
dot-dashed black lines; flow arrows in magenta.

a second-order derivative matrix Y (for its definition see Theorem 4.4.1 below). They show that

depending on the eigenvalue signs of the matrix µ(1−µ)Y , a symmetry-induced critical point

⊕j ,µθ is either a local minimum or a strict saddle for µ ∉ {0,1}, whereas the symmetry-induced

critical points for µ ∈ {0,1} remain unclassified.

The Hessian Spectrum

Using a novel decomposition of the Hessian, we generalize the result of Fukumizu and Amari,

2000 in two ways:

i. For dout = 1 and µ ∈ {0,1}, we show that the symmetry-induced critical points have at

least d +1 zero eigenvalues of the Hessian for any distribution of the eigenvalues of the

matrix Y .

ii. For arbitrary dout, we explicitly give the number of positive, negative, and zero eigen-

values of the Hessian at a symmetry-induced critical point which depends on two

matrices of second-order derivatives, namely Y and V (see Eq. 4.5). This generalization

to arbitrary dout is the relevant case for deep networks.

Theorem 4.4.1. Let θ ∈RDn be a critical point of the loss of a neural network with n neurons.

Let ⊕j ,µθ be a symmetry-induced critical point of the network with n+1 neurons. The spectrum

of HL(⊕j ,µθ) is composed of two parts: (i) the bulk of Dn eigenvalues has the same signs as the
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eigenvalues of HL(θ), (ii) the remaining D eigenvalues have the same signs as the eigenvalues

of the following matrix [
µ(1−µ)Y (w j , a j ) −V (w j , a j )

−V (w j , a j )T 0

]
(4.4)

where

Y (w j , a j ) = 1

N

N∑
i=1

σ′′(w j · xi )xi xT
i a j · c ′( f (2)

θ
(xi ), yi ) ∈Rd×d ,

V (w j , a j )k` =
1

N

N∑
i=1

σ′(w j · xi )(xi )k c ′( f (2)
θ

(xi ), yi )` with k ∈ [d ],` ∈ [dout]. (4.5)

See Appendix Section C.3 for the proof sketch and the complete proof.

Remark (Deep Networks). Theorem 4.4.1 can be generalized to deep networks by considering

neuron splitting within one of the hidden layers. The submatrices of Y and V need to be updated

by (i) replacing x with the post-activation vector coming from the previous hidden layer and (ii)

the derivative of the cost needs to be calculated w.r.t the pre-activation vector of the next hidden

layer. We discuss the case of multiple output neurons in detail in Appendix Section C.3.1.

We need to unpack the submatrix in Eq. 4.4 to understand the second-order characteristics of

the symmetry-induced critical points. First, note that

V (w j , a j )a j = ∂L

∂w j
(θ) = 0 ∈Rd . (4.6)

If we have a single output node (dout = 1) and a j is non-zero, the submatrix in Eq. 4.4 reduces

to [
µ(1−µ)Y (w j , a j ) 0

0 0

]
∈R(d+1)×(d+1). (4.7)

A scenario of interest is when the parameter θ is the optimal solution of an n-neuron network

and its Hessian is positive definite. What are the characteristics of the critical points on the

line after splitting one of the neurons of θ? Note that the two symmetry-induced critical points

⊕j ,µθ and ⊕j ,1−µθ have the same set of neurons hence it is enough to discuss the half-line

µ ∈ [0.5,∞). There are three main scenarios2

i. Positive definite Y : strict saddles on µ> 1 transit into local minima on µ ∈ [0.5,1) via a

non-strict saddle at µ= 1. Because of the mirror symmetry around 0.5, the line segment

µ ∈ [0,1] is a plateau saddle.

2An exception to the three scenarios above is the case of vanishing Y = 0 which is the case for the linear
activation function.
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Figure 4.3 – The five smallest eigenvalues of the Hessian on the line of critical points as a function
of the mixing ratio µ. The line corresponds to the splitting of the optimal solution of the one-
neuron network learning from an orthogonal teacher network with k = 4 neurons into two
neurons (input dimension d = 4). On both sides of the line, we have strict saddles. The three
eigenvalue curves are very close to each other, hence they virtually seem to be overlapping.

ii. Negative definite Y : local minima on µ> 1 transit into strict saddles on µ ∈ [0.5,1) via a

non-strict saddle at µ= 1. The half-line µ ∈ [1,∞) is a plateau saddle.

iii. Y has at least one positive and one negative eigenvalue: strict saddles on µ> 1 transit

into other strict saddles on µ ∈ [0.5,1) via a non-strict saddle at µ= 1.

Although the Hessian spectrum does not suffice to classify the critical point at µ = 1, we

conclude that it is a non-strict saddle with a one or two-sided escape route(s) towards lower

loss, since there is a strict saddle in its neighborhood on at least one side. Thus, the loss of

neural networks with more than one neuron violates the commonly studied ‘strict’ saddle

property (Ge et al., 2015; Sun, Qu, and Wright, 2015; Jin et al., 2017b) due to the existence of

symmetry-induced ‘non-strict’ saddles.

Remark (Application to Two-Neuron Network). Because the optimal solution of a one-neuron

network induces symmetry-induced critical points of a two-neuron network, we can apply

results from the one-neuron case to characterize some properties of the loss of the two-neuron

network. In particular, the two-neuron case is prone to containing plateau saddles for some

mixing ratio, either for µ ∈ (0,1) or for µ ∈R/[0,1]. If there are no plateau saddles (see Fig. 4.3),

then the line of critical points in the two-neuron case (that is induced by the solution of the

one-neuron case) consists of strict saddles except the non-strict saddles at µ ∈ {0,1}.

The Minimal Hessian Eigenvalue as a Function of the Mixing Ratio

In this section, we dig deeper into the second-order analysis of the symmetry-induced critical

points for one output neuron by studying the smallest non-trivial eigenvalue of the Hessian

denoted by λ†. At a strict saddle, λ† is the smallest eigenvalue (λ† < 0); otherwise, it denotes

the second smallest eigenvalue (λ† ≥ 0) excluding the trivial zero. This is relevant because
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(i) at a strict saddle, the magnitude of the most negative eigenvalue gives the escape speed

(Jin et al., 2017b; J. D. Lee, Panageas, et al., 2019b) (ii) at a local minimum, the smallest non-

trivial eigenvalue gives a measure of flatness. Since the Hessian has mixed-sign eigenvalues,

techniques developed for positive definite matrices are not directly applicable here. We

instead manually plug in unit vectors to obtain an upper bound on the Rayleigh coefficient

(see Appendix C.3.2)

Lemma 4.4.2. The smallest non-trivial eigenvalue of the Hessian of a symmetry-induced critical

point can be bounded as follows where u(µ) = µ(1−µ)
(1−µ)2+µ2

• λ†(HL(⊕j ,µθ)) ≤ u(µ)λmin(Y ) for µ ∈ (0,1),

• λ†(HL(⊕j ,µθ)) ≤ u(µ)λmax(Y ) for µ ∈R/[0,1],

As a sanity check, let us consider Y positive definite: in this case λ† is positive for µ ∈ (0,1)

and so is the upper bound. Similarly, for Y negative definite, λ† is negative for µ ∈ (0,1) and

so is the upper bound. Finally, if Y has at least one negative and one positive eigenvalue,

λ† is negative and so is the upper bound in both cases. We also provide a lower bound in

Appendix C.3.2.

If Y is negative definite, the symmetry-induced critical points on µ ∈R/[0,1] are local minima.

The upper bound u(µ) crosses zero at µ= 1 and it decreases in the interval µ ∈ [1,∞) (same for

µ ∈ (−∞,0] due to mirror symmetry). In the limit, we have limµ→∞ u(µ) =−0.5, hence

−1

2
λmax(Y ) ≥ lim

µ→∞λ
†(HL(⊕j ,µθ)). (4.8)

This suggests that the loss increases near (but orthogonal to) the half-line [1,∞) of local

minima; it gets steeper as µ grows larger at least initially at µ = 1 (see Figure C.3 in the

Appendix).

4.5 Scaling Law of the Critical Manifolds

In this section, we consider all possible partitions of neuron splittings of a parameter from a

neural network of width n into a neural network of width m. Let us first give a formal definition

of an affine subspace that is generated by splitting the neurons of a parameter θ.

Definition 4.5.1. For n < m, let us pick a partition of m neurons such that s1 + ...+ sn = m

and si ≥ 1. The affine subspace of parameters Vs(θ) corresponding to splitting the neurons of a

parameter θ ∈RDn with the partition s = (s1, ..., sn) is defined recursively as

V `
s` = {θ` : θ` =⊕µs`−1,`...⊕µ1,` θ`−1 for all µ1, ...,µs`−1 ∈R, θ`−1 ∈V `−1

s`−1
} if s` ≥ 2,

V `
s` =V `−1

s`−1 if s` = 1;

for `= 1, ...,n where the initial subspace is V 0
s0
= {θ} and Vs(θ) :=V n

sn
.
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)
Figure 4.4 – Scaling law of the manifolds of symmetry-induced critical points. In the left
panel, we plot the number G(αm,m) as a function of the network width m for α ∈ (α∗,1); we
observe that α∗ = 1

2l og 2 is the maximum for fixed m. In the right, we plot the same number
for α ∈ (0,α∗); we observe that again α∗ is the maximum. Overall, visually, the scaling law
is slightly faster than exponential as the curves seem to have positive curvature as opposed
to straight line. In fact the curves follow the same trend as α= 1 which we know is the usual
factorial G(m,m) = m!. The jitter for small α is due to finite-size effect.

Let us consider a critical point θ of the loss of the neural network of width n, for example an

optimal solution. If θ is reducible, we merge its neurons by summing the outgoing weights

until we find an irreducible critical point θ which has distinct incoming vectors.

The symmetry-induced critical points of the loss of the neural network with width m that are

generated from the irreducible critical point θ are collected in the union of permutations of

affine subspaces of all possible partitions from n to m

Sn→m(θ) = ⋃
π∈Sm , s=(s1,...,sn )
s1+...+sn=m, si≥1

PπVs(θ).

We note that no two affine subspace written above interect each other since there is always a

mismatch in the position of the incoming weight vectors. The scaling law of the manifolds of

critical points is given by

Proposition 4.5.1. Let θ ∈ RDn be an irreducible critical point. For n ≤ m, the number of

distinct affine subspaces in Sn→m(θ) is given by

G(n,m) =
n∑
`=1

(
n

`

)
(−1)n−``m .

We first investigate the scaling law in simple limits when either n is fixed and m →∞, the

number of manifolds induced by tiny networks of width n onto infinite width networks; or the

number of new neurons h is fixed and m →∞, the number of manifolds induced by very large
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Figure 4.5 – The scaling law as a function of the shrinkage factor α in the large m limit. We
observe that the curves approach to a limit when the scaling law G(αm,m) is normalized with
the leading term mm of the factorial according to Stirling’s approximation. We observe that
logG(αm,m)/(m logm) converges to a unimodal curve c(α) as a function of α.

networks onto slightly wider networks.

Lemma 4.5.2. For any h ≥ 0 fixed, we have,

G(m −h,m) ∼ mh

2hh!
m! as m →∞.

For any fixed n ≥ 0, we have G(n,m) ∼ nm as m →∞.

The scaling law G can in fact be mapped onto an enumarative combinatorics problem that

can be phrased as: "How many surjective functions are from a set of n items onto another

set of m ≥ n items?". Every element of the domain can be mapped onto several items of

the codomain in parallel to the splitting of every neuron onto several neurons. The natural

scaling of the number of surjective functions, that is G(n,m) is linear, i.e. m/n =α fixed and

m,n →∞. Moreover, the maximum of G(αm,m) is attained at α= 1
2log 2 as m →∞ (details

in the mathoverflow discussion). We plot the scaling laws G(αm,m) as a function of m for

α ∈ (0,1) values in Figure 4.4.

Based on the apperance of the curves in Figure 4.4, we make a guess that in the limit with

appropriate normalization, we have

lim
m→∞

1

m logm
logG(αm,m) → c(α). (4.9)

Based on this case, we plotted the scaling law G(αm,m) as a function of α. We observe that

as m grows, the curves seem to converge to a limit suggesting that this is an appropriate

scaling. Unfortunately, we are not able to plot for m values larger than 150 as the numbers

grow factorially large (see fig. 4.5). This is to be constrasted with other high-dimensional loss
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landscapes such as spherical spin glasses (Auffinger, Arous, and Čern, 2013)

lim
m→∞

1

m
log N (given energy ε, index idx) → c(ε, idx), (4.10)

where the landscape complexity grows exponentially.

4.6 Hierarchical Organization of Saddles

In this section, we explore the hierarchy between symmetry-induced critical points in the loss

landscape of a neural network of width m. The first-level saddles refer to symmetry-induced

critical points that are equivalent to a minimum of a network of width m −1; more generally,

k-th level saddles refer to those equivalent to a minimum of a network of width m −k. Adding

neurons enables the network to reach a lower loss minimum thus higher-level symmetry-

induced saddles usually attain higher losses. We notice a similarity with Gaussian Process

(Bray and Dean, 2007) and spherical spin glass (Auffinger, Arous, and Čern, 2013) landscapes,

where the higher-index saddle points typically attain higher losses. Index is the ratio of the

number of negative eigenvalues to the total number of eigenvalues in the Hessian.

We developed in Section 4.4 that the Hessian spectrum of a symmetry-induced critical point is

given by in the case of dout = 1 (written informally)

σsgn(HL(⊕j ,µθ)) =σsgn(HL(θ))⊕σsgn(µ(1−µ))σsgn(Y (w j , a j )). (4.11)

where σsgn(x) = 1 if x > 0;0 if x = 0;−1 if x < 0. What happens if we split another neuron?

Applying the above rule once again, we get

σsgn(HL(⊕i ,γ⊕j ,µ θ)) =σsgn(HL(θ))⊕σsgn(µ(1−µ))σsgn(Y (w j , a j ))

⊕σsgn(γ(1−γ))σsgn(Y (wi , ai )). (4.12)

Care should be taken if we split the same neuron twice, say in the following order

(w j , a j ) → (w j ,µa j )⊕ (w j , (1−µ)a j ) → (w j ,γµa j )⊕ (w j , (1−µ)a j )⊕ (w j , (1−γ)µa j );

then we obtain in this case the following sign spectrum

σsgn(HL(⊕ j ,γ⊕j ,µ θ)) =σsgn(HL(θ))⊕σsgn(µ(1−µ))σsgn(Y (w j , a j ))

⊕σsgn(γ(1−γ)µ)σsgn(Y (w j , a j )) (4.13)

where we used that Y (w j ,µa j ) =µY (w j , a j ). As a sanity check, let us check the symmetry of

the final formula. Let us set γ← (1−γ)/µ for µ 6= 0. γ and µ are then permutation-symmetric

which is reflected in the final formula.

In general, we observe constellations of different-index saddles connected together into affine
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subspaces. This is a generalization of plateau saddle discussed in Section 4.4. Globally, adding

neurons add at maximum d new negative eigenvalues at the cost of having d new positive

eigenvalues on the complementary part of the line. Let us assume that a typical neuron-

splitting matrix Y (w j , a j ) has d/2 negative and d/2 positive eigenvalues. In this case adding h

neurons gives the index

(d/2)h

(d/2)h +D
∼ h

h +2n
. (4.14)

where n is the initial number of neurons.

4.7 Conclusion

We studied the atypical structure of critical points of the neural network loss landscapes:

symmetry-induced critical points are not isolated but form manifolds. For example, in the

landscape of a neural network with more than one neuron, there exists a line of symmetry-

induced critical points induced by the optimal solution of the one-neuron network. Therefore,

the celebrated Kac-Rice formula describing the scaling of the number of isolated critical points

of complex landscapes (Auffinger, Arous, and Čern, 2013; Ros et al., 2019; Maillard, Arous,

and Biroli, 2020) does not directly apply to neural network landscapes with more than one

neuron. Moreover, we described the characteristics of critical points on the line, in particular

the plateau saddle that is composed of local minima enclosed by non-strict saddle(s). An

under-parameterized network of n neurons contains at least 2(n−1)(n−1)! non-strict saddles

due to permutation symmetry. Therefore, the loss functions of neural networks with more

than one neuron (n ≥ 2) violate the strict saddle property (Ge et al., 2015; Sun, Qu, and Wright,

2015; Jin et al., 2017b) due to the existence of the (many) non-strict saddles.

We studied the scaling law in detail and showed that the number of critical manifolds grows

factorially. In particular, in the loss landscape of a neural network of width m, the most

dominant manifold of saddles is the one originated in the neural network of width m
2log2 .

However, these saddles typically have a non-negligible fraction of escape directions, so it

remains an open question whether they pose danger to training dynamics or not. More

generally, the scaling law of the saddles that originate in a neural network of width αm for α ∈(
1

2log2 ,1
)

dominate the ground-level configurations since we have G(αm,m) ÀG(m,m) = m!.

Overall, there is a trade-off between the scaling law of saddles and their index: as α increases

in the interval
(

1
2log2 ,1

)
, the number of manifolds decrease (making them less attractive); at

the cost of lowering the index of the saddles (making them harder to escape).
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In this chapter, we re-present our ICML paper (Şimşek, Ged, et al., 2021) with a new notation

and numerics from our preprint (Martinelli et al., 2023) that are intimately linked to the loss

landscape and training dynamics of overparameterized networks. We present the main results

in Section 5.1, related works in Section 5.2, and problem setup in Section 5.3. We present the

main theorem on the geometry and topology of the zero-loss solutions in overparameterized

networks in Section 5.4. The proof is presented in Appendix D.1.

Leveraging the scaling laws of the manifolds of symmetry-induced critical points and mani-

folds of zero-loss points, we propose a landscape complexity measure for overparameterized

networks in Subsection 5.5.1. The complexity gives us lenses to discuss difficulty of training

the overparameterized networks of finite-width and a quantitative discussion between mild vs.

vast overparameterization regimes in Section 5.5. Our predictions are supported by numerical

experiments in Section 5.5.2. We discuss generalizations to deep neural networks in Section 5.6

and close by conclusion and future directions in Section 5.7.

5.1 Main Results

1. Suppose an L-layer Artificial Neural Network (ANN) with hidden layer widths k1, ...,kL−1

reaches a unique (up to permutation) zero-loss global minimum (we call such a network

minimal if it cannot achieve zero loss if any neuron is removed). The permutation

symmetries give rise to k1!...kL−1! equivalent discrete global minima. We show that

adding one neuron to each layer is sufficient to connect these global minima into a

single zero-loss manifold.

2. For a two-layer overparameterized network of width m = k+h, we describe the geometry

of the global minima manifold precisely: it consists of a union of a number T (k,m) of

affine subspaces of dimension ≥ h and it is piecewise linearly connected. Furthermore,

we show that the global minima manifold contains all zero-loss parameters for a broad

class of activation functions and with input distribution of full support.
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3. We propose a landscape complexity measure coming from the scaling laws of manifolds

of symmetry-induced critical points and zero-loss points. We find that there is a cross-

over in between the onset of overparameterization until a factor of 1.2 to 1.6 times

more neurons, where the landscape complexity decreases rapidly from large to low

values; indicating that the complexity of training decreases rapidly at the onset of

overparameterization.

• When the number of additional neurons satisfies h ¿ k (i.e. at the beginning of

the overparameterized regime), the scaling law of the global minima manifold is

much smaller than the scaling law of the low-index symmetry-induced critical

points. In this sense, there is a proliferation of saddles and the global minima

manifold is ‘tiny’. The landscape complexity decays exponentially in this regime

therefore the large-complexity regime is avoided after a factor m/k ∈ [1.5,2] of

overparameterization.

• Conversely, when h À k (i.e. we are far into or within the overparameterized

regime), the landscape complexity goes down to zero; which shows that the loss

landscape simplies significantly in the regime when the training provably con-

verges to zero-loss.

5.2 Related Works

A number of recent works have explored the typical path taken by a gradient-based optimizer.

For very wide neural networks, the gradient flow converges to a global minimum in spite of the

non-convexity of the loss (Jacot, Gabriel, and Hongler, 2018b; S. S. Du, Zhai, et al., 2018; Chizat

and Bach, 2018c; Arora, S. Du, et al., 2019; S. Du, J. Lee, et al., 2019; J. Lee, Xiao, et al., 2019;

J. Lee, Schoenholz, et al., 2020). First-order gradient algorithms provably escape strict saddles

(Jin et al., 2017b; J. D. Lee, Panageas, et al., 2019b), although they can face an exponential

slowdown around these saddles (S. S. Du, Jin, J. D. Lee, M. I. Jordan, A. Singh, et al., 2017). For

pruned neural networks, the training with typical (random) initialization does not reach any

global minimum, in spite of their presence in the landscape (Frankle and Carbin, 2018).

Another line of work suggests that global minima found by stochastic gradient descent are

connected (i.e. there is a path linking arbitrary two minima along which the loss increases

only negligibly) via simply parameterized low-loss curves (Draxler et al., 2018; Garipov et al.,

2018) or line segments (Sagun, Evci, et al., 2017; Frankle, Dziugaite, et al., 2020; Fort, Dziugaite,

et al., 2020). Theoretical work limited to ReLU-type activation functions, showed that in

overparameterized networks, all global minima lie in a connected manifold (Freeman and

Bruna, 2016; Q. Nguyen, 2019), however without giving a geometrical description of this

manifold. Cooper, 2020 studied the geometry of a subset of the manifolds of critical points.

Kuditipudi et al., 2019 showed that the global minima for ReLU networks, for which half of the

neurons can be dropped without incurring a significant increase in loss, are connected via

piecewise linear paths of minimal cost.
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5.3 Setup

Let f (2) :Rd0 →Rdout be a two-layer neural network of width m

f (2)
θ

(x) =
m∑

j=1
a jσ(w j · x)

and θ = (w1, a1)⊕...⊕(wm , am) ∈RDm is a parameter with wi ∈Rd0 , ai ∈Rdout , and D = d0+dout.

We are interested in describing the equal-loss parameter manifolds in the loss landscape com-

ing from network parameterization. Let us introduce the definition of irreducible parameter

which will play a critical role in our analysis.

Definition 5.3.1. We call a parameter θ ∈ RDm irreducible if any of its k ≥ 2 neurons, say

i1, ..., ik (distinct indices) cannot be merged into a single neuron, that is for all x ∈Rd0

k∑
`=1

ai`σ(wi` · x) = a∗σ(w∗ · x).

We assume that there is a neural network function f ∗ of finite width k and a parameter

θ∗ ∈RDk that generates the targets given the input points, i.e. f ∗(xi ) = yi for i = 1, ..., N . It is

also known as the teacher network. Importantly, we assume that k is minimal in the sense that

there is no narrower network that can generate the same function f ∗ = f (2)
θ∗ . If θ∗ is irreducible,

k is minimal by definition1.

We call wider networks with width m > k overparameterized and the narrower networks with

width n < k underparameterized.

Conversely, a parameter θ ∈RDm is trivially reducible if it has two neurons that share the same

incoming vector or if it has a zero neuron since then we can merge two neurons into one as

follows

1. (w1, a1)⊕ (w1, a2) = f (w1, a1 +a2) or

2. (w1, a1)⊕ (w1,0) = f (w1, a1)

where θ1 = f θ2 denotes the functional equivalence between parameters of possibly different

dimensions, that is f (2)
θ1

(x) = f (2)
θ2

(x) for all x ∈ Rd0 . We can continue dropping neurons as

above until we find an irreducible point θ0 that is functionally equivalent to θ. Equivalently

(going in the opposite direction), an irreducible parameter

θ0 = (w1, a1)⊕ ...⊕ (wn , an)

1We note that there may be other scenarios due to the symmetries in the dataset or simply finite-size effects for

which θ∗ is irreducible but the network function f (2)
θ∗ is not of minimal width (i.e. that there is a narrower network

that interpolates the training dataset).
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yields an affine subspace of equal loss points in a network with width m ≥ n. Let us introduce

the two essential operations of neuron addition that preserves the network function

1. Neuron splitting: A j
a′(θ) = (w1, a1)⊕ ...⊕ (w j , a j −a′)⊕ ...⊕ (wn , an)⊕ (w j , a′),

2. Zero neuron addition: A0
w ′(θ) = (w1, a1)⊕ ...⊕ (wn , an)⊕ (w ′,0).

Definition 5.3.2. For n ≥ 1, j ≥ 0 with n+ j ≤ m, let s = (s1, ..., sn) and z = (z1, ..., z j ) be tuples of

integers with si , zi ≥ 1. Let us define their union s̄ = (s1, ..., sn , sn+1=z1, ..., sn+ j =z j ) which satis-

fies sum(s̄) := s1 + ...+ sn+ j = m. The affine subspace Vs,z (θ) of parameters that are functionally

equivalent to the point θ ∈RDn is defined recursively as

V 0
s,z = {θ0 : θ0 = A0

w ′
j
◦ ...◦ A0

w ′
1
(θn), w ′

i ∈Rd for i ∈ [ j ]}, (5.1)

V k
s,z = {θk : θk = Ak

a′
sk
◦ ...◦ Ak

a′
1
(θk−1), a′

i ∈Rdout for i ∈ [sk ], θk−1 ∈V k−1
s,z }, (5.2)

for all k = 1, ...,n + j , and finally Vs,z (θ) :=V n+ j
s,z .

Neurons that share an incoming weight vector w ′ for which the corresponding outgoing

weight vectors add up to zero are called ‘zero-type’ neurons. Moreover, the network function

remains invariant under any permutation of neurons. Each permutation defines another

affine subspace

PπVs,z (θ) := {Pπθ : θ ∈Vs,z (θ) and π ∈ Sm}

where Pπ permutes the neurons ϑi = (wi , ai ) of θ. We call the union of such affine subspaces

(corresponding to different partitions (s, z) of neurons and their permutations) the expansion

manifold of θ:

Definition 5.3.3. For n ≤ m, the expansion manifoldΘn→m(θ) ⊂RDm of a parameter θ ∈RDn

is defined as

Θn→m(θ) := ⋃
(s,z)
π∈Sm

PπVs,z (θ),

where s = (s1, ..., sn) and z = (z1, ..., z j ) ( j ≥ 0) are two tuples with si , zi ≥ 1 that satisfy s1 + ...+
sn + z1 + ...+ z j = m.

Using zero neuron addition, neuron splitting, and permutation, we constructured a union

manifolds (i.e. affine subspaces) that produce the same network function and denote it by

Θn→m . The curious question is whether this construction represents all parameters that

represent the same function. In the next section we give a positive answer for a broad class of

activation functions.
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5.4 Geometry and Topology of Zero-Loss Solutions

In this section, we first show that for a broad class of activation functions, a network function

can be represented by a larger network only if the set of neurons in the larger net correspond

to zero neurons groups and splitted neurons of the original network. We will then apply this

theorem to the loss landscape of overparameterized neural networks which gives an exact

description of the geometry and topology of the zero-loss solutions.

Assumption 5.4.1. The activation function σ : R → R is C∞, σ(0) 6= 0, and σ(`)(0) 6= 0 for

infinitely many even and odd values of ` (where σ(`) denotes the `-th derivative of σ).

In general, there are additional symmetries such as the mirror symmetry of tanh

(w1, a1) = f (−w1,−a1) (5.3)

which is an odd activation function that we can address with our construction methodology.

For the ReLU activation function, there is at least the positive scaling symmetry

(αw1,
1

α
a1) = f (w1, a1) for α> 0, (5.4)

but we cannot directly address this case since it is not differentiable at zero.

Theorem 5.4.2. Let us assume that the activation function satisfies Assumption 5.4.1 and

m ≥ k. If a parameter θ ∈RDm produces the same function as the true parameter θ∗ ∈RDk , i.e.

θ = f θ∗, then θ ∈Θn→m(θ∗).

Now it is time to introduce a loss function so that we can apply Theorem 5.4.2 to the zero-loss

configurations. The single sample loss c : Rdout ×Rdout → R≥0 satisfies c(ŷ , y) = 0 if and only

if ŷ = y , for example for the least-squares or the logistic loss. We consider the loss function

Lm :RDm →R

Lm(θ) =
∫
Rd0

c( f (2)
θ

(x), f ∗(x))D(d x),

where D is an input data distribution with support Rd0 . We note that Lm(θ) = 0 if and only if

the network function matches the true function f (2)
θ

(x) = f ∗(x) for all x ∈Rd0 .

Combining the pieces together, we conclude that all zero-loss solutions of the loss Lm in an

overparameterized network with width m ≥ k (we also allow for zero-overparameterization)

are identical up to symmetries for a certain class of activation functions.

Remark. The function σα,γ(x) = σsoft(x)+ασsig(γx) with α,γ > 0 (Figure 5.1) satisfies the

Assumption 5.4.1, but the standard softplus σsoft(x) = log(1+ex ) or sigmoidal σsig(x) = 1/(1+
e−x ) functions do not. The analysis needs to include other forms of neuron groupings.

A very interesting question is whether there are other zero-loss solutions outside of the ex-

pansion manifold Θn→m(θ∗) for finite-size datasets. For example, Kuditipudi et al. (2019)
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Figure 5.1 – Left: The function σα,γ(x) = σsoft(x)+ασsig(γx) satisfies the Assumption 5.4.1.
With this activation function, data is generated by a teacher network of width 4. All 50 student
networks with width 10 find a global minimum by reaching loss values below 10−16. Right: The
500 = 50×10 hidden neurons of all the 50 student networks are classified as copies of teacher
neurons or zero-type neurons with vanishing sum of output weights. The zero-type neurons
are further classified according to group size: there are 34 neurons with vanishing output
weight (group size 1), 54 neurons that have a partner neuron with the same input weights and
the sum of output weights equal to 0 (group size 2) etc.

construct an example of a finite-size dataset for two-layer overparameterized ReLU networks

where they find discrete global minima points. On the other hand, we show numerically in

Martinelli et al., 2023 for a wide range of problems that the neurons of an overparameterized

network that has converged to zero-loss form groups and can be pruned away.

5.4.1 Piecewise Linear Connectivity

We next focus on describing the precise geometry of the expansion manifolds. First we give

the number of affine subspaces in the expansion manifold and a piecewise linear connec-

tivity result. When applied to the expansion manifold of the true parameter, the number of

affine subspaces gives the number of zero-loss manifolds and how this number scales with

overparameterization. The piecewise linear connectivity comes from the fact that the affine

subspaces have non-empty intersections with one another which we will examine in detail in

Subsection 5.4.2.

Theorem 5.4.3. For m ≥ n, the expansion manifoldΘn→m(θ) of an irreducible point θ consists

of exactly2

T (n,m) :=
m−n∑
j=0

∑
s1+...+sn+z1+...+z j=m

si ,zi≥1

(
m

s1, ..., sn , z1, ..., z j

)
1

c1!...cm−n !

distinct affine subspaces (none is including another one) of dimension at least min(d0,dout)(m−
n), where ci is the number of occurences of i among (z1, ..., z j ). For m > n,Θn→m(θ) is connected:

any pair of distinct points θ,θ′ ∈Θn→m is connected via a union of line segments γ : [0,1] →
2(n1+···+nr

n1,...,nr

)
denotes the coefficient (n1+···+nr )!

n1!...nr ! .
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(b)

Figure 5.2 – Piecewise-linear connectivity of the expansion manifold. The arrangement of the
affine subspaces is demonstrated geometrically. Blue subspaces have one vanishing output
weight, green subspaces have two identical incoming weight vectors. (a) Θ1→2(θ1); case of
a network with two hidden neurons with parameters (w1, a1)⊕ (w ′,0). The base subspace
V0 = (w1, a1)⊕ (w ′,0) is connected to a neighbor subspace P(1,2)V0 via three line segments: we
first shift w ′ towards w1 while keeping the other parameters fixed and then move a1 to a′ while
keeping the summation of the outgoing weights fixed. (b) Θ2→3(θ2); case of a network with
three hidden neurons with the base subspace V0 = (w1, a1)⊕ (w2, a2)⊕ (w ′,0). V0 is connected
to any other blue subspace PπV0 through transitions from one neighbor to the next. Note that
there are T (2,3) = 12 subspaces.

Θn→m such that γ(0) = θ and γ(1) = θ′.

Proof (Sketch). The number of affine subspaces T is equal to the distinct permutations of

the incoming weight vectors (w1, . . . , wn , w ′
1, . . . , w ′

j ) for all possible partitions represented by

(s, z) where wi ’s are distinct and w ′
i ’s are dummy variables representing zero-type neurons.

The normalization factor 1/c1!c2! · · ·cm−n ! cancels the repetitions coming from the zero-type

neurons (w ′
1, . . . , w ′

j ). For example for the simplest case m = n, there is no room for zero-type

neurons. As a result we have

T (n,n) = ∑
s1+...+sn=n

si≥1

(
n

k1, ...,kn

)
=

(
n

1, ...,1

)
= n!

distinct subspaces of dimension min(d0,dout)(m − r ) = 0.

For the general case m > n, the proof for connectivity follows from the following observations.

We start from a base subspace V0 =Vs,z (θ), where there is a zero-type neuron with outgoing

weight vector exactly zero3 at position i∗. The neighbor subspaces P(i∗,i )V0, where (i∗, i ) ∈ Sm

is a transposition that swaps the two neurons, are connected to the base subspace via three line

segments (Figure 5.2-a). Since any permutation is a composition of transpositions, permuted

subspaces PπV0 can be reached via a union of line segments by going from one neighbor to

3If all zero-type neurons are part of a group with more than one neuron, we can choose the first neuron in a
group and set its outgoing weight vector to zero while respecting the condition in Eq. 5.1.
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(a)Θ3→4(θ3)

zero neuron addition neuron splitting

(b)Θk→k+1(θk )

Figure 5.3 – Connectivity graph of the affine subspaces in the expansion manifold. Blue ver-
tices represent the affine subspaces where the extra neuron is a zero neuron, green vertices
represent the affine subspaces where the extra neuron is splitted from one of the teacher
neurons. (a) The exact connectivity graph for k = 3. There are T (3,4) = 60 subspaces (24
blue and 36 green), where each blue subspace is connected to three green subspaces and
each green subspace is connected to two blue subspaces. There are 12 cliques made of 12
vertices (one blue followed by another green) which is identical to the clique in Figure 5.2-b
in the sense that the minimum number egdes (i.e. line segments) needed to get back to the
same vertex requires swapping two neurons of the teacher network and back. (b) Structure of
the connectivity graph for m = k +1. There are (k +1)! blue dots and (k +1)!k/2 green dots.
Each blue dot is connected to k green dots, and each green dot is connected to two blue dots;
forming (k +1)!k edges in the graph. Blue and green dots form cliques of 12 vertices (shown as
a clique of 6 blue vertices connected with dashed lines). Each blue vertex participates in

(k
2

)
cliques.

the next (Figure 5.2-b). �

5.4.2 Connectivity Graph of Affine Subspaces

Given the number of affine subspaces in an expansion manifold, it remains to study how they

are connected to one another. This can be phrased as a graph problem: each vertex represents

an affine subspace and we draw an edge if two affine subspaces intersect each other. We call

this the connectivity graph and give its properties for the case when one neuron is added.

Since there is only one room for the extra neuron, this can either be a zero neuron

(w1, a1)⊕ ...⊕ (wk , ak )⊕ (w ′,0) (5.5)

which intersects k affine subspaces corresponding to the splitting of one of the k neurons, for

example,

(w1, a1 −a′)⊕ ...⊕ (wk , ak )⊕ (w1, a′). (5.6)
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We note that the affine subspace above intersects 2 affine subspaces of the zero-neuron type

through its first and (k +1)-th neuron. No type of affine subspaces intersect with their own

type, hence forming a bipartite graph as shown in Figure 5.3-b. We leave the exact description

of the connectivity graph in terms of formal graph theory for future. Moreover, describing the

connectivity graph starting with the number of edges for the expansion manifolds when more

than one neuron is added remains an open question. An intruiging question is whether the

connectivity graph can give some insight into training dynamics.

5.5 Mild vs. Vast Overparameterization

5.5.1 The Landscape Complexity

We showed that the global minima manifold grows with overparameterization due to nu-

merous arrangements of hidden neurons representing a zero-loss solution. Factoring this in,

the appropriate landscape complexity measure for overparameterized networks needs to be

normalized with the number of zero-loss manifolds. While it is true that we have manifolds of

critical points instead of discrete points, they are all ‘tiny’ compared to the ambient dimen-

sionality of the parameter space. Therefore we focus on the comparison of the number of

critical subspaces and that of global minima subspaces. We propose a landscape complexity

measure that compares the scaling law of the critical manifolds at the lowest energy level

(low-index saddles) with the scaling law of the zero-loss manifolds

C (k,m) := G(k −1,m)

T (k,m)
. (5.7)

To study the scaling of the landscape complexity C (k,m) we first give a closed-form formula

for the scaling law T in terms of the scaling law G . This is proven in Appendix-??????? using

Newton’s series for finite differences Milne-Thomson, 2000 and a counting argument:

Proposition 5.5.1. For k ≤ m, we have

T (k,m) =G(k,m)+
m−k∑
`=1

(
m

`

)
G(k,m −`)g (`)

where g (`) =∑`
n=1

1
n!G(n,`). Moreover, we have that the scaling law T has the same growth as

the scaling law G in the following limit for fixed k

T (m −k,m) ∼G(m −k,m) as m →∞.

Using the limit rates of the scaling law G (Lemma 4.5.2) and Proposition D.2.2, we get the

following insightful limiting behaviors for the landscape complexity
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Figure 5.4 – The landscape complexity gradually decreases with overparameterization (OP)
factor ρ = m/k. A fast decay takes place at the very onset of overparameterization (until
the first dashed line at ρ = 1.2) which is followed by an exponential decay (until the second
dashed line at ρ = 1.6); shown in the inset. Afterward, there is even a faster than exponential
decay kicking in which pushes the landscape complexity down to zero rapidly. We expect this
decay to slow down eventually to exponential decay and match the infinite-width limit rate in
eq. (5.8). In the infinite teacher width limit at the onset of overparameterization, we observe
that complexity grows, however slowly; it is not overly visible in log-scale (better seen in the
inset; linear growth in the limit k →∞ in eq. (5.9)).

• In the infinite-width limit, for fixed k, we have that

C (k,m) ≤ G(k −1,m)

G(k,m)
∼

(
k −1

k

)m

as m →∞ (5.8)

which goes to zero exponentially fast. This is the well-studied limit where the gradient

flow converges to zero loss in commonly studied regimes of training such as the so-

called lazy and mean-field regimes (Jacot, Gabriel, and Hongler, 2018b; Chizat and Bach,

2018c).

• In the infinite data complexity limit & for mild overparameterization, i.e. as k → ∞,

m = k +h with fixed h ≥ 0, we have that

C (k,m) ∼ c0
mh+1m!

mhm!
= c0m as m →∞ (5.9)

which grows linearly as a function of overparameterization m. As a result, the landscape

complexity approaches to infinity.

In general, we observe that the landscape complexity gradually decreases with overparam-

eterization for arbitrary widths (see Figure 5.4). The decrease is exponential at the onset of

overparameterization (until about a factor of 1.6) which is followed by an even faster decay.

74



5.5. Mild vs. Vast Overparameterization

2

4

8

16

32

2 4 8

10−16

10−10

10−5

101

RMSE

r
2 4 8 2 4 8 2 4 8

r r r

d
in

> 0
< 0

A

B

Teacher #8

Teacher #1

Seed

Figure 5.5 – Top: Teacher complexity increases with number k of hidden neurons; contourplot
of the teacher network output for d0 = 2 input dimensions. Each hidden neuron generates a
hyperplane, w j

T x +b j = 0 (dashed lines); the direction of the feature vector w j is indicated by
an arrow and the sign of the output weight a j by its color. Top left: generalisation of the XOR or
parity-bit problem to a regression setting. From left to right: As the number of hidden neuron
increases, the level lines become more intricated. Bottom: Effects of overparametrization on
convergence; for each combination of d0 = 2,4,8,16,32 and k = 2,4,8 we generated 10 teachers;
for each teacher we trained 20 or 10 students with different seeds and hidden layer size ρ ·k.
Each dot corresponds to one seed (see inset bottom right). Dark blue dots indicate loss below
10−14. Student networks with overparameterization ρ = 4 or larger are more likely to converge
to near-zero loss than those without (ρ = 1). The general trend is that overparameterization
helps to converge to zero-loss parameters. For difficult teachers, r /d0 ≥ 1, training is very slow
and convergence to zero-loss is not guaranteed in finite time.

5.5.2 Numerics

In contrast to random teachers (Saad and Solla, 1995; Goldt et al., 2019; Raman, Rotondo, and

O’Leary, 2019) our approach contains regression problems with an XOR-like structure (Fig. 5.5,

top) which is encouraged by the selection of biases from a relatively small set of significantly

different values. Moreover, randomly initialized networks tend to behave as constant random

function as depth increases (Jakub and Nica, 2023), yielding uninteresting data-generator

models. In contrast to pure checker-board problems (Rumelhart, G. E. Hinton, and Williams,

1986), only a subset of hyperplanes is aligned with one of the axis. We use the symmetry-free

activation function σ=σsoft(x)+σsig(4x) in this subsection.

We trained overparameterized students on this family of teachers. In order to be closest to
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the theoretical setting of near-zero loss and to obtain perfect parameter recovery, we used the

package MLPGradientFlow.jl (Brea, Martinelli, et al., 2023) that allowed us to find global and

local minima with machine precision accuracy for tiny networks (Fig. 5.5, ρ = 1). However, for

slightly larger networks it becomes challenging to converge fully to global minima within a

reasonable amount of time (Fig. 5.5, ρ ∈ {4,8}) and methods to deal with imperfectly trained

students are needed. Since training is full-batch, the only source of randomness is in the

initialisation. Figure 5.5 shows a beneficial trend as overparameterization increases.

Across all the problems considered, the change in convergence rate (the ratio of dark blue

dots to the number of trials) in going from the OP factor ρ = 1 to ρ = 2 seems more significant

compared to the the improvement in the convergence rate at ρ = 4 and ρ = 8 – which is sup-

ported by the exponential decay of the landscape complexity in the mild overparameterization

regime (until about a factor of 1.6). The landscape complexity decreases even faster in the vast

overparameterization regime (after about the factor 1.6), however this further growth of the

number of zero-loss manifolds does not seem to facililate training as much. Our landscape

complexity therefore is not sufficient to explain convergence rate trends, say after a factor of

ρ = 2. This might be either a limitation of our landscape complexity measure, or an artifact

due to the small scale of the toy problems considered here (k ∈ {2,4,8}). We also observe a

significant dependence on the dataset (or teacher) complexity: as the teacher expansion ratio

r /d0 increases, it becomes harder to train overparameterized students to global minima.

5.6 Deep Neural Networks

In this section, we introduce the expansion manifold for multi-layer networks that enables

obtaining connectivity and counting results on the global minima manifold for multi-layer

networks (i.e., generalizing Theorem 5.4.3). A neural network with L layers f (L) :Rd0 →Rdout

with widths n = (n1,n2, . . . ,nL−1) is

f (L)(x) =W (L)σ(W (L−1) · · ·σ(W (1)x))) (5.10)

where W (`) ∈Rn`×n`−1 for `= 1, . . . ,L with n0 = d0 and nL = dout, the non-linearity σ is applied

element-wise, and θ = (W (L), . . . ,W (1)) is the vector of parameters. Observing that any pair

of weight matrices (W (`),W (`+1)) for ` = 1, . . . ,L − 1 forms a two-layer network within the

multi-layer network, we say that a multi-layer network is irreducible if all pairs (W (`),W (`+1))

are irreducible.

We define the expansion manifold of an irreducible network with widths n into larger widths

m = (m1,m2, . . . ,mL−1) by taking the sequential expansion manifolds of all pairs (W (`),W (`+1)).

More precisely, we define the multi-layer expansion manifold as follows

Θn→m(θ) := {φ1 :φL−1 ∈Θ(L−1)
n→m(θ), ...,φ1 ∈Θ(1)

n→m(φ2)} (5.11)

whereΘ(`)
n→m(φ) substitutes the pair (W (`),W (`+1)) with those of a point in the usual expansion
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manifold (Def. 5.3.3). Since each expansion leaves the output of the network unchanged,

all points in this expansion have the same loss. Note that the order in which we take these

expansions affects the final manifold; expanding from the last layer to the first one gives the

largest final manifold. The same final manifold can be obtained via a ‘forward pass’ if one

considers expansion up to an equivalence of the incoming weight vectors.

Assume that a minimal L-layer network achieves a unique (up to permutation) global min-

imum point θ∗ with widths (k1,k2, . . . ,kL−1). In an overparameterized network of widths

(m1, . . . ,mL−1) with m` > k` for all ` ∈ [L −1] (i.e. at least one extra neuron at every hidden

layer), we find a connected manifold of global minimum, which is simply the multi-layer

expansion manifoldΘk→m(θ∗) of the minimum point θ∗.

Similarly, we can consider the symmetry-induced critical points for multi-layer networks by ap-

plying neuron splitting to the neurons of all hidden layers. The number of affine subspaces of

the symmetry-induced critical points is exponential in depth since the permutation-symmetry

applies to every hidden layer.

Landscape Complexity. We consider the case where a minimal L-layer network with k neu-

rons at each hidden layer reaches a global minimum point θ∗ and an overparameterization of

m = k +h neurons at each hidden layer. The landscape complexity is then

C (L)(k,m) =C (k,m)L−1

which is exponential in depth. Therefore in the mildly overparameterized regime, i.e. when h

is small, we see that the ratio of the scaling law of low-index saddles to that of global minima

grows exponentially with depth. For the vastly overparameterized regime, i.e. when h is large,

we observe the opposite effect: the dominance of the scaling law of global minima is stronger

in the multi-layer case. Finally, we observe a width-depth trade-off in reaching a dominance

of the global minima: one can either increase the width of a two-layer network so that the

complexity goes down to zero; or increase the depth in a network where each layer is just

large enough to guarantee that the two-layers complexity is smaller than one which eventually

decreases the total ratio down to zero.

5.7 Conclusion & Future Directions

We showed that the addition of a single neuron connects affine subspaces of zero-loss points.

This gives a simple explanation of ‘linear mode connectivity’ observed in practice. Beyond

linear mode connectivity, we developed the machinery to describe paths and the number of

piecewise linear segments connecting two arbitrary solutions. When an arbitrary number

of neurons is added, we gave the scaling law of the zero-loss manifolds (affine subspaces)

as a function of the data complexity (i.e. teacher width) and overparameterization. Our

mathematical result is that for input distributions with full-support and a broad class of

activation functions, any zero-loss parameter is equivalent to the teacher parameter up to
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zero neuron addition, neuron splitting, and permutation therefore the scaling law is exact.

Using the scaling laws of the manifolds of symmetry-induced critical points and zero-loss

points, we proposed a landscape complexity measure to study the difficulty of training in over-

parameterized networks of finite-width. In mildly overparameterized networks, the landscape

complexity is large (À 1), so that in practice, the gradient trajectories may get influenced by

these saddles or even get either transiently or effectively stuck in their neighborhood for a

fraction of typical initializations. However this regime is rather transient thanks to the fast

decay of the landscape complexity, and for a small factor of overparameterization (around

1.5), the lanscape complexity goes below 1 and into a rapidly decaying regime. We observe

empirical signatures of the fast then slow decay of landscape complexity numerically for a

large number of toy problems. From a practical point of view, our theoretical results pave

the way to applications in optimization of non-convex neural network loss landscapes via a

combination of overparameterization and pruning (Martinelli et al., 2023).
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6 Neural Networks with Few Neurons

In this chapter, we present recent unpublished results on the analysis of shallow neural

networks with few neurons. We study the interesting problem of learning in the classic

student-teacher setup, when the student has only a few neurons hence not enough capacity to

match the teacher network function. We present the main results in Section 6.1, related works

in Section 6.2, and problem setup in Section 6.3. The main contribution is the reformulation

of the problem as a constrained optimization problem that applies to the students of arbitrary

widths which we present in Section 6.4. We apply this to the one-neuron network in Section 6.5,

getting closed-form expressions for the optimal solution. We close with the conclusions and

discussion of future work in Section 6.6. The proofs and further discussions are presented in

the Appendix E.

6.1 Main Results

• We propose a reparameterization of the two-layer teacher-student problem which

enables a constrained optimization formulation. We assume that the teacher network

has orthogonal incoming weights and the input data is standard Gaussian. The optimal

solution of the constrained optimization problem is equivalent to the optimal solution

of the underparamerized student network (for a student network that is at least as wide

as the teacher, the optimal loss is trivially zero).

• For the one neuron network, we identify necessary conditions on the so-called in-

teractions which yields that at the optimal neuron is equally aligned with all teacher

incoming vectors. We show that the common monotonic activation functions satisfy

this condition.

• For ReLU activation function, we give the closed-form expression of the optimal solution

of the one neuron network using the analytic formula of the interaction.

• The optimal solution of a one-neuron network for general monotonic activation func-

tions has a simple interpretation: the incoming vector of the one-neuron network
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implements a damped average of all incoming teacher vectors while its outgoing weight

is larger than the sum of outgoing weights of the teacher network.

6.2 Related Works

Although the teacher-student framework is a commonly studied model of neural networks,

neither global landscape nor gradient flow dynamics are fully understood even in the simplest

cases. In the limit when the input dimension goes to infinity, a well-known result is that online

stochastic gradient descent converges to a deterministic limit (Saad and Solla, 1995; Goldt

et al., 2019). Recent work of Veiga et al., 2022; Arous, Gheissari, and Jagannath, 2022 extended

the analysis to the non-vanishing learning rates. Another line of work studies the case of

finite input dimension. When the numbers of student neurons, teacher neurons (that are

orthogonal), and input dimension are equal, for the ReLU activation function, I. Safran and

Shamir, 2018 show that local minima are prevalent and some families are characterized by

Arjevani and Field, 2021. Despite the vast literature, there is no rigorous result on the optimal

solution of the one-neuron network approximating multiple teacher neurons, beyond the

case of a one-neuron teacher network (Tian, 2017; Mei, Y. Bai, and Montanari, 2018; Yehudai

and Ohad, 2020; Vardi, Yehudai, and Shamir, 2021; Wu, 2022).

6.3 Setup

Network function: Consider a (student) two-layer network function f :Rd →Rwith n neurons

f (x) =
n∑

j=1
a jσ

(
w j · x

)
(6.1)

where w j ∈Rd is the incoming vector to and a j ∈R the outgoing weight of the neuron j . The

activation function σ is twice differentiable unless it is specified to be ReLU.

Parameter: We use the following notation for the parameter θ ∈RP with P = (d +1)n

θ = (w1, a1)⊕·· ·⊕ (wn , an) (6.2)

where ⊕ concatenates the neuron vectors (w1, a1) back to back. Sometimes θ is made explicit

in the network function f (x|θ)= f (x).

Orthogonal teacher network (with bi = 1): For the study of the under-parameterized net-

works, we assume that the target function is a (teacher) two-layer neural network

f ∗(x) =
k∑

i=1
biσ(vi · x) (6.3)

where all output weights bi are equal to unity and incoming vectors v1, . . . , vk ∈ Rd are or-
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thonormal vectors. This implies that the input dimension is at least as large as the number of

teacher neurons, i.e. d ≥ k.

Loss function: We consider a squared loss and assume that the input distribution is standard

Gaussian unless otherwise stated which yields the following non-convex loss function

Lorig((w j , a j )n
j=1) = Ex∼N (0,Id )

[( n∑
j=1

a jσ(w j · x)−
k∑

i=1
biσ(vi · x)

)2
]

. (6.4)

Using the linearity of expectation, the loss function in Eq. 6.4 can be expanded to a weighted

sum of the following type of Gaussian integral terms (see Section 6.4)

Ex∼N (0,Id )[σ(w1 · x)σ(w2 · x)]. (6.5)

Since the input distribution is assumed to be standard Gaussian, both w1 · x and w2 · x are

centered Gaussian random variables. Hence the above integral can be expressed in terms of the

covariance of the two-dimensional Gaussian (w1 ·x, w2 ·x) which reduces the dimensionality

of the problem. This is a standard trick in teacher-student problems and the covariance

parameters after reduction are called summary statistics in probability (Arous, Gheissari, and

Jagannath, 2022) or order parameters in statistical physics (Goldt et al., 2019). We express the

covariance as follows

Ex∼N (0,Id )

[
(w1 · x)2 (w1 · x)(w2 · x)

(w1 · x)(w2 · x) (w2 · x)2

]
=

[
r 2

1 r1r2u

r1r2u r 2
2

]
(6.6)

where ri = ‖wi‖ for i = 1,2 and u = w1 · w2/(r1r2) which allows us to explicitly bound the

correlation u ∈ [−1,1] thanks to the Cauchy-Schwarz inequality. The key to solving the one-

neuron network lies in the novel study of the interaction function g :R2
≥0 × [−1,1] →R, i.e. the

Gaussian integral term in Eq. 6.5

g (r1,r2,u) = Ex∼N (0,Id )[σ(w1 · x)σ(w2 · x)]. (6.7)

This formalism sets the groundwork for a fundamental study of under-parameterized networks

and how they express the optimal solution.

6.4 Risk Minimization as a Constrained Optimization Problem

Expanding the loss in terms of the interaction functions (see Eq. 6.7), we get

L =
n∑

j=1
a2

j g (r j ,r j ,1)+2
∑
j 6= j ′

a j a j ′g (r j ,r j ′ , ũ j j ′)−2
n∑

j=1

k∑
i=1

a j g (r j ,1,u j i )+const (6.8)

where r j = ‖w j‖ is the norm of an incoming vector, ũ j j ′ = w j ·w j ′/(r j r j ′) is the correlation

between two normalized student incoming vectors, and u j i = w j · vi /r j is the correlation
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between a normalized student and a teacher incoming vector for all j 6= j ′ ∈ [n] and i ∈ [k].

The constant does not depend on the problem parameters and represents the squared target

function integrated over the Gaussian input distribution, i.e. Ex∼N (0,Id )[ f ∗(x)2].

All correlations are by definition bounded by 1 in absolute value. However, there are tighter

geometric constraints on the correlations between student and teacher incoming vectors

which we make explicit next. Note that we can expand any normalized incoming vector of the

student in the basis of the teacher’s incoming vectors as follows

w j

r j
=

k∑
i=1

u j i vi + v⊥ (6.9)

where v⊥ is orthogonal to all vi . The normalized vector has unit norm, hence the expansion

also has a unit norm which yields the constraint on the student-teacher correlations u j i

k∑
i=1

u2
j i = 1−‖v⊥‖2 ≤ 1 ∀ j ∈ [n]. (6.10)

Next, we can express the student-student correlations ũ j j ′ using Eq. 6.9 as

ũ j j ′ = (
k∑

i=1
u j i vi + v⊥)(

k∑
i=1

u j ′i vi + v ′
⊥) =

k∑
i=1

u j i u j ′i + v⊥ · v ′
⊥ (6.11)

which yields the second constraint on the optimization problem after noting |v⊥ · v ′
⊥| ≤

‖v⊥‖‖v ′
⊥‖

∣∣∣∣ũ j j ′ −
k∑

i=1
u j i u j ′i

∣∣∣∣≤
√√√√1−

k∑
i=1

u2
j i

√√√√1−
k∑

i=1
u2

j ′i ∀ j ′ 6= j ∈ [n]. (6.12)

Remark. We can relax the assumption of orthogonality between v1, . . . , vk to linear indepen-

dence. Let us collect the incoming vectors into a matrix V = [v1, . . . , vk ] ∈Rd×k . The expansion

in Eq. 6.9 can be rewritten as

w j

r j
=

k∑
i=1

γ j i vi + v⊥ =V Γ j + v⊥ (6.13)

where Γ j = [γ j 1, . . . ,γ j k ] ∈Rk . The normalized vector has unit norm, hence we have

‖V Γ j + v⊥‖2 = ΓT
j V T V Γ j +‖v⊥‖2 = 1. (6.14)

For the correlation vector U j = [u j 1, . . . ,u j k ] ∈Rk , we have

U j =V T V Γ j (6.15)
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Figure 6.1 – Structure of the optimal solution of the one-neuron network for various activation
functions. We trained 20 seeds of one-neuron students learning from the orthogonal teacher
networks with k = 2, . . . ,10 neurons. All students converge to the same solution except for
tanh and erf for which there is also a sign-symmetric solution1. (a) For ReLU, the magnitude
‖w∗‖a∗ exactly matches with the result of Theorem 6.5.3. For softplus, the magnitude is very
close to

p
k; for sigmoid, tanh, and erf, it is below

p
k. (b) The norm of the incoming vector is

smaller than 1/
p

k not only for softplus, but also for sigmoid, tanh, and erf. (c) The outgoing
weight is larger than k for softplus and tanh; and it is virtually k for sigmoid and erf.

which yields the following constraint due to Eq. 6.14 for all j ∈ [n]

U T
j (V T V )−1U j ≤ 1. (6.16)

6.5 The Optimal Solution of the One-Neuron Network

As a first step towards characterizing the optimal solution in the networks with few neurons,

we focus on the case of a single neuron (n = 1) approximating an orthogonal teacher with k

neurons. The loss in Eq. 6.8 simplifies

L(r, a, (ui )k
i=1) = a2g (r,r,1)−2a

k∑
i=1

g (r,1,ui )+const, subject to r ≥ 0,
k∑

i=1
u2

i ≤ 1. (6.17)

We assume that the interaction g is twice differentiable in the correlation for all u ∈ (−1,1)

throughout the paper. Let us introduce some properties of g that we will use in the following

Assumption 6.5.1. The interaction satisfies the following properties for all r1,r2 > 0 and u ∈
(−1,1)

(i)
d

du
g (r1,r2,u) > 0, (ii)

d 2

du2 g (r1,1,u)u < d

du
g (r1,1,u). (6.18)

1For odd functions such as tanh and erf, i.e. σ(x) = erf(x/
p

2), there are two solutions that are sign-symmetric:
the usual one where the correlations are all 1/

p
k, with a norm and outgoing weight denoted by (r, a) with a > 0,

and its symmetric solution where the correlations are all −1/
p

k, with a norm and outgoing weight (r,−a). Only
the first solution is plotted in the figure for finer comparison on the positive scale.
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Applying Lemma E.1.1 for σ1 =σ2 =σ that is differentiable, we obtain

d

du
g (r1,r2,u) = r1r2E[σ′(r1x)σ′(r2 y)]. (6.19)

Hence if σ is increasing (or decreasing),2 the integrand on the right-hand side is positive;

satisfying Assumption 6.5.1 (i). The relationship between Assumption 6.5.1 (ii) and the activa-

tion function is more subtle. We show in Lemma E.1.2 that the interactions of the common

activation functions such as softplus, sigmoid, tanh, and erf (respectively)

σ(x) = 1

β
log(eβx +1) with β ∈ (0,2],

1

1+e−x ,
1−e−x

1+e−x ,
2p
π

∫ x

0
e−t 2/2d t ,

satisfy Assumption 6.5.1 (ii). Finally, for the ReLU activation function, i.e. σ(x) = max(0, x), the

interaction has an analytical expression (Cho and L. Saul, 2009; I. Safran and Shamir, 2018),

g (r1,r2,u) = r1r2h(u) where h(u) = 1

2π

(√
1−u2 + (π−arccos(u))u

)
.

With a simple calculation, we show that h satisfies Assumption 6.5.1 (i) and (ii) (with a slight

modification in the domain; see the proof of Theorem 6.5.3). For the activation functions for

which the corresponding interaction satisfies Assumption 6.5.1 (such as the ones listed above),

we show that at any non-trivial critical point of the loss in Eq. 6.17, the correlations satisfy the

constraint u2
1 + ...+u2

k = 1 and they are equal.

Theorem 6.5.2. Assume that the interaction g (r1,r2,u) satisfies Assumption 6.5.1. At any non-

trivial critical point of the loss in Eq. 6.17, that satisfies a 6= 0 and r 6= 0, all correlations ui are

identical (for k > 1) and equal to either 1/
p

k or −1/
p

k (for all k ≥ 1).

Intuitively, for positive outgoing weight, the incoming vector of the one-neuron network is

pulled toward the teacher’s incoming vectors to minimize the loss. Hence, the optimal solution

has to be in the span of the teacher’s incoming vectors which means that the constraint in

Eq. 6.17 is satisfied. Since the teacher’s incoming vectors are orthogonal to each other and

they are equal in strength – with unit norm and unit outgoing weight – the incoming vector

should align with each of them equally to be stationary (see Appendix Section E.2.1 for the

proof). In particular, since the optimal solution of the original problem in the weight space is

a stationary point in Eq. 6.17, it aligns with all incoming vectors of the teacher equally.

Thanks to Theorem 6.5.2, the loss in Eq. 6.17 can now be reduced to a two-dimensional loss

parameterized by a and r . First, let us study it analytically for the ReLU activation function.

Theorem 6.5.3. Assume that the activation function is σ(x) = max(0, x). Any global minima

(w∗, a∗) of the loss in Eq. 6.4 for the one-neuron network (n = 1) satisfies

‖w∗‖a∗ = k
h(1/

p
k)

h(1)
, w∗ = ‖w∗‖p

k

k∑
i=1

vi , (6.20)

2Increasing (decreasing) means strictly increasing (decreasing) everywhere in this paper.
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forming an equal-loss hyperbola. The optimal loss is given by

L∗ = k2

(
h(0)− h(1/

p
k)2

h(1)

)
+k(h(1)−h(0)). (6.21)

For ReLU, thanks to the analytical formula of the interaction, we characterize the global

landscape of the one-neuron network (see the proof of Theorem 6.5.3 in Section E.2.2). In

particular, we give the closed-form formula of the optimal solution that is unique up to the

scaling symmetry of ReLU in Theorem 6.5.3.

For general activation functions (with the exception of erf), there is no analytical expression

for the interaction. In Lemma E.1.2, we showed that the common activation functions listed

above satisfy the Assumption 6.5.1, therefore we know that the correlations are equal and the

constraint on the correlations is satisfied at the optimal solution. What remains is solving a

fixed point equation on the norm (see Appendix Section E.2.1) which we do numerically (see

Figure E.1). Numerically we observe that there is a unique solution to the fixed point equation

where r ≤ 1/
p

k which yields a lower bound on the outgoing weight. We propose the following

conjecture which is also supported by Figure 6.1 for softplus, sigmoid, erf, and tanh activation

functions.

Conjecture 6.5.4. Assume that the interaction of the activation function satisfies Assump-

tion 6.5.1. There is a unique critical point, that is the global minimum, of the loss in Eq. 6.17

which satisfies

ui = 1/
p

k, r ≤ 1p
k

, and k ≤ a. (6.22)

For the teacher network with one neuron, the unique critical point is given by u1=1, r =1, a=1.

According to the conjecture, the incoming vector of the optimal solution of the one-neuron

network can be expressed as

w∗ = rp
k

k∑
i=1

vi ,

with r ≤ 1/
p

k. Hence, the incoming vector implements a damped average of the incoming

vectors of the teacher with a damping factor of r /
p

k ≤ 1/k. The outgoing weight at the optimal

solution is at least k since the one neuron should compensate for approximating k teacher

neurons.

6.6 Conclusion & Generalizations

One-Neuron Network. We proposed a novel proof to study the optimal solution of the one-

neuron network when it learns from a teacher network with an arbitrary number of neurons.

The key proof idea relies on a reparameterization of the order parameters/summary statistics
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in terms of correlations and norms. We then study the interaction as a function of three

parameters (two norms and a correlation) without relying on the analytic expression. For the

ReLU activation function, using the analytic expression of the interaction, we gave the closed-

form formula of the optimal solution. For some general activation functions, we numerically

showed that the optimal solution implements a damped average in its incoming vector and a

compensating outgoing weight.

Two-Neuron Network/Future Directions. What about the optimal solution of the two-neuron

network? The characterization of this solution and the question of other non-trivial (i.e.

irreducible) critical points in under-parameterized neural networks remain a substantial

challenge for future research. The properties of the interactions may play a key role in the

precise study of the whole regime of shallow networks; the one-neuron case being a non-

trivial application. The idea of decoupling the norm and correlations is strong as it yields an

equivalent constrained optimization problem (see the constraints in Eq.11 and Eq.13; valid in

general). We came up with Lemma E.1.1, which is a derivative law with respect to correlation;

it will likely play a key role in solving the underparamerized networks beyond the one-neuron

limit.

Another interesting direction is generalizing the proofs to non-orthogonal incoming vectors,

and also for arbitrary outgoing weights of the teacher. The general setting for the teacher

network is exhaustive because any continuous target function can be approximated by a

(teacher) network thanks to the universal approximation theorem (Funahashi, 1989; Cybenko,

1989; Hornik, Stinchcombe, and White, 1989).
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A Gaussian Random Features Model

A.1 Gaussian Random Features

Proposition A.1.1. Let f̂ (RF )
λ

be the λ-RF predictor and let ŷ = F θ̂ be the prediction vector on

training data, i.e. ŷi = f̂ (RF )
λ

(xi ). The process f̂ (RF )
λ

is a mixture of Gaussians: conditioned on F ,

we have that f̂ (RF )
λ

is a Gaussian process. The mean and covariance of f̂ (RF )
λ

conditioned on F

are given by

E[ f̂ (RF )
λ

(x)|F ] = K (x, X )K (X , X )−1 ŷ , (A.1)

Cov[ f̂ (RF )
λ

(x), f̂ (RF )
λ

(x ′)|F ] = ‖θ̂‖2

P
K̃ (x, x ′) (A.2)

where K̃ (x, x ′) = K (x, x ′)−K (x, X )K (X , X )−1K (X , x ′) denotes the posterior covariance kernel.

Proof. Let F = ( 1p
P

f ( j )(xi ))i , j be the N ×P matrix of values of the random features on the

training set. By definition, f̂ (RF )
λ

= 1p
P

∑P
p=1 θ̂p f (p). Conditioned on the matrix F , the optimal

parameters (θ̂p )p are not random and ( f (p))p is still Gaussian, hence, conditioned on the

matrix F , the process f̂ (RF )
λ

is a mixture of Gaussians. Moreover, conditioned on the matrix F ,

for any p, p ′, f (p) and f (p ′) remain independent, hence

E
[

f̂ (RF )
λ

(x) | F
]

= 1p
P

P∑
p=1

θ̂pE
[

f (p)(x) | f (p)
N

]
Cov

[
f̂ (RF )
λ

(x), f̂ (RF )
λ

(x ′) | F
]

= 1

P

P∑
p=1

θ̂2
p Cov

[
f (p)(x), f (p)(x ′) | f (p)

N

]
.

where we have set f (p)
N = ( f (p)(xi ))i ∈RN . The value of E

[
f (p)(x) | f (p)

N

]
and Cov

[
f (p)(x), f (p)(x ′) | f (p)

N

]
are obtained from classical results on Gaussian conditional distributions Eaton, 2007:
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Appendix A. Gaussian Random Features Model

E
[

f (p)(x) | f (p)
N

]
= K (x, X )K (X , X )−1 f (p)

N ,

Cov
[

f (p)(x), f (p)(x ′) | f (p)
N

]
= K̃ (x, x ′),

where K̃ (x, x ′) = K (x, x ′)−K (x, X )K (X , X )−1K (X , x ′). Thus, conditioned on F , the predictor

f̂ (RF )
λ

has expectation:

E
[

f̂ (RF )
λ

(x) | F
]
= K (x, X )K (X , X )−1 1p

P

P∑
p=1

θ̂p f (p)
N = K (x, X )K (X , X )−1 ŷ

and covariance:

Cov
[

f̂ (RF )
λ

(x), f̂ (RF )
λ

(x ′) | F
]
= 1

P

P∑
p=1

θ̂2
p K̃ (x, x ′) = ‖θ̂‖2

P
K̃ (x, x ′).

Using Proposition A.1.1, in order to have a better description of the distribution of the predictor

f̂ (RF )
λ,γ , it remains to study the distributions of both the final labels ŷ on the training set and the

parameter norm ‖θ̂‖2. In Section A.3, we first study the expectation of the final labels ŷ : this

allows us to study the loss of the average predictor E
[

f̂ (RF )
λ,γ

]
. Then in Section A.5, a study of

the variance of the predictor allows us to study the average loss of the RF predictor.

A.2 Generalized Wishart Matrix

Setup. In this section, we consider a fixed deterministic matrix K of size N ×N which is

diagonal positive semi-definite, with eigenvalues d1, . . . ,dN . We also consider a P ×N random

matrix W with i.i.d. standard Gaussian entries.

The key object of study is the P ×P generalized Wishart random matrix F T F = 1
P W K W T and

in particular its Stieltjes transform defined on z ∈C\R+, where R+ = [0,+∞[:

mP (z) = 1

P
Tr

[(
F T F − zIP

)−1
]
= 1

P
Tr

[(
1

P
W K W T − zIP

)−1]
,

where K is a fixed positive semi-definite matrix.

Since F T F has positive real eigenvalues λ1, . . . ,λP ∈R+, and

mP (z) = 1

P

P∑
p=1

1

λp − z
,
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we have that for any z ∈C\R+,

|mP (z)| ≤ 1

d(z,R+)
,

where d(z,R+) = inf
{∣∣z − y

∣∣ , y ∈R+}
is the distance of z to the positive real line. More precisely,

mP (z) lies in the convex hull Ωz = Conv
({ 1

d−z : d ∈R+
})

. As a consequence, the argument

arg(mP (z)) ∈ (−π,π) lies between 0 and arg
(− 1

z

)
, i.e. mP (z) lies in the cone spanned by 1 and

− 1
z .

Our first lemma implies that the Stieljes transform concentrates around its mean as N and P

go to infinity with γ= P
N fixed.

Lemma A.2.1. For any integer m ∈N and any z ∈C\R+, we have

E
[|mP (z)−E [mP (z)]|m]≤ cP−m

2 ,

where c depends on z, γ, and m only.

Proof. The proof follows Step 1 of Z. Bai and Z. Wang, 2008. Let w1, ..., wN be the columns of

W from left to right. Let us introduce the P ×P matrices B(z) = 1
P W K W T − zIP and B(i )(z) =

1
P W(i )K(i )W T

(i ) − zIP where W(i ) is the P × (N −1) submatrix of W obtained by removing its i -th

column wi , and K(i ) is the (N −1)× (N −1) submatrix of K obtained by removing both its

i -th column and i -th row. Since the eigenvalues of W K W T and W(i )K(i )W T
(i ) are all real and

positive, B(z) and B(i )(z) are invertible matrices for z ∉R+.

Noticing that

B(z) = 1

P
W K W T − zIP = 1

P
W(i )K(i )W

T
(i ) − zIP + di

P
wi wT

i

is a rank one perturbation of the matrix B(i )(z), by the Sherman–Morrison’s formula, the

inverse of B(z) is given by:

B(z)−1 = (
B(i )(z)

)−1 − di

P

1

1+ di
P wT

i

(
B(i )(z)

)−1 wi

(
B(i )(z)

)−1 wi wT
i

(
B(i )(z)

)−1 .

We denote Ei the conditional expectation given wi+1, ..., wN . We have E0[mP (z)] = mP (z) and

EN [mP (z)] = E[mP (z)]. As a consequence, we get:

mP (z)−E[mP (z)] =
N∑

i=1
(Ei−1[mP (z)]−Ei [mP (z)])

= 1

P

N∑
i=1

(Ei−1 −Ei )
[
Tr

(
B(z)−1)]

= 1

P

N∑
i=1

(Ei−1 −Ei )
[
Tr

(
B(z)−1)−Tr

(
B(i )(z)−1)] .
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The last equality comes from the fact that Tr
(
B(i )(z)−1

)
does not depend on wi , hence

Ei−1
[
Tr

(
B(i )(z)−1)]= Ei

[
Tr

(
B(i )(z)−1)] .

Let gi : C \R+ → C be the holomorphic function given by gi (z) := 1
P wT

i

(
B(i )(z)

)−1 wi . Its

derivative is given by g ′
i (z) = 1

P wT
i

(
B(i )(z)

)−2 wi . Hence

Tr
(
B(z)−1)−Tr

(
B(i )(z)−1) = −

di
P Tr

((
B(i )(z)

)−1 wi wT
i

(
B(i )(z)

)−1
)

1+di gi (z)

= − di g ′
i (z)

1+di gi (z)
,

where we used the cyclic property of the trace. We can now bound this difference:

∣∣Tr
(
B(z)−1)−Tr

(
B(i )(z)−1)∣∣= ∣∣∣∣∣ di g ′

i (z)

1+di gi (z)

∣∣∣∣∣
≤

∣∣∣∣∣ wT
i

(
B(i )(z)

)−2 wi

wT
i

(
B(i )(z)

)−1 wi

∣∣∣∣∣
≤ max

w

∣∣∣∣∣ wT
(
B(i )(z)

)−2 w

wT
(
B(i )(z)

)−1 w

∣∣∣∣∣
≤ ‖(

B(i )(z)
)−1 ‖op = max

j
| 1

ν j − z
| ≤ 1

d(z,R+)
,

where ν j are the eigenvalues of 1
P W(i )K(i )W T

(i ).

The sequence (
(EN−i −EN−i+1)

[
Tr

(
B(z)−1)−Tr

(
B(N−i+1)(z)−1)])

i=1,...,N

is a martingale difference sequence. Hence, by Burkholder’s inequality, there exists a positive

constant Km such that

E
[|mP (z)−E [mP (z)]|m]≤ Km

1

P m E

(
N∑

i=1

∣∣[Ei−1 −Ei ]
(
Tr

(
B(z)−1)−Tr

(
B(i )(z)−1))∣∣2

) m
2


≤ Km

1

P m

(
N

(
2

d(z,R+)

)2) m
2

≤ Kmγ
−m

2

(
2

d(z,R+)

)m

P−m
2 ,

hence the desired result with c = Kmγ
−m

2

(
2

d(z,R+)

)m
.
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The following lemma, which is reminiscent of Lemma 4.5 in Au et al., 2018, is a consequence

of Wick’s formula for Gaussian random variables and is key to prove Lemma C.4.

Lemma A.2.2. If A(1), . . . , A(k) are k square random matrices of size P independent from a

standard Gaussian vector w of size P,

E
[

wT A(1)w w T A(2)w . . . wT A(k)w
]

= ∑
p∈P 2(2k)

∑
[
p≤Ker(i1,...,i2k )]i1,...,i2k∈{1,...,P }

E
[

A(1)
i1i2

. . . A(k)
i2k−1i2k

]
,(A.3)

where P 2(2k) is the set of pair partitions of {1, . . . ,2k}, ≤ is the coarser (i.e. p ≤ q if q is coarser

than p), and for any i1, . . . , i2k in {1, . . . ,P }, Ker(i1, . . . , i2k ) is the partition of {1, . . . ,2k} such that

two elements u and v in {1, ...,2k} are in the same block (i.e. pair) of Ker(i1, . . . , i2k ) if and only

if iu = iv .

Furthermore,

E
[(

wT A(1)w −Tr
(

A(1)))(wT A(2)w −Tr
(

A(2))) . . .
(
wT A(k)w −Tr

(
A(k)

))]
= ∑

p∈:P 2(2k):

∑
[
p≤Ker(i1,...,i2k )]i1,...,i2k∈{1,...,P }

E
[

A(1)
i1i2

. . . A(k)
i2k−1i2k

]
, (A.4)

where : P 2(2k) : is the subset of partitions p in P 2(2k) for which
{
2 j −1,2 j

}
is not a block of p

for any j ∈ {1, . . . ,k}.

Proof. Expanding the left-hand side of Equation (A.3), we obtain:

E

[ ∑
i1,...,i2k∈{1,...,P }

wi1 A(1)
i1i2

wi2 wi3 A(2)
i3i4

wi4 . . . wi2k−1 A(k)
i2k−1i2k

wi2k

]
.

Using Wick’s formula, we get:∑
i1,...,i2k∈{1,...,P }

∑
[
p≤Ker(i1,...,i2k )]p∈P 2(2k),

E
[

A(1)
i1i2

A(2)
i3i4

. . . A(k)
i2k−1i2k

]
,

hence, interchanging the order of summation, we recover the left-hand side of Equation (A.3):∑
p∈P 2(2k)

∑
[
p≤Ker(i1,...,i2k )]i1,...,i2k∈{1,...,P }

E
[

A(1)
i1i2

. . . A(k)
i2k−1i2k

]
.

We now prove Equation (A.4). Expanding the product, the left-hand side is equal to:

∑
I⊂{1,...,k}

(−1)k−#IE

[∏
i∈I

wT A(i )w
∏
i∉I

Tr(A(i ))

]
.
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Expanding the product and the trace, and using Wick’s equation, we obtain: a∑
I⊂{1,...,k}

(−1)k−#I
∑

i1,...,i2k∈{1,...,P }

∑
[
p≤Ker(i1,...,i2k )]p∈P 2(2k),p≤p I

E
[

A(1)
i1i2

. . . A(k)
i2k−1i2k

]
.

where p I is the partition composed of blocks of size 2 given by {2l ,2l +1} with l ∉ I and the

rest of the indices contained in a single block. Interchanging the order of summation, we get:

∑
i1,...,i2k∈{1,...,P }

∑
[
p≤Ker(i1,...,i2k )]p∈P 2(2k),

E
[

A(1)
i1i2

. . . A(k)
i2k−1i2k

] ∑
[
p≤p I ]I⊂{1,...,k},

(−1)k−#I

 .

Since
[∑

I⊂{1,...,k},p≤p I
(−1)#I

]= δ{I⊂[k],p≤p I }={{1,...,k}} and {I ⊂ [k], p ≤ p I } = {{1, . . . ,k}} if and only

if p ∈:P 2(2k):, interchanging a last time the order of summation, we recover the left-hand side

of Equation (A.4): ∑
p∈:P 2(2k):

∑
[
p≤Ker(i1,...,i2k )]i1,...,i2k∈{1,...,P }

E
[

A(1)
i1i2

. . . A(k)
i2k−1i2k

]
.

For any z ∈C\R+, we define the holomorphic function gi :C\R+ →C by

gi (z) = 1

P
wT

i

(
1

P
W(i )K(i )W

T
(i ) − z IP

)−1

wi ,

where W(i ) is the P × (N −1) submatrix of W obtained by removing its i -th column wi , and

K(i ) is the (N −1)× (N −1) submatrix of K obtained by removing both its i -th column and i -th

row. In the following lemma, we bound the distance of gi (z) to its mean. Then we prove that

E[gi (z)] is close to the expected Stieljes transform of K .

Lemma A.2.3. The random function gi (z) satisfies:∣∣E[
gi (z)

]−E [mP (z)]
∣∣ ≤ c0

P
,

Var
(
gi (z)

) ≤ c1

P
,

E
[(

gi (z)−E[
gi (z)

])4
]

≤ c2

P 2 ,

E
[(

gi (z)−E[
gi (z)

])8
]

≤ c3

P 4 ,

where c0, c1, c2, and c3 depend on γ and z only.

Proof. The random variable wi is independent from B(i )(z) = 1
P W(i )K(i )W T

(i ) − zIP since the

i -th column of W does not appear in the definition of B(i )(z). Using Lemma A.2.2, since there
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exists a unique pair partition p ∈ P 2(2), namely {{1,2}}, the expectation of gi (z) is given by

E
[
gi (z)

]= 1

P
E
[
Tr

[
B(i )(z)−1]] .

Recall that E [mP (z)] = 1
P E

[
Tr

[
B(z)−1

]]
and

∣∣Tr
(
B(z)−1

)−Tr
(
B(i )(z)−1

)∣∣ ≤ 1
d(z,R+) (from the

proof of Lemma A.2.1). Hence

∣∣E[
gi (z)

]−E [mP (z)]
∣∣≤ 1

P
E
[∣∣Tr

(
B(z)−1)−Tr

(
B(i )(z)−1)∣∣]≤ 1

P

1

d(z,R+)
.

which proves the first assertion with c0 = 1
d(z,R+) .

Now, let us consider the variance of gi (z). Using our previous computation of E
[
gi (z)

]
, we

have

Var(gi (z)) = E

[
wT

i

(
B(i )(z)

)−1

P
wi wT

i

(
B(i )(z)

)−1

P
wi

]
−E

[
1

P
Tr

[
B(i )(z)−1]]2

.

The first term can be computed using the first assertion of Lemma A.2.2: there are 2 matrices

involved, thus we have to sum over 3 pair partitions. A simplification arises since (B(i )(z))−1

P

is symmetric: the partition {{1,2}, {3,4}} yields E

[(
Tr

[
(B(i )(z))−1

P

])2]
whereas both {{1,3}, {2,4}}

and {{1,4}, {2,4}} yield E
(
Tr

[
(B(i )(z))−2

P 2

])
.

Thus, the variance of gi (z) is given by:

Var(gi (z)) = 2E

(
Tr

[(
B(i )(z)

)−2

P 2

])
+E

[(
1

P
Tr

[(
B(i )(z)

)−1
])2]

−E
[

1

P
Tr

[(
B(i )(z)

)−1
]]2

hence is given by a sum of two terms:

Var(gi (z)) = 2

P
E

(
1

P
Tr

[(
B(i )(z)

)−2
])

+Var

(
1

P
Tr

[(
B(i )(z)

)−1
])

.

Using the same arguments as those explained for the bound on the Stieltjes transform, the

first term is bounded by 2
Pd(z,R+)2 . In order to bound the second term, we apply Lemma A.2.1

for W(i ) and K(i ) in place of W and K . The second term is bounded by c
P , hence the bound

Var
(
gi (z)

)≤ c1
P .

Finally, we prove the bound on the fourth moment of gi (z)−E[
gi (z)

]
. We denote m(i )(z) =

1
P Tr

[(
B(i )(z)

)−1
]

. Recall that E
[
gi (z)

]= E[
m(i )(z)

]
. Using the convexity of t 7→ t 4, we have

E
[(

gi (z)−E[gi (z)]
)4

]
= E

[(
gi (z)−m(i )(z)+m(i )(z)−E[

m(i )(z)
])4

]
≤ 8E

[(
gi (z)−m(i )(z)

)4
]
+8E

[(
m(i )(z)−E[

m(i )(z)
])4

]
.

We bound the second term using the concentration of the Stieljes transform (Lemma A.2.1): it
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is bounded by 8c
P 2 . The first term is bounded using the second assertion of Lemma A.2.2. Using

the symmetry of B(i )(z), the partitions in : P 2(4) : yield two different terms, namely:

1. 1
P 2 E

[(
1
P Tr

[(
B(i )(z)

)−2
])2

]
, for example if p = {{1,3}, {2,4}, {5,7}, {6,8}}

2. 1
P 3 E

[
1
P Tr

[(
B(i )(z)

)−4
]]

, for example if p = {{2,3}, {4,5}, {6,7}, {8,1}}.

We bound the two terms using the same arguments as those explained for the bound on the

Stieljes transform at the beginning of the section. The first term is bounded by d(z,R+)−4

P 2 and

the second term by d(z,R+)−4

P 3 hence the bound E
[(

gi (z)−E[
gi (z)

])4
]
≤ c2

P 2 .

The bound E[
(
gi (z)−E[

gi (z)
])8] ≤ c3

P 4 is obtained in a similar way, using the second assertion

of Lemma A.2.2 and simple bounds on the Stieljes transform.

In the next proposition we show that the Stieltjes transform mP (z) is close in expectation to

the solution of a fixed point equation.

Proposition A.2.4. For any z ∈H<0 = {z : Re(z) < 0} ,

|E [mP (z)]−m̃(z)| ≤ e

P
,

where e depends on z, γ, and 1
N Tr(K ) only and where m̃(z) is the unique solution in the cone

Cz := {u − 1
z v : u, v ∈R+} spanned by 1 and − 1

z of the equation

γ= 1

N

N∑
i=1

di m̃(z)

1+di m̃(z)
−γzm̃(z).

Proof. We use the same notation as in the previous proofs, namely B(z) = 1
P W K W T − zIP ,

B(i )(z) = 1
P W(i )K(i )W T

(i ) − zIP and gi (z) = 1
P wT

i

(
B(i )(z)

)−1 wi . Let ν j ≥ 0, j = 1, . . . ,P be the

spectrum of the positive semi-definite matrix 1
P W(i )K(i )W T

(i ). After diagonalization, we have

B(i )(z)−1 =OT diag(
1

ν1 − z
, . . . ,

1

νP − z
)O,

with O an orthogonal matrix. Then

gi (z) = 1

P
Tr

((
B(i )(z)

)−1 wi wT
i

)
= 1

P

P∑
j=1

((Owi ) j j )2

ν j − z
. (A.5)

Since z ∈H<0, we conclude that ℜ[gi (z)] ≥ 0 for all i = 1, . . . ,P .

In order to prove the proposition, the key remark is that, since Tr
(
( 1

P W K W T − zIP )(B(z))−1
)=
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P , the Stieltjes transform mP (z) satisfies the following equation:

P = Tr

(
1

P
K W T B(z)−1W

)
− zPmP (z).

From the proof of Lemma A.2.1, recall that B−1(z) = B−1
(i ) (z)−di

P
1

1+ di
P w T

i B−1
(i ) (z)wi

B−1
(i ) (z)wi wT

i B−1
(i ) (z),

hence:

1

P
wT

i B−1(z)wi = gi (z)− di gi (z)2

1+di gi (z)

= gi (z)

1+di gi (z)
.

(A.6)

Expanding the trace,

Tr

(
1

P
K W T B(z)−1W

)
=

N∑
i=1

di
1

P
wT

i B−1(z)wi =
N∑

i=1

di gi (z)

1+di gi (z)
.

Thus, the Stieljes transform mP (z) satisfies the following equation P =∑N
i=1

di gi (z)
1+di gi (z)−zPmP (z),

or equivalently

γ= 1

N

N∑
i=1

di gi (z)

1+di gi (z)
− zγmP (z).

Recall that γ> 0 and Re(z) < 0. The Stieljes transform mP (z) can be written as a function of

gi (z) for i = 1, . . . ,n: mP (z) = f (g1(z), ..., gN (z)) where

f (g1, . . . , gN ) = 1

γzN

N∑
i=1

di gi

1+di gi
− 1

z
=−1

z

(
1− 1

γ
+ 1

γ

1

N

N∑
i=1

1

1+di gi

)
.

From Lemma A.2.5, the map f (m) = f (m, ...,m) has a unique non-degenerate fixed point m̃(z)

in the cone Cz . We will show that E [mP (z)] is close to m̃(z) using the following two steps:

we show a non-tight bound |E [mP (z)]−m̃(z)| ≤ e′p
P

and use it to obtain the tighter bound

|E[mP (z)]−m̃(z)| ≤ e
P .

Let us prove the e′p
P

bound. From Lemma A.2.5, the distance between mP (z) and the fixed

point m̃(z) of f is bounded by the distance between f (mP (z), . . . ,mP (z)) and mP (z). Using

the fact that mP (z) = f (g1(z), ..., gN (z)), we obtain

|E[mP (z)]−m̃(z)| ≤ E [|mP (z)−m̃(z)|] ≤ E[∣∣ f (mP (z), . . . ,mP (z))− f (g1(z), ..., gN (z))
∣∣] .

Recall that for any z ∈ H<0, ℜ(gi (z)) ≥ 0: we need to study the function f on HN
≥0 where
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H≥0 = {z ∈C|ℜ(z) ≥ 0}. On HN
≥0, the function f is Lipschitz:

∣∣∂gi f (g1, .., gN )
∣∣= ∣∣∣∣ 1

γzN

di

(1+di gi )2

∣∣∣∣≤ di

γ |z|N
.

Thus,

E
[∣∣ f (mP (z), ...,mP (z))− f

(
g1(z), ..., gN (z)

)∣∣]≤ N∑
i=1

di

γ |z|N
E
[∣∣mP (z)− gi (z)

∣∣] .

Since

E
[∣∣mP (z)− gi (z)

∣∣]≤ E [|mP (z)−E [mP (z)]|]+ ∣∣E [mP (z)]−E[
gi (z)

]∣∣+E[∣∣gi (z)−E[
gi (z)

]∣∣] ,

using Lemmas A.2.1 and A.2.3, we get that E
[∣∣mP (z)− gi (z)

∣∣]≤ dp
P

, where d depends on γ and

z only. This implies that

E
[∣∣ f (mP (z), ...,mP (z))− f

(
g1(z), ..., gN (z)

)∣∣]≤ 1p
P

d

N
Tr(K ) ,

which allows to conclude that |E[mP (z)]−m̃(z)| ≤ e′p
P

where e′ depends on γ, z and 1
N Tr(K )

only.

We strengthen this inequality and show the e
P bound. Using again Lemma A.2.5, we bound the

distance between E[mP (z)] and the fixed point m̃(z) by

|E[mP (z)]−m̃(z)| ≤ ∣∣E[ f (g1(z), . . . , gN (z))]− f (E[mP (z)], . . . ,E[mP (z)])
∣∣

and study the r.h.s. using a Taylor approximation of f near E [mP (z)]. For i = 1, . . . , N and

m0 ∈H≥0, let Tm0 hi be the first order Taylor approximation of the map hi : m 7→ 1
1+di m at a

point m0. The error of the first order Taylor approximation is given by

hi (m)−Tm0 hi (m) = 1

1+di m
−

(
1

1+di m0
− di (m −m0)

(1+di m0)2

)
= d 2

i (m0 −m)2

(1+di m) (1+di m0)2 ,

which, for m ∈H≥0 can be upper bounded by a quadratic term:

∣∣hi (m)−Tm0 hi (m)
∣∣= ∣∣∣∣∣ d 2

i

(1+di m) (1+di m0)2

∣∣∣∣∣ |m0 −m|2 ≤ 1

|m0|2
|m0 −m|2 . (A.7)

The first order Taylor approximation T f of f at the N -tuple (E [mP (z)] , ...,E [mP (z)]) is

T f (g1, .., gN ) =−1

z

(
1− 1

γ
+ 1

γ

1

N

N∑
i=1

TE[mP (z)]hi (gi )

)
.
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Using this Taylor approximation, E[ f (g1(z), . . . , gN (z))]− f (E[mP (z)], . . . ,E[mP (z)]) is equal to:

E
[
T f (g1(z), .., gN (z))

]− f (E[mP (z)], . . . ,E[mP (z)])+E[
f (g1(z), ..., gN (z))−T f (g1(z), .., gN (z))

]
.

Using Lemma A.2.3, we get

∣∣E[
f (g1(z), ..., gN (z))−T f (g1(z), .., gN (z))

]∣∣≤ 1

|z|γ
1

N

N∑
i=1

1

|E[mP (z)]|2 E
[∣∣gi (z)−E [mP (z)]

∣∣2
]

≤ 1

P

α

|E[mP (z)]|2

and

∣∣E[
T f (g1(z), .., gN (z))

]− f (E [mP (z)] , ...,E [mP (z)])
∣∣≤ 1

|z|γ
1

N

N∑
i=1

di
∣∣E[

gi
]−E [mP (z)]

∣∣
|1+diE [mP (z)]|2

≤ β
( 1

N TrK
)

P

whereα andβ depends on z and γ only. From the bounds |E[mP (z)]−m̃(z)| ≤ e′p
P

and |m̃(z)| ≥
(|z|+ 1

NγTr(K ))−1 (Lemma A.2.5), the bound 1
P

α
|E[mP (z)]|2 yields a α̃

P bound. This implies that∣∣E[mP (z)]− f (E[mP (z)], . . . ,E[mP (z)])
∣∣≤ e

P , hence the desired inequality |E [mP (z)]−m̃(z)| ≤
e
P .

For the proof of Proposition A.2.4, we have used the fact that the map fz introduced therein

has a unique non-degenerate fixed point in the cone Cz := {u− 1
z v : u, v ∈R+}. We now proceed

with proving this statement.

Lemma A.2.5. Let d1, . . . ,dn ≥ 0 and let γ ≥ 0. For any fixed z ∈H<0 , let fz : H≥0 → C be the

function t 7→ fz (t ) =− 1
z

(
1− 1

γ
1
N

∑N
i=1

di t
1+di t

)
. Let Cz := {u − 1

z v : u, v ∈R+} be the convex region

spanned by the half-lines R+ and − 1
zR+. Then for every z ∈H<0 there exists a unique fixed point

t̃ (z) ∈Cz such that t̃ (z) = fz (t̃ (z)). The map t̃ : z 7→ t̃ (z) is holomorphic in H<0 and

|t̃ (z)| ≥
(
|z|+

∑
i di

γN

)−1

.

Furthermore for every z ∈H<0 and any t ∈H≥0, one has

|t − t̃ (z)| ≤ |t − fz (t )|.

Proof. By means of Schwarz reflection principle, we can assume that ℑ(z) ≥ 0. Let z ∈H<0

and let Πz := {−w
z : ℑ(w) ≤ 0} and let Cz be the wedged region Cz :=Πz ∩ {w ∈ C : ℑ(w) ≥ 0}.

To show the existence of a fixed point in Cz we show that 0 is in the image of the function

ψ : t 7→ fz (t)− t . Note that since di ≥ 0, the eventual poles of fz are all strictly negative real

numbers, hence ψ : Cz →C is an holomorphic function.
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To prove that 0 ∈ψ(Cz ) we proceed with a geometrical reasoning: the image ψ(Cz ) is (one of)

the region of the plane confined by ψ (∂Cz ), so we only need to “draw” ψ (∂Cz ) and show that

0 belongs to the “good” connected component confined by it.

The boundary of Cz is made up of two half-lines R+ and − 1
zR+. Under the map fz , 0 is mapped

to − 1
z and ∞ is mapped to −1− 1

γ

z , the two half-lines are hence mapped to paths from − 1
z to

−1− 1
γ

z . Now under ψ the half-lines will be mapped to paths going − 1
z to ∞ because by our

assumption − 1
z lies in the upper right quadrant, we will show that the image of R+ under φ

goes ’above’ the origin while the image of − 1
zR+ goes ’under’ the origin:

• R+ is mapped under fz to the segment − 1
z [1,1− 1

γ ], as a result, its map under ψ lies in

the Minkowski sum − 1
z [1,1− 1

γ ]+ (−R+) which is contained in C\Πz .

• For any t ∈− 1
zR+ we have for all di

ℑ
(

di t

1+di t

)
=ℑ

(
1− 1

1+di t

)
=ℑ

(
1

1+di t

)
≤ 0,

since ℑ(t ) ≥ 0. As a result the image of − 1
zR+ under fz lies inΠz and its image under ψ

lies in the Minkovski sumΠz + (− 1
zR+) =Πz .

Thus we can conclude that 0 ∈ψ (Cz ), which shows that there exists at least a fixed point m̃ in

Cz .

We observe that, for every t ∈Cz , the derivative of f has negative real part:

Re
(

f ′
z (t )

)= 1

γ

1

N

N∑
i=1

Re

(
di

z (1+di t )2

)

= 1

γ

1

N

N∑
i=1

di
[ℜ(z)+2diℜ(z)ℜ(t )−2diℑ(z)ℑ(t )+d 2

i ℜ(zt 2)
]

|z|2 |1+di t |4 ≤ 0,

where we concluded the last inequality by using that ℜ(z) ≤ 0, ℜ(t) ≥ 0, ℑ(z)ℑ(t) ≥ 0 and

ℜ(zt 2) ≤ 0. Thus, since for no point t ∈Cz has f ′
z (t ) = 1, any fixed point of fz is a simple fixed

point.

We now proceed to show the uniqueness of the fixed point in the region Cz . Suppose there are

two fixed points t1 and t2, then

t1 − t2 = fz (t1)− fz (t2)

= (t1 − t2)
1

z

1

γN

N∑
i=1

di

(1+di t1)(1+di t2)
.

Again, since ℜ(z) ≤ 0, ℜ(t1),ℜ(t2) ≥ 0, ℑ(z)ℑ(t1),ℑ(z)ℑ(t2),≥ 0 and ℜ(zt1t2) ≤ 0, the factor
1
z

1
N

∑N
i=1

di
(1+di t1)(1+di t2) has negative real part, and thus the identity is possible only if t1 = t2.
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Let’s then t̃ (z) be the only fixed point in Cz .

We proceed now to show that |t − fz (t )| ≥ |t − t̃ (z)|, i.e. if t and its image are close, then t is not

too far from being a fixed point, and so it is close to t̃ (z).

For any t ∈Cz , we have

|t − fz (t )| = |t − t̃ (z)+ fz (t̃ (z))− f̃z (t )|

=
∣∣∣∣∣(t − t̃ (z))− (

t − t̃ (z)
)(1

z

1

γN

N∑
i=1

di

(1+di t )(1+di t̃ (z))

)∣∣∣∣∣
= ∣∣t − t̃ (z)

∣∣ ∣∣∣∣∣1− 1

z

1

γN

N∑
i=1

di

(1+di t )(1+di t̃ (z))

∣∣∣∣∣
≥ ∣∣t − t̃ (z)

∣∣
where we have used again that 1

z
1
N

∑N
i=1

di

(1+di t )(1+di t̃ (z)) has negative real part.

We provide a lower bound on the norm of the fixed point:

∣∣t̃ (z)
∣∣= 1

|z|

∣∣∣∣∣1− 1

γ

1

N

N∑
i=1

di t̃ (z)

1+di t̃ (z)

∣∣∣∣∣≥ 1

|z|

(
1− 1

γ

1

N

N∑
i=1

∣∣∣∣ di t̃ (z)

1+di t̃ (z)

∣∣∣∣
)
≥ 1

|z|

(
1−

∣∣t̃ (z)
∣∣

γN

N∑
i=1

di

)
.

hence

|t̃ (z)| ≥
(
|z|+

∑
i di

γN

)−1

.

Finally, note that z can be expressed from the fixed point m̃, hence defining an inverse for the

map t̃ :

t̃−1(m̃) = z =− 1

m̃

(
1− 1

γ

1

N

N∑
i=1

di m̃

1+di m̃

)
because the inverse is holomorphic, so is t̃ .

A.3 Expectation of the Predictor

The optimal parameters θ̂ which minimize the regularized MSE loss is given by θ̂ = F T (F F T +
λIN )−1 y , or equivalently by θ̂ = (F T F +λ)−1F T y . Thus, the final labels take the form ŷ =
A(−λ)y where A(z) is the random matrix defined as

A(z) := F
(
F T F − zIP

)−1
F T

= 1

P
K

1
2 W T

(
1

P
W K W T − zIP

)−1

W K
1
2 .
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Appendix A. Gaussian Random Features Model

Note that the matrix Aλ defined in the proof sketch of Theorem 4.1 in the main text is given by

Aλ = A(−λ).

Proposition A.3.1. For any γ> 0, any z ∈H<0, and any symmetric positive definite matrix K ,

‖E [A(z)]−K (K + λ̃(−z)IN )−1‖op ≤ c

P
, (A.8)

where λ̃(z) := 1
m̃(−z) and c > 0 depends on z, γ and 1

N Tr (K ) only.

Proof. Since the distribution of W is invariant under orthogonal transformations, by applying

a change of basis, in order to prove Inequality (A.8), we may assume that K is diagonal with

diagonal entries d1, . . . ,dN . Denoting w1, . . . , wN the columns of W , for any i , j = 1, . . . , N ,

(A(z))i j = 1

P

√
di d j wT

i

(
1

P
W K W T − zIP

)−1

w j ,

where W K W T =∑N
i=1 di wi wT

i . Replacing wi by −wi does not change the law W hence does

not change the law of (A(z))i j . Since W K W T is invariant under this change of sign, we get

that for i 6= j , E
[
(A(z))i j

]=−E[
(A(z))i j

]
, hence the off-diagonal terms of E [A(z)] vanish.

Consider a diagonal term (A(z))i i . From Equation (A.6), we get

(A(z))i i = di

P
wT

i B−1(z)wi = di gi (z)

1+di gi (z)
. (A.9)

By Lemma A.2.3, gi lies close to mP (z) which itself is approximatively equal to m̃(z) by Propo-

sition A.2.4. Therefore, we expect E [(A(z))i i ] = E
[

di gi

1+di gi

]
to be at short distance from di m̃(z)

1+di m̃(z) .

In order to make rigorous this heuristic and to prove that E [(A(z))i i ] is within O ( 1
P ) distance

to di m̃(z)
1+di m̃(z) , we consider the first order Taylor approximation Tm̃(z)hi of the map hi : g 7→ 1

1+di g

(as in the proof Proposition A.2.4 but this time centered at m̃(z)). Using the fact that di t
1+di t =

1− 1
1+di t = 1−hi (t ), and inserting the Taylor approximation, E [(A(z))i i ]− di m̃(z)

1+di m̃(z) is equal to:

hi (m̃(z))−hi (gi (z)) = 1

1+di m̃(z)
−E[

Tm̃(z)h(gi (z))
]+E[

Tm̃(z)h(gi (z))−h(gi (z))
]

.

Thus,∣∣∣∣E [(A(z))i i ]− di m̃(z)

1+di m̃(z)

∣∣∣∣≤ ∣∣∣∣ 1

1+di m̃(z)
−E[

Tm̃(z)h(gi (z))
]∣∣∣∣+ ∣∣E[

Tm̃(z)h(gi (z))−h(gi (z))
]∣∣ .

Using Lemma A.2.3 and Proposition A.2.4, the first term
∣∣∣ 1

1+di m̃(z) −E
[
Tm̃(z)h(gi (z))

]∣∣∣= di |E[gi (z)]−m̃(z)|
|1+di m̃(z)|2

can be bounded by δ
P

di

|1+di m̃(z)|2 where δ depends on z,γ and 1
N Tr(K ) only. Since Re[m̃(z)] ≥ 0

thus |1+di m̃(z)| ≥ max(1, |di m̃(z)|), and |m̃(z)| ≥ 1
|z|+ 1

γ
1
N TrK

(Lemma A.2.5), the denominator
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A.3. Expectation of the Predictor

can be lower bounded:

|1+di m̃(z)|2 ≥ |di m̃(z)| ≥ di

|z|+ 1
γ

1
N TrK

,

yielding the upper bound:∣∣∣∣ 1

1+di m̃(z)
−E[

Tm̃(z)h(gi (z))
]∣∣∣∣≤ 1

P
δ

[
|z|+ 1

γ

1

N
TrK

]
.

For the second term, using the same arguments as for the proof of Proposition A.2.4, we have:

∣∣E[
Tm̃(z)h(gi (z))−h(gi (z))

]∣∣≤ E
[∣∣m̃(z)− gi (z)

∣∣2
]

|m̃(z)|2 .

Recall that |m̃(z)| ≥ 1
|z|+ 1

γ
1
N TrK

and that, by Lemma A.2.3 and Proposition A.2.1, E
[∣∣m̃(z)− gi (z)

∣∣2
]
≤

δ̃
P where δ̃ depends on z,γ and 1

N Tr(K ) only. This implies that

∣∣E[
Tm̃(z)h(gi (z))−h(gi (z))

]∣∣≤ δ̃

P

[
|z|+ 1

γ

1

N
TrK

]2

.

As a consequence, there exists a constant c which depends on z,γ and 1
N Tr(K ) only such that:∣∣∣∣E [(A(z))i i ]− di m̃(z)

1+di m̃(z)

∣∣∣∣≤ c

P
.

Using the effective ridge λ̃(z) := 1
m̃(−z) , the term di m̃(z)

1+di m̃(z) = di

di+λ̃(−z)
is equal to (K (K +λ̃IN )−1)i i

since, in the basis considered, K (K + λ̃IN )−1 is a diagonal matrix. Hence, we obtain:∥∥E [A(z)]−K (K + λ̃IN )−1
∥∥

op ≤ c

P

which allows us to conclude.

Using the above proposition, we can bound the distance between the expected λ-RF predictor

and the λ̃-RF predictor.

Theorem A.3.2. For N ,P > 0 and λ> 0, we have

∣∣∣E[ f̂ (RF )
λ,γ (x)]− f̂ (K )

λ
(x)

∣∣∣≤ c
p

K (x, x)‖y‖K −1

P
(A.10)

where the effective ridge λ̃(λ,γ) >λ is the unique positive number satisfying

λ̃=λ+ λ̃

γ

1

N

N∑
i=1

di

λ̃+di
, (A.11)
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and where c > 0 depends on λ,γ, and 1
N TrK (X , X ) only.

Proof. Recall that m̃(−λ) is the unique non negative real such that γ = 1
N

∑N
i=1

di m̃(−λ)
1+di m̃(−λ) +

γλm̃(−λ). Dividing this equality by γm̃(−λ) yields Equation (A.11). From now on, let λ̃ =
λ̃(λ,γ).

We now bound the l.h.s. of Equation (A.10). By Proposition A.1.1, since ŷ = A(−λ)y , the aver-

age λ-RF predictor is E
[

f (RF )
λ,γ (x)

]
= K (x, X )K −1E [A(−λ)] y . The λ̃-KRR predictor is f (K )

λ̃
(x) =

K (x, X )
(
K + λ̃IN

)−1
y . Thus:∣∣∣E[ f (RF )

λ,γ (x)]− f (K )
λ̃

(x)
∣∣∣= ∣∣∣K (x, X )K −1

[
E [A(−λ)]−K

(
K + λ̃IN

)−1
]

y
∣∣∣ .

The r.h.s. can be expressed as the absolute value of the scalar product
∣∣〈w, v〉K −1

∣∣= ∣∣vT K −1w
∣∣

where v = K (x, X ) and w = [E [A(−λ)] − K (K + λ̃IN )−1]y . By Cauchy-Schwarz inequality,∣∣〈v, w〉K −1

∣∣≤ ‖v‖K −1 ‖w‖K −1 .

For a general vector v , the K −1-norm ‖v‖K −1 is equal to the norm mininum Hilbert norm (for

the RKHS associated to the kernel K ) interpolating function:

‖v‖K −1 = min
f ∈H , f (xi )=vi

∥∥ f
∥∥

H .

Indeed the minimal interpolating function is the kernel regression given by f (K )(·) = K (·, X )K (X , X )−1v

which has norm (writing β= K −1v):

∥∥ f (K )
∥∥

H =
∥∥∥∥∥ N∑

i=1
βi K (·, xi )

∥∥∥∥∥
H

=
√√√√ N∑

i , j=1
βiβ j K (xi , x j ) =

√
vT K −1K K −1v = ‖v‖K −1 .

We can now bound the two norms ‖v‖K −1 and ‖w‖K −1 . For v = K (x, X ), we have

‖v‖K −1 = min
f ∈H , f (xi )=vi

∥∥ f
∥∥

H ≤ ‖K (x, ·)‖H = K (x, x)
1
2 . (A.12)

since K (x, ·) is an interpolating function for v .

It remains to bound ‖w‖K −1 . Recall that K = U DU T with D diagonal, and that, from the

previous proposition, E [A(−λ)] =U D AU T where D A = diag
(

d1g1(−λ)
1+d1g1(−λ) , . . . , dN gN (−λ)

1+dN gN (−λ)

)
. The

norm ‖w‖K −1 is equal to√
ỹT

[
D A −D

(
D + λ̃(λ)IN

)−1
]T

D−1
[

D A −D
(
D + λ̃(λ)IN

)−1
]

ỹ ,

where ỹ = U T y . Expanding the product, ‖w‖K −1 =
√∑N

i=1
ỹ2

i
di

(
(D A)i i − di

λ̃(λ)+di

)2
, hence by

Proposition A.3.1, ‖w‖K −1 ≤ c
P

√∑N
i=1

ỹ2

di
. The result follows from noticing that

∑N
i=1

ỹ2

di
=
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ỹT D−1 ỹ = ‖y‖2
K −1 :

∣∣∣E[ f (RF )
λ,γ (x)]− f (K )

λ̃
(x)

∣∣∣≤ ‖v‖K −1 ‖w‖K −1 ≤ cK (x, x)
1
2 ‖y‖K −1

P
.

which allows us to conclude.

Corollary A.3.3. If ED [K (x, x)] <∞, we have that the difference of errorsδE =
∣∣∣L(E[ f̂ (RF )

λ,γ ])−L( f̂ (K )
λ̃

)
∣∣∣

is bounded from above by

δE ≤ C‖y‖K −1

P

(
2

√
L

(
f̂ (K )
λ̃

)
+ C‖y‖K −1

P

)
,

where C is given by c
p
ED[K (x, x)], with c the constant appearing in (A.10) above.

Proof. For any function f : Rd → R, we denote by ‖ f ‖ = (ED

[
f (x)2

]
)

1
2 its L2(D)-norm. Inte-

grating
∣∣∣E[ f (RF )

λ,γ (x)]− f (K )
λ̃

(x)
∣∣∣2 ≤ c2K (x,x)‖y‖2

K−1

P 2 over x ∼D, we get the following bound:

‖E[ f (RF )
λ,γ ]− f (K )

λ̃
‖ ≤ c [ED [K (x, x)]]

1
2 ‖y‖K −1

P
.

Hence, if f ∗ is the true function, by the triangular inequality,

∣∣∣‖E[ f (RF )
λ,γ ]− f ∗‖−‖ f (K )

λ̃
− f ∗‖

∣∣∣≤ c [ED [K (x, x)]]
1
2 ‖y‖K −1

P
.

Notice that L(E[ f̂ (RF )
γ,λ ]) = ‖E[ f (RF )

λ,γ ]− f ∗‖2 and L( f̂ (K )
λ̃

) = ‖ f (K )
λ̃

− f ∗‖2. Since
∣∣a2 −b2

∣∣≤ |a −b| (|a −b|+
2 |b|), we obtain

∣∣∣L (
E[ f̂ (RF )

γ,λ ]
)
−L

(
f̂ (K )
λ̃

)∣∣∣≤ c [ED [K (x, x)]]
1
2 ‖y‖K −1

P

(
2

√
L

(
f̂ (K )
λ̃

)
+ c [ED [K (x, x)]]

1
2 ‖y‖K −1

P

)
,

which allows us to conclude.

A.4 Properties of the Effective Ridge

Thanks to the implicit definition of the effective ridge λ̃, we obtain the following:

Proposition A.4.1. The effective ridge λ̃ satisfies the following properties:

1. for any γ> 0, we have λ< λ̃(λ,γ) ≤λ+ 1
γT ;

2. the function γ 7→ λ̃(λ,γ) is decreasing;

3. for γ> 1, we have λ̃≤ γ
γ−1λ;
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4. for γ< 1, we have λ̃≥ 1−pγp
γ

mini di .

Proof. (1) The upper bound in the first statement follows directly from Lemma A.2.5 where it

was shown that m̃(−λ) ≥ 1
λ+ 1

γ
1
N TrK

and from the fact that λ̃(λ,γ) = 1
m̃(−λ) . For the lower bound,

remark that Equation (A.11) can be written as:

λ̃(λ,γ) =λ+ 1

γ

1

N
Tr[λ̃(λ,γ)K (λ̃(λ,γ)IN +K )−1].

Since λ̃(λ,γ) ≥ 0 and K is a positive symmetric matrix, Tr[K [λ̃(λ,γ)IN +K ]−1] ≥ 0: this yields

λ̃(λ,γ) ≥λ.

(2) We show that γ 7→ λ̃(λ,γ) is decreasing by computing the derivative of the effective ridge

with respect to γ. Differentiating both sides of Equation (A.11), ∂γλ̃= ∂γ
[
λ+ λ̃

γ
1
N

∑N
i=1

di

λ̃+di

]
.

The r.h.s. is equal to:

∂γλ̃

γ

1

N

N∑
i=1

di

λ̃+di
− λ̃

γ2

1

N

N∑
i=1

di

λ̃+di
− λ̃

γ

1

N

N∑
i=1

di∂γλ̃

(λ̃+di )2
.

Using Equation (A.11), 1
γ

1
N

∑N
i=1

di

λ̃+di
= λ̃−λ

λ̃
and thus:

∂γλ̃

[
λ

λ̃
+ λ̃

γ

1

N

N∑
i=1

di(
λ̃+di

)2

]
=− λ̃−λ

γ
.

Since λ̃≥λ≥ 0, the derivative of the effective ridge with respect to γ is negative: the function

γ 7→ λ̃(λ,γ) is decreasing.

(3) Using the bound di

λ̃+di
≤ 1 in Equation (A.11), we obtain λ̃ ≤ λ+ λ̃

γ which, when γ ≥ 1,

implies that λ̃≤λ γ
γ−1 .

(4) Recall that λ > 0 and that the effective ridge λ̃ is the unique fixpoint of the map f (t) =
λ+ t

γ
1
N

∑
i

di
t+di

in R+. The map is concave and, at t = 0, we have f (t ) =λ> 0 = t : this implies

that f ′(λ̃) < 1 otherwise by concavity, for any t ≤ λ̃ one would have f (t) ≤ t . The derivative

of f is f ′(t) = 1
γ

1
N

∑N
i=1

d 2
i

(t+di )2 , thus 1
γ

1
N

∑N
i=1

d 2
i(

λ̃+di
)2 < 1. Using the fact that d0 is the smallest

eigenvalue of K (X , X ), i.e. di ≥ d0, we get 1 > 1
γ

d 2
0(

λ̃+d0
)2 hence λ̃≥ d0

1−pγp
γ

.

Similarily, we gather a number of properties of the derivative ∂λλ̃(λ,γ).

Proposition A.4.2. For γ > 1, as λ→ 0, the derivative ∂λλ̃ converges to γ
γ−1 . As λγ→∞, we

have ∂λλ̃(λ,γ) → 1.
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Proof. Differentiating both sides of Equation (A.11),

∂λλ̃= 1+∂λλ̃
1

γ

1

N

N∑
i=1

di

λ̃+di
− λ̃∂λλ̃

1

γ

1

N

N∑
i=1

di

(λ̃+di )2
.

Hence the derivative ∂λλ̃ satisfies the following equality

∂λλ̃

(
1− 1

γ

1

N

N∑
i=1

di

λ̃+di
+ λ̃1

γ

1

N

N∑
i=1

di

(λ̃+di )2

)
= 1. (A.13)

(1) Assuming γ> 1, from the point 3. of Proposition A.4.1, we already know that λ̃(λ,γ) ≤λ γ
γ−1

hence λ̃(0,γ) = 0. Actually, using similar arguments as in the proof of point 3., this holds also

for γ= 1. Using the fact that λ̃(0,γ) = 0, we get ∂λλ̃(0,γ) = 1+ ∂λλ̃(0,γ)
γ , hence ∂λλ̃(0,γ) = γ

γ−1 .

(2) From the first point of Proposition A.4.1, λ̃∼ λ as λγ→∞. Since Equation (A.13) can be

expressed as:

∂λλ̃

(
1− 1

γλ

1

N

N∑
i=1

di

λ̃
λ +di

+ 1

γλ

λ̃

λ

1

N

N∑
i=1

di

( λ̃λ +di )2

)
= 1,

we obtain that ∂λλ̃→ 1 as λ→∞.

A.5 Variance of the Predictor

By the bias-variance decomposition, in order to bound the difference between E[L( f̂ (RF )
γ,λ )]

and L( f̂ (K )
λ̃

, we have to bound ED[Var( f (x))]. The law of total variance yields Var( f̂ (x)) =
Var(E[ f̂ (x)|F ])+E[Var[ f̂ (x)|F ]]. By Proposition A.1.1, we have E[ f̂ (x)|F ] = K (x, X )K (X , X )−1 ŷ

and Var[ f̂ (x)|F ] = 1
P ‖θ̂‖2K̃ (x, x). Hence, it remains to study Var

(
K (x, X )K (X , X )−1 ŷ

)
and E[‖θ̂‖2].

Recall that we denote T = 1
N TrK (X , X ).

This section is dedicated to the proof of the variance bound of Theorem 5.1 of the paper:

Theorem 5.1 There are constants c1,c2 > 0 depending on λ,γ,T only such that

Var
(
K (x, X )K (X , X )−1 ŷ

)≤ c1K (x, x)‖y‖2
K −1

P∣∣E‖[θ̂‖2]−∂λλ̃yT Mλ̃y
∣∣≤ c2‖y‖2

K −1

P
,

where ∂λλ̃ is the derivative of λ̃ with respect to λ and for Mλ̃ = K (X , X )(K (X , X )+ λ̃IN )−2. As a

result

Var
(

f̂ (RF )
λ

(x)
)
≤

c3K (x, x)‖y‖2
K −1

P
,

where c3 > 0 depends on λ,γ,T .
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• Bound on Var
(
K (x, X )K (X , X )−1 ŷ

)
. We first study the covariance of the entries of the matrix

Aλ =
1

P
K

1
2 W T

(
1

P
W K W T +λIP

)−1

W K
1
2 ,

where K = diag(d1, . . . ,dN ) is a positive definite diagonal matrix and W is a P ×N matrix with

i.i.d. Gaussian entries. In the next proposition we show a c1
P bound for the covariance of

the entries of Aλ, then we exploit this result in order to prove the bound on the variance of

K (x, X )K (X , X )−1 ŷ .

Proposition A.5.1. There exists a constant c ′1 > 0 depending on λ,γ, and 1
N Tr(K ) only, such

that the following bounds hold:

|Cov
(
(Aλ)i i , (Aλ) j j

) | ≤ c ′1
P

Var
(
(Aλ)i j

)≤ min

{
di

d j
,

d j

di

}
c ′1
P

.

For all other cases (i.e. if i , j , k and l take more than two different values), Cov
(
(Aλ)i j , (Aλ)kl

)=
0.

Proof. We want to study the covariances Cov
(
(Aλ)i j , (Aλ)kl

)
for any i , j ,k, l . Using the same

symmetry argument as in the proof of Proposition A.3.1, E
[
(Aλ)i j (Aλ)kl

]= 0 whenever each

value in {i , j ,k, l } does not appear an even number of times in (i , j ,k, l ). Using the fact that Aλ

is symmetric, it remains to study Cov
(
(Aλ)i i , (Aλ) j j

)
, Var((Aλ)i i ) and Var

[
(Aλ)i j

]
for all i 6= j .

By the Cauchy-Schwarz inequality, any bound on Var((Aλ)i i ) will imply a similar bound on

Cov
(
(Aλ)i i , (Aλ) j j

)
. Besides, as we have seen in the proof of Proposition A.3.1, E

[
(Aλ)i j

]= 0

for any i 6= j . Thus, we only have to study Var((Aλ)i i ) and E
[

(Aλ)2
i j

]
.

• Bound on Var((Aλ)i i ): From Equation (A.9),

Var((Aλ)i i ) = Var

(
di gi

1+di gi

)
= Var

(
1− 1

1+di gi

)
= Var

(
1

1+di gi

)
≤ E

[(
1

1+di gi
− 1

1+di m̃

)2]
,

where gi := gi (−λ). Again, we use the first order Taylor approximation Th of h : x → 1
1+di x

centered at m̃ := m̃(−λ), as well as the bound (A.7), to obtain

E

[(
1

1+di gi
− 1

1+di m̃

)2]
= E

[(
− di

(1+di m̃)2 (gi −m̃)+h(gi )−Th(gi )

)2]
≤ 2d 2

i

(1+di m̃)4 E
[(

gi −m̃
)2

]
+2E

[(
h(gi )−Th(gi )

)2
]

≤ 2

6m̃2 E
[(

gi −m̃
)2

]
+ 2

m̃4 E
[(

gi −m̃
)4

]
.

Using Lemma A.2.3, we get Var((Aλ)i i ) ≤ c ′
1

P , where c ′1 > 0 depends on λ,γ, and 1
N Tr(K ) only.
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• Bound on E
(
(Aλ)i j

)
for i 6= j : Following the same arguments as for Equation (A.9), (Aλ)i j is

equal to

(Aλ)i j =
√

di d j

P

[
wT

i B−1
(i ) w j − di gi

1+di gi
wT

i B−1
(i ) w j

]
=

√
di d j

1+di gi

1

P
wT

i B−1
(i ) w j ,

where we set B(i ) := Bi (−λ). Since wi and B(i ) are independent, E

[(
wT

i B−1
(i ) w j

)2
]
= E

[
wT

j B−2
(i ) w j

]
,

and thus, by the Cauchy-Schwarz inequality, we have

E
[

(Aλ)2
i j

]
≤ 1

P 2

√√√√E

[
d 2

i d 2
j(

1+di gi
)4

]√
E

[(
wT

j B−2
(i ) w j

)2
]

. (A.14)

Recall that m̃ := m̃(−λ). Using the fact that 1
1+di gi

= 1
1+di m̃ + 1

1+di gi
− 1

1+di m̃ and inserting the

first Taylor approximation Th of h : x → 1
1+di x centered at m̃, we get:

E

[(
1

1+di gi

)4]
= E

[(
1

1+di m̃
− di

(1+di m̃)2 (gi −m̃)+h(gi )−Th(gi )

)4]
.

Using a convexity argument, the bound (A.7), and the lower bound on m̃ given by Lemma

A.2.5, there exists three constants c̃1, c̃2, c̃3, which depend on λ, γ and 1
N Tr(K ) only, such that

E

[(
1

1+di gi

)4
]

is bounded by

c̃1

(1+di m̃)4 + c̃2d 4
i

(1+di m̃)8 E
[(

gi −m̃
)4

]
+ c̃3E

[(
gi −m̃

)8
]

.

Thanks to Lemma A.2.3 and Proposition A.2.4, this last expression can be bounded by an

expression of the form ẽ1

d 4
i
+ ẽ2

P 2d 4
i
+ ẽ3

P 4 . Note that ẽ2

P 2d 4
i
≤ ẽ2

d 4
i

and ẽ3

P 4 ≤ ẽ3

γ4

( 1
N Tr(K ))4

d 4
i

. Hence, we

obtain the bound:

E

[(
1

1+di gi

)4]
≤ c̃

d 4
i

,

where c̃ = ẽ1 + ẽ2 + ẽ3( 1
N Tr(K ))4)
γ4 depends on λ, γ and 1

N Tr(K ) only.

Let us now consider the second term in the r.h.s. of (A.14). Using the fact that ‖B(i )‖op ≥ 1
λ , we

get √
E

[(
wT

j B−2
(i ) w j

)2
]
≤

√
1

λ4 E

[(
wT

j w j

)2
]
=

√
1

λ4 N (N +2) ≤ N +1

λ2 ,

where we have used the fact that the second moment of a χ2(N ) distribution is N (N +2).
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Together, we obtain

E
[

(A)2
i j

]
≤ 1

P 2

√√√√E

[
d 2

i d 2
j(

1+di gi
)4

]√
E

[(
wT

j B−2
(i ) w j

)2
]

≤ c̃di d j

d 2
i

N +1

P 2λ2

≤ c̃d j

Pdiλ2γ

N +1

N
≤ c ′1

P

di

d j
,

for c ′1 = 2 c̃
λ2γ

. Since the matrix Aλ is symmetric, we finally conclude that

E
[

(Aλ)2
i j

]
≤ c ′1

P
min

{
di

d j
,

d j

di

}
.

Note that c ′1 is a constant related to the bounds constructed in Lemma A.2.1 and Proposition

A.2.4 and as such it depends on 1
N Tr(K ), γ and λ only.

Proposition A.5.2. There exists a constant c1 > 0 (depending on λ,γ,T only) such that the

variance of the estimator is bounded by

Var
(
K (x, X )K (X , X )−1 ŷ

)≤ c1‖y‖2
K −1 K (x, x)

P
.

Proof. As in the proof of Theorem A.3.2, with the right change of basis, we may assume the

Gram matrix K (X , X ) to be diagonal.

We first express the covariances of ŷ = A(−λ)y . Using Proposition Proposition A.5.1, for i 6= j

we have

Cov
(
ŷi , ŷ j

)= N∑
k,l=1

Cov
(
(Aλ)i k , (Aλ)l j

)
yk yl = Cov

(
(Aλ)i i , (Aλ) j j

)
yi y j +E

[
(Aλ)2

i j

]
y j yi ,

whereas for i = j we have

Cov
(
ŷi , ŷi

)= N∑
k=1

Cov((Aλ)i k , (Aλ)ki ) y2
k = Var((Aλ)i i ) y2

i +
∑
k 6=i

E
[
(Aλ)2

i k

]
y2

k .

We decompose K − 1
2 Cov(ŷ , ŷ)K − 1

2 into two terms: let C be the matrix of entries

Ci j =
Cov((Aλ)i i , (Aλ) j j )+δi 6= jE

[
(Aλ)2

i j

]
√

di d j

yi y j ,
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and let D the diagonal matrix with entries

Di i =
∑

k 6=i E
[
(Aλ)2

i k

]
y2

k

di
.

We have the decomposition K − 1
2 Cov(ŷ , ŷ)K − 1

2 =C +D .

Proposition A.5.1 asserts that Cov((Aλ)i i , (Aλ) j j ) ≤ c ′
1

P and E
[

(Aλ)2
i j

]
≤ c ′

1
P , and thus the opera-

tor norm of C is bounded by

‖C‖op ≤ ‖C‖F

=

√√√√√∑
i , j

(
Cov((Aλ)i i , (Aλ) j j )+δi 6= jE

[
(Aλ)2

i j

])2

di d j
y2

i y2
j

≤ 2c ′1
P

√∑
i j

1

di d j
y2

i y2
j =

2c ′1‖y‖2
K −1

P

For the matrix D , we use the bound E
[
(Aλ)2

i k

]≤ c ′
1

P
di
dk

to obtain

Di i =
∑

k 6=i E
[
(Aλ)2

i k

]
y2

k

di
≤ c ′1

P

∑
k 6=i

y2
k

dk
≤

c ′1‖y‖2
K −1

P
,

which implies that ‖D‖op ≤ c ′
1‖y‖2

K−1

P . As a result

Var
(
K (x, X )K −1 ŷ

)= K (x, X )K −1Cov(ŷ , ŷ)K −1K (X , x)

≤ K (x, X )K − 1
2 ‖C +D‖op K − 1

2 K (X , x)

≤
3c ′1‖y‖2

K −1

P
‖K (x, X )‖2

K −1

≤
3c ′1K (x, x)‖y‖2

K −1

P
,

where we used Inequality (A.12). This yields the result with c1 = 3c ′1.

• Bound on Eπ
[‖θ̂‖2

]
. To understand the variance of the λ-RF estimator f̂ (RF )

λ
, we need to

describe the distribution of the squared norm of the parameters:

Proposition A.5.3. For γ,λ > 0 there exists a constant c2 > 0 depending on λ,γ,T only such

that

∣∣∣E[‖θ̂‖2]−∂λλ̃yT K (X , X )
(
K (X , X )+ λ̃IN

)−2
y
∣∣∣≤ c2‖y‖2

K −1

P
. (A.15)

Proof. As in the proof of Theorem A.3.2, with the right change of basis, we may assume the
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Gram matrix K (X , X ) to be diagonal. Recall that θ̂ = 1p
P

( 1
P W K (X , X )W T +λIN

)−1W K (X , X )
1
2 y ,

thus we have:

‖θ̂‖2 = 1

P
yT K (X , X )

1
2 W T (

1

P
W K (X , X )W T +λIP )−2W K (X , X )

1
2 y = yT A′(−λ)y, (A.16)

where A′(−λ) is the derivative of

A(z) = 1

P
K (X , X )

1
2 W T

(
1

P
W K (X , X )W T − zIP

)−1

W K (X , X )
1
2

with respect to z evaluated at −λ. Let

Ã(z) = K (X , X )(K (X , X )+ λ̃(−z)IN )−1.

Remark that the derivative of Ã(z) is given by Ã′(z) = λ̃′(−z)K (X , X )(K (X , X )+ λ̃(−z)IN )−2.

Thus, from Equation (A.16), the l.h.s. of (A.15) is equal to:∣∣yT (
E[A′(−λ)]− Ã′(−λ)

)
y
∣∣ . (A.17)

Using a classical complex analysis argument, we will show that E[A′(−λ)] is close to Ã′(−λ) by

proving a bound of the difference between E[A(z)] and Ã(z) for any z ∈H<0.

Note that the proof of Proposition A.3.1 provides a bound on the diagonal entries of E[A(z)],

namely that for any z ∈H<0, ∣∣E[(A(z))i i ]− (Ã(z))i i
∣∣≤ c

P
,

where ĉ depends on z, γ and T only. Actually, in order to prove (A.15), we will derive the

following slightly different bound: for any z ∈H<0,

∣∣E[(A(z))i i ]− (Ã(z))i i
∣∣≤ ĉ

di P
, (A.18)

where ĉ depends on z, γ and T only. Let gi := gi (z) and m̃ := m̃(z). Recall that for hi : x 7→ di x
1+di x ,

one has (A(z))i i = hi (gi ), (Ã(z))i i = hi (m̃) and

Tm̃hi (gi ) = di m̃

1+di m̃
− di

(
gi −m̃

)
(1+di m̃)2 ,

hi (gi )−Tm̃hi (gi ) = d 2
i

(
gi −m̃

)2(
1+di gi

)
(1+di m̃)2 ,

where Tm̃hi is the first order Taylor approximation of hi centered at m̃. Using this first order
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Taylor approximation, we can bound the difference
∣∣E[hi (gi )]−hi (m̃)

∣∣:
∣∣E[hi (gi )]−hi (m̃)

∣∣≤ di
∣∣E[gi ]−m̃

∣∣
(1+di m̃)2 + d 2

i

(1+di m̃)2 E

[∣∣gi −m̃
∣∣2

1+di gi

]

≤ a

di P
+a

√√√√E

[
1(

1+di gi
)2

]
E
[∣∣gi −m̃

∣∣4
]

,

where a depends on z, γ and T . We need to bound E
[

1
(1+di gi )2

]
. Recall that in the proof of

Proposition A.5.1, we bounded E
[

1
(1+di gi )4

]
. Using similar arguments, one shows that

E

[
1(

1+di gi
)2

]
≤ ê2

d 2
i

,

where ê depends on z, γ and 1
N Tr(K (X , X )) only. The term E

[∣∣gi −m̃
∣∣4

]
is bounded using

Lemmas A.2.3, A.2.1 and Proposition A.2.4. This allows us to conclude that:

∣∣E[hi (gi )]−hi (m̃)
∣∣≤ ĉ

di P
,

where ĉ depends on z, γ and 1
N Tr(K (X , X )) only, hence we obtain the Inequality (A.18).

We can now prove Inequality A.15. We bound the difference of the derivatives of the diagonal

terms of A(z) and Ã(z) by means of Cauchy formula. Consider a simple closed path φ : [0,1] →
H<0 which surrounds z. Since

E[(A′(z))i i ]− (Ã′(z))i i = 1

2πi

∮
φ

E[(A(z))i i ]− (Ã(z))i i

(w − z)2 d w,

using the bound (A.18), we have:

∣∣E[(A′(z))i i ]− (Ã′(z))i i
∣∣≤ ĉ

di P

1

2π

∮
φ

1

|w − z|2 d w ≤ c2

di P
,

where c2 depends on z, γ, and T only. This allows one to bound the operator norm of

K (X , X )(E[A′(z)]− Ã′(z)):

‖K (X , X )(E[A′(z)]− Ã′(z))‖op ≤ c2

P
.

Using this bound and (A.17), we have

∣∣∣E[‖θ̂‖2]−∂λλ̃ yT K (X , X )
(
K (X , X )+ λ̃IN

)−2
y
∣∣∣= ∣∣yT (

E[A′(−λ)]− Ã′(−λ)
)

y
∣∣≤ c2‖y‖2

K −1

P
,

which allows us to conclude.
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• Bound on Var
(

f̂ (RF )
λ

(x)
)
. We have shown all the bounds needed in order to prove the follow-

ing proposition.

Proposition A.5.4. For any x ∈Rd , we have

Var
(

f̂ (RF )
λ

(x)
)
≤

c3K (x, x)‖y‖2
K −1

P
,

where c3 > 0 depends on λ,γ,T .

Proof. Recall that for any x ∈Rd ,

Var( f̂ (RF )
λ

(x)) = Var
(
E
[

f̂ (RF )
λ

(x) | F
])

+E
[

Var
[

f̂ (RF )
λ

(x) | F
]]

= Var
(
K (x, X )K (X , X )−1 ŷ

)+ 1

P
E
[‖θ̂‖2][

K (x, x)−K (x, X )K (X , X )−1K (X , x)
]

.

From Proposition A.5.2,

Var
(
K (x, X )K (X , X )−1 ŷ

)≤ c1K (x, x)‖y‖2
K −1

P
,

and from Proposition A.5.3, we have:

E
[‖θ̂‖2]≤ ∂λλ̃ yT K

(
K + λ̃IN

)−2
y +

c2‖y‖2
K −1

P
≤ ∂λλ̃ ‖y‖2

K −1 +
c2‖y‖2

K −1

P
≤α‖y‖2

K −1 ,

where α= ∂λλ̃+ c2. Using the fact that K̃ (x, x) ≤ K (x, x), we get

E
[
Var

[
f̂ (x) | F

]]= 1

P
E
[‖θ̂‖2][

K (x, x)−K (x, X )K (X , X )−1K (X , x)
]

≤
α‖y‖2

K −1 K (x, x)

P
.

This yields

Var
(

f̂ (RF )
λ

(x)
)
≤

c3‖y‖2
K −1 K (x, x)

P
,

where c3 =α+ c1.

A.6 Corollaries

Putting the pieces together, we obtain the following bound on the difference∆E = |E[L( f̂ (RF )
λ,γ )]−

L( f̂ (K )
λ

)| between the expected RF loss and the KRR loss:

Corollary A.6.1. If ED[K (x, x)] <∞, we have

∆E ≤ C1‖y‖K −1

P

(
2
√

L( f̂ (K )
λ

)+C2‖y‖K −1

)
,
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where C1 and C2 depend on λ, γ, T and ED[K (x, x)] only.

Proof. Using the bias/variance decomposition, Corollary A.3.3, and the bound on the variance

of the predictor, we obtain∣∣∣E[
L

(
f̂ (RF )
γ,λ

)]
−L

(
f̂ (K )
λ̃

)∣∣∣≤ ∣∣∣L (
E
[

f̂ (RF )
γ,λ

])
−L

(
f̂ (K )
λ̃

)∣∣∣+ED

[
Var

(
f̂ (x)

)]
≤ C‖y‖K −1

P

(
2

√
L

(
f̂ (K )
λ̃

)
+ C‖y‖K −1

P

)
+

c3‖y‖2
K −1ED [K (x, x)]

P

≤ C1‖y‖K −1

P

(
2

√
L

(
f̂ (K )
λ̃

)
+C2‖y‖K −1

)
,

where C1 and C2 depends on λ, γ, T and ED [K (x, x)] only.

Recall that for any λ̃, we denote Mλ̃ = K (X , X )(K (X , X )+ λ̃IN )−2. A direct consequence of

Proposition A.5.3 is the following lower bound on the variance of the predictor.

Corollary A.6.2. There exists c4 > 0 depending onλ,γ,T only such that Var
(

f̂ (RF )
λ

(x)
)

is bounded

from below by

∂λλ̃
yT Mλ̃y

P
K̃ (x, x)−

c4K (x, x)‖y‖2
K −1

P 2 .

Proof. By the law of total cumulance,

Var
(

f̂ (RF )
λ

(x)
)
≥ E

[
Var

[
f̂ (RF )
λ

(x) | F
]]

≥ 1

P
E
[‖θ̂‖2] K̃ (x, x).

From Proposition A.5.3, E[‖θ̂‖2] ≥ ∂λλ̃ yT Mλ̃y − c2‖y‖2
K−1

P , hence

Var
(

f̂ (RF )
λ

(x)
)
≥ ∂λλ̃

yT Mλ̃y

P
K̃ (x, x)−

c4K̃ (x, x)‖y‖2
K −1

P 2 .

The result follows from the fact that K̃ (x, x) ≤ K (x, x).
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B.1 Equivalence of Parametrizations/Initializations

NTK Parametrization

Let us show that the NTK parametrization corresponds to a scaling of γ= 1− 1
L .

The NTK parametrization Jacot, Gabriel, and Hongler, 2018b for linear networks is

AN T K
θ = WLp

nL−1
· · · W1p

n0
= 1p

n0 · · ·nL−1
WL · · ·W1

with all parameters initialized with a variance of 1. One can show that gradient flow θN T K (t )

with the NTK parametrization, initialized at some parameters θN T K
0 is equivalent (up to a

rescaling of the learning rate) to gradient flow θ(t ) with the classical parametrization with an

initialization of θ0 = (n0 · · ·nL−1)−
1

2L θN T K
0 :

Proposition B.1.1. Let θN T K (t) be gradient flow on the loss L N T K (θ) =C (AN T K
θ

) initialized

at some parameters θN T K
0 and θ(t) be gradient flow on the cost L (θ) = C (Aθ) initialized at

θ0 = (n0 · · ·nL−1)−
1

2L θN T K
0 . We have

Aθ(t ) = AN T K
θN T K (

p
n0···nL−1t ).

Proof. We will show that θ(t ) = (n0 · · ·nL−1)−
1

2L θN T K (
p

n0 · · ·nL−1t ) which implies that Aθ(t ) =
AN T K
θN T K (t )

. This is obviously true at t = 0. Now assuming it is true at a time t , we show that the

time derivatives of θ(t ) and (n0 · · ·nL−1)−
1

2L θN T K (
p

n0 · · ·nL−1t ) match:

∂tθ
N T K (

p
n0 · · ·nL−1t ) =

p
n0 · · ·nL−1p
n0 · · ·nL−1

∂tθ(t ) = ∂tθ(t ).
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This implies that the NTK parametrization with N (0,1) initialization is equivalent to the clas-

sical parametrization with N (0, (n0 · · ·nL−1)−
1
L ) initialization, which for rectangular networks

corresponds to a N (0,n
− 1

L
0 w− L−1

L ) initialization with scaling γ= L−1
L = 1− 1

L .

Maximal Update Parametrization

The Maximal Update parametrization (or µ-parametrization) G. Yang and E. J. Hu, 2020 is

equivalent to γ= 1. The µ-parametrization for linear rectangular networks is the same the

classical one, since

Aµ

θ
= WLp

w
WL−1 · · ·W2

(p
wW1

)=WL · · ·W1

and the parameters are initialized with variance w−1, i.e. γ= 1.

B.2 Distance to Different Critical Points

Let dm and ds be the Euclidean distances between the initialization θ and, respectively, the set

of global minima and the set of all saddles. For random variables f (w), g (w) which depend

on w , we write f ³ g if both f (w)/g (w) and g (w)/f (w) are stochastically bounded as w →∞. The

following theorem studies how dm and ds scale as w →∞:

Theorem B.2.1 (Theorem 3.4.1 in the main). Suppose that the set of matrices that minimize C

is non-empty, has Lebesgue measure zero, and does not contain the zero matrix. Let θ be i.i.d.

centered Gaussian r.v. of variance σ2 = w−γ where 1− 1
L ≤ γ<∞. Then:

1. if 1− 1
L ≤ γ< 1, we have dm ³ w− (1−γ)(L−1)

2 and ds ³ w
1−γ

2 ,

2. if γ= 1, we have dm,ds ³ 1,

3. if γ> 1 we have dm ³ 1 and ds ³ w− γ−1
2 .

To prove this result, we require a few Lemmas:

Lemma B.2.2. Let θ be the vector of parameters of a DLN with i.i.d. N (0, w−γ) Gaussian

entries, and let Amin = {A ∈RnL×n0 : C (A) = 0} be the set of global minimizers of C . Under the

same assumptions on the cost C as Proposition B.2.1, we have d(Aθ,Amin) ³ 1 as w →∞.

Proof. If γ> 1− 1
L then Aθ converges in distribution to the zero matrix as w →∞, the distance

d(Aθ,Amin) therefore converges to the finite value d(0,Amin) 6= 0.

If γ = 1− 1
L , then Aθ converges in distribution to random Gaussian matrix with iid N (0,1)

entries (this can seen as a consequence of the more general results for nonlinear networks

J. Lee, Bahri, et al., 2017b; G. Matthews et al., 2018). As a result the distribution of d(Aθ,Amin)

converges to the distribution of d(B ,Amin) for a matrix B with iid Gaussian N (0,1) entries.
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Since P [d(B ,Amin) = 0] = 0 and P [d(B ,Amin) > b] → 0 as b →∞ we have that d(Aθ,Amin) ³ 1

as needed.

Lemma B.2.3. Let θ be the vector of parameters of a DLN with iid N (0, w−γ) Gaussian entries.

For all ε, there is a constant Cε,L that does not depend on w s.t. with prob. 1−ε, we have for all

θ′ ∈RP that

‖Aθ′ − Aθ‖2
F ≤Cε,L

L∑
k=1

∥∥θ−θ′∥∥2k w (1−γ)(L−k).

Proof. By Corollary 5.35 in Vershynin, 2010, reformulated as Theorem B.2.4 below, we know

that for all ε, there is a constant cε that does not depend on w s.t. with prob. 1−ε, we have for

all `

‖W`‖2
op ≤ cεw1−γ.

We now write dθ = θ′−θ (and the corresponding matrices dW` = W ′
`
−W`) so that we may

write the difference Aθ+dθ− Aθ as the following sum

∑
a1, . . . , aL ∈ {0,1}

∃`, a` 6= 0

WL if aL = 0

dWL if aL = 1

 · · ·
W1 if a1 = 0

dW1 if a1 = 1



where the indicator a` determines whether we take W` or dW` in the product. We can

therefore bound

‖Aθ+dθ− Aθ‖2
F ≤


∑

a1, . . . , aL ∈ {0,1}

∃`, a` 6= 0

∥∥∥∥∥∥
WL if aL = 0

dWL if aL = 1

 · · ·
W1 if a1 = 0

dW1 if a1 = 1

∥∥∥∥∥∥
F



2

≤ (2L −1)
∑

a1, . . . , aL ∈ {0,1}

∃`, a` 6= 0

∥∥∥∥∥∥
WL if aL = 0

dWL if aL = 1

 · · ·
W1 if a1 = 0

dW1 if a1 = 1

∥∥∥∥∥∥
2

F

≤ (2L −1)
∑

a1, . . . , aL ∈ {0,1}

∃`, a` 6= 0

‖WL‖2
op if aL = 0

‖dWL‖2
F if aL = 1

 · · ·
‖W1‖2

op if a1 = 0

‖dW1‖2
F if a1 = 1



We now bound ‖WL‖2
op by cεw1−γ and ‖dWL‖2

F by ‖dθ‖2 so that we obtain the bound

‖Aθ+dθ− Aθ‖2
F ≤ (2L −1)

L∑
k=1

(
L

k

)
‖dθ‖2k cL−k

ε w (1−γ)(L−k) ≤Cε,L

L∑
k=1

‖dθ‖2k w (1−γ)(L−k)
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for Cε,L = (2L −1)maxk=1,...,L

(
L

k

)
cL−k
ε .

Let us now prove Theorem B.2.1:

Proof. (1) Distance to minimum: Let us first give an lower bound on the distance from

initialization to a global minimum. Let θ be the intialization and θ+dθ be the closest minimum.

By Lemma B.2.3, we obtain

‖Aθ+dθ− Aθ‖2
F ≤C ′

L

L∑
k=1

‖dθ‖2k w (1−γ)(L−k).

If γ> 1, the term with k = L dominates, in which case ‖Aθ+dθ− Aθ‖2
F ≤ ‖dθ‖2L which implies

that ‖dθ‖ ≥ ‖Aθ+dθ− Aθ‖
1
L
F ≥ d(Aθ,Amin)

1
L ³ 1 by Lemma B.2.2.

If γ < 1, the term k = 1 dominates, which implies ‖Aθ+dθ− Aθ‖2
F ≤ ‖dθ‖2 w (1−γ)(L−1) which

implies that ‖dθ‖ ≥ ‖Aθ+dθ− Aθ‖F w− (1−γ)(L−1)
2 =O(w− (1−γ)(L−1)

2 ), which decreases with width.

Let us now show upper bounds on ‖dθ‖. When γ > 1, we will construct a closeby mini-

mum. Let us first define the parameters θ̄ = (W̄1, . . . ,W̄L) where W̄1 = 0 and W̄L = 0 and

W̄`,i j =
W`,i j if i , j > min{n0,nL}

0 otherwise
. Since we have set only O(w) parameters to zero, we

have
∥∥θ− θ̄∥∥2 = O(σ2w) = O(w1−γ). Now let the matrix A be a global minimum of the

cost C with SVD A = U SV T (with inner dimension equal to the rank k of A), we then set

θ∗ = θ̄ + I (k→w)(S
1
L V T ,S

1
L , . . . ,S

1
L ,U S

1
L ). The parameters θ∗ are a global minimum since

Aθ∗ = A and ‖θ∗−θ‖ ≤ ∥∥θ∗− θ̄∥∥+∥∥θ̄−θ∥∥=O(1)+O(w
1−γ

2 ) =O(1).

When γ < 1, with prob. 1− ε, we have smi n (WL−1 · · ·W1) > 1
2σ

(L−1)w
L−1

2 = w
(1−γ)(L−1)

2 , we can

reach a global minimum by only changing WL , we need dWLWL−1 · · ·W1 = A∗− Aθ hence we

take dWL = (A∗− Aθ) (WL · · ·W1)+ with norm ‖dθ‖ = ‖dWL‖F ≤ ‖A∗−Aθ‖
smi n (WL−1···W1) =O(w− (1−γ)(L−1)

2 ).

(2) Distance to saddles: Given parameters θ = (W1, . . . ,WL), we can obtain a saddle θ∗ by

setting all entries of W1 and WL to zero. We have

E
[∥∥θ−θ∗∥∥2

]
= E[‖W1‖2

F

]+E[‖WL‖2
F

]=σ2(n0 +nL)w =O(w1−γ).

This gives an upper bound of order w1−γ on the distance between θ and the set of saddles θ∗.

Now let θ∗ = θ+dθ be the saddle closest to θ, we know that

0 = ∂WL L (θ∗) =∇C (Aθ∗)
(
W ∗

1

)T · · ·(W ∗
L−1

)T .

Since Aθ∗ is not a global minimum, ∇C (Aθ∗) 6= 0, for the above to be zero, we therefore need(
W ∗

1

)T · · ·(W ∗
L−1

)T to not have full column rank, i.e. Rank
(
W ∗

1

)T · · ·(W ∗
L−1

)T = n0.
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We will show that at initialization (W1)T · · · (WL−1)T has rank n0 and its smallest non-zero singu-

lar value smi n is of order w
(1−γ)(L−1)

2 . We will use the fact that
∥∥∥(W1)T · · · (WL−1)T − (

W ∗
1

)T · · ·(W ∗
L−1

)T
∥∥∥

F
≥

smi n to lower bound the distance ‖θ−θ∗‖ using Lemma B.2.3.

The singular values of W T
1 · · ·W T

L−1 are the squared root of the eigenvalues of the n0 ×n0

matrix W T
1 · · ·W T

L−1WL−1 · · ·W1. One can show that as w →∞ this matrix concentrates in its

expectation

E
[
W T

1 · · ·W T
L−1WL−1 · · ·W1

]=σ2(L−1)wL−1 = w (1−γ)(L−1).

which implies that smin concentrates in w
(1−γ)(L−1)

2 and therefore smin ³ w
(1−γ)(L−1)

2 .

Now by Lemma B.2.3 (applied to the depth L−1 this time), we have with prob. 1−ε

s2
min ≤

∥∥∥(W1)T · · · (WL−1)T − (
W ∗

1

)T · · ·(W ∗
L−1

)T
∥∥∥2

F

≤Cε,L−1

L−1∑
k=1

∥∥θ−θ′∥∥2k w (1−γ)(L−1−k)

and
∥∥θ−θ′∥∥ needs to be at least of order w

(1−γ)
2 for any of the terms in the sum to be at least of

order w (1−γ)(L−1) (actually all these become of the right order at the same time).

B.2.1 Spectrum Bounds

An important tool in our analysis is the following Theorem (which is a reformulation of

Corollary 5.35 in Vershynin, 2010)

Theorem B.2.4. Let A be a m × n matrix with i.i.d. N (0,σ2) entries. For all t ≥ 0, with

probability at least 1−2e−
t2

2 , it holds that

σ(−pm −p
n − t ) ≤ smi n (A) ≤ smax (A) ≤σ(p

m +p
n + t

)
.

Corollary B.2.5. If the parameters θ are independent centered Gaussian with variance σ2, for

all t ≥ 0, with probability at least 1−2Le−
t2

2 , it holds that

‖Aθ‖op ≤ (1+ t )LσL (p
n0 +

p
w

)
(4w)

L−2
2

(p
w +p

nL
)

.

Proof. By Theorem B.2.4, with probability greater than 1−2Le−
t2

2 , for all `= 1, . . . ,L, ‖W`‖op ≤
σ

(p
n`−1 +p

n`+ t
)

, where n` = w for ` ∈ {1, · · · ,L−1}. Hence

‖Aθ‖op ≤ ‖WL‖op · · ·‖W1‖op ≤σL
L∏
`=1

(p
n`−1 +

p
n`+ t

)≤ (1+ t )LσL
L∏
`=1

(p
n`−1 +

p
n`

)
.

131





C The Loss Landscape of (Non-Linear)
Neural Networks

C.1 Numerics

C.1.1 Saddle-to-Saddle Training Dynamics

(a) m = 10 (b) m = 20 (c) m = 100 (d) m = 1000

Figure C.1 – Network width m impacts whether gradient trajectories approach a saddle or
not. For all a-b-c-d, the loss curves are demonstrated on the left and the norm of the gradient
is demonstrated on the right. We observe that the norm of the gradient decreases and then
increases in narrow networks (a-b), indicating an approach to a saddle and then escaping it.
We do not observe a sharp non-monotonicity in the norm of the gradient for wider networks
(c-d). Instead we observe short decrease and increase periods in the norm of the gradient (see
the zigzag) (d), which indicates that the gradient trajectories move from one saddle to the next
in this regime, yet without getting very close these saddles.

Experimental Details

The training set consisted of the standard MNIST test set, i.e. 10’000 grayscale images of 28x28

pixels with corresponding labels. The networks had a single hidden layer of width m with

the softplus non-linearity σ(x) = log(ex +1). The networks were initialised with the Glorot

uniform initialisation (Glorot and Bengio, 2010) and trained on the cross-entropy loss with

Adam and gradients always computed on the full dataset. We measured the squared norm of

the gradients and the squared norm of the parameter updates.
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Interpretation

We observe that the gradient trajectories visit a saddle in a narrow network and the duration

of the visit to the saddles becomes shorter as we increase the width (i.e. in (a), we see a longer

plateau in the loss curve compared to (b)). In the overparameterized regime, we observe

another behavior change, i.e. we observe a zigzag behavior on the norm of the gradient,

possibly indicating many short visits to the saddles.

C.2 Further Properties of Symmetric Losses

The most well known property of symmetric losses is the m! multiplicity of the critical points:

for a critical point θ = (ϑ1,ϑ2, . . . ,ϑm) with distinct units ϑi 6= ϑ j for all i 6= j , there are m!

equivalent critical points induced by permutations π ∈ Sm . Similarly, every point θ with

distinct units has m!− 1 partner points with equal loss. For a symmetric loss function, a

fundamental region

R0 := {(ϑ1, . . . ,ϑm) ∈RDm :ϑ1 ≥ . . . ≥ϑm}

has m!−1 partner regions where the landscape of the loss is the same up to permutations.

Note that above and elsewhere we use the lexicographic order: for two units ϑ,ϑ′ ∈ RD , we

write ϑ>ϑ′ if there exists j ∈ [D] such that ϑi =ϑ′
i for all i ∈ [ j −1] and ϑ j >ϑ′

j ; and ϑ=ϑ′, if

ϑi =ϑ′
i for all i ∈ [D].

Definition C.2.1. For a permutation π ∈ Sm , a replicant region Rπ is defined by

Rπ := {(ϑ1, . . . ,ϑm) ∈RDm :ϑπ(1) ≥ . . . ≥ϑπ(m)}. (C.1)

We denote by R̊π the interior of the replicant region.

Any two partner points θπ ∈Rπ and θπ′ ∈Rπ′ have the same loss Lm(θπ) = Lm(θπ′) and they

are linked with a permutation matrix Pπ′◦π−1 : Pπ′◦π−1θπ = θπ′ .

Note that the lexicographic order is a total order thus it allows to compare any two D-

dimensional units. Therefore every point θ ∈RDm falls in at least one replicant region, i.e.

RDm =∪π∈Sm Rπ.

The intersection of all these regions Rπ corresponds to the D-dimensional linear subspace

ϑ1 = ϑ2 = ·· · = ϑm ; more generally intersections of replicant regions define symmetry sub-

spaces.

As each constraint ϑi =ϑ j suppresses D degrees of freedom, we have dim(H i1,...,ik ) = D(m −
k +1). Observe that the largest symmetry subspaces are H i , j ’s since any other symmetry

subspace is included in one of these
(m

2

)
subspaces.
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#1
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H1,2
<latexit sha1_base64="IrF4R+JTSkZt87EsfAxrUgKaNPU=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4kJJUQZdFN11WsA9oQ5hMp+3QySTMTMQS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45QcyZ0o7zba2tb2xubZd2yrt7+weH9lGlo6JEEtomEY9kL8CKciZoWzPNaS+WFIcBp91gepf73UcqFYvEg57F1AvxWLARI1gbybcrgxDrCcE8bWZ+6l7Us7JvV52aMwdaJW5BqlCg5dtfg2FEkpAKTThWqu86sfZSLDUjnGblQaJojMkUj2nfUIFDqrx0nj1DZ0YZolEkzRMazdXfGykOlZqFgZnMk6plLxf/8/qJHt14KRNxoqkgi0OjhCMdobwINGSSEs1nhmAimcmKyARLTLSpKy/BXf7yKunUa+5lrX5/VW3cFnWU4ARO4RxcuIYGNKEFbSDwBM/wCm9WZr1Y79bHYnTNKnaO4Q+szx8NUpPJ</latexit>

H2,3
<latexit sha1_base64="csdPQs/y8G8r/ai+4mtAgYA9oM4=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBhZSkFXRZdNNlBfuANoTJdNIOnUzCzEQsIb/ixoUibv0Rd/6NSZuFth4YOJxzL/fM8SLOlLasb6O0sbm1vVPereztHxwemcfVngpjSWiXhDyUAw8rypmgXc00p4NIUhx4nPa92V3u9x+pVCwUD3oeUSfAE8F8RrDOJNesjgKspwTzpJ26SeOymVZcs2bVrQXQOrELUoMCHdf8Go1DEgdUaMKxUkPbirSTYKkZ4TStjGJFI0xmeEKHGRU4oMpJFtlTdJ4pY+SHMntCo4X6eyPBgVLzwMsm86Rq1cvF/7xhrP0bJ2EiijUVZHnIjznSIcqLQGMmKdF8nhFMJMuyIjLFEhOd1ZWXYK9+eZ30GnW7WW/cX9Vat0UdZTiFM7gAG66hBW3oQBcIPMEzvMKbkRovxrvxsRwtGcXOCfyB8fkDEGCTyw==</latexit>

H1,3
<latexit sha1_base64="nbdbnSGbh3MI4d1MIUzfKCOd180=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgQkrSCrosuumygn1AG8JkOmmHTiZhZiKWkF9x40IRt/6IO//GSZuFth4YOJxzL/fM8WNGpbLtb6O0sbm1vVPereztHxwemcfVnowSgUkXRywSAx9JwignXUUVI4NYEBT6jPT92V3u9x+JkDTiD2oeEzdEE04DipHSkmdWRyFSU4xY2s681LlsZhXPrNl1ewFrnTgFqUGBjmd+jcYRTkLCFWZIyqFjx8pNkVAUM5JVRokkMcIzNCFDTTkKiXTTRfbMOtfK2AoioR9X1kL9vZGiUMp56OvJPKlc9XLxP2+YqODGTSmPE0U4Xh4KEmapyMqLsMZUEKzYXBOEBdVZLTxFAmGl68pLcFa/vE56jbrTrDfur2qt26KOMpzCGVyAA9fQgjZ0oAsYnuAZXuHNyIwX4934WI6WjGLnBP7A+PwBDtiTyg==</latexit>

R(1,2,3)
<latexit sha1_base64="fKBVOPy4XnTY0zMy5uPXWVit9fY=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJxa7Wq42ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYplKs=</latexit>

R(2,1,3)
<latexit sha1_base64="ac1LHGbJ+D2MSvxl5HjV2mBq9J4=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpV61q42ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYrlKs=</latexit>

R(2,3,1)
<latexit sha1_base64="OG4fQcaC0X39R8U8PyST6m8LGCM=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpV5tVO2ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYvlKs=</latexit>

R(3,2,1)
<latexit sha1_base64="P8Ekq6sS7qdx89hMrQ+2jS2lIdE=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpVGtV+2ztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYxlKs=</latexit>

R(3,1,2)
<latexit sha1_base64="AojLB7IHyqeSx87VXQGs+YMjFSA=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJpVG1q/WztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYvlKs=</latexit>

R(1,3,2)
<latexit sha1_base64="2MHiFyZvUn8BwwkOBpZxDrwKxJE=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKpSStIIui25cVrEPaEOYTCft0MkkzEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8iFGpLOvbKKysrq1vFDdLW9s7u3vm/kFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut7kOvO7D0RIGvJ7NY2IE6ARpz7FSGnJNY8GAVJjjFhyl7pJxa42qvWztOSaZatmzQCXiZ2TMsjRcs2vwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4yy5/CU60MoR8K/biCM/X3RoICKaeBpyeztHLRy8T/vH6s/EsnoTyKFeF4fsiPGVQhzMqAQyoIVmyqCcKC6qwQj5FAWOnKshLsxS8vk069Zjdq9dvzcvMqr6MIjsEJqAAbXIAmuAEt0AYYPIJn8ArejCfjxXg3PuajBSPfOQR/YHz+ANYrlKs=</latexit>

✓✓✓
<latexit sha1_base64="S9xDx51NzjMzH13PtmD+g76BUiQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBE8ld0q2GPBi8cK9gO6S8mm2TY0yYZkVihL/4YXD4p49c9489+YtnvQ1gcDj/dmmJkXa8Et+P63t7G5tb2zW9or7x8cHh1XTk47Ns0MZW2aitT0YmKZ4Iq1gYNgPW0YkbFg3XhyN/e7T8xYnqpHmGoWSTJSPOGUgJPCUMs4D2HMgMwGlapf8xfA6yQoSBUVaA0qX+EwpZlkCqgg1vYDX0OUEwOcCjYrh5llmtAJGbG+o4pIZqN8cfMMXzpliJPUuFKAF+rviZxIa6cydp2SwNiuenPxP6+fQdKIcq50BkzR5aIkExhSPA8AD7lhFMTUEUINd7diOiaGUHAxlV0IwerL66RTrwXXtfrDTbXZKOIooXN0ga5QgG5RE92jFmojijR6Rq/ozcu8F+/d+1i2bnjFzBn6A+/zB3wUkfE=</latexit>

✓✓✓(1,2)
<latexit sha1_base64="H3NzY8cXTlb6YdHeHreQeoG0IkQ=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSJUkJJUwS4LblxWsA9oQphMJ+3QmSTM3Ag1BH/FjQtF3Pof7vwbp20W2nrgwuGce7n3niDhTIFtfxsrq2vrG5ulrfL2zu7evnlw2FFxKgltk5jHshdgRTmLaBsYcNpLJMUi4LQbjG+mfveBSsXi6B4mCfUEHkYsZASDlnzz2E1EkLkwooBzP6s6F/Xz3Dcrds2ewVomTkEqqEDLN7/cQUxSQSMgHCvVd+wEvAxLYITTvOymiiaYjPGQ9jWNsKDKy2bX59aZVgZWGEtdEVgz9fdEhoVSExHoToFhpBa9qfif108hbHgZi5IUaETmi8KUWxBb0yisAZOUAJ9ogolk+laLjLDEBHRgZR2Cs/jyMunUa85lrX53VWk2ijhK6ASdoipy0DVqolvUQm1E0CN6Rq/ozXgyXox342PeumIUM0foD4zPH6hTlKk=</latexit>

✓✓✓⇤(1,2)
<latexit sha1_base64="JvFnaeTVtF0U2N9hG78xhWS0BMA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EiVJGSVMEeC148VrAf0MSw2W7bxd0k7E6EEnPwr3jxoIhX/4Y3/43bNgdtfTDweG+GmXlBzJkC2/42CkvLK6trxfXSxubW9o65u9dWUSIJbZGIR7IbYEU5C2kLGHDajSXFIuC0E9xfTfzOA5WKReEtjGPqCTwM2YARDFryzQM3FkHqwogCzvy04pzVTrK7U98s21V7CmuRODkpoxxN3/xy+xFJBA2BcKxUz7Fj8FIsgRFOs5KbKBpjco+HtKdpiAVVXjq9P7OOtdK3BpHUFYI1VX9PpFgoNRaB7hQYRmrem4j/eb0EBnUvZWGcAA3JbNEg4RZE1iQMq88kJcDHmmAimb7VIiMsMQEdWUmH4My/vEjatapzXq3dXJQb9TyOIjpER6iCHHSJGugaNVELEfSIntErejOejBfj3fiYtRaMfGYf/YHx+QPPrJVF</latexit>

✓✓✓⇤
<latexit sha1_base64="tQFRehFgmNs4uj0N8X4x+Rq7b0s=">AAAB9XicbVBNSwMxEM36WetX1aOXYBHEQ9mtgj0WvHisYD+guy3ZNNuGJtklmVXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmhYngBlz321lb39jc2i7sFHf39g8OS0fHLROnmrImjUWsOyExTHDFmsBBsE6iGZGhYO1wfDvz249MGx6rB5gkLJBkqHjEKQEr9fxEhpkPIwZk2rvsl8puxZ0DrxIvJ2WUo9EvffmDmKaSKaCCGNP13ASCjGjgVLBp0U8NSwgdkyHrWqqIZCbI5ldP8blVBjiKtS0FeK7+nsiINGYiQ9spCYzMsjcT//O6KUS1IOMqSYEpulgUpQJDjGcR4AHXjIKYWEKo5vZWTEdEEwo2qKINwVt+eZW0qhXvqlK9vy7Xa3kcBXSKztAF8tANqqM71EBNRJFGz+gVvTlPzovz7nwsWtecfOYE/YHz+QOeoZKN</latexit>

Figure C.2 – Replicant regions Rπ and symmetry subspaces H i , j for the 3-dimensional pa-
rameter space R3. An example gradient flow trajectory starting at θ ∈R(3,2,1) and arriving at a
minimum θ∗ (solid curve) and its partner trajectory starting at a partner point θ(1,2) ∈ R(3,1,2)

thus arriving at a partner minimum θ∗(1,2) (dashed curve) are shown.

For D = 1, the largest symmetry subspaces have codimension 1. As a result, any path from Rπ

to any another replicant region has to cross a symmetry subspace (see Figure C.2). However, for

D > 1, the symmetry subspaces have codimension at least D ; thus there exist paths connecting

replicant regions without crossing symmetry subspaces.

Lemma C.2.1 (Lemma 4.3.1 in the main). We assume that Lm :RDm →R is a symmetric loss on

m units and a C 1 function. Let Γ :R≥0 ×RDm →RDm be its gradient flow. If Γ(0,θ0) ∈H i1,...,ik ,

the gradient flow stays inside the symmetry subspace, i.e. Γ(t ,θ0) ∈ H i1,...,ik for all t > 0. If

Γ(0,θ0) ∉ H i , j for all i 6= j ∈ [m], the gradient flow does not visit any symmetry subspace in

finite time.

Proof. We will write the gradient of Lm in the block form

∇Lm(θ) = (∇1Lm(θ), . . . ,∇mLm(θ)) where for all j ∈ [m]

∇ j Lm(θ) = (∂D( j−1)+1Lm(θ), . . . ,∂D( j−1)+D Lm(θ))

is a D-dimensional vector. We will use the identity that comes from chain rule ∇Lm(Pπθ) =
Pπ∇Lm(θ). We will show that if θ = (ϑ1, ...,ϑm) ∈ H i1,...,ik where ϑi1 = ·· · = ϑik , its gradient

satisfies ∇i1 Lm(θ) = . . . = ∇ik Lm(θ) therefore the gradient flow remains on the symmetry

subspace for all times.

We denote a transposition by (i , j ) ∈ Sm , which is a permutation that only swaps the units i

and j . Assume θ ∈H i , j , that is θ = P(i , j )θ, and thus

∇Lm(θ) =∇Lm(P(i , j )θ) = P(i , j )∇Lm(θ),

and in particular ∇i Lm(θ) = ∇ j Lm(θ). This entails that for θ ∈ H i1,...,ik , we have ∇Lm(θ) ∈
H i1,...,ik as well, which completes the first part of the proof.
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We now prove the second part of the claim by contradiction. Let γ(t ) = Γ(t ,θ0). Suppose now

that γ(0) ∉H i , j for any i 6= j ∈ [k] and t0 <∞ be the first time such that γ(t0) ∈H i ′, j ′ for some

i ′ 6= j ′ ∈ [k]. Let γ̃(t ) = P(i ′, j ′)γ(t ), that is the symmetric path with respect to H i ′, j ′ . Then one

sees that γ and γ̃ intersect for the first time at t0 on H i ′, j ′ and then γ(t) = γ̃(t) ∈H i ′, j ′ for all

t > t0, as we showed in the first part of the proof. Since ∇Lm is continuous, Picard-Lindelöf

Theorem applies on a neighbourhood of γ(t0), which ensures the unicity of the gradient flow

on [t0 −ε, t0] for some ε> 0. Thus, γ(t0 −ε) = γ̃(t0 −ε), which contradicts the fact that t0 is the

first time when γ intersects γ̃.

Remark. Let Γ(0,θ0) ∈Rπ for some π ∈ Sm . In the case of 1-dimensional units, D = 1, we have

Γ(t ,θ0) ∈ Rπ for all t ∈ R+. Hence, in this case, the gradient flow can only be affected by the

critical points of a single replicant region.

Proof. Indeed, assume that Γ(0,θ0) = (ϑ1(0), . . . ,ϑm(0)) ∈ Rπ, i.e. ϑπ1 (0) ≥ ·· · ≥ ϑπm (0) and

Γ(1,θ0) = (ϑ1(1), . . . ,ϑm(1)) ∈Rπ′ for another permutation π′, i.e. ϑπ′
1
(0) ≥ ·· · ≥ϑπ′

m
(0). Since

π 6=π′, there exists a pair (i , j ) such that ϑi (0) ≥ϑ j (0) and ϑ j (1) ≥ϑi (1). Thus we have

(ϑi −ϑ j )(0) ≥ 0 ≥ (ϑi −ϑ j )(1).

Because the gradient flow is continuous (since Lm is C 1) there exists a time t0 such that

(ϑi −ϑ j )(t0) = 0, i.e. Γ(t0,θ0) ∈H i , j , which yields a contradiction.

Remark. In the case of 1-dimensional units, D = 1, if Γ(0,θ0) ∈Rπ for some π ∈ Sm , we have

Γ(t ,θ0) ∈ Rπ for all t ∈ R+. Hence, in this case, the gradient flow can only be affected by the

critical points of a single replicant region.

C.3 Second-Order Analysis of the Symmetry-Induced Critical Points

In this section, we first present a proof sketch for Theorem 4.4.1, then prove it. In Ap-

pendix C.3.1, we study the matrix in Eq. 4.4 in detail for the case of multiple output neurons

to characterize the critical points on the line. In Appendix C.3.2, we will present the proof of

Lemma 4.4.2.

Proof Sketch. We decompose the Hessian of a symmetry-induced critical point ⊕j ,µθ using a

specific invertible linear transformation A(µ) as follows

HL(⊕j ,µθ) = A(µ)T

µ(1−µ)Y −V 0

−V 0 0

0 0 HL(θ)

 A(µ)

where the matrix in the middle of the RHS is denoted by H̃L(⊕j ,µθ). In our decomposition,

A(µ) is invertible for all µ. Thanks to Sylvester’s law of inertia, the number of positive, negative,

and zero eigenvalues of H(µ) = HL(⊕j ,µθ) are the same as those of H̃(µ) = H̃L(⊕j ,µθ) which is

136



C.3. Second-Order Analysis of the Symmetry-Induced Critical Points

a congruent matrix.

Therefore it suffices to study the eigenvalue signs of H̃(µ) which is composed of two block

matrices on the diagonal –the matrix in Eq. 4.4 and the Hessian of the original local minimum

HL(θ)– with off-diagonal blocks being all-zero. Thus the eigenvalues of H̃(µ) are identical

to the union of eigenvalues of its block-diagonal matrices. Hence, the Hessian of the loss at

the irreducible critical point HL(θ) gives the bulk of the sign spectrum. This completes the

proof of the first part of the statement. Finally, the eigenvalue signs in the new D directions

are determined by the matrix in Eq. 4.4 which is the second part of the statement. End of Proof

Sketch.

Let us now present the full Hessian of a symmetry-induced critical point

HL(⊕j ,µθ) =


µ2X +µY µ(1−µ)X µU +V µU 0

µ(1−µ)X (1−µ)2X + (1−µ)Y (1−µ)U (1−µ)U +V 0

µU T +V T (1−µ)U T Z Z 0

µU T (1−µ)U T +V T Z Z 0

0 0 0 0 HL(ªjθ)

 (C.2)

where X and Y are d ×d ; U and V are d ×dout; and Z is dout×dout and HL(ªjθ) is the Hessian

corresponding to the parameter θ except for the j -th neuron, which we denote by ªjθ. We

need to compute the second-order derivatives to write out the submatrices explicitly. First let

us compute the first-order derivatives

∂a j L(θ) = 1

N

N∑
i=1

σ(w j · xi )c ′( f (2)
θ

(xi ), yi )

∂w j L(θ) = 1

N

N∑
i=1

σ′(w j · xi )xaT
j c ′( f (2)

θ
(xi ), yi ).

Then the second-order derivatives follow

∂2
w j wk

L(θ) = 1

N

N∑
i=1

σ′(w j · xi )σ′(wk · xi )xi (xi )T aT
j c ′′( f (2)

θ
(xi ), yi )ak

∂2
w 2

j
L(θ) = 1

N

N∑
i=1

σ′(w j · xi )2xi xT
i aT

j c ′′( f (2)
θ

(xi ), yi )a j +σ′′(w j · xi )xi xT
i aT

j c ′( f (2)
θ

(xi ), yi )

∂2
w j ak

L(θ) = 1

N

N∑
i=1

σ(w j · xi )σ′(wk · xi )xi aT
j c ′′( f (2)

θ
(xi ), yi )

∂2
w j a j

L(θ) = 1

N

N∑
i=1

σ(w j · xi )σ′(w j · xi )xi aT
j c ′′( f (2)

θ
(xi ), yi )+σ′(w j · xi )xi c ′( f (2)

θ
(xi ), yi )T

∂2
a j ak

L(θ) = 1

N

N∑
i=1

σ(w j · xi )σ(wk · x)c ′′( f (2)
θ

(xi ), yi )

∂2
a2

j
L(θ) = 1

N

N∑
i=1

σ(w j · x)2c ′′( f (2)
θ

(xi ), yi ).
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We introduce the following submatrices to ease the notation and to allow noticing the recur-

rence at the symmetry-induced critical points

X ((w j , a j ), (wk , ak )) = 1

N

N∑
i=1

σ′(w j · xi )σ′(wk · xi )xi xT
i aT

j c ′′( f (2)
θ

(xi ), yi )ak

X (w j , a j ) = 1

N

N∑
i=1

σ′(w j · xi )2xi xT
i aT

j c ′′( f (2)
θ

(xi ), yi )a j

Y (w j , a j ) = 1

N

N∑
i=1

σ′′(w j · xi )xi xT
i aT

j c ′( f (2)
θ

(xi ), yi )

U ((w j , a j ), (wk , ak )) = 1

N

N∑
i=1

σ(w j · xi )σ′(wk · xi )xi aT
k c ′′( f (2)

θ
(xi ), yi )

U (w j , a j ) = 1

N

N∑
i=1

σ(w j · xi )σ′(w j · xi )xi aT
j c ′′( f (2)

θ
(xi ), yi )

V (w j ) = 1

N

N∑
i=1

σ′(w j · xi )xi c ′( f (2)
θ

(xi ), yi )T

Z (w j , wk ) = 1

N

N∑
i=1

σ(w j · xi )σ(wk · xi )c ′′( f (2)
θ

(xi ), yi )

Z (w j ) = 1

N

N∑
i=1

σ(w j · xi )2c ′′( f (2)
θ

(xi ), yi )

which reduces the second-order derivatives into

∂2
wi w j

L(θ) = X ((wi , ai ), (w j , a j ))

∂2
w 2

i
L(θ) = X (wi , ai )+Y (wi , ai )

∂2
w j ai

L(θ) =U ((wi , ai ), (w j , a j ))

∂2
wi ai

L(θ) =U (wi , ai )+V (wi )

∂2
ai a j

L(θ) = Z (wi , w j )

∂2
a2

i
L(θ) = Z (wi ).

Note that X (wi , ai ) is positive definite if the cost c is convex. Moreover Y (wi , ai ) is a symmetric

matrix thus it has real eigenvalues.

Next, we change the basis via an invertible matrix A. We obtain the following transformed
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Hessian denoted by H̃ which has an approximate block-diagonal structure and P− = P −D

H̃(µ) =


µ(1−µ)Y 0 0 −V 0

0 X +Y U +V 0 0

0 U +V Z 0 0

−V 0 0 0 0

0 0 0 0 HL(ªjθ)



H̃(µ) =


(1−µ)Id −µId 0 0 0

Id Id 0 0 0

0 0 µIdout (1−µ)Idout 0

0 0 −Idout Idout 0

0 0 0 0 IP−

H(µ)


(1−µ)Id Id 0 0 0

−µId Id 0 0 0

0 0 µIdout −Idout 0

0 0 (1−µ)Idout Idout 0

0 0 0 0 IP−


H̃(µ) = (A(µ)−1)T H(µ)A(µ)−1; (C.3)

where A(µ) is given by

A(µ) =


Id −Id 0 0 0

µId (1−µ)Id 0 0 0

0 0 Idout Idout 0

0 0 −(1−µ)Idout µIdout 0

0 0 0 0 IP−

 .

Finally, after a change of block rows and block columns, we recover the statement of the

Thm. 4.4.1 due to the following observation

HL(θ) =

X +Y U +V 0

U +V Z 0

0 0 HL(ªjθ)

 . (C.4)

In the case of biases, the decomposition applies in the same way. The only important thing to

take into account is the update in the submatrices of Y and V

Y (w j ,b j , a j ) = 1

N

N∑
i=1

σ′′([w j ,b j ] · [xi ,1])[xi ,1][xi ,1]T aT
j c ′( f (2)

θ
(xi ), yi ) ∈R(d+1)×(d+1)

V (w j ,b j , a j )k` =
1

N

N∑
i=1

σ′([w j ,b j ] · [xi ,1])[xi ,1]k c ′( f (2)
θ

(xi ), yi )` with k ∈ [d+1],` ∈ [dout].

C.3.1 Multiple Output Neurons

In this section, we study the matrix in Eq. 4.4 to characterize the symmetry-induced critical

points in the case of multiple output neurons. Under a minor assumption, we first show that

all critical points on the line are strict saddles (Lemma C.3.1). Then for the case µ= 0 (and

µ= 1), we give the number of zero eigenvalues in the Hessian of the loss (Lemma C.3.2).
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Lemma C.3.1. For multiple output neurons with dout ≥ 2, if the matrix V is non-vanishing, the

submatrix in Eq. 4.4 has at least one negative eigenvalue.

Proof. We will show that H̃ has a negative eigenvalue as long as at least one entry of V is

non-vanishing, i.e. Vk` 6=0. It suffices to show that a submatrix of the submatrix, say 2×2 in

Eq. 4.4 has one negative eigenvalue since we can that construct an vector such as [a1, a2,0]

which returns a negative direction by picking out 2×2 submatrix. We pick the following 2×2

submatrix [
Ykk −Vk`

−Vk` 0

]
. (C.5)

Note that the determinant of the above matrix is −V 2
k` < 0 since Vk` 6=0. This completes the

proof.

Lemma C.3.1 implies that for multiple number of output neurons, if V 6= 0, then all symmetry-

induced critical points on the line are strict saddles.

For the mixing ratio µ= 0, changing the corresponding incoming vector does not change the

network function. Therefore we obtain a d-dimensional subspace that goes through the SI

critical point ⊕j ,0θ where the loss remains constant. We also have an additional direction of

constant loss in the span of the outgoing vectors which is the one pointing towards the line of

symmetry-induced critical points. However, this does not guarantee d +1 zero eigenvalues in

its Hessian since this subspace may correspond to the directions that are not eigenvectors,

nevertheless the second-order derivatives vanish. This happens for the Hessians that have

positive and negative eigenvalues and where the second-order derivative vanish on the direc-

tions between the eigenvectors. A simple example is L(w1, w2) = w2
1 −w2

2 where the Hessian

is

HL =
[

2 0

0 −2

]
.

The Hessian HL has no zero eigenvalues, however in the direction w1=w2, the loss remains

constant, which lies in between the two eigenvectors [1,0] and [0,1].

Next we investigate the eigenvalues signs of[
0 V

V T 0

]
. (C.6)

to determine the eigenvalue signs of the Hessian of SI critical points at µ ∈ {0,1} in the new

directions. Note that the dimensionality of the null space of V is at least one due to the

constraint in Eq. 4.6.

140



C.3. Second-Order Analysis of the Symmetry-Induced Critical Points

Lemma C.3.2. Let V be a matrix of size d ×dout such that dim(Null(V )) = n ≥1. Then the

number of zero-eigenvalues of the following matrix[
0 V

V T 0

]
(C.7)

of size (d +dout)× (d +dout) is at least |d −dout|. If d > dout, then at least d −dout +n zero-

eigenvalues are guaranteed in particular for n =1, the exact number of zero-eigenvalues is

d −dout +2.

Proof. Non-zero eigenvalues. First, observe that for every non-zero eigenvalue λ with the

eigenvector [a,b] [
0 V

V T 0

][
a

b

]
=

[
V b

V T a

]
=

[
λa

λb

]
,

−λ is an eigenvalue corresponding to the eigenvector [−a,b] due to the following[
V b

−V T a

]
=

[
−λ(−a)

−λb

]
.

In short, the non-zero eigenvalues of the matrix in Eq. C.6 come in pairs (λ,−λ).

Zero eigenvalues. We search for the number of different solutions (up to sign and scaling) of

the following equation [
V b

V T a

]
=

[
0

0

]
.

For V , recall that we have V a j = 0.

Case1: dout ≤ d. In this case V T is dout ×d so it has a null-space of the dimension at least

d −dout. We choose d −dout orthogonal vectors spanning it, say v1, ..., vd−dout . Concatenating

each one of d −dout vectors with 0 gives orthogonal eigenvectors, i.e. [v1,0], ..., [vd−dout ,0] of

the matrix in Eq. C.6 with zero eigenvalues. In addition, we can concatenate the 0 vector with

a j which is in the null space of V , i.e. [0, a j ], which is orthogonal to the others. In general,

if dim(N (V )) = n, by concatenating all with zero vectors, we get [0, v] eigenvectors that are

orthogonal to each other and others of the form [v,0]. Therefore, we constructed d −dout +n

orthogonal eigenvectors with zero eigenvalues.

Finally we know that the number of non-zero eigenvalues should be even. If n is odd, so is

(d+dout)−(d−dout+n) = 2dout−n, therefore there has to be at least one more zero eigenvalue.

In this case, there are at least d −dout +n +1 zero eigenvalues.

On the other hand, the rank of V T V is dout −n. Let v be an eigenvector with a non-zero
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eigenvalueλ2. Therefore, [ 1
λV v, v] is an eigenvector of the matrix in Eq. C.6 with the eigenvalue

λ. Following this construction, overall we get 2(dout −n) non-zero eigenvalues.

If n = 1, there are exactly 2(dout −1) non-zero and d −dout +2 zero eigenvalues.

Case2: d < dout. In this case V is d ×dout, therefore it has a null-space of the dimension at

least dout −d . Concatenating each one of them with 0 vectors, we find at least dout −d zero

eigenvalues.

Note the asymmetry between the two cases: a j is a non-zero vector in the null space of V , but

we do not have such a knowledge for V T thus its null space may be 0-dimensional.

C.3.2 Bounding the Minimal Hessian Eigenvalue

Now using the decomposition, we will provide an upper bound for the minimum eigenvalue

of the Hessian. In this section we denote the Hessian by H to ease notation (i.e. dropping the

loss L) or by H(µ) where it makes sense to emphasize µ.

Negative Minimum Eigenvalue

The Rayleigh quotient for any u 6= 0 tightly upper bounds the minimum eigenvalue Horn and

Johnson, 2012

uT Hu

uT u
≥λmin(H).

Plugging in the decomposition (Eq. C.4), we get

uT AT H̃ Au

uT u
= vT H v

(A−1v)T A−1v
≥λmin(H)
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for any vector v . We can assume that it is a unit vector. Let us choose v = [v0,0,0,0,0] where

v0 is a unit eigenvector of Y with an eigenvalue λ0. Thus we have

vT H̃ v =
[

vT
0 0 0 0 0

]

µ(1−µ)Y 0 0 −V 0

0 X +Y U +V 0 0

0 U +V Z 0 0

−V 0 0 0 0

0 0 0 0 HL(ªjθ)




v0

0

0

0

0



=
[

vT
0 0 0 0 0

]

µ(1−µ)λ0v0

0

0

−V v0

0


=µ(1−µ)λ0 (C.8)

We need to check

A−1v =


(1−µ)Id Id 0 0

−µId Id 0 0 0

0 0 µIdout −Idout 0

0 0 (1−µ)Idout Idout 0

0 0 0 0 0




v0

0

0

0

0

=


(1−µ)v0

−µv0

0

0

0


so the norm of A−1v is

‖A−1v‖2 = (1−µ)2 +µ2.

Therefore by choosing a specific unit eigenvector vk , we obtained the following upper bound

on the minimum eigenvalue

µ(1−µ)

(1−µ)2 +µ2λk ≥λmin(H)

which is valid for every µ and every eigenvalue λk of Y . To make the bound tightest using this

form of v , we need to choose vk as the extreme eigenvectors of Y . We obtain (see Fig. C.3):

• for µ∈(0,1):
µ(1−µ)

(1−µ)2 +µ2λmin(Y ) ≥λmin(H(µ)) for µ ∈ (0,1),

• for µ∈R/[0,1]:
µ(1−µ)

(1−µ)2 +µ2λmax(Y ) ≥λmin(H(µ)) for µ ∈R/[0,1].
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Figure C.3 – The minimal Hessian eigenvalue of the sym. ind. strict saddles as a function of
µ (black) and the upper bound (blue). We analyze the case where both the student and the
teacher have 4 neurons. We observe that the upper bound on the most negative eigenvalue of
the Hessian qualitatively captures the behavior of the most negative eigenvalue. In the cases
(b-c-d), the matrix Y is positive-definite, the upper bound for the line segment µ ∈ (0,1) is
positive. Since we already know that the min. eigenvalue for this line segment is zero, the
upper bound is not plotted.

In particular, in the limits as µ→±∞, we get

−1

2
λmax(Y ) ≥ lim

µ→±∞λmin(H(µ))

which is the statement of Eq. 4.8.

Similarly, using an additive decomposition, we will give a lower bound on the minimum

eigenvalue. Note that the entries of the Hessian are quadratic in µ. We use an additive

decomposition of the Hessian

µ2


X −X 0 0 0

−X X 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

M2

+µ


Y X U U 0

X −2X −Y −U −U 0

U T −U T 0 0 0

U T −U T 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

M1

+


0 0 V 0 0

0 X +Y U U +V 0

V T U T Z Z 0

0 U T +V T Z Z 0

0 0 0 0 HL(ªjθ)


︸ ︷︷ ︸

M0

since X is positive definite. Moreover, λmin(M2) = 0 since we can choose an eigenvector

[v, v,0,0] where v is an eigenvector of X .

Using the following general inequality twice Horn and Johnson, 2012

λmin(A+B) = min
‖u‖=1

uT (A+B)u ≥ min
‖u‖=1

uT Au + min
‖u‖=1

uT Bu =λmin(A)+λmin(B),

we obtain the following bound on the min. eigenvalue for µ≥ 0

λmin(H(µ)) ≥µ2λmin(M2)+µλmin(M1)+λmin(M0) ≥µλmin(M1)+λmin(M0),

and for µ< 0

λmin(H(µ)) ≥µλmax(M1)+λmin(M0).
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In particular, as µ→∞, this shows that λmin(H(µ)) is at most linearly decreasing.

Minimum Positive Eigenvalue & One Output Neuron

If the minimum eigenvalue is not negative, we know that it is zero since all symmetry-induced

critical points have a zero eigenvalue in the Hessian. In this case, we want to bound the

minimum positive eigenvalue to get a measure of sharpness for the symmetry-induced local

minimum. Recalling the decomposition in the case of one output neuron, we have

H = AT


µ(1−µ)Y 0 0 0 0

0 X +Y U +V 0 0

0 U +V Z 0 0

0 0 0 0 0

0 0 0 0 H(ªjθ)

 A. (C.9)

We know the eigenvector of H̃ corresponding to the trivial-zero eigenvalue, let’s denote it by

e = [0,0,0,1,0]. First, note that

H A−1e = AT H̃ A A−1e = 0. (C.10)

Let’s denote the minimum non-negative eigenvalue of H by λ+
min excluding the trivial zero

corresponding to the eigenvector A−1e. We have the following upper bound for all u ⊥ A−1e

uT Hu

uT u
≥λ+

min(H). (C.11)

Plugging in the decomposition we get

uT AT H̃ Au

uT u
= vT H̃ v

(A−1v)T A−1v
≥λ+

min(H) (C.12)

where for any v ⊥ e. We can choose v = [v0,0,0,0,0] which is orthogonal to e where v0 is an

eigenvector of Y as in the previous case (Sec. C.3.2) which gives us the following upper bound

µ(1−µ)

(1−µ)2 +µ2λ0 ≥λ+
min(H).

Therefore the tightest bounds are as follows:

• positive definite Y , for µ∈(0,1):

µ(1−µ)

(1−µ)2 +µ2λmin(Y ) ≥λ+
min(H);
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• negative definite Y , for µ∈R/[0,1]:

−µ(1−µ)

(1−µ)2 +µ2λmin(|Y |) ≥λ+
min(H).

C.4 Scaling Law

It will be convenient to use Newton’s series for finite differences (Milne-Thomson, 2000):

Definition C.4.1. Let p be a polynomial of degree d, we define the k-th forward difference of

the polynomial p(x) at 0 as

∆k [p](0) =
k∑

i=0

(
k

i

)
(−1)k−i p(i ).

Hence, we can write p(x) as

p(x) =
d∑

k=0

(
x

k

)
∆k [p](0). (C.13)

Rearranging the summands in Equation C.13, one observes that Newton’s series for finite

differences is a discrete analog of Taylor’s series

p(x) =
d∑

k=0

∆k [p](0)

k !
[x]k

where (x)k = x(x −1) . . . (x −k +1) is the falling factorial.

We now proceed with proving Proposition 4.5 in the main.

Proposition C.4.1. For n ≤ m, we have

G(n,m) =
n∑
`=1

(
n

`

)
(−1)n−``m , (C.14)

Proof. Let us first write out explicitly the scaling law as a sum of permutations for each

partition s

G(n,m) := ∑
s1+...+sn=m

si≥1

(
m

s1, . . . , sn

)
.

The above can be restated by using the identity

∑
s1+···+sn=m

si≥0

(
m

s1, . . . , sn

)
=

n∑
`=0

(
n

`

) ∑
s1+...+sn=m

si≥0

(
m

s1, . . . , sn

)
1I`(s1, ..., sn) (C.15)
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where I` := {(0, . . . ,0, s`+1, . . . , sn) : si ≥ 1 for `+1 ≤ i ≤ n}. Equation (C.15) is equivalent to

nm =
n∑
`=0

(
n

`

)
G(n −`,m) (C.16)

=
n∑
`=0

(
n

`

)
G(`,m), (C.17)

with the convention that G(0,m) = 0. Newton’s series for finite differences (Equation (C.13)),

applied to the polynomial p(x) = xm at x = n, yields

nm =
n∑
`=0

(
n

`

) ∑̀
i=0

(
`

i

)
(−1)`−i i m . (C.18)

Note that the outer summation goes up to n instead of m since the terms with a factor
(n

k

)
for

k ≥ n +1 are zero. Hence we have

n∑
`=0

(
n

`

)[∑̀
i=0

(
`

i

)
(−1)`−i i m −G(`,m)

]
= 0. (C.19)

Indeed, with m fixed, the solution

G(`,m) = ∑̀
i=0

(
`

i

)
(−1)`−i i m (C.20)

is the unique solution for the Equation (C.19) with initial value given by the condition 1m = 1.

The uniqueness follows from an immediate induction argument: since

G(1,m) = ∑
k1=m

(
m

k1

)
= 1 =

1∑
i=0

(
1

i

)
(−1)1−i i m ,

the initial step of induction is verified. Then, for the induction hypothesis, for k = 1, . . . ,n −1,

the first n −1 term in the summation in Equation (C.19) are null, leaving us with the condition

G(n,m) =
n∑

i=0

(
n

i

)
(−1)n−i i m .

The Proposition above, which holds for n < m shows that G(n,m) are the forward finite

difference at 0 for p(x) = xm , i.e. G(n,m) =∆n[p](0). We now comment on the meaning of the

formula for n ≥ m. For a given polynomial p(x) define the rescaled Newton’s finite differences

∆r
h[p](0) as Newton’s finite differences (at 0) for the polynomial p(hx); hence, we can write

the n-th derivative of the polynomial p as the h → 0 limit of the h-the n-th Newton’s finite
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difference:

p(n)(0) = lim
h→0+

∆n
h [p](0)

hn = lim
h→0+

1

hn

n∑
i=0

(
n

i

)
(−1)n−i (hi )m = lim

h→0+
1

hn−m G(n,m).

Hence for n = m we obtain G(m,m) = m!, whereas for n > m we find G(n,m) = 0.

Lemma C.4.2. For any k ≥ 0 fixed, we have,

G(m −k,m) ∼ mk

2k k !
m!, as m →∞.

For any fixed n ≥ 0, we have G(n,m) ∼ nm as m →∞.

Proof. We begin to show that

lim
n→∞

1

(n +k)!nk
G(n,n +k) = 1

2k k !
. (C.21)

In particular, we observe that for k = 1 we have that

G(n,n +1) = ∑
s1+...+sn=n+1

si≥1

(
n +1

s1, . . . , sn

)
=

(
n

1

)(
n +1

2,1, . . . ,1

)
= n

(n +1)!

2!
.

We find that the asymptotic in Equation (C.21) is in fact an exact equality for any n > 0.

For a generic k ≥ 0, we divide the summation in G according to the number of 1’s in (s1, . . . , sn)

G(n,n +k) = ∑
s1+···+sn=n+k

si≥1

(
n +k

s1, . . . , sn

)

=
(

n

k

)(
n +k

2, . . . ,2︸ ︷︷ ︸
k

,1, . . . ,1︸ ︷︷ ︸
n−k

)
+

k−1∑
`=1

(
n

`

) ∑
s1+···+s`=`+k

si≥2

(
n +k

s1, . . . , s`,1, . . . ,1︸ ︷︷ ︸
n−`

)
. (C.22)

For a given tuple (s1, . . . , sn), let c = (c2, . . . ,c`), with
∑`

i=2 ci = ` and ci is the number of occur-

rences of i among (s1, . . . , sn), hence we have(
n +k

s1, . . . , s`,1, . . . ,1

)
= (n +k)!

2!c2 · · ·`!c`
.

Since for a given c = (c2, . . . ,c`) there are
( `

c2,...,c`

)
`-tuples (s1, . . . , s`) with such occurrences, we

rewrite Equation (C.22) as

G(n,n +k) =
(

n

k

)
(n +k)!

2k
+

k−1∑
`=1

(
n

`

) ∑
2c2+···+`c`=`+k

c2+···+c`=`

(
`

c2, . . . ,c`

)
(n +k)!

2!c2 · · ·`!c`
.
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Dividing both sides by (n +k)!nk , we find

G(n,n +k)

(n +k)!nk
= 1

2k k !

n(n −1) . . . (n −k +1)

nk
+

k−1∑
n=1

∑
2c2+···+`c`=`+k

c2+···+c`=`

n(n −1) . . . (n −`+1)

nk
Cc , (C.23)

where Cc := 1/(c2! · · ·c`! · 2!c2 · · ·`!c`). For ` ≤ k, we have the following immediate double

inequality:

n`−k
(

n −`+1

n

)`
≤ n(n −1) . . . (n −`+1)

nk
≤ n`−k .

Together with Equation (C.23), the above double inequality leads to

1

2k k !

(
n −k +1

n

)k

+
k−1∑
`=1

∑
2c2+···+`c`=`+k

c2+···+c`=`

n`−k
(

n −`+1

n

)`
Cc

≤ 1

(n +k)!nk
G(n,n +k) ≤ 1

2k k !
+

k−1∑
`=1

∑
2c2+···+`c`=`+k

c2+...+c`=`

n`−kCc .

In the limit n →∞, both the lower and the upper bound converge to 1
2k k !

, hence giving

G(n,n +k) ∼ nk (n +k)!

2k k !
∼ (n +k)k (n +k)!

2k k !
;

finally, by choosing n = m −k, we recover the first asymptotics in the statement.

For the second asymptotics, with an induction argument, we show that G(n,m) ∼ nm for fixed

n and m À n. For n = 1, we have G(1,m) = 1. For n = 2, we have G(2,n) = 2n −2 ∼ 2n . We

assume that for all ` = 1, . . . ,n −1, we have G(`,m) ∼ `m . Normalizing Equation (C.16) by

1/nm , as m →∞ we have

1 = 1

nm G(n,m)+ 1

nm

n−1∑
`=1

(
n

`

)
G(`,m) ∼ 1

nm G(n,m)+
n−1∑
`=1

n`

`!

(
`

n

)m

∼ 1

nm G(n,m),

which completes the induction step, thus the Lemma.
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D Overparameterized Networks

D.1 Exact Characterization of the Zero-Loss Solutions

The following assumption ensures that the activation function σ has no specificity that yields

other invariances than the symmetries between units, e.g. σ cannot be even or odd.

Assumption A. Letσ be a smooth activation function. We suppose thatσ(0) 6= 0, thatσ(n)(0) 6= 0

for infinitely many even and odd values of n ≥ 0, where σ(n) denotes the n-th derivative.

The next lemma contains the main argument to prove that when considering an overparametrized

2-layers neural network, no new global minima are created besides those coming from invari-

ances.

Lemma D.1.1. Suppose that the activation function σ satisfies the Assumption A. If for some

pairwise distinct nonzeroβ1, . . . ,βk ∈R and some constant c ∈Rwe have g (α) :=∑k
`=1 a`σ(αβ`) =

c for all α ∈R, then a` = 0 for all ` ∈ [k].

Proof. We reorder the indices such that for all ` ∈ [k −1], either |β`| > |β`+1|, or β` =−β`+1

such that |a`| ≥ |a`+1| (if the equality holds the labelling between the two is not important).

We distinguish the four following cases:

1. |β1| > |β2|,

2. β1 =−β2 and |a1| > |a2|,

3. β1 =−β2 and a1 = a2,

4. β1 =−β2 and a1 =−a2.

Note that there cannot be more that two indices ` with same |β`| and that 1. 2. 3. and 4. above

are disjoint and cover all the possible cases.
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Suppose that 1. holds. Note that

g (n)(0) =
k∑
`=1

a`β
n
`σ

(n)(0) = 0,

for all n ≥ 1, by assumption. On the other hand, the triangle inequality yields that

|g (n)(0)| ≥
(
|a1β

n
1 |−

∣∣∣∣∣∑6̀=1
a`β

n
`

∣∣∣∣∣
)
|σ(n)(0)| ≥

(
|a1β

n
1 |− |βn

2 |
∑
6̀=1

|a`|
)
|σ(n)(0)|.

One can always choose n0 ≥ 1 large enough such that σ(n0)(0) 6= 0 and

|β1| > |a1|−1/n0 |β2|
( ∑

6̀=`1

|a`|
)1/n0

,

so that |g (n)(0)| > 0, which is a contradiction with the fact that g ≡ c . Hence a1 = 0. This shows

the claim in the particular situation where all |β`|’s are distinct.

One can deal with case 2. using that |a1| > |a2|, writing

|g (n)(0)| ≥
(

(|a1|− |a2|)|βn
1 |− |β3|

∑
6̀=1,2

|a`|
)
|σ(n)(0)|.

The reasoning is then identical to 1.

In the case 3., since σ has infinitely many non-zero even derivatives at 0, we use that a1β
2n
1 +

a2β
2n
2 = 2a1β

2n
1 to write

|g (2n)(0)| ≥
(

(2|a1|)|β2n
1 |− ∑

6̀=1,2
|a`β2n

` |
)
|σ(2n)(0)|,

then choose n large enough to argue as above that a1 = a2 = 0. We can thus eliminates these

terms from the definition of g and go on with the argument.

In the case 4., if σ has infinitely many non-zero odd derivatives at 0, we apply the same

reasoning as in 3. to show that a1 = a2 = 0.

Since σ has infinitely many even and infinitely many odd non-zero derivatives at 0, we can

iterate the argument and the proof is over since the four cases above cover all possible cases.

When σ does not satisfy Assumption A, the proof above allows us to derive the following

results:

Lemma D.1.2. If σ is analytic such that σ(n)(0) 6= 0 for infinitely many even n ≥ 0 but only
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finitely many odd n ≥ 1, then the function g in Lemma D.1.1 can be written as

g (α) =
k̃∑
`=1

ã`σ̃(αβ̃`),

where σ̃ is an odd polynomial, the ã`’s are nonzero and the |β`|’s are pairwise distinct.

Similarly, if σ(n)(0) 6= 0 for infinitely many odd n ≥ 1 but only finitely many even n ≥ 0, then the

function g in Lemma D.1.1 can be written as

g (α) =
k̃∑
`=1

ã`σ̃(αβ̃`),

where σ̃ is an even polynomial, the ã`’s are nonzero and the |β`|’s are pairwise distinct.

Proof. Suppose that σ(2n+1)(0) 6= 0 for only finitely many n ≥ 0. In the proof of Lemma D.1.1,

the only problematic situation is 4., that is β1 =−β2 and a1 =−a2. In particular, they cancel

out in the even derivatives of g , that is

g (2n)(0) =σ(2n)(0)
∑
6̀=1,2

a`β
2n
` .

If β3, a3,β4, a4 do not fall into case 4. from the proof of Lemma D.1.1, then one can show with

the same argument therein that a3 = a4 = 0. Therefore, the problem reduces to the situation

where k is even, β2`−1 =−β2` and a2`+1 =−a2`+2 for all ` ∈ [k/2]. We can then rewrite g as

g (α) =
k̃∑
`=1

ã`σ̃(αβ̃`),

where k̃ ≤ k/2, ã` := a2`−1, β̃` := β2`−1 and σ̃(x) := σ(x)−σ(−x). The function σ̃ is analytic

and locally polynomial around 0, therefore is a polynomial on R and the |β̃`|’s are pairwise

distinct.

When the even derivatives eventually vanish at 0 instead, then the problematic situation is the

3. from Lemma D.1.1 and the function becomes

g (α) =
k/2∑
`=1

ã`σ̃(αβ̃`),

where ã` := a2`−1, β̃` :=β2`−1 and σ̃(x) :=σ(x)+σ(−x) with σ̃ polynomial as above.

The case of the sigmoid activation σ(x) = 1/(1+ e−x ). In this case, σ(x) = 1/2+ tanh(x) and

tanh is an odd function, i.e. σ(2n)(0) = 0 for all n ≥ 1. Hence, σ̃(x) = σ(x)+σ(−x) = 1 for all

x ∈R and one can construct the null function with already four β’s satisfying the constraints:

a1σ(β1x)+a1σ(−β1x)+a3σ(β3x)+a3σ(−β3x) = 0 as soon as a1 =−a3, such that |β1| 6= |β3|.
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Appendix D. Overparameterized Networks

(One could then also achieve this for any even p ≥ 4 such functions by tuning the a`’s.)

The case of the softplus activation σ(x) = ln(1+ex ). The Softplus function is the primitive of

the sigmoid such that σ(x) = ∫ x
−∞

1
1+e−u du. Therefore, σ(2n+1)(0) = 0 when n ≥ 1. In particular,

σ̃(x) = σ(x)−σ(−x) = x for all x ∈ R. One can thus obtain the null function with four (or a

strictly greater even number)β’s satisfying the constraints: a1σ(β1x)−a1σ(−β1x)+a3σ(β3x)−
a3σ(−β3x) = 0, as soon as a1β1 +a3β3 = 0, where |β1| 6= |β3| are pairwise distinct.

The case of the tanh activation function σ(x) = (ex −e−x )/(ex +e−x ). Sinceσ is an odd function,

σ̃(x) =σ(x)+σ(−x) = 0 for all x ∈R and therefore one can achieve the null function with two

(or a strictly greater even number) β’s satisfying the constraints: a1σ(β1x)−a1σ(−β1x).

We stress that for the three functions above, there is no other way to obtain the null function

(i.e. the coefficients β`’s and a`’s have to be all in case 3. or case 4. depicted in the proof of

Lemma D.1.1, according to the derivatives of σ).

Recall that we consider the loss Lm
µ where µ is an input data distribution with support Rd0 .

Theorem D.1.3 (Theorem 4.2 in the main). Suppose that the activation function σ satisfies

the Assumption A. For m > k, let θ be an m-neuron point, and θ∗ be a unique k-neuron global

minimum up to permutation, i.e. Lk (θ∗) = 0. If Lm(θ) = 0, then θ ∈Θr ∗→m(θ∗).

Proof. For x ∈Rd0 , let h(x) :=∑m
j=1 a jσ(w j ·x)−∑m∗

j=1 a∗
j σ(w∗

j ·x) and note that this function is

zero on R. Since θ∗ is irreducible, we know that the w∗
j ’s are pairwise distinct, and the a∗

j ’s are

nonzero. We can always group terms such that, wlog, the w j ’s are nonzero, pairwise distinct

and the a j ’s are nonzero, and we remain in the expansion manifold, as we now argue: we have

that

h(x) =
m+m∗∑

j=1
a jσ(w j · x),

where we set a j =−a∗
j−m and w j = w∗

j−m for j ∈ {m+1, . . . ,m+m∗}. If some of the w j ’s appear

several times, we group them together and if some are zero vectors, we summarize them in a

constant c ∈R and arrive at

h(x) =
M∑

j=1
A jσ(W j · x) = c,

with M ≤ m +m∗, such that Wi 6=W j for all i 6= j ∈ [M ] with W j 6= (0, . . . ,0)T. Proving the claim,

i.e. that θ ∈Θr ∗→m(θ∗), is now equivalent to showing that A j = 0 for all j ∈ M .

If d0 = 1, we simply apply Lemma D.1.1 which shows that A j = 0 for all j ∈ [M ].
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D.1. Exact Characterization of the Zero-Loss Solutions

Suppose now that d0 > 1. Let ε> 0 and let tε = (1,ε,ε2, . . . ,εM )T. We define

hε(α) :=
M∑

j=1
A jσ(αW j · tε), α ∈R.

We claim that Lemma D.1.1 applies to hε, that is, the elements in {W j · tε; j ∈ [M ]} are pairwise

distinct for all ε > 0 small enough. Indeed, by contradiction, suppose that there exists a

positive decreasing sequence (εn)n≥1 such that limn→∞ εn = 0 and W1 · tεn = W2 · tεn . Then

(W1)1 +O (εn) = (W2)1 +O (εn) where (W j )k denotes the k-th component of W j . Choosing n

large enough enforces (W1)1 = (W2)1. It suffices then to explicit the terms of order εn in the

identity and to reason identically since the rest is O (ε2
n). This implies that W1 =W2, which is a

contradiction with the assumption that the vectors W j are pairwise distinct.

Hence, by Lemma D.1.1 applied on hε, we have that A j = 0 for all j ∈ [M ], which concludes

the proof.

Remark. The theorem above does not apply to the sigmoid, the softplus and the tanh activation

functions, since none of these satisfy Assumption A. Nonetheless, we discussed above the theorem

how to reconstruct a neural network function with these activations, with parameters that

have to satisfy some explicit constraints depending on the activation (in particular, every w ′ in

the bigger network has to be either equal to w or −w of the smaller network). By considering

the extended expansion manifolds of these activation functions, comprised of the classical

expansion manifold and these new points, Theorem D.1.3 holds true, that is, the extended

expansion manifold is exactly the set of global minima.

D.1.1 Piecewise Linear Connectivity

Theorem D.1.4. For m > k,Θn→m(θ0) is connected: any pair of distinct points θ,θ′ ∈Θn→m(θ0)

is connected via a union of line segments γ : [0,1] →Θn→m(θ0) such that γ(0) = θ and γ(1) = θ′.

Proof. We first prove the case m = k + 1. Let θ0 = (w1, a1)⊕ ...⊕ (wk , ak ) and consider the

following set of points

Θ̃k→k+1(θ0) := {Pπθ
k+1 : θk+1 = θ0 ⊕ (w ′,0); π ∈ Sr , w0 ∈Rd0 }

which is a subset of the expansion manifoldΘk→k+1(θ0). We will show that by construction that

a point θ ∈ Θ̃k→k+1(θ0) such that θ = θ0 ⊕ (w ′,0) is connected to any other point Θ̃k→k+1(θ0) =
Pπθ0 ∈ Θ̃k→k+1(θ0) via a path inΘk→k+1(θ0). To do so we first show that a neighbor where the

neuron ϑ0 = (w ′,0) is swapped with ϑi = (wi , ai )

θ1 = (w1, a1)⊕ ...⊕ (wi−1, ai−1)⊕ (w ′,0)⊕ ...⊕ (wi , ai )
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Appendix D. Overparameterized Networks

can be reached in three steps using the following line segmentsγ(1)
1 ,γ(1)

2 ,γ(1)
3 : [0,1] →Θk→k+1(θ0)

γ(1)
1 (α) = (w1, a1)⊕ ...⊕ (wk , ak )⊕ (α(wi −w0),0)

γ(1)
2 (α) = (wi , ai )⊕ (w1, a1)⊕ ...⊕ (wi−1, ai−1)⊕ (wi ,αai )⊕ ...⊕ (wk , ak )

γ(1)
3 (α) = (wi , ai )⊕ (w1, a1)⊕ ...⊕ (wi−1, ai−1)⊕ (α(w0 −wi )+wi ,0)⊕ (wi+1, ai+1)⊕ ...⊕ . . . (wk , ak )

where we have γ(1)
1 (0) = θ0, γ(1)

1 (1) = γ(1)
2 (0), γ(1)

2 (1) = γ(1)
3 (0), and γ(1)

3 (1) = θ1. In particular, we

constructed a path γ(1) by glueing three line segments at their end points

γ(1)(t ) = γ(1)
1 (3t )1t∈[0,1/3) +γ(1)

2 (3(t −1/3))1t∈[1/3,2/3) +γ(1)
3 (3(t −2/3))1t∈[2/3,1]

where γ(1)(0) = θ0 and γ(1)(1) = θ1. Note that going from θ0 → θ1, we swapped the neurons

ϑ0 and ϑi . Moreover, it is well known that any permutation can be written as a composition

of transpositions (permutations leaving all elements unchanged but two) and that (i j ) =
(0 j )◦ (0 i )◦ (0 j ). In particular, we can reach θ̃ only by swapping ϑ0 with other neurons, which

corresponds to some other paths γ(2), . . . ,γ(r ) made of three line segments. Glueing these

paths, we observe that Θ̃k→k+1(θ0) is connected via paths inΘk→k+1(θ0). To finish the case for

m = k +1, it is enough to show that any point θ ∈Θk→k+1(θ0) \ Θ̃k→k+1(θ0)

θ = Pπ(wi ,αai )⊕ (αai , (1−α)ai )⊕ (w1,αa1)⊕ ...⊕ (wk ,αak )

is connected (via a line segment) to a point in Θ̃k→k+1(θ0) which is simply

Θ̃k→k+1(θ0) = Pπ(w ′,0)⊕ (wi , ai )⊕ (w1, a1)⊕ ...⊕ (wk , ak ).

Next we will prove for the general case m ≥ k +1 by induction. We assume thatΘr→m(θ0) is

connected and we will show thatΘr→m+1(θ0) is also connected. First we show the connectivity

of the points in the following set

Θ̃r→m+1(θ0) := {Pπθ
m+1 : θm+1 = (w1, . . . , w1︸ ︷︷ ︸

k1

, . . . , wr , . . . , wr︸ ︷︷ ︸
kr

, w ′
1, . . . , w ′

j︸ ︷︷ ︸
j+1

, a1
1, . . . ak1

1︸ ︷︷ ︸
k1

, . . . , a1
r , . . . akr

r︸ ︷︷ ︸
kr

,0, . . . ,0︸ ︷︷ ︸
j+1

)

where ki ≥ 1, j ≥ 0,k1 + . . .+kr + j = m,
k j∑

i=1
ai

j = a j ,and π ∈ Sm+1}

which is a subset ofΘr→m+1(θ0). From the induction hypothesis, we have the connectivity of

the manifoldΘr→m(θ0).

An element θ̃0 ∈ Θ̃r→m+1(θ0) can be written as

θ̃0 = Pπ̃(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr , . . . , wr︸ ︷︷ ︸
kr

, w ′
1, . . . , w ′

j︸ ︷︷ ︸
j

, w0︸︷︷︸
1

, a1
1, . . . ak1

1︸ ︷︷ ︸
k1

, . . . , a1
r , . . . akr

r︸ ︷︷ ︸
kr

,0, . . . ,0︸ ︷︷ ︸
j+1

),

for some j ≥ 0 and π̃ ∈ Sm+1. For a fixed w0 at a fixed position, there is a bijection Θ̃r→m+1(θ0) →
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Θr→m(θ0) that sends θ̃ to

θ = Pπ(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr , . . . , wr︸ ︷︷ ︸
kr

, w ′
1, . . . , w ′

j︸ ︷︷ ︸
j

, a1
1, . . . ak1

1︸ ︷︷ ︸
k1

, . . . , a1
r , . . . akr

r︸ ︷︷ ︸
kr

,0, . . . ,0︸ ︷︷ ︸
j

)

for some π ∈ Sm , i.e. θ̃ where w0 and its associated 0 outgoing weight vector have been

dropped. In particular, any two points of Θ̃k→m+1(θ0) with the same w0 component at the

same position are connected as a consequence of this correspondence and the connectivity

of Θk→m(θ0). Moreover, we note that θ̃0 ∈ Θ̃k→m+1(θ0) is connected via a line segment in

Θ̃k→m+1(θ0) to every other point in Θ̃k→m+1(θ0) whose components are the same as θ̃0 except

for w0. This straightforwardly generalizes for different positions of w0 and this establishes the

connectivity of Θ̃k→m+1(θ0).

Finally, we pick a point θ ∈Θk→m+1(θ0) that is

θ = Pπ(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr , . . . , wr︸ ︷︷ ︸
kr

, w ′
1, . . . , w ′

1︸ ︷︷ ︸
b1

, . . . , w ′
j , . . . , w ′

j︸ ︷︷ ︸
b j

, a1
1, . . . ak1

1︸ ︷︷ ︸
k1

, . . . , a1
r , . . . akr

r︸ ︷︷ ︸
kr

,α1
1, . . . ,αb1

1︸ ︷︷ ︸
b1

, . . . ,α1
j , . . . ,α

b j

j︸ ︷︷ ︸
b j

).

for some π ∈ Sm+1. Note that θ is connected to

θ̃ = Pπ(w1, . . . , w1︸ ︷︷ ︸
k1

, . . . , wr , . . . , wr︸ ︷︷ ︸
kr

, w ′
1, . . . , w ′

1︸ ︷︷ ︸
b1

, . . . , w ′
j , . . . , w ′

j︸ ︷︷ ︸
b j

, a1
1, . . . ak1

1︸ ︷︷ ︸
k1

, . . . , a1
r , . . . akr

r︸ ︷︷ ︸
kr

,0, . . . ,0︸ ︷︷ ︸
b1

, . . . ,0, . . . ,0︸ ︷︷ ︸
b j

),

which is in Θ̃k→m+1(θ0). We have shown that all points inΘk→m+1(θ0) are connected, which

completes the induction step thus the proof.

D.2 Scaling Law of the Zero-Loss Manifolds

In order to prove Proposition D.2.2, we introduce the following Lemma D.2.1, which is in fact a

counting of the same number in two ways.

Lemma D.2.1. For j ≤ n, we have

1

j !
G( j ,n) = ∑

c1+2c2+···+ncn=n
c1+c2+···+cn= j

ci≥0

n!

1!c1 2!c2 · · ·n!cn

1

c1! · · ·cn !
.

Proof. By definition, we have

G( j ,n) = ∑
b1+...+b j=n

bi≥1

(
n

b1, . . . ,b j

)
.
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Starting from a tuple (b1, . . . ,b j ), consider the tuple (c1, . . . ,cn) where ci is the number of

occurence of i in (b1, . . . ,b j ). Therefore we have(
n

b1, . . . ,b j

)
=

(
n

1, . . . ,1︸ ︷︷ ︸
c1

,2, . . . ,2︸ ︷︷ ︸
c2

, . . . , n︸︷︷︸
cn

)
= n!

1!c1 · · ·n!cn
. (D.1)

Moreover, any c-tuple (c1, . . . ,cn) appears in(
j

c1, . . . ,cn

)
= j !

c1! · · ·cn !
(D.2)

b-tuples that are exactly (b1, . . . ,b j ). From Equation (D.1) and Equation (D.2) and summing

over all tuples (c1, . . . ,cn) we conclude.

Proposition D.2.2. For k ≤ m, we have

T (k,m) =G(k,m)+
m−k∑
`=1

(
m

`

)
G(k,m −`)g (`) (D.3)

where g (`) =∑`
n=1

1
n!G(n,`). Moreover, we have that the scaling law T has the same growth as

the scaling law G in the following limit for fixed k

T (m −k,m) ∼G(m −k,m) as m →∞.

Proof. Let u = b1 +·· ·+b j and let ci be, as in Lemma D.2.1, the number of occurrences of i

among (b1, . . . ,b j ). Recall that for T we have the identity

T (r,m) :=
m−r∑
j=0

∑
(s)=m

ki≥1,bi≥1

(
m

k1, . . . ,kr ,b1, . . . ,b j

)
1

cb
.

We rewrite the outer summation in T from the number of bi ’s to the summation of bi ’s and we

obtain

T (r,m) =
m−r∑
u=0

u∑
j=0

(
m

u

) ∑
k1+···+kr =m−u

b1+···+b j=u
ki≥1,bi≥1

(
m −u

k1, . . . ,kr

)(
u

b1, . . . ,b j

)
1

c1!c2! · · ·cm−r !

where we split the inner summation and the multinomial coefficient into two parts: one that

comes from the incoming weight vectors and the others come from the zero-type neurons

(w ′
1, . . . , w ′

j ). Using the formula for G on (k1, . . . ,kr ), we simplify as follows

T (r,m) =
m−r∑
u=0

(
m

u

)
G(r,m −u)

u∑
j=0

∑
b1+···+b j=u

bi≥1

(
u

b1, . . . ,b j

)
1

c1!c2! · · ·cm−r !
.
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Finally using Lemma D.2.1, we find

T (r,m) =
m−r∑
u=0

(
m

u

)
G(r,m −u)

u∑
j=0

1

j !
G( j ,u)

where G(0,0) = 1. Splitting the case u = 0, we derive the closed form formula

T (r,m) =G(r,m)+
m−r∑
u=1

(
m

u

)
G(r,m −u)

u∑
j=1

1

j !
G( j ,u).

In order to prove the asymptotic for T (m −k,m) we divide both sides in Equation D.3 (with

r = m −k) by G(m −k,m):

T (m −k,m)

G(m −k,m)
= 1+

k∑
u=1

(
m

u

)
G(m −k,m −u)

G(m −k,m)
g (u).

The limit of T (m−k,m) as m →∞, is then obtained from the asymptotic of G(m−k,m) above:

1+
k∑

u=1

(
m

u

)
G(m −k,m −u)

G(m −k,m)
g (u) ∼ 1+

k∑
u=1

mu

u!
cu

mk−u(m −u)!

mk m!
g (u) ∼ 1+

k∑
u=1

g (u)

u!

cu

mu ∼ 1

hence, for large m, T (m −k,m) and G(m −k,m) grows at the same rate.

D.3 Teacher Construction

All tasks with artificial data have d0-dimensional uniformly distributed input data in the range

xi ∈ [− 1p
3

, 1p
3

]. A specific task is defined by the parameters of a teacher network. Each hidden

neuron i of the teacher is randomly sampled from a set of input weights wi ∈ {−1,0,1}d0 , output

weigths ai ∈ {−1,1} and biases bi ∈ {−2
3

p
3,−1

3

p
3,0, 1

3

p
3, 2

3

p
3}. We repeat the sampling if two

hidden neurons are identical up to the signs of output weights to avoid that two hidden

neurons cancel each other. The input weight vectors w are then normalised to unity, then,

both w and b are multiplied by a factor of 3. The above procedure yields hyperplanes in

direction w located at a distance |b|/||w || from the origin, and a steeply rising (or falling)

activation on the positive side of the hyperplane. Finally, analogous to batch normalization,

the output weights and bias are scaled such that the output has zero-mean and unit variance

when averaged over the input distribution: a ← a/std(y) and b2 =−〈y〉/std(y), where y is the

output vector of the network. We study teachers with input dimensionality d0 ∈ {2,4,8,16,32}

and hidden layer size k ∈ {2,4,8}. The above construction of hidden neuron parameter vectors

can be generalized to multi-layer teachers by stacking the procedure.
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D.4 Deep Neural Networks

In the case of multi-layers, the equivalence of two incoming weight vectors in the intermediate

layers should be understood in the general sense, i.e. all incoming weight vectors of layer ` are

the outgoing weight vectors of layer `−1 that can be written as

{((a1
1)d , . . . , (ak1

1 )d )︸ ︷︷ ︸
k1

, . . . , (a1
r )d , . . . , (akr

r )d︸ ︷︷ ︸
kr

, (α1
1)d , . . . , (αb1

1 )d︸ ︷︷ ︸
b1

, . . . , (α1
1)d , . . . , (α

b j
r )d︸ ︷︷ ︸

b j

) :

kt∑
i=1

(ai
t )d = (at )d and

bt∑
i=1

(αi
t )d = 0}

where d ∈ [k`]. All weight vectors in this set are equivalent in the sense that they produce the

same neuron in layer `.

For the general shape of the multi-layer expansion manifold, let us consider first a three-layer

network. If we add one neuron to the first hidden layer, we have thatΘ(1)
k→m(θ) is connected.

If we do not add a new neuron in the second hidden layer, the permutations of the neurons

in the second hidden layer would bring k2! disconnected components where each one of

the disconnected components have T (k1,k1 +1) affine subspaces that are connected to each

other. Note that in this case the overall manifoldΘk→m(θ) is disconnected. However, adding

one neuron to the second hidden layer, every k2! disconnected components get connected

through the parameters of the neurons in the second hidden layer, which yields a connected

multi-layer expansion manifoldΘk→m(θ).

In general, adding h1 neurons to the first hidden layer results in T (k1,k1+h1) connected affine

subspaces instead of the usual k1! discrete (i.e. disconnected) points. Adding h2 neurons

to the second hidden layer brings T (k2,k2 +h2) affine subspaces instead of the usual k2!

points, for each one of the T (k1,k1 +h1) affine subspaces. Note that this is multiplicative

because every combination of the parameters in the first hidden layer can be paired with every

combination of the parameters in the second hidden layer which results in a distinct affine

subspace. Similarly, via induction, if h` ≥ 1 for all ` ∈ [L −1], adding (h1, . . . ,hL−1) neurons

to each one of the hidden layers make a connected manifold of
∏L−1
`=1 T (k`,k`+h`) affine

subspaces.
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E Neural Networks with Few Neurons

E.1 General Properties of the Interactions

In Appendix E.1 and E.2, the input distribution is standard Gaussian and we will write E[·] =
EN (0,I )[·]. In this Section, we introduce some general properties of the interactions. We use

these only for the one-neuron network in this paper (see Section E.2). However, we expect

these properties to play a role in studying the networks with two or more neurons.

We first present the partial derivative of a general interaction function, i.e. two activation

functions may be different, for example, if the student activation function does not match the

teacher, with respect to the correlation in a simple expression in Lemma E.1.1. In the second

part, we present a property of the activation function sufficient for Assumption 6.5.1 (ii), and

show that the differentiable activation functions mentioned in this paper satisfy this property

in Lemma E.1.2.

Lemma E.1.1. Assume that functions σ1 and σ2 are differentiable. The partial derivative of the

following Gaussian integral term E[σ1(r1x)σ2(r2 y)] with respect to the correlation E[x y] = u is

d

du
E[σ1(r1x)σ2(r2 y)] = r1r2E[σ′

1(r1x)σ′
2(r2 y)]. (E.1)

Proof. We compute the derivative of E[σ1(r1x)σ2(r2 y)] by making the correlation u explicit.

Denote u′ =
p

1−u2 and y = ux +u′z. After the computation, we use Stein’s lemma to reach

the desired formula.

∂uE[σ1(r1x)σ2(r2 y)] = r2E[σ1(r1x)σ′
2(r2 y)x]− r2u

u′ E[σ1(r1x)σ′
2(r2 y)z] (E.2)

where x and z are independent standard Gaussians. Here is a reminder for Stein’s Lemma for

a standard Gaussian z

E[v(z)z] = E[v ′(z)]. (E.3)
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To remove x in the first term, we apply Stein’s formula for v(x) = σ1(r1x)σ′
2(r2(ux +u′z))

yielding

r1r2E[σ′
1(r1x)σ′

2(r2 y)]+ r 2
2 uE[σ1(r1x)σ′′

2(r2 y)]. (E.4)

To remove z in the second term, we apply Stein’s formula for v(z) =σ′
2(r2(ux +u′z)) yielding

−r 2
2 uE[σ1(r1x)σ′′

2(r2 y)]. (E.5)

Summing up the two terms completes the proof.

For softplus that is increasing and convex, using Lemma E.1.1 for σ1=σ2=σ twice, we infer

that the interaction g is also increasing and convex in u. Hence, for u < 0, Assumption 6.5.1 (ii)

holds for softplus. However, for the other activation functions, using convexity does not help

to show that the assumption holds. We will propose a new property of the activation function

that implies that the interaction satisfies Assumption 6.5.1 (ii) and prove that softplus with

β≤ 2, sigmoid, tanh, and erf satisfy this property.

Lemma E.1.2. If the activation function σ is thrice-differentiable and it satisfies

σ′(x)−xσ′′(x)+σ′′′(x) > 0, (E.6)

then its interaction satisfies Assumption 6.5.1 (ii) for all u ∈ (−1,1). Softplus with β ∈ (0,2],

sigmoid, tanh, and erf activation functions satisfy the above inequality.

Proof. Let us first write out Assumption 6.5.1 (ii) explicitly using Lemma E.1.1

r1uE[σ̄′(r1x)σ̄′(y)] < E[σ̄(r1x)σ̄(y)]. (E.7)

where σ̄(x) =σ′(x). Using Stein’s Lemma for v(x) = σ̄(r1x)σ̄′(y), we get

E[σ̄(r1x)σ̄′(y)x] = E[σ̄′(r1x)σ̄′(y)]r1 +E[σ̄(r1x)σ̄′′(y)]u. (E.8)

The desired inequality is equivalent to

E[σ̄(r1x)(σ̄(y)− σ̄′(y)xu + σ̄′′(y)u2)] > 0. (E.9)

Let us introduce f (x) = σ̄(x)− xσ̄′(x)+ σ̄′′(x). For y = ux +u′z where u′ =
p

1−u2, we have

the conditional average of y fixing x (we drop conditioning on the right-hand terms for
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convenience)

E[ f (y)|x] = E[σ̄(y)]−E[yσ̄′(y)]+E[σ̄′′(y)]

= E[σ̄(y)]−uxE[σ̄′(y)]−E[u′zσ̄′(y)]+E[σ̄′′(y)]

= E[σ̄(y)]−uxE[σ̄′(y)]− (u′)2E[σ̄′′(y)]+E[σ̄′′(y)]

= E[σ̄(y)]−uxE[σ̄′(y)]−u2E[σ̄′′(y)], (E.10)

where the last equality comes from Stein’s Lemma for v(z) = σ̄′(ux +u′z). Hence the desired

inequality is equivalent to

E[σ̄(r1x) f (y)] > 0. (E.11)

By straightforward calculus, we will show that f (x) > 0 first for the sigmoid and tanh activation

functions, for which we have

σ̄(x) = ex

(ex +1)2 , σ̄′(x) = ex (1−ex )

(ex +1)3 , σ̄′′(x) = ex (e2x −4ex +1)

(ex +1)4 . (E.12)

Hence, we can explicitly write f as

f (x) = ex

(ex +1)2 −x
ex (1−ex )

(ex +1)3 + ex (e2x −4ex +1)

(ex +1)4 (E.13)

= ex

(ex +1)4 ((ex +1)2 −x(1−ex )(ex +1)+ (e2x −4ex +1)). (E.14)

Therefore showing f (x) > 0 is equivalent to showing that the factor on the right, that is,

2ex (1−ex )+2−x(1−e2x ) (E.15)

is positive. For x < 0, we have ex < 1 which implies −x(1−e2x ) > 0 and (1−ex )ex ≤ 1/4 due to

the inequality of arithmetic and geometric means hence the first term is upper bounded by

−1/2 and since we have +2, the whole term is positive. For x ≥ 0, we have ex ≥ 1, hence we

can rewrite the inequality as a sum of non-negative terms

2ex (ex −1)+2+x(e2x −1) > 0. (E.16)

Let us now handle the case of erf. Its first three derivatives are given by

σ̄(x) = 2p
π

e−x2/2, σ̄′(x) =− 2p
π

xe−x2/2, σ̄′′(x) = 2p
π

(x2e−x2/2 −e−x2/2) (E.17)

Hence, we can explicitly write f as

f (x) = 2p
π

e−x2/2(1+xx +x2 −1) = 4p
π

e−x2/2x2 (E.18)
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that is non-negative for all x and zero iff x = 0. Hence, the expectation in Eq. E.11 is positive

since f (y) > 0 for some y values in the support of ux +u′z.

Finally, for the softplus activation function with β ∈ (0,2], we have the following derivatives

σ̄(x) = eβx

(eβx +1)
, σ̄′(x) = βeβx

(eβx +1)2
, σ̄′′(x) = β2eβx (1−eβx )

(eβx +1)3
. (E.19)

Plugging in the function f , we get

f (x) = eβx

(eβx +1)
−x

βeβx

(eβx +1)2
+ β2eβx (1−eβx )

(eβx +1)3
(E.20)

= eβx

(eβx +1)3
((eβx +1)2 −xβ(eβx +1)+β2(1−eβx )) (E.21)

Therefore showing f (x) > 0 is equivalent to showing that the factor on the right, that is,

e2βx +eβx (2−xβ−β2)+1−xβ+β2 (E.22)

is positive. For x ≤ 0, we have that −xβ> 0 and 2−β2 ≥−2 since β≤ 2, hence it is sufficient to

show that the following is positive

e2βx −2eβx +1+β2 = (eβx −1)2 +β2 (E.23)

which is a sum of squares. For x > 0, in the rest of the proof we will show that

eβx (eβx +2−xβ−β2)+1−xβ+β2 > 0, (E.24)

for β ∈ (0,2]. Using eβx ≥ (βx)2/2+βx +1, it suffices to show that

eβx ((βx)2/2+3−β2)+1−xβ+β2 > 0. (E.25)

If (βx)2/2+3−β2 ≥ 1, then the first term is bigger than βx +1 hence the above term is positive.

The remaining possibility is that we have

x2

2
< 1− 2

β2 . (E.26)

β ≤ 2 implies x < 1 and x2 > 0 implies β>p
2. Hence we have −xβ+β2 > 0 since β > x.

Therefore, if we have (βx)2/2+3−β2 ≥ 0, Eq. E.24 is positive. Assuming the opposite, we get

x2

2
< 1− 3

β2 , (E.27)

β≤ 2 implies x<1/
p

2 and x2 > 0 implies β>p
3.

Going back to Eq. E.24, what remains to show is that it is positive in the domain x <1/
p

2,
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β ∈ (
p

3,2]. It suffices to show that eβx + 2− xβ−β2 > 0. Assuming the contrary implies

eβx < xβ+2 since β≤ 2. We can then deduce that xβ< c = 1.2 since otherwise we would have

eβx = 1+βx + (βx)2

2!
+ (βx)3

3!
+ ... (E.28)

≥ 1+βx + c2

2!
+ c3

3!
+ ... = 1+βx + (ec − c −1) > 1+βx +1 (E.29)

which implies a contradiction. c can be chosen smaller but this will be enough for our

purposes.

Assuming eβx +2−xβ−β2 ≤ 0, let us expand Eq. E.24

eβx (eβx +2−xβ−β2)+1−xβ+β2 ≥ (using eβx <βx +2) (E.30)

(xβ+2)eβx + (xβ+2)(2−xβ−β2)+1−xβ+β2 = (E.31)

(xβ+2)eβx − (xβ)2 − (1+β2)xβ+5−β2 > (using eβx >βx +1) (E.32)

7−β2 + (2−β2)xβ≥ 3−2xβ> 0 (E.33)

where in the last inequality we used xβ< 1.2. We note that this inequality holds for slightly

larger β using the same technique, however, for significantly larger β, the property breaks

down.

E.2 The One-Neuron Network

For the one-neuron network, we will characterize all candidate critical points and in particular

the optimal solution for the following loss (repeating Eq. 6.17)

L = a2g (r,r,1)−2a
k∑

i=1
g (r,1,ui )+const, subject to r ≥ 0,

k∑
i=1

u2
i ≤ 1, (E.34)

where the constant represents the sum of the teacher-teacher interactions. Let us denote the

unit ball by B = {(u1, ...,uk ) | u2
1 + ...+u2

k ≤ 1}. Its interior is denoted by intB and its boundary

is denoted by ∂B . By characterization, we either mean finding a closed-form expression

when the interaction g has an analytic formula (for ReLU), or finding the exact formula for

the correlations and bounding the incoming vector norm r and the outgoing weight a (for

softplus). For general activation functions, we will numerically show that there is a unique

critical point (up to a sign flip for the odd activation functions and up to scaling for ReLU) in

Subsection E.2.1.

In this paper, we work with the following necessary conditions for a critical point of a loss in

Eq. 6.17 defined on the domain D =R≥0×R×B . The conditions we describe hold generally for

a domain that is differentiable, bounded, and closed in some coordinates such as a unit ball.

Necessary Condition E.2.1. We say p is a candidate critical point if for any path γ(t) ∈ D for
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t ∈ (−ε,ε) for some ε> 0 such that γ(0) = p and L(γ(t )) is differentiable, we have

d

d t
L(γ(t ))

∣∣
t=0 = 0. (E.35)

This condition gives a set of candidate critical points of the loss in Eq. 6.17. Reversing the

argument, a point p = (a,r, (ui )k
i=1) is not a critical point, if there exists a path γ(t) ∈ B for

t ∈ (−ε,ε) for some ε> 0 such that γ(0) = p and

d

d t
L(γ(t ))

∣∣
t=0 6= 0, (E.36)

that the derivative exists and is non-zero. This implies that any equivalent weight space

parameter

θ = (w, a) =
(

r

(
k∑

i=1
ui vi + v⊥

)
, a

)
(E.37)

is not a critical point of Lorig, where v⊥ ∈Rd is an arbitrary vector perpendicular to all teacher

incoming vectors (v1, ..., vk ). To see this, let us consider the following path in the weight space

θ(t ) =
(

r (t )

(
k∑

i=1
ui (t )vi + v⊥

)
, a(t )

)
. (E.38)

Thanks to the equivalence of the losses, we have that

d

d t
Lorig(θ(t ))

∣∣
t=0 =

d

d t
L(γ(t ))

∣∣
t=0 6= 0, (E.39)

which implies that θ(0) = θ is not a critical point in the weight space. Overall, the only possible

critical points of the weight space are those that are equivalent to the points that satisfy the

necessary conditions for the critical points of the loss in Eq. 6.17.

E.2.1 General Activation Functions

In Subsection E.2.1, we will prove Theorem 6.5.2, that is, for general activation functions satis-

fying Assumption 6.5.1, any non-trivial critical point of the one-neuron network attains equal

correlations. In Subsection E.2.1, we will apply Theorem 6.5.2 and obtain a two-dimensional

loss. From the derivative constraints of the two-dimensional loss, we get a fixed point equa-

tion that needs to be satisfied by the incoming vector norm r at any critical point. Finally,

we numerically show that there is a unique solution to the fixed point equation for general

activation functions.

Before we present the proof, let us take a detour to check the applicability of the convex

optimization framework. For a convex and twice-differentiable activation function such

as softplus, applying Lemma E.1.1 twice implies that the interaction g (r1,r2, ·) is a convex
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function of the correlation u ∈ (−1,1) for r1,r2>0. Let us consider a fixed a<0 and r >0 and

consider the loss parameterized by ui ’s. It is convex since its Hessian is a diagonal matrix with

entries

d 2

du2
i

L =−2a
d 2

du2
i

g (r,1,ui ) > 0. (E.40)

Since the constraint on the correlations (Eq. 6.17) is also convex, we get a convex optimization

problem that has a unique global minimum (see S. Boyd, S. P. Boyd, and Vandenberghe, 2004

Section 4.2). Swapping a pair of ui does not change the loss, thus it is permutation symmetric.

If any two ui were distinct from each other at the minimum, then its permutation would also

be a minimum which would violate the unicity. We conclude that at the unique minimum

point, the correlations are equal to each other. However, for the case a > 0, and for other

activation functions, the loss is not convex and there can be arbitrarily many minima. We

instead use Lagrange multipliers for proving Theorem 6.5.2.

Proof of Theorem 6.5.2

Proof. (Step 1) We first show that given a,r 6= 0, there is no critical point in intB . Assume that

u = (u1, ...,uk ) ∈ intB . Then we have ui ∈ (−1,1). Any critical point inside the boundary should

have zero gradients hence

d

dui
g (r,1,ui ) = 0 (E.41)

since a 6= 0. From Assumption 6.5.1 (i) we have that ∂u g (r,1,u) > 0 for u ∈ (−1,1) that yields a

contradiction. Thus, any critical point of the loss in Eq. 6.17 is on the boundary, i.e. u2
1+...+u2

k =
1. If k = 1, this implies that u1 =−1 or u1 = 1. Next, we consider the case k > 1.

(Step 2) Any critical point of the loss in Eq. 6.17 on the boundary should be a critical point of

the loss projected on the boundary too. We can see this as a consequence of the necessary

conditions E.2.1 as follows. Let us consider fixed a 6= 0 and r 6= 0. If p ∈ ∂B satisfies the

necessary conditions, we have that, for any differentiable path on the boundary, i.e. γ(t ) ∈ ∂B

for t ∈ (−ε,ε) for some ε> 0

d

d t
L(γ(t ))

∣∣
t=0 =∇L(p) ·γ′(0) = 0. (E.42)

which implies that ∇L(p) is orthogonal to all γ′(0). The vector that is orthogonal to all γ′(0) is

the gradient of the surface, that is 2(u1, ...,uk ). Hence we get that ∇L(p) ∥ p which is equivalent

to the Lagrange multiplier condition. In particular, we get the following Lagrangian

L (u,λ) =−2a
k∑

i=1
g (r,1,ui )+λ(

k∑
i=1

u2
i −1) (E.43)
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which implies the following condition at any critical point of L

−2a∂u g (r,1,ui )+2λui = 0 ∀i ∈ [k],
k∑

i=1
u2

i = 1. (E.44)

If ui = 0, we get ∂u g (r,1,0) = 0 which is not possible since g (r,1,u) is increasing at u = 0 due

to Assumption 6.5.1 (i). Hence we have

∂u g (r,1,ui )

ui
= λ

a
. (E.45)

Let us observe that ∂u g (r,1,u)/u is decreasing for u ∈ (−1,1) \ {0} if

d

du

(
1

u

d

du
g (r,1,u)

)
= 1

u

d 2

du2 g (r,1,u)− 1

u2

d

du
g (r,1,u) < 0, (E.46)

which is equivalent to Assumption 6.5.1 (ii) for u ∈ (−1,1) \ {0} (we included u = 0 in As-

sumption 6.5.1 (ii) for a simpler statement which is already implied from Assumption 6.5.1

(i) at u = 0). We note that ∂u g (r,1,u)/u is negative for u < 0 and positive for u > 0 due to

Assumption 6.5.1 (i).

Taken together, we conclude that ∂u g (r,1,u)/u is injective in u ∈ (−1,1) \ {0}. We need to

consider the remaining case ui ∈ {−1,1}. In this case, necessarily, we have u j = 0 for j 6= i ,

which is not possible since ∂u g (r,1,u) > 0 at u = 0, yielding a contradiction in Eq. E.44. Thus,

Eq. E.45 implies that all correlations are equal. Combining it with the boundary condition, we

get u1 = ... = uk = u with ku2 = 1, which completes the proof.

Two-Dimensional Loss, The Derivative Constraints, Uniqueness

At any non-trivial critical point with a 6= 0 and r 6= 0, we proved in Theorem 6.5.2 that all corre-

lations are equal. Let us denote it by u that is either 1/
p

k or −1/
p

k as shown in Theorem 6.5.2.

Therefore, the loss in Eq. 6.17 at a critical point reduces to

L = a2g (r,r,1)−2kag (r,1,u)+const. (E.47)

Moreover, at a critical point, the partial derivatives with respect to the outgoing weight and

norm should also be zero which gives the following two constraints

∂aL = 2ag (r,r,1)−2kg (r,1,u) = 0, (E.48)

∂r L = a2∂r g (r,r,1)−2ka∂r g (r,1,u) = 0, (E.49)

which can be rearranged into the following (assuming g (r,r,1) 6= 0 and ∂r g (r,r,1) 6= 0)

a

k
= g (r,1,u)

g (r,r,1)
= 2∂r g (r,1,u)

∂r g (r,r,1)
. (E.50)
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Figure E.1 – The graph of f (r,u) = d
dr

(1
2 log g (r,r,1)− log g (r,1,u)

)
for activation functions

erf, softplus with β = 1, sigmoid, tanh, and gelu respectively. Zero crossings of f are shown
in red. For softplus and sigmoid, we observe that f is negative for r = 0,u ∈ (0,1), positive
for r = 1,u ∈ (0,1), and increasing in r ∈ [0,1] for any fixed u, thus satisfying the sufficient
condition in Eq. E.54. However, for tanh and erf, f shows non-monotonic behavior in r when
u is close to 1. For the GeLU activation function σ(x) = xΦ(x), which is non-monotonic, we
observe that f does not cross zero for any (u,r ) pair in the plotted domain. It approaches
zero from below when r →∞ thus showing very different behavior from the other activation
functions.

The second equality between the two ratios of Gaussian integral terms gives a fixed point

equation on the norm r . Rearranging the terms in Eq. E.50 and writing the interactions

explicitly, we get

f (u,r ) = E[σ′(r x)σ(r x)x]

E[σ(r x)2]
− E[σ′(r x)σ(y)x]

E[σ(r x)σ(y)]
(E.51)

where x and y are standard Gaussians with correlation E[x y] = u. Let us define the following

helper functions

G(r ) = E[σ′(r x)σ(r x)x]

E[σ(r x)2]
= 1

2

d

dr
log(E[σ(r x)2]),

G̃(u,r ) = E[σ′(r x)σ(y)x]

E[σ(r x)σ(y)]
= d

dr
log(E[σ(r x)σ(y)]), (E.52)

which yields

f (u,r ) =G(r )−G̃(u,r ) = d

dr
log

(
E[σ(r x)2]

1
2

E[σ(r x)σ(y)]

)
. (E.53)

Consider the case u > 0. We would like to show that for any given u ∈ (0,1) there is a unique

r ∈ (0,1) such that f (u,r ) = 0. A sufficient condition is that for any u ∈ (0,1),

(i)
σ′(0)

σ(0)

E[σ(y)x]

E[σ(y)]
> 0, (ii)

E[σ′(x)σ(x)x]

E[σ(x)2]
> E[σ′(x)σ(y)x]

E[σ(x)σ(y)]
, (E.54)

(iii)
d 2

dr 2 log

(
E[σ(r x)2]

1
2

E[σ(r x)σ(y)]

)
> 0. (E.55)
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Note that the first two conditions are equivalent to f (u,0) < 0 and f (u,1) > 0, respectively. The

tricky part is the third condition which is equivalent to showing that

E[σ(r x)σ(y)]

E[σ(r x)2]
1
2

(E.56)

is log-concave in r . We note that marginalization properties of log-concave functions may

be helpful here. In this paper, we were not able to prove the sufficient conditions listed

above, even for softplus which we studied in detail. Instead, we are presenting the numerical

integration results, which show that for any given u ∈ (0,1), there is a unique r ∈ (0,1) such

that f = 0 (see Fig. E.1). Once r is shown to be unique, then the matching outgoing weight a

follows from Eq. E.50.

In the rest of Section E.2, we will focus on ReLU (Subsection E.2.2). We can fully characterize

the critical point of the loss in Eq. 6.17 using the analytic expression of the interaction.

E.2.2 Exact Closed-Form Solution for the ReLU Activation

We will first show that the interaction of ReLU satisfies

(i) h′(u) > 0 for u ∈ (−1,1),

(ii) h′′(u)u < h′(u) for u ∈ (−1,u0],

(iii)
h′(u0)

u0
> h′(u)

u
for u ∈ (u0,1), (E.57)

where u0 = 1/
p

2 (note that u0 can be chosen bigger but this will be sufficient for our purposes).

Note that property (i) is the same as Assumption 6.5.1 (i), property (ii) is almost the same as

Assumption 6.5.1 (ii) except that it holds in the interval (−1,u0]. Finally, property (iii) covers

up for the missing piece of the interval in property (ii).

ReLU interaction satisfies Properties E.57; Proof. Let us write the first two derivatives of h:

h′(u) = π−arccos(u)

2π
, h′′(u) = 1

2π
p

1−u2
. (E.58)

Property (i) easily comes from noting that the derivative of h is positive for u ∈ (−1,1). Property

(ii) holds for u ∈ (−1,0] since both the first and second derivatives are positive. Let us show

that Property (ii) holds for u ∈ (0,u0], that is equivalent to

up
1−u2

<π−arccos(u) = π

2
+arcsin(u). (E.59)

Let us note that the left-hand side is smaller than 1 since

u2

1−u2 ≤ 1 (E.60)
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due to u2 ≤ 1/2. Note that arcsin(u) > 0 for u > 0 and π/2 > 1. This completes the proof of

Property (ii). To show Property (iii), we first show that h′(u)/u is convex in u ∈ [0,1). The first

two derivatives are

d

du

(
h′(u)

u

)
= h′′(u)

u
− h′(u)

u2 ,
d 2

du2

(
h′(u)

u

)
= h′′′(u)

u
− 2h′′(u)

u2 + 2h′(u)

u3 . (E.61)

Thus it is equivalent to showing

h′′′(u)u −2h′′(u)+ 2h′(u)

u
= u2

(1−u2)3/2
− 2

(1−u2)1/2
+ π+2arcsin(u)

u
> 0. (E.62)

Using the Taylor series of arcsin and since u ≥ 0, we have that arcsin(u) ≥ u. Hence, it suffices

to show

1

(1−u2)1/2

(
−3+ 1

1−u2 +2(1−u2)1/2
)
≥ 0. (E.63)

This holds due to the inequality of arithmetic and geometric means

1

1−u2 + (1−u2)1/2 + (1−u2)1/2 ≥ 3. (E.64)

Let us assume the contrary of Property (iii), that there exists u ∈ (u0,1) such that

h′(u0)

u0
≤ h′(u)

u
. (E.65)

Note that h′(u0)/u0 > h′(1) becauseπ(1−u0)−arccos(u0) ≥ 0 holds at u0 = 1/
p

2. Since h′(u)/u

is continuous at u = 1, there exists an ε> 0 such that

h′(u0)

u0
> h′(1−ε)

1−ε . (E.66)

Finally, using the convexity of h′(u)/u, there exists α ∈ [0,1] such that

α
h′(1−ε)

1−ε + (1−α)
h′(u0)

u0
≥ h′(u)

u
, (E.67)

which yields a contradiction since the left-hand side is strictly smaller than h′(u0)/u0. This

completes the proof of Property (iii). ReLU interaction satisfies Properties E.57; End of Proof.

Next, we will replicate the proof steps of Theorem 6.5.2 to show that any non-trivial critical

point must be on the boundary and attain equal correlations. From Property E.57 (i), we get

that there is no non-trivial critical point in intB (see the proof of Theorem 6.5.2). For k = 1, this

implies that u1 =−1 or u1 = 1. For general k, let us recall that we get the following conditions

from Lagrange multipliers (equivalently, from the necessary conditions E.2.1) for non-trivial
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critical points, i.e. ar 6= 0,

−2ar h′(ui )+2λui = 0 ∀i ∈ [k],
k∑

i=1
u2

i = 1. (E.68)

Note that this is equivalent to Eq. E.44 if the activation function is ReLU. ui = 0 is not possible

since we have h′(0) 6= 0. Hence, we get

h′(ui )

ui
= λ

ar
. (E.69)

Property E.57 (ii) implies that f (u) = h′(u)/u is decreasing for u ∈ (−1,u0) \ {0}. Moreover, f is

negative for u < 0 and positive for u > 0. Therefore, if λ/(ar ) < 0, we get that all ui are equal

and negative, hence they are all −1/
p

k. If λ/(ar ) = 0, we get ui =−1 for all i which implies

that k = 1 which is already covered above.

The remaining case is λ/(ar ) > 0. Property E.57 (iii) gives that f (u0) > f (u) for u ∈ (u0,1].

Since f is decreasing we have also f (u) > f (u0) for u ∈ (0,u0). Therefore, f (ui ) are equal to

each other only when all ui < u0 or ui > u0. However, the latter case is not possible for k ≥ 2

since it breaks the ball constraint, i.e. u2
1 +u2

2 > 1. Hence, we get that all ui ∈ (0,u0] and they

are equal since f is decreasing in this interval, implying that they are all 1/
p

k. This completes

the proof of replica of Theorem 6.5.2 for the ReLU interaction.

Trivial critical points. Consider the loss in Eq. 6.17. Setting the partial derivative with respect

to a to zero, we get

ar 2h(1) = r
k∑

i=1
h(ui ) (E.70)

Let us consider the case a = 0. This implies either (i) r = 0 or (ii) k = 1 and u1 = −1 since

h(u) > 0 for u > −1. Using the factorization property of ReLU interactions and setting the

partial derivative with respect to r to zero, we get

a2r h(1) = a
k∑

i=1
h(ui ) (E.71)

which is satisfied if a = 0 hence both (i) and (ii) are critical points of the loss in Eq. 6.17. Since

a and r are symmetric to each other, we get that (iii) r = 0, k = 1 and u1 =−1 is also a critical

point of the loss in Eq. 6.17. For general k, we have a candidate critical point at a = 0 and r = 0,

and for the case k = 1, we have a candidate critical point at a = 0 (or r = 0) and u1 =−1. In

either case, the loss is equivalent to

Lorig = E[(
k∑

i=1
σ(vi · x))2] = kh(1)+k(k −1)h(0). (E.72)
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Non-trivial critical points with ui = u that is either −1/
p

k or 1/
p

k.

Let us first show that (−1/
p

k)k
i=1 and (1/

p
k)k

i=1 are the global minimum and the global

maximum of the following constrained loss function

k∑
i=1

h(ui ) subject to
k∑

i=1
u2

i ≤ 1. (E.73)

Note that there is no other critical point due to the Lagrange multiplier analysis, hence these

are the only two critical points of the constrained loss function. Since h is strictly convex, we

have that

h(u1)+h(u2) > 2h
(u1 +u2

2

)
(E.74)

if u1 6= u2. Note that we have u2
1 +u2

2 > ((u1 +u2)/2)2. Therefore, at the global minimum, all

correlations must be equal. Then the minimum of kh(u) is attained at the minimum of the u

that is feasible, that is −1/
p

k. We will next show that the loss is decreasing locally on any path

from (1/
p

k, ...,1/
p

k) to another point (u1, ...,uk ) ∈ B . More precisely, let

γ(t ) = (1/
p

k, ...,1/
p

k)+ t (u1 −1/
p

k, ...,uk −1/
p

k). (E.75)

We have that

d

d t

k∑
i=1

h(ui (t ))

∣∣∣∣
t=0

= h′(1/
p

k)
k∑

i=1
(ui −1/

p
k) (E.76)

which is negative since (u1 + ...+uk )2 < (u2
1 + ...+u2

k )/k = 1/k unless ui are all identical and

equal to −1/
p

k. In either case, the above derivative is negative implying that (1/
p

k, ...,1/
p

k)

is a local maximum. Since there is no other local maximum, it is also the global maximum.

Next, we will give the closed-form solution of the other parameters. Plugging in the correlation

in the loss and using the factorization of the interaction in Eq. 6.17, we get

L = a2r 2 ·h(1)−2kar ·h(u)+const. (E.77)

Let us set ã = ar . The loss is a second-order polynomial in ã

L = h(1)

(
ã2 −2ãk

h(u)

h(1)
+k +k(k −1)

h(0)

h(1)

)
(E.78)

where we also made the constant explicit. Since the coefficient of the leading term is positive,

there is a minimizer and it is the only critical point. Taking the derivative, the minimum is

attained at

ã∗ = k
h(u)

h(1)
≥ 0. (E.79)
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Finally, plugging in ã∗, we get

L =−k2 h(u)2

h(1)
+kh(1)+k(k −1)h(0). (E.80)

For u = 1/
p

k, h(u) is non-zero hence the above loss is smaller than the loss at the trivial

critical points. We conclude that this is the optimal solution for the one-neuron network.
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