
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Automating the Design of Programmable Interconnect
for Reconfigurable Architectures

Stefan NIKOLIĆ

Thèse n° 9001

2023

Présentée le 6 juillet 2023

Prof. G. De Micheli, président du jury
Prof. P. Ienne, directeur de thèse
Prof. V. Betz, rapporteur
Dr . D. Gaitonde, rapporteur
Prof. C. Studer, rapporteur

Faculté informatique et communications
Laboratoire d’architecture des processeurs
Programme doctoral en informatique et communications

Any idea is better than none.

— László F. Nagy

To my late grandmother Mirjana.

Acknowledgements

There are many people without whom this thesis would never have seen the light of day and

I am very grateful to all of them. First of all, I would like to thank my advisor, Prof. Paolo

Ienne. It would be very difficult to describe in detail the masterful skill with which Paolo

teaches his students the art of scientific research, within a space typically allocated to the

acknowledgements section of a thesis, and I will not attempt that. However, considering the

similarities between learning to do research and learning to ride a bicycle—which hopefully

extend beyond the abundance of occasions to fall, to e.g., the permanence of both skills once

they are acquired—it may be possible to provide the reader with a glimpse of how it is to do a

PhD under Paolo’s guidance. Namely, Paolo knows precisely when the novice rider needs a

helping hand to avoid a fall, or a slight push to get going. On the other hand, he also knows

precisely when the novice rider should be let go so that they may actually learn how to balance

and spin the pedals. Quite frankly, the rider is not even aware of the moment when they are

left to hold the handlebar alone, but realizing that new situation can be intimidating only

for an instant, since a quick turn ensures the apprentice that Paolo is still there, carefully

watching the changes of terrain and anticipating the next potential fall, ready to prevent it

again. Teaching someone to cycle (and let alone conduct research) is not an easy task and

it rarely goes without cuts and bruises for the cyclist in the making. Yet, thanks to Paolo’s

kindness and support, in science and beyond, I can say that my PhD journey has been a very

happy chapter of my life, far exceeding any expectations that I may have had before joining

LAP. From Paolo I also learned a lot of interesting and useful things that go beyond conducting

research, for which I am very grateful as well.

Next, I would like to thank Prof. Vaughn Betz, Prof. Giovanni De Micheli, Dr. Dinesh Gaitonde,

and Prof. Christoph Studer, who were the members of my thesis committee. I am grateful for

the time that they dedicated to reading my thesis and attending my defense, despite their busy

schedules. I would also like to thank them for their constructive feedback. While I did not have

the honor of meeting Prof. Studer before the thesis defense, other committee members made

a large impact on my PhD life over the course of several years. To Prof. Betz I am grateful for

the constructive feedback and encouraging words, as well as for developing and continuing

to maintain the VPR project without which conducting experiments presented in this thesis

would have been far more difficult. To Prof. De Micheli I am grateful for all of his support

i

Acknowledgements

throughout my stay at EPFL. His lectures were also highly inspiring and are responsible for

several ideas presented in this thesis. Finally, I would like to thank Dr. Gaitonde for giving me

an opportunity to spend some time at Xilinx and catch a glimpse of how commercial FPGAs

are designed. I am also grateful for all the knowledge that he generously shared with me.

Besides Paolo and Dinesh, there are two other people to whom I am highly indebted for the

research skills and knowledge about FPGAs that they passed on to me. The first of them is

Dr. Grace Zgheib, who was my supervisor at LAP during my Summer@EPFL internship. Grace

introduced me to scientific research as well as FPGA architecture, and in large part, I owe

my love to both to her. Without her, chances that I would be writing these lines now would

have been exceedingly small. The second person that I wish to thank for their knowledge and

skills is Chirag Ravishankar, my immediate supervisor at Xilinx. Chirag is one of the most

enthusiastic people that I have ever met and discussing research ideas with him on a daily

basis during my stay in Colorado is something that I will long remember.

I am also very grateful to Grace, Chirag, and Dinesh for their continued collaboration even

after we were no longer part of the same team. I would also like to thank Dr. Mirjana Stojilović

and her students Morten Borup Petersen and Shashwat Shrivastava for letting me be part of

projects that are not directly related to this thesis, but which greatly expanded my horizons

and which I thoroughly enjoyed. Finally, I would like to thank Prof. Francky Catthoor and Dr.

Zsolt Tőkei from IMEC, without whose expert advice and great patience, a critical part of this

thesis would not have been realized.

Although a great workplace, LAP is far more than that; without its friendly atmosphere, my

PhD journey would have been altogether different. For this, I am grateful to Ana, André,

Andrew, Aya, Canberk, Chantal, Gabriel, Grace, Jason, João, Jovan, Lana, Louis, Lucas, Mikhail,

Mohamed, Paolo, René, Sahand, Theo, and all the other people whose stay at LAP overlapped

with mine. In particular, I would like to thank Ana, Andrea, Grace, João, Lana, Louis, Lucas,

Mikhail, and Sahand for all the nice moments at LAP, Satellite, the Pelican beach, and various

trips over the years. To Chantal I also owe special thanks for the great kindness and care during

the past six years, and even before, when I was a Summer@EPFL intern, as well as for all the

hard work which was required for me to even come to LAP in the first place. To Theo I am

grateful for his patience with all the mistakes that I was making while learning how to be a

TA and everything that he taught me about organizing a good course. Credits for the French

version of the abstract of this thesis, along with my deep thanks for it, go to Louis.

Besides receiving the great opportunity to study at LAP under Paolo’s guidance, I consider it

a great fortune that the topic of my thesis has brought me into the exceptionally supportive

FPGA community. Apart from Paolo himself, Prof. Betz, and Dr. Gaitonde, there are several

other members of this community who have left an important mark on my PhD journey. First

among them is Prof. Jason Anderson, to whom I am grateful for all the discussions during his

stay at LAP, both related to research and not so related to it. Moreover, I am very grateful for his

support in finding my future career path. For that same reason, I owe gratitude to Dr. Herman

Schmit and Prof. Babak Falsafi. Dr. Schmit’s constructive feedback and encouraging words

have also been highly motivating, as has been the realization that his research was to be the

first application of our work outside of LAP. I am also grateful to Prof. André DeHon, Prof. Guy

ii

Acknowledgements

Lemieux, and Dr. Ilya Ganusov for their highly beneficial comments and ideas.

It is often said that we do not truly know that which we cannot teach others. I am very

grateful to all the younger students who allowed me to try to carry over to them the love for

research that I got from Paolo and Grace, and in doing so, to truly discover what conducting

research means. Anastasiia, Carmine, and Shashwat have been particularly helpful in keeping

my enthusiasm high, due to the exceptional levels of enthusiasm that they themselves kept,

despite being forced to work with someone who had little clue about how to help them.

Of course, none of this would have been possible if it were not for my family. I would like to

thank my parents Vesna and Dušan and my sister Sofija for their love and support throughout

my PhD journey and the many years that preceded it. I owe special gratitude to my father

Dušan for his wise counsel, including helping me decide to pursue engineering education

instead of turning to history or literature which at times I found equally appealing. Finally,

I would like to thank my late grandmother Mirjana who unfortunately did not manage to

see the end of this journey. She was the one who made me understand the meaning of

education. Coming from an era when it was desired by many but available only to very few,

she understood that a possibility to obtain a good education is never something to be taken for

granted and often not something that we deserve through our abilities. Rather, it is something

which fortune brings to us and which we should hence be grateful for. The realization that I

was fortunate to be here, and that I only got this chance because someone else did not, made

the entire journey much easier; one may choose to waste that which they made themselves,

but this is not an option when they are given something that others perhaps deserved more.

Needless to say, besides being lucky, when starting a PhD one must also have learned some-

thing before. For this I am grateful to my professors from Novi Sad. Among them, I am

especially indebted to Prof. László Nagy, whose lectures have largely taught me how to think

and who is besides my father the most responsible for me not ending up in humanities.

Finally, I have been very fortunate to have met a large number of remarkable people over the

years, whom I can proudly call my friends. Most of them I met at school, university, and various

choirs that I have been part of before leaving my hometown of Novi Sad. Their continued

friendship despite my physical absence made me feel as if I never really left and made home

really feel like home. Without this important anchor, I would never have made it through this

journey. I was also very lucky to have met great friends in Switzerland as well as in the US,

many of whom were mentioned in other contexts on the preceding pages. Together with a

nucleus of mostly high-school friends who got scattered throughout the world at about the

same time when I left Novi Sad, they made it not only painless, but even joyous to return

from happy vacations in my beloved hometown to what would have otherwise been a distant

unknown. To all these people I am deeply grateful and I hope that our friendships will continue

to last despite the sometimes unpredictable physical distance.

Lausanne, 21st June 2023 S. N.

iii

Abstract

With Moore’s law coming to an end, increasingly more hope is being put in specialized hard-

ware implemented on reconfigurable architectures such as Field-Programmable Gate Arrays

(FPGAs). Yet, it is often neglected that these architectures themselves experience problems

caused by technology scaling. In fact, due to their lower logic density and the need to provide

interconnect programmability, rising wire resistance impacts the performance of FPGAs par-

ticularly negatively. This is further complicated by the traditional problem of reconfigurable

architecture design: exact critical paths are not known at fabrication time.

For FPGAs to deliver what is expected from them, they must continue to adapt to new techno-

logical and application realities. Local optimization of programmable interconnect around a

known prior solution, which, for the past two decades, has been ensuring that performance

increase of moving to the next technology node is achieved on time, no longer yields the

expected results. Since technology scaling has moved away from a predictable trajectory

driven by geometric shrinking, into the realm of an ever-increasing number of one-off scaling

boosters, it is now harder than ever to develop a lasting intuition about how to escape these

local optima. Coupling this with an ever-increasing number of different applications that

require FPGA acceleration in a variety of different device integration and use contexts, we

believe that the only real solution to this issue is to use design automation to seek new local

optima. The problem with this, however, is that design automation algorithms comparable to

those that exist in a standard Application-Specific Integrated Circuit (ASIC) flow have so far

not been developed—riding the wave of Moore’s law in the past decades made tackling the

hard combinatorial optimization problems that arise in designing programmable intercon-

nect unattractive. Where ASIC CAD algorithms, once developed, could be used to produce

thousands of different circuits, basic economy behind FPGA’s success meant that in every

generation, only a handful of device families with shared programmable fabric architecture

were produced. As a result, a large number of algorithms exist for transforming an ASIC

described at a high level of abstraction using a hardware description language into a highly

optimized netlist of gates, while programmable interconnect architectures still have to be

described entirely by specifying every single wire and switch that comprise them—this would

be equivalent to specifying an ASIC design by listing every single logic gate and all connections

between them. Well, if such a specification has to be made only once per FPGA generation—or

v

Abstract

better yet, only once for a number of generations, as has largely been the case over the past

two decades—maybe the effort of developing a set of algorithms that could do this auto-

matically is not easily justified. The problem today, as we already mentioned, is that scaling

time-tested designs with only minor modifications no longer yields the required results, while

manually specifying a new design at this level of abstraction is hardly feasible after the stark

increase in the number of variables that have to be taken into account due to technological

and application changes.

In this thesis, we address the issue by developing new algorithms for automated design of

several important aspects of programmable interconnect.

Key words: FPGA, programmable interconnect, multiplexer, switch-pattern, design automa-

tion, algorithm, fixed connectivity, placement, routing, modeling

vi

Résumé

La loi de Moore touchant à sa fin, on place de plus en plus d’espoir dans le développe-

ment de matériel déployé sur des architectures reconfigurables telles que les FPGA (Field-

Programmable Gate Arrays). Cependant, on néglige souvent que ces architecture rencontrent

elles-aussi des problèmes causés par la miniaturisation des transistor. En effet, leur densité lo-

gique plus faible et de la nécessité d’assurer la programmabilité de l’interconnexion augmente

particulièrement l’impact de l’augmentation de la résistance des fils dans les nouvelles tech-

nologies sur les performances des FPGA. Cette situation est rendue d’autant plus complexe

par le problème traditionnel de la conception d’architectures reconfigurables : les chemins

critiques exacts ne sont pas connus au moment de la fabrication, mais seulement une fois que

la puce est programmée.

Pour que les FPGA répondent aux attentes, ils doivent continuer à s’adapter aux nouvelles

réalités technologiques et aux applications ciblées. Au cours des deux dernières décennies,

l’optimisation locale de l’architecture d’interconnexion programmable autour d’une solution

antérieure connue a permis de garantir une augmentation de performances pour chaque

passage de nœud technologique. Cepdenant, cette technique ne donne plus les résultats

escomptés. Depuis que la mise à l’échelle de la technologie s’est éloignée d’une trajectoire pré-

visible guidée par le rétrécissement géométrique, pour entrer dans le domaine d’un nombre

toujours croissant d’optima locaux ponctuels, il est plus difficile que jamais de développer

une intuition durable sur la manière d’échapper à ces optima locaux. Si l’on ajoute à cela un

nombre toujours croissant d’applications nécécitant une accélération FPGA dans un nombre

toujours croissant de contextes d’utilisation et d’intégration, nous en sommes venus à pen-

ser que la seule véritable solution à ce problème est de s’appuyer sur l’automatisation de la

conception pour rechercher de nouveaux optima locaux. Cepdendant, le problème, est que

des algorithmes d’automatisation de la conception comparables à ceux existant dans un flux

standard de circuits intégrés spécifiques à une application (ASIC) n’ont pas été développés jus-

qu’à présent. En surfant sur la vague de la loi de Moore au cours des deux dernières décennies,

il n’était pas intéressant de s’attaquer aux problèmes d’optimisation combinatoire difficiles

qui se posent lors de la conception d’architectures d’interconnexion programmables : cela

n’était pas immédiatement nécessaire. Alors que les algorithmes de CAO des ASIC, une fois

développés, pouvaient être utilisés pour produire des milliers de circuits différents, l’économie

vii

Résumé

de base derrière le succès des FPGA signifiait qu’à chaque génération, seule une poignée, voir

une seule, familles de dispositifs avec une architecture programmable partagée étaient pro-

duites. Par conséquent, il existe une multitude d’algorithmes pour transformer un ASIC décrit

à un haut niveau d’abstraction à l’aide d’un langage de description de matériel en une liste

de portes hautement optimisée, alors que les architectures d’interconnexion programmables

doivent encore être décrites entièrement en spécifiant chaque fil et chaque commutateur qui

les composent. Ceci équivaudrait à spécifier une conception ASIC en énumérant chaque porte

logique et toutes les connexions entre elles, sans aucune optimisation ultérieure. Si une telle

spécification ne doit être faite qu’une seule fois par génération de FPGA - ou mieux encore,

une seule fois pour un certain nombre de générations comme cela a été le cas au cours des

deux dernières décennies avec peut-être avec quelques modifications mineures - l’effort de

développement d’un ensemble d’algorithmes qui pourraient le faire de manière automatisée

n’est peut-être pas facilement justifié. Le problème aujourd’hui, comme nous l’avons déjà

mentionné, est que la mise à l’échelle de conceptions éprouvées avec seulement des modifica-

tions mineures ne donne plus les résultats requis. De plus, la spécification manuelle d’une

nouvelle conception à ce niveau d’abstraction, après l’augmentation brutale du nombre de

variables qui doivent être prises en compte en raison des changements technologiques et

d’application, est difficilement réalisable.

Dans cette thèse, nous abordons ce problème en développant de nouveaux algorithmes pour la

conception automatisée de plusieurs aspects importants de l’interconnexion programmable.

Mots clefs : FPGA, interconnexion programmable, multiplexeur, schéma de commutation,

conception automation, algorithme, connectivité fixe, placement, routage, modélisation

viii

Contents
Acknowledgements i

Abstract (English/Français) v

List of figures xvii

List of tables xxi

1 Introduction 1

1.1 Thesis Outline . 4

2 Where Did the FPGAs Come From and Where Are They Headed? 7

2.1 Mass Production at a Micro Scale . 7

2.2 Discarding the Last Mask . 9

2.2.1 Turns on a Grid . 9

2.2.2 Prefabricated Wires . 10

2.2.3 Stored-Select Multiplexers . 10

2.2.4 What about the Logic Cells? . 12

2.3 Price of Removing the Last Mask . 15

2.4 Race for the Latest Technology . 16

2.5 What Happens when the Road Gets Bumpy? . 17

2.6 A New Age for FPGAs . 18

2.7 FPGA or ASIC? No Longer a Question! . 19

2.8 What Is an FPGA, Again? . 20

2.9 FPGA Evolution: The Stratix Case . 21

2.9.1 Major Developments . 21

2.9.2 What about Programmable Interconnect Topology? 28

2.10 Where Does this Thesis Come into Play? . 30

3 Background 33

3.1 The Problem of Programmable Interconnect Design 33

3.2 Simplicity of the Complete Graph . 37

3.3 A Collection of Cliques . 37

3.4 Rent’s Rule . 38

3.4.1 How Many Inputs Does a Cluster Need? . 40

ix

CONTENTS

3.4.2 Sparse Crossbars . 41

3.5 Wire Sharing . 43

3.5.1 Tree-Based Hierarchical FPGAs . 44

3.5.2 Multiplexer Cascades . 45

3.6 Periodic Graphs: A Unified Way to Represent Tiled Architectures 46

3.7 Academic Terminology of Island-Style FPGAs . 47

3.8 Ideal and (Currently) Realistic Design Goals . 48

3.9 FPGA CAD flow . 48

3.9.1 Synthesis . 49

3.9.2 Technology Mapping . 49

3.9.3 Placement . 50

3.9.4 Routing . 51

3.9.5 Bridging the Gaps Between the Stages . 52

4 Modeling Programmable Routing in Advanced Technologies 53

4.1 A Nanometer Asteroid Strike . 54

4.1.1 Global Is the New Local? . 56

4.1.2 Wait a Minute, Isn’t Industry Going in the Opposite Direction?! 57

4.2 Area and Wirelength Modeling . 58

4.2.1 Tile Floorplan . 58

4.2.2 LUT Dimensions . 60

4.2.3 Routing Multiplexers . 61

4.3 Interconnect Modeling . 62

4.3.1 Layers . 63

4.3.2 Cross-Sectional Wire Dimensions . 64

4.3.3 Resistance . 65

4.3.4 Capacitance . 66

4.3.5 Vias . 66

4.4 Device Modeling . 67

4.5 Delay Extraction Methodology . 68

4.5.1 Look-up Tables . 68

4.5.2 Local Wires . 68

4.5.3 Global Wires . 69

4.6 Extracted Local Wire Delays . 70

4.6.1 The Low Performance of Low Metal Layers 71

4.6.2 Can You Repeat, Please? . 71

4.6.3 The Rise of Thick Metal Wires . 71

4.6.4 Thick Metal Wires Are Scarce . 72

4.6.5 This Looks Familiar... 74

4.7 To Minimize or Maximize Channel Width? That Is the Question 74

4.7.1 Crossbar . 75

4.7.2 Routing Channels: General Approach . 75

x

CONTENTS

4.7.3 Routing Channels: Maximum Wire Spans 76

4.7.4 Routing Channels: Reference Composition 76

4.7.5 Routing Channels: Taps and Scaling . 77

4.7.6 Switch-Block Patterns . 78

4.7.7 Experimental Setup . 78

4.8 The Asteroid Strikes . 79

4.8.1 A Future of Small Clusters . 79

4.8.2 What Can the Large Clusters Tell Us? . 80

4.8.3 So, Is Global the New Local? . 81

4.8.4 Return of the Super-Cluster . 81

4.8.5 The End of an Era . 83

4.8.6 What Is to Be Done? . 84

4.8.7 Custom Technology Nodes for FPGAs . 85

4.8.8 And What about Density? . 85

4.8.9 The Issue of Nonshrinking SRAM . 86

4.9 Low-Hanging Fruit Fell to the Ground . 88

4.10 Conclusions and Future Work . 89

5 Switch Presence Negotiation 91

5.1 A Little Bit of History . 91

5.1.1 Importance of Parametric Patterns . 92

5.1.2 Importance of Per-Segmentation Switch-Pattern Optimization 92

5.1.3 Danger of Neglecting Assumptions . 93

5.1.4 Importance of Considering Physical Implementation Aspects 94

5.2 Inaptness of the Black Box Approach . 94

5.2.1 How Large is the Switch-Pattern Search Space? 95

5.2.2 Black Box in the Loop . 95

5.2.3 Proxy Oracles . 95

5.3 A Brief Review of Negotiated-Congestion Routing 96

5.4 Main Idea . 98

5.4.1 Implicit Search Space Representation . 99

5.4.2 Negotiating Switch Types . 100

5.5 Problem Definition . 100

5.6 Basic Algorithm . 102

5.6.1 Benefits of Iteration . 103

5.6.2 Shortcomings of Uncompressed Usage Statistics 104

5.7 Turning PathFinder Upside-Down . 104

5.7.1 Avalanche Costs . 104

5.7.2 Negotiating Both Congestion and Switch Presence 105

5.7.3 Functional Form of Avalanche Costs . 107

5.7.4 A Note on Implementation . 108

5.7.5 Respecting the Critical Paths . 108

xi

CONTENTS

5.8 Completing the Algorithm . 109

5.8.1 Conveying Physical Information . 110

5.8.2 Preventing Overspecialization . 111

5.9 Experimental Setup . 113

5.10 Effectiveness of Avalanche Costs . 113

5.10.1 Direct Comparison with Greedy . 113

5.10.2 Comparison with Truncated Greedy . 114

5.11 Multi-Stage Search . 117

5.11.1 Convergence . 117

5.11.2 Pattern Changes . 118

5.12 Comparison with Simulated Annealing . 119

5.12.1 Initial Pattern . 119

5.12.2 Channel Segmentation Revisited . 119

5.12.3 What about Floorplan Optimization? . 120

5.12.4 Setup . 120

5.12.5 Results . 121

5.13 Analysis of Some Further Aspects of Avalanche Search 122

5.13.1 Parameters . 122

5.13.2 Circuit-Level Parallelization . 124

5.13.3 Sensitivity to Circuit Choice . 125

5.13.4 Influence of Approximate Switch Type Delay on Adoption 128

5.13.5 Routability-Driven Search . 129

5.14 Runtime Scalability . 131

5.14.1 Routing Graph Size . 132

5.14.2 A* . 133

5.14.3 Periodically Forcing Rip-Up . 136

5.14.4 Congested Nodes . 137

5.15 Conclusions and Future Work . 137

6 Searching for Regular Switch-Patterns 139

6.1 Who Cares about “Regularity”? . 139

6.2 Related Work . 140

6.3 Summary of Avalanche Search . 141

6.4 Regularization Algorithm . 142

6.4.1 General Flow . 142

6.4.2 Base ILP Problem . 143

6.5 Experimental Setup . 144

6.6 Limiting Multiplexer Size Variation . 144

6.6.1 Encoding . 145

6.6.2 Results . 145

6.7 Limiting Fanout Size Variation . 148

6.7.1 Results . 148

xii

CONTENTS

6.8 Multiplexer Input Sharing . 150

6.8.1 Encoding . 150

6.8.2 Results . 151

6.9 Minimizing Wirelength . 152

6.9.1 Encoding: Modeling Wirelength . 153

6.9.2 Encoding: Combined Objective . 154

6.9.3 Results . 154

6.10 Enforcing Turns and Symmetries . 155

6.10.1 Encoding: Turns . 155

6.10.2 Encoding: Fanout Symmetries . 156

6.10.3 Results . 156

6.11 Enforcing Hop-Distance Optimality . 157

6.11.1 Encoding: Proof Grid . 157

6.11.2 Encoding: Shortest Paths . 159

6.11.3 Results . 159

6.12 ILP Complexity . 161

6.13 Conclusions . 161

7 Fixed-Connectivity Pattern Design 163

7.1 Straight to the Point . 163

7.2 Related Work . 165

7.3 Optional Direct Connections . 166

7.3.1 And What about Fully-Hardened Direct Connections? 167

7.3.2 Endpoint Alignment . 167

7.4 The Space of Tileable Fixed-Connectivity Patterns 168

7.4.1 Fully Specifying an Architecture . 170

7.5 Searching a Large Design Space . 170

7.5.1 Our Search Space: A Naive View . 171

7.5.2 Our Search Space: One Step at a Time . 172

7.5.3 Our Search Space: Combining Steps . 172

7.5.4 Our Search Problem: An Analogy . 173

7.5.5 The Greedy Algorithm . 173

7.5.6 Pruning the Candidates: The First Filter . 175

7.5.7 Pruning the Candidates: The Second Filter 176

7.5.8 Pruning the Candidates: The Last Filter . 177

7.6 Experimental Setup . 177

7.6.1 Architecture Generation . 178

7.6.2 Circuit-level Modeling . 179

7.6.3 LUT Permutation . 180

7.6.4 Prerouting . 182

7.6.5 Further Assumptions and Limitations . 182

7.7 Experimental Results . 183

xiii

CONTENTS

7.7.1 Intercluster Connections: Convergence . 183

7.7.2 Intercluster Connections: Delay Impact . 185

7.7.3 Intercluster Connections: The Pattern . 188

7.7.4 Intercluster Connections: A Trade-Off . 189

7.7.5 Intracluster Connections . 189

7.8 Conclusions . 189

7.9 A Note on Timing Assumptions . 190

8 Dedicated Placement for Fixed-Connectivity Patterns 193

8.1 Quantifying Expectations . 194

8.2 Target Architectures . 195

8.3 General Approach . 195

8.3.1 Is this not a Routing Problem? . 196

8.3.2 Necessity of Placing Individual LUTs . 197

8.3.3 Global, Detailed, or Combined Placer? . 198

8.3.4 Direct Connections at Low Temperature 199

8.4 Prior Work on Detailed Placers . 201

8.4.1 Movable Node Selection . 202

8.4.2 Movement Freedom . 203

8.4.3 Choice of the Optimization Method . 204

8.5 The LP-Based Node Selector . 205

8.5.1 Which Connections Should be Improved? 205

8.5.2 Determining Movable Nodes . 207

8.6 The ILP-Based Placer . 207

8.6.1 Naive ILP Formulation . 207

8.6.2 Exploiting the Sparsity of Dedicated Interconnect 208

8.6.3 Delay-Based Model Compaction . 209

8.7 The Complete Algorithm . 212

8.7.1 Composing the Detailed Placer . 212

8.7.2 Legalizer . 214

8.8 Optimization . 216

8.8.1 Specialization of the Improvement LP to the Architecture 216

8.8.2 Solving Successive ILPs . 217

8.8.3 ILP Formulation Tightening . 219

8.9 Results . 221

8.9.1 Experimental Setup . 221

8.9.2 Delays . 222

8.9.3 Improvement Subgraphs . 225

8.9.4 Runtimes . 227

8.9.5 Independent Subpattern . 229

8.10 Conclusions and Future Work . 231

xiv

CONTENTS

9 Conclusions and Future Work 233

9.1 What Have We Done? . 233

9.1.1 Modeling Programmable Interconnect in Advanced Technologies 233

9.1.2 Letting the Router Automatically Design Switch-Blocks 234

9.1.3 A General Method to Project Layout and CAD Constraints on Architecture 235

9.1.4 Making the Fastest Connections Nonprogrammable 235

9.1.5 Making the Timing-Critical Signals Use the Direct Connections 236

9.2 Where Has This Brought Us? . 236

9.3 Future Work . 238

9.3.1 Separating High-Performance and High-Bandwidth Interconnect 239

9.3.2 Routing Comes after Synthesis but Cannot Be an Afterthought 239

9.3.3 LUT and Multiplexer SRAM Sharing . 240

9.3.4 Turning Strict Design Rules Into an Advantage 240

9.3.5 Are We Solving the Right Problem? . 241

9.4 Final Remarks . 241

Bibliography 266

Curriculum Vitae 267

xv

List of Figures
2.1 Mask-Programmed Gate Array (MPGA) . 8

2.2 Tracks and segments of an MPGA . 9

2.3 Prefabricated wires of an FPGA . 10

2.4 Programmable switches of an FPGA . 11

2.5 Stored-select multiplexer . 11

2.6 Compound gate . 13

2.7 Look-Up Table (LUT) . 14

2.8 Basic Logic Element (BLE) . 14

2.9 Sculpture analogy . 16

2.10 Race for the latest technology . 18

2.11 Convergence of FPGAs and ASICs . 20

2.12 Hierarchical logic block . 22

2.13 Multi-point wire driving . 23

2.14 Hierarchical general interconnect . 23

2.15 Columnar heterogeneous architecture . 24

2.16 Fracturable LUT . 26

2.17 Typical critical path . 27

2.18 Reported modifications of programmable interconnect 28

3.1 Fixed-functionality circuit examples . 34

3.2 A reconfigurable circuit example . 34

3.3 Driver selection operation example . 35

3.4 Complete graph . 37

3.5 Logic cluster . 38

3.6 Localization of connectivity . 39

3.7 Using Rent’s rule to determine the number of cluster inputs 41

3.8 Sparse crossbar . 42

3.9 Wire sharing . 44

3.10 Tree-based multiplexing . 45

3.11 Segmented-channel routing . 45

3.12 Static and periodic graph example . 46

4.1 Cluster size influence on critical path delay in 180nm 55

xvii

LIST OF FIGURES

4.2 Evolution of intra- and intercluster interconnect 55

4.3 Routing channel wires above logic clusters . 58

4.4 A realistic tile floorplan . 59

4.5 LUT layout sketch and area model . 60

4.6 Composing larger LUTs . 61

4.7 Stored-select multiplexer layout sketch and area model 62

4.8 Metal stacks in different technologies . 63

4.9 Wire and via dimension definitions . 64

4.10 Setup for intracluster wire delay measurement . 69

4.11 Setup for intercluster delay measurement . 69

4.12 Evolution of intracluster delays . 70

4.13 Effect of repeater insertion on intracluster delays in scaled technologies 72

4.14 Layer optimality for intracluster wires in scaled technologies 73

4.15 Intracluster wire delays in Agilex . 73

4.16 Channel wire length scaling and taps . 77

4.17 Parametric switch-block connectivity pattern . 79

4.18 Cluster size performance trade-offs in different technologies 80

4.19 A cluster with distinct high-performance and high-bandwidth local interconnect 82

4.20 Scaling of wire delays between 5nm and 4nm nodes 84

4.21 SRAM area scaling across technologies . 87

5.1 Black box in the loop . 95

5.2 Embedding switch-pattern design space in the routing-resource graph 99

5.3 Switch-pattern definitions . 101

5.4 Usage spread example . 104

5.5 Usage concentration through negotiation . 105

5.6 Concentration impact of avalanche costs . 105

5.7 Balancing switch-type concentration with congestion resolution 106

5.8 Cost functions for critical path delay optimization 109

5.9 Stored-select multiplexer position optimization 110

5.10 Simultaneous routing of multiple circuits to prevent overspecialization 112

5.11 Comparison of avalanche and greedy pattern adjacency 115

5.12 Comparison of avalanche and greedy pattern minimum hop distances 115

5.13 Comparison of avalanche and greedy pattern minimum delay distances 116

5.14 Comparison of avalanche and greedy pattern routed delays 116

5.15 Results of avalanche pattern extension on Gnl circuits 118

5.16 Results of simulated annealing switch-pattern optimization 121

5.17 Simulated annealing convergence . 121

5.18 Dependence of concentration on avalanche parameters 123

5.19 Patterns resulting from simultaneous and independent routing 126

5.20 Routed delays resulting from simultaneous and independent routing 126

5.21 Sensitivity to the choice of circuits used in exploration 127

xviii

LIST OF FIGURES

5.22 Impact of timing cost of switch types on their adoption 128

5.23 Results of routability-driven exploration . 129

5.24 Illustration of A* ineffectiveness and a possible remedy 134

5.25 Impact of avalanche costs on heap operations . 136

5.26 Example of general multi-level multiplexing structure exploration 138

6.1 Comparison of commercial and automatically-generated switch-patterns . . . 140

6.2 Flowchart of Avalanche Search . 141

6.3 Flowchart of Avalanche Search enhanced with regularization capabilities 141

6.4 Impact on performance of limiting the number of multiplexer sizes 146

6.5 Impact on routability of limiting multiplexer sizes 147

6.6 Impact on performance of limiting the number of multiplexer and fanout sizes 149

6.7 Impact on routability of limiting the number of multiplexer and fanout sizes . . 149

6.8 Impact on performance of enforcing multiplexer input sharing 151

6.9 Impact on routability of enforcing multiplexer input sharing 152

6.10 Impact on performance of minimizing wirelength 154

6.11 Impact on routability of minimizing wirelength 155

6.12 Illustration of fanout symmetries . 157

6.13 Impact on performance of enforcing turns and symmetries 158

6.14 Impact on routability of enforcing turns and symmetries 158

6.15 Impact on performance of enforcing hop-distance optimality 160

6.16 Impact on routability of enforcing hop-distance optimality 160

7.1 Potential benefits of direct connections between LUTs 164

7.2 Optional direct connections . 166

7.3 Impact of cluster permutation on direct connection alignment 168

7.4 Using static graphs to represent direct connection patterns 169

7.5 Distributing direct connections among target LUT inputs 170

7.6 Maximum Coverage analogy . 171

7.7 Calculating direct connection lengths . 174

7.8 Coverage-based filtering example . 175

7.9 Fixed-connectivity pattern evaluation flow . 178

7.10 Measuring direct connection delay . 179

7.11 Measuring decoupling multiplexer delay . 179

7.12 Measured delays . 180

7.13 Evolution of routed critical path delay with pattern growth 183

7.14 Pattern evolution . 184

7.15 Evolution of postplacement delay . 185

7.16 Per-benchmark critical path delay improvement 185

7.17 Measuring cluster permutation noise . 186

7.18 Maximum delay penalty of decoupling multiplexers 187

7.19 Distribution of cluster offsets . 188

7.20 Impact of adding intracluster direct connections 190

xix

LIST OF FIGURES

8.1 Influence of movement freedom on delay minimization 194

8.2 Schematic of the target architecture . 195

8.3 Position of the proposed algorithm in a standard CAD flow 195

8.4 Illustration of direct connection use being a placement problem 196

8.5 Necessity of placing individual LUTs . 197

8.6 Margin for improvement within general placement context 198

8.7 Evolution of critical path delay during simulated-annealing-based placement . 198

8.8 Inaptness of swap-based simulated annealing . 200

8.9 Sliding-window-based movable node selection 202

8.10 Movable node selection without spatial constraints 203

8.11 Definition of movement freedom . 204

8.12 Illustration of LP variables . 205

8.13 Illustration of timing graph compaction . 210

8.14 Flowchart of the complete dedicated placement algorithm 213

8.15 Illustration of the legalization process . 214

8.16 Pitfalls of the basic movable node selection LP . 216

8.17 Illustration of formulation tightening through node degree matching 219

8.18 Impact of movement freedom on critical path delay 224

8.19 Sensitivity to starting placement . 224

8.20 Example of an improvement subgraph and its alignment 227

8.21 Independent subpattern . 230

8.22 Performance of the independent subpattern with increased placement effort . 230

9.1 Estimate of combined improvement of all proposed algorithms 236

xx

List of Tables
4.1 Metal pitches . 65

4.2 Wire resistance and capacitance per unit length 66

4.3 Resistance of vias . 66

4.4 Transistor dimensions . 67

4.5 FO4 delays . 68

4.6 LUT delays . 68

4.7 Maximum wire spans . 75

4.8 Tile areas and routing channel track capacities . 86

4.9 Number of feasible channel segmentations across technologies 88

5.1 Properties of different switch-patterns . 114

5.2 Congested nodes at the end of routing . 117

5.3 Number of iterations until legal routing is produced 118

6.1 Generalization of results . 148

6.2 Impact of input sharing on average wire delays 151

6.3 Regularization ILP complexity . 161

8.1 Critical path delays . 223

8.2 Properties of improvement subgraphs . 226

8.3 Solution runtime . 227

8.4 Critical path delays of independent subpattern 229

xxi

1 Introduction

As Moore’s law is no longer delivering the performance improvements that it used to de-

liver over the past half a century, custom hardware architectures specifically tuned to the

requirements of the algorithm that they are intended to implement are increasingly looked

at as a promising way forward [Hen19; Lei20]. At the same time, however, attempts to keep

the Moore’s law afloat and squeeze out further benefits from technology have made custom

chip design prohibitively expensive, with costs reaching half a billion dollars at the 5nm

node [Bau20]. Hence, for majority of custom hardware designs, actually producing an Appli-

cation Specific Integrated Circuit (ASIC) is simply not an option. Instead, they have to rely on

reconfigurable integrated circuits such as Field-Programmable Gate Arrays (FPGAs).

For a long time, FPGAs have been considered a “poor man’s ASIC”, used mostly by those who

could not afford design and fabrication of a custom chip. There were two notable exceptions,

however: ASIC emulation and communications [Tri94; Tri15]. What made these domains

special is that architectures (especially in ASIC emulation) and even algorithms (especially

in communications) were so volatile that the ability to reconfigure the same physical chip

at no cost and with close to zero delay was very important. Since perhaps the single most

promising way of continuing to increase performance of computing systems is innovation at

the algorithm level [Lei20], more and more application domains begin to profit from hardware

reconfigurability that allows acceleration of the appropriate algorithm before it becomes

obsolete [Ans23]; machine learning that requires model modifications on almost a daily

basis [Jou21] is just one example. For this reason, traditionally fixed-functionality Systems on

Chip (SoC) are now also increasingly incorporating reconfigurable fabrics [Jar22].

One of the main reasons why performance of integrated circuits is not increasing as signif-

icantly as it used to is poor scaling of interconnect delays [Tok22]. Interconnect has always

been the Achilles’ heel of FPGAs [Tri94]. Whereas in an ASIC, connections are implemented

by simply tracing the appropriate metal, in an FPGA, it is necessary to stitch together pre-

fabricated wires by driving the right values onto select inputs of multiplexers between them.

Superficially seen, these multiplexers are the greatest difference between a programmable

wire of an FPGA and a fixed wire of an ASIC, and in the days when transistor delays dominated

1

Chapter 1 Introduction

metal delays, they were also responsible for bulk of the FPGA’s inferior performance [Tri94].

For decades, Moore’s law brought increases in transistor performance, while the negative

impact of diminishing crossectional area of wires on their delay was kept in check by techno-

logical innovation as well as simple reduction of wire length through increased logic density.

This enabled programmable interconnect architecture of FPGAs to gain performance benefits

without major modifications of what was essentially a reasonably straightforward extension of

Mask-Programmed Gate Arrays (MPGAs).

Around 7nm, this situation changed. If ASIC performance suffered from a surge in wire resis-

tance [Che14], FPGA performance suffered all the more, since the prefabricated wires were

loaded by a much higher capacitive load [Tok16] of all the multiplexers that grant the intercon-

nect architecture its reconfigurability. Hence, the latest generations of FPGAs from both major

vendors—namely the 7nm Xilinx/AMD Versal [Gai19] and Altera/Intel Agilex [Chr20; Cut21]—

reported the most significant changes to the programmable interconnect topology in almost

twenty years. Perhaps even more significantly, due to their highly regular structure, FPGAs

have been used by foundries to test and develop new fabrication processes for a number of

years [Tri15]; yet, they are now two technology nodes behind TSMC’s latest offering [TSM23].

This may suggest that the long-delayed major modifications to programmable interconnect

are difficult to pull off even for the industry leaders.

Why has custom hardware all of a sudden become so appealing? The answer is simple: general-

purpose platforms are no longer delivering the required performance. It may then be logical to

ask whether FPGAs themselves, which have traditionally also been general-purpose platforms,

should follow suit, with different devices being customized for different application domains.

In fact, this idea was pursued in academic research already decades ago [Bet95], and has

recently received increased attention from industry as well [Lan21; Sch22a], which positions it

as a viable way to overcome the aforementioned technological issues.

Let us briefly see how customization of the reconfigurable fabric can help in this regard. We

mentioned that the existence of multiplexers between prefabricated wires only superficially

appears to be the largest difference between FPGA and ASIC connections. At the 7nm node and

beyond, high resistance of wires makes their delay very sensitive to their length [Che14]. Given

that logic density of FPGAs is intrinsically much lower than that of ASICs—up to 40× [Kuo06]—

it should not be surprising that FPGAs struggle more than ASICs to keep the delays of their

significantly longer wires in check. Traditionally, FPGAs have combated the density gap by

hardening common functionality that is shared by majority of designs as fixed-functionality

hardware integrated with the reconfigurable fabric [Tri15]. The more general-purpose an

FPGA architecture is intended to be, the less likely it is to find functionalities that are common

to a majority of designs that it needs to implement, resulting in reduced opportunities for

density increase. By giving up on generality and moving towards application-domain-specific

reconfigurable architectures instead, it becomes possible to reap the benefits of custom func-

tionality hardening to a much greater extent. Apart from the immediate benefit of replacing

the Look-Up Tables (LUTs) with less general but considerably faster gates (or circuits) [Sch22a],

2

Introduction Chapter 1

this also produces the secondary effect of drastically increasing density and hence attenuating

the wire delay scaling issue. Of course, specialization comes at a price, as it undermines

the main economic principle driving FPGA adoption: the steep cost of new chip design is

amortized over a large number of users that can later customize it to their own needs; the

narrower this customer base becomes after specialization, the less room for development cost

amortization remains.

For the most part, recently published attempts at designing application-domain-specific FP-

GAs were limited to hardening new functionalities, inheriting the programmable interconnect

architecture from existing general-purpose FPGAs [Aro21; Lan21; Sch22a], despite the obvious

potential for also customizing the programmable interconnect architecture itself [Lan21].

Given that interconnect is the main performance bottleneck, this too suggests that designing

good programmable interconnect architectures is much more difficult than it may seem at

first—arguably even more so than designing new hardened fixed-functionality blocks.

One of the reasons why this could be the case is that functionality hardening is very similar to

standard ASIC design and can largely rely on the same design methodologies and automated

design flows [Yaz19]. On the other hand, programmable interconnect architecture design

is a problem which is entirely specific to reconfigurable architectures. Since for most of the

past two decades, this problem has not been all that relevant, as existing solutions could be

effectively scaled with only minor modifications, comparable design automation tools that

could help solving it have not been developed.

As we have already mentioned, hardware reconfigurablity is experiencing a surge in popularity,

from edge devices offering a few thousand LUTs for less than half a dollar [Ren21], through re-

configurable portions of traditionally fixed-functionality SoCs [Ach21], to high-end datacenter

devices [AMD23]. This drives a need for designing efficient programmable interconnect archi-

tectures optimized for many different objectives and under many different constraints. With

more and more companies and individuals becoming involved in designing reconfigurable

hardware, it is possible that this will speed up innovation in programmable interconnect

architecture as well, which is required for continued performance improvements at latest

technology nodes. After all, crowdsourcing human ingenuity has led to impressive success

in other domains [Eib12]—far beyond what a small group of leading experts was capable of

achieving alone.

Before raising too high the hopes that democratizing the effort of programmable interconnect

design is going to solve all the challenges, it is worth mentioning that the Versatile Place and

Route (VPR) project [Bet97] democratized access to very flexible FPGA architecture evaluation

tools, similar to those used at Altera/Intel [Lew03], more than 25 years ago. Arguably, VPR

is less amusing for non-FPGA enthusiasts than Foldit [Cen23] is for nonbiologists and non-

chemists. It certainly also has a much steeper learning curve and a much smaller user base.

Hence, it is not possible to use it as a good measure of the effect that turning programmable

interconnect design problems into engaging puzzle games with large following in the general

3

Chapter 1 Introduction

public could have. Nevertheless, it provides the best available measure of what effect could

be expected when more professionals are involved in the effort and this does not seem all

that promising: a vast majority of academic FPGA architecture work still largely relies on

programmable interconnect design decisions that were reached towards the end of the previ-

ous century. Similar trends can be observed from the recent rise in access to highly flexible

ready-for-fabrication FPGA synthesis tools [Tan19a; Koc21]. Although these tools claim to

allow just about any programmable interconnect architecture to be implemented, the actual

attempts at their use again mostly either rely on decades-old academic conclusions [Tan19],

or architectures used in commercial FPGAs that are no longer under patent protection after

twenty years of exploitation [Koc21].

Perhaps the problem of programmable interconnect design is too complex for humans to

reason about it effectively. Or maybe it is just too uninteresting for people to want to be

bothered by it when they can instead design blocks at a higher level of abstraction as computer

architects do. Whatever be the reason, we argue that leaving programmable interconnect

design to a manual effort is very likely to leave a lot of optimization potential untapped in

many different applications of reconfigurable hardware. Moreover, spending human ingenuity,

time, and effort on solving a problem that lags so much in terms of design automation when

compared to other problems occurring in reconfigurable architecture design is simply unnec-

essarily wasteful. Hence, we task ourselves with developing missing algorithms for automating

several fundamental problems of programmable interconnect design. While we cannot judge

whether these problems are difficult for humans to reason about, it is well known that they

are computationally difficult. Additionally, their solution space is very large, in any instance

of practical relevance, and comparing any two solutions is computationally very expensive.

Hence, brute-force approaches, or those based on various meta-heuristics that have been

successfully applied to other aspects of FPGA architecture design are ineffective. Fortunately,

programmable interconnect also possesses several specificities which can be leveraged to

efficiently navigate these large design spaces, which is precisely what we do in this thesis.

1.1 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we make a quick tour of historical

evolution of FPGAs, introducing all of the fundamental principles of reconfigurable archi-

tectures along the way. This provides a deeper understanding of why FPGAs look as they do

today, as well as how the fundamental technological changes occurring at the moment prevent

FPGAs from simply continuing on their previous evolution trajectory.

In Chapter 3, we take a brief step back from the constraints of practical FPGAs and precisely

define the problem of programmable interconnect architecture design in its most abstract

sense. This will serve as a useful guide for understanding the nature and scope of the methods

that will be presented in the main body of the thesis. We also provide more background infor-

mation specific to Island-Style FPGAs [Bet99]—a class of FPGA architectures that encompasses

4

Introduction Chapter 1

the vast majority of modern commercial devices and that will thus also be the main focus of

this thesis. Finally, we explain the details of a typical FPGA CAD flow.

To be able to design a programmable interconnect architecture that is appropriate for a given

fabrication technology, it is first necessary to understand how this technology impacts per-

formance of different architectures. In Chapter 4, we introduce a new physical modeling

framework that we developed to capture the effects of resistance scaling at advanced FinFET

nodes going all the way down to 3nm. The framework relies on state-of-the-art resistance

models combined with realistic floorplans, both raised to a level of abstraction that is ap-

propriate for rapid architecture modeling and evaluation. We use the framework to revisit

one of the most fundamental, yet simplest architectural exploration experiments that have

been performed in the previous decades: finding the optimal logic cluster size. The results

demonstrate how changes in technological parameters can influence even such fundamental

decisions and also help explain some of the modifications of the programmable interconnect

architecture introduced in the Intel Agilex FPGAs.

Experiments conducted in Chapter 4 confirm the prior observation of Lin et al. [Lin10] that

increased wire resistance in scaled technologies reduces the maximum feasible length of chan-

nel wires. This in turn dramatically reduces the search space for the problem of optimizing

channel segmentation, even making exhaustive exploration possible. On the other hand,

rising resistance increases the need to reduce the capacitive load on channel wires exerted by

routing multiplexers, and shorten wires at the lowest and most resistive metal layers [Chr20].

This shifts focus to the problem of switch-pattern design. However, due to design space explo-

sion, this problem is significantly more difficult to tackle through the traditional black-box

approach where place and route algorithms are used to evaluate individually listed solutions.

In Chapter 5, we present a novel method that overcomes this fundamental scalability barrier by

avoiding explicit enumeration of individual solutions. Instead, it relies on implicitly represent-

ing the entire design space in the Routing-Resource Graph—a datastructure used to represent

the programmable interconnect architecture to the PathFinder routing algorithm [McM95],

which is used in majority of modern FPGA routers in academia and industry alike [Kap12]. By

slightly modifying its cost function so that the negotiation principle normally used to drive

signals away from congested regions of the FPGA can be applied in reverse to make signals

converge on a common set of switches, we were able to essentially let PathFinder itself design

the switch-pattern, thus entirely avoiding enumeration of individual solutions.

Commercial FPGAs have been able to leverage high levels of regularity of the architecture to

enable highly optimized full-custom layouts with limited engineering effort. Ability to do this

has been identified as key for preventing the gap between FPGAs and ASICs from deepening

further, which would have been the case if FPGA vendors were to employ a standard-cell

approach instead [Kim17]. In Chapter 6, we extend the switch-pattern exploration technique

presented in Chapter 5 so that it only produces solutions which satisfy any arbitrary definition

of regularity that can be encoded as a set of constraints of an Integer Linear Program (ILP). We

then analyze the impact of restricting solutions to those respecting several forms of regularity

5

Chapter 1 Introduction

that are known to appear in commercial architectures and demonstrate that this does not

significantly reduce the architecture’s performance. With this extension, we obtain a com-

plete algorithm for fully automated design of switch-patterns that are suitable for immediate

fabrication, thus solving a fundamental problem in programmable interconnect design that

has long been open. Nevertheless, the current implementation of the algorithm suffers from

certain scalability limitations which still make it impractical for designing FPGAs with more

than a few thousands of LUTs. Chapter 5 also includes a detailed analysis of the origins of

these limitations and suggests potential ways to overcome them.

As we have mentioned, the important differences between reconfigurable connections of

FPGAs and fixed connections of ASICs are no longer limited to the existence of routing

multiplexers: the much lower logic density of FPGAs makes their wires significantly longer

and slower. Nevertheless, this does not mean that multiplexers do not further significantly

slow down a signal that has to traverse them. Already since the very first FPGA—the Xilinx

XC2064 [Xil93]—FPGAs employed a small number of fixed connections that could directly

connect neighboring LUTs, without passing through any multiplexers of the programmable

interconnect. In scaled technologies, such wires have an additional benefit in that, unlike the

wires of the programmable interconnect, they are not loaded by any routing multiplexers used

for steering signals to other wires, which makes them much faster. Putting aside the low logic

density that still significantly elongates them, these direct wires are as close as one could get

to an ASIC connection in a reconfigurable setting. Nevertheless, for the fixed wires to be really

useful, FPGA CAD algorithms must be able to map user circuits in such a way that their critical

paths are implemented using them. Most commercial FPGAs have included only very simple

direct-connection patterns such as cascades, which limited their impact. In Chapter 7, we

present an efficient algorithm for automated design of direct-connection patterns with no

restrictions other than the maximum connection span and preserved tilability that is required

for island-style FPGAs. By adopting a “minimum harm” approach, in which direct connections

are always an addition to the flexibility of programmable interconnect, never taking away from

it, we were able to relate the problem to that of Maximum coverage and develop a very fast

greedy algorithm for solving it.

Maximizing the utility of direct connections between LUTs requires appropriately aligning

the endpoint LUTs of a connection of the circuit being implemented with the endpoint LUTs

of a direct connection of the FPGA. In Chapter 8, we present a custom ILP-based detailed

placement algorithm to solve this problem. It leverages the sparsity of optimized direct-

connection patterns to obtain an efficient ILP encoding. The new algorithm more than

doubles the effect of direct connections on critical path delay reduction.

Lastly, in Chapter 9, we draw the final conclusions and comment on future work.

6

2 Where Did the FPGAs Come From
and Where Are They Headed?

Field-Programmable Gate Arrays (FPGAs) emerged in mid 1980s, providing a way to produce

complex custom hardware at one’s desk. The concept of hardware reconfigurability that was

thus created is truly fascinating: an integrated circuit can be customized with no manufactur-

ing steps whatsoever; all that is needed is loading an appropriate configuration into the FPGA’s

memory. The key principle that made this possible was the use of stored-select multiplexers

for connecting prefabricated logic blocks. However, this opened two fundamental questions

of reconfigurable architecture design: 1) which logic blocks should be prefabricated and 2)

how should the stored-select multiplexer network be organized.

In this chapter, we give a brief overview of the historical development of FPGAs, from their

precursors to the present day. Understanding the conditions that have been influencing the

approach taken by FPGA architects in answering the two fundamental questions will enable us

to reason about how the profound changes in these conditions that are happening today may

influence the future of reconfigurable architecture development. In particular, we shall see

that for a long time, fabrication technology trends favored focusing on answering the first fun-

damental question—which logic blocks should be prefabricated— while leaving the attempts

to answer the second fundamental question—how should the network of stored-select multi-

plexers be organized—to relatively minor incremental improvements. Decades of prioritizing

functionality hardening, that can often leverage well-established VLSI design automation

methods and algorithms, at the expense of programmable interconnect architecture design,

meant that comparable design automation methods have not been developed for solving this

difficult problem. It is the purpose of this thesis to explore some avenues towards rectifying

this issue, while the purpose of this chapter is to convince the reader that reconfigurable

architectures have finally reached a point when these methods are truly needed.

2.1 Mass Production at a Micro Scale

Soon after the integrated circuit was invented in 1958 [Sai17], entire logic gates became a

single component that could be placed and connected to other gates on a printed circuit board

7

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

one cell

non-programmed gate array cell internals
programmed gate array
after addition of the last metal layer

Figure 2.1: Ferranti ULA 2000 Mask-Programmed Gate Array [Fer77]. Courtesy of Ferranti.

in order to form a more complex circuit [Hal96]. Advances in technology quickly brought

further miniaturization, which allowed more and more gates to be integrated on a common

chip. Due to electrical limitations, these gates had a small number of inputs—typically up to

four [Mor71]. Moreover, gates in the same technology were composed of the same elements

in the pull-up and pull-down networks: for instance, resistors in the former and transistors

in the later. Hence, it was natural to expect that different circuits would look similar when

metal connections are neglected. If this similarity could be pushed to the extreme so that

different integrated circuits would be identical with respect to the arrangement of the basic

elements on the chip, they could share all of the front-end-of-line (FEOL) fabrication steps,

greatly reducing the manufacturing costs. By late 1960s, this idea materialized in the so called

Mask-Programmed Gate Arrays (MPGAs) [Tri94].

Figure 2.1 shows one such gate array: the Ferranti ULA 2000. ULA 2000 was composed of a

regular grid of cells, each containing a handful of transistors and resistors. Depending on

how its elements were connected together, one cell could implement a 2-input NAND gate, a

3-input NOR gate, a 2-input XOR gate, or it could be combined with neighboring cells to create

more complex blocks such as flip-flops [Fer77]. Spreading the rows and columns of the array

left sufficient space for wires connecting different cells to be traced without intersecting with

those that are traced on top of the cells to convert them to appropriate gates. Through careful

prefabrication of crossunder metal segments, it was possible to complete a circuit on ULA 2000

using only one additional custom metal layer [Ram80; Fer84]. Requiring only one mask in

turn meant that a customized chip could be obtained within a few weeks from completion of

the design, and at a cost of merely several thousands of dollars [Tri94].

Mass production of the same cell across a large chip was possible because even in a custom

Application Specific Integrated Circuit (ASIC), different gates were composed of the same

elements naturally occurring with comparable density across the entire chip, due to the typical

gate’s small input count. The ability to create any gate at any location on the MPGA that this

mass production of the same generic cell created was is turn key for limiting the gap between

8

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cellA

B

channel
tracks

segments of a
vertical channel

Figure 2.2: Tracks and segments of an MPGA. Restrictions on minimum metal pitch constrain wires in
channels of an MPGA to tracks. When connections are forced to turn only at logic cell corners, routing
channels are broken into straight segments [ElG81]. Specifying a connection between two cells then
amounts to listing the consecutive track-segment pairs (blue) connected by additional metal (red).

MPGAs and custom ASICs. If different, already specialized gates were prefabricated at differ-

ent locations of the array instead, that would have introduced placement constraints when

mapping a circuit onto the array that do not appear in an ASIC implementation, potentially

drastically increasing the length of connections. Unlike today, in 1970s this may not have

been a particular concern for performance, because transistor delays dominated metal delays.

However, longer connections would have called for wider routing channels, reducing the

MPGA’s density and increasing its cost.

2.2 Discarding the Last Mask

Removing the need for that last mask would mean that the prefabricated gate array would not

have to reenter the factory for customization. This is precisely the problem that FPGAs solved.

Since every Boolean function can be expressed using binary NAND operations, replacing

the logic cell with a 2-input NAND gate—as some early FPGAs have done [Ros93]—would be

sufficient, if suboptimal [Sin92]. The more challenging problem is how to connect the cells

together to construct the required circuit, without using any fabrication steps. Hence, we first

focus on how SRAM-based FPGAs [Hau07] solved this problem.

2.2.1 Turns on a Grid

Connecting together different cells of an MPGA amounts to tracing wires through channels

between its rows and columns. Let us introduce a simplified model of this process, adopted

9

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

vertical
routing
channel

horizontal
routing
channel

prefabricated wires

Figure 2.3: Prefabricated wires in routing channels of XC2064 [Xil93]. Determining how many wires
to prefabricate is a similar problem to determining the spacing between rows and columns of an
MPGA, and is usually solved experimentally [Ros89; Tri97], although theoretical bounds have been
derived [ElG81].

from El Gamal [ElG81]: each wire can only take a turn at a corner of a cell, but it can also

continue in the same direction. Furthermore, wires are constrained to discrete tracks, which

approximate the metal pitch constraints. This is illustrated in Figure 2.2. Restricting wires

to change tracks only at cell corners, where decisions about turning or continuing are made,

splits each channel into straight segments. Then, connecting two cells together reduces to

choosing consecutive track-segment pairs that will form the corresponding connection.

2.2.2 Prefabricated Wires

In an MPGA, spacing between rows and columns of logic cells is dimensioned in such a way

that the routing channels can accommodate as many tracks as are expected to be required by

the most demanding circuits that are to be mapped on the array [ElG81]. For any particular

circuit being implemented, not all tracks will be used in every segment. However, selectively

fabricating wires in some track-segment pairs, according to the circuit’s needs, is conceptually

equivalent to fabricating wires in all track-segment pairs and leaving the unused ones hanging;

this is precisely the approach taken by FPGAs, where wires cannot be selectively fabricated.

For example, the very first FPGA—Xilinx XC2064—contained four prefabricated wire tracks in

each horizontal channel and five tracks in each vertical channel [Xil93] (see Figure 2.3).

2.2.3 Stored-Select Multiplexers

What remains is to connect different prefabricated wires together to form connections between

cells. Conceptually, when deciding which set of prefabricated wires is going to form the

connection between two particular cells, we are selecting one out of a multitude of possible

10

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

connectivity

switch matrix

horizontal
routing
channel

vertical
routing
channel

switch

Figure 2.4: Programmable switches of XC2064 [Xil93]. Forming connections using prefabricated wires
amounts to selecting the appropriate predecessor of each wire. This can be done post-fabrication by
driving each wire with a multiplexer. Storing select inputs of each multiplexer in SRAM cells retains the
selection until the next customization of the chip.

SRAM cell

I3

I2

I1

I0 Y
4:1

I3

I2

I1

I0

Y

memory

Figure 2.5: Stored-select multiplexer. The basic building block of programmable interconnect is a
multiplexer with select inputs stored in a memory. It is usually implemented using pass transistors
or transmission gates, with gate terminals driven by SRAM cells [Lew12; Chr20]. If the output is not
buffered, the switches that constitute the multiplexer are bidirectional. SRAM cell count can be reduced
by breaking a larger multiplexer into a two-level tree, where multiplexers in the first level share SRAM
cells [Lew16].

predecessors for each wire. In an MPGA, the possible predecessors are all wires in each

segment that ends in the vicinity of the start of the segment in question; once the appropriate

predecessor is selected, the connection is realized by a metal trace. Of course, FPGAs in

which all resources are prefabricated do not have this possibility. Selecting one of the possible

predecessors can instead be achieved dynamically by driving each prefabricated wire by a

multiplexer, the data inputs of which are provided by the potential predecessors that should be

selected from. Achieving the same flexibility of connectivity as is possible in an MPGA would

require a wide multiplexer at the start of each prefabricated wire, taking inputs from all wires

that end in its vicinity. This is of course not very practical, as it would make the multiplexers

too large and slow, so typically, only a subset of the potential predecessors is connected to

each multiplexer. Connectivity of XC2064 is shown in Figure 2.4.

11

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

Multiplexers in an FPGA substitute solid metal in an MPGA. Hence, once the predecessor of

each prefabricated wire has been determined for the particular customization of the FPGA, this

selection should be made permanent until the next customization is applied. For this reason,

the select inputs are provided by SRAM cells, in which the predecessor selection is stored, as

shown in Figure 2.5. In practice, multiplexers are implemented using pass transistors [Lew12]

or transmission gates [Chi13; Chr20]. Since both of these components are bidirectional, if

the multiplexer’s output is not buffered, the entire multiplexer becomes bidirectional. Use of

bidirectional, nonbuffered switches was common in early architectures, such as XC2064, but

has since been abandoned [Lew03; Lem04].

2.2.4 What about the Logic Cells?

As we have already mentioned, a key feature of ULA 2000 was that all cells were identical and

could be transformed into different gates. This reduced placement constraints compared

to the situation in which different cells contain different prefabricated gates. In particular,

each cell of ULA 2000 could implement one NAND-2, one NOR-3, or one XOR-2 [Fer77].

Other gates could be constructed by combining neighboring cells. Specialization of each

generic cell was obtained by appropriately connecting the prefabricated elements. How can

we achieve the same without using any additional masks? One idea could be to connect

the prefabricated elements through programmable switches (stored-select multiplexers), as

was done with intercell routing. Of course, the overhead of adding a pass transistor with

the gate driven by an SRAM cell in order to form a programmable connection between two

other prefabricated transistors is too large, although this idea has been pursued in antifuse-

based one-time programmable FPGAs [Mar92]. Hence, we need to coarsen the granularity of

components connected through programmable interconnect to better amortize its overhead.

This is a general principle, as the coarser the granularity is, the less costly the stored-select

multiplexers become in comparison with the logic blocks. Of course, there is a trade-off since

blocks that are too large are not easy to efficiently utilize. Inefficient utilization does not only

result in wasting the silicon area required for implementing the logic block itself, but also that

of the routing multiplexers that provide inputs to it.

One idea for coarsening the granularity to approximately match the flexibility of a cell that

exists in ULA 2000 could be to simply lay out in every cell the NAND-2, the NOR-3, and the

XOR-2 and then use a stored-select multiplexer to decide post-fabrication which of the three

gates will be implemented by the particular cell. This is illustrated in Figure 2.6.

The aforementioned inefficiency of using the compound block is immediately clear: three

gates are fabricated but only one of them can actually be used at a time. Moreover, transistors

from neighboring cells of ULA 2000 can be combined to create much more efficient imple-

mentations of other 3-variable Boolean functions than what can be obtained by expressing the

function in terms of the three basic gates prefabricated in the compound block of Figure 2.6.

Fortunately, every Boolean function can be implemented using a tree of 2:1 multiplexers,

12

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

B A A

B

CB

A

B

C

VDD

A B

VDD VDD

SRAM cell

Y

A

B

A

Figure 2.6: Compound gate. The figure shows a 3-input cell composed of three gates that a single cell
of ULA 2000 can implement. A stored-select multiplexer is used to select which gate is implemented
by each cell, post-fabrication. Assuming that each SRAM cell is composed of five transistors [Koc13],
the compound gate requires 34 transistors (not including buffers) and can implement three of the 256
possible 3-variable Boolean functions.

where the select inputs are provided by the function’s variables in both polarities, and the data

inputs reduce to constants corresponding to the appropriate entries of the function’s truth

table [Sha49]. The multiplexer tree is identical for all functions of the given number of variables

(although minimization is possible [Bry86]) and the only difference between implementations

of different functions are the constants driving the data inputs. Hence, this multiplexer tree

can be used to form the basis of the reconfigurable cell. The only missing part is the ability to

select either a 0 or a 1 at each data input. This is readily provided by SRAM cells, resulting in

the so called Look-Up Table (LUT)—a generic programmable gate which forms the basis of

most current FPGAs [Bou21].

Schematic of a 3-LUT is shown in Figure 2.7. It requires almost twice the number of transistors

as the compound cell of Figure 2.6, but it can implement any of the 256 3-variable Boolean

functions, as opposed to merely three. Doubling the 3-LUT and extending the multiplexer tree

by one level creates a 4-LUT. As we have mentioned, due to electrical constraints, gates rarely

have more than four inputs. Hence, manually implementing any typical existing circuit on

an FPGA based on a 4-LUT could be trivially achieved by swapping each gate for a LUT. This

was likely very important for early adoption of FPGAs, before dedicated technology mapping

algorithms were developed for them. Although such algorithms [Con94] enable much better

implementations, it was later experimentally determined that 4-LUTs in fact also provide the

best trade-off between efficient utilization of the logic cell and reduction of programmable

routing area [Ros89; Ahm00].

13

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

A

Y

C C

BB

A

C C C C C C

BB
mux 2:1

Figure 2.7: Schematic of a 3-input Look-Up Table (LUT). Every k-variable Boolean function can be
implemented using a k-level full binary tree of 2:1 multiplexers [Sha49]. SRAM cells can be used for
storing the truth table entries, which provide the data inputs to the multiplexer tree. Assuming that
each SRAM again takes five transistors to implement, a 3-LUT can be realized using 60 transistors, not
counting buffers. This is almost twice as many as for the compound gate of Figure 2.6, but a 3-LUT can
implement all 256 3-variable Boolean functions.

Y

K-LUT
FF

D Q
K

Figure 2.8: Basic Logic Element (BLE) [Bet99]. Most FPGA architectures pair each LUT with a bypassable
flip-flop (FF). Some newer commercial architectures allow the flip-flop to have independent input and
output, to better support heavily pipelined circuits [Lew13; Cha15].

It is worth noting that the compound block of Figure 2.6 does solve one important issue,

however: shorting the inputs of the three prefabricated gates makes them reuse the same

stored-select multiplexers to bring the signals in from the routing channels. Hence, the afore-

mentioned problem of silicon area taken by the stored-select multiplexers being wasted when

logic blocks are underutilized will never occur. This principle of several blocks functioning as

a shadow of one another has been demonstrated to bring great benefits when the multiplexer

area dominates that of the logic circuitry itself [Jam06; Par13].

Most FPGAs, including the XC2064, also include bypassable hardened flip-flops, as very

early on, it was determined that implementing flip-flops using LUTs connected through

programmable routing is too costly [Ros89]. The simplest way to pair a LUT and a flip-flop

that is often used in academic work [Luu14] is shown in Figure 2.8.

14

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

2.3 Price of Removing the Last Mask

Removing the last mask of course comes at a price. LUTs are slower and larger than mask-

specialized gates and routing multiplexers considerably slow down the interconnect, already

negatively impacted by the increased length of wires resulting from lower logic density. In

early 1990s, FPGAs were 2–3 times slower than MPGAs [Tri94]. The gap with ASICs has been

even larger. Kuon and Rose identified that an FPGA implementation of a given circuit is on

average 3.2× slower than that in standard cells [Kuo06]. Hennessy and Patterson state a 10×
performance advantage of ASICs vs FPGAs for modern high-performance designs [Hen19].

A logical question arises: who would want to pay such a high penalty for hardware reconfig-

urability? Xuantie-910 CPU developed by Alibaba [Che20] provides one good illustration. The

64-bit CPU based on a custom-extended RISC-V ISA was capable of running at 200 MHz on a

16nm Xilinx VU9P UltraScale+ FPGA, while an ASIC implementation on a 12nm TSMC nodeI

was capable of reaching clock frequencies of 2–2.5 GHz, resulting in a 10–12.5× performance

gap, in line with the claims of Hennessy and Patterson. Yet, even the FPGA implementation

was able to achieve a 20% higher per-core performance than a 14nm Intel Xeon Platinum 8163

CPU on a particular set of relevant tasks [Che20]. All customers who cannot afford to design

and produce an ASIC could benefit from the 20% increase in performance offered by the FPGA

implementation of the custom ISA extension. On the other hand, those who can afford a cus-

tom ASIC can still benefit from early deployment of the new custom hardware, while waiting

for ASIC design and production, which can even take years in advanced technologies [Ans23].

For companies of the scale of Alibaba, such early deployment likely makes a very significant

difference in profits. Hence, FPGAs provide the first stage in a two-stage custom hardware

deployment pipeline. With cost of ASIC development reaching unprecedented heights in the

most recent technologies [Bau20], for an increasing number of users, moving to the second

stage is no longer even feasible and FPGAs remain their only choice.

It is important to note that although the 20% performance increase is already considerable,

benefits of FPGA-based custom hardware can be much higher, when the level of customization

exceeds custom ISA extensions [Bec17]. Intuitively, FPGA and ASIC implementations of the

same circuit can be compared analogously to a sculpture composed of Lego bricks and that

cast in bronze (Figure 2.9): a bronze sculpture of a human sitting in a certain pose will always

be closer to the ideal than a sculpture of a human sitting in that same pose made out of Lego

bricks. However, the Lego-brick sculpture will be much closer to the ideal than an equestrian

sculpture cast in bronze. In general, provided that one has no access to a foundry that could

cast their bronze sculpture, or time to wait for the mold to be made and casting completed,

the more distant their design is from all bronze sculptures that can be readily bought, the

more advantageous having Lego bricks will be. The same holds for FPGAs where LUTs and

multiplexers produced in large quantities can be thought of as bricks that are connected

together as needed.

ITSMC’s 12nm is a variant of the 16nm process [TSM23].

15

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

(a) Thinker (bronze) (b) Thinker (Lego) (c) Horseman in a Storm (bronze)

Figure 2.9: Sculpture analogy. The Thinker made of Lego bricks (Figure (b); sculpture by Nathan
Sawaya, photo courtesy of Simone Ramella) resembles less a person sitting and thinking than Rodin’s
bronze original (Figure (a); courtesy of National Gallery of Art, Washington). However, it is much closer
to it than Meissonier’s Horseman in a Storm, also in bronze (Figure (c); courtesy of National Gallery
of Art, Washington). Much like Lego bricks, FPGAs cannot compete with ASICs that implement the
same circuit, but they offer an easy way to implement a different circuit, potentially much closer to the
requirements than any existing ASIC.

2.4 Race for the Latest Technology

As we have just mentioned, for many FPGA users, producing an ASIC is not an option. Never-

theless, there are users who could afford ASIC development but who may still opt for an FPGA

implementation instead. Reduced development time, easier testing, possibility to apply post-

fabrication bug fixes and design upgrades (as no fabrication exists as such) are the commonly

listed inherent benefits of hardware reconfigurability that have no counterpart in ASICs [Tri94].

Yet, there is another appeal that FPGAs have traditionally been able to offer. Assume that

a company can afford to design and produce an ASIC in technology X , whereas the latest

available FPGA that they can purchase is produced in technology Y . If Y is significantly newer

than X , the aforementioned performance gap between FPGA and ASIC implementations

could be substantially reduced. This was especially true in the era of Dennard scaling in

which FPGAs emerged, when clock frequency was increasing at a rate of about 1.7× every

two years [Lei20]. This meant that FPGAs could close a 4× performance gap by being only

three nodes ahead of the ASIC that the customer could afford. By spreading the cost of moving

one and the same chip design to the next technology node over very large volumes sold to a

large number of customers, FPGA vendors were traditionally able to remain at the forefront

of technology, and even help the foundries push it ahead [Tri15]. While this was essential

for enabling FPGAs to recover some of the inherent penalty of hardware reconfigurability, it

also created an interesting situation for FPGA vendors themselves. In his interview at the

Computer History Museum, Stephen Trimberger recalls how designing a new FPGA looked

like at the time when Moore’s law was in full swing [Com17]:

And so, you know, it was interesting because we didn’t have any time. A lot of decisions that we

would like to have data for, my rule was... So here’s the thought experiment: assume Moore’s Law

is 2× in 24 months. Call it 25 months. Call it 20. Okay, well, that’s like four or five percent per

16

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

month. If you work at a decision that’s going to make less than a four or five percent difference,

and it takes you more than a month, it doesn’t matter what your answer is. If you have a decision

that’s going to make one percent difference, if it’s going to take you more than a week, it doesn’t

matter. And so we had a lot of these things that came back and said: “Gee this, you know, this

sounds like a five percent thing. Can we get that done?” And so I squeeze it all down. Said,

“Look, we can come up with an answer for that but really, the right thing to do is pick one. So

we’re going to pick one. We’ll pick this one because it’s power, or simple or whatever it was.”

And boom! Nothing clears up decision-making like realizing you don’t need any of the data.

<laughter> And yeah, oh yeah, we like to run all these test cases and so on and so forth. How

long will that take? Four months. Is it going to make 25 percent difference? No. So we just flew

through that, and we actually made a lot of really good decisions because we had a lot of people

with expertise at that point, which we didn’t have five years earlier because there just wasn’t that

much expertise in the FPGA business.

This story illustrates some very important points. First, it explains why for a long time there

were relatively few and minor changes in programmable interconnect, as we will see shortly—

anything but an incremental change of the previous architecture would have called for a

significant amount of time, over which the potential benefits would have become available

through simple scaling of the previous design. Hence, the most profitable decision that FPGA

vendors could make in those days was to ensure that transition to the next technology node is

never late. As Figure 2.10 shows, for a long time, they were very successful at that.

2.5 What Happens when the Road Gets Bumpy?

When the benefits of moving to a new technology node can no longer be reaped by simple

scaling of the previous design with some minor modifications, all of a sudden, all those ar-

chitectural changes that promise an otherwise forgettable 4% performance increase get a

different appeal. Naturally, time has to be afforded for coming up with promising modifi-

cations and testing them, which is likely to lead to a delay in an FPGA transitioning to the

latest technology node. As explained by Dr. Trimberger, the process of proposing promising

modifications can be greatly sped up by experience and intuition of the people involved in

designing the next FPGA architecture. The problem arises, however, when technology changes

so drastically that intuition developed through prior experience becomes largely inapplicable.

Since the foundries themselves are increasingly struggling to keep performance and den-

sity increasing from node to node, they are relying on various one-time scaling boosters and

Design-Technology Co-Optimization (DCTO) to an extent that is far greater than before [Tok22;

Mor23]. This deepens the differences between consecutive technologies, making it difficult

to develop intuition about which architectural modifications would pay off. Perhaps that

explains why, for the first time in a number of decades, state-of-the-art FPGAs are several

technology nodes behind the foundries’ latest offering.

17

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

/7

Figure 2.10: Race for the latest technology. The plot shows the year of announcement of major FPGA
families from Altera/Intel (orange and red) and Xilinx/AMD (green), compared to the start of production
of different technology nodes by TSMC [TSM23] (blue). Until the 16nm node, FPGAs were able to
closely follow the technology development. Certain delays occurred at 7nm and as of 2023, there are
yet to be any major architectures announced at 5 or 3nm. Data about Stratix architectures is adopted
from Intel’s website [Int23], while the remaining points are adopted from Design & Reuse [Des04; Des05;
Des06; Des09; Des10; Des14; Des14a; Des15; Des15a; Des18; Des19]. Intel’s 10nm node is considered to
be equivalent to TSMC’s 7nm [Cut21].

2.6 A New Age for FPGAs

Looking at the timeline of Figure 2.10 may trigger a conclusion that the days of hardware recon-

figurability are numbered. Not at all so! When FPGAs first gained popularity towards the end of

the previous century, producing an ASIC was more than an order of magnitude cheaper than it

is today [Bau20]. MPGAs also provided a 2–3× faster alternative, for merely a few thousands of

dollars and with only a few weeks of delay. Yet, even then many customers needing lower pro-

duction volumes chose to use FPGAs. Not only was custom hardware much more affordable

then than it is today, but it was also much less needed: for most applications, it sufficed to wait

for the next generation of general-purpose processors fabricated in the next technology, to

obtain a drastic improvement in performance. Today, this possibility is long gone [Tho21] and

hardware customization is considered one of the predominant avenues towards continued

performance improvement [Hen19; Lei20]. Given the aforementioned prohibitive rise in cost

of designing a new ASIC, reaching half a billion US dollars in latest technologies [Bau20], most

often, FPGAs provide the only viable platform for this customization.

Admittedly, many of the early adopters of FPGAs were using them for the inherent benefits

of hardware reconfigurability: ability to modify the design very quickly and at no cost. This

was and continues to be essential in the ASIC emulation domain, where the designs are under

18

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

development or verification, making it unacceptable to wait several weeks for an MPGA to

arrive, or pay the price even of a one-time field-programmable device, just to see the effect of

modifying a single line of code [Tri94; Cad21]. These benefits have also been highly appealing

in the communication domain, where protocols and algorithms may not be completely

defined at the time of hardware development [Hil93; Tri15].

Today, these quickly evolving application domains that were able to profit from rapid cus-

tomization at no redeployment cost offered by FPGAs are supplemented by machine learn-

ing [Ans23]. For example, Denton and Schmit of Google Brain demonstrated that custom

spatial implementation of specific machine learning models can achieve much lower latency

compared to a general ASIC accelerator or a GPU [Den22]. Designing a new ASIC for each

new machine learning model that may appear on a daily basis [Jou21] is far from feasible,

but FPGAs provide a suitable alternative. The advantage over a general ASIC accelerator is

increased further when LUTs of the FPGA are swapped for a custom bit-serial arithmetic

block [Sch22a]. Note that with this change the FPGA is no longer general-purpose, but it still

essentially remains an FPGA, as we shall explain in more detail in Section 2.8.

2.7 FPGA or ASIC? No Longer a Question!

The bottom line is that reconfigurabile architectures are ideal for accelerating tasks for which

the algorithms change at such a pace and bring such improvements, that the ability to avoid

a delay in adoption of the latest algorithm quickly offsets any inherent cost of hardware

reconfigurability. On the other hand, for tasks with mature algorithmic and architectural

solutions, where probable modifications have already entered the “diminishing returns” region

of the performance increase curve, ASICs are more suitable, if they can be afforded.

Luckily, with current levels of VLSI miniaturization, and especially with the emergence of

chiplets [San23], one no longer has to choose between reconfiurable and fixed platforms—it

is possible to simultaneously have both. For example, a user of an FPGA may want to boot

Linux for which they would need a CPU core, without any custom requirements. Of course, a

general-purpose FPGA can easily implement a CPU, but as we have already mentioned, that

CPU would have anywhere from 3.2 to 12.5× lower maximum clock frequency and as much as

8.7× larger area [Kuo06; Bou18] than if implemented in fixed silicon. So why not just harden a

CPU next to an FPGA, on the same chip? This is exactly what FPGA architects have been doing

at least since Virtex II Pro, introduced in 2002 [Xil11] and illustrated in Figure 2.11a.

In a typical Altera/Intel 28nm FPGA with no hardened CPUs, the core reconfigurable fabric,

composed of LUTs and programmable interconnect, was reported to account for a mere

30% of the entire die area [Lew12]. In more heterogeneous FPGAs which harden still more

commonly used features than Virtex II Pro, such as the 7nm Xilinx/AMD Versal, released in

2019 [Gai19], the fraction of the chip dedicated to reconfigurable fabric is likely even much

lower. On the other hand, in the Arnold chip shown in Figure 2.11b—which its authors label

an “eFPGA-augmented RISC-V SoC”, rather than an FPGA with hardened functionality—the

19

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

(a) Virtex II Pro [Xil11]. (b) Arnold [Sch21].

Figure 2.11: Convergence of FPGAs and ASICs. Figure (a) (courtesy of Xilinx/AMD) depicts the Vir-
tex II Pro FPGA featuring two hardened PowerPC 405 CPU cores. Figure (b) (courtesy of ETH Zürich)
shows a die photo of the Arnold SoC consisting of a RISC-V CPU core and a QuickLogic eFPGA for cus-
tom accelerator implementation. Boundary between FPGAs and ASICs is getting increasingly blurred.

area ratios are completely inverted: eFPGA takes up almost 80% of the die area [Sch21].

Hence, it is possible to say that FPGAs and traditionally fixed-functionality ASICs have be-

come increasingly alike, each combining the best of both worlds. This trend is expected to

increase, with eFPGA-augmented SoCs predicted to reach $10 billion in annual sales in near

future [Jar22]. With such proliferation of hardware reconfigurability, being able to design

appropriate high-performance reconfigurable architectures is imperative. The purpose of this

thesis is to make this process significantly easier by enabling design automation of several

aspects of programmable interconnect. Before entering the details of how this is achieved in

subsequent chapters, it is important to reconsider what FPGAs actually are in their essence.

2.8 What Is an FPGA, Again?

Most likely, the first association to an FPGA is the LUT. Because they are the closest equivalent

to logic gates in an ASIC, it has been stated that customers are interested in FPGA’s LUT capacity

and not the wires and multiplexers of the programmable interconnect [DeH99; Cha15; Com17].

To some extent, this is true, but what customers are actually paying for are not LUTs; it is a

Field-Programmable Gate Array. Genus proximum of “Field-Programmable Gate Array” is

“gate array”, and this carries no notion of which gates the array is composed of. LUTs have been

shown to be among the most efficient choices when a general-purpose array is needed [Sin92],

but competing candidates such as And-Inverter Cones have also been proposed [Par12]. Some

early commercial FPGA families also employed multiplexers or (networks of) logic gates as

logic blocks instead of LUTs [Ros93]. The notion of a “gate array” also does not say anything

about the architecture being general-purpose. For specific applications, superior results can

20

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

be obtained from bit-serial arithmetic units, for example [Sch22a].

On the other hand, differentia specifica of FPGA is “field programmable”—the ability to

connect together the gates that form the gate array after the array has been fabricated, which

is a quality afforded by programmable interconnect. Hence, it is really the programmable

interconnect that forms the essence of FPGAs.

Despite migrating to the next technology node as soon as it was available being a key goal for

FPGA architects between 2000 and 2018, development of FPGAs in that period was certainly

far more exciting than shrinking a single unmodified design from one node to another. Let

us briefly see how FPGAs developed in that period and how much of this development was

dedicated to programmable interconnect.

2.9 FPGA Evolution: The Stratix Case

To understand how FPGAs have developed since the beginning of this century, it is of great

interest to consider the Stratix architectures of Altera/Intel, because architectural decisions

that entered the design of each generation of this family have been explained by members

of the design teams themselves [Lew03; Lew05; Lew09; Lew13; Lew16]. Moreover, both the

preceding and the succeeding families—Mercury [Hut02] and Agilex [Chr20]—have been

presented in a similar manner, providing additional context to the evolution of Stratix.

2.9.1 Major Developments

2.9.1.1 Stratix: Island-Style Wins the Scaling Race

Not all early FPGAs adopted the Island-Style [Bet99] architecture of XC2064, where logic blocks

conceptually (and in early days, when the number of available metal layers was very limited,

quite literally) appeared as “islands” surrounded by segmented channels of prefabricated

wires (Figure 2.3). Although ingenious and with an effect lasting for almost 40 years, island-

style architectures could be seen as a relatively logical and straightforward step from MPGAs

to field-programmable devices. It is yet to be demonstrated that a better architecture can-

not be conceived and it is thus unsurprising that different attempts at doing so have been

made, especially when FPGAs were just starting to appear. Moreover, whether one style of a

reconfigurable architecture is superior to another depends on both the applications that it is

expected to support and the technology in which it is fabricated. Since both applications and

technology evolve over time, so do the benefits of different architectural styles.

An example of very successful non-island-style architectures are the hierarchical FPGAs pro-

duced by Altera in 1990s, that were able to outcompete the contemporary island-style Xilinx

FPGAs in both performance and capacity [Com17]. As these devices were a direct precursor to

the Stratix series, we will briefly explain how they were organized. It is important to note that

before entering the FPGA market, Altera had been designing PLAs [Alt90]. This may have been

21

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

BLE

I

2

2

2

2

2

2

2

2

2

2

local interconnect
(complete crossbar)

cl
u
st

e
r

cluster inputs

clu
ste

r o
u
tp

u
ts

cl
u
st

e
r

1

279

80

100horizontal channel

80

cl
u
st

e
r

2

vertical channel

80

cl
u
st

e
r

3

80

cl
u
st

e
r

1
6

super-cluster

su
p
e
r-

cl
u
st

e
r

in
te

rc
o
n
n
e
ct

Figure 2.12: Hierarchical logic block of an APEX 20K FPGA.

the reason why their pre-Stratix devices in many ways resemble more a PLA than an MPGA.

Altera APEX 20K FPGAs were based on clusters (Logic Array Blocks (LABs) in Altera terminol-

ogy [Hut01]) of ten 4-LUT logic elements that were slightly more complex than the one of

Figure 2.8 [Alt04]. A cluster is a column of logic elements stacked on top of each other [Lew13],

that share some local programmable interconnect. In particular, the local interconnect of

APEX 20K implemented a complete graph, allowing any output of any logic element in the

cluster, as well as any cluster input to be connected to any input of any logic element in the

cluster [Hut01]. We will discuss the advantages of clustered organization in more detail in

Chapter 3. The internal structure of an APEX 20K cluster is shown in the left part of Figure 2.12.

Clusters in APEX 20K were in turn grouped into super-clusters (Mega LABs in Altera terminol-

ogy), containing 16 clusters [Hut01]. Super-clusters also contained local interconnect (orange

in Figure 2.12), through which any signal entering the super-cluster had to pass (red arrows in

Figure 2.12 [Alt04]). This local interconnect was sparser than that within the clusters and it

could be bypassed when signals had their origin and destination in neighboring clusters, by

using the direct connections shown in blue in Figure 2.12 [Alt04].

APEX 20K400 was a 2D-array—much like XC2064—of super-clusters, arranged in four columns

and 26 rows [Hut01]. The main difference was in programmable interconnect. Namely, early

Altera FPGAs had horizontal and vertical routing channels made up of wires that were span-

ning the entire width and height of the chip, respectively. Tri-state buffers at the output of the

store-select multiplexers driving channel wires allowed signals to switch between vertical and

horizontal wires at intersections of two channels (Figure 2.13) [Alt01]. Additionally, each of

the channel wires could be programmably broken in half (by disengaging the corresponding

programmable switch at the center of the chip [Hut01]). This created a hierarchical intercon-

nect, where super-clusters that were in the same half-row or in the same half-column were the

22

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

horizontal channel

vertical channels

Figure 2.13: Tri-stated routing multiplexer outputs allow wires that span the entire chip to be driven
from multiple points [Alt01].

super-cluster super-cluster super-cluster super-cluster

super-cluster super-cluster super-clustersuper-cluster

super-cluster super-cluster super-cluster super-cluster

super-cluster super-cluster super-cluster super-cluster

super-cluster super-cluster super-clustersuper-cluster

super-cluster super-cluster super-cluster super-cluster

horizontal half-wire

horizontal full-wire

vertical half-wire

vertical full-wire

Figure 2.14: Hierarchical interconnect of an APEX 20K device. Reproduced from Hutton et al. [Hut01].

fastest to connect, using only one half-wire; super-clusters that were in the same row (column)

required one horizontal (vertical) wire; super-clusters that were in the same quadrant of the

chip required one horizontal and one vertical half-wire; whereas all other super-clusters took

the longest to connect: one vertical and one horizontal full-wire [Hut01]. A sketch of the

APEX 20K400 hierarchical programmable interconnect architecture is shown in Figure 2.14.

As we already mentioned, in the 1990s, hierarchical FPGAs were superior to island-style [Com17].

As advertised in the FLEX 10K datasheet, segmented-channel routing of an island-style FPGA

was slowed down by numerous multiplexers, whereas the long wires of a hierarchical device

did not suffer from that [Alt01]. In fact, this problem was already evident to the designers of

XC2064, who introduced a number of additional wires spanning the entire chip, much like

23

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

D
S
P

D
S
P

D
S
P

D
S
P

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

R
A
M

R
A
M

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

D
S
P

D
S
P

D
S
P

D
S
P

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

D
S
P

D
S
P

D
S
P

D
S
P

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

R
A
M

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

D
S
P

D
S
P

D
S
P

D
S
P

R
A
M

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

C
LB

Figure 2.15: Flat architecture of island-style FPGAs makes it easy to replace entire columns of LUTs by
other kinds of logic blocks that are more efficient for certain application domains. The figure shows the
ASMBL columnar architecture pioneered by Xilinx [Bea08].

those of Altera, as well as nearest-neighbor connections between logic blocks, that served

a similar purpose as Altera’s intracluster interconnect [Xil93]. Over time, a wider choice of

wire lengths was added to Xilinx FPGAs, with some spanning two rows or columns, and some

four [Tri97]. The problem of determining which lengths of prefabricated wires should appear

in the routing channels, which is usually called optimization of channel segmentation also

received significant attention from the academic community [Bet99a; Cha01]. However, when

these longer and faster wires were in high demand, some signals would have to be imple-

mented using cascades of several shorter wires, incurring a multiplexer delay at each hop. This

meant that performance of a mapped design depended on wire demand and was thus less pre-

dictable than in a hierarchical device of the time, which was already inherently less sensitive

to the quality of the placement, as multiplexer delays dominated those of metal [Alt01].

Despite these early advantages of hierarchical architectures, with scaling technology, the

island-style approach became superior. First of all, increasing capacity of the device by

increasing the size of the fully-connected clusters was not scalable—local multiplexers would

simply become too large and slow, as would the wires that provide their inputs (e.g., in

APEX 20K architectures, super-cluster connectivity was about as slow as traversing half of

the chip in either direction [Hut01]). Neither was it possible to keep adding more channel

wires spanning half the chip uninterrupted, in proportion with the number of cluster rows or

columns added to increase the capacity of the device. Finally, reduction of crossectional area of

the wires, caused by technology scaling, without appropriate reduction in length, caused by a

need to increase device capacity, would quickly make the half-chip-spanning wires exceedingly

slow. At the same time, transistor performance increased with technological progress making

the argument about prohibitive cost of channel segmentation less compelling.

Some remedies for the above problems were attempted in the last of the Altera’s hierarchical

devices—Mercury [Hut02]—but the subsequent Stratix family marked a departure from the

24

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

hierarchical approach altogether and adoption of the island-style one instead [Lew03]. Be-

sides fixing the aforementioned issues, this brought several other benefits. First, the repetitive

nature of island-style FPGAs made it possible to produce devices with different capacities

by replicating an identical tile that needs to be laid out only once, drastically reducing de-

velopment costs and time [Kuo04]. Second, the nonhierarchical nature of the interconnect

made it easier to replace LUT clusters with other blocks, such as hardened multipliers and

larger memories [Hut02; Lew03; Bea08]. This is illustrated in Figure 2.15. Finally, reducing

the gap between FPGAs and ASICs, by removing the hierarchy constraints and moving back

towards MPGAs, made adoption of ASIC CAD algorithms much more straightforward. Given

that FPGA device capacity was increasing exponentially at the start of this century, preventing

place and route runtime from exploding was imperative [Bet20]. Luckily, ASIC CAD tools

already had to cope with designs that were about an order of magnitude larger [Gor12], so

the problem could be made much easier if the techniques developed there could be adapted

to the specific constraints of FPGAs, of which island-style architectures had fewer than the

hierarchical ones. Examples of successful adoption of ASIC algorithms are abundant, espe-

cially for placement [Gor12; Li19; Raj22], which suffers the most from problem size explosion,

since unlike routing for which the runtime could be largely dictated by a relatively small

bottleneck [Gor13], placement time is always directly related to the number of objects that

need to be placed. We will review all relevant steps of the FPGA CAD flow in Chapter 3.

2.9.1.2 Stratix II: Fracturable LUTs Make a Comeback

The main difference between Stratix II and the original Stratix was the introduction of a

fracturable 6-LUT in place of a 4-LUT, as the basis of the logic block. Prior results of Ahmed

and Rose demonstrated that 6-LUTs provide higher performance than 4-LUTs, by allowing

more levels of logic to be consumed by the LUT itself, avoiding the slow programmable

interconnect [Ahm00]. However, all Boolean functions of k < 6 variables would waste 26−k

memory bits of a 6-LUT, the corresponding fraction of its multiplexer tree, and the routing

multiplexers driving the 6−k inputs. Since most technology-mapped designs contain many

functions of less than 6 variables [Hut04], Ahmed and Rose observed that this waste results in

6-LUTs having lower density than 4-LUTs and 5-LUTs [Ahm00].

To prevent this waste, some architectures like Virtex-II have provided 2:1 multiplexers which

could be used to recursively combine outputs of pairs of 4-LUTs to create larger LUTs [Xil01].

This meant that whenever a function of four variables had to be mapped onto an FPGA, it

could simply use one of the available 4-LUTs and the only waste would be the small 2:1 combi-

nation multiplexers. However, Lewis et al. [Lew05] observed that on this kind of architecture,

implementing a function of six variables is wasteful, because all of the inherent input sharing

between the constituent 4-LUTs needs to be performed by programmable routing. In other

words, whereas a 6-LUTs needs only six inputs, four independent 4-LUTs require sixteen,

each driven by a (set of) stored-select multiplexer(s). This is another instance of the need to

carefully balance aims of high utilization of prefabricated logic blocks and programmable

25

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

5-LUT

5-LUT

5

Figure 2.16: Fracturable LUT [Ahm09]. Exposing an output of a prior stage of the multiplexer tree
enables a 6-LUT to implement two different Boolean functions of the same five variables.

interconnect when designing an FPGA that we discussed in Section 2.2.4.

Lewis et al. solved the problem by shorting some of the inputs among the two 5-LUTs that

could be composed into a 6-LUT in Virtex-II [Lew05], giving rise to the concept of a fracturable

LUT : in the limit, when all inputs are shared among the pair of composable LUTs, this amounts

to exposing intermediate outputs of the multiplexer tree of a larger LUT, as shown in Figure 2.16.

This extreme case was adopted by later generations of Virtex [Ahm09], although it was already

previously in use in XC2064 [Xil93; Ros18]. Allowing some inputs to be independent, however,

maximizes the chances that two Boolean functions of less than six variables can be successfully

matched to a common 6-LUT, at the expense of some additional stored-select multiplexers

to provide the independent inputs. This is the approach taken by Stratix II and later [Lew05;

Lew16], as well as previously by AT&T ORCA [Hil93].

2.9.1.3 Stratix III and IV: It’s All about Power

In 65nm Stratix III and 40nm Stratix IV, power leakage became a major concern. Hence, pro-

grammable body bias functionality was introduced in these architectures, allowing different

regions of the FPGA to switch between a low-power and a high-performance regime [Lew09].

Additionally, the fracturable LUTs introduced in Stratix II contained 64 bits of memory and

eight independent inputs, which better amortized additional circuitry needed to allow LUTs to

be used as read-write memories, like the ones that existed in the Xilinx 4000 series FPGAs [Xil98;

Lew09]. Given that the Stratix III and IV architectural modifications were presented in the

same paper [Lew09] and that they became available with a mere 16-month difference [Des07;

Des08], it is very likely that Stratix IV is a minor redesign of Stratix III, migrated to 40nm.

2.9.1.4 Stratix V: Skewing the Clock to Make it Faster

Modern, high-performance FPGA designs heavily rely on pipelining, which increases the

demand on flip-flops. For this reason, Stratix V doubled the number of available flip-flops,

increasing it to four per each 6-LUT [Lew13]. Pipelining can become ineffective when it is

not possible to insert flip-flops in such a way as to break a path into sections of comparable

delay [Cha15]. Due to various placement constraints, achieving a good balance among delays

26

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

VDD

VDD VDD

two-level multiplexer

VDD

VDD VDD

VDD

VDD VDD

VDD

VDD VDD

LUT
VDD VDD

one-level multiplexer

cluster output
channel wire channel wire cluster input LUT input

Figure 2.17: Typical logic-interconnect stage on a critical path of an industrial circuit [Lew12]. A typical
critical path in an industrial circuit contains three such stages [Lew12]. If the design is pipelined on
an architecture like Stratix V, which only has flip-flops at LUT outputs, critical path delay cannot be
reduced below one stage. However, as wire resistance increases with scaling technology, interconnect
delay becomes increasingly dominant [Gai19]. This motivated insertion of interconnect pipeline
registers in Stratix 10 [Lew16]. We note that because of permutability of LUT inputs, the router usually
succeeds in using one of the faster LUT inputs (closer to the root of the multiplexer tree). However, the
critical path typically passes through the second-fastest input [Lew12], which is the best option for a
fracturable LUT implementing two 5-LUTs [Ahm09], since the fastest input has to be tied to a logic 1
(Figure 2.16).

of different pipeline stages can often be difficult. To mitigate this issue, Stratix V introduced

the possibility for the clock to be programmably delayed on some flip-flops [Lew13], allowing

some pipeline stages to borrow time from the adjacent ones. This method of balancing

delays between pipeline stages irrespective of placement constraints has been previously

explored in academia [Sin02]. Lewis et al. report that when realized using pulse latches with

programmable pulse width, the technique was able to improve the performance of designs

implemented on Stratix V by up to 3% on average [Lew13]. Ganusov and Devlin report that

a slightly different realization, using edge-triggered flip-flops, improved the performance of

designs implemented on Xilinx/AMD UltraScale+ FPGAs by 5.5% on average [Gan16].

These two examples demonstrate how the perspective of the margin of performance improve-

ment that justifies a relatively major design change in commercial FPGAs evolved since the

1990s: 3–5% are no longer considered insignificant.

2.9.1.5 Stratix 10: Interconnect Pipelining Pushed a Bit too Far

Increasing the number of flip-flops available in a logic cluster allowed for better mapping of

highly pipelined designs on Stratix V than the previous generations of Stratix. However, the

ability to insert pipeline registers only inside the logic clusters limited the reduction of critical

path delay to that of the longest section of the unpipelined path through programmable

interconnect. As Figure 2.17 adopted from Lewis and Chromczak [Lew12] shows, in a typical

commercial design, this section is rather significant, especially taking into account that tech-

nology scaling causes wire delay to be increasingly dominant. To alleviate this issue, Stratix 10

introduced bypassable pipeline registers in all stored-select multiplexers that were part of the

programmable routing architecture [Lew16]. This made it possible to reduce the critical path

delay to as little as that of a single wire. Interconnect pipeline registers were subsequently also

introduced in the Xilinx/AMD Versal architecture, but to a lesser extent, limiting the additional

27

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

Stratix Stratix II Stratix III & IV Stratix V Stratix 10 Agilex
0

20

40

60

80

100

In
te

rc
on

ne
ct

 to
po

lo
gy

 im
pr

ov
em

en
ts

 [%
 te

xt
]

Figure 2.18: Approximate fraction of text dedicated to discussing modifications of the programmable
interconnect topology in papers presenting several generations of Altera/Intel FPGAs [Lew03; Lew05;
Lew09; Lew13; Lew16; Chr20]

registers to isolation of the intracluster interconnect [Gai19] which, due to being traced at

lower and more resistive metal layers becomes a bottleneck in scaled technologies [Chr20;

Nik21]. Interestingly enough, the latest Intel FPGA architecture, Agilex, also reduced the

number of pipeline registers in multiplexers driving channel wires to 30% [Chr20].

2.9.2 What about Programmable Interconnect Topology?

As discussed in Section 2.8, programmable interconnect is the defining feature of FPGAs. Yet,

apart from the original Stratix in which a major departure from hierarchical interconnect and

adoption of island style was made, and Stratix 10, which introduced interconnect pipeline reg-

isters, so far we have mostly discussed developments that were not related to the interconnect

architecture itself. Figure 2.18 shows the approximate fraction of the corresponding paper

dedicated to discussing interconnect topology improvements in each generation of Stratix.

We can see that after the serious changes reported for the original Stratix, subsequent Stratix

papers dedicate little attention to the question of improving interconnect topology. Needless

to say, this does not mean that interconnect topology remained unchanged throughout this

period: each time the logic block was redesigned, some of the previous decisions about the

lengths of wires in the routing channels potentially became suboptimal, requiring reconsider-

ation, and in turn triggering a change in switch-pattern design; additional logic block inputs

and outputs had to be accessed from the routing channels; and increased device capacity also

28

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

called for increasing capacity of the channels. Yet, these modifications were not significant

enough to become the focus of authors’ attention. In fact, they mostly amounted to a quick

optimization around a known local optimum provided by the previous generation of the

architecture, as the description of modifications applied to Stratix V clearly states [Lew13]:

Consequently rather than completely re-architect the routing, we explored minor variations

that could keep pace with the increase in routing demand as well as obtain performance

improvement.

So how did it happen that evolution of the very essence of FPGAs was deliberately confined

to minor variations for almost two decades? Stephen Trimberger’s recollection provides an

answer to this question (Section 2.4). First of all, scaling worked well during this period

and availability of an increasing number of metal layers with different pitches provided a

way to combat rising resistance by simply optimizing layer use [Lew13]. Second, major

modifications to the interconnect topology were not as likely to bring such high density and

performance benefits as hardening functionality did [Kuo06; Tri15]. Third, even if changes in

the interconnect could produce significant gains, they came with a great risk: an FPGA with

a suboptimal hardened multiplier could still perform very well on designs that do not use

multiplication and having some hardened multiplier is certainly better for the applications that

need them than having none at all; any suboptimalities could be rectified in the next generation

of the architecture. On the other hand, having poor programmable interconnect would

hamper the performance of all circuits implemented on that FPGA. In summary, addition of

new hardened blocks or redesign of old ones is very forgiving to suboptimalities necessitated

by the need to transition to the latest technology node as soon as it is available, while dramatic

changes to interconnect topology are not. On top of this, programmable interconnect layout is

usually performed manually, whereas hardened blocks are implemented using a standard-cell

flow [Yaz19], which further increases the urge to limit changes to interconnect architecture as

much as possible, if technology adoption timelines are to be met.

Finally, as we will see in subsequent chapters, even though programmable interconnect

is typically constructed from only two basic ingredients—wires and multiplexers—unlike

highly complex blocks such as hardened multipliers and memories, optimizing it is inherently

combinatorial and reduces to graph construction; this is entirely different from designing

memory blocks, deciding LUT sizes, multiplier port widths, etc., which are all problems that

can be effectively parameterized with only a handful of parameters taking on values from small

ranges. Hence, even if programmable interconnect design may be conceptually simpler than

hardening different functionality, it is computationally much more intractable in practice.

To make this discrepancy even larger, years of ASIC development lead to designing fixed-

functionality circuits being supported by various abstractions, design methodologies, opti-

mization algorithms, and in many cases fully-automated design flows. On the other hand, the

aforementioned lack of a need to perform major changes and even outright pressure not to

innovate lead to no analogous solutions existing for the problem of designing programmable

29

Chapter 2 Where Did the FPGAs Come From and Where Are They Headed?

interconnect architectures. At best, existing design automation in that area enables solving

precisely the only problem that was relevant in the past two decades: local optimization

around a known local optimum.

2.9.2.1 Agilex: Juggling Resistance, Capacitance, and Routability at the Topology Level

As we have discussed previously, the biggest obstacle to reducing interconnect delay in early

FPGAs were the stored-select multiplexers. However, technology scaling that inevitably makes

transistors faster and wires slower, resulted in hierarchical architectures with very long wires,

such as APEX20K, being long left behind, despite their initial superiority. In the two decades

that followed, technological improvements such as changing materials and increased availabil-

ity of metal layers made it relatively easy to keep the effects of rising wire resistance in check.

Around the 7nm node, however, effects of wire resistance became so pronounced [Che14] that

a new major redesign of the programmable interconnect architecture was necessary.

As we can see from the plot of Figure 2.18, the fraction of text dedicated to the modifications of

programmable interconnect topology in the paper presenting the latest Agilex family of Intel

increased to 30% [Chr20]—the highest fraction since the original Stratix. These modifications

were numerous, as battling resistance required halving the multiplexer sizes to reduce capaci-

tive loading on wires that they take their inputs from and to enable swapping pass transistors

for transmission gates to increase performance [Chr20]; drastic reduction in length of wires

traced at lower metal layers, with implications on both intracluster routing and switches

between channel wires; increasing multiplexer input sharing to reduce via count... All this

on top of the usual local optimization of lengths of channel wires and switch-patterns that

connect them, and while retaining and further improving the interconnect pipeline registers

of Stratix 10, that can isolate the delays of individual wires, but cannot reduce them [Chr20].

2.10 Where Does this Thesis Come into Play?

How does one make all multiplexers in the programmable interconnect architecture half as

large as they used to be, while ensuring that all circuits that the FPGA was previously able

to route are still routable? This is just one of the questions that architects of Agilex had to

answer. From the recollection of Stephen Trimberger, we learned that a crucial ingredient in

quickly designing a new FPGA architecture—in time for the next technology node—has been

the experience and intuition of the design team. However, when a single technology node

brings so much change that it requires reducing the number of inputs to all multiplexers in

a state-of-the-art architecture by half, one could argue that the existing intuition developed

from years of prior experience is no longer sufficient for rapid design. Unfortunately, with

technological advances increasingly relying on one-off scaling boosters [Tok22; Mor23], it is

likely that developing such intuition that could translate from one technology to the next will

in future be very difficult.

30

Where Did the FPGAs Come From and Where Are They Headed? Chapter 2

In this thesis, we present several novel techniques for automating the design of certain aspects

of programmable interconnect architectures that have not been satisfactorily automated

before. Although they do not constitute a complete automated design flow capable of pro-

ducing fully-customized programmable interconnect architectures optimized for the given

fabrication technology and target applications, we believe that they represent an important

step towards achieving this goal. Our hope is that using these techniques, reconfigurable ar-

chitectures will be able to overcome the current technology scaling challenges and continue to

deliver high-performance in future nodes, as well as in all other settings discussed in Chapter 1

where hardware reconfigurability is starting to appear.

Before presenting these techniques and results of their application, in the next chapter, we first

give some additional background information on island-style FPGAs and CAD algorithms used

to map circuits onto them. We also define the problem of programmable interconnect design

in the most abstract sense, which is useful for providing context for the proposed algorithms.

31

3 Background

In the previous chapter, we introduced two fundamental building blocks of modern SRAM-

based FPGAs: the LUT and the stored-select multiplexer. Furthermore, we described the

development of island-style FPGAs from their MPGA origins to the present day. In this chapter,

we will give further information about island-style FPGAs and CAD algorithms used to map

user circuits onto them, which is necessary for understanding the subsequent chapters.

But first, let us briefly introduce the problem of programmable interconnect architecture

design in its most abstract form, putting aside for now all the practical issues and usual

solution approaches that are specific to island-style FPGAs.

3.1 The Problem of Programmable Interconnect Design

To be able to precisely define the problem of programmable interconnect design, we first need

to formalize the notion of a fixed-functionality user circuit. Without loss of generality, we

assume that it has already been expressed in terms of K -LUTs, after the process called technol-

ogy mapping [Con94]. Furthermore, to simplify the definitions, we assume that flip-flops that

exist in the user circuit have already been paired with appropriate LUTs (with some perhaps

being configured as multiplexers), to conform to the BLE structure of Figure 2.8. Hence, we

will use the term “LUT” to designate both LUTs with registered and nonregistered outputs.

Definition 1. (Fixed-functionality circuit). A fixed-functionality circuit is a graph G = (V ,E)

where each v ∈ V is either a LUT, a primary input, or a primary output of the entire circuit.

Every LUT-representing node has an in-degree ≤ K , where K is the maximum LUT size used

during technology mapping, every primary-input-representing node has a zero in-degree, and

every primary-output-representing node has an in-degree of one and a zero out-degree.

Two examples of fixed-functionality circuits are shown in Figure 3.1.

33

Chapter 3 Background

LUT

LUT

LUT LUT

I I

O O

LUT

LUT

LUT LUT

I I

I I

O

O

I

Figure 3.1: Two examples of fixed-functionality circuits.

LUT

LUT

LUT

LUT

I I

II

O

O

I

Figure 3.2: An example reconfigurable circuit that can implement both fixed-functionality circuits of
Figure 3.1. Blue driver selection corresponds to a configuration implementing the left circuit, while the
red one corresponds to a configuration implementing the right circuit.

Definition 2. Reconfigurable circuit. An (n,K) reconfigurable circuit is a graph H = (VH ,EH),

where each node is either a K -LUT, a primary input, a primary output, or a stored-select

multiplexer. The number of nodes representing K -LUTs equals n. Each LUT-representing

node has an in-degree of exactly K , while the in-degree of each multiplexer-representing node

determines the corresponding multiplexer’s size. Degrees of primary inputs and outputs are the

same as in fixed-functionality circuits.

34

Background Chapter 3

IIII I I

I I

IIII I I

I I

Figure 3.3: Illustration of the driver selection operation.

An example of a reconfigurable circuit is shown in Figure 3.2. Because the in-degree of a LUT

is set to exactly K , each of its inputs will be driven by exactly one other LUT, primary input,

or multiplexer. Which physical input is driven by which direct predecessor is of secondary

importance for now, since LUT inputs are all equivalent in terms of logic and only differ in

terms of speed [Ahm09]. The same holds for multiplexers, though their inputs typically also

have very similar delays [Lew16].

Since K -LUTs can implement any Boolean function with ≤ K variables, including a K : 1

multiplexer, strictly speaking, stored-select multiplexers are not necessary for implementing

programmable interconnect [Kuc19]. Nevertheless, since silicon area of a K : 1 multiplexer

rises linearly with K , whereas LUT area rises exponentially, it is very unlikely that architectures

relying solely on LUTs for programmable connectivity will ever be competitive.

Let us now formalize the process of adapting the edge set of the reconfigurable circuit accord-

ing to the needs of the given fixed-functionality user circuit.

Definition 3. Driver selection. Driver selection operation on a multiplexer- or LUT-representing

node v is performed by selecting one of its direct predecessors, u, adding an edge from u to each

direct successor of v, and removing v from the graph.

Driver selection operation is illustrated in Figure 3.3.

Definition 4. Configuration. Given a fixed functionality circuit G = (V ,E) and a reconfigurable

circuit H = (VH ,EH), we say that a mapping f : V 7→ VH and a sequence of driver selection

operations σ constitute a configuration implementing G on H iff after applying σonH, f

becomes an isomorphism from G to a subgraph of H.

Driver selections on the reconfigurable circuit of Figure 3.2 corresponding to configurations

that implement the left (right) fixed-functionality circuit of Figure 3.1 are shown in blue (red).

We can now define the problem of programmable interconnect architecture design itself.

35

Chapter 3 Background

Definition 5. Programmable interconnect architecture design problem. Given a set of fixed-

functionality circuits Γ, find the lowest cost H, such that for every G ∈Γ, there exists a configu-

ration (f ,σ) implementing G on H.

The missing part in the definition above is the definition of cost of a reconfigurable circuit.

Likely the simplest reasonable way to define it is to count the number of edges, |EH |. Since

the number of LUTs in a (n,K) reconfigurable circuit is fixed, as are in-degrees of all LUT-

and primary-output-representing nodes, minimizing |EH | minimizes the total number of

multiplexer inputs, hence finding a balance between multiplexer sizes and their count. Tra-

ditionally, each multiplexer input has been called a switch and minimizing the number of

switches in the programmable interconnect architecture has been the focus of considerable

research activity in 1990s and early 2000s [Lem04a]. The advantage of using edge-count as

the minimization objective is that perhaps the problem could be cast into that of finding a

minimum common supergraph [Bun00] of all graphs in Γ, which is a far more general problem

than that of programmable interconnect design. However, this metric is only a very rough

abstraction of the actual goals in cost minimization: the programmable interconnect archi-

tecture must be efficient to lay out in silicon. For example, it should have a small area, be

routable in a minimal number of metal layers, take the least amount of effort for the layout

engineers to implement... Additionally, implementation of user circuits on the reconfigurable

architecture usually has requirements in terms of achievable clock frequency and sometimes

even runtime taken by CAD tools to find the configuration. All of these goals and constraints

are difficult to capture in a closed-form minimization objective, leading the most common

approaches to solving the programmable architecture design problem to rely on actual CAD

tools to assess the quality of the proposed architectures. We shall use that approach in this

thesis as well, although we will return to the appeal of direct objectives in Chapter 9.

Another problem with this definition of the programmable interconnect design problem is

that it is very dependent on the choice of Γ. In principle, this would completely cease to be

an issue only if Γ contained all circuits that may ever be mapped on the architecture under

design. Since it is very difficult to predict a priori which exact circuits will be used on the FPGA,

as this depends both on the user designing them and the synthesis tools, it may be desirable to

guarantee that the programmable interconnect architecture will support all circuits satisfying

certain constraints. Nevertheless, it is very difficult to even isolate relevant constraints that

will not excessively limit the space for architecture optimization. Moreover, even if one could

formally prove that it is possible to map a certain circuit on the given interconnect architecture,

if there is no efficient algorithm that will execute this mapping, the proof is of little practical

use. This is another reason why most approaches to programmable interconnect design rely

on using actual CAD tools in the design process, applying them to a finite set of circuits, both

real and synthetic, with a hope that this set will be large enough to provide sufficient likelihood

that circuits outside of it will also be implementable [Ros89; Tri97; Lew03; Cha15; Chr20]. Let

us now see one very straightforward way to guarantee that all circuits are implementable.

36

Background Chapter 3

LUT 1 LUT 2 LUT 3 LUT 4

I1 I2 I3 I4 I5

O1 O2 O3 O4

Figure 3.4: Programmable connections implementing a complete graph on four 2-LUTs, with five
primary inputs. Output of each LUT is also made a primary output, for simplicity.

3.2 Simplicity of the Complete Graph

The simplest way to guarantee that a programmable interconnect architecture H can imple-

ment any edge set is to make it a complete bipartite graph as follows: for each LUT, introduce

K multiplexers that will drive its inputs. Then, for each LUT or primary input u, and each

multiplexer v , add (u, v) to EH . This structure is illustrated in Figure 3.4.

Due to logic equivalence of LUT inputs, it is not necessary to be able to connect the output

of every LUT (or primary input) to all of the LUT inputs in order to guarantee that all pairs of

LUTs (or primary-input-LUT pairs) can be independently connected together. Connectivity

patterns minimizing the total number of switches |EH |, while retaining this full connectivity,

have been independently discovered by DeHon [DeH95] and Ye [Ye10]. Nevertheless, because

a change in value of an input closer to the root of the LUT’s multiplexer tree (e.g., input A in

Figure 2.7) has to propagate through fewer levels of pass transistors to become visible at the

output than a change in value of an input closer to the truth table memory (e.g., input C in

Figure 2.7), it may still be useful to retain richer connectivity than the minimum allowed by

input permutability. In this way, it can be ensured that the timing critical signals—which are

different in every circuit and hence not a priori known—can reach the faster inputs.

3.3 A Collection of Cliques

The complete graph routes every signal from its source to its destination using only a single

level of multiplexing. In terms of the number of multiplexer hops, this is as fast as it gets

in programmable interconnect, unless some LUT input is permanently fixed to a particular

driver. The problem is, however, that as the size of the reconfigurable circuit increases, so does

the size of each multiplexer. At some point, even though the number of hops remains one for

all connections, the delay of this hop becomes exceedingly high. One idea that could help

alleviate this problem could be to decompose the larger reconfigurable circuit into cliques

of size N , where this N is determined as the number of LUTs beyond which a single-level

37

Chapter 3 Background

LUT 1 LUT 2 LUT 3 LUT 4

I1 I2 I3 II

O1 O2 O3 O4

crossbar

CLB

provides local (intracluster)
connectivity

connection-block
connects the I cluster inputs
to the global (intercluster) interconnect

Figure 3.5: Schematic of a logic cluster (CLB) composed of four 2-LUTs and a connection-block that
provides its inputs from the external routing.

multiplexer structure starts to become inefficient due to multiplexer size increase. One could

then connect these cliques together using some sparser and more efficient structure.

Note the similarity between the complete graph of Figure 3.4 and the logic cluster of the

APEX 20K FPGA, previously shown in Figure 2.12. In fact, cluster-based FPGAs, which are the

predominant class today, employ exactly this approach of breaking the graph into a collection

of sparsely connected cliques. A standard block diagram of a logic cluster—abbreviated from

now on as CLB, inherited from Xilinx terminology [Hau07]—is shown in Figure 3.5. Because

the inputs to the cluster are no longer the primary inputs of the entire circuit, they also have

to be programmably driven. Hence, the LUT-input multiplexing structure is now made up of

two levels: one to bring in external inputs to the cluster and the other to further dispatch them

to the inputs of individual LUTs. The first level is typically called connection-block and the

second (local) crossbar [Bou21].

3.4 Rent’s Rule

Although splitting H into a collection of sparsely connected cliques, rather than implementing

it as a complete graph, was a necessity dictated by physical constraints, justifications for

doing so are also firmly grounded in a fundamental empirical observation about the nature of

connectivity of fixed-functionality circuits called the Rent’s rule [Chr00]. Rent’s rule was first

observed in electronic circuits but has since been shown to even hold in nature [Red09]. It

also forms the basis for a large part of our current theoretical understanding of programmable

interconnect [DeH99; Pis03; Sch03]. For this reason we briefly review it in this section.

Let us assume that we have a method for bipartitioning a circuit G such that the node sets of

the two halves, V A and V B , are roughly of equal size and that the number of nodes in one half

which connect to at least one node in the other half, {u ∈V A : (∃v ∈V B)((u, v) ∈ E)}∪ {u ∈V B :

38

Background Chapter 3

0 20 40 60 80 100 120 140 160
|VR|

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|V
R
|p

1

p = 0.7
N = 10

Figure 3.6: Localization of connectivity. The plot shows the ratio of the expected size of external

connectivity of V R , computed using Rent’s rule (k
∣∣V R

∣∣p=0.7
) and its theoretical maximum, assuming

that all nodes have k incident edges (k
∣∣V R

∣∣). For
∣∣V R

∣∣ = 1, there is no sharing of drivers among the
elements of the set, nor are any drivers generated locally. However, already for

∣∣V R
∣∣ = 10, irrespective of

k, almost half of the drivers are shared or generated locally.

(∃v ∈V A)((u, v) ∈ E)} is minimized. Let us now apply this bipartitioning recursively on each

half, quarter, etc. Taking one thus obtained subset of nodes at any level of recursion, V R , we

define its external connectivity as

S(V R) = {u ∈V R : (∃v ∈V \V R)((u, v) ∈ E }∪ {u ∈V \V R : (∃v ∈V R)((u, v) ∈ E)}. (3.1)

Rent’s rule relates, on average, the size of S(V R) to the size of V R [Chr00]:

∣∣S(V R)
∣∣ = k × ∣∣V R

∣∣p
, p ∈ (0,1). (3.2)

Here k is the average size of external connectivity of individual nodes of G , which is at most

K +1, for G mapped onto K -LUTs. More important is the power law with exponent p called

the Rent’s exponent. The exact value of p differs from circuit to circuit but is typically between

0.5 and 0.7 [Chr00]. What Rent’s rule states is that a circuit can be partitioned into subsets of

nodes such that connectivity tends to stay increasingly local to a subset of nodes, as the size of

this subset increases. This can be observed in Figure 3.6 plotting for varying size of V R the

ratio of the expected size of external connectivity of V R computed using Rent’s exponent of 0.7

and its theoretical maximum, if no drivers are generated within the subset or shared among its

39

Chapter 3 Background

nodes. From the plot of Figure 3.6, we can observe that when clusters of size ten are used, the

amount of connectivity external to the clusters is reduced by almost 50%, even for the relatively

high Rent’s exponent of 0.7. Interestingly enough, APEX 20K contained exactly ten 4-LUTs in

its cluster (Figure 2.12), which may have resulted from a similar observation. Note that this

does not depend on K , so the same observation would hold for newer Stratix architectures

based on a cluster of ten 8-input ALMs [Lew05], although LUT fracturability complicates

analysis in that case. Of course, locality of connections can be further exploited to recursively

create hierarchical clusters such as the APEX 20K Mega LAB (Figure 2.12). Plot of Figure 3.6

suggests that using a 160 4-LUT Mega LAB would reduce the amount of external connectivity

by about 78%, provided that the sparse supercluster interconnect can implement all internal

connections. However, the returns on recursively extending the cluster are diminishing and

most modern architectures have dropped this approach, although the new 32 6-LUT cluster of

Xilinx/AMD Versal appears to bear some resemblance [Gai19].

3.4.1 How Many Inputs Does a Cluster Need?

Rent’s rule provides some guidance in choosing the cluster size based on the number of

connections that remain external as the size increases. It is even more useful for determining

the number of inputs that a cluster of any given size needs, since this can be computed from

the formula directly. For example, a cluster of ten 4-LUTs should contain I =
⌈

4×100.7
⌉

= 21

inputs to be able to implement an average group of ten 4-LUTs from a circuit with Rent’s

exponent equal to 0.7. Note should be taken, however, that the average number of inputs to

LUTs of a circuit mapped onto K -LUTs is generally lower than K . For example, Hutton et al.

observed that a typical circuit mapped onto 6-LUTs will have an average LUT size of about

4.67 [Hut04]. Moreover, Pistorius and Hutton determined that average Rent’s exponent of

typical industrial circuits mapped on FPGAs is 0.6, meaning that 0.7 indeed corresponds to

demanding circuits [Pis03]. Hence, a cluster with 21 inputs is likely to be able to implement

groups of LUTs with above average input demand too.

In fact, Betz and Rose demonstrated experimentally that allowing 22 inputs to a cluster of ten

4-LUTs enables an average cluster utilization of 98% [Bet98]. They also provided a formula

for determining the number of inputs that are required to satisfy this utilization rate, which is

valid for N ∈ [1,16] [Bet98]:

I = 2N +2. (3.3)

This formula was later generalized by Ahmed and Rose for any K ∈ [2,7]:

I =
K

2
(N +1). (3.4)

As the plot of Figure 3.7 shows, the Betz and Rose formula can be considered a linearization of

Rent’s rule for p = 0.7 around N = 8, which was the middle of the cluster size range that they

40

Background Chapter 3

2 4 6 8 10 12 14 16
N

0

10

20

30

40

50
K = 2

K = 3

K = 4

K = 5

K = 6

Solid: Ahmed and Rose
Dashed: Rent's rule for p = 0.7

Figure 3.7: Comparison of Rent’s rule for p = 0.7 and the formula for determining the number of
cluster inputs that guarantees dense packing (Equation 3.4 [Ahm00]). Equation 3.4 can be considered a
linearization of Rent’s rule around N = 8.

explored. Same can be said about the generalization of Ahmed and Rose.

While leveraging Rent’s rule to reduce the number of inputs to the cluster can result in a

net area reduction, not all FPGA architectures employ this technique. A notable example is

the 7-Series FPGA family of Xilinx [Pet21]. Retaining the maximum possible cluster input

bandwidth makes it easier to perform flat placement, which is crucial for achieving high

performance [Li19a] (see Section 3.9.3).

3.4.2 Sparse Crossbars

We have already mentioned the result independently derived by DeHon and Ye that per-

mutability of LUT inputs allows crossbars to be sparsified while still guaranteeing that all

combinations of cluster inputs can reach all LUTs independently [DeH95; Ye10]. Lemieux

and Lewis demonstrated experimentally that the level of sparsification can be significantly

increased, without any apparent loss of routability, but with a significant reduction in silicon

area needed to implement the crossbar [Lem01]. In particular, they concluded that removing

50% of all switches in a fully-populated crossbar almost always still leads to a routable design.

Early commercial architectures adopting crossbar depopulation were also based on 50%-

sparse crossbars [Lew03], whereas newer generations often rely on even sparser ones [Shr23].

Lemieux and Lewis also observed that giving up on some of the reduction in the number of

cluster inputs that Rent’s rule would enable allows sparser crossbars to remain routable, lead-

ing to a net silicon area reduction. This may be another reason why very sparse commercial

architectures do not attempt to reduce the cluster input bandwidth [Shr23].

In their previous work, Lemieux et al. also observed that a highly-routable sparse crossbar

41

Chapter 3 Background

1/4 (I + N)

1/4 (I + N)

1/4 (I + N)

1/4 (I + N)

LUT 1 LUT 2 LUT NN = 10

Figure 3.8: 50%-sparse crossbar used in Stratix [Lew03]. Since all LUTs have the same input connectivity
pattern, they can be shuffled within the cluster without rerouting their inputs. This increases overall
routability compared to other sparsification approaches [Lew03].

approximates a superconcentrator [Lem00]. Let GC = (VC ,EC) be a Directed Acyclic Graph

(DAG) [DeM94] where the nodes in I ⊂VC are designated as inputs and the nodes in O ⊂VC

as outputs. Furthermore, let |I | = |O|, I ∩O =∅, and in-degree of any u ∈ I (out-degree of any

u ∈O) be zero. GC is a superconcentrator iff for every r ∈ [1, |I |] and every A ⊆ I and B ⊆O for

which |A| = |B | = r , there exist r node-disjoint paths between A and B [Alo84].

The problem with superconcentrators is that it is even difficult to detect them: deciding

whether a given DAG is a superconcentrator is generally a co-NP-complete problem [Blu81];

the only exception are depth-one DAGs (with the longest path length equal to one), for which

it is in P [Blu81]. When perceived in isolation, a cluster crossbar is a depth-one DAG, however.

By relying on Hall’s theorem which can be used for deciding whether a depth-one DAG is a

superconcentrator or not [Blu81], Lemieux et al. developed an efficient heuristic algorithm

for constructing highly routable sparse crossbars [Lem00]. However, as mentioned before,

connection-block and crossbar together form a multi-level multiplexing structure and the com-

bined graph representing it is no longer of depth one. Optimizing the two levels independently

may result in lost opportunity for sparsification or reduced routability. On the other hand,

optimizing them together using a superconcentrator approximation is likely significantly more

difficult—which has been acknowledged by Lemieux and Lewis as well [Lem01]—as even the

problem of detection of a superconcentrator becomes difficult [Blu81].

Superconcentrators provide a sound way of obtaining an upper bound on routability of

crossbars with given density. Nevertheless, layout restrictions typically prevent their imple-

mentation in practice [Lew03]. A practical sparse crossbar which was used in the original

Stratix is shown in Figure 3.8. Forcing all LUTs to have identical input connectivity means that

their outputs could be swapped without a need to reroute the inputs [Lew03]. Moreover, input

42

Background Chapter 3

sharing reduces the amount of metal and the number of vias needed to lay out the crossbar,

simultaneously reducing the capacitive load on the drivers of the crossbar inputs [Chr20].

An alternative measure of routability, defined as the logarithm of the number of distinct

configurations that a multi-level multiplexing structure can support, and called entropy, has

also been successfully used for analysis and joint optimization of such structures [DeH95;

Fen08; Gre11]. This measure is related to the number of different input-to-output mappings

that the structure can implement and it can be determined either in closed form, as has

been done for some classes of multi-level multiplexer structures by DeHon [DeH95] and

Kaptanoglu and Feng [Fen08], or using a more general Monte Carlo approach, as has been

done by Lemieux et al. for evaluation of routability of sparse crossbars [Lem00].

3.5 Wire Sharing

In previous sections, we have determined that a programmable interconnect architecture can

be efficiently constructed as a collection of sparsely connected cliques. We have also provided

some information about how the size of the clique can be determined and how many inputs

it needs to effectively connect to other cliques. As of now, however, we have not mentioned

anything about connecting together different clusters, other than that this connectivity must

be sparse. Let us focus on a pair of clusters for now.

One idea could be to simply sparsify the connection-blocks as explained in Section 3.4.2. This

approach is illustrated in Figure 3.9a. As we can see from the figure, it is highly wasteful in

terms of wires needed to implement the circuit in silicon, because all outputs of cluster A

are brought to the inputs of cluster B before the sparsification occurs. Recall that Rent’s rule

dictates that, on average, a portion of signals generated within the cluster will only be used

locally and does not have to leave it. In particular, for a cluster of size ten, about half of the

signals will remain local. Hence, it should suffice that only five instead of ten wires are brought

from cluster A to cluster B. If in some particular instance more than five signals need to pass

from A to B, A can always be broken into multiple clusters instead.

What Rent’s rule does not tell us, however, is exactly which five LUTs will need to pass their

outputs to the other cluster. This will generally depend on the exact circuit being imple-

mented. The problem is resolved by driving the five wires themselves through stored-select

multiplexers, as illustrated in Figure 3.9b. What this essentially achieves is multiplexing the

same long metal wires over multiple configurations of the reconfigurable circuit. Time-domain

multiplexing of resources during the execution of a single configuration and not across config-

urations [Tri97; Fra08], as well as packet-switched routing provided by hardened Networks on

Chip (NoCs) [Abd14] goes beyond the scope of the present thesis.

43

Chapter 3 Background

CLB A CLB B

sp
a
rs

e
co

n
n
e
ct

io
n
-b

lo
ck

(a) All wires.

CLB A CLB B
sp

a
rs

e
C

B

(b) Multiplexed wires. Connectivity pattern is due to DeHon [DeH95].

Figure 3.9: Illustration of wire sharing through configuration-domain multiplexing. Rent’s rule stip-
ulates that only a portion of locally generated signals have to leave the cluster to reach another one.
Leveraging this can greatly reduce the number of physical wires needed to implement the reconfig-
urable circuit. The remaining wires can be multiplexed across different configurations to select drivers
appropriate in different circuits.

3.5.1 Tree-Based Hierarchical FPGAs

Rent’s rule also stipulates that some of the signals which pass between clusters A and B will

stay local to that pair of clusters. Hence, only a portion of signals leaving A and B needs

to be distributed further, to another pair of clusters. To achieve this, we can again apply

multiplexing, as illustrated in Figure 3.10 using the graph model of Section 3.1.

Recursive multiplexing in this manner leads to a tree-based hierarchical FPGA [DeH04]. In

this type of a hierarchical FPGA, wires generally do not span half of the entire chip, and large

devices contain many more levels of hierarchy than APEX 20K. However, wires implementing

connections at higher levels of hierarchy are still very long and hence have to be routed at thick

metal layers [DeH04] that are already needed for clock and power distribution [Fie15]. Finally,

as we have already mentioned, porting ASIC CAD algorithms to hierarchical architectures is

44

Background Chapter 3

LUT LUT LUT LUT LUT LUT

CLB A CLB B

one of the signals
leaving cluster A

one of the signals
leaving cluster B

one of the signals
leaving the pair of clusters A and B

M

Figure 3.10: Tree-based multiplexing. Rent’s rule indicates that only a fraction of signals will have to
leave the pair of clusters A and B, in order to connect to another pair. We can achieve this reduction by
adding another level of multiplexers (M in the figure) to choose among the signals leaving cluster A and
those leaving cluster B. Such recursive construction leads to a tree-based hierarchical FPGA [DeH04].

LUT LUT LUT LUT LUT LUT

CLB A CLB B

one of the signals
leaving cluster A

one of the signals
leaving cluster B

one of the signals
leaving the pair of clusters A and B

Figure 3.11: Segmented-channel routing. Combining signals leaving the two clusters can also be
achieved by cascading the appropriate multiplexers. This corresponds to a segmented-channel archi-
tecture described in Chapter 2.

difficult, and tree-based ones are no exception to this.

3.5.2 Multiplexer Cascades

Programmably selecting between outputs leaving two clusters can also be achieved by cas-

cading their output multiplexers as shown in Figure 3.11. Note that the obtained graph is

now composed of two identical subgraphs, with an edge between them. If we interpret this

edge as an abstraction of a channel wire, for channel wires in an island-style FPGA also serve

to pass signals between multiplexers in the vicinity of different clusters, we can see that this

construct corresponds to segmented channel routing of Section 2.2. The fact that the two

subgraphs are now identical makes segmented-channel routing particularly appealing as the

entire FPGA can be composed of identical tiles. The same cannot be said about the graph of

Figure 3.10, that contains an additional multiplexer, M. The tileablity property of constructed

programmable interconnect architectures can be ensured by restricting the solutions of the

design problem of Section 3.1 to a special class of graphs that we define next.

45

Chapter 3 Background

(-2, 0);
(-1, 0)

LUT

m1
m2

(0, 0) (0, 0)(0, -1)

(-2, 0)

m
3

m4 (0, -1)

(0, 1)

(2, 0)

m
5

(-2
, 0

)

(-2, 0)
(0, -1)

(0, 1)

(2
, 0

)

(0, -1
)

(2, 0)(0, 1)

(0, -1)

(2, 0);
(1, 0)

(0, 1)

m6

(0, 0)

(0
,
0
)

(0, 0)

(0, 0)

(a) Static graph.

LUT LUTLUTLUT

LUT LUTLUTLUT
LUTLUTLUT

m1

m2

m3

m4

m5

m6

(b) Periodic graph with a connectivity detail.

Figure 3.12: Representation of tileable FPGA architectures using periodic graphs.

3.6 Periodic Graphs: A Unified Way to Represent Tiled Architectures

Tileable architectures naturally correspond to the notion of periodic graphs that we borrow

from Höfting and Wanke [Hof94].

Definition 6. Static graph [Hof94]. A 2D static graph is an edge-weighted directed multi-graph

S = (VS ,ES ⊆VS ×VS ×Z2).

Multiple edges distinguished by their weight vectors can exist between any two nodes, as can

loops, making the graph a multi-graph. An example of a static graph representing a simple

FPGA architecture is shown in Figure 3.12a.

Definition 7. Periodic graph [Hof94]. A 2D periodic graph P corresponding to a 2D static graph

46

Background Chapter 3

S = (VS ,ES) is the graph obtained by replicating VS at the points of a 2D integer lattice, and for

each e = (u, v, w⃗) ∈ ES and each p⃗ ∈Z2, adding an edge between the replica of u whose position

vector is p⃗ and the replica of v whose position vector is p⃗ + w⃗ .

As we will see in Chapter 7, static-graph representation is particularly useful for designing

fixed-connectivity patterns of wires between individual LUTs [Nik20]. Nevertheless, they can

represent any tileable architecture and have recently been used for analysis of commercial

FPGAs as well [Gre23]. The periodic graph corresponding to the static graph of Figure 3.12a

is shown in Figure 3.12b. It was deliberately drawn in the form usually used to represent

island-style FPGA architectures [Bet99]. For example, multiplexer m3 is represented as a

driver of a channel wire going two tiles left. The static graph, however, merely specifies the

connectivity between multiplexers. In particular, it states that each tile contains a multiplexer

m3 which is connected to multiplexers m1, m3, m4, and m6, two tiles to the left (due to the

(−2,0) weight of the corresponding edges) as well as to multiplexer m1 one tile to the left

(due to the (−1,0) weight of the remaining edge). That this hyperedge is typically realized

using a length-2 horizontal channel wire going left, with one intermediate tap, is essentially an

implementational detail. Note also that there is no need for the weights of edges of the static

graph connecting multiplexer-representing nodes to have exactly one nonzero component.

Both components can be nonzero, to describe noncardinal wires that exist in some FPGA

architectures, such as the Xilinx 7-Series [Pet21], or both can be zero, to describe multiplexer

networks that are local to the tile, which also commonly occurs in FPGAs [Pet21].

3.7 Academic Terminology of Island-Style FPGAs

Nevertheless, due to their historical origins in MPGAs that we discussed in Chapter 2, FP-

GAs are usually not thought of as networks of multiplexers, edges of which are implemented

as wires, but rather as channels of prefabricated wires that have to be connected together

through multiplexers and to which logic blocks must also be able to connect through multi-

plexers [Bou21]. This gave rise to a particular standard decomposition of the interconnect

architecture into several interconnect blocks, many of which we have already seen. In par-

ticular, multiplexers that are direct predecessors of LUTs are usually said to belong to the

crossbar [Bou21] (Section 3.3), while the edges with heads in these multiplexers are said

to determine the crossbar connectivity pattern. Multiplexers that are direct predecessors of

crossbar multiplexers are usually said to belong to the connection-block [Bou21] (Section 3.3),

although this structure does not always exist; that is the case in Figure 3.12. We note that some

commercial architectures such as those from Xilinx/AMD and Actel/Microchip jointly call the

connection-block and the crossbar an Input-Interconnect Block (IIB) [Fen08; Shr23].

Analogously to the crossbar connectivity pattern, edges that have their heads in the multiplex-

ers of the connection-block are typically said to determine the connection-block connectivity

pattern (blue in Figure 3.12). Multiplexers that drive channel wires are typically said to belong

to the switch-block [Bou21]. As we have already noted, static graph representation does not

47

Chapter 3 Background

intrinsically carry the notion of channel wires as such, so to make this distinction when it is

needed, it is necessary to appropriately label the corresponding multiplexers. Historically,

when FPGAs commonly employed tri-stated buffers, the equivalent of edges between LUTs

and switch-block multiplexers were considered to determine the output connection-block

connectivity pattern [Bet99a] (shown in red in Figure 3.12). On the other hand, edges between

switch-block multiplexers are said to determine the switch-block connectivity pattern, which

we will refer to simply as switch-pattern in the remainder of the thesis, unless stated otherwise.

Switch-pattern is shown in green in Figure 3.12.

Common abbreviations of connection- and switch-block are CB and SB, respectively [Bou21].

For easier comparison with commercial architectures, we note that in Altera/Intel termi-

nology, closest analoga to CB, crossbar, and SB multiplexers, are respectively LAB Input

Multiplexers (LIMs), Logic Element Input Multiplexers (LEIMs), and Driver Input Multiplexers

(DIMs) [Chr20].

When output of a LUT directly drives an input of another LUT (potentially through a decou-

pling multiplexer), without passing through any switch-block, connection-block, or crossbar,

it is said to provide a direct connection to that LUT [Nik20]. Such connections have been used

in commercial FPGAs in a limited manner from XC2064 [Xil93] all the way to Versal [Gai19].

One example of a direct connection between LUTs is indicated in orange in Figure 3.12.

3.8 Ideal and (Currently) Realistic Design Goals

Ideally, one would design the entire interconnect architecture—that is, the entire static graph

describing it—at once. Otherwise, assuming orthogonality between decisions made in parts

of the decomposed problem may lead to wrong conclusions [Yan02]. Nevertheless, as even

adequately exploring the design space of individual subproblems has in many cases been

a challenge, the decomposition is typically still retained. That is, channel segmentation

(determining how many wires of which length the horizontal and vertical routing channels are

composed of), connection-block, crossbar, and switch-block connectivity patterns are usually

designed in isolation, with other aspects of the programmable interconnect architecture fixed.

3.9 FPGA CAD flow

The purpose of FPGA CAD tools is to map a fixed-functionality user circuit onto a given FPGA

architecture. In this section, we review the main stages of a typical FPGA CAD flow, introducing

the problems that each stage is tasked with solving, and briefly discussing the main algorithms

that are used to this end.

48

Background Chapter 3

3.9.1 Synthesis

The first step of a typical FPGA CAD flow is actually identical to that of a typical ASIC CAD flow:

a textual description of the user circuit, written in a Hardware Description Language (HDL)

such as Verilog or VHDL, is first transformed into a technology-agnostic graph representation.

One of the most popular representations in use today is the so called And-Inverter Graph (AIG),

in which each node represents a 2-input AND gate and polarity of edges can be optionally

inverted [Mis06]. A number of technology-independent optimizations are then applied to

this circuit graph in order to improve some metric of its quality. Common metrics are graph’s

size expressed in terms of the number of its gates, as well as depth—the length of the longest

path between any two registers. A classical reference for various synthesis algorithms can be

found in the textbook of De Micheli [DeM94], while a discussion of state-of-the-art SAT-based

synthesis algorithms can be found in the thesis of Haaswijk [Haa19]. Likely the most popular

open-source tool implementing various synthesis algorithms is ABC [Mis23]. It is integrated

with a robust Verilog front end in an open-source tool called Yosys [Wol23].

3.9.2 Technology Mapping

Once the technology-independent circuit graph has been sufficiently optimized, it has to be

rewritten in terms of the available gates in a step called technology mapping [DeM94]. This is

where the FPGA and ASIC flows first diverge. Namely, when designing a standard-cell-based

ASIC, the product of technology mapping is a circuit graph in which nodes correspond solely

to logic gates that exist in the standard cell library. Since the number of these gates is usually

small, classical technology mapping algorithms have relied on matching different structural

representations of each gate (different graphs composed of the gates used in the technology-

independent subject graph—AND-2 and NAND-2 in case of AIG—which compute the given

standard-cell function) in the technology-independent subject graph [DeM94]. The main

problem with applying the same approach to LUT mapping is that each K -LUT can compute

22K
Boolean functions, each with multiple structural representations. To combat this explosion,

early technology mapping algorithms such as Chortle-crf [Fra91] used various heuristics, until

Cong and Ding developed the FlowMap algorithm, which relies on enumerating input-count-

feasible cuts in a topological order, and proved that it can perform depth-optimal technology

mapping onto LUTs in polynomial time [Con94]. To the best of our knowledge, FlowMap

remains at the core of all subsequent FPGA technology mapping algorithms.

One interesting example of such an algorithm is WireMap [Jan09], which, together with

reducing LUT area under depth-optimality constraint, also attempts to reduce the amount of

connectivity which has to be routed between LUTs. Considering connectivity at every stage of

the CAD flow is of great importance for improving efficiency of programmable interconnect

architectures, but has unfortunately not been sufficiently practiced.

As far as the author is aware, depth-optimal technology mapping is the only problem that

occurs in transforming a fixed-functionality user circuit into its FPGA implementation for

49

Chapter 3 Background

which an optimal polynomial-time algorithm is known.

3.9.3 Placement

Once the circuit graph has been represented in terms of LUTs, after technology mapping,

each of its nodes has to be assigned a physical LUT on the FPGA grid—that is, it has to be

assigned coordinates. This is done in a step called placement [Bet99]. Sometimes, before

placing nodes of the circuit graph, they are grouped in such a way that each group can be

implemented by a single logic cluster. If this step exists, it is typically called packing or

clustering [Bet99]. Afterwards, instead of placing individual LUTs, entire clusters are placed,

which can produce a great benefit for placement runtime, since fewer objects need to be

assigned a location [Bet99]. However, it has long been known that grouping LUTs a priori,

without knowing where they are going to be located, can result in inferior performance of the

implemented circuit, since connections between nodes that end up in different clusters may be

unnecessarily elongated [Che07]. As a remedy, early placement algorithms proposed breaking

up clusters late in the placement process, to release nodes belonging to timing-critical signals

and reposition them in different, more appropriate clusters [Che04; Bet20].

Many modern placement algorithms alleviate this problem by skipping packing altogether

and placing LUTs in a flat manner, each circuit graph node being a placeable object and

each physical LUT being a candidate location [Li19a]. What makes this order-of-magnitude

increase in the number of placeable objects possible is that these modern algorithms moved

away from the classical simulated-annealing-based approaches which do not scale well with

problem size [Bet20], adopting instead analytical algorithms that not only scale significantly

better [Li19], but are also much better parallelizable [Raj22].

To enable flat placement, intracluster routing architecture of commercial FPGAs which are

targeted by these algorithms is deliberately designed in such a way as to impose as few place-

ment constraints on the movable LUTs as possible [Pet21]. Most often, the only constraints are

the limited number of control signals available for flip-flops placed in the same cluster [Yan16].

If this were not the case, testing whether LUTs can be placed in the same cluster during the

placement process itself could be prohibitively costly in terms of runtime, since it would

require ensuring that all signals can be brought to their destination inside the cluster [Luu14a].

On the other hand, legalization of placement using a postprocessing step could result in too

significant displacements of different nodes, nullifying much of the optimization that was

previously obtained.

General FPGA CAD flows such as VPR, intended to support any FPGA architecture, even if

it does not possess the aforementioned characteristics of those intended for flat placement,

still perform packing before placement [Mur20]. Due to flexibility of the simulated-annealing

heuristic, VPR also still relies on it, despite its inferior scalability [Mur20]. Note that this is

an issue only for leading-edge FPGAs with very high capacity, which have been the focus of

majority of recent FPGA CAD research [Mur15]. Nevertheless, as we have seen in Chapter 2,

50

Background Chapter 3

reconfigurable fabrics comprising just a few thousands of LUTs are increasingly present as

blocks in larger SoCs, or as stand-alone affordable edge devices. For them, simulated annealing

is still quite relevant—especially if the algorithm can be tuned in such a way as to maximize

the resource-poor fabric utilization and performance at the expense of increased runtime.

The rationale behind all placement heuristics is to make the edges of the circuit graph as short

as possible by placing their endpoints near each other, since the shorter the edge is, the faster

the connection through programmable interconnect that implements it will be. The most

common optimization objective is some approximation of total wirelength [Bet99]. Of course,

not all signals of the circuit are likely to end up on the critical path and hence, in optimizing

the lengths of various edges, those corresponding to more timing-critical signals are typically

given higher importance; that is, higher weight in the total wirelength sum [Mar00].

Minimizing total wirelength has another, perhaps much more significant effect: it is strongly

correlated with the ability to route (see the next subsection) the placed circuit with a limited

number of prefabricated wires [Pis03]. Modern placement algorithms also include advanced

techniques for estimating and minimizing routing congestion more directly, sometimes based

on machine learning models [Maa18].

3.9.4 Routing

The final stage of an FPGA CAD flow is called routing [Bet99]. In routing, each net of the circuit

is implemented as a tree of appropriate routing resources in the programmable interconnect,

such that trees belonging to different nets are disjoint; otherwise, any overlaps would create

a short circuit. Typically, the optimization goal is to minimize the critical path delay, by

assigning greater importance to timing-critical signals, such that they make smaller (ideally

no) detours from the shortest possible paths from the net source to the sink terminals, fixed

during placement [McM95]. Once placement is complete, it is usually assumed fixed during

routing and is not revisited, unless routing fails due to excessive congestion (the number

of signals that need to pass through a certain region of the chip is such that they cannot be

distributed among the limited number of FPGA’s resources to produce a legal, overlap-free

routing). This is precisely the reason why increasingly more effort is being put into precisely

predicting the behavior of the router during placement [Maa18], so that the number of place

and route iterations can be limited. One common exception to keeping placement fixed in

commercial routers is that they can reposition LUTs within their respective clusters, which is

made possible by specific construction of the crossbar [Lew03]. There have also been historical

attempts to simultaneously place and route a circuit [Nag98] in order to maximize the quality

of the implementation, but, due to high computational effort, this has recently been limited

mostly to relatively small regions instead of the entire circuit [Fra18].

Majority of modern routers [Kap12] are based on the PathFinder algorithm [McM95], which

uses congestion negotiation principles to iteratively produce a legal routing. We will review

PathFinder in greater detail in Section 5.3.

51

Chapter 3 Background

3.9.5 Bridging the Gaps Between the Stages

The traditional split between different CAD stages came out of necessity to manage the high

computational complexity of the overall transformation of the specification of the user circuit

to an actual physical implementation. On several occasions, it has been demonstrated that

combining different stages together and solving their problems simultaneously yields better

results [Nag98; Fra18]. Yet, the computational cost of doing this remains largely prohibitive,

so the two most popular approaches to bridging the gap between different stages have been

1) to locally revisit decisions of the previous stage once more information is available from

the subsequent ones [Che04; Sin05] and 2) to try to predict in advance the behavior of the

subsequent stages and guide the optimization in the present one accordingly [Che07; Maa18].

The second approach typically uses either advanced machine learning models [Maa18] or fast

approximate surrogate algorithms such as global routing, which determines only the channels

through which each signal should pass, such that channel capacity is never exceeded, without

taking into consideration the actual distribution of signals among the individual routing

resources [Bet99]. Machine learning in particular has recently attracted significant attention

from major ASIC EDA tool vendors [Han22; Kha22] and it is probably just a matter of time

until major FPGA vendors will start incorporating it in their CAD flows as well.

There has recently been a drive towards making FPGAs more appealing to software develop-

ers [Eve16]. For this effort to be successful, it is not sufficient to raise the level of abstraction

of hardware description [Jos22]; compilation time of the FPGA CAD flow must be drasti-

cally reduced as well, in order to make it comparable to what software developers are used

to [Xia22]. This is one side of the story, intended to provide a solution to flattening out of

general-purpose CPU performance. However, note should be taken that there is still significant

room for improvement of software performance, simply through writing better software or

developing better compilers [Ans23]. The other side of the story is that a large number of

hardware designers who have been engaged in developing ASIC designs now have to shift to

FPGA development, due to simple economics of prohibitive ASIC design costs [Bau20]. Even

for them, fast compilation is a great asset in the prototyping phase, but contrary to software

engineers, they are used to very long ASIC compilation times and are ready to wait significantly

longer to achieve better performance [Kah21]. Hence, for final implementation, especially

in small programmable fabrics of embedded devices or complex SoCs, algorithms with high

computational complexity, possibly solving multiple problems simultaneously and/or solv-

ing some of the subproblems optimally, are likely to become more appealing than before.

Since FPGA architecture design is ultimately a co-design problem with that of designing CAD

algorithms, this is something that should be kept in mind.

With this, we conclude the presentation of the necessary background material and are ready

to move on to the main contributions of the thesis.

52

4 Modeling Programmable Routing in
Advanced Technologies

In Chapter 2, we mentioned that the FPGAs implemented in 7nm technologies brought about

the most significant changes to the programmable interconnect architecture in almost two

decades [Gai19; Chr20]. That something was bound to change should not come as a surprise,

since experts have already anticipated a dramatic rise in wire resistance as technology scales

beyond this point [Che14]. Why does resistance increase? Intuition about this is given already

by high-school physics: resistance of a wire is ρ L
W ×H , where L, W , and H are respectively the

wire’s length, width, and height. If transistor dimensions shrink, so must the width of the wires.

However, the height must shrink as well, since there is a limit to the aspect ratio beyond which

the structure would collapse [Lin23]. Even though high-school physics allows us to anticipate

that problems with high resistance will arise, it does not allow us to predict when precisely

they will become so pronounced as to call for a drastic change in architectural design. For

that, more complex resistance models are required, taking into account phenomena such as

line-edge-roughness and the characteristics of the barrier [Che14; Tok16]. In this chapter, we

develop a framework for physical modeling of programmable interconnect architectures at

advanced FinFET nodes, going down to 3nm. The goal is to be able to analyze and explain

the design choices of the latest commercial architectures, as well as to enable architectural

exploration in advanced technologies that can anticipate future developments. In doing so,

we adapt state-of-the-art wire and via resistance models, previously developed at IMEC, to fit

the level of abstraction required for rapid FPGA architecture exploration.

For widths and heights of different wires, we use dimensions representative of publicly avail-

able information about existing commercial metal stacks, along with predictive data from

leading research institutions. While these dimensions are negatively impacted by technology

scaling, the length of wires receives a positive impact: as devices shrink, so do the distances

that wires have to span. To precisely determine the lengths of various wires that comprise

a programmable interconnect architecture, detailed layout models are required. Yet, these

models need to be simple enough for fast evaluation required by architectural exploration.

Unfortunately, most existing tools for physical modeling of FPGAs, such as COFFE [Chi13a]

and FPRESSO [Zgh16] have been designed for use in older planar technologies where the

53

Chapter 4 Modeling Programmable Routing in Advanced Technologies

effects of high resistance were not nearly as problematic as they are today. Moreover, they

were intended to be compatible with technology-agnostic area models of VPR, based on

counting minimum-width transistor equivalents [Bet99]. For this reason, they utilized very

rough approximations of actual layouts, assuming for instance that any block can be laid out

with an arbitrary aspect ratio [Yaz19], including a perfect square [Chi13a; Zgh16]. In order to

rectify this, we develop new scalable layout models, drawing both from prior academic work,

and especially from the publicly available data about commercial architectures.

Precise tile dimensions and wire pitch information allows us to analyze all architectures

in terms of the available routing channel track capacity—a fundamental question that is

rarely addressed in academic work. However, in this chapter we primarily use the developed

framework to explain some of the changes made in the interconnect architecture of Intel

Agilex FPGAs [Chr20]. In particular, we show that technology scaling beyond 7nm has such a

profound effect that even some long-lasting rules of thumb, such as the choice of cluster size

for optimizing performance, no longer hold.

Besides reexamining the cluster sizing problem, we also return to that of channel segmentation,

confirming the observation of previous authors that scaled technologies favor shorter channel

wires [Lin10]. In doing so, quick evaluation of the proposed physical model proves to be an

important feature, allowing us to evaluate a large number of architectures in a reasonable

amount of time. This will become even more important in the next two chapters, where

evaluating the model upon changing even a single switch allows us to successfully solve the

problem of automated switch-pattern design, which we identify here as crucial.

This chapter is largely based on the paper entitled “Global Is the New Local: FPGA Architecture

at 5nm and Beyond”, previously published at the 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays [Nik21]. The paper was prepared in collaboration with

Francky Catthoor and Zsolt Tőkei from IMEC, who provided us with advanced resistance

models and invaluable expert knowledge of interconnect fabrication and modeling.

4.1 A Nanometer Asteroid Strike

In Chapter 2, we saw that the very first FPGA—XC2064—had only one 4-LUT in its logic

block [Xil93]. It did not take a long time, however, for FPGAs like FLEX 10K to adopt larger logic

blocks, comprising eight LUTs [Alt01]. In APEX 20K, this further increased to ten, which is the

number retained in the subsequent Stratix family of FPGAs, over its six generations [Lew03;

Lew16]. In Section 3.3, we introduced the notion of a logic cluster, as a model for this kind

of block in which multiple LUTs are grouped together and share some common local inter-

connect. One of the reasons why this has been useful is that the local interconnect provides

a fast way to connect LUTs within the cluster; in fact, we even argued that this is the fastest

way possible, since the signals going through the local interconnect pass through only a single

level of multiplexing.

54

Modeling Programmable Routing in Advanced Technologies Chapter 4

2 4 6 8 10
N

15

16

17

18

19

20

21

ge
om

ea
n

ro
ut

ed
 c

rit
ica

l p
at

h
de

la
y

[n
s]

K = 6

Figure 4.1: Routed critical path delays for clusters comprising different numbers of 6-LUTs in 180nm
technology [Ahm01].

Figure 4.2: Evolution of local (intra-) and global (intercluster) interconnect. The local lines in red
use thin lower metal layers while the global blue ones employ thick higher layers [Gai19]. The two
technologies are approximately representative of commercial 16nm and 7nm technologies (full details
in Section 4.3).

When transistor delay dominated that of metal, this was certainly true. Figure 4.1 shows

the average routed critical path delay of circuits implemented on top of a 180nm 6-LUT-

based FPGA, for varying number of LUTs in the cluster. It is adopted from a seminal work

55

Chapter 4 Modeling Programmable Routing in Advanced Technologies

of Ahmed [Ahm00; Ahm01] that is still widely used to justify the choice of LUT and cluster

sizes [Chi13; Zgh17]. The authors note that increasing the cluster size N beyond 3 leads

to increasingly diminishing performance gains, suggesting that taking any N in the range

between 3 and 10 would be a good choice [Ahm01]. Nevertheless, as demonstrated by the

Stratix V [Lew13] and UltraScale+ [Gan16] time-borrowing extensions, the era when 10% gains

could be easily dismissed [Bet98] is long gone. Hence, it should not be surprising that most

high-end commercial architectures have relied on logic clusters of 8–10 LUTs [Cha15; Lew16].

How does the wire resistance surge beyond 7nm impact the performance benefits of these

large (compared to the single-LUT block of XC2064) clusters? Will they continue to persist

or will they be swept away by technological change in favor of smaller clusters, much like

Cretaceous–Paleogene extinction left no place for large dinosaurs?

4.1.1 Global Is the New Local?

To illustrate why one might have concerns about that, let us take a look at a floorplan sketch

of a cluster of ten LUTs in two different technologies, shown in Figure 4.2. Annotated are

the resistance and the intrinsic delay of a local (intracluster) wire and a vertical global (in-

tercluster/channel) wire spanning the height of the cluster. The former is naturally drawn

in one of the fine-pitch metal layers, closer to the active devices [Gai19], whereas the latter,

as customary for longer connections, uses a thicker metal layer from higher up in the stack.

The numbers, accounting for reduction of all three dimensions of a wire, as well as logic delay

scaling, are shown for two technology nodes, approximately representative of commercial

16nm and 7nm nodes. It seems rather plausible that reaching the top LUT from the bottom

one in the same cluster will at some point take more time than reaching the bottom LUT in

the cluster above it. Such a situation would make for an interesting challenge to a packing

algorithm: it should try to spread timing critical connections across clusters instead of keeping

them internal. To make things even worse, any signal would incur a higher delay penalty to

enter the cluster than it took to reach it from a distant source through the global interconnect.

All this suggests that clusters should be made smaller than they are today.

Of course, this is merely a back-of-the-envelope calculation and things are not this simple

in reality: one should also consider the cost of the additional multiplexing, horizontal offset

between the channel wire and the signal source and destination, the via stack required to reach

the thicker metal, etc. Hence, in practice, it is not necessarily clear whether the described

hypothetical situation will actually happen, and, if so, when. As we have mentioned, the

purpose of this chapter is to develop a framework for modeling FPGA fabrics at advanced

technology nodes, so as to be able to answer quantitatively this and similar questions.

56

Modeling Programmable Routing in Advanced Technologies Chapter 4

4.1.2 Wait a Minute, Isn’t Industry Going in the Opposite Direction?!

The benefits of having the ability to model programmable interconnect architectures in

advanced FinFET nodes go far beyond enabling reassessment of the usual rules of thumb used

for choosing cluster sizes. We shall be able to see that already in this chapter and especially in

the following two. However, before beginning to present the details of the proposed model, it is

of interest to compare our main motivating example of Figure 4.2 to some recent commercial

developments. This will provide us with a way to assess the validity of our conclusions.

As we have already mentioned, fabrication technology literature anticipated that at 7nm there

will be a turning point in how interconnect resistance impacts architecture design [Che14].

Fortunately, both major high-performance FPGA vendors (Xilinx/AMD and Altera/Intel) have

already taped out 7nm devices and their design teams have presented the architectural modi-

fications at length [Gai19; Chr20]. Changes to the programmable interconnect architecture

were in both cases indeed considerably more drastic than in most prior generations since

the start of the century. When listing some of the main modifications introduced in Agilex

(see Section 2.9.2.1), we have not mentioned any reduction in cluster size, however. In fact,

the authors clearly state that the cluster (LAB) still comprises ten 6-LUTs (ALMs) [Chr20].

Nevertheless, we believe that the change in this respect is merely hidden in terminology. Here

is a quote from the authors of Agilex [Chr20]:

First, the LIM/LEIM network is now broken into 4 “lanes” which each service 2.5 ALMs, newly

omitting much connectivity between the lanes. In previous architectures, all LIMs drove LEIMs

on all 10 ALMs, but in Agilex, most LIMs drive LEIMs on ALMs in only one lane, allowing shorter

wires for the remaining connectivity. Shorter LIM to LEIM wires can also move to a better place

in the metal stack.

We note once more that LIM is equivalent to a connection-block multiplexer in academic

terminology that we use in this thesis, while LEIM corresponds to a crossbar multiplexer.

Since Stratix 10, feedback connections do not go back to the crossbar multiplexers, but to

those of the connection block instead, increasing the minimal number of multiplexer levels

required for connecting two LUTs in the same cluster to two [Lew16]. So how is breaking the

local interconnect into four almost isolated pieces different from reducing the cluster size

4×? Most likely, other uses of the cluster, such as control signal routing, LUTRAM circuitry,

and body-bias selection [Lew09] are still implemented at the level of the ten-LUT group,

which makes it meaningful to still call this group a cluster. However, in terms of interconnect

topology, which has traditionally been the main reason for cluster-based organization of the

architecture—especially in academia, where control signals, LUTRAM, and body bias are

routinely neglected—we believe that clusters of ten LUTs have all but ceased to exist.

What about the AMD/Xilinx Versal architecture? Not only do the authors not report any

decrease in cluster size, but a 4× increase, from eight to 32 6-LUTs [Gai19]. We believe that

in this case, the new cluster is in a way similar to the APEX 20K super-cluster of Figure 2.12.

The main difference, however, is that the super-cluster-level interconnect is reserved only

57

Chapter 4 Modeling Programmable Routing in Advanced Technologies

connection-block

SB

connection-block

SB

connection-block

SB

connection-block

SB

connection-block

SB

CLB

connection-block

SB

CLBCLB

CLB CLB CLB

C
LB

CB
+
SB

C
LB

CB
+
SB

C
LB

CB
+
SB

C
LB

CB
+
SB

horizontal routing channel

vertical routing channel

actual island-style FPGA layout region
in a technology with multiple metal layers

conceptual island-style FPGA layout region
(realistic for older technologies with few metal layers)

Figure 4.3: Island-style FPGAs in technologies with multiple metal layers. In older technologies with few
metal layers, channel wires had to be routed around the logic blocks (left). When more layers became
available, tracing channel wires above the active area of the tile became possible (right) [Lew13].

for routing feedback connections between the LUTs of the super-cluster, while the signals

entering the super-cluster from without do not have to go through it. This prevents the

super-cluster-level interconnect from becoming a performance bottleneck, allowing it to be

slow. Even the most critical feedback connections can avoid the super-cluster interconnect by

routing through the channel wires as they would if the cluster size had not been increased.

These signals are typically relatively few, however, and hence the super-cluster interconnect

can provide benefit in terms of reducing the pressure on global routing, by catering to the

majority of the remaining feedback signals [Gai19]. We will return to Versal in Section 4.1.2.

Let us now start developing the proposed model. The first step is to be able to measure the

length of various wires.

4.2 Area and Wirelength Modeling

In order to determine the lengths of different wires that occur in an FPGA—which has a decisive

influence on delay of programmable interconnect in scaled technologies [Che14]—we need a

precise model of dimensions and positions of various blocks that form the endpoints of these

wires. The model that we developed for this purpose is introduced in this section.

4.2.1 Tile Floorplan

Island-style FPGAs are typically thought of as having routing channels which surround logic

blocks, like in Figure 2.3. In the days when metal layers were scarce, this was actually quite

accurate, since channel wires could not be routed above the logic block simply because there,

the metal was already taken by connections belonging to the logic block itself [Cho91]. In

the meantime, this situation has changed, and in modern FPGAs there is no longer a need

58

Modeling Programmable Routing in Advanced Technologies Chapter 4

2

Figure 4.4: A fully stacked floorplan of the tile showing the position of the LUTs and various routing
multiplexers, similar to a Stratix architecture [Lew13]. A concrete example of a 3nm architecture based
on a cluster of four 6-LUTs is shown on the left. It illustrates a simple greedy multiplexer positioning
algorithm, which stacks multiplexers sorted by decreasing input count, starting from those of the
crossbar, right next to the LUT, then proceeding with those of the connection-block, appending them
to the left, and finally, finishing with those of the switch-block. Each time the height within one column
exceeds the height of the adjacent LUT, a new column is appended to the left. This creates additional
space for tracing vertical wires above the tile.

to reserve physical space in the 2D plane for the channel wires themselves: instead, they are

traced above the active devices and the dimensions of the abutted tiles are entirely determined

by the logic blocks and the routing multiplexers [Lew13]. We illustrate this change in Figure 4.3.

Because the FPGA is constructed by abutting identical tilesI, in order to determine the lengths

of wires, we only need to know the dimensions and positions within one tile of logic elements

and various multiplexers that are part of the programmable interconnect architecture. A

simplified floorplan of a Stratix V tile, which we adopt in this work as well, is shown on the

right of Figure 4.4. As we have already seen in the discussion of the APEX architectures in

Section 2.9.1.1, the logic cluster itself is composed of a single vertical stack of the given number

of LUTs [Lew13]. Routing multiplexers belonging to the crossbar, the connection-block, and

the switch-block are stacked immediately to the left of the LUT stack, with no deliberate

spacing between them [Lew13]. We note that COFFE 2 [Yaz19] uses a similar floorplan model,

but divides the stack into two columns. While this may be useful for reducing the average

length of the local wires, we chose to retain the single column floorplan of the Stratix and

the Agilex architectures [Lew13; Chr20], since it is our interest to be able to explain the

developments that occurred between them.

IThis thesis is concerned with answering fundamental questions about designing the reconfigurable fabric, and
in particular its programmable interconnect part. Hence we limit ourselves to modeling only the logic clusters.
Appropriately modeling the hard IPs such as DSP and memory blocks would require integration of entirely different
techniques [Yaz19], which goes beyond our present scope. As we have mentioned before, since design and analysis
of these hardened-functionality blocks can leverage a large portion of ASIC development tools and methodologies,
we do not believe that postponing their treatment for future work significantly reduces the contribution of the
thesis. Inability to model these blocks will have repercussions on which open source benchmark circuits we can
use in architectural evaluation, however. We will discuss this issue further in Section 4.7.7.

59

Chapter 4 Modeling Programmable Routing in Advanced Technologies

Figure 4.5: A sketch of the assumed LUT layout, based on the one due to Abusultan and Khatri [Abu14].
The SRAM design is adopted from Young et al. [You15]. Fins are drawn in blue, gates in red, contacts
in gray, while black designates metal. SRAM cell output buffers are not shown in the figure but are
accounted for by the area model.

When designing the interconnect architecture, we pay attention that the multiplexers can

be evenly divided between the LUTs, similarly to Agilex [Chr20], and match the height of the

multiplexers adjacent to one LUT to the height of the LUT itself [Lew13]. The floorplan of one

concrete example architecture is shown on the left of Figure 4.4.

4.2.2 LUT Dimensions

LUTs play a dominant role in determining the layout of the tile, since they take up around 50%

of its area and since the routing multiplexers are pitch-matched to them [Lew13]. We based our

layout assumptions on a layout due to Abusultan and Khatri [Abu14], shown in Figure 4.5. It

consists of a multiplexer tree with select inputs coming from the left and the output produced

at the bottom, horizontally centered. We assume that two-gate-pitch SRAM cells [You15]

are placed next to each other, above the decoder. To provide the necessary stability [Lew12],

the SRAM cells are assumed to be sized as 1:2:3—i.e., that the NMOS transistors of the two

inverters (M2 and M6 in Figure 4.5) have 3 fins, the PMOS (M3 and M5 in Figure 4.5) have 1 fin,

and that the access transistors (M1 and M4 in Figure 4.5) have 2 fins [Cla16]. We also assume

that there is a one-fin spacing between the NMOS and the PMOS transistors, as allowed by the

60

Modeling Programmable Routing in Advanced Technologies Chapter 4

inputs

output
Figure 4.6: A 6-LUT composed of four stacked 4-LUTs (represented by triangles), with their input
connections. In a monolithic 6-LUT, these lengths would amount to 4× the width of the depicted 4-LUT.
Assumed pin locations are shown on the right.

ASAP7 design rules [Cla16]. This means that the width of the LUT mask (truth table memory)

amounts to 10 ·2K fin pitches, where K is the LUT input count. The LUT mask is considered to

fully determine the width of the entire LUT, as it leaves ample space for increasing the size of

the multiplexer tree transistors. The height of the LUT is determined as 2K gate pitches for

the multiplexer tree, two gate pitches for the mask, and two more gate pitches for the mask

buffers (not shown in Figure 4.5).

Because the width of this layout increases exponentially with the increase in the number

of LUT inputs, the distance that the input signals need to travel before reaching the most

distant transistor of the multiplexer tree quickly becomes intolerable. A similar situation

occurs for the output that must reach the routing multiplexers. For this reason, we consider a

4-LUT—the size explored by Abusultan and Khatri—to be the largest for which the resistance

of the horizontal wires connecting the LUT to the routing multiplexers is acceptable. To create

larger LUTs, we stack the required number of 4-LUTs on top of each other. This greatly reduces

the distances that the LUT input and output signals need to cross, as can be seen in Figure 4.6.

It also creates more vertical space for the routing multiplexers.

We assume that the flip-flops and the register multiplexing circuitry can fit inside the empty

space created by the triangular shape of the (4-)LUT. As an illustration backing this assumption,

a flip-flop of the ASAP7 [Cla16] 7nm standard cell library takes up approximately 116 square

gate pitches, whereas the empty space left by a minimally sized 4-LUT equals approximately

600 square gate pitches according to the ASAP7 design rules.

4.2.3 Routing Multiplexers

We assume that all routing multiplexers are built of transmission gates, which follows the

trends visible in Agilex [Chr20]. We also adopt the previous results of Chiasson [Chi13] which

showed that already in planar technologies, it is sufficient that all transistors in the multiplexer

transmission gates are minimally sized. A sketch of the layout of a 4:1 stored-select multiplexer

is shown in Figure 4.7. We assume that the 2-gate-pitch SRAM cells of Young et al. [You15]

are stacked on top of each other, one for each column of the multiplexer. Immediately to the

right, first-level transmission gates are aligned with the appropriate SRAM cells, followed by

61

Chapter 4 Modeling Programmable Routing in Advanced Technologies

S0 S1

S2

S3

y

i0
i1

i2
i3

T0 T1

T2 T3
T4

T5

S1

S0

S3

S2

T0 T2

T1 T3

T4

T5

Figure 4.7: A two-level multiplexer and its layout.

the SRAMs of the rows and the transmission gates of the second level, still to the right.

This results in a multiplexer height of twice the maximum between the number of rows and

columns of gate pitches, and a width equal to 20 fin pitches for the SRAMs, one for the second-

level transmission gates, and one for each multiplexer row. We note that the proposed layout

sketch may be slightly optimistic for transmission gates as it may be underestimating the

required well spacing.

The connection-block and the switch-block multiplexers require buffers at the output whereas

the crossbar multiplexers drive only one LUT input pin which has a buffer of its own, removing

the need for additional buffering. We assume that where required, the buffers are placed below

the appropriate multiplexer. The increase in the total multiplexer height in the number of gate

pitches is determined from the buffer’s drive strength, after folding it to pack it into the the

horizontal space used by the multiplexer itself.

In general, it is possible to optimize the aspect ratio of the individual multiplexers by adjusting

their row and column counts, while optimizing multiplexer placement, so that their combined

area is minimized (see Figure 4.4). This goes beyond the scope of the present work and for

the moment we rely instead on optimizing each multiplexer type individually, to minimize

the number of SRAM cells used. Then we populate columns from the LUT left, starting from

placing all crossbar multiplexers, then all connection-block multiplexers, and finally all switch-

block multiplexers. Each time the LUT height is exceeded, a new column is appended to the

left. An example result of application of this simple algorithm is shown on the left of Figure 4.4.

4.3 Interconnect Modeling

Now that we have completed our layout model, we can easily compute the lengths of different

wires. What remains to be able to measure the wires’ delays is to determine their cross-

sectional dimensions and combine them with appropriate resistance and capacitance models.

These dimensions are later also used to assess feasibility of tracing the desired number of

tracks over a given tile area.

62

Modeling Programmable Routing in Advanced Technologies Chapter 4

Figure 4.8: Representative metal stacks for the 16nm [Wu13], 7nm [Wu16], and 3nm [Pra19] nodes. All
wires are drawn to scale.

4.3.1 Layers

Representative metal stacks for several of the technology nodes of interest are shown in

Figure 4.8. We assume that two pitch options are used to route all wires, referring to the tighter

as Mx and to the more relaxed as My. In most cases these correspond to the tightest and

the second tightest pitch in the interconnect stack. The exception is the 3nm node, where

we also explore a possibility of promoting My one step further, as illustrated in the figure.

In all cases, however, the layer group labeled as My is considered to be immediately above

the layer group labeled as Mx, as the intermediate layers can be omitted. We assume that

all connections within the individual blocks (LUTs, multiplexers, etc.) are routed at M2 or

below, as customary for basic cells, whereas the intracluster connections connecting different

LUTs together and passing external inputs to the crossbar multiplexers (LAB lines in the

Stratix architectures [Lew13]), as well as all the intercluster wires are routed at M3 and above.

63

Chapter 4 Modeling Programmable Routing in Advanced Technologies

(a) Wire cross section. (b) Via.

Figure 4.9: Relevant dimensions of a wire and a via.

Commercial FPGAs typically also make use of the extra thick Mz metal layers, for tracing the

power and the clock signals, but also to implement very long bidirectional channel wires,

sometimes spanning as many as 24 tiles [Tyh15; Lew16]. However, since these wires, only

useful for very large designs, are peculiar in their bidirectionality and the way in which they

can be accessed [Lew13], we leave modeling them for future work.

4.3.2 Cross-Sectional Wire Dimensions

All dimensions relevant to computing per-unit-length resistance and capacitance of wires,

using the models of this section, are shown in Figure 4.9a. Typically, the only one that is

readily available in public data from the foundries is the pitch and therefore we use it to derive

all the other dimensions. Representative pitches for all the technology nodes of interest are

shown in Table 4.1. As their names and the references in the footnotes suggest, the considered

technology nodes are represented through parameters strongly inspired by corresponding

commercial technologies (e.g., F16 resembles TSMC 16 nm). Speculative nodes (e.g., F3a/b

representing hypothetical 3nm nodes) are derived following the progression suggested in rele-

vant literature and some manufacturability considerations. The F4 node is a speculative node

that we suppose foundries might want to introduce as an intermediate step if transitioning

directly to a 3nm node would prove too dramatic a move.II

We assume that the trench width equals 1.1× half pitch, to mitigate the resistance increase and

ease via contacting. Representative barrier thicknesses that are used to obtain the final copper

IIWhen this work was first published, the latest available technology was the TSMC’s 5nm node. In the mean-
time, both a 4nm intermediate and a 3nm full node were introduced [TSM23]. Nevertheless, to the best of our
knowledge, the only information that was made available about these nodes is that the tightest metal pitch at 3nm
is 23 nm [Wu22] (merely 1 nm more than what we have used) and that the gate pitch is 45 nm [Cha22] (which is
slightly less scaled than the predictions that we used). Given the lack of further information and that different
foundries will inevitably use different dimensions, we decided to retain the dimensions that we originally used.

64

Modeling Programmable Routing in Advanced Technologies Chapter 4

Table 4.1: Metal pitches for all the technology nodes of interest. F7, for instance, is our hypothetical
7nm node.

F16 F7 F5 F4 F3a F3b
Mx [nm] 641 402 383 264 225 225

My [nm] 801 762 726 506 487 808

1 TSMC 16 nm [Wu13].
2 TSMC 7 nm [Wu16].
3 Fit to match the Mx RC increase from F7, amounting to about 16% [Yea19].
4 Close to the limits of single-patterned EUV and a reasonable intermediate point between F5 and F3.
5 IMEC prediction [Pra19].
6 Assuming 1.9× as in F7 [Wu16].
7 IMEC prediction for the M4–M6 layers [Pra19].
8 IMEC prediction for the M7–M9 layers [Pra19].

dimensions of the Mx layers are 3 nm until F5 inclusive and 2 nm from F4 onwards [Cio16].

For the My layers, we assume a constant barrier thickness of 4 nm across all nodes. Spacing

between the layers (dy in Figure 4.9a) is set to equal the trench width, reflecting the typical

via aspect ratio (height over width) being close to 1. Finally, the height of the wire (HCu in

Figure 4.9a) is determined through a sweep that seeks to minimize the R ′C ′ product (see

below). The maximum allowed aspect ratio is set to 2 for all layers apart from Mx of F3b, for

which we assumed possible an aspect ratio of 3 to mitigate the resistance surge at the expense

of increased capacitance. With F3b we explore a different trade-off that could be made in a

future advanced node. Taller wires are considered difficult to manufacture, so it is unlikely

that it will be possible to further reduce resistance through aspect ratio optimization [Lin23].

4.3.3 Resistance

Resistance suffers the greatest impact from the aggressive scaling of the wire pitch, due to the

quadratic reduction of the cross-sectional area. Here, we adopt a slightly simplified version

of the resistivity model introduced by Ciofi et al. [Cio16], that is valid for all the technology

nodes of interest to us. By assuming no tapering (i.e., wire sides are completely vertical, as in

Figure 4.9a), integration of equation (1) of Ciofi et al. simplifies substantially and we obtain

the following expression determining the resistance per unit length of a wire:

R ′ =
1

HCuWCu

(
32.05+615

(
tanh(0.133WCu)

WCu
+ tanh(0.133HCu)

HCu

))
(4.1)

Variables WCu and HCu correspond to the definition of Figure 4.9a, while the constants have

been empirically determined for a 7nm technology node [Cio16], which is in the middle of the

range that we intend to explore.

65

Chapter 4 Modeling Programmable Routing in Advanced Technologies

Table 4.2: Wire resistance and capacitance per micrometer length. Maximum aspect ratio for Mx of
N3b was increased to 3, to reduce the resistance at the expense of increased capacitance.

F16 F7 F5 F4 F3a F3b
Mx

WCu [nm] 29.2 16.0 14.9 10.3 8.1 8.1
HCu [nm] 67.4 41.0 38.8 26.6 22.2 34.3
R’ [Ω/µm] 31.6 128.7 151.6 392.9 666.4 396.7
C’ [fF/µm] 0.22 0.22 0.22 0.22 0.22 0.28

My
WCu [nm] 36.0 33.8 31.6 19.5 18.4 36.0
HCu [nm] 84.0 79.6 75.2 51.0 48.8 84.0
R’ [Ω/µm] 18.7 21.6 25.1 75.7 86.4 18.7
C’ [fF/µm] 0.24 0.24 0.24 0.24 0.24 0.24

Table 4.3: Resistance of vias. The reported values correspond to the resistance of a single via connecting
two neighboring layers in the Mx group, or the buffer output at an Mx layer and a wire at an My layer,
in case of stacked vias.

F16 F7 F5 F4 F3a F3b
Mx-Mx [Ω] 10.9 34.8 39.9 58.9 92.9 92.9

Stacked Vias (M2-M5)

H [nm] 246.4 154.0 146.3 100.1 84.7 108.9
R [Ω] 19.2 30.5 34.7 69.8 88.0 44.9

4.3.4 Capacitance

Capacitance is less impacted by the pitch scaling than resistance. Pitch reduction does

decrease the distance to neighboring wires (dx and dy in Figure 4.9a), thus increasing the

coupling capacitance; yet, line width and height (W and H) decrease as well, balancing this

out. Hence, for modeling capacitance, we use a less recent model due to Wong et al. [Won00],

available at the PTM website [Nan11], without any modification. For all technology nodes, we

assume a relative permittivity of 2.8 for the lower metal layers and 3.0 for the intermediate

ones, which is representative of the current trends in industry. The obtained resistance and

capacitance per unit length are reported in Table 4.2. In all cases, the R ′C ′ optimization

resulted in the maximum allowed aspect ratio. As predicted, we can see a substantial rise in R ′

between consecutive nodes, due to the shrinking of cross-sectional area, whereas C ′ remains

constant since the dimensions with opposing influence scale uniformly.

4.3.5 Vias

To mitigate the effects of high resistance increase at lower metal layers, more and more signals

are routed at higher ones. This means traversing long vertical distances, so it is important to

66

Modeling Programmable Routing in Advanced Technologies Chapter 4

Table 4.4: Representative device geometry and nominal supply voltages. All values are taken from Wu
et al. [Wu20], apart from F4 which is an interpolation between F5 and F3, and F16 which comes from
FreePDK15 [Bha15] and PTM [Nan11].

F16 F7 F5 F4 F3
gate pitch [nm] 64 56 48 44 41
fin pitch [nm] 40 30 28 24 22

gate length [nm] 20 18 16 15 14
fin height [nm] 26 35 45 50 55
fin width [nm] 12 6.5 6 5.5 5.5

Vdd [V] 0.85 0.75 0.7 0.65 0.65

accurately model via resistance, which is itself affected by technology scaling.

A via connecting layers Mi and Mi+1 is shown in Figure 4.9b. We assume a classical 87°-

tapered via [Cio17]. We compute the width of the via at half the height and use it in place

of HCu in Equation (4.1). W (Mi+1) is used in place of WCu , to obtain the via resistance per

unit length. Here we note that for connecting layers of different pitch, the shape of the via is

typically different and cannot be accurately modelled with this approach. However, as this

is a reasonably small penalty that needs to be paid only twice per connection, we chose to

prioritize modeling simplicity over accuracy. As stated before, we assume a unit aspect ratio

for vias, so the final resistance requires multiplication by W (Mi). To account for the resistance

of the top and the bottom barrier, we assume a constant resistivity of 1,200 Ωnm [Cio17],

while the barrier thicknesses correspond to those of the layers that the via connects. Values of

single via resistances obtained for all technology nodes of interest, using the pitch information

from Table 4.1, are reported in Table 4.3. The table also shows the corresponding resistances of

stacked vias connecting buffer outputs to the My wires. We assume that the buffer output pin

is at M2 and that the target My layer is M5, meaning that the via needs to traverse the height of

two Mx trenches and three Mx vias.

4.4 Device Modeling

For device modeling, we rely on the PTM [Nan11] and ASAP7 [Cla16] predictive models. We

leave the 16 nm PTM models for F16 completely unchanged. For the nodes scaled further

down, we update the fin dimensions and the gate lengths of ASAP7 SLVT devices at the fast-fast

(FF) corner [Cla16], as indicated in Table 4.4. We leave the remaining parameters which have

a less pronounced effect on the drive current unchanged. The same fin and gate pitches are

used to convert the wire lengths computed by the scalable model of Section 4.2 to metric

units. The choice of SLVT devices at the FF corner may underestimate the contribution of

transistor delays to routed critical path delays, compared to the conclusions that could be

made using slower devices. However, in our measurements, all transmission gates are powered

by the same nominal voltage as other transistors and we do not allow gate boosting that other

authors have considered for further speed improvement [Chi13].

67

Chapter 4 Modeling Programmable Routing in Advanced Technologies

Table 4.5: FO4 delays at nominal voltages and at 0.7 V. The delays at 0.7 V are useful to validate the
relative speedup, shown in the last row. For this, note that F16 and F7 are two generations apart and
that F4 models a possible half-node between F5 and F3. The values indicate that a reasonable speedup
roughly around 10% between consecutive nodes is maintained.

F16 F7 F5 F4 F3
At nominal Vdd [ps] 6.09 4.96 4.69 4.69 4.48

At 0.7 V [ps] 7.02 5.09 4.69 4.52 4.30
∆ −27% −8% −4% −5%

Table 4.6: Average input to output delays of a 6-LUT. The values are scaled from the
K6_N10_mem32K_40nm VTR architecture file [Mur20].

F16 F7 F5 F4 F3
Average Delay [ps] 94 68 64 64 61

4.5 Delay Extraction Methodology

Many aspects related to delay modeling have been described in the previous sections. Here

we present the final steps that we use to obtain all the necessary component delays.

4.5.1 Look-up Tables

As our focus in this work is interconnect, we take the LUT delays reported for Stratix IV in the

K6_N10_mem32K_40nm architecture distributed with VTR 8 [Mur20] and scale them using

the equations of Stillmaker and Baas [Sti17], from and to the closest nodes, until F7. From F7

onwards, we assume the scaling of fanout-of-4 inverter (FO4) delays at nominal voltage values,

reported in Table 4.5. In doing so, we somewhat underestimate the importance of wires inside

the LUTs themselves, but we leave addressing this issue for future work. The resulting delays

are reported in Table 4.6.

4.5.2 Local Wires

Long local connections traced at the highly resistive Mx layers are particularly sensitive to

capacitive load of the various multiplexers that connect to them. For this reason, we fairly

precisely model all the wires that participate in local signal distribution: we assume that one

long vertical line distributes the signal and that shorter horizontal wires bring it to individual

multiplexer inputs (Figure 4.10). We also assume that two loading multiplexers are fully

switched on, which corresponds to the typical fanout of a net in a real circuit [Hut97]; one

of them is assumed to be in the middle of the line, while the other one is that at which the

delay is being measured. The fraction of the loading multiplexers that have only the first level

transmission gates turned on is determined as an inverse of the average number of columns

in these multiplexers, which is the probability that the one column SRAM which is high is

controlling the transmission gate connected to the wire [Chi13a]. The horizontal position

68

Modeling Programmable Routing in Advanced Technologies Chapter 4

s

t

LUTscrossbar muxes

1

2
3

4
5

6
7

8
9

10

1

23

s

45

67

910

8 t

Figure 4.10: Setup to measure local wire delay.

Figure 4.11: Setup to measure global wire delay.

of the long vertical line is assumed to be at the center between the output of the LUT and

the most distant driven multiplexer. We sweep the buffer sizes to minimize delay, assuming

that the maximum strength of the first inverter is 5, to avoid overloading the minimally sized

transmission gates of the driving multiplexer, and that the second inverter can be at most 5×
larger than the fist one. A similar setup is used for measuring the global wire to LUT-input delay,

with the only difference being the position of the signal source, the connection-block delay

being counted besides that of the crossbar, and the long vertical line positioned at half the

distance between the connection-block output and the furthest driven crossbar multiplexer

input. Each wire segment in Figure 4.10 is modeled as a single Π-section.

4.5.3 Global Wires

For measuring global wire delay, we again determine the exact position of the loading multi-

plexers (see Figure 4.4). We assume that the My wire brings the signal to the average of the

69

Chapter 4 Modeling Programmable Routing in Advanced Technologies

0 1 2 3 4 5 6 7
Target LUT distance

10

20

30

40

50

60

70
[p

s]
K = 6, N = 8

F16
F7
F5
F4
F3a
F3b

Figure 4.12: Delays from the output of the bottom LUT in a K6N8 cluster to all LUT inputs reachable
through a 50% sparse crossbar.

loading multiplexer input coordinates, from which point it is further distributed using a simple

rectilinear Mx tree, similar to the one modeling the routing of signals within the cluster. This

is illustrated in Figure 4.11. The long My wire is modeled using N ×2K−4 Π-sections (i.e., one

section per 4-LUT height in the LUT stack of the cluster; see Figure 4.6). This applies to both

vertical and horizontal global wires.

We also assume that the vertical (horizontal) global wires are positioned at the center of the

tile (LUT), horizontally (vertically), and account for the horizontal (vertical) spans needed to

access them as well as to take the signal back to the target multiplexers. Because the driver

sizes influence the multiplexer stacking, we predetermine them by simulations of a simplified

load model, with the same overall buffering approach as the one used for local wires.

4.6 Extracted Local Wire Delays

In this section we present the resulting delays of local connections, as extracted using the

methodology of the last section. The values support the interest to explore anew different

cluster sizes, that we indicated in Section 4.1.

70

Modeling Programmable Routing in Advanced Technologies Chapter 4

4.6.1 The Low Performance of Low Metal Layers

Figure 4.12 shows for all considered technology nodes the delays from the output of the

bottom LUT of an eight 6-LUT cluster (K6N8) to each of the other LUT inputs that it can

access through a 50% sparse crossbar. We can see that for F16 it is business as usual: the delay

increase with distance is reasonably modest. As the resistance rises in more advanced nodes,

however, the delay increase rate grows rapidly—which is intuitive and somehow predictable.

It is the magnitude of this increase that is interesting: eventually, the delay of connections to

the other end of the cluster becomes comparable with and even surpasses that of a 6-LUT

(Table 4.6). Connections between immediately adjacent LUTs, dominated by the logic delay,

are faster in newer technologies until F5, when device performance increase decelerates. At

the other end, between faraway LUTs, F16 achieves the fastest connectivity—often by far.

Finally, it is interesting to note that using an average delay as a single number representing

local connection delays (which is often done for architectural research) could be justified for

older technologies, as supported by the relatively flat curve of F16. For scaled technologies,

however, it is imperative that CAD tools are aware of the delay disparity and that they can place

the LUTs within the cluster accordingly—ideally during routing, as Quartus does [Lew03],

since only then accurate information about signal criticality becomes available.

4.6.2 Can You Repeat, Please?

One way of mitigating the effect of delay increase due to higher resistance is repeater insertion.

To see what an effect this could make, we consider two situations: (1) an optimistic setting

where the repeaters can be inserted in the long vertical local wire itself and (2) a more realistic

setting where the repeaters are located close to the LUT output, in the cavity created by two

constituent 4-LUTs. In both cases, we vary the repeater number and size, assuming that they

are located at equal space, aligned with LUT output heights, and that their size equals the size

of the second inverter of the main driver. The results for F4 are plotted in Figure 4.13. We can

see that in-line buffer insertion does mitigate the delay to an extent but that it still remains

substantial. Yet, as mentioned, it is not realistic to assume that each local wire can be buffered

in-line, because the repeaters would make it hard to maintain the dense spacing between the

lines, even if there were sufficient space left by the crossbar multiplexers. The more realistic

buffering scenario shows some benefit but delays to faraway LUTs remain almost unchanged.

4.6.3 The Rise of Thick Metal Wires

Together with different buffering options, Figure 4.13 shows the delay resulting from raising

the long vertical line to the My layer, with access wires remaining at Mx. The significant delay

benefit is immediately apparent: the slope of the curve reduced dramatically and the most

distant LUT input can be reached within about a third of the representative LUT delay. We

may note, however, that connections to about two LUTs away are still faster or roughly equal

when performed on Mx, due to the lower wire capacitance. Similar situation is obtained across

71

Chapter 4 Modeling Programmable Routing in Advanced Technologies

0 1 2 3 4 5 6 7
Target LUT distance

10

20

30

40

50

60

70
[p

s]
K = 6, N = 8

F4 Mx
F4 Mx with in-line repeaters
F4 Mx with repeaters at LUT output
F4 My long vertical line

Figure 4.13: Delays from the output of the bottom LUT in an F4 K6N8 cluster to all LUT inputs
reachable through a 50% sparse crossbar, for different delay reduction options. The plot shows values
for optimistic (in line) and realistic (at LUT output) repeater insertion; it also shows the effect of raising
the long vertical line to My, leading to a much more dramatic delay reduction.

the considered scaled technology nodes.

4.6.4 Thick Metal Wires Are Scarce

The previous section may suggest that lifting the long local connections to My would provide

a solution for the delay increase with technology scaling. This may not be such a wise idea,

however. Until now, we have focused on connections between LUTs in the same cluster to

provide motivation. Yet, the increase of the delay penalty that intercluster connections need

to pay upon entering the cluster, while being dispatched from the connection-block output to

the appropriate crossbar multiplexer over increasingly resistive local wires is likely even more

important, for intercluster connections occur more often on a typical critical path [Lew12].

Hence, to really see the benefit of raising local wires to the My layers, all of them would need

to be raised, and not only those routing the LUT outputs. For a K6N8 cluster, that would

mean occupying 40 tracks, while the tile width of such a cluster in F4 (including the routing

multiplexers) can typically accommodate about 180 My tracks. This means that about 20% of

the available routing space would be locked inside the cluster and unavailable to intercluster

signals, potentially inducing a large impact on routability. This impact may be reduced by

the increased number of metal layers in newer technologies, but the recent trends have

72

Modeling Programmable Routing in Advanced Technologies Chapter 4

Mx is faster

My is faster

cluster reentry penalty

Figure 4.14: Layer optimality for different distances.

1 2 3 4 5 6 7

Distance (ALMs)

0

20

40

60

80

100

A
LM

-t
o
-A

LM
 R

o
u
ti

n
g
 D

e
la

y
 (

p
s)

Figure 4.15: Agilex feedback delays. Adopted from Chromczak et al. [Chr20].

shown that it is desirable to keep as many connections at the lower layers as possible, likely

to reduce fabrication cost, increase yield, and free up higher layers for new additions to the

reconfigurable SoCs, such as the hardened NoC [Gai19].

An alternative solution is again suggested by Figure 4.13. By observing that communication

within a two-LUT range is faster at Mx, we may suspect that a smaller cluster (e.g., N = 2) could

be efficient in providing local communication, while communication with more distant LUTs

73

Chapter 4 Modeling Programmable Routing in Advanced Technologies

can be achieved through global routing. This way, the performance gain from moving to an

upper layer is reduced, but the tracks are not locked within the cluster. To provide a clearer

illustration of the expected effect, we plot a combination of the corresponding sections of the

Mx and the My curves in Figure 4.14, the later shifted up by the delay of distributing signals

within a distance of two LUTs, to simulate the cost of reentering an N = 2 cluster.

4.6.5 This Looks Familiar...

As a reference, in Figure 4.15 we also reproduce a plot from Chromczak et al. [Chr20], corre-

sponding to that of our Figure 4.12. We can immediately observe a similar shape of the curve,

indicating that the approach taken by the designers of Agilex could indeed have been to utilize

faster global routing for connections between LUTs at a distance of more than two.

We note that the absolute values and slopes reported by Chromczak et al. are substantially

higher than the ones we measured. A likely reason for this is that the actual Agilex logic

element is significantly more complex than the 6-LUT followed by a flip-flop which we use:

each fracturable LUT has eight inputs requiring crossbar multiplexers, instead of one flip-

flop, it is accompanied by four, along with hardened arithmetic circuitry, complex output

multiplexing, and local interconnect pipeline registers [Chr20]. At the cluster level, feedback

connections pass through the connection-block in addition to the crossbar, thus adding

another level of multiplexing, equipped with bypassable pipeline registers which certainly

must incur some delay [Lew16]. Additionally, LUTRAM circuitry, as well as control signal

multiplexing is likely spread across the cluster. This makes both the multiplexing structure

intrinsically slower and, more importantly, the local wires significantly longer, which could

well be the cause why we observed a dramatic rise in local connection delays only at F4,

whereas Agilex seems to have experienced it already at 7nm.

Before we proceed with reevaluating the optimal cluster sizes across technologies, which the

results presented until now suggest is of great interest, let us briefly return to the quote of

Chromczak et al. that we used towards the beginning of this chapter [Chr20]:

Shorter LIM to LEIM wires can also move to a better place in the metal stack.

This seems to suggest that the authors may have actually contemplated raising the long local

wires (LAB lines [Lew16]) to an My layer, before deciding to break the large cluster into pieces.

4.7 To Minimize or Maximize Channel Width? That Is the Question

We perform cluster size exploration in the classical manner of Ahmed and Rose [Ahm00]: for

each of the sizes N ∈ [2,4,8,16], we place and route benchmark circuits to obtain postrouting

critical path delays, which we use to rank different architectures in terms of performance.

However, rather than search for a minimal routable channel width, which was a great way

of reducing FPGA area at the time when routing channels were physically surrounding the

74

Modeling Programmable Routing in Advanced Technologies Chapter 4

Table 4.7: Maximum wire spans for F16–F5 and F3b as a function of the cluster size N . For F4 and F3a,
all entries are halved, because the tighter My pitch reduces the distance that can be optimally traversed
before buffering.

N 2 4 8 16
V 16 8 4 2
H 8 8 8 8

logic blocks, we seek the best way to fill with wires the track space created by the active area,

without making the tile dimensions metal bound. Indications that this is more appropriate

than minimizing channel width for modern FPGAs in which channel wires are routed on top

of logic blocks are given by Lewis et al., who tried to maximize the number of available tracks

without increasing the number of multiplexer columns in the tile of Stratix V [Lew13]. In this

section, we detail this process and list our other assumptions on the interconnect architecture.

Later, we will also comment on the possibility to use the available track space differently.

4.7.1 Crossbar

We compute the number of cluster inputs from the Rent’s rule, as described in Section 3.4.1.

However, we use a slightly higher exponent of 0.8, since it better corresponds to the Stratix

architectures [Lew16]:

I =

⌈
K ×N 0.8

N

⌉
×N (4.2)

The division and multiplication by N guarantees that the connection-block multiplexers can

be evenly divided between LUTs, which eases layout modeling. Unlike the latest Intel archi-

tectures [Lew16], we assume the classical setting in which the feedback connections directly

enter the crossbar, without passing through the connection-block [Lew13]. The crossbar

is assumed to be 50% sparse in delay measurements, to be representative of commercial

architectures [Lew13]. In the final VPR experiments, its connectivity is modelled as fully popu-

lated, however. This is to remove one more possible source of routability impacting the delay

results, even though Lemieux and Lewis previously demonstrated that 50% sparse crossbars

are almost always routable [Lem01].

4.7.2 Routing Channels: General Approach

Similarly to Agilex, we assume that an equal number of wires of each length and direction

begins and ends at the height of each LUT and that they drive only the switch-blocks at their

end [Chr20]. We consider only unidirectional wires occurring in pairs of opposing direction.

75

Chapter 4 Modeling Programmable Routing in Advanced Technologies

4.7.3 Routing Channels: Maximum Wire Spans

Before exploring exact channel compositions, we determine the maximum lengths of wires for

each cluster size in each technology. We do this by finding the longest wire that is still faster

than two wires half its length connected in a sequence through a switch-block multiplexer.

Wires longer than that would make little sense, since a faster connection could be achieved by

composing two shorter wires. This comparison with halves naturally leads to consideration of

wires of lengths which are powers of two. Although that does not encompass segmentations

observed in some commercial architectures [Chr20; Pet21], it aligns well with prior work

of Betz and Rose [Bet99a], so we do not consider the restriction a major loss of generality.

We note that Lee et al., have explored the effect of intermediate buffering of long channel

wires, observing some performance improvement [Lee06]. However, their experiments were

performed in 180nm and 90nm technologies making it reasonable to altogether omit from

consideration the negative impact of via resistance. In scaled technologies, this is no longer

possible and the delay penalty of descending the via stack in order to reach the buffer is likely

much better amortized if a multiplexer is included as well, so that the etal track can be used

more flexibly and with less waste. In order to simplify the modeling process, we have not

performed experiments to test this intuition. More recent academic research has also avoided

intermediate buffering [Lin10].

The resulting maximum spans are shown in Table 4.7. We observe that with increasing physical

height of the tile, maximum logical distance that makes sense with respect to delay decreases.

Similarly, for technology nodes with higher My resistance (F4 and F3a), the maximum spans

that can be efficiently realized further reduce. This is in line with the previous observations

about the impact of technology scaling on channel segmentation made by Lin et al. [Lin10].

4.7.4 Routing Channels: Reference Composition

We determine the exact combination of wires of different lengths by enumerating all possibili-

ties to (partially) fill the channel with wires longer than 1. We limit the exhaustive exploration

by forcing the tile to be active-area bound. Then, we pad the remaining space in each combi-

nation by length-1 wires until it is the metal which determines the tile dimensions. After each

additional wire set is inserted (two wires per LUT, in opposing directions), the multiplexer

positions are recomputed (Figure 4.4), to account for a possible increase of the tile width, due

to the increased size of the multiplexers driven by the newly added wires, as well as due to the

addition of the new multiplexers driving the inserted wires themselves. Since this process does

not influence the capacity of the horizontal channel, as it is fully determined by the height of

the stacked LUTs, but it may increase the capacity of the vertical channel, due to the tile width

increase, horizontal channel is padded first.

In all cases, vertical wires are assumed to be traced in one My layer and horizontal wires in

another. An example of a vertical channel composition, corresponding to the floorplan of

Figure 4.4, is shown in Figure 4.16, with the padded length-1 wires drawn in grey.

76

Modeling Programmable Routing in Advanced Technologies Chapter 4

K6N8

K6N8

K6N8

V1U

V2U

K6N2
K6N2
K6N2
K6N2
K6N2
K6N2
K6N2
K6N2
K6N2
K6N2
K6N2
K6N2

V4U

V8U

K6N4

K6N4

K6N4V2U

V4U

A
B

C

tapB

tapC

K6N16

V1U
V1U

Figure 4.16: Wire length scaling and taps. Wire lengths are explored for the eight 6-LUT cluster (K 6N 8)
to minimize delay. Combinations of wires longer than 1 (black in the figure) are enumerated in a
brute-force manner, while to each particular combination, length-1 wires (grey in the figure) are added
until the tile width becomes metal bound, including the active area extension due to wire addition
(Figure 4.4). Smaller clusters inherit the solution adapted such as to maintain the physical length of the
wires. Taps are added to offset less capable local interconnects. For instance, without tapB, the K 6N 4
cluster B would not be reachable from cluster A, while without tapC, C would not be reachable from it
in one hop. The K 6N 16 cluster also inherits the solution, with length-1 wires replacing those of length
< 1, after scaling.

4.7.5 Routing Channels: Taps and Scaling

Out of the explored cluster sizes, N = 8 is the most representative of the state-of-the-art

commercial FPGAs at 16nm and before [Lew16; Pet21]. Our goal is to assess whether the

rise of resistance at lower metal layers calls for a reduction in cluster size. In order to make

a fair comparison of performance of different cluster sizes, the interconnect architecture

should ideally be independently optimized for each. However, besides merely comparing

different cluster sizes, we would also like to analyze the modifications introduced in the

Agilex architecture. Given that the vertical channel segmentation reported for Agilex does not

include significantly shorter wires than in Stratix 10 [Chr20] (at least not 4× shorter, which we

anticipate the effective cluster size reduction to have been), we can assume that the lengths of

channel wires are still expressed in terms of the previous reference cluster size—N = 10 for

Intel and N = 8 for us. Hence, in each technology, we optimize the channel segmentation on

the architecture with eight 6-LUT clusters by placing and routing a subset of benchmarks (see

Section 4.7.7). Then, we scale the logical length of wires for other clusters so that the physical

length is maintained. Because the short logical wires may disappear from architectures with

smaller clusters, we introduce taps to maintain routability, as suggested in Figure 4.16. This is

conceptually consistent with Agilex wires maintaining the logical length of the large cluster,

but allowing multiple entry points into it [Chr20]. This method may be suboptimal for smaller

77

Chapter 4 Modeling Programmable Routing in Advanced Technologies

clusters, but it is hence conservative: if a smaller cluster demonstrates an advantage, this

advantage could only increase if its routing channels were individually optimized.

4.7.6 Switch-Block Patterns

In the most advanced technologies, the switch-pattern must also minimize the distances

crossed at the lower metal layers. To address this, we allow connections only between wires

ending and starting at the same LUT height (see Figure 4.4). The exact pattern is formed in

such a way that each wire drives at least one wire of each type (length and direction) and is in

turn driven by at least one wire of each type, unless it is coming from the direction in which

the driven wire is going. To further increase routability, length-1 wires are allowed to also drive

length-1 wires in their own direction, starting at the height of the immediately adjacent LUTs.

This again draws from concepts reported for Agilex [Chr20].

We allow the LUTs to drive all wires that start at their height. Similarly, all wires ending at a

particular LUT height are evenly distributed among the connection-block multiplexers of the

LUT. The pattern generation algorithm itself is available in the accompanying source code

repository (see Section 4.10), while Figure 4.17 gives as an illustration one concrete example,

corresponding to the floorplan of Figure 4.4.

4.7.7 Experimental Setup

We rely on the 20 largest MCNC [Yan91] benchmarks in this study. Although there have

been concerns about their fitness for architectural exploration, it has been shown that, with

respect to basic architectural parameters, they result in the same decisions as larger and newer

benchmarks [Zgh17]. Besides, we are now essentially reassessing the same decisions that were

made on these very benchmarks in older technologies [Ahm04]. We exclude bigkey, dsip, and

des which underutilize the minimum-sized FPGA. The 10 smallest of the remaining 17 circuits

are used for ranking channel segmentations, while all 17 are used for the main experiments.

To suppress the experimental noise possibly induced by the choice of the particular channel

segmentation, we perform final experiments on the three best-ranked segmentations for

which all circuits are routable for all considered cluster sizes. The FPGA grid dimensions in

the number of tiles are computed so that the physical width and height of the grid are both

approximately equal and minimum, given the requirements of the particular circuit.

We implement all circuits with VTR 8 [Mur20], taking the median routed delay of three different

placements. Then, for each circuit, the median delay obtained on the three chosen channel

segmentations is taken as representative, and finally, a geometric mean of such representa-

tive delays is computed over all circuits, to represent the particular cluster size in the given

technology. All circuits are routed using the map lookahead [Mur20].

78

Modeling Programmable Routing in Advanced Technologies Chapter 4

H
1
L0

H
2
L0

H
2
L1

H
4
L0

H
4
L1

H
4
L2

H
4
L3

H
1
R
0

H
2
R
0

H
2
R
1

H
4
R
0

H
4
R
1

H
4
R
2

H
4
R
3

V
2
D
0

V
2
D
1

V
4
D
0

V
4
D
1

V
4
D
2

V
4
D
3

V
2
U
0

V
2
U
1

V
4
U
0

V
4
U
1

V
4
U
2

V
4
U
3

H1L0
H2L0
H2L1
H4L0
H4L1
H4L2
H4L3
H1R0
H2R0
H2R1
H4R0
H4R1
H4R2
H4R3
V2D0
V2D1
V4D0
V4D1
V4D2
V4D3
V2U0
V2U1
V4U0
V4U1
V4U2
V4U3

cls_in0
cls_in1
cls_in2
cls_in3
cls_in4

Figure 4.17: Adjacency matrix of the switch-block pattern of the 3nm K 6N 4 architecture whose floor-
plan was shown in Figure 4.4. All points correspond to connections between wires ending and starting
at the same LUT height, apart from those marked in red, which are replicated also to the wires starting
at the height of the adjacent LUTs. V and H stand for vertical and horizontal wires, respectively, while
U, D, L, and R designate the up, down, left, and right direction, respectively. The first number in the
name stands for the wire’s logical length, while the second is its index within its type.

4.8 The Asteroid Strikes

Results of the architectural study are reported here. We also discuss how they may relate to the

recent trends visible in commercial architectures, as well as what could be their influence on

the future outlook.

4.8.1 A Future of Small Clusters

Figure 4.18 shows the performance of all cluster sizes at all technology nodes. We can see

that until F5 the cluster size ranking is largely maintained as in older technology nodes, with

N = 8 being the best, or very nearly the best option for optimizing delay [Ahm04]. Yet, as

interconnect resistance grows, we visualize the trend we were suspecting: smaller clusters

emerge as the best solution. The turning point is, in our technology sequence, between

F5 and F4, when N = 4 takes a clearer lead against N = 8, and N = 2 surpasses it as well; it is

79

Chapter 4 Modeling Programmable Routing in Advanced Technologies

F16 F7 F5 F4 F3a F3b
Technology node

1.2

1.4

1.6

1.8

2.0

2.2

[n
s]

N = 16
N = 8
N = 4
N = 2

Figure 4.18: Geometric mean delays of the MCNC benchmarks for different cluster sizes over all
considered technology nodes.

perhaps worth reiterating here that we do not claim this to be an absolute point, since different

foundries evolve technology nodes differently and in ways that are impossible for us to know.

Needless to say, we are also aware that these results are comparable to the noise margin typical

of such experiments [Rub11], possibly still worsened by the somewhat unconventional and

not thoroughly explored routing channel and switch-pattern designs used in the study. Yet,

we believe the observed trend, which follows both the theoretical expectations, as well as a

plausible interpretation of the changes applied to a recent commercial architecture, is clear

and inescapable.

4.8.2 What Can the Large Clusters Tell Us?

It is worth observing the behavior of the largest, N = 16 cluster as well. Its delay is more

sensitive to resistance increase than that of the others, both due to the larger load of the more

numerous crossbar multiplexers, and because its height is approaching the range where the

capacitive load of the long local wires themselves starts to become an important factor in

determining their delay (Figure 11 of Ciofi et al. [Cio16]). As we have already noted, the physical

dimensions of the Agilex tile are likely significantly larger than the ones of the architectures

explored here; both for N = 10, each ALM having eight inputs that require local routing, and

the higher overall complexity of the cluster. Hence, the effects observed by the designers of

80

Modeling Programmable Routing in Advanced Technologies Chapter 4

Agilex may have been closer to the impact of scaling on K 6N 16, which could have advanced

the reduction of the effective cluster size to the 7nm node. We must note here, however, that

while the performance trend of K 6N 16 follows the theoretical expectations, it may be slightly

disadvantaged compared to other clusters for two reasons: first, due to wire length saturation

(see Figure 4.16), it may receive more vertical wires than other cluster sizes, which increases its

tile width and thus negatively impacts the delay as well; second, for the smallest benchmarks,

the grid height in the number of clusters that would make the physical grid square drops

below that for which VPR can compute the router lookahead maps [Pet16] without adverse

edge effects. Hence, some grids retain a higher aspect ratio than desired. Nevertheless, neither

of these effects has influence on the delay of the local connections and should thus merely

impact the speed of K 6N 16 relative to other clusters, but not its decelerating trend with respect

to resistance increase.

4.8.3 So, Is Global the New Local?

Let us return to the question that started this paper: does it ever become faster to route to the

next cluster than to the furthest LUT in the same one? According to our measurements, yes,

it does, but after all the cost of exiting and entering again the cluster, this happens only for

F3a, and by an extremely small margin, contrary to the expectations of Figure 4.13.III A human

designer could reduce this additional cost, e.g., by positioning the global wires replacing the

intracluster interconnect of the larger clusters closer to the LUTs. On the other hand, the stark

rise in the delay of the local wires distributing intercluster signals to LUT inputs is obvious

already with the present modelingIV and demonstrates itself in the results of Figure 4.18.

Hence, likely the greatest benefit of the aforementioned decomposition of the large cluster in

Agilex is in fact the reduction of the penalty that intercluster signals need to pay upon entering

the target cluster.

4.8.4 Return of the Super-Cluster

In Section 4.1.2, we mentioned that Versal—also a 7nm architecture—has increased the cluster

size from 8 to 32 [Gai19]. A quick extrapolation of Figure 4.18 to N = 32 immediately casts

doubt that increasing the cluster size was motivated by a desire to increase performance. A

plausible reason to effectuate such an increase could have been the need to free up track

space at upper metal layers for integration of a hardened NoC, or other fixed-functionality

blocks that were added to Versal [Gai19]. This is a well-known constraint for implementing

reconfigurable fabrics within a complex SoC [Koc21]. Nevertheless, suffering the performance

deterioration anticipated by Figure 4.18 would be unacceptable.

IIIIt takes 21.4 ps for the output of the LUT to reach a V 4 intercluster wire in K 6N 2, the delay of the V 4 wire is
27.8 ps, and a further 18.7 ps are needed for the signal to reach the LUT input, starting from the global wire. In
total, 67.9 ps, compared to the maximum delay of 68.6 ps inside K 6N 8.

IVFor instance, a typical value for K 6N 8 at F3a is 39.5 ps, compared to the above 18.7 ps in case of K 6N 2. At F16,
the difference is 27.3 ps to 20.7. In the worst case, the impact is even higher, following the trends similar to those of
Figure 4.12.

81

Chapter 4 Modeling Programmable Routing in Advanced Technologies

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

horizontal
routing channel

fa
st

 l
o
ca

l
in

te
rc

o
n
n

e
ct

(N
 =

 8
)

slow local interconnect
 (N = 32)

LUT

from slow local interconnect

from fast local and global interconnect

vertical
routing channel

Figure 4.19: Plausible organization of a Versal cluster comprising 32 LUTs. Non-timing-critical connec-
tions can be routed through the slow but metal-efficient additional super-cluster-level interconnect
shown in yellow (see the orange trace), while the rare timing-critical connections can continue to use
the faster global interconnect. Decoupling multiplexers that allow the additional interconnect to be
used only optionally ensure that it never becomes a performance bottleneck.

We hypothesize that the actual idea behind the cluster size increase was to provide an optional

alternative for feedback connections within the new large clusters, without adding any ad-

ditional constraints on how the signals can enter the constituent clusters, nor removing the

possibility for constituent clusters to be connected through the faster global interconnect. We

illustrate this in Figure 4.19. When the additional super-cluster-level interconnect is used only

for non-timing-critical connections, it can be very slow, without impacting the performance

of the implemented circuits. The key ingredient of this approach is that the additional super-

cluster-level interconnect architecture does not take away from the routing flexibility that

existed before its addition, but only augments it. Of course, routing channel capacity is likely

reduced after the feedback connections are consumed by the added structure, as otherwise

the freeing up of the upper layers for the fixed-functionality blocks could not be achieved.

However, there is a fundamental difference between the additional interconnect of Figure 4.19

and the case of the APEX 20K Mega LAB where all connections were forced to pass through the

82

Modeling Programmable Routing in Advanced Technologies Chapter 4

super-cluster-level interconnect, turning it into a performance bottleneck.

In principle, the purely additional super-cluster interconnect structure can do no harm. How-

ever, it adds to the tile area and as we have mentioned in Chapter 2, the effect that this area

increase has on overall delay, through lengthening of wires is profound. Of course, some of the

area will be compensated by reduction in routing channel multiplexer number; however, this

is not sufficient to offset the cost of the added super-cluster interconnect multiplexers, since

if it was, large clusters would have been shown to be area-optimal and they were not [Bet98;

Ahm01]. Since the added interconnect can tolerate large delays, the problem can be solved by

using area-efficient multi-level multiplexing structures, including Clos and Beneš networks, to

implement it [Wan14]. Additionally, enhancements to the placement algorithm can be lever-

aged to further sparsify super-cluster interconnect by shuffling LUTs within the super-cluster

to align the feedback connections to what the interconnect structure can support.

In Chapter 7, we will extensively rely on the “additional-only” interconnect enhancement

approach, while in Chapter 8, we will explore the possibilities for utilizing a dedicated detailed

placement algorithm to further enhance the effectiveness of these area-efficient enhance-

ments. While we have no way to be sure that Versal really takes the approach of Figure 4.19,

Figures 4 and 8, as well as Section 3.2 of Gaide et al. [Gai19] strongly suggest that this may

indeed be the case. At any rate, leveraging the fact that only a small number of connections in

a typical circuit is timing-critical could be very useful for creating more efficient interconnect

architectures in the future, despite the fact that the design of Agilex has deliberately tried to

reduce the delay variation between routing resources that existed for this reason in previous

generations of Altera/Intel FPGAs [Chr20].

4.8.5 The End of an Era

There is perhaps a much more worrying effect to be noticed in Figure 4.18: not only newer

technology nodes bring disarray to well-established architectural tenets, but, even with cor-

rections to past habits, they do not appear to bring any speed advantages. On the contrary.

The grim image of Figure 4.18 confirms what we have postulated in Chapter 2: the era of

simple scaling of programmable interconnect architecture without drastic redesign that Dr.

Trimberger [Com17] recalled is over. We note that while our architectural exploration in

this chapter has been somewhat limited and certainly allows for significant improvement,

we have essentially performed the two main optimization steps that have been applied to

prior generations of Stratix architectures (see Section 2.9). Namely, we 1) optimized channel

segmentation for each particular technology and 2) ensured that the switch-pattern design

automatically adapts to changes in segmentation. Of course, the parametric switch-pattern

may be suboptimal for any particular segmentation, as we will see in Chapter 5, but it at least

offers balanced connectivity between different types of wires, unlike the classical disjoint

pattern used, for example, as the baseline in the work of Lin et al. [Lin10].

83

Chapter 4 Modeling Programmable Routing in Advanced Technologies

H1 H2 H4 V1 V2 CB(N=8) CB(N=2)
0

5

10

15

20

25

30

35
<d

el
ay

>
[p

s]

+6%

+23%

+27%

+20%

+39%

+34%

+3%

F5
F4

Figure 4.20: Scaling of wire delays between F4 and F5. Horizontal (vertical) channel wires are indicated
by H (V), followed by the span, while connection-blocks are labeled with CB. Reported delays include
driving multiplexer delays. Longer wires are more sensitive to per-unit-length resistance increase, as
expected [Che14]. Similarly, the thinner local wires of the connection-block suffer larger performance
degradation for a comparable length (e.g., CB(N=8) is comparable to V1) than the thicker channel wires.

4.8.6 What Is to Be Done?

In order to isolate the most significant problems in programmable interconnect design, the

solving of which should be prioritized if performance is to continue to improve in latest

technology nodes, it is important to see where the performance bottlenecks are. We plot the

delays of various routing resources in F5 and F4 technologies—which is where we measure

the largest performance decrease—in Figure 4.20. As expected, we can observe that the

amount of delay deterioration is directly related to the length of the particular wire. Hence, it

is imperative to reduce the length of all wires as much as possible, as well as to ensure that

the longer and more resistive wires are not excessively loaded. However, it is highly unlikely

that a uniform area shrink could be effectuated without a major loss in routability. Instead, it

is the multiplexers catering to the few timing-critical signals of the user circuits that should

be carefully positioned in such a way that the wires connecting them are as short as possible.

Furthermore, care should be taken that these wires are minimally loaded. The rest of the

connectivity can be implemented by slower and longer wires, as we have already discussed in

Section 4.8.4. The elusive nature of hardware reconfigurability comes to the forefront here too:

whereas in an ASIC critical paths are a priori known and can be adequately optimized in this

manner, in an FPGA this is not the case and a balance must be struck between how good a

physical implementation of a certain interconnect topology is and how well the CAD tools can

actually utilize it when mapping user circuits. This will be a recurring topic in this thesis.

84

Modeling Programmable Routing in Advanced Technologies Chapter 4

As expected, Figure 4.20 also confirms that delays deteriorate more for connections imple-

mented on lower and more resistive metal layers. Hence, it is imperative to reduce the distance

that connections travel at these layers, for example, within the switch-block. This will be the

topic of the next chapter.

4.8.7 Custom Technology Nodes for FPGAs

Another solution, somewhat complementary to architecture enhancements, could be to

customize the interconnect stack to the very needs of FPGAs. This is addressed to an extent by

our speculative F3b node. As evidenced by Table 4.8, the delay improvement of F3b over F4,

due to a more relaxed My pitch and its lower resistance (see Tables 4.1 and 4.2), comes at the

expense of almost no density increase and reducing the available track count above the tile by

more than a third (Table 4.8). This means that while F3b offers some tangible speed benefits,

perhaps insufficient to justify moving from a 5nm to a 3nm node, its utility cannot be properly

assessed without taking the adverse impact on routability into consideration.

Design Technology Co-Optimization (DTCO) is widely considered to be a key technique for

allowing continued performance improvement in new technologies [Mor23]. In FPGA design,

this would certainly include fine-tuning the pitches and aspect ratios of different layers in the

metal stack, as has been done for Agilex [Chr20]. Nevertheless, modeling these possibilities

goes beyond the scope of the present work. What also could have been done is to increase

the spacing between channel wires at the expense of reduced track capacity, or by using more

metal layers in each direction. This technique, previously explored by Betz and Rose, among

others, reduces mutual capacitance and improves interconnect speed [Bet99a]. Multiple layers

could, of course, also be used to reduce the mutual capacitance of local wires. By repeating

the same connection at the layer above and connecting the two wires with multiple vias, even

the effect of increased resistance could potentially be mitigated. This has been employed in

QuickLogic FPGAs, for example [Sax03]. Nevertheless, increasing the number of layers also

increases the cost and complicates the process of physical modeling. Since our goal in this

thesis is to develop techniques for automated optimization of programmable interconnect

architecture topology, we leave exploration of further DTCO possibilities for future work.

4.8.8 And What about Density?

Table 4.8 shows the evolution of tile area and cumulative channel sizes over the technology

nodes. Compared to performance improvement, density scaling seems a lot more promising.

In the most advanced nodes, observed area reduction even meets the typical expectations

(about 40% per node; remember that F4 is an intermediate node). We must note, however,

that the reported area is influenced by the employed methodology intended to maximize the

available wiring bandwidth above the tile (see Section 4.7.4). In reality, routability require-

ments of more complex circuits and the availability of multiple My layers must be taken into

account as well. We leave this for future work.

85

Chapter 4 Modeling Programmable Routing in Advanced Technologies

Table 4.8: Areas and channels in the various technologies. Area Am is used by the channels and area
Aa is the active area. Each column corresponds to the median-area architecture of the three that were
chosen for K 6N 8 for the particular technology. All architectures are slightly metal-area bound.

F16 F7 F5 F4 F3a F3b
Am [µm2] 393 239 203 154 136 149

∆ −39% −15% −24% −12% −3%
Aa [µm2] 374 230 186 144 124 123

∆ −38% −19% −23% −14% −15%
Aa(routing) 58% 55% 56% 55% 55% 55%

H-tracks 320 288 272 352 336 208
V-tracks 192 144 144 176 176 112

Table 4.8 reports only the data for N = 8. For N = 4 and N = 2, the metal area and horizontal

channel track width are two and four times smaller, respectively, while the vertical channels

maintain the width, due to the way in which they are composed (see Figure 4.16). The only

slight variation exists in the active area, due to the different crossbar and connection-block

multiplexer size and count. The aforementioned wire length saturation effect causes the

vertical channels to be somewhat wider for N = 16, and its area a bit more than twice that

reported in Table 4.8. Finally, it is interesting to note that active area of the programmable

interconnect (including all multiplexers of the crossbar, the connection block, and the switch

block) is about 55% of the entire tile, which is in line with the values reported for commercial

architectures [Lew13].

4.8.9 The Issue of Nonshrinking SRAM

One of the problems with programmable interconnect is the need to use SRAM cells to store the

select inputs of routing multiplexers. As we can see from Figure 4.7, stored-select multiplexer

area is in fact dominated by the SRAM cells. For example, in a 16:1 multiplexer, 84% of the

area not including the output buffer is consumed by SRAM. If output buffer is included, the

fraction of the area consumed by SRAM typically falls down to 67%. We note once more

that our transmission-gate layout model may be slightly optimistic, which could slightly

overemphasize SRAM area. Nevertheless, already in 20nm, Chromczak and Lewis report

that SRAM consumes about 50% of the total routing area [Lew12] and in scaled technologies,

optimal buffer size reduces, due to the large series resistance of the wire itself. In prior

work, which neglects the issues of stability, this was not visible and SRAM was generally not

considered a major concern [Chi13a]. In older technologies, in fact, effort was made even in

commercial FPGAs to reduce the number of pass-transistors that a signal had to pass while

going through a multiplexer, all at the expense of increased SRAM cell count [Lew05]. Yet,

when per-unit-length resistance of wires increases, it is imperative to reduce their length. This

in turn calls for reducing active area and SRAM cells stand in the way.

As we have already mentioned, for the models developed here to be useful for architectural

86

Modeling Programmable Routing in Advanced Technologies Chapter 4

F16 F7 F5 F3
Technology node

0.02

0.03

0.04

0.05

0.06

0.07
A(

6T
 S

RA
M

 c
el

l)
[

m
2]

This work
TSMC

Figure 4.21: SRAM area scaling as predicted by our model and as reported by TSMC [Sch22].

exploration, they had to be reasonably simple and scalable across technologies. Furthermore,

in order to be representative of general trends and not peculiar to any particular foundry, we

had to rely on only approximate values representing different dimensions. Finally, it is worth

noting that the SRAM cell design we adopted from Young et al. [You15] was specifically tailored

for use in FPGAs and is different from a typical 6T SRAM cell. Hence, it is only reasonable to

expect that the SRAM cell area computed from the models developed in this work will differ

from the values reported by the foundries. Yet, it is also important to compare the predicted

trends with those recently made available by the foundries, in the period that followed the

original publication of this work [Nik21].

Figure 4.21 compares the actual SRAM scaling reported by TSMC with that predicted by our

models. As we can see, although the absolute values differ, the general trends of SRAM scaling

predicted by our model are in line with those reported by TSMC until F5, inclusive. We note

that the large discrepancy at F16 is an instance of foundry variability: Intel reports their 14nm

SRAM cell to take up 0.0588 µm2, which is much closer to 0.0512 µm2 computed from our

model. What could be very worrying is that unlike the predictions of our model, scaling of

TSMC’s SRAM cell area between F5 and F3 is minute, and is even expected to entirely reduce to

zero in future refinements of the 3nm node [Sch22]. Although the overall area reduction that

we measure is in line with what TSMC reports [Sch22], TSMC’s gains are driven by reduction

of logic and not SRAM area. If SRAM indeed stops scaling, this may create problems for

the SRAM-heavy FPGAs, and in particular for their programmable interconnect in which,

unlike in LUT masks, SRAM cells do not serve a dual purpose of creating user-accessible

read-write memories. Perhaps multiplexer designs that minimize the number of transistors

87

Chapter 4 Modeling Programmable Routing in Advanced Technologies

Table 4.9: Total number of feasible channel segmentations in each technology.

F16 F7 F5 F4 F3a F3b
197 134 130 51 51 64

on signal paths should be abandoned in favor of architectures which increase configuration

encoding efficiency, such as those explored by DeHon [DeH95]. Fully encoded multiplexers,

as well as SRAM sharing between multiplexers (e.g., by using multi-bit buses [Ye06]) and even

multiplexers and LUT masks could be good candidates for alleviating this potentially very

serious problem. Of course, a different area-switching-depth trade-off can be implemented

for a small number of programmable connections intended to support timing-critical signals.

All this, however, is out of scope of the present thesis and we leave it for future work.

4.9 Low-Hanging Fruit Fell to the Ground

Significant attention has been given to the problem of optimizing channel segmentation over

the past few decades, with approaches ranging from brute-force exploration of a limited set of

possible compositions [Bet99a], through simulated-annealing-based search [Lin10; Qia21], to

matching-based techniques [Cha01]. However, we have shown through this study that the

constraints of modern FPGA design—namely, that the number of wires of the given length

and direction is divisible by cluster size [Chr20]—and the increased resistance which limits

the maximum length of feasible wires, limit the search space of channel segmentation to

an extent when it becomes possible to essentially exhaustively explore it. Although we only

considered lengths of wires that are powers of two, which does not encompass all lengths

commonly observed in commercial architectures [Pet21; Chr20], removing this constraint

would not render exhaustive exploration infeasible. Such exploration becomes easier with

technology scaling, as indicated in Table 4.9, owing to the reduction in maximum feasible wire

length caused by resistance increase. Hence, we can conclude that channel segmentation

optimization is no longer a complex problem requiring a complex solution—it can simply be

brute-forced. Nevertheless, to make such exploration practical, physical models must be fast

to evaluate. In particular, we explored 627 different channel segmentations in this study. If

evaluating each of them took about ten hours as would have been the case with COFFE, for

example [Chi13a], that would hardly be feasible. However, a typical evaluation of our model,

together with the generation of the routing-resource graph and the architecture description

file for VPR, takes only about 90 seconds.

This evaluation speed allows accurate exploration of other aspects of the interconnect architec-

ture. In particular, optimizing the switch-block connectivity pattern to reduce the multiplexer

area and make the wires shorter, as well as the capacitive load on channel wires, and the

distance traversed at the lower metal layers within the switch-block, becomes highly relevant.

This problem has a much larger solution space than that of designing channel segmentation

and has not been satisfactorily solved in prior work. Due to its relevance for programmable

88

Modeling Programmable Routing in Advanced Technologies Chapter 4

interconnect performance in scaled technologies, it becomes our focus in the next chapter.

4.10 Conclusions and Future Work

In this chapter, we have presented a framework for fast physical modeling of FPGAs at ad-

vanced technology nodes. This framework allowed us to revisit a fundamental rule of thumb

applied to FPGA architecture design over the course of the past twenty years—namely, that

the cluster size optimal for performance should be around ten 6-LUTs. That in turn helped

us explain the departure from this rule observed in the most recent commercial FPGAs. We

also tried to predict how FPGA performance scaling may look like in the next few generations

of silicon technologies and the outlook does not seem bright. Rather than see this as an

end of programmable interconnect evolution, we merely interpret the result as empirical

support for what we postulated in Chapter 2: a long-lasting era of simple scaling with only

local optimization of the interconnect architecture has come to an end.

In subsequent chapters, we will focus on developing techniques for automating programmable

interconnect architecture design far beyond what is typically done. In particular, through

experiments performed in this chapter, we have identified that the key problem is that of de-

signing efficient switch-patterns which minimize the area consumed by routing multiplexers,

thus allowing wires to be shorter, along with decreasing capacitive load and distance traveled

at the lower metal layers within the switch-block itself. This will be the topic of Chapters 5

and 6. We have also seen that the price of entering a cluster remains very significant even in

small clusters, due to the high resistance of local wires. As a possible solution, we mentioned

allowing a small number of wires intended to support the timing-critical signals of the user

circuits to bypass the local interconnect altogether, minimizing the distance traveled at lower

metal layers and avoiding significant capacitive loading exerted by many routing multiplexers

on more general wires. We dedicate our attention to designing such specialized connectivity

patterns in Chapter 7, noting that the approach is relevant even out of the technology scaling

context, as it allows bypassing a number of transistors in routing multiplexers, which formed

the performance bottleneck in older technologies. We have also mentioned that for these

specialized connections to be effective in boosting the performance of user circuits, CAD tools

must be aware of their existence and adjust the circuit mapping accordingly. Developing such

tools is the focus of Chapter 8.

The present analysis was limited to architectures composed solely of LUTs. On the other

hand, modern FPGAs have long been heterogeneous, incorporating columns of hardened

DSP modules, for example [Lew03]. Given that such blocks are often designed using standard

cells [Yaz19], they will inevitably scale much better than the SRAM-dominated LUTs [She18;

Sch22]. It would hence be very useful to extend the framework proposed in this chapter

to support modeling hardened blocks as well. That would in turn also enable experiments

with larger and more modern benchmarks circuits that can potentially reduce the impact

of low density of LUTs on average length of wires implementing the circuit’s connections,

89

Chapter 4 Modeling Programmable Routing in Advanced Technologies

by relying on the hardened blocks instead. Extending the modeling framework to support

standard-cell-based blocks would even allow analysis of architectures which are based on

logic elements different than LUTs, which too can profit from the better scaling of the standard

cells. One such example could be the NAND-NORs introduced by Huang et al. [Hua17].

Finally, it is important to note that in Section 4.8.7, we observed that significant benefits can be

obtained by co-designing the programmable interconnect architecture and the BEOL aspects

of the technology node. While we illustrated this possibility by including in our experiments

the hypothetical F3b technology node, any further exploration of DTCO goes beyond the scope

of the present thesis. Some further optimization of the tile floorplan is possible, however,

and we will introduce it in the next chapter, where it becomes relevant to designing high-

performance switch-patterns. We also note that much like design constraints of modern

FPGA architectures made the problem of channel segmentation design tractable, the gridded

nature of FinFET layouts could allow for even more precise modeling than what we have

developed in this chapter, without much loss in terms of evaluation speed. In the limit, since

the layout solution space is so significantly restricted, compared to planar technologies, it

may even be possible to completely automatically generate optimized full-custom layouts

of each FPGA. For example, it has already been demonstrated that in a gridded context, it is

possible to autogenerate custom standard cells for a given design on the fly, during physical

implementation of an ASIC [Ryz11]. This, along with extending DTCO capabilities, could be

an appealing avenue for future work on the topic presented in this chapter.

The source code used to produce the results of this study is available at https://github.com/

EPFL-LAP/fpga21-scaled-tech.

90

https://github.com/EPFL-LAP/fpga21-scaled-tech
https://github.com/EPFL-LAP/fpga21-scaled-tech

5 Switch Presence Negotiation

In the last chapter, we have seen that in scaled technologies it is imperative to reduce the

distance that signals traverse at the low, highly resistive metal layers. It is also necessary to

reduce the capacitive load on channel wires, as well as the active area consumed by the routing

multiplexers so that the lengths of different wires can be reduced. At the same time, not all

connections will be used by the router to implement timing-critical signals of user circuits,

meaning that, while general improvement in the above three metrics is highly desirable,

further benefits can be reaped if optimization specifically targets the connections commonly

used by critical signals. Needless to say, while designing the switch-block to meet these criteria,

care must be taken that overall routability is not excessively damaged.

How does one simultaneously take into account 1) the influence of technology and physical

implementation on the performance of different routing resources and 2) their utility for

implementing different user circuits? Our premise is that automating the switch-pattern

design process is the only way to reliably find adequate solutions to this problem, under the

rapidly changing technological and application constraints. In this chapter, largely based on a

paper published in 2021 at the 31st International Conference on Field-Programmable Logic

and Applications (FPL), under the title “Turning PathFinder Upside-Down: Exploring FPGA

Switch-Blocks by Negotiating Switch Presence” [Nik21a], and its journal extension accepted

for publication in ACM Transactions on Reconfigurable Technology and Systems, under the

title “Exploring FPGA Switch-Blocks without Explicit Pattern Listing” [Nik23a], we present a

novel algorithm for solving this design problem, which overcomes a fundamental scalability

barrier of the prior ones. Before describing the details of the algorithm, let us first take a brief

look at how this important design problem was solved during the past three decades.

5.1 A Little Bit of History

In the early days of FPGA research, considerable attention was given to the problem of design-

ing efficient switch-patterns. However, much like Dr. Trimberger recalls [Com17], the process

was mostly manual, relying on careful observation and intuition about what may and may not

91

Chapter 5 Switch Presence Negotiation

work, derived from analyzing small examples that could be effectively reasoned about [Ros91;

Wil97]. To validate the intuition, researchers typically relied on placing and routing a standard

set of benchmark circuits using place and route tools, which produced performance metrics,

such as the routed critical path delay [Bet99]. There were also some attempts to formulate

fundamental properties that an optimal switch-pattern should satisfy and construct solutions

accordingly. An example of that was the so called Universal switch-pattern [Cha96]. Although

this approach is very appealing, for it enables proofs about an architecture’s general optimality,

rather than empirical demonstrations on a finite set of benchmark circuits, it quickly became

obvious that definitions of optimality that one could actually reason about were far too local

and simplistic to capture the needs of actual circuits and the capabilities of actual CAD tools;

it turned out that different patterns, which were not optimal in the postulated sense, such as

Wilton [Wil97] performed better in practice. By the end of the last century, three main switch-

pattern designs emerged as the most popular: Disjoint (also called Subset or Planar) [Xil98],

Universal [Cha96], and Wilton [Wil97]. Although industry has long since moved away from

these designs [Pet21], they are still used in majority of academic FPGA architecture research

produced today, with Wilton being the most popular choice [Tan19].

5.1.1 Importance of Parametric Patterns

The above-mentioned classical switch-pattern designs had one very important characteristic:

they were parametric in terms of the number of tracks in the routing channels; in fact, they

could be thought of as concisely described procedures for constructing switch-blocks on an

arbitrary number of tracks. Lemieux and Lewis even managed to formalize these succinct

procedures as permutations of tracks entering the switch-block on one side, onto tracks exiting

it from the three remaining sides [Lem02].

The importance of such parametric designs was vast. When routing channels were traced

between logic blocks and not above them, each channel track directly contributed to the

FPGA’s area. Hence, determining the minimum channel width at which circuits were routable

on a given FPGA was a critical metric [Ros89], and this would not have been possible without

parametric switch-patterns like Wilton. In fact, parametric switch-patterns continue to be

highly important even today. In Section 4.7.4, we were able to explore channel segmenta-

tions in an enumerative manner, precisely because the switch-pattern of Figure 4.17 could

automatically adapt to different segmentations.

5.1.2 Importance of Per-Segmentation Switch-Pattern Optimization

Once segmentation exploration is close to convergence and a handful of most promising

segmentations is determined, it is necessary to optimize the switch-pattern for each of them

individually, if the best results are to be obtained. For example, when discussing the improve-

ments in Stratix II, Lewis et al. mention the following [Lew05]:

92

Switch Presence Negotiation Chapter 5

Beyond this, approximately a 20% reduction in routing capacity (normalized to logic density)

compared to Stratix was implemented, despite the doubling of target logic density, due to

increased ability to tune FMTI routing patterns, and improvements in the production router,

offering a further 6% improvement in overall area per unit logic.

In this chapter, we present a new algorithm which enables automated design of switch-

patterns optimized for any given channel segmentation. It is also interesting to note the

importance of CAD tools when designing an interconnect architecture, that is exposed by the

above remark of Lewis et al. Even if we could prove optimality of some pattern in any particular

sense, this would mean little if no CAD tools existed which could efficiently implement circuits

on an FPGA based on this pattern. Hence, majority of prior work used CAD tools and prede-

fined benchmark circuits to evaluate the quality of different candidate architectures [Tri97;

Bet99]. We take this one step further and actually use CAD tools themselves—in particular the

PathFinder routing algorithm [McM95]—to design the switch-patterns. This tight coupling be-

tween exploration and exploitation of switch-patterns ensures that the solution is appropriate

for the given CAD tools implementing circuits similar to the ones used in exploration.

5.1.3 Danger of Neglecting Assumptions

As we have already mentioned, classical switch-patterns like Disjoint, Wilton, and Subset

are still predominantly used to drive academic FPGA architectural exploration. However,

these patterns were designed for and analyzed on architectures containing bidiractional wires

spanning one tile. Without thorough reconsideration, conclusions about qualities of these

patterns were carried over to more modern architectures, comprising unidirectional wires

with a variety of different lengths that appeared towards the beginning of this century [Lew03;

Tri15]. Almost twenty years after the inception of the Wilton switch-pattern [Wil97] and tweleve

years since the advantages of unidirectional wires were clearly demonstrated by Lemieux et

al. [Lem04], Petelin and Betz concluded that many of the classical switch-patterns cannot

even be implemented in these newer architectures, while respecting the original construction

procedures [Pet16]. Perhaps it should then not be too surprising that large disparities between

the somewhat free interpretations of classical results that have been in use in academia for

decades and actual commercial switch-patterns were observed even in mature FPGA families,

such as the 28nm Xilinx 7-Series [Pet21].

Discrepancies are further increased in state-of-the art FPGA architectures designed for latest

technologies with highly resistive lower metal layers, such as Agilex, where groups of wires are

divided into largely disjoint planes [Chr20]: it is not possible to even locally [Pet16] construct a

Wilton switch-pattern, as there are not enough wires of any individual type in a plane (namely,

there are one or two [Chr20]) to implement the required permutation function [Lem02].

IFMT is an FPGA architecture modeling and evaluation tool developed from VPR [Bet98] and used by Altera/Intel
for evaluating new FPGAs [Lew03].

93

Chapter 5 Switch Presence Negotiation

5.1.4 Importance of Considering Physical Implementation Aspects

Already this illustrates the importance of taking into account the underlying technology and

physical implementation when designing the switch-pattern. However, since at the time when

the classical switch-pattern designs were produced, the delays of connections implemented

by the FPGA depended mostly on the number of hops through the switch-blocks [Gop06], little

attention was given to the efficiency with which different switch-patterns could be actually

laid out in silicon. One notable exception is the work of Schmit and Chandra who concluded

that the Disjoint switch-pattern vastly outperforms Universal and Wilton, when layout is taken

into account [Sch02].

As we have mentioned in the last chapter, with technology scaling, it becomes imperative to

reduce capactive loading on wires and the distances traversed at lower metal layers. This can

only be done by considering layout efficiency together with FPGA router requirements when

designing the pattern. To this end, we leverage the physical modeling framework introduced

in the previous chapter and augment it with optimization of placement of the individual

multiplexers that constitute the switch-block, as described in Section 5.8.1.2.

5.2 Inaptness of the Black Box Approach

In the previous section, we have identified that, contrary to some other aspects of FPGA

architecture design, such as LUT and cluster sizes, popular switch-pattern choices have not

resulted from automated exploration. Let us now turn to analyzing why the main technique

used for automating these other tasks—enumerative exploration—is not fit for the purpose of

designing switch-patterns.

Most of the conclusions about what constitutes a good FPGA architecture reached in the past

30 years came from applying a variant of the approach which we also used in Chapter 4 to

revisit the problem of optimal cluster sizing [Ahm00]:

1. Select an architectural parameter p the influence of which is to be assessed and fix a

range P for it

2. For every value in P , create an architectural model with p taking that value, run the CAD

flow on a number of preselected benchmark circuits, and record some performance

metrics (e.g., critical path delay and area)

3. Choose the value (or a value range) of p which optimizes the performance metrics

For instance, optimal ranges of LUT [Ahm00] and cluster [Bet98] sizes were discovered in

this manner. Given that LUT area increases exponentially with input count and that the size

of a crossbar with fixed sparsity increases roughly quadratically with cluster size, it is not

surprising that this parameter-sweeping approach was highly successful: reasonable ranges of

these parameters are very small and can easily be exhaustively explored.

94

Switch Presence Negotiation Chapter 5

Search engine
(e.g., simulated annealing)

Router
(e.g., VPR)

architecture

score

Figure 5.1: An example of using the router as a “black box in the loop” to drive iterative switch-pattern
improvement. At each iteration, a modification of the switch-pattern is proposed and a complete
architecture model is generated. The performance metrics obtained from the router are used to decide
on accepting the proposed modification. (Based on an approach proposed by Lin et al. [Lin10])

5.2.1 How Large is the Switch-Pattern Search Space?

To better illustrate why a brute-force exploration approach cannot be applied to designing

switch-patterns, let us first try to make a quick assessment of how large the search space for

switch-patterns could be. Let there be 10 wires exiting a switch-block from one side and 30

entering it on the three remaining sides. Assuming that each multiplexer driving an exiting

wire should be able to select from six incoming wires, there are
(30

6

)10 ∼ 1057 ways to form the

pattern. This includes many pathological cases, where e.g., some wires have no fanout, as

well as isomorphic duplicates, but, among the ten wires per side, it is likely that most will be

of different lengths or coming from neighboring planes [Chr20]. Such a large space clearly

cannot be exhaustively explored.

5.2.2 Black Box in the Loop

A step towards more efficient exploration of the switch-pattern search space is to iteratively im-

prove a starting pattern based on postrouting performance metrics. This approach—illustrated

in Figure 5.1—has been successfully used by Lin et al. [Lin10] and subsequently by Shi et

al. [Shi22]. Starting from some, perhaps arbitrary, switch-pattern, a search engine—typically

based on simulated annealing—proposes a modification which is then evaluated by the router

on a preselected set of benchmark circuits. Performance metrics obtained from the router are

then used to decide on whether to accept the proposed modifications. While the exploration

is no longer brute-force, it is important to note that the algorithm still explicitly constructs a

pattern and then uses the router as a complete black box, merely to obtain the performance

metrics. In this work we argue that this is on one hand a fundamental limitation and on the

other completely unnecessary. Given that routing a modern circuit even with a state-of-the-art

router can easily take minutes, if not hours [Mur20], the number of modifications that can be

evaluated in this manner is rather limited.

5.2.3 Proxy Oracles

To speed-up the evaluation process which is the bottleneck of the black-box-in-the-loop

approach, some authors have attempted to substitute the router for a proxy oracle that tries to

95

Chapter 5 Switch Presence Negotiation

predict the score that the router would output, in a fraction of the time. An example of such

an approach was proposed by Petelin and Betz [Pet15]. Although appealing, proxy oracles

can only reduce exploration time by a constant factor; evaluating each switch-pattern might

be significantly faster, but the number of switch-patterns that have to be explicitly listed to

cover any sizeable fraction of the search space remains prohibitively large. Another downside

is that while it is possible to assess how closely oracles mimic the router on a limited set of

test architectures, it is difficult to claim that they appropriately approximate the router for

all architectures that may occur during the course of the exploration. Failure to do so could

silently lead the search astray.

An interesting approach to proxy design was also introduced by Lemieux and Lewis [Lem02].

Namely, they first limited the set of switch-patterns to be explored to those which can be

described using permutation functions [Lem02]. Then they conjectured that a certain charac-

teristic of a switch-pattern that can be quickly measured (diversity) has an important influence

on its routability. Instead of optimizing the performance metrics obtained from the router

or some proxy trying to mimic it, they used this characteristic as the maximization objective.

Given the fast computation of the objective and a search space significantly reduced by the

initial constraints, it was possible to find solutions maximizing the chosen objective using

randomized and even brute-force search. While such an approach can help to understand

which characteristics lead to highly routable switch-patterns, proposing the characteristics

is left to the human designer. Similarly, constraining the search space a priori can be very

useful for allowing it to be searched in practice, but it is often difficult to make sure that the

imposed constraints do not exclude promising solutions. For instance, permutation functions

as defined by Lemieux and Lewis assume that each incoming wire has exactly one target

at each of the three remaining sides of the switch-block. However, some newer industrial

architectures do not meet this constraint [Pet21].

Instead of proposing another method to bring down routing time and enable exploration of

more points of the search space, we propose a method that altogether removes the need to

explore individual points. While we believe that this is an important step towards scalable

automated switch-pattern design, as we have already mentioned, for the reasons discussed at

length in Section 5.14, the proposed method does not fully achieve this goal yet.

5.3 A Brief Review of Negotiated-Congestion Routing

In this chapter, we give a brief review of Negotiated-Congestion Routing [McM95]—a very

important algorithm that forms the basis of most modern FPGA routers [Kap12], as well as

the switch-pattern exploration method presented in this chapter. Only a simplified review

of congestion negotiation is given here, focusing on aspects most relevant to this work. The

reader should refer to the works of McMurchie and Ebeling [McM95], Betz et al. [Bet99], and

Murray et al. [Mur20] for an in-depth discussion.

Once placement of a user circuit is complete, physical locations of both endpoints of each

96

Switch Presence Negotiation Chapter 5

of its edges are known and fixed. It is the duty of the router to connect these endpoints

together by forming appropriate paths from wire instances connected by switch instances.

Paths implementing edges with different tail nodes (different nets) must not intersect in a

legal routing solution as that would constitute a short circuit. When two or more such paths

do intersect on a wire u, u is said to be congested [Bet99]. The number of different nets using a

wire u is typically called the occupancy of u, O(u) [Bet99]. We can then express the magnitude

of congestion on u as C (u) = O(u)−1, since every wire can legally carry one signal.

Congestion negotiation was first introduced by McMurchie and Ebeling in their seminal

paper which presented the PathFinder routing algorithm [McM95]. Likely the most popular

open implementation of PathFinder is VPR, first developed by Betz and Rose [Bet97], which

introduced several refinements to the original algorithm. A negotiated-congestion router

operates on the so called routing-resource graph (rr-graph). In an rr-graph, each wire and

each pin (endpoint of one of the circuit’s edges after placement) is represented by a node,

while each switch is represented by an edge [McM95]. A simplified version of PathFinder is

shown in Algorithm 5.1. The algorithm proceeds iteratively, by routing all connections of a

circuit using the shortest path in the rr-graph between their respective endpoints (fixed during

placement). This is designated by the loop starting at line 12, while the shortest-path search

itself is performed on line 18. All signals are routed independently and hence their paths can

intersect. As mentioned before, this constitutes a short circuit and must be avoided. The

key to this lies in how PathFinder assigns costs to each rr-graph node. Namely, each node

u has a base cost, b(u), which determines how preferable it would be for any signal to use it,

if congestion is entirely ignored. There are many ways to compute b(u), some of which are

discussed by Murray et al. [Mur20]. This base cost is then multiplied by a product [Bet99] of

two additional costs: one directly related to present occupancy, O(u) [McM95] and another

directly related to historical congestion, Ch(u) [McM95]. Computation of this congestion cost

is performed on line 3. Occupancy is updated on lines 15 and 22: whenever a signal’s routing

tree is ripped up, occupancy of all of the nodes of the tree is reduced by one; whenever an

rr-graph node is added to a signal’s routing tree, its occupancy is increased by one [Bet99].

Finally, historical congestion of each node is updated on line 25 [Bet99].

Because of the dependence of the cost of each node on its current occupancy, even though

each signal is routed independently, it is motivated to deviate from its preferred path as deter-

mined by the base costs and avoid using the nodes already in use by other signals. Deviation

from preferred paths happens only gradually, however: initially, the present occupancy coeffi-

cient p f ac is made very small [Mur20] and increases exponentially with iterations (line 27);

additionally, historical congestion is zero at first, but gradually increases, driving signals away

from repeatedly congested areas [McM95]. Finally, to make the router timing driven, an

additional term is added to the cost of each node:

cost (u)

∣∣∣∣
(s,t)

= cr i t (s, t)× t (u)+ (1− cr i t (s, t))× cong (u). (5.1)

Here t (u) is the intrinsic delay of the node u, while cr i t (s, t) is the timing criticality of the con-

97

Chapter 5 Switch Presence Negotiation

Algorithm 5.1 Simplified PathFinder [McM95; Bet99]

Input: G = (V ,E)—rr-graph, Ec ⊆V ×V —all connections to be routed;
Output: A routing tree of each signal

1: function CONGESTION_COST(u, s) ▷ computes the congestion cost of node u when routing signal s

2: if u ∈ RT (s) then return 0 ▷ if u is already used by one connection of s, it can freely be used by another

3: return b(u)× (1+p f ac ×O(u))× (1+h f ac ×Ch(u)) ▷ otherwise, account for congestion

4: for u ∈V do
5: O(u) = 0;Ch(u) = 0 ▷ set occupancy and historical congestion of all nodes to 0

6: if (∃v ∈V) ((u, v) ∈ Ec) then
7: RT (u) = {u} ▷ initialize the routing tree of each signal

8: i = 0; p f ac = p i ni t
f ac

9: do
10: if i ≥ max_iter then return UNROUTABLE
11: ▷ no congestion-free routing was found in max_iter iterations

12: for s ∈ {u ∈V : (∃v ∈V) ((u, v) ∈ Ec)} do ▷ all signals are ripped up and rerouted in each iteration;

13: ▷ modern incremental routers deviate from this [Mur20]

14: for u ∈ RT (s) do
15: O(u) = O(u)−1 ▷ reduce the occupancy of all nodes used by the signal s that is ripped up

16: RT (s) = {s}; O(s) = O(s)+1 ▷ rip up the signal

17: for t ∈V : (s, t) ∈ Ec do
18: P = SHORTEST_PATH(s, t ,∀u ∈V : cong (u) = CONGESTION_COST(u, s))
19: ▷ (re)route the connection s → t

20: for u ∈ P do
21: if ¬(u ∈ RT (s)) then
22: O(u) = O(u)+1 ▷ increase the occupancy of all nodes not already used by the signal s

23: RT (s) = RT (s)∪P ▷ add the connection route to the routing tree of s

24: for u ∈V do
25: Ch(u) = Ch(u)+max(0,O(u)−1) ▷ update historical congestion

26: i = i +1
27: p f ac = p f ac ×pmul t

f ac ▷ increase the penalty of using occupied nodes; pmul t
f ac > 1 (1.3 is default in VPR [Mur20])

28: while ∃u ∈V : O(u) > 1 ▷ finish if there is no congestion

29: return ∀RT ▷ return all routing trees

nection (s, t) of the circuit [McM95]. The first term attempts to route more critical connections

through faster wires, whereas for others, the second term dominates causing them to release

the congested wires to the more critical connections.

5.4 Main Idea

Before diving into technical details, including a formal definition of the switch-pattern design

problem, let us first briefly explain the main idea behind the proposed approach.

98

Switch Presence Negotiation Chapter 5

(7, 13)

(7, 14)

(7, 15)

(8, 13)

(8, 14)

(8, 15)

(9, 13)

(9, 14)

(9, 15)

(10, 13)

(10, 14)

(10, 15)

(11, 13)

(11, 14)

(11, 15)

(a) Disjoint switch-pattern.

(7, 13)

(7, 14)

(7, 15)

(8, 13)

(8, 14)

(8, 15)

(9, 13)

(9, 14)

(9, 15)

(10, 13)

(10, 14)

(10, 15)

(11, 13)

(11, 14)

(11, 15)

(b) All possible switches.

Figure 5.2: Example of a simple architecture model with a disjoint switch-pattern (a) and all possible
switches between the channel wires (b). One of the main downsides of the disjoint switch-pattern iden-
tified in prior work was the lack of a possibility to switch between different tracks in a channel [Wil97].
If track changes are needed for implementing a circuit, the router will be able to determine it in the
architecture model that holds all possible switches (Figure (b)).

5.4.1 Implicit Search Space Representation

An example portion of a simple FPGA architecture is shown in Figure 5.2a. The Disjoint switch-

pattern used in all switch-blocks is shown in the top-left corner of the figure. A switch-pattern

describes which channel wires can be connected together: a line connecting the head of a wire

99

Chapter 5 Switch Presence Negotiation

W i
I to the tail of a wire W o

I means that W i
I can drive W o

I ; otherwise, there is no such posibility.

In practice, this means that one of the inputs to the multiplexer driving W o
I is provided by

W i
I . However, we say more generically that there exists a programmable switch between W i

I

and W o
I . Since the switch-pattern describes connectivity in all switch-blocks, we say that

switch-blocks are instances of a switch-pattern, or, in turn, that a switch-pattern specifies

their type. Hence, we call a wire and a switch in a switch-pattern a wire type and a switch type,

respectively, while we call a wire and a switch in one particular switch-block a wire instance

and a switch instance, respectively. This will be formalized further in Section 5.5.

Depending on congestion, the shortest path connecting a source in tile (7,13) to a sink in tile

(11,15) could be the one depicted in the figure. Figure 5.2b shows the same portion of almost

the same simple FPGA architecture, with one major difference: instead of the switch-blocks

containing switches corresponding to the disjoint switch-pattern, they contain all switches

that could potentially be fabricated. When routing the same signal from tile (7,13) to tile

(11,15), it is possible that the router discovers that changing tracks is beneficial to avoid

congestion, as depicted by the shortest path in the figure. Note that if the router sees all

switches that could be fabricated, there is no need for a designer to guess that track changing

is useful and construct a switch-pattern that allows it, nor is there a need for some randomized

exploration process to propose a modification which enables track changes; the router itself

can select the appropriate switches and reap the benefits of track changes, where they exist. In

other words, presenting the router with the entire search space embedded in the routing graph

lets it explore this space on its own, alleviating the need to explicitly construct switch-patterns

during automated exploration and thus removing the aforementioned scalability issues.

5.4.2 Negotiating Switch Types

Without any constraints, the router is free to use different switch types in different switch-

blocks, while the switch-pattern that is fabricated must be common to all. Hence, it is crucial

to be able to find a minimal set of switch types that allows all connections to be appropriately

realized in every tile. In negotiated-congestion routers, evolving congestion costs allow the

signals of a circuit to negotiate which ones will deviate from their respective shortest paths

and spread to less congested wire instances (Section 5.3). As will be described in greater detail

in Section 5.7, we use the same principle of evolving costs, only applied in reverse, to allow the

signals of a circuit to negotiate which ones will deviate from their respective shortest paths

and concentrate on a minimal set of switch types that will enter the final pattern.

5.5 Problem Definition

Let us now precisely define the problem tackled in the rest of the chapter. Since our goal is

to design switch-patterns, we assume that the rest of the routing architecture—namely, the

connection-block, the intracluster interconnect, and the wires in the routing channels—is

given and fixed. We have already provided an informal definition of a switch-pattern and a

100

Switch Presence Negotiation Chapter 5

LUT3

LUT2

LUT1

LUT8

LUT7

LUT4

LUT3

LUT1

LUT8

LUT7

LUT4

LUT3

LUT2

LUT1

LUT8

LUT7

LUT4

H1Rb
H1Ra

H2Ra
H1Rb
H1Ra

H2Ra
H1Rb
H1Ra

H2Ra
H1Rb
H1Ra

H2Ra

H1Rb
H1Ra

H2Ra

H1Rb
H1Ra

H2Ra

H1Rh
H1Rg

H2Rd
H1Rf
H1Re

H2Rc
H1Rd
H1Rc

H2Rb
H1Rb
H1Ra

H2Ra

H1Rn
H1Rm

H2Rg

H1Rp
H1Ro

H2Rh

Monolithic
indexing

Distributed
indexing

(used in this work)

orientation
length

direction
index

(17, 31) (18, 31) (19, 31)

SB
(18, 31, 8)

SB
(18, 31, 7)

SB
(19, 31, 2)

TILE

SB
(19, 31, 3)

H1RbX18Y31L4
H1RaX18Y31L4
H2RaX17Y31L4

H2RaX18Y31L4

H1RbX18Y31L3
H1RaX18Y31L3
H2RaX17Y31L3

H2RaX18Y31L3

H1RbX19Y31L3
H1RaX19Y31L3

H2RaX19Y31L3

SB
(19, 31, 3)

switch instances can only
originate at the end of a wire;
not here, for example

LUT2

Figure 5.3: Illustration of definitions. A switch-block (SB) is defined at the level of one LUT in one tile.
All switch-blocks are identical, apart from those at the edges of a cluster, where inputs from neighboring
tiles are omitted.

switch-block in Section 5.4.1. However, as we already mentioned there, instead of the channel

wires surrounding the logic clusters, they are actually traced above them [Lew13]. This is

illustrated in Figure 5.3; for the sake of clarity, only horizontal wires going right are shown.

In the most recent FPGA architectures, designed for scaled technologies for which this work

is the most relevant, channels are composed in such a way that the same number of wires

of the same length and direction start and end in the vicinity of each LUT in a tile [Chr20].

This is also illustrated in Figure 5.3, where next to each LUT, wires H1Ra, H1Rb, and H2Ra

start. These three wires, replicated at the height of every LUT together with the corresponding

ones running leftward, give a combined effective channel width of 8×2× (1+1+2) = 64—

same as if the horizontal channel was composed of 16 H1R and 8 H2R wires specified under

“Monolithic indexing”. In such an architecture, each wire type can be defined by its length,

direction, and index within the LUT-height (plane). Then, each wire instance can be defined by

specifying its type along with coordinates of the tile and index of the LUT at which it originates.

Similarly, a switch type can be defined by specifying the types of wires that it connects, along

with the offset between their respective LUTs. Since in scaled technologies, loading wires at

nonterminal tiles damages performance too much and is thus no longer practiced [Chr20],

there is no need to specify the offset between the origin tiles of the two wires connected by a

switch type—it is assumed in the length and direction of the driving wire.

This way of defining switch-patterns is very practical, since due to high resistance of lower

layers of metal in scaled technologies, it is not feasible for switches to span a large number

of LUTs. Let us now formalize these concepts that we draw from the bundles and planes of

Agilex [Chr20] by introducing some notation which we will use throughout the chapter:

101

Chapter 5 Switch Presence Negotiation

OLD I A wire type with orientation O ∈ {H ,V }, standing for horizontal and vertical,

respectively; length L ∈N corresponding to the number of tiles between

its start and end; direction D ∈ {L,R,U ,D}, standing for left, right, up, and

down, respectively; and index I ∈ [a..z]. In Figure 5.3, H2Ra designates a

horizontal wire going two tiles to the right.

WT X xY yLl A wire instance of type WT , starting at LUT l ∈ [0, N), in tile (x, y). Constant

N stands for cluster size. In Figure 5.3, H2RaX17Y31L1 is a wire of type

H2Ra, starting at LUT 1 of tile (17, 31).

(W i
I →W o

I) A switch instance, providing a programmable connection between wire

instances W i
I and W o

I . In Figure 5.3, (H1RaX18Y31L4 → H1RbX19Y31L3)

provides a connection from the end of the H1Ra wire starting at LUT 4 of

tile (18, 31) and the H1Rb wire starting at LUT 3 of tile (19, 31).

(W i
T →W o

T ,d(l i , l o)) A switch type providing a connection between wires of type W i
T and W o

T ,

with the distance between their LUTs equal to d(l i , l o). In Figure 5.3, (H1Ra

→ H1Rb, -1) is the switch type of the previous switch instance example.

SB(x, y, l) Switch-block. The set of all switch instances driven by wire instances end-

ing at LUT l of tile (x, y). The switch-block for (x, y, l) = (19,31,3) is indi-

cated in Figure 5.3.

SP (x, y, l) Local switch-pattern. SP (x, y, l) = {(W i
T → W o

T , l o − l i) : (WT X xY yLl i →
WT X xY yLl o) ∈ SB(x, y, l)}.

V A set of available wire types.

E = V ×V × (−N , N) A set of all switch types. that could exist in any local switch-pattern. Con-

stant N stands for cluster size.

Definition 8. (Switch-Pattern). Ea ⊆ E, such that for each (x, y, l) in the FPGA, SP (x, y, l) = Ea .

Definition 9. (Usage, denoted as U (e)). The number of switch-blocks in the FPGA in which the
switch type e is used to route at least one connection of the given circuit.

Now we can define the problem itself:

Task 1. (Switch-Pattern Exploration). Given a set of switch types E and a set of circuits of interest
C , find the switch pattern Ea ⊆ E, such that all circuits in C can be routed and their critical path
delays minimized.

5.6 Basic Algorithm

As mentioned in Section 5.4, our proposed method relies on implicitly representing the entire

switch-pattern search space by embedding it in the rr-graph. It then simply observes the

usage statistics of the different switch types across all switch-blocks and in all circuits used

in exploration and constructs the pattern from the most-used ones. This is more precisely

defined by Algorithm 5.2. All switch types that can be fabricated are added to the rr-graph

on line 1. Initially, the switch-pattern Ea is empty and all switch types are allowed to enter it

102

Switch Presence Negotiation Chapter 5

(line 2). The algorithm then proceeds iteratively, first routing the benchmark circuits chosen for

the exploration using PathFinder on line 4 (see Algorithm 5.1) and then adding to the pattern

on line 6 all of the switch types with usage 1/θ of the maximum over all that are not already in

the pattern. Here, the adoption threshold, θ, is a parameter. Upon growing the switch-pattern,

costs of all added switch types are reset to 0 on line 7, because once a switch type has been

marked for fabrication, it can be used by the router for free in subsequent iterations of the

algorithm—using it no longer implies any increase in pattern size. The algorithm stops when

the router no longer uses any switch types that are not already in the pattern. We note here

that once a switch type enters the pattern, it is never removed from it. It may be beneficial to

revisit this in future work, but it guarantees that the algorithm always converges: in the worst

case, all possible switch types are taken (Ea = E). Preventing this situation will be the main

focus of the next section. We first further discuss the algorithm’s general structure, however.

5.6.1 Benefits of Iteration

In principle, usage statistics obtained from a single run of the router could already provide valu-

able information about which switch types would be useful in the switch-pattern. In fact, prior

research has successfully relied on usage to design novel interconnect architectures [Wan06].

Nevertheless, there are two important benefits of progressively growing the switch-pattern.

First, after each run of the router, some switch types will have a significantly higher usage

than others and can thus be clearly deemed useful. An example of this is illustrated by the

orange curve of Figure 5.6. Once these switch types are adopted at a lower cost (note the

small initial cost used on line 1 to distinguish switch types not yet in the pattern), though,

it may happen that more signals will use them instead of other switch types, thus leading

to minimization of the entire pattern. Second, in between iterations, physical optimization

of the switch-block can be performed, by changing the positions of different multiplexers,

depending on which switch types were added to the pattern. Similarly, up-to-date implications

on delay and area increase of choosing each switch type can be presented to the router in the

subsequent iterations. We will discuss this in more detail in Section 5.8.1.2.

Algorithm 5.2 Simple Greedy

Input: θ ∈R+—switch adoption threshold; Output: switch-pattern

1: Add all e ∈ E to the rr-graph at cost ε ∈R+ ▷ represent in the rr-graph all switch types that can be fabricated

2: Ea = {}, Ep = E ▷ at the beginning, no switch type is in the pattern to be fabricated

3: do
4: Route the chosen benchmark circuits
5: Umax = max({U (e) : e ∈ Ep }) ▷ find the maximum usage among all switch types not yet in the pattern

6: Ea = Ea ∪ {e ∈ Ep : U (e) ≥Umax /θ} ▷ extend the pattern by all switch types with usage ≥ 1/θ of the max.

7: Set cost of all e ∈ Ea to 0 ▷ switch types already in the pattern can be used for free in subsequent iterations

8: Ep = E \ Ea ▷ switch types already in the pattern cannot be added again

9: while ∃e ∈ Ep : U (e) > 0 ▷ if the router used only switch types already in the pattern, stop

10: return Ea

103

Chapter 5 Switch Presence Negotiation

5.6.2 Shortcomings of Uncompressed Usage Statistics

The idea of constructing the switch-pattern from the post-routing usage statistics relies on the

intuition that the router itself will be able to best determine which switch types are useful for

routing the given circuits. However, since it greedily routes each connection of the circuit using

a shortest path in the rr-graph (line 18 of Algorithm 5.1), independent of others, by default

it has no incentive to maximize the number of common switch types between the routes of

different nets, which would lead to minimizing the switch-pattern size. Before suggesting a

remedy to this problem, let us first illustrate it on an example. Figure 5.4 depicts three different

nets being routed through three different switch-blocks (note the different tile coordinates).

As all three nets can arbitrarily choose the switch instances they take, for they all seem equally

good, it is possible that usage is spread equally among the three switch types. On arriving at

line 6, Algorithm 5.2 has to accept all of them. In other words, there is no way to know if all

three switch types are essential for routing the circuit, or the router used all of them equally

often simply because it had no incentive to do otherwise.

5.7 Turning PathFinder Upside-Down

In this section, we introduce a remedy to the above problem: using the principles of congestion

negotiation [McM95] to make the nets reach a consensus on which switch types are really

important for routing a given circuit.

5.7.1 Avalanche Costs

Figure 5.5 shows the same routing process as Figure 5.4 with one important difference: switch

instance costs are no longer constant, but inversely related to their type’s usage, indicated on

the corresponding edge. For the first net that is routed nothing changes: it still sees the same

cost at all three switch instances and freely chooses one of them. The second net, however,

sees the switch instance of the type already used by the first net as cheaper, due to the inverse

relationship between cost and usage. Hence, it is inclined to choose that same switch type.

By the time the router starts processing the third net, the relative cost of (H2Rb → H2Ra, +0)

inner loop PathFinder iterations

SB(4, 7, 2)
iteration i

SB(9, 13, 1)
iteration i+1

SB(25, 11, 3)
iteration i+2jj j

Figure 5.4: An example of usage spreading over multiple switch types. Colored arrows mark the paths
chosen by the router for three different nets passing through three different switch-blocks in three
different regions of the FPGA. Each net uses an instance of a switch of a different type, even though this
may not have been necessary. As a result, a switch-pattern common to all three switch-blocks would
need to contain all three switch types, even if one would have sufficed.

104

Switch Presence Negotiation Chapter 5

wire type

switch-block

inner loop PathFinder iterations

SB(4, 7, 2)
iteration j

SB(9, 13, 1)
iteration j+1

SB(25, 11, 3)
iteration j+2

Figure 5.5: Inversely relating switch instance cost to its type’s usage across all switch-blocks motivates
nets to concentrate on the same switch types. Current usage of each switch type at the time of routing
of each net is depicted next to the corresponding edge.

0 20 40 60 80 100
switch type

0

200

400

600

800

1000

#
sw

it
ch

-b
lo

ck
s

avalanche

no avalanche

Figure 5.6: Concentration effect achieved by the avalanche costs. Usage of the 100 most used switch
types, out of the 564 available in one particular experiment, is shown for the case when avalanche costs
are enabled and disabled, respectively. The area under the two curves is not identical, as switch type
concentration also changes the total number of wires used for routing.

becomes still smaller, so it is even more inclined to use it. In subsequent iterations, the router

will rip-up and reroute nets, leading some of them to choose switch types that have in the

meantime become cheaper than the ones they chose in the previous iterations when the

cost differences among switch types may have not been as pronounced. This will create an

avalanche effect, where the positive feedback keeps reducing the cost of switch types with

large usage, increasing their usage even more. Thus, the evolving costs enable the nets to

reach a consensus on which switch types are important for implementing the given circuit.

Figure 5.6 shows a concrete example of how the avalanche costs concentrate bulk of the

usage in a limited subset of the available switch types, suppressing the long tail of others with

moderate and low usage. It is interesting to note that if, for example, the cost of the switch type

(H1La → H1Lb, +0) drops significantly below the cost of (H2La → H2La, +0), more noncritical

nets may chose to use four H1L wires instead of two H2La wires, thus increasing the total

usage compared to the situation where the cost differences did not exist. This effect causes

the area under the blue curve of Figure 5.6 to be larger than that under the orange curve.

5.7.2 Negotiating Both Congestion and Switch Presence

In Section 5.3 we have seen that PathFinder gradually increases the cost of congested wire

instances, pushing the nets towards a consensus on which ones will deviate from their desired

paths, to spread congestion to other wires and eventually eliminate it [McM95]—making the

same instance choices as other nets is penalized.

105

Chapter 5 Switch Presence Negotiation

U=2 U=2

inner loop PathFinder iterations

outer loop PathFinder iterations

SB(4, 7, 2)
iteration j

SB(9, 13, 1)
iteration j+1

SB(9, 13, 1)
iteration j+2

SB(25, 11, 3)
iteration j+3

SB(4, 7, 2)
iteration j

SB(9, 13, 1)
iteration j+1

SB(9, 13, 1)
iteration j+2

SB(25, 11, 3)
iteration j+3

Figure 5.7: Too much concentration on switch types can lead to congestion on wire instances. As
the cost of using occupied wires (indicated by O > 0) rises over time (through exponential increase
of p f ac [Bet99]), at some point, a net will choose a less used switch type. Eventually, the two effects
balance out, producing a legal routing with a minimized number of switch types.

Inversely relating the cost of switch types to usage in avalanche costs makes the principle act in

the opposite direction, causing a consensus on concentration, instead of spreading—making

the same type choices as other nets is rewarded.

Let us see through the example of Figure 5.7 how these two directions of the same principle

naturally act together. At routing iteration i, net 3 may choose to take the switch instance

(H2RbX7Y13L1 → H2RaX9Y13L1), as it is cheaper because its type, (H2Rb → H2Ra, +0), is

already used by net 1. This causes congestion on wire H2RaX9Y13L1 already in use by net 2.

However, in the subsequent iteration, p f ac will be increased by a factor of pmul t
f ac > 1 (line 27

of Algorithm 5.1), in turn increasing the cost of congestion on any wire instance (line 3 of

Algorithm 5.1). Hence, even though the switch instance (H2RbX7Y13L1 → H2RaX9Y13L1) will

still be cheaper than (H2RbX7Y13L1 → H2RbX9Y13L1) in the next iteration, the router will

choose the later to avoid congestion on H2RaX9Y13L1.

5.7.2.1 Can Congestion Elimination Be Guaranteed?

To guarantee that avalanche costs will never prevent congestion resolution, we must ensure

that this tipping point when penalization of congestion on wire instances surpasses the

reward of concentration on switch types always occurs. Given that congestion penalization is

not bounded from above, due to the exponential increase of p f ac (line 27 of Algorithm 5.1),

it suffices to ensure that the difference between the maximum and the minimum switch

instance cost (which constitutes the maximum switch type concentration reward) is bounded.

As we will see in Section 5.7.3, we make the maximum switch instance cost—corresponding

to unused switch types—constant, while we prohibit the avalanche costs from dropping

below zero. Hence, the above requirement is satisfied and avalanche costs do not prevent

congestion from being eliminated, though they may increase the number of iterations (line 9

of Algorithm 5.1) needed to achieve this. Further details on this problem will be provided in

106

Switch Presence Negotiation Chapter 5

Section 5.14).

5.7.2.2 Is Congestion Elimination Always Necessary?

When PathFinder is being used for implementing a circuit on an existing FPGA (its usual

intended use), it is necessary to eliminate all congestion—otherwise, the routing is illegal.

However, here we are not using PathFinder to implement a circuit on an existing FPGA but to

design a new switch-pattern, by observing which switch types are most useful for routing the

circuits selected for the exploration. This may become apparent long before congestion is fully

eliminated. Especially in the early iterations of Algorithm 5.2, switch types that once surpass

the adoption threshold are unlikely to drop below it again. As discussed further in Section 5.14,

stopping PathFinder at this point could be used to greatly speed up the exploration process.

5.7.3 Functional Form of Avalanche Costs

As discussed in Section 5.7.1, avalanche costs should be high for switch types that are unused

and drop in proportion with usage of the particular type. Additionally, not to prevent conges-

tion resolution, they must be bounded from both below and above. To satisfy these criteria,

we use a functional form similar to congestion costs of PathFinder (Section 5.3):

a(u) = max(0, s(u)− (ap ×U (u)+ah ×Uh(u))). (5.2)

The s(u) term in Equation 5.2 is the starting cost assigned to the given switch type, which is

also its maximum cost. Parameter ap determines how quickly the avalanche cost drops as

a function of the current usage of the switch type, U (u), while ah determines how quickly it

drops as a function of its cumulative historical usage, Uh(u).

Usage tracking is completely analogous to occupancy tracking of Section 5.3 and U (u) is

updated each time a net is routed (lines 15 and 22 of Algorithm 5.1). Similarly, historical usage

tracking is completely analogous to historical congestion tracking and Uh(u) is updated at the

end of each routing iteration (line 25 of Algorithm 5.1). The main difference, however, is that

unlike the occupancy trackers which are bound to individual nodes of the rr-graph (individual

wire instances), the usage trackers U (u) and Uh(u) are shared between all nodes representing

instances of switches of the same type. This allows for communicating switch type choices to

nets using entirely different switch-blocks (Figure 5.5) and eventually reaching a consensus on

which switch types will enter the pattern that is common to them all.

We note here that there are many other functions which would satisfy the requirement of

avalanche costs dropping in proportion with switch type usage and being bounded from

both sides. Adding together the present and historical usage terms as in Equation 5.2 has a

benefit of providing a relatively easy way of tuning the coefficients. This will be discussed

in Section 5.13.1. It also has a downside, compared to the analogous product used in the

107

Chapter 5 Switch Presence Negotiation

congestion costs of PathFinder: the historical term quickly dominates. This may lead to a

reduced capacity for driving nets to common switch types. Aside from multiplying the two

terms or making ap ≫ aq , a possible remedy for this could be to update the historical usage

using an exponential decay, giving higher importance to more recent history. Nevertheless,

investigating the effectiveness of functional forms other than the one of Equation 5.2 goes

beyond the scope of the present work.

5.7.4 A Note on Implementation

Most implementations of PathFinder, including the one in VTR 8 [Mur20] that we use in this

work, assign weights only to the nodes of the rr-graph. To retain the existing data structures,

we simply split each edge that represents a potential switch instance by an additional node and

assign the appropriate avalanche cost to this node. In particular, we compute the congestion

cost of these virtual nodes as follows:

cong (u) = b(u) = a(u) (5.3)

Splitting edges with additional nodes doubles the total edge count in the rr-graph and drasti-

cally increases its node count. As will be discussed in Section 5.14, this has a significant impact

on the exploration time. However, implementational effort needed to adapt VTR’s algorithms

to accept both node and edge weights went beyond the scope of this work.

5.7.5 Respecting the Critical Paths

A good switch-pattern must enable the router to properly optimize the critical path of each

circuit of interest. Hence, during the pattern search, critical connections must be able to route

even through switch types with otherwise low usage. Critical path delay of a typical circuit

is on the order of 10−9. In our experiments, we have determined that the starting avalanche

cost is best set to the same order, or larger, even up to 10−7. Under those circumstances,

linearly scaling avalanche costs by (1−cr i t), like congestion costs in Equation 5.1 would not

give enough freedom to the critical paths to choose switch types with low usage; switch cost

variations would simply overshadow the timing optimization.

Another problem with linear scaling is that somewhat critical (e.g., criticality 0.5) nets are

given unfair advantage in choosing switches compared to nets that are just slightly less critical.

While exponentiating the criticality can help mitigate this second problem, it further worsens

the first, as shown by the blue, orange, and green curves of Figure 5.8.

To provide a solution to both problems, we designed a function represented by the red curve of

Figure 5.8. The curve shows a relatively wide flat range of very small values close to criticality

of 1, which allows for the critical paths to actually be optimized. At the same time, there

is a steep rise in the value of the function as criticality drops, which prevents the nets with

comparatively low criticality from unnecessarily increasing the number of used switch types.

108

Switch Presence Negotiation Chapter 5

intrinsic delay avalanche cost

Generalization of Equation 1

Figure 5.8: Comparison of functions for criticality-scaling of avalanche costs (generalizations of Equa-
tion 5.1). The proposed function of Equation 5.4 (solid red line) allows for precise tuning of the
avalanche cost that the most critical nets perceive, so that the timing requirements are sufficient to
motivate them to use switch types with otherwise low usage. It also creates a relatively flat region of low
avalanche cost for a wider range of high criticalities, necessary for actually optimizing the critical path
delay, given that the timing analysis during routing is done only infrequently. A relatively steep rise in
cost ensues once the criticality drops bellow the cut-off point, which is needed to discourage noncriti-
cal nets from increasing the switch-pattern size. The function of Equation 5.1 and its exponentiated
versions [Mur20] lack these features (dashed lines).

The combined timing and avalanche cost assigned to a node splitting an edge that represents

a potential switch is

cost (u)

∣∣∣∣
(i , j)

= t (u)+e

(
l n(sc /s)

max_cr i tβ
×cr i t (i , j)β

)
×a(u). (5.4)

Here sc is a parameter determining the perceived avalanche cost of a potential switch when

routing the most critical possible net, with criticality max_cr i t (a standard parameter of

VPR [Mur20]), and β is a criticality exponent used to tune the selectivity of the function.

Approximate delay contribution of the switch to the wire that is driving it is represented by

the term t(u), modeled as described in Section 5.8.1. We do not scale it by criticality of the

net being routed, because all nets—regardless of their criticality—should be aware of the

implications of including a switch type in the pattern.

5.8 Completing the Algorithm

The complete algorithm is almost identical to Algorithm 5.2, apart from the fact that routing

on line 4 is performed using a modified version of VTR 8 [Mur20], which incorporates the

avalanche costs of Section 5.7. Another difference is that if there are switch types which got

their avalanche cost reduced to zero in the current iteration, all of them are selected and

the usage-threshold-based selection of line 6 is skipped. Nodes representing instances of

the selected switch types are removed from the rr-graph and their neighbors are connected

directly. This is conceptually equivalent to resetting their costs to 0 (line 7), but has a practical

benefit of reducing the size of the rr-graph.

109

Chapter 5 Switch Presence Negotiation

CB

CB

CB

CRS

CRS

CRS

CRS

V4Ua

H4La

V4Da

H1La

V1Ua

H2Ra

V1Db

V1Ub

H1LbH6Ra 6-LUTi-1

3

4
913

1722

23

CB

CB

CB

CB

CRS

CRS

CRS

CRS

CRS

CRS

V4Ua

H1Rb

H4Ra

H4La

V4Da

H1Ra

H1La

V1Ua

H2Ra

V1Da

H2La

V1Db

V1Ub

H1Lb

H6La

H6Ra 6-LUTi

CB

CB

CB

CB

CRS

CRS

CRS

CRS

CRS

CRS

V4Ua

H1Rb

H4Ra

H4La

V4Da

H1Ra

H1La

V1Ua

H2Ra

V1Da

H2La

V1Db

V1Ub

H1Lb

H6La

H6Ra 6-LUTi+1

V1Da

(CRS, CRS, CRS, CRS, CRS, CRS, CB, CB, CB, CB, H1Ra, H1La, V1Ua, H2Ra, V1Da, H2La, V1Db, V1Ub, H1Lb, H1Rb, H4Ra, V4Ua, H4La, V4Da, H6Ra, H6La)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

incoming wire

wiring due to the currently
accepted switches which increases
the load on the incoming wire

boundary of the switch-block
layout region

additional load on the incoming
wire if the switch (V1Da, V4Da, +0)
is added to the pattern, without
changing the switch-block layout

current multiplexer stacking order:

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

13

Figure 5.9: Updated floorplan construction. Not drawn to scale.

5.8.1 Conveying Physical Information

Apart from the delays of the routing wires, necessary for proper timing optimization, the router

must be aware of the implications on the architecture’s performance of using switches of a

type that is not yet in the pattern. Before each iteration of the algorithm, we run a physical

modeling and optimization flow to provide this data for the modified switch-pattern. The

impact that using each potential switch has on performance generally depends on which

other potential switches are also used. However, if the adoption threshold θ (Section 5.6)

is sufficiently small to prevent adoption of too many switches between reevaluations of the

physical model of the switch-block, the simple approach of only informing the router about

the impact of each switch in isolation, through the t (u) term of Equation 5.4, should suffice.

5.8.1.1 Modeling Flow

To extract delays of the channel wires, we rely on the physical modeling flow presented in

Chapter 4 [Nik21]. As we have already described in detail in Section 4.2.1, the flow assumes a

floorplan similar to that of the Stratix FPGAs [Lew13], where LUTs are stacked on top of each

other, while the routing multiplexers are arranged in columns padded to their left. Figure 5.9

depicts one such floorplan. The crossbar multiplexers are placed immediately next to the

LUTs, followed by the connection-block multiplexers, and then finally the switch-block ones.

Each multiplexer column is filled from the bottom up, until its height matches the height of

the adjacent LUT. Only then a new column is started. Placement of multiplexers next to each

LUT is identical.

110

Switch Presence Negotiation Chapter 5

5.8.1.2 Multiplexer Position Optimization

Precise positions of all multiplexers allow for accurate modeling of intra-switch-block wiring

(depicted in blue in Figure 5.9, for one source channel wire), which in turn allows for correctly

taking into account the influence of this wiring on the delay of the channel wires. However, as

the pattern evolves during the course of the avalanche search, positions of multiplexers in the

tile floorplan may become suboptimal. In the previous chapter, multiplexers were stacked in a

fixed order, derived from their input count [Nik21]. Now we adapt the order to the changing

connectivity by performing a quick anneal of the stacking order. All moves represent swaps of

two randomly selected multiplexers in the order, upon which a new floorplan is generated.

For the cost function, we use a combination of the total intra-switch-block wirelength and a

timing cost computed as a product of approximate routing wire delay and its exponentiated

criticality extracted from the last routing run, summed over all routing wires. This cost

function was adopted from VPR’s timing-driven placer [Mar00]. During multiplexer position

optimization and routing wire delay measurement, only those switch types which have already

been adopted to the final switch-pattern are considered.

Routing wire delays reported to the router for the next iteration of the pattern search are

obtained directly from SPICE simulations [Nik21]. However, annealing uses approximate

delays obtained from a polynomial fitted to a set of SPICE simulations, which relates the total

length of the intra-switch-block wiring that a routing wire drives to the increase in its delay.

Output of the same model is used for timing costs of the potential switches during routing.

5.8.2 Preventing Overspecialization

To prevent the resulting pattern from being specialized to a particular placement, we re-

place the circuits using a different placement seed at the start of each iteration of the search

algorithm (just before line 4 of Algorithm 5.2).

Line 4 of Algorithm 5.2 does not specify how multiple circuits are routed before measuring the

usage statistics needed for deciding which switch types are added to the pattern. Two possible

ways of doing this will be presented in detail in subsequent sections. Namely, in Section 5.11,

a switch-pattern is first obtained by performing the exploration on a set of circuits C1 and is

then used as a starting point for a continued exploration on a set of circuits C2. This can be

highly beneficial to reducing the runtime of exploration on large circuits, as discussed later,

but it has a downside of giving preference to circuits from C1 in deciding which switch types

should enter the pattern. An alternative approach, presented in Section 5.13.2, is to route

multiple circuits independently in parallel on line 4, combining the usage statistics observed

on each of them before proceeding to switch type selection. While this avoids the problem of

a priori favoring one set of circuits, it suffers from the usage spreading problem of Figure 5.4:

introducing avalanche costs enabled nets passing through switch-blocks in different regions

of the FPGA to negotiate which common switch types they will use; however, if the three nets

in the example of Figure 5.4 belong to three independently routed circuits, this negotiation is

111

Chapter 5 Switch Presence Negotiation

no longer possible and they may again end up using different switch types even if a common

one would have sufficed.

Note that these problems do not exist in the black-box-in-the-loop approach (Section 5.2),

since in that case all circuits are routed on one and the same switch-pattern. To prevent the

problems in the context of avalanche search as well, here we simply route multiple circuits

simultaneously, allowing their nets to jointly negotiate the presence of different switch types.

The implementational details of this are illustrated in Figure 5.10. First, each circuit used in

the exploration is packed and placed independently on the smallest FPGA that can fit it, as

determined by VPR [Bet99], with its logical width and height adjusted to make the physical

ones roughly equal [Nik21]. Then, a new large FPGA is created, so that its height equals

the maximum height of all individual FPGAs and its width equals the sum of the widths

of all individual FPGAs. The smaller individual FPGAs are placed on this larger one, much

like if it were a passive interposer, but without any connections between dies. The packing

and placement of each circuit are transferred to their respective isolated region on the new

FPGA and assigned their own set of clock domains. The netlists are then merged and routed

simultaneously, allowing them to share avalanche costs. Since different circuits are placed

in isolated regions with no connectivity between them, nets of one circuit cannot cause

congestion in others. Similarly, since each clock domain is individually optimized, timing

characteristics of each circuit are preserved.

simultaneous routing

packing + placement

packing + placement packing + placement

independent packing
and placement

he
ig

ht
 M

IO IO IO IO

IO

IO

IO

IOIOIOIO

IO

IO

IO
CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

CLB

CLB

CLB

IO

IO

IO

IO

IO CLB

CLB

IO IO

IO

IO

IOIO

CLB

CLB

CLB

CLB

Circuit 1 FPGA 1

Circuit 2 FPGA 2

Circuit M FPGA M

IO

IO

IO

IO

IO

IO

CLB

CLB

CLB

CLBCLBIO

IO IO

IOIO

IO

IO

IO
CLB CLB

CLB CLB

CLB CLB

CLB CLB

IO

IO

CLB

CLB

CLB

CLB

IO

IO

CLB

CLB

CLB

CLB

width Mwidth 2width 1

he
ig

ht
 2

he
ig

ht
 1

Circuit M
clock domain set M

Circuit 1
clock domain set 1

Circuit 2
clock domain set 2

 h
ei

gh
t =

 m
ax

({h
ei

gh
t[1

..M
]})

IO

IO

IO

IO CLB

CLB

IO IO

IO

IO

IOIO

CLB

CLB

CLB

CLB

IO IO IO IO

IO

IO

IO

IOIOIOIO

IO

IO

IO
CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

CLB

CLB

CLB

IO

IO

IO

IO

IO

IO

IO

CLB

CLB

CLB

CLBCLBIO

IO IO

IOIO

IO

IO

IO
CLB CLB

CLB CLB

CLB CLB

CLB CLB

IO

IO

CLB

CLB

CLB

CLB

IO

IO

CLB

CLB

CLB

CLB

 width = sum({width[1..M]})

SINGLE FPGA

Figure 5.10: To enable joint negotiation of switch-presence among multiple circuits, we route them
simultaneously.

112

Switch Presence Negotiation Chapter 5

5.9 Experimental Setup

All experiments are performed on an architecture with eight 6-LUTs in the cluster and a

channel composition reminiscent of that of Agilex, but for the longest wires [Chr20]: 2×H1,

H2, H4, H6, 2×V1, V4. These wires are repeated for each LUT of the cluster, leading to an

equivalent width of a horizontal channel equal to 2×8×(1+1+2+4+6) = 224 and an equivalent

width of the vertical channel equal to 2×8× (1+1+4) = 96. As mentioned in Section 5.5, wires

are only allowed to drive other wires from their end tile. Without loss of generality, we consider

only switch types with LUT offset ∈ {−1,0,1} (Section 5.5) and prohibit switch types to a

target wire going in the direction from which the driving one came [Pet21]. This results in

564 available switch types. The connection-blocks and crossbars generated by the physical

modeling flow are kept constant in all experiments, while delays are extracted from a 4-nm

technology model [Nik21]. Avalanche parameters are set as described in Section 5.13.1.

5.10 Effectiveness of Avalanche Costs

In this section, we assess the effectiveness of the proposed avalanche search method against

the simple greedy algorithm of Section 5.6. Instead of introducing explicit ε costs without a

physical meaning to the greedy algorithm, we use the timing costs of the switches equally visi-

ble to all nets, regardless of criticality (Equation 5.4). Search was performed by simultaneously

routing the alu4, ex5p, and tseng circuits. The switch adoption threshold θ was set to 1.1 for

both algorithms. Final assessment of performance was done on all MCNC circuits, but for the

pin-bound dsip, des, and bigkey. We note that the results reported here differ slightly from the

ones reported in the original paper [Nik21a], because in the original paper, periodic rip-up did

not affect all uncongested connections, leading to some missed opportunities for increased

concentration. With periodic rip-up fully enabled (Section 5.14.3), a more compact pattern

with better delay was obtained, at the expense of lower routability. This will be addressed in

Section 5.11.

5.10.1 Direct Comparison with Greedy

Avalanche search converged after 36 iterations, accumulating 78 switch types, while greedy

search converged only after 228 iterations, accepting 438 switch types (Table 5.1). This demon-

strates that projected delay contributions of individual switch types alone are insufficient to

deter the router from using them. The large number of switch types in the greedy pattern

resulted in both a large increase of the tile width and the average fanin and fanout of channel

wires. This in turn led to a large increase of average wire delays and the routed critical path

delay (Table 5.1).

113

Chapter 5 Switch Presence Negotiation

Table 5.1: Properties of the different patterns; manual and manual annealed will be discussed in
Section 5.12.

avalanche greedy truncated greedy manual [Nik21] manual annealed
#iterations 36 228 54 10000 moves
#switch types 78 438 78 180 210
average→ fi fo t[ps] fi fo t[ps] fi fo t[ps] fi fo t[ps] fi fo t[ps]
H1 5 3 13.9 31 25 23.1 6 3 13.2 10 10 16.0 13 13 19.6
H2 5 4 16.8 28 28 31.6 5 5 18.1 11 11 21.3 14 11 24.1
H4 4 7 27.4 21 27 43.2 4 6 25.7 11 11 30.8 16 12 32.1
H6 5 5 35.7 19 25 59.6 2 6 35.7 11 11 43.1 9 13 47.3
V1 7 6 21.8 38 31 35.5 8 7 22.1 12 12 24.6 14 15 29.2
V4 2 5 70.1 12 27 97.5 1 4 67.0 13 13 74.3 13 15 86.8
W(tile) 6792 nm 8904 nm 6816 nm 7464 nm 7488 nm
CPD 1.38 ns 1.71 ns 1.38 ns 1.46 ns 1.55 ns

5.10.2 Comparison with Truncated Greedy

To better assess the differences in the choices made by the two search methods, we truncated

the greedy pattern after the 54th iteration, when the pattern also contained 78 switch types.

The exact distribution of fanouts and fanins enables a tighter packing of the multiplexers of the

avalanche pattern, leading to a slightly lower tile width. Fanouts and fanins still predominantly

determine the wire delays, however, which are very close between the two patterns, and on

average slightly lower for the truncated greedy (Table 5.1).

5.10.2.1 Adjacency

Adjacency between different wire types is illustrated in Figure 5.11. Avalanche search resulted

in more varied connectivity between wire types of different lengths. This can be seen by

observing that e.g., the fanouts of H1Ra and H1Rb are complementary in the avalanche

pattern, whereas they have two switch types in common in the truncated greedy. Similarly,

fanouts of V1Ua and V1Ub share three switch types in the avalanche pattern, whereas they

share eight out of nine switch types in the greedy pattern. This suggests that the greedy search

selects multiple switch types between the same lengths of wires, commonly connected by the

router, where only a subset of them would suffice. As a result, with the same number of switch

types, fewer different wire lengths can be connected.

5.10.2.2 Grid Distances

Consequences of selecting multiple switch types between the same wire lengths, instead of

introducing more variety, can be seen in Figure 5.12. Each entry of the matrices represents

the minimum number of distinct channel wires needed to connect the center of the grid to

the particular target, normalized by the minimum number of wires that would be needed

if all switch types were available in the pattern. The avalanche pattern is closer to being

optimal in this respect. This is also reflected on the minimum delay distances, relative to

114

Switch Presence Negotiation Chapter 5

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0 0
1 1 1 1 1 1 1 0 0 0 0
0 1 0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 1 1 1 1 0
0 1 0 0 0 1 1 0 1 0 0
1 1 1 0 1 1 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 0

1 0 1 1 1 0 1 1 1 1 1 1 0
0 1 0 0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0 1 0 0
0 1 0 0 1 1 1 0 0 1 0 1 0
1 0 1 1 0 0 1 1 0 0 0 1 0

(a) Avalanche.

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0
0 1 1 1 1 1 0 0 0 1 0

0 0 0 0 0 1 0 1 0 1 0
1 0 0 0 0 1 1 0 0 1 0
1 1 0 0 0 1 1 0 1 0 0
1 1 1 1 0 1 1 0 1 0 0
0 1 0 1 1 1 0 0 1 0 0

1 1 1 1 0 1 1 1 0 0 1 1 0
1 1 1 0 0 1 1 1 0 0 1 1 1
0 1 1 0 0 0 1 1 1 0 1 0 0
1 0 0 0 0 1 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0

(b) Truncated Greedy.

Figure 5.11: Adjacency of wire types: avalanche (a) and truncated greedy (b). Entries with no number
are prohibited by construction. Rows correspond to drivers and columns to targets.

X-offset

Y-
of

fs
et

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

(a) Avalanche.

X-offset

Y-
of

fs
et

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

(b) Truncated Greedy.

Figure 5.12: Hop-distances from the center of the FPGA to other tiles, normalized by the distances
computed on a pattern containing all allowed switch types. Dark green is best.

an unrealistic fully-connected pattern which disregards the impact of switch load on wire

delay (Figure 5.13). The relative inefficiency in connecting to the distant targets at the bottom

of the grid was influenced by performing the search on small circuits requiring very small

FPGAs. In a production setting, larger circuits should be used. We will discuss this further in

Section 5.13.5.2.

115

Chapter 5 Switch Presence Negotiation

X-offset

Y-
of

fs
et

0

5

10

15

20

25

30

35

(a) Avalanche.

X-offset

Y-
of

fs
et

0

5

10

15

20

25

30

35

(b) Truncated Greedy.

Figure 5.13: Percentage increase of the delay needed to reach other tiles from the center, compared to a
hypothetical switch-pattern containing all allowed switch types with no impact on wire delay. Dark
blue is best.

alu
4

ap
ex

2
ap

ex
4

clm
a

dif
feq

elli
pti

c

ex
10

10
ex

5p fris
c

mise
x3 pd

c
s29

8

s38
41

7

s38
58

4.1 seq spl
a

tse
ng

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

[n
s]

avalanche
truncated_greedy

Figure 5.14: Routed delays for the avalanche and the truncated greedy pattern.

5.10.2.3 Routed Delays

Despite the qualitative differences between the avalanche and the truncated greedy pattern,

they are largely equivalent in terms of the routed critical path delays (Figure 5.14). This could

be due to the MCNC circuits imposing low stress on the routing architecture, making it easy to

meet timing requirements. Another reason could lie in their large logic depth which, combined

with oversimplified intracluster interconnect [Chr20], may make the delays inside the cluster

dominant.

116

Switch Presence Negotiation Chapter 5

Table 5.2: Percentage of congested rr-graph nodes after 300 VPR routing iterations on Gnl circuits.

circuit 1 2 3 4 5 6 7 8 9 10
avalanche 0.906% 0.274% 0% 0.521% 0.323% 0.187% 0.149% 0.262% 0.040% 0.002%
trunc. greedy 1.061% 0.632% 0.484% 1.340% 0.597% 1.175% 0.982% 0.509% 0.275% 0.984%

5.10.2.4 Routability

To see how the two patterns compare under increased stress, we generate ten synthetic circuits

with about 10000 LUTs using Gnl [Str99]. The Rent’s exponent was set to 0.7—the maximum

used in the ISPD’16 routability driven placement contest [Yan16]. We take the distribution of

different LUT sizes in the circuits from Hutton et al. [Hut04]. Then, we place the circuits on

architectures based on the two switch-patterns and attempt to route them with a limit of 300

iterations. We neglect timing optimization since the circuits are synthetic.

Table 5.2 shows the percentage of congested rr-graph nodes at the end of the 300 routing

iterations, for each circuit. The pattern obtained through avalanche search managed to legally

route one of the ten circuits, while no circuit was routable on the greedy pattern. The difference

in the percentage of remaining congested nodes also showcases the higher routability of the

switch-pattern obtained through avalanche search. Nevertheless, not being able to route nine

out of ten circuits is not acceptable for any meaningful pattern. We describe a remedy to this

in the next section.

5.11 Multi-Stage Search

In Section 5.10.2.4, we have seen that searching for a pattern on a set of benchmark circuits

that has a lower connectivity demand than some circuits for which the final architecture is

intended can result in those more complex circuits failing to route. However, switch types

needed by the simpler circuits are most likely also needed by the more complex ones. Hence,

running the search on the smaller circuits first and using the resulting pattern to initialize

the search on more complex circuits is a reasonable way to reduce the search runtime. We

demonstrate that in this section by presenting the results of continuing the search from the

pattern of Figure 5.11a, on the Gnl benchmarks described in Section 5.10.2.4.

5.11.1 Convergence

In each iteration, one of the ten Gnl circuits was routed to derive usage statistics and the

circuits were changed between iterations in a round-robin fashion. This additional run

converged after three search iterations, adding six more switch types to the pattern. On this

extended pattern, all ten Gnl circuits routed successfully in less than 300 router iterations

(Table 5.3). Instead of running 39 search iterations on the more complex circuits which take

about 7× more time to route, it was possible to run the majority of these iterations on the

smaller circuits, drastically reducing the runtime. We will discuss runtime in more detail in

117

Chapter 5 Switch Presence Negotiation

H
1
La

H
1
Lb

H
2
La

H
4
La

H
6
La

H
1
R
a

H
1
R
b

H
2
R
a

H
4
R
a

H
6
R
a

V
1
U
a

V
1
U
b

V
4
U
a

V
1
D
a

V
1
D
b

V
4
D
a

H1La

H1Lb

H2La

H4La

H6La

H1Ra

H1Rb

H2Ra

H4Ra

H6Ra

V1Ua

V1Ub

V4Ua

V1Da

V1Db

V4Da

1 0 0 0 0 0 0 0 1 0 0

1 0 1 0 0 0 1 1 0 0 0

0 0 2 0 0 1 0 1 1 0 0

1 1 1 1 1 1 1 0 0 0 0

0 1 0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 0

1 0 0 0 1 0 1 1 1 1 1

0 1 0 0 0 1 1 0 1 1 0

1 1 1 0 1 1 1 0 0 1 0

0 2 1 0 1 1 0 0 1 0 0

1 0 1 1 1 0 1 1 1 1 1 1 0

0 1 0 0 0 0 1 0 0 1 1 1 1

0 0 0 1 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 1 0 1 0 0

0 1 0 0 1 1 1 0 0 1 0 1 0

1 0 1 1 0 0 1 1 0 0 0 1 0

(a) Adjacency. Red switch types were added on top of
those of the pattern of Figure 5.11a.

X-offset

Y-
of

fs
et

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

(b) Hop-distances. Addition of access to V4Da greatly
improved the distances in the lower half-plane.

Figure 5.15: Pattern obtained after continuing the avalanche search on the Gnl benchmarks of Sec-
tion 5.10.2.4.

Table 5.3: Number of VPR iterations needed to route each of the ten Gnl circuits.

circuit 1 2 3 4 5 6 7 8 9 10
Gnl-extended avalanche 142 61 27 106 26 55 46 55 30 82

Section 5.14. Here we would just like to note that even though the 10000-LUT benchmarks

are still rather small and running the entire search on them in a production setting would

certainly be feasible, scaling the search to large modern circuits which can take several hours

to route even in absence of avalanche costs could be more difficult without adopting this

approach of gradually increasing the complexity of the used circuits.

5.11.2 Pattern Changes

The final pattern obtained after the additional search run on the Gnl benchmarks is shown

in Figure 5.15a, with switch types added on top of the pattern of Figure 5.11a highlighted in

red. It is interesting to note that besides providing access to V4Da that results in significant

reduction in hop count needed to reach cells below the center (Figure 5.15b), the new pattern

also adds more options to switch between different LUT-heights (entries with a value of 2; see

Figure 5.3). This may suggest that a few such inter-plane connections greatly help to reduce

congestion, as mentioned by Chromczak et al. [Chr20].

The 8% increase of the pattern size lead to a slight increase of the wire delays. This caused the

geomean routed critical path delay of the MCNC benchmarks to rise by 0.6% to 1.39 ns.

118

Switch Presence Negotiation Chapter 5

5.12 Comparison with Simulated Annealing

In Section 5.13 we analyze in more detail various aspects of the avalanche search algorithm.

However, before delving into details, we first compare avalanche search to a method inspired

by previous work. Namely, Lin et al. successfully used simulated annealing for simultaneously

optimizing channel composition and the switch-pattern [Lin10]. In this section, we investigate

how a similar method compares with the proposed avalanche search.

5.12.1 Initial Pattern

We initialize the search with the default pattern produced by the physical modeling flow (see

Section 4.7.6) [Nik21], which represents our best effort at manually capturing inter-wire-type

connectivity of a modern tapless architecture [Pet21], with the constraint dictated by the high

resistance of the lower metal layers that bulk of this connectivity is contained within wires

starting and ending at the same LUT-height [Chr20]. The initial pattern contains 180 switch

types organized as shown in Figure 5.16a. The optimal hop-distances that it achieves are not

sufficient to counter the wire delay increase due to a high load (Table 5.1). As a result, the

geomean routed delay is 5.8% larger than for the avalanche pattern (Table 5.1).

5.12.2 Channel Segmentation Revisited

It is interesting to note that the 1.46 ns average routed delay is already 4.6% lower than the

1.53 ns that we observed in Figure 4.18. The improvement comes primarily from the difference

in channel segmentation, where the one used in this chapter has many fewer wires originating

at each LUT: 16 compared to 36, on average for the three N = 8 architectures in 4nm technology

used for measurements in Chapter 4. The reduced number of channel wires resulted in a

reduced number of stored-select multiplexers that drive them, which in turn made both

the horizontal channel wires and the wires providing access between the cluster and the

switch-block significantly shorter and faster.

This illustrates that while maximizing the utilization of the track space available above the

active area of the cluster is likely useful, much like Lewis et al. mentioned [Lew13], care should

be taken that this does not result in a large increase in the number of padded multiplexer

columns, beyond the minimum which provides sufficient routability. We note that this does

not prevent brute-force approach to exploring channel segmentations that was used in Chap-

ter 4. Instead of simply padding the length-1 wires until all track space above the active area

is filled, one could do a binary search for a minimal routable padding, as has been typically

done when channel width was a major evaluation metric for FPGA architectures [Bet99]. This

minimum produces the best delays of the routing resources, since the wires maintain their

minimum physical length, under the constraint that all benchmark circuits are routable. When

congestion is entirely neglected and no signals make detours (e.g., in the first iteration of

VPR’s router [Mur20]), we can measure minimum achievable critical path delays, using that

119

Chapter 5 Switch Presence Negotiation

physical implementation. The only real reason (i.e., when disregarding the CAD tool noise)

why these delays could be exceeded in practice is that the minimum padding is not sufficient

for resolving congestion without some timing-critical signals having to make large detours.

By increasing the padding, these detours can be minimized, at the expense of increasing

the delays of the routing resources. From the lower-bound critical paths, we can compute

the maximum elongation of horizontal wires which would make these lower-bound delays

inferior to the real ones measured at the end of routing the corresponding circuits on the

minimum-padding architecture. These elongations bound the maximum number of multi-

plexer columns that can be added to trade-off routing resource speed for detour minimization.

We can then sweep the padding in this additional range, to obtain optimal performance.

5.12.3 What about Floorplan Optimization?

Besides the difference in channel segmentations between the architectures using the manually-

designed parametric switch-pattern in Chapter 4 and the one reported here, what also differs

is the position of switch-block multiplexers in the tile floorplan. While in Chapter 4, the

multiplexers were stacked in size order, here their positions are optimized to reduce the overall

intra-SB wirelength and delay. However, because the manually-designed switch-pattern is

highly symmetric, most reasonable placements of multiplexers result in similar wirelength

and delay, making the optimization of Section 5.8.1.2 not particularly useful. Concretely, the

difference in terms of total routing resource delay, between enabling and disabling the opti-

mization when generating the floorplan for the manually-designed architecture, was merely

0.15%. However, the impact of this optimization on the outcome of automated switch-pattern

design is much more significant. Namely, when we disable floorplan optimization during

avalanche search, the produced switch-pattern achieves 2.57% higher routed critical path

delay, on average. This once more illustrates the importance of taking into consideration the

physical implementation aspects, while designing a programmable interconnect architecture.

5.12.4 Setup

Let us now return to the comparison of avalanche search to a simulated-annealing-based

method. We use two very simple moves generated with equal probability: including or

removing one of the 564 considered switch types. The self-normalizing two-term cost function

of Marquardt et al. [Mar00] is used, with tile area and the geomean routed critical path delay

of the circuits used in the search taken for the two terms, with equal contribution:

∆cost = 0.5
∆A(t i le)

prev. A(t i le)
+0.5

∆geom. rtd. crit. path delay

prev. geom. rtd. crit. path delay
(5.5)

To save runtime, wire delays are measured only when the switch-pattern differs from that of

120

Switch Presence Negotiation Chapter 5

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

0 3 1 1 1 0 1 1 0 1 1
3 0 1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0 3 1 1 1 0 1 1 0 1 1
3 0 1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 0 1 1 1 1 0 3 1
1 0 1 1 1 1 0 1 1 1 3 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 1 1 1 1 0 3 1
1 0 1 1 1 1 0 1 1 1 3 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1

(a) Manual [Nik21]

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

1 2 1 1 1 3 1 2 0 1 0
1 2 2 2 0 2 2 1 0 1 1
0 0 2 2 1 0 1 1 0 2 1
1 2 1 2 2 1 0 0 1 1 1
0 2 0 1 0 1 0 0 2 1 1

0 2 1 2 2 1 2 2 1 2 1
3 0 0 1 0 2 1 1 1 1 0
0 0 1 2 1 1 2 1 2 0 1
1 2 1 2 0 0 1 1 0 2 1
2 0 3 1 2 3 1 2 1 1 1

2 1 1 2 1 2 1 1 2 0 3 1 1
2 1 0 1 1 1 0 0 2 0 1 0 1
1 2 2 2 1 1 1 1 1 1 1 2 3
2 2 2 2 0 2 0 2 0 1 0 1 0
1 1 1 2 1 3 2 3 1 0 1 0 0
1 0 2 0 0 1 1 1 1 2 1 0 1

(b) Manual [Nik21] annealed

Figure 5.16: Adjacency of wire types: initial manually designed pattern [Nik21] (a) and its annealed
version (b).

Figure 5.17: Convergence of the simulated annealing optimization.

the previously measured architecture in at least five switch types, while floorplan is optimized

only on temperature change. The same three MCNC circuits driving the avalanche search

of Section 5.10 are used again. The initial temperature is set to 0.02 and we perform 100

temperature changes, at the rate of 0.95, with 100 moves per temperature.

5.12.5 Results

Including or removing a single switch from the pattern most often has little influence on

the critical path delay, or tile area, which only dramatically changes with a change in the

number of columns needed to fit the multiplexers (Figure 5.9). This makes convergence of the

optimization difficult, as visible in Figure 5.17. In the present experiment, 30 new switches

were added, while both adjacency regularity (Figure 5.16b), and hop-distance optimality were

broken. Increased wire delays (Table 5.1) further increased the geomean routed delay by ∼ 6%.

We conjecture that for Lin et al. annealing the switch-pattern proved valuable as during the

121

Chapter 5 Switch Presence Negotiation

optimization of the channel composition—likely causing larger and easier to capture changes

in performance—the switch-pattern grew increasingly inappropriate for the new composition

and annealing it was just sufficient to rectify that. If applied to one fixed channel composition,

success of the method seems less obvious.

Of course, we do not claim that simulated annealing, or any other general optimization

method, cannot be made to work for switch-pattern exploration, if extensive engineering of

the cost function and move generation is performed. Nevertheless, much like the original

PathFinder removed the need for elaborate ad hoc heuristics of early FPGA routers [Lem93],

we believe that our avalanche search method—essentially relying on the same principles

as PathFinder—removes the need for similarly elaborate heuristics to explore interconnect

architectures.

5.13 Analysis of Some Further Aspects of Avalanche Search

In this section, we present results of several additional experiments which aim to increase the

understanding of how avalanche search functions and what is the impact of different elements

of the algorithm. Unless stated otherwise, experimental setup of Section 5.9 was used in all

experiments.

5.13.1 Parameters

The functional form of the avalanche costs (Equation 5.2) involves three parameters: the

starting avalanche cost, s(u) and the two parameters dictating the rate of cost decrease with

respect to usage, ap and ah . For the search method to be effective, these parameters must

be assigned reasonable values. In this section, we present results of several experiments

intended to help the understanding of the impact of parameter tuning on the effectiveness of

the algorithm. We also give some remarks on how to chose good parameter values. Because

different switch types are already distinguished by their timing cost, we chose to fix all s(u) to

a single parameter s.

5.13.1.1 Adaptive Tuning

The rate at which avalanche cost should drop with respect to usage depends fundamentally

on the actual usage values attained during routing: a single fixed drop rate could be too high

if many nets naturally tend to use the same switch types, whereas it could be too low if the

number of nets which do so is very small. This depends on the size and structure of the circuits

being routed, making it difficult to choose a single value for ap and ah .

To resolve this issue, we first record the maximum usage during the first routing iteration,

when the avalanche costs are temporarily reset to zero, much like VPR typically neglects

congestion in the first iteration [Mur20]. This allows all nets to initially choose the timing-

122

Switch Presence Negotiation Chapter 5

0

2500

5000
[#

 rr
-n

od
es

] e-11
e-10
e-9
e-8
e-7

1000

2000

m
ax

 U

0 10 20 30 40 50 60
routing iteration

25

50

75

[#
 sw

itc
he

s]

(a) Dependence on the starting avalanche cost.

0

5000

10000

[#
 rr

-n
od

es
] 5

10
15
25
50

1000

2000

m
ax

 U

0 10 20 30 40
routing iteration

25

50

75

[#
 sw

itc
he

s]

(b) Dependence on the rate of avalanche cost decrease.

Figure 5.18: Dependence of concentration on avalanche parameters. The top graph of Figure (a) shows
the number of congested nodes in the rr-graph after each iteration of the router in the first iteration of
the search algorithm, for iter_to_zero set to 25 and various starting avalanche costs. The middle graph
shows the corresponding maximum usage, while the bottom one shows the number of switches with
usage ≥ 0.05× the current maximum. Graphs of Figure (b) are analogous to those of Figure (a), for the
starting avalanche cost fixed at 10−9 and iter_to_zero ∈ {5,10,15,25,50}.

optimal resources. Let the maximum recorded usage be M 1
U . We compute ap and ah as:

ap = ah =
s

M 1
U × (i ter _to_zer o +1)

(5.6)

In other words, ap and ah are set to the value required for the avalanche cost to be reduced to

zero in i ter _to_zer o ∈N routing iterations, assuming a sustained usage of M 1
U . Thus we fix

both ap and ah using a single metaparameter with a much more graspable meaning. Once

computed in the first iteration of Algorithm 5.2, ap and ah do not change until the end of the

search. Benefits of independently setting ap and ah are still to be investigated.

5.13.1.2 Starting Cost

Figure 5.18a shows the effect of various starting costs on concentration and congestion re-

solving when simultaneously routing the alu4, ex5p, and tseng MCNC circuits [Yan91], with

i ter _to_zer o = 25. In the first graph, we see that all explored values of s cause a rise in the

number of congested nodes which disappears once congestion is penalized sufficiently for

nets to move to switch types with lower usage and higher avalanche cost. Larger values of s

lead to higher peaks of congestion occurring later in the routing process.

The middle graph clearly shows the correlation between rising concentration and congestion.

Larger values of s initially make it less likely for nets to route through switch types with low

usage, leading to larger peaks of maximum usage. However, excessive concentration is not

sustainable, because it prevents congestion resolution. The overshoot for s = 10−7 depicts

123

Chapter 5 Switch Presence Negotiation

this clearly and although its final maximum usage is also somewhat higher than for the other

values of s, some routing iterations are inevitably wasted. Apart from the maximum usage, the

number of switch types with significant usage (here set at ≥ 5% of the current maximum) is

also illustrative. As the bottom graph shows, all explored values of s—apart from 10−11 and

10−10 which are clearly too low to prevent nets from using switches of types not required by

other nets—lead to very similar results in this respect, by the end of the routing process.

While larger values of s, such as 10−7 may lead to additional reduction of the obtained switch-

pattern size, in the experiments in this chapter, we use s = 10−9 since it provides a reasonable

trade-off between concentration and runtime.

5.13.1.3 Rate of Decrease

Figure 5.18b shows the results of sweeping iter_to_zero under the setup of Section 5.13.1.2, but

with s fixed at 10−9. Smaller values quickly reduce the cost of switch types which are intrin-

sically in high demand (usage close to M 1
U), causing an early concentration and congestion

increase. Upon congestion resolution, however, different explored values converge to very

similar results. The exception is 50, which results in too slow drop in avalanche costs that does

not allow the higher-usage switch types to attract nets to route through them. It appears that a

good trade-off between concentration and runtime is given by values corresponding to about

half the total number of routing iterations taken to achieve a congestion-free routing. In all

experiments presented in this chapter, we use i ter _to_zer o = 25.

More comprehensive analyses could lead to parameter values that produce better quality

solutions or reduce runtime. Nevertheless, at the moment it does not seem that avalanche

search is particularly sensitive to the values of parameters.

5.13.2 Circuit-Level Parallelization

In Section 5.8.2, we proposed to route multiple circuits at once, so that usage information and

avalanche costs can be shared among them. The rationale was that different nets of multiple

circuits can together negotiate a more compact pattern than when routed individually. We

test that hypothesis in this section.

5.13.2.1 Average Normalized Usage

We run two experiments. In the first one, each circuit is routed independently, using individu-

ally autotuned avalanche parameters. Once all circuits are routed, the final avalanche costs of

all switch types are averaged out among all circuits while the usages are first normalized by

the total usage in the particular circuit and then averaged. In this way, large circuits are no

longer given an unfair advantage over the small ones in determining switch type selection.

The average costs and average normalized usages are then used to determine which switch

124

Switch Presence Negotiation Chapter 5

types are adopted in the pattern, as described in Section 5.8.

The results of this experiment are shown in Figures 5.19 and 5.20. The search relying on

independently routing the alu4, ex5p, and tseng circuits converged in 57 iterations (as opposed

to 36 when routing all circuits together) and accumulated 87 switch types (as opposed to 78

when routing all circuits together). The smaller size of the pattern obtained through routing all

circuits at once demonstrates the benefit of sharing the usage and cost information between

circuits during routing. However, as Figure 5.20 shows, the routed critical path delays on the

larger pattern are only negligibly (0.25%) larger. This means that when running avalanche

search on larger modern circuits where even routing one circuit may be a challenge (see

Section 5.14), let alone multiple of them at the same time, combining normalized usages can

be a reasonable alternative. Of course, as an intermediate step, providing some mechanism

to (periodically) pass cost information between different parallel threads routing different

circuits independently could be useful.

It is interesting to note that even though the potential dominance of the larger circuits is now

less likely, that did not improve the geomean routed delay of the three circuits used for the

search; it is in fact negligibly higher (by 0.28%).

5.13.2.2 Total Usage

The second experiment attempts to more closely approximate the behavior of simultaneously

routing all circuits, while still routing them independently. Namely, the avalanche parameters

are taken from the search which routes all circuits together and after every iteration of the

search, the current and historical usages of each switch type are summed among all circuits.

This total usage and the costs computed from it are then used for selecting the switch types.

Hence, the only difference between this approach and routing all circuits simultaneously is

that usage information is not shared between the circuits during the search iterations.

This search converged in 51 iterations, accumulating 92 switch types. For the interest of space,

we do not show the resulting pattern, nor plot the routed delays, which are on geomean 2.63%

worse than when routing all circuits at once.

5.13.3 Sensitivity to Circuit Choice

One of the main advantages of benchmark-driven FPGA architecture design is that the ob-

tained architecture can be tailored to some extent to the circuits of interest, represented

by the selected benchmark set. However, this is also one of the main disadvantages of the

approach, since if the benchmark set does not appropriately represent the intended use of the

architecture, the architecture will either completely fail to implement some circuits of interest,

or fail to do so with appropriate performance. We have seen an instance of that already in

Section 5.10.2.4. In this section, we attempt to provide a deeper understanding of dependence

of switch type usage statistics—which forms the basis for the avalanche search algorithm

125

Chapter 5 Switch Presence Negotiation

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0 0
1 1 1 1 1 1 1 0 0 0 0
0 1 0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 1 1 1 1 0
0 1 0 0 0 1 1 0 1 0 0
1 1 1 0 1 1 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 0

1 0 1 1 1 0 1 1 1 1 1 1 0
0 1 0 0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0 1 0 0
0 1 0 0 1 1 1 0 0 1 0 1 0
1 0 1 1 0 0 1 1 0 0 0 1 0

(a) Simultaneous routing (same as Figure 5.11a).

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

0 0 0 0 0 1 1 0 1 0 0
0 1 0 1 1 0 1 1 0 1 0
1 1 0 0 0 0 1 0 0 1 0
0 1 0 1 1 1 1 0 0 1 0
0 1 1 0 1 1 1 0 0 1 0

1 0 1 0 0 0 1 1 1 0 0
0 1 0 0 0 2 0 0 1 0 0
1 1 0 0 0 1 2 0 0 1 0
1 0 0 1 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0 1 0 0

1 0 0 1 1 1 1 0 0 0 1 2 0
0 1 1 0 0 0 1 0 1 1 1 1 1
0 0 1 0 0 1 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 1 0 0 0 1 1 0
0 1 1 1 1 0 0 1 1 0 1 1 0

(b) Independent parallel routing.

Figure 5.19: Adjacency of wire types: simultaneous routing (a) and independent parallel routing (b).
When routing all circuits at once and using the total usage to evolve the avalanche costs and select the
switch types to enter the pattern, large circuits may have an unfair advantage. Routing many circuits at
once may also not be feasible due to exceeding runtime. Figure (b) shows a pattern obtained from an
avalanche search where all circuits are routed independently in parallel, with independently autotuned
avalanche parameters. After each iteration, usages are normalized for each circuit and their average is
taken as a basis for switch type selection.

al
u4

ap
ex
2

ap
ex
4

cl
m
a

di
ffe
q

el
lip
tic

ex
10
10

ex
5p

fri
sc

m
ise
x3 pd

c
s2
98

s3
84
17

s3
85
84
.1 se

q
sp
la

ts
en
g

ge
om
ea
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

[n
s]

simultaneous

independent

Figure 5.20: Influence of simultaneously routing multiple circuits during pattern search.

introduced in this chapter—on the choice of the circuits used to derive these statistics.

In Section 5.13.2, we have determined that average normalized usage is an effective metric for

choosing the switch types to adopt in the pattern. We will use it here to assess the impact of

circuit choice on usage statistics. Namely, the rationale is that the less dependent usage is on

exact choice of the circuits on which it is observed, the closer the observation made on any

individual circuit will be to the average computed on several circuits.

Let Sc be the set of all switch types, ordered by the decreasing usage achieved on circuit c . Let

Sm be the set of all switch types, ordered by the decreasing average normalized usage on a set

126

Switch Presence Negotiation Chapter 5

0 20 40 60 80 100
|Top subset|

0

20

40

60

80

|In
te

rs
ec

tio
n

wi
th

 th
e

av
er

ag
e|

tseng
alu4
ex5p
clma
pdc
ex1010
s38584.1

(a) Intersection of the max-usage subset and the average.

0 20 40 60 80 100
|Top subset|

0

20

40

60

80

Su
bs

et
 u

sa
ge

 su
m

 d
ro

p
wh

en
 c

ho
os

in
g

th
e

av
er

ag
e

[%
]

tseng
alu4
ex5p
clma
pdc
ex1010
s38584.1

(b) Usage drop when choosing the average.

Figure 5.21: Maximum-usage subset overlaps with the average of all circuits. Figure (a) shows the size
of the intersection of the maximum-usage subset of each individual circuit and the same-size subset
with maximum normalized average usage over all circuits, for subset sizes ranging between 1 and 100.
Overlap between the two subsets is reasonably high (line close to y = x) for all circuits, with some local
variation. This variation increases with subset size, since larger subsets capture more switch types with
low usage, mostly used by the few critical paths. Figure (b) shows the relative total usage drop if the
average subset is chosen instead of the subset determined for each circuit individually. Since the top
few switches differ among the circuits, large drops are observed for very small subset sizes. However, for
subsets larger than ∼ 10 switch types, cumulative usage drop is consistently below 10% for all circuits.

of circuits C . Furthermore, let Sn
c and Sn

m be the subsets of the aforementioned sets containing

the first n of their elements. As a measure of similarity between usage statistics obtained

on individual circuits from C and their average, we use the size of the intersection
∣∣Sn

c ∩Sn
m

∣∣,
for various subset sizes n. We plot this metric for seven different individually routed MCNC

circuits and n ranging between 1 and 100 in Figure 5.21a. Usage statistics come from a single

avalanche search iteration. For most values of n, the curves for most circuits are close to y = x.

This means that there is significant similarity in the sets of most used switch types chosen

by the router on different circuits. Hence the sensitivity of the search outcome to the circuits

used to run it is not particularly high. However, we can see that as n increases, most curves

start moving away from y = x. This is because larger subset sizes capture switch types with

significantly lower usage, mostly catering to the needs of the critical paths, where similarity

between the circuits is lower.

Let U (S) =
∑

e∈S U (e) be the total usage of all switch types in a set S. We have seen that

a maximum-usage subset of each circuit in Figure 5.21a significantly overlaps with the

maximum-average-usage subset. Now we would like to quantify how large a drop in to-

tal usage each circuit c ∈C would experience if Sn
m is chosen for it in place of Sn

c . Figure 5.21b

plots
U (Sn

c)−U (Sn
m)

U (Sn
c) ×100%, for the same circuits and values of n used in Figure 5.21a. The total

usage of both subsets is computed solely with usage information of the respective circuit. For

very small n, the drop is significant, because the few most used switch types differ between

circuits. However, as n increases beyond 10, total usage drop is consistently below 10%. This

experiment further suggests that dependence of the usage statistics on the circuits on which

127

Chapter 5 Switch Presence Negotiation

0 100 200 300 400 500
0

100

200

300

400

500

Delay rank (increasing)

U
sa

g
e
 r

a
n
k

(d
e
cr

e
a
si

n
g
)

(a) Low correlation between switch
rank in sorting by increasing ap-
proximate delay and decreasing us-
age after avalanche iteration #1.

0 100 200 300 400 500
0

100

200

300

400

500

Delay rank (increasing)

U
sa

g
e
 r

a
n
k

(d
e
cr

e
a
si

n
g
)

(b) Still lower correlation between
switch rank in sorting by increasing
approximate delay and decreasing
usage after avalanche iteration #16.

0 5 10 15 20 25 30 35
Avalanche iteration

0

100

200

300

400

500

M
a
x
im

u
m

 d
e
la

y
 r

a
n

k
o
f

a
d
o
p
te

d
 s

w
it

ch

(c) Maximum rank of an adopted
switch type in sorting by increas-
ing approximate delay, for each
avalanche iteration.

Figure 5.22: Low correlation between switch type adoption and its approximate delay.

they are observed is not particularly high and that the major differences could arise only in

the long tail of switch types with low usage.

5.13.4 Influence of Approximate Switch Type Delay on Adoption

As was described in Section 5.8.1, different switch types are differentiated in the rr-graph by

a delay which strives to approximate the impact of adding the particular switch type to the

pattern on loading the wire that is driving it. While this is a way of informing the router on how

expensive it would be to add a particular switch type to the pattern, potentially motivating it

to use another, less detrimental switch type, we must confirm that the choices made by the

router are not predominantly based on this delay penalty. If that were the case, avalanche

costs would become irrelevant as the pattern would largely be determined by the a priori

assigned delays.

In Figure 5.22a, we plot the correlation between switch type usage and its intrinsic delay

reported to VPR in the first iteration of avalanche search. The x-coordinate of each point

representing a switch type is determined by its delay rank, with switch types with lower delay

being closer to the origin. The y-coordinate of each point is determined by the switch type’s

usage rank, with higher usage being closer to the origin. Ties are broken by names.

If switch type adoption was solely dependent on switch type delay, all points would be along

the y = x line. We can clearly see that this is not the case and that the router is capable of

escaping any potential local minima set by the preassigned delay penalties. However, there is

some correlation between delay and usage, since points are scattered more closely to the y = x

line than to y = 564−x; this was the intention of conveying the physical information through

the approximate delays. The correlation weakens as the iterations of the avalanche search

progress, which can be seen by the larger spread away from y = x in Figure 5.22b, depicting the

same situation at iteration 16. Perhaps more illustrative of this phenomenon is Figure 5.22c,

depicting the maximum delay rank (i.e., the slowest) of the switch types adopted in each

iteration of the avalanche search. We can see that some of the slowest switch types are adopted

128

Switch Presence Negotiation Chapter 5

H1
La

H1
Lb

H2
La

H4
La

H6
La

H1
Ra

H1
Rb

H2
Ra

H4
Ra

H6
Ra

V1
Ua

V1
Ub

V4
Ua

V1
Da

V1
Db

V4
Da

H1La
H1Lb
H2La
H4La
H6La
H1Ra
H1Rb
H2Ra
H4Ra
H6Ra
V1Ua
V1Ub
V4Ua
V1Da
V1Db
V4Da

0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Adjacency.

lower_bound

lower_bound

(b) Routed delays.

Figure 5.23: Results of an avalanche search ignoring timing information.

towards the end of the search. This could be because some critical path needed the particular

switch types to form a connection between wires that optimally implement it, or the particular

switch type was needed to resolve some outstanding congestion hotspot.

5.13.5 Routability-Driven Search

In Section 5.7.5, we commented on the importance of allowing the router to route critical

paths with switch types that otherwise have low usage and would not be adopted in the final

pattern. We updated the node cost function in PathFinder to enable better selectivity of the

critical paths and to allow them to see the high-cost switch types with low usage as sufficiently

cheap. In this section, we inspect whether this was successful and whether the switch types

that entered the pattern of Figure 5.11a were not merely required for making it possible to

route the circuits used in the search.

To check this, we reran the search neglecting the timing information (insofar as it is not

embedded in the base costs of the wires which are dependent on the delay [Mur20]) by

setting the max_crit parameter of VPR to 0. This search converged in 23 iterations, which is

significantly less than the 36 that were needed when timing was considered. More importantly,

only 27 switch types entered the pattern, as opposed to 78 when timing was considered.

This significantly smaller pattern is shown in Figure 5.23a. As can be expected, most of the

connectivity incident to the long wires has disappeared, because the benchmarks used in the

search are small enough that their congestion can largely be resolved while using only the

short wires. Under these circumstances, long wires serve only to enhance the speed of the

implemented circuits and can thus be disregarded if timing is not of concern. For instance,

H6Ra had a fanout of six in the pattern obtained with timing considered (Figure 5.11a), whereas

in this smaller pattern it has no fanout at all.

129

Chapter 5 Switch Presence Negotiation

It is interesting to note that between the eight length-1 wires, there are 17 switch types, making

their average fanout (Fs [Bet99]) very close to 2, which Lemieux and Lewis have determined to

be the minimum required when two different switch-patterns are used in the FPGA grid in a

checkered fashion [Lem04]. Additional switch types may have been chosen to compensate for

the lack of two different patterns, or simply because the pattern was not fully minimized.

5.13.5.1 Impact on Performance

Routing results obtained on the smaller pattern are shown side-by-side with the results of the

pattern of Figure 5.11a at the bottom of Figure 5.23b. The smaller pattern does not provide

enough connectivity to successfully route all MCNC circuits. For the subset that can be routed,

the geomean critical path delay is 13.86% higher than on the pattern of Figure 5.11a, despite

the fact that the lower capacitive load and smaller tile area resulted in wires being faster. This

clearly demonstrates the utility of considering the critical paths when performing the search.

There could be two main reasons why the delays are so significantly higher on the smaller

pattern: 1) pairs of wires needed to optimally implement critical connections of the circuits

cannot be connected due to the lack of the appropriate switch and 2) due to lower routabil-

ity, nets need to detour more for the congestion to be resolved. To determine which issue

contributes more to delay deterioration, we also report the lower-bound critical path delays

obtained after the first iteration of VPR at the top of Figure 5.23b. Significant deterioration is

present there as well, but it is less pronounced: the geomean is 4.84% higher on the smaller

pattern. Hence, it is the poor routability that is the main culprit.

The question of how much freedom should be given to the critical paths to enlarge a minimal

routable pattern remains to be answered in future work. In this section we demonstrated that

at least some level of freedom is highly useful, but a more optimal point may lie somewhere

in between. One possible solution would be to first find a minimal pattern that supports

all of the routability requirements, using a routability-driven search and then extend it in

a subsequent timing-driven search, until a predefined budget of additional switch types or

exploration iterations is surpassed.

5.13.5.2 What Do the Results Tell Us?

Compaction of the switch pattern presented in this section, which resulted in some of the

longer wires being unable to connect to other channel wires, once more points to the fact that

the circuits used in the exploration are not large and complex enough to saturate the channel

capacity of a modern plane-based FPGA. This makes it hard to derive general rules of the sort

“an FPGA implemented in a 4nm technology should have between 24 and 32 switches per

16 wires in a plane” from the currently available results. Nevertheless, the compaction also

demonstrates the effectiveness of the proposed exploration method in minimizing the pattern

size where an opportunity for that exists. This was indeed the main intention of this work—to

130

Switch Presence Negotiation Chapter 5

develop a method for automatically designing switch-patterns that are appropriate for the

conditions created by the underlying technology and the requirements of the target circuits,

even in situations when general design rules with which a human designer is familiar no longer

hold. As we have seen in Section 5.12, simulated annealing does not posses this feature—at

least not in the adopted implementation. Similarly, the stark difference between the perfor-

mance of the patterns obtained in routability- and timing-driven search demonstrates the

capacity of the method to select switch types important for delay optimization. Oracles that

can quickly assess routability of a given pattern, but not its performance (Section 5.2.3) would

not be useful in this context, other than for pruning away some solutions. In the next section,

we discuss in detail the reasons why the results so far presented were limited to small circuits

and suggest possible remedies which could help in alleviating this limitation in the future.

5.14 Runtime Scalability

Implicitly representing the entire search space in the rr-graph during avalanche search re-

moves the need to route thousands of explicitly constructed solutions. This means that

increased runtime of each routing run can be tolerated. Nevertheless, it is important to assess

how large this increase is and where it comes from, so that it can be mitigated when necessary.

The total routing time spent in the single 37-iteration exploration run of Section 5.10 was about

5 hours. Of that, about 4.5 were spent by the actual PathFinder extended with avalanche costs,

while the remaining half an hour was taken by lookahead computation and allocating the

data structures in VPR. When combined with SPICE simulations, rr-graph generation, packing,

placement, and placement manipulation, the entire search took about 10 hours. While this

may not seem like an exceedingly long time, it is important to give it a context: routing the

same three circuits used in exploration (which have a combined size of about 2700 LUTs), but

on an architecture containing only the final pattern, with no switch-splitting nodes and no

usage tracking, took a mere 5.5 seconds. This ∼ 80× average runtime increase per iteration is

very significant. For instance, each iteration of avalanche search gives a possibility to evaluate

80 different patterns in the black-box-in-the-loop approach, although, as we have seen, even

10000 moves were not sufficient for simulated-annealing-based exploration of Section 5.12 to

converge to results comparable to those obtained after 37 iterations of the avalanche search

(giving a budget of ∼ 3000 move evaluations).

What is more important, however, is that with such a large increase in routing runtime (likely

to deepen further with growing circuit size), it is infeasible to use in exploration circuits that

normally take even minutes and let alone hours or days to route. Hence, in this section we

give a detailed analysis of the origins of this runtime increase and suggest several remedies for

which we believe that they could be successful at alleviating the problem.

131

Chapter 5 Switch Presence Negotiation

5.14.1 Routing Graph Size

Intuitively, increasing connectivity in the rr-graph could be expected to reduce the routing

time, as more flexibility makes it easier to eliminate congestion. This is indeed true, but

only up to a certain point: if the rr-graph already offers sufficient flexibility to eliminate

congestion, any further increase in its size will only lead to deterioration in runtime, as it will

take longer to find a shortest path for each connection. This was observed by Moctar et al.

who determined that routing circuits on an architecture with a fully-populated cluster input

crossbar represented within the rr-graph takes about 2.5× more time than routing the same

circuits on an architecture where this input crossbar is 40% populated (Figure 4 in Moctar et

al. [Moh12]). Complexity of Dijkstra’s shortest path algorithm is Θ(|E |+ |V | log |V |) [Cor09].

Assuming that the size of these rr-graphs was dominated by the number of edges describing

the intracluster interconnect, and assuming that the population of both architectures was

sufficient to easily eliminate congestion, we could expect that runtime is roughly linear in |E |.
Indeed, the ratio between the edge counts of the fully- and the 40%-populated crossbars is

1/0.4 = 2.5, which corresponds to the runtime ratio observed in the work of Moctar et al.

Since avalanche search relies on embedding the entire search space in the rr-graph (Sec-

tion 5.4), it is inevitable that the rr-graph used in exploration is much larger than the final

one. For example, the final rr-graph obtained from the exploration of Section 5.11 contained

in each switch-block 16 nodes (representing the 16 channel wires originating from it) and

84 edges. The graph representing the entire design space, on the other hand, contained 16 +

564 nodes and 2×564 = 1128 edges—a 36× increase in |V | and a 13× increase in |E |. Using

the same rough assessment based on the complexity of Dijkstra’s shortest path algorithm as

above, a runtime increase between 13× and 44× can be expected. To measure this impact we

performed an experiment where we recorded the time taken to complete the first iteration of

the inner loop of PathFinder (line 12 of Algorithm 5.1), when congestion costs are neglected, in

three different cases: 1) on the final pattern, 2) on an rr-graph containing all possible switches,

but without nodes to split them, and 3) on an rr-graph with all switches split by additional

nodes. The runtimes were respectively 1.8 s, 9.7 s, and 21.9 s, leading to a runtime increase

of 12.2× and 5.4× when additional switches are and are not split by nodes, respectively. This

suggests that the increased edge count is the dominant problem and that providing support

for weighting both nodes and edges, so as to avoid the need to split switches, could lead to a

∼ 2× runtime improvement.

5.14.1.1 Possible Remedy: Suppressing Low-Usage Switches

One way to reduce the rr-graph size is to suppress low-usage switch types after the usage is

first measured in the first iteration of PathFinder, before the avalanche costs are initialized. For

example, if it is known that the size of all multiplexers should be some fixed number m, as is

often the case in commercial architectures [Pet21], then selecting the intrinsically most-used

k ×m switch types for each multiplexer, where k is some small constant, can lead to a drastic

reduction in rr-graph size. The remaining switch types can periodically be brought back, to

132

Switch Presence Negotiation Chapter 5

ensure that some of them did not become more preferable, due to prior adoption decisions.

5.14.1.2 Possible Remedy: Randomized Instance Sparsification

Another orthogonal approach could be to remove switches of a certain type from some switch-

blocks but retain them in others. Provided that a sufficient number of instances is available

for each type, it is plausible that the collected statistics would show little change compared to

the situation when each switch type is represented in every switch-block. Removing switches

from one region would likely alter the paths in another, but the hope is that if sparsification is

done in such a way as to ensure that each multiplexer receives a sufficient number of inputs,

average behavior would be similar to representing all switches everywhere.

5.14.1.3 Possible Remedy: Partition, Sample, and Mix

The method of simultaneously routing multiple circuits depicted in Figure 5.10 may seem

completely impractical following the analysis of this section. However, it also offers a possible

remedy for the problem of rr-graph size increase. Rather than combining multiple complete

circuits together on a common FPGA, placements of large circuits can be partitioned into

manageable pieces, a certain subset of these pieces can be selected through random sampling,

possibly across multiple circuits, and then combined on a common FPGA. In this way, switch

types necessary for short-haul connections can be quickly determined, before proceeding

recursively, as in Section 5.11, to extend the pattern with others required by the long-haul

connections. Alternatively, long-haul connections passing over a particular piece could be

determined through the use of a global router and approximated in the piece by appropriate

input-to-output connections.

Besides rr-graph size increase, there are several other reasons why routing in the presence of

avalanche costs is significantly slower than usual. We list them in the following sections.

5.14.2 A*

FPGA routers typically use A∗ to speed up shortest path finding [Mur20]. The idea is that when

a node u is being pushed to the heap, it could be easy to obtain a lower bound on the cost of

the path needed to reach the target t from u. Then, instead of pushing u with the known cost

f needed to reach u from the source s, it is pushed with the cost f + g , where g is the estimate

for reaching the target. If g is really a lower bound, the algorithm will never fail to miss the

shortest path. At the same time, though, the addition of g will prevent some nodes from ever

being popped from the heap, thus drastically reducing the portion of the rr-graph that needs

to be explored. The closer the chosen lower bound to the actual cost of the remaining path is,

the more effective this pruning will be.

133

Chapter 5 Switch Presence Negotiation

s

t

u1 u2

u3 u4

5e-12

15e-12

5e-12

5e-12

pop s
push u1 (5e-12 + 15e-12)
push u2 (5e-12 + 5e-12)
pop u2
push u4 (10e-12 + 0)
pop u4
push t (10e-12 + 0)
pop t

s

u1 u25e-12 5e-12

t

u3 u4
15e-12 5e-12

1e-9 9.9e-10

1e-9 1e-9

1e-9 9.6e-10

e1 e2

e3 e4

e5 e6

pop s
push e1 (1e-9 + 20e-12)
push e2 (9.9e-10 + 10e-12)
pop e2
push u2 (9.95e-10 + 5e-12)
pop u2
push e4 (1.995e-9 + 5e-12)
pop e1
push u1 (1.005e-9 + 15e-12)
pop u1
push e3 (2.005e-9 + 15e-12)
pop e4
push u4 (2e-9 + 0)
pop u4
push e6 (2.96e-9 + 0)
pop e3
push u3 (2.02e-9 + 0)
pop u3
push e5 (3.02e-9 + 0)
pop e6
push t (2.96e-9 + 0)
pop t

Fixed Lookahead
pop s
push e1 (1e-9 + 20e-12 + 1.2 * 2 * 9.6e-10)
push e2 (9.9e-10 + 10e-12 + 1.2 * 2 * 9.6e-10)
pop e2
push u2 (9.95e-10 + 5e-12 + 1.2 * 2 * 9.6e-10)
pop u2
push e4 (1.995e-9 + 5e-12 + 1.2 * 1 * 9.6e-10)
pop e4
push u4 (2e-9 + 0 + 1.2 * 1 * 9.6e-10)
pop u4
push e6 (2.96e-9 + 0 + 0)
pop e6
push t (2.96e-9 + 0 + 0)
pop t

astar_fac

min. avalanche hops (lookahead)

current min. avalanche cost (evolving multiplier)

Evolving Lookahead

Figure 5.24: Example of lookahead ineffectiveness. Left figure shows a portion of the rr-graph without
avalanche nodes and a sequence of heap operations needed to find the shortest path from s to t ,
while the right one shows the same portion of the graph with avalanche nodes (red), along with the
corresponding heap operation sequence. Costs are annotated next to nodes. Ratios between the
avalanche costs and the base costs of the wires are realistic. Lookahead values are on the right side of
the “+” signs. “Fixed Lookahead” is the usual map lookahead used by VTR [Mur20], while “Evolving
Lookahead” is the modification proposed in Section 5.14.2.3.

5.14.2.1 Congestion Lookahead

In case of congestion costs, the minimum value of congestion is 0. Hence, a lower bound

estimate (lookahead) can only be computed when congestion itself is completely neglected

and only base costs of routing resources are taken into account [Mur20]. This means that

pruning will be more effective towards the beginning of the routing, because there the actual

congestion costs are closer to 0. Fortunately, the number of congested nodes generally drops

as the routing iterations progress (Figure 5.25), so only a relatively small portion of the rr-graph

and the circuit’s nets will be affected by the poor performance of the lookahead.

5.14.2.2 Avalanche Lookahead

Similarly to congestion costs, the lowest value that avalanche costs can attain is 0. Hence,

when computing a lookahead that stores the values of g in a fixed look-up table, as is typically

done by VTR 8 [Mur20], we have to set all avalanche costs to 0; otherwise it would not be a

true lower bound (admissible). However, contrary to congestion costs which are (close to) 0 in

the beginning of the routing process, avalanche costs drop to zero towards the end of it. For

most iterations, such a lookahead is ineffective in presence of avalanche nodes.

Let us illustrate this by the example of Figure 5.24, showing a portion of the rr-graph with

the source and the sink nodes designated as s and t respectively. There are two possible

paths between them, each composed of two wires. The path on the left, composed of the

nodes u1 and u3 has a total cost of 20e − 12, when there is no congestion present, while

the path on the right, composed of u2 and u4 has a total cost of 10e − 12. In absence of

avalanche nodes and congestion (left figure), the lookahead is exact and only the nodes of

134

Switch Presence Negotiation Chapter 5

the shorter path get popped. Once the avalanche nodes are inserted (right figure), their cost

overshadows the admissible lookahead and nodes from both paths need to be popped. The

increase in the number of nodes along the shortest path necessarily increases the number of

pops needed to find it. However, this alone would cause an increase from 4 to 7 pops (1.75×),

while the actual number of pops required to find the shortest path in the right figure is 11

(2.75× more). The difference comes from lookahead ineffectiveness. This is only a toy example

to illustrate the mechanism of pruning. In practice, when nodes have higher out-degrees,

the difference between having an effective pruning function g and not is much higher. For

example, Swartz et al. have demonstrated that A∗ can produce a speed-up of about 50× on

MCNC circuits [Swa98]. In larger circuits with longer average paths, the impact could be

even higher. For example, as we have mentioned in the previous section, the first iteration

of PathFinder when routing one of the Gnl circuits with all avalanche nodes in place, but

their cost reset to zero (making the admissible lookahead effective) took 21.9 s. Raising the

avalanche costs up to 1e −9 increased this time to 3899 s—an almost 180× increase. After the

first iteration of avalanche search, when 12 switch types have been adopted to the pattern, the

same runtime reduced to 319 s, bringing the lookahead ineffectiveness gap down to ∼ 15×.

Once the cost of the adopted switch types drops to zero, lookahead becomes effective for

paths routed through them. Hence, it is imperative to improve lookahead effectiveness in the

initial iterations with few adopted switch types.

5.14.2.3 Possible Remedy: Evolving Lookaheads

One idea that could help in resolving this issue is to store in an additional look-up table the

minimum number of avalanche nodes needed to connect a node of given type to the target tile.

Then, when pushing nodes onto the heap, their cost could be increased by the appropriate

entry from this table, multiplied by the cost of the currently cheapest avalanche node. This

is illustrated on the right of Figure 5.24, for the astar_fac parameter multiplying g set to 1.2

(VTR 8 default [Mur20]). The proposed lookahead now finds the shortest path with seven

pops, which is the minimum in presence of switch-splitting nodes. Note that this approach is

not easily applicable to congestion lookahead, because with very high probability, some node

will always remain unused, thus reducing the lowest congestion cost to zero. Avalanche nodes,

on the other hand, have the highest cost when their type is unused.

Another potential advantage of avalanche costs is that they are tied to types and not instances,

unlike congestion costs. This could perhaps allow runtime improvements by increasing

preprocessing effort, as information would need to be stored only about relationship between

the few types, rather than the numerous instances. At any rate, for the proposed method to be

truly scalable, A∗ must be made effective.

135

Chapter 5 Switch Presence Negotiation

0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

2.5

1e8

0

1

2

3

4

5

6

7
1e3

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e6

Heap pushes

Connections rerouted

Nets rerouted

Overused nodes

0

1

2

3

4

5

6
1e3

VPR iteration VPR iteration

Avalanche iteration 2 Final pattern

Figure 5.25: Heap operations and rip-ups during the second iteration of the avalanche search (most
congested). Bars on the sides of the graphs designate which y-axis corresponds to which curve(s) (right
for the dashed, left for the solid).

5.14.3 Periodically Forcing Rip-Up

Figure 5.25 plots rip-up and congestion statistics of routing in two extreme iterations of the

avalanche search: 1) second iteration where the highest congestion was observed (left figure)

and 2) last iteration where the switch-pattern has been finalized and no potential switches and

in turn no avalanche costs are present. Dashed orange and blue lines represent the number of

nets and connections, respectively, that were ripped-up and rerouted in the corresponding

router iteration. We can see that in the right figure where avalanche costs are not present,

these curves almost monotonically decrease. This comes from the incremental-rerouting

capabilities of VTR 8 [Mur20], where only connections which use congested nodes or fail to

meet timing are ripped-up, contrary to the original VPR PathFinder implementation which

ripped-up all connections in every routing iteration [Bet99]. The corresponding curves in the

figure on the left contain a number of peaks at an increasing distance from one another, as the

routing iterations progress. These peaks represent iterations where rip-up of all connections

has been forced. If this had not been done, it would have been possible for some switch types

to be used in the initial iterations where the avalanche cost differences were still small, without

the paths using them later moving to a cheaper switch type. This would then potentially

cause some nonessential switch types to be included in the final pattern. As the routing

progresses, avalanche cost changes become smaller so it becomes less useful to rip-up the

legal connections and hence this forcing is done less frequently.

5.14.3.1 Possible Remedy: Path-Cost Bounding

Peaks in the number of heap pushes coincide with the forced rip-up peaks, which can be

expected. However, this increase in the amount of work could potentially be reduced. Namely,

if a legal connection is being routed, its pre-rip-up avalanche cost is also an upper bound on

the avalanche cost of the new shortest path that can implement it, because avalanche costs

are monotonically nonincreasing. This upper bound could be used for more efficient pruning

136

Switch Presence Negotiation Chapter 5

when searching for the new shortest path.

5.14.4 Congested Nodes

The green dashed curve of Figure 5.25 depicts the number of congested nodes in each Path-

Finder iteration. In the figure on the right, we see that this curve is again almost monotonically

decreasing, with the peak being in the first iteration which neglects congestion altogether. In

the figure on the left, however, the situation is drastically different. Since in the first PathFinder

iteration avalanche costs are also neglected, congestion is comparable to that of the first

iteration in the right figure. As soon as the avalanche costs start to be considered, they create

concentration on switch types which drives the congestion up. This congestion starts to get

resolved only after the avalanche costs drop sufficiently for a large-enough number of switch

types and at the same time, congestion costs increase enough to outweigh the avalanche

costs. This occurs roughly around the middle of the routing run, which coincides with the

intended avalanche cost reduction to zero for the most used nodes (see Section 5.13.1.1). As

discussed in Section 5.7.2.2, fully resolving congestion may not always even be necessary and

early stopping could benefit the runtime.

5.15 Conclusions and Future Work

In this chapter, we introduced a new method for automated exploration of FPGA switch-

patterns, which removes the fundamental limitation of prior techniques: necessity to explicitly

list and test numerous architectures in a place and route flow. The proposed method achieves

this by leveraging the router itself to perform the exploration, instead of perceiving it merely

as a black box used for evaluation of explicitly listed solutions. We hope that this will open

up new interesting possibilities in the FPGA architecture domain. One of the most exciting

aspects of the method is that it represents the design space implicitly in the routing-resource

graph, meaning that it could be useful for exploring many other aspects of programmable

interconnect. In the limit, recalling the discussion of Section 3.6 which postulated that the

perception of programmable interconnect as a collection of programmable switches connect-

ing prefabricated channel wires is somewhat dated and could be better replaced by a periodic

graph of stored-select multiplexers, we could even think of using avalanche search to design

the entire interconnect architecture at once.

Of course, for this to be possible in practice, it is first necessary to solve the runtime issues

identified in Section 5.14, perhaps with the help of possible remedies suggested in that section

as well. Additionally, support for architectures containing hardened blocks should also be

introduced by extending the physical modeling framework presented in the previous chapter.

Hardened blocks may pose different routing requirements than the LUT-based logic clusters,

which could change the effectiveness, though not the generality of avalanche search. Nev-

ertheless, applying the method to a more complex design task introduces other interesting

challenges. For the sake of illustration, let us assume that we are exploring sparsifications of

137

Chapter 5 Switch Presence Negotiation

12

23

21

22

33

32

3111

13

Figure 5.26: Example of lowest-cost-path issue in exploring multi-level multiplexing structures.

the graph shown in Figure 5.26. How do we ensure that, for instance, edge (11, 33) is used by

the router only if it is really needed for congestion resolution or delay optimization, and not

simply because it represents a path of lower cost than any going through the second layer as

well? One way could be to assign edge weights in such a way that (11, 33) is more costly than

the indirect alternatives. However, in a more general case, this would be tedious and prone to

inadvertently skewing the outcome. A much better solution would be to dynamically order

the potential drivers of each multiplexer by their usage and scale their cost by the position

in this order. This would prevent any multiplexer from growing disproportionately large and

thus eliminate the aforementioned problem.

Given that in most commercial FPGAs, sizes of multiplexers are a priori known [Pet21], rank-

scaling of switch costs could even be nonlinear, such that addition of drivers to a multiplexer

beyond its target size is penalized more. Automated design of switch-patterns that respect

various regularity constraints that may be required to make (full-custom) layout feasible, or

CAD tools more scalable, is a very interesting topic in its own right. We dedicate the next

chapter to extending the avalanche search method that we have just presented so that it can

produce solutions which respect arbitrary forms of regularity.

The source code used to produce the results of the study presented in this chapter is available

at https://github.com/EPFL-LAP/fpl21-avalanche.

138

https://github.com/EPFL-LAP/fpl21-avalanche

6 Searching for
Regular Switch-Patterns

The switch-pattern exploration method that we presented in the last chapter suffers from

the same downside as most of the previous attempts to automate solution of this design

problem [Lem00; Lin10]: it produces highly irregular switch-patterns. In this chapter, largely

based on a paper previously published at the 2023 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, under the title “Regularity Matters: Designing Practical

FPGA Switch-Blocks” [Nik23], we extend the method by combining it with Integer Linear

Programming (ILP) so that it produces only those solutions which conform to arbitrary def-

initions of regularity. The avalanche search method of the previous chapter is a perfect

candidate for such extension, since total usage of switch types included in the switch-pattern

constructed by solving the appropriate ILP is a natural maximization objective, capturing

the requirements of the router when routing typical circuits. Nevertheless, other ways of

assigning importance to different switch types could yield good results as well; for example,

the switch-type-importance vector could be derived from some machine learning model, or

through black-box optimization. Hence, the contents of this chapter can be understood as

a general method for constructing regular switch-patterns from a collection of switch types

with some measure of importance assigned to them. This makes the present chapter largely

orthogonal to the last one, although at times this may not appear to be so. Before describing

the method in detail, let us first briefly turn to why switch-pattern regularity is even of interest.

6.1 Who Cares about “Regularity”?

Figure 6.1 shows wire adjacency of two switch-blocks: one from a 7-Series FPGA [Pet21]

(Figure 6.1a) and the other resulting from avalanche search (Figure 6.1b). Although the

matrices are not directly comparable as their wire sets differ, one thing immediately draws

attention: the commercial switch-block is perfectly “regular”, while the one resulting from

automated exploration is very “irregular” in comparison. Could it be that imposing regularity

is simply too constraining for the switch-block to reach peak performance? Or could there

perhaps be other solutions with comparable performance that are also regular? Are there

any downsides of irregularity, apart from the evident increase in the already high layout

139

Chapter 6 Searching for Regular Switch-Patterns

[1]-V6D
[1]-H4L
[1]-V6U
[1]-H4R
[1]-V2D
[1]-H2L
[1]-V2U
[1]-H2R
[2]-V1D
[2]-H1L
[2]-V1U
[2]-H1R

[2
]-V

1U
[2

]-H
1R

[2
]-V

1D
[2

]-H
1L

[1]
-V

2U
[1]

-H
2R

[1]
-V

2D
[1]

-H
2L

[1]
-V

6U
[1]

-H
4R

[1]
-V

6D
[1]

-H
4L

0 1 2 4
(a) Commercial switch-block.

[1]-V4D
[1]-H6L
[1]-V4U
[1]-H6R

[1]-H2L
[1]-H2R
[2]-V1D
[2]-H1L
[2]-V1U
[2]-H1R

[1]-H4L
[1]-H4R

[1]
-V

4U
[1]

-H
6R

[1]
-V

4D
[1]

-H
6L

[1]
-H

2R
[1]

-H
2L

[2
]-V

1U
[2

]-H
1R

[2
]-V

1D
[2

]-H
1L

[1]
-H

4R
[1]

-H
4L

0 1 2 4
(b) Result of automated search.

Figure 6.1: Regularity of a commercial switch-block contrasted with an irregular solution obtained
through automated search. Figure (a) shows simplified wire adjacency in a 7-Series Xilinx FPGA [Pet21].
An analogous plot of a switch-block obtained from avalanche search of the previous chapter is shown
in Figure (b). Although wire sets differ between the two switch-blocks and they can thus not be directly
compared, a stark difference in “regularity” is readily observed.

effort needed to produce an FPGA? If significantly different circuits are implemented on the

optimized architecture, will it still outperform the regular commercial one, or will it become

unroutable? All these are very interesting questions that, to the best of our knowledge, have

not been systematically answered until now. In fact, most published search methods would

produce highly irregular solutions (see Section 6.2) without much regard to whether they can

be fabricated while retaining the observed performance gains. In this chapter, we attempt

to correct this. First we propose a method for ensuring that the constructed switch-pattern

conforms to any arbitrary definition of regularity encodable in terms of ILP constraints. Then,

we compare the performance of patterns produced when regularity is imposed and when it is

not, in order to obtain answers to the above questions.

6.2 Related Work

As we have mentioned in the previous chapter, besides avalanche search [Nik21a], several

other methods for automating switch-block exploration have been proposed [Lin10; Qia21],

with simulated annealing forming the basis for majority of them. Due to randomized search

and/or noise generated by the CAD tools used in the exploration loop, the architectures they

produce tend to be highly irregular.

Nevertheless, techniques that enable quick architectural optimization can be very useful,

140

Searching for Regular Switch-Patterns Chapter 6

Figure 6.2: Avalanche search algorithm of the previous chapter.

Figure 6.3: Search algorithm proposed in this work, which enforces arbitrary regularity constraints on
the obtained solution.

even if the solutions they produce may not be easily fabricated in actual products. A notable

example is found in the work of Lemieux et al., which demonstrated that sparse crossbars

can bring large area reductions without sacrificing routability [Lem00]. While the key idea

of sparsifying the crossbar was carried over to Stratix, for different layout reasons, the actual

implemented pattern was considerably more regular [Lew03]. This also enabled simple LUT

output swapping by the router without having to reconsider the local routing of the input

signals: an interesting example of the case when constraints imposed on the interconnect

architecture lead both to an efficient layout and a possibility to improve CAD efficiency.

When an automated search method is not intended to test a groundbreaking hypothesis,

such as the one in the work of Lemieux et al., but to further optimize architectures from

a known design space, inability to easily fabricate the solutions may question the actual

utility of the method. Unfortunately, all of the papers cited at the beginning of this section

propose methods that fall in this second category. In this chapter, we build on top avalanche

search [Nik21a]—the most recent of the aforementioned algorithms, which we presented in

Chapter 5—to produce practical switch-blocks.

6.3 Summary of Avalanche Search

In this section, we briefly review the avalanche search algorithm once more, presenting it in a

slightly different manner than in the last chapter, so that the modifications introduced here

can be distinguished more clearly. The goal of the avalanche search algorithm is to select a

subset Ea of manufacturable switch types E , which connect wire types from a fixed set V , such

that Ea is as small as possible but still allows the router to route all circuits of interest, while

meeting timing constraints. The switch types entering Ea constitute a switch-pattern which is

repeated in every FPGA tile, next to every LUT [Lew13]. Each switch type from E is designated

by an ordered triplet (u, v,dL), where u ∈V is the driving wire type, v ∈V the driven wire type,

141

Chapter 6 Searching for Regular Switch-Patterns

and dL the distance between the end of the driving wire and the start of the driven wire in

terms of the number of LUTs (see Figure 5.3).

The algorithm is outlined in Figure 6.2. Since in its extended version we will solve an ILP to

construct the switch-pattern, we shall henceforth use SOL in place of Ea ; this will make the

essential differences between the two algorithms clearer. Avalanche search iteratively builds a

switch-pattern by 1) routing circuits and observing in how many switch-blocks each switch

type was used (usage, U ((u, v,dL)); box 2) and 2) extending the pattern by a certain number of

most-used switch types (box 5), until there are no more switch types used by the router which

are not already in the pattern (boxes 3 and 4). To be able to measure usage of switch types

that are not yet part of the pattern, each switch type that could be fabricated is represented

in the routing-resource graph of box 2 . These switch types, however, are represented with a

high initial cost which drops in proportion to usage, whereas the switch types that are part of

the pattern are assigned zero cost and their usage is no longer measured. As a result, the set of

all switch types used by the router (tentative solution, tSOL, in box 3) slowly converges to

the growing set of switch types accepted into the pattern (partial solution, pSOL).

6.4 Regularization Algorithm

The algorithm of Figure 6.2 provides no mechanism for controlling the structure of the solution.

We now extend it to impose arbitrary constraints, while retaining tight coupling with the router.

6.4.1 General Flow

The proposed algorithm is shown in Figure 6.3. It retains the structure of the algorithm

of Figure 6.2, with two important modifications. First, the tentative solution, tSOL, is not

formed by merely observing which switch types were used by the router. An ILP problem

is constructed instead, such that all of its feasible solutions satisfy all specified regularity

constraints. Maximizing affinity of the router towards the switch types that enter tSOL,

represented by their usage, increases the likelihood that the final solution is routable and

appropriate for critical path optimization of the routed circuits.

Second, selection of the most-used switch types from tSOL which enter the final pattern in

box 5 is identical to that of Figure 6.2, but the initial avalanche cost of the remaining switch

types in tSOL is set to a lower value in the next iteration of the algorithm. The rationale is as

follows: in the first iteration, the router uses switches unaware of the constraints imposed on

the switch-pattern. This may result in the set of used switch types being very far from meeting

the constraints. The ILP solver legalizes the solution, respecting the decisions of the router as

much as possible by maximizing the total usage. In the second iteration, those switch types

which are known to be part of at least one legal solution (tSOL) are offered to the router at a

reduced price, making it less likely for the router to violate the constraints again. Over time,

the router and the ILP solver converge towards a common solution.

142

Searching for Regular Switch-Patterns Chapter 6

In order to guarantee that the algorithm ends, once a switch type enters the partial solution,

pSOL, it is never removed from it; this is the same as in Figure 6.2. Moreover, since pSOL is

always extended only by the switch types from tSOL, produced by the ILP solver and hence

legal by construction, the algorithm is always guaranteed to end with a solution that satisfies

all of the imposed constraints. It could happen, however, that the final solution does not

encompass all of the switch types that the router used in the last iteration, because adding

them to tSOL would make it violate the constraints. These switch types may either slightly

improve the delay of some (near-)critical paths or be necessary for complete removal of

congestion. The second case would result in the constraint set being deemed unsatisfiable

and it would have to be relaxed. We note, however, that in all experiments performed in

preparation of this chapter, we never encountered such a situation.

6.4.2 Base ILP Problem

In this section, we describe a skeleton ILP problem which completes the algorithm of Figure 6.3.

Different types of regularity constraints will be gradually added to it in subsequent sections.

Given a switch type e connecting a wire type u to a wire type v at a LUT distance dL , we

designate its presence in the switch-pattern by the following binary variable:

xu,v,dL ∈ {0,1}, ∀(u, v,dL) ∈ E . (6.1)

The corresponding switch type is part of the switch-pattern iff the variable is 1. To specify

that the accepted switch types must be part of tSOL, we simply set the appropriate presence

variables to 1:

xu,v,dL = 1, ∀(u, v,dL) ∈ pSOL. (6.2)

As mentioned in Section 6.4.1, the basic objective function strives to maximize the total usage

of the switch types entering the solution:

max
∑

(u,v,dL)∈E
U ((u, v,dL))xu,v,dL . (6.3)

Usage of each switch type is observed from the router and is thus a constant in the ILP problem.

To prevent selection of all switch types in absence of further constraints, each ILP imposes an

upper bound M on switch-pattern size:∑
(u,v,dL)∈E

xu,v,dL ≤ M . (6.4)

143

Chapter 6 Searching for Regular Switch-Patterns

6.5 Experimental Setup

All of the subsequent sections that progressively introduce different kinds of regularity con-

straints share the experimental setup of Section 5.9. The only additional parameter introduced

in Section 6.4 is the cost reduction factor for switch types participating in the ILP solution

(tSOL) that have not yet been accepted into the partial solution (pSOL). We fix this to 0.9,

which was experimentally determined to yield slightly better results than other tested values.

In order to suppress the effects of experimental noise that could lead to false conclusions

about which trade-offs a certain set of constraints brings, we need to compare sets of feasible

architectures, rather than single points. To this end, we leverage the well-known fact that

permuting the order in which the nets of a circuit are routed can have a significant impact on

the outcome of the routing process [Rub11; Zha22] and hence also on the usage of different

switch types. Permutation is achieved by performing 100 random swaps in the default-sorted

netlist [Mur20]. For each constraint set, we construct five different architectures, by permuting

the netlist using five different random number generator seeds.

The switch-pattern size is bounded by 96 in all experiments, which allows finding solutions

for all constraint types introduced in the subsequent sections, yet, does not make the patterns

excessively larger than the ones produced by pure avalanche search in the previous chapter.

6.6 Limiting Multiplexer Size Variation

The first form of regularity apparent in industrial architectures is the very limited number of

multiplexer sizes in their switch-patterns—often only one [And06; Pet21; Wol23a]. Limiting

the number of different multiplexer sizes is a very logical step when full-custom layout is

employed in implementing the FPGA. This could be especially useful for quick customization

of programmable interconnect for different applications, discussed in Chapter 2. Similarly

to implementing a design on an MPGA, a custom FPGA could be obtained by customizing

only several layers of metal, while retaining the common FEOL and the lowest few BEOL layers

that correspond to a pre-laid-out collection of multiplexers. Reduction of the design and

fabrication cost that could result from this is likely to be even higher with the rise of chiplet

adoption [San23]. Additional reasons for multiplexer size uniformity observed in current

architectures likely lie in the efficiency with which multiplexers of certain sizes can be laid

out [You98; Pet21], as well as in increased routability and reduced router runtime. In this

section, we investigate the benefits and downsides of limiting the number of multiplexer sizes.

When the size of the multiplexer driving each wire v is known in advance to be some constant

ϕ(v), extending the ILP problem of Section 6.4.2 to respect this size distribution is trivial:∑
u,dL :(u,v,dL)∈E

xu,v,dL =ϕ(v), ∀v ∈V. (6.5)

144

Searching for Regular Switch-Patterns Chapter 6

However, we would like to measure the impact of limiting the number of multiplexer sizes in

general, without a priori assigning a size to any particular multiplexer, since this unrelated

decision could influence the conclusions.

6.6.1 Encoding

Given a maximum allowed size for any multiplexer, Mϕ, for each size ϕ ∈ [0, Mϕ], and each

wire v , we introduce another binary variable xv,ϕ, which is 1 iff the size of v ’s fanin is ϕ:∑
u,dL :(u,v,dL)∈E

xu,v,dL =
∑

ϕ∈[0,Mϕ]
ϕxv,ϕ, ∀v ∈V , (6.6)

∑
ϕ∈[0,Mϕ]

xv,ϕ = 1, ∀v ∈V. (6.7)

For each allowed multiplexer size ϕ, we introduce another binary variable, xϕ, indicating that

there is at least one wire in the switch-pattern driven by a multiplexer of that size:

xϕ =
∨

v∈V
xv,ϕ, ∀ϕ ∈ [0, Mϕ]. (6.8)

For each ϕ, the above disjunction is linearized in a standard way [Wil13]:∑
v∈V

xv,ϕ ≥ xϕ, (6.9)

xv,ϕ ≤ xϕ, ∀v ∈V. (6.10)

Finally, we need to limit the number of different multiplexer sizes present in the solution to

the desired constant Nϕ:∑
ϕ∈[0,Mϕ]

xϕ ≤ Nϕ. (6.11)

If distribution of a specific set of sizes, Φ (e.g., Φ = {6,20,25} [Pet21]) is sought, [0, Mϕ] is simply

replaced by Φ in the above equations.

6.6.2 Results

We investigate the difference in performance between architectures with up to one, two, four,

or any number of arbitrary different multiplexer sizes up to 20:1 (Nϕ ∈ {1,2,4,∞}, Mϕ = 20).

Critical Path Delay: Figure 6.4 shows the critical path delays when routing MCNC circuits on

the obtained architectures. Each point is a geometric mean of 17 circuits and each circuit is in

turn represented by the median over five different placements. Although there are significant

differences between architectures within each group, we can observe that allowing two rather

than a single multiplexer size provides slightly more stable results, while increasing the number

145

Chapter 6 Searching for Regular Switch-Patterns

1 2 4 ∞ ∞, 96 sw.

allowed different mux sizes

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

Ge
om

ea
n

ro
ut

ed
 d

el
ay

 [n
s]

Figure 6.4: Geomean critical path delays after routing the MCNC benchmarks. Each point represents
one architecture. Average delay among the architectures within the same constraint set is marked by an
orange horizontal line. Blue rectangles are used merely for visual separation of architectures obtained
for different constraint sets. Unconstrained architectures (∞) clearly have a performance advantage.

to four leads to a clearer advantage. Architectures obtained when the number of multiplexer

sizes is not bounded clearly outperform the others, with a close to 3% average critical path

delay reduction over the case when only one size is allowed. This demonstrates that there

is a performance advantage to be reaped when it is possible to tailor the multiplexer sizes

specifically to the needs of the circuits of interest.

Architectures labeled as “∞, 96 sw.” also do not limit the number of multiplexer sizes, but

instead of considering M = 96 an upper bound on switch-pattern size, they all have exactly

96 switch types. In comparison, the ∞-labeled architectures have 72–86 switch types. Higher

capacitive loading on wires largely negates the advantage of freely choosing multiplexer sizes.

Routability: Only three circuits were used in the search (see Section 5.9), yet, all 17 circuits

on which performance comparisons are based were routable. Nevertheless, the remaining

14 circuits come from the same benchmark set, so it is of interest to see how routable the

patterns are when routing circuits from a more complex set. To this end, we attempt routing

ten 10000 LUT circuits with a Rent’s exponent of 0.7, generated by Gnl [Str99; Nik21a]. Results

of these experiments are shown in Figure 6.5. Since modern routers, including VTR-8, are

incremental [Mur20], we plot the total number of routed connections taken to complete the

routing of each circuit on each architecture, as we believe that this is a more telling metric of

the difficulty which the router faces than the more common iteration count. Geometric means

of the iteration count and the wirelength of all circuits, averaged over all five architectures of

the given constraint set are shown in rows labeled as “#iter.” and “WL”, respectively.

146

Searching for Regular Switch-Patterns Chapter 6

200

250

300

350

400

450

500

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

1 3 6 9 2 4 5

1 2 4 ∞ ∞, 96 sw.

allowed different mux sizes

1.4

1.5

Ro
ut

ed
 d

el
ay

 [n
s]

#iter. 26 30 33 149 111

WL 235.8 234.5 247.3 287.8 279.1 ×103

Figure 6.5: Routability on Gnl circuits. Each point represents the total number of connections that
were routed (including rip-ups) when routing a single Gnl circuit on a particular architecture. Circuits
that failed to route are shown in red. Since for many of the unroutable circuits more connections were
rerouted than can fit in the plot, the number of failed circuits for each architecture is written at the top.
All numbers are single-digit (there were 10 circuits in total). The plot below shows the average critical
path delay on the MCNC circuits for the particular architecture as a reference (see plot of Figure 6.4).
While unconstrained architectures were better optimized to achieve good performance on circuits from
the set used to construct them, they struggle to route significantly more complex circuits. Multiplexer
size regularity has a clear advantage in routability of more complex circuits.

There is little difference in the number of connections that have to be routed between the

architectures which have one or two multiplexer sizes. However, as soon as Nϕ increases to

four, there is a very clear drop in routability, with one architecture even failing to route all

circuits. This trend further increases when the number of multiplexer sizes is unbounded,

regardless of the switch-pattern size constraint: in both cases, three of the five unbounded

architectures fail to complete some of the circuits within 300 iterations.

Table 6.1 shows the average routability metrics of architectures obtained for different con-

straint sets on circuits split into three groups: 1) those used in exploration, 2) the remaining

circuits from the MCNC set, and 3) the more complex circuits from the Gnl set. Failed circuits

enter the geometric average for a given architecture with 300 iterations, which was the limit

used in the experiments. We can observe that the highly delay-optimized architectures with

no constraint on multiplexer size count are somewhat less routable (albeit with a compet-

itive wirelength) even on the circuits used for exploration. This trend is maintained on the

remaining MCNC circuits, while the advantage of the regular architectures becomes really

significant on the larger Gnl circuits. It seems quite clear that having uniform multiplexer

sizes makes it much more likely that the architecture will support circuits with characteristics

147

Chapter 6 Searching for Regular Switch-Patterns

Table 6.1: Generalization.

Nϕ delay [ns] # iter. # routed con. [103] WL [103]
exploration circuits

1 1.143 29 15.82 6.35
2 1.147 29 15.97 6.08
4 1.133 29 14.68 5.86
∞ 1.113 29 16.72 6.01

∞, 96 sw. 1.131 29 16.22 6.00
other MCNC circuits

1 1.510 30 63.02 22.53
2 1.505 30 63.87 21.42
4 1.493 31 61.16 20.83
∞ 1.464 31 66.50 21.48

∞, 96 sw. 1.491 31 68.10 21.50
Gnl circuits

1 26 202.14 235.84
2 30 204.37 234.46
4 42 219.86 247.25
∞ 149 581.91 287.80

∞, 96 sw. 111 343.75 279.13

not captured by those used during the search. This is certainly an important aspect for FPGA

vendors, and it is likely better to give up some of the potential performance benefits that a less

regular architecture could bring, in order to make it significantly more general.

6.7 Limiting Fanout Size Variation

In the previous section, the number of different multiplexer sizes that occur in the switch-

pattern was bounded, but there were no constraints on the fanout size variation. However,

large variations in fanout size may make it more difficult to optimize the critical path delay,

due to differences in capacitive loads on wires, unless the router is able to effectively exploit

them [Chr20]. In this section, we assess the effect of constraining fanout and multiplexer size

count together. Constraints that are needed for this are dual to the ones of Section 6.6.1, with

edges being listed with respect to the tail node.

6.7.1 Results

All experiments are set up exactly as in Section 6.6. We bound the number of multiplexer and

fanout sizes by the same constant.

Critical Path Delay: Influence of regularizing fanout sizes on critical path delay of the routed

circuits is shown in Figure 6.6. More balanced capacitive loads and more options that the

148

Searching for Regular Switch-Patterns Chapter 6

1 2 4 ∞ ∞, 96 sw.

allowed different mux and fanout sizes

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

Ge
om

ea
n

ro
ut

ed
 d

el
ay

 [n
s]

Figure 6.6: Influence of bounding the number of different multiplexer and fanout sizes on the critical
path delay of the implemented MCNC circuits. Regularizing fanout sizes balances capacitive loads and
reduces the negative impact of multiplexer size regularization on delay.

200

250

300

350

400

450

500

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

3 6 9 2 4 5

1 2 4 ∞ ∞, 96 sw.

allowed different mux and fanout sizes

1.40
1.45

Ro
ut

ed
 d

el
ay

 [n
s]

#iter. 25 31 32 149 111

WL 231.8 239.5 242.3 287.8 279.1 ×103

Figure 6.7: Influence of bounding the number of different multiplexer and fanout sizes on routability.
Regularizing fanout sizes further improves it.

router has to avoid congestion bottlenecks leads to improved results when the number of

multiplexer sizes is very limited (Nϕ ∈ {1,2}). However, this improvement is still not sufficient

to make the regularized architectures outperform the unconstrained ones, where the router

149

Chapter 6 Searching for Regular Switch-Patterns

can freely select the switch types that form the pattern.

Routability: Influence that regularizing fanout sizes has on routability is shown in Figure 6.7.

When compared with Figure 6.5, we can see that regularization of fanout sizes contributes to

additional improvement of routability. This is the most apparent when the number of sizes is

bounded by four, where now all architectures manage to route all circuits, but it also brings

improvement to the architectures with completely uniform fanins. Balancing the fanout sizes

likely helps because it removes the situation when certain wires with a comparatively large

fanout get too congested as others do not provide enough possibilities to complete the paths.

6.8 Multiplexer Input Sharing

Certain commercial FPGAs employ switch-patterns where pairs of multiplexers share a large

fraction of inputs. For example, Young showed that forming a pair of two 6:1 multiplexers

that share 5/6 inputs allows for significant area gains due to diffusion sharing [You98; Pet21].

Similarly, Chromczak et al. state that “adjacent muxes aggressively share input pins” to reduce

vias in Intel Agilex FPGAs [Chr20]. In this section, we measure the impact of this approach.

6.8.1 Encoding

First we track the number of inputs shared by each pair of wires, v1 and v2

Sv1,v2 =
∑

u,dL :(∀v∈{v1,v2})((u,v,dL)∈E)
xu,v1,dL ∧xu,v2,dL , ∀v1, v2 ∈V , (6.12)

where Sv1,v2 is an additional variable that counts the number of inputs shared between the

wires v1 and v2. To linearize the conjunction, we need to introduce another binary variable

xu,v1,v2,dL for each pair of wires v1 and v2 and each input switch that they could share (each

addend of the above sum). The conjunction is then linearlized in a standard way by the

following constraints [Wil13]:

xu,v1,v2,dL ≥ xu,v1,dL +xu,v2,dL −1, (6.13)

xu,v1,v2,dL ≤ xu,v,dL , ∀v ∈ {v1, v2} (6.14)

Next, for each pair of wires v1 and v2, we introduce a binary variable Fv1,v2 which, when 1, will

force v1 and v2 to share at least ξ inputs, where ξ is the specified constant:

ξFv1,v2 ≤ Sv1,v2 , ∀v1, v2 ∈V. (6.15)

Finally, we need to partition the wires into pairs, by specifying that each wire is forced into

150

Searching for Regular Switch-Patterns Chapter 6

0 1 2 3 4 5

shared inputs per mux pair (out of 6)

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

Ge
om

ea
n

ro
ut

ed
 d

el
ay

 [n
s]

Figure 6.8: Influence of sharing inputs between pairs of multiplexers on critical path delay. Input
sharing shows no significant negative impact on routed delay; it sometimes even slightly improves it.

Table 6.2: Average total wire delay with respect to the number of inputs shared.

inputs shared 0 1 2 3 4 5
t [ps] 223.2 221.6 220.6 220.4 220.4 218.6
∆ [%] 0.00 −0.72 −1.16 −1.25 −1.25 −2.06

exactly one pair:∑
v2∈V

Fv1,v2 = 1, ∀v1 ∈V. (6.16)

6.8.2 Results

In these experiments, we force all multiplexers to take six inputs from other wires and sweep

the minimum sharing bound ξ between 0 and 5. Since there are 16 wires in the switch-pattern,

the total number of switches is exactly 96 and the multiplexer and fanout sizes correspond

to the uniform case (Nϕ = 1) of Section 6.7. The multiplexers are not exactly 6:1 like those of

Young [You98], since each takes two additional inputs from the LUTs.

Critical Path Delay: Influence of input sharing between pairs of multiplexers on critical path

delay of routed circuits is shown in Figure 6.8. No significant critical path delay increase is

apparent. In fact, there even appear to be some gains from applying these constraints, likely

because wiring load is reduced. This can be observed in Table 6.2 which contains average

total wire delays for architectures with different amounts of input sharing. It is important

151

Chapter 6 Searching for Regular Switch-Patterns

170

180

190

200

210

220

230

240

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

0 1 2 3 4 5

shared inputs per mux pair (out of 6)

1.40
1.45

Ro
ut

ed
 d

el
ay

 [n
s]

#iter. 25 24 23 24 24 25

WL 231.8 235.3 228.5 231.2 231.4 231.1 ×103

Figure 6.9: Influence of sharing inputs between pairs of multiplexers on routability. Input sharing
shows no negative impact on routability.

to note that the models which we use (see Chapter 4) are not capable of accounting for area

reduction obtained through diffusion sharing, nor for the reduced via use, which were the

primary reasons for input sharing stated by Young [You98] and Chromczak et al. [Chr20]. Since

input sharing appears to make no negative impact on the routed critical path delays, even

with the conservative models that only take into account reduction in length of wires feeding

multiplexer inputs, we hypothesize that FPGA vendors are reaping significant gains from this

technique when its impact on layout is fully taken into account.

Routability: One could expect that sharing majority of inputs between pairs of multiplexers

may cause a drop in routability. However, the results of Figure 6.9 show that this is not the

case. Combining this observation with the expected performance gains, area reduction, and

easier layout that were previously discussed, we conclude that input sharing is likely a very

effective optimization technique.

6.9 Minimizing Wirelength

So far, we have only used total switch type usage as the ILP problem objective. However, it

may happen that some of the switch types are added to the switch-pattern solely to make it

regular and that they otherwise have very low and even zero usage. In fact, in the experiments

presented in this work, due to small size of the circuits on which the search is conducted, it

was not uncommon to observe > 20 of the 96 switch types entering the pattern exclusively for

regularization reasons. In such cases, it seems reasonable to have a complementary objective

to guide regularization. A good candidate for this is minimizing the total length of the wires

152

Searching for Regular Switch-Patterns Chapter 6

providing inputs to the multiplexers in the switch-block. In this section, we describe how

that objective can be modeled and what impact it has on performance and routability of the

obtained solutions.

6.9.1 Encoding: Modeling Wirelength

Without loss of generality, we assume that all multiplexers are of the same size and that their

physical width and height are α and β, respectively. For the solving approach discussed

shortly, which formulates and solves multiple ILP problems with fixed multiplexer placement,

relaxing this constraint is trivial. Same-size multiplexers form a uniform grid of n columns

and m rows. We represent the placement of the different multiplexers in a similar way as

Mihal and Teig [Mih13]. For each wire v ∈V , and each location on the uniform grid (x, y), a

binary variable xv,(x,y) indicates that the multiplexer driving v is placed at location (x, y). The

following constraints make sure that each multiplexer is assigned a unique location:∑
x,y

xv,(x,y) = 1, ∀v ∈V. (6.17)

Overlaps between multiplexers are removed as follows:∑
v∈V

xv,(x,y) ≤ 1, ∀(x, y). (6.18)

We describe the total wirelength as the sum of Manhattan lengths of individual switch types:∑
(u,v,dL)∈E
x ′,x"∈[0,n)
y ′,y"∈[0,m)

λ(x ′, y ′, x", y",dL)(xu,v,dL ∧xu,(x ′,y ′) ∧xv,(x",y")), (6.19)

where λ(x ′, y ′, x", y",dL) is a precomputed constant Manhattan distance between locations

(x ′, x") and (y ′, y"). The conjunction is linearized as in Section 6.8.1. To reduce solution time,

instead of allowing the ILP solver to assign the locations of the multiplexers, we fix them a

priori, then solve the simpler ILP problems and reiterate the process several times (five in the

experiments presented here), optimizing the placement between iterations using simulated

annealing. During placement optimization, switch type selection is considered fixed, as

determined by the ILP solution. We use the annealing schedule of Betz et al. [Bet99]. Tighter

formulations of multiplexer placement—essentially a Quadratic Assignment Problem with

Manhattan distance—is possible [Law63; Gue15] and could potentially allow the ILP solver to

simultaneously select switch types and place multiplexers. However, this exceeds the scope

of the present work. We note that multiplexer position optimization is performed in every

iteration of the algorithm of Figure 6.3, prior to SPICE simulations (Section 5.8.1.2). Additional

optimization performed here is only intended to allow the ILP solver to form better decisions

with respect to wirelength minimization and does not constitute an advantage in its own right.

153

Chapter 6 Searching for Regular Switch-Patterns

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Λ

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

Ge
om

ea
n

ro
ut

ed
 d

el
ay

 [n
s]

Figure 6.10: Influence of wirelength optimization on critical path delay. Λ = 0 (= 1) only maximizes
usage (minimizes wirelength). Joint optimization of both objectives yields best results.

6.9.2 Encoding: Combined Objective

To combine wirelength minimization with usage maximization, we adapt the auto-normalizing

function of Marquardt et al. [Mar00]:

min

(
Λ

total WL

previous total WL
− (1−Λ)

total U

previuos total U

)
. (6.20)

Objectives total WL and total U are determined by equations (6.19) and (6.3), respectively,

while previous total WL and previous total U designate the total wirelength and usage of the

ILP solution from the previous iteration. Before solving the first ILP problem, a greedy solution

is formed by selecting the M (upper bound on switch-pattern size, see Section 6.4.2) most used

switch types, from which the initial previous total WL and previous total U are determined.

Constant Λ sets the wirelength trade-off.

6.9.3 Results

In this section we present the results of experiments where all wires were constrained to have

the same fanout (six, disregarding the connection block) and the same fanin (six, disregarding

the LUT drivers). No other constraints were imposed and the wirelength trade-off constant, Λ,

was swept from 0 (wirelength completely disregarded) to 1 (usage completely disregarded).

Critical Path Delay: Figure 6.10 shows the impact of minimizing wirelength on critical path

delay of the implemented circuits. We see by comparing the edge cases (Λ = 0 and Λ = 1)

154

Searching for Regular Switch-Patterns Chapter 6

170

180

190

200

210

220

230

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

0.0 0.1 0.3 0.5 0.7 0.9 1.0
Λ

1.40

1.45

Ro
ut

ed
 d

el
ay

 [n
s]

#iter. 25 24 24 25 24 24 25

WL 231.8 226.7 227.0 229.0 226.2 226.3 226.2 ×103

Figure 6.11: Influence of wirelength optimization on routability. Joint optimization of wirelength and
usage also leads to a slight increase in routability.

that when the multiplexers are reasonably large and fanouts and fanins are uniform, which

helps eliminate any pathological solutions, optimizing wirelength is about as important as

respecting the affinity of the router towards certain switch types. The best results arise when

both objectives are combined, however. The exact value of the trade-off constant Λ does not

seem to matter too much, but the plot suggests that setting it to 0.5 yields the best results.

Routability: Figure 6.11 indicates that taking wirelength into account also slightly improves

routability. One hypothesis is that better distribution of capacitive loads alters the base costs

of routing resources assigned by VPR [Mur20], thus reducing congestion. Since the differences

are not as obvious as with delays, we did not attempt to put this hypothesis to test yet.

6.10 Enforcing Turns and Symmetries

So far, all the constraints that we have presented were motivated by layout considerations. In

this section we investigate several other constraint types that should not directly impact the

ease with which the switch-blocks can be laid out, but they do reflect features commonly ob-

served in both industrial and academic architectures and may impact CAD tool performance.

6.10.1 Encoding: Turns

The first set of constraints is inspired by the assumption that has been very popular among

the academic architectures since it was first formulated by Rose and Brown [Ros91]: namely,

155

Chapter 6 Searching for Regular Switch-Patterns

that each wire should fan out to one wire on each of the tree remaining sides of the switch-

block; the two that are perpendicular to where the wire came from and the one that is directly

opposite of it. We generalize this constraint to allow for larger multiplexers and larger fanouts,

by turning the exactly one requirement to at least one requirement:∑
v,dL :(u,v,dL)∈E∧D I R(v)= fL (D I R(u))

xu,v,dL ≥ 1, ∀u ∈V , (6.21)∑
v,dL :(u,v,dL)∈E∧D I R(v)= fR (D I R(u))

xu,v,dL ≥ 1, ∀u ∈V , (6.22)∑
v,dL :(u,v,dL)∈E∧D I R(v)=D I R(u)

xu,v,dL ≥ 1, ∀u ∈V , (6.23)

fL =

(
R L U D

U D L R

)
, fR =

(
R L U D

D U R L

)
. (6.24)

Equations (6.21), (6.22), and (6.23) specify that each wire must turn left, turn right, and

continue in the same direction, respectively. Function D I R(v) returns the direction of wire v ,

while fL and fR are mappings between directions that constitute left and right turns.

6.10.2 Encoding: Fanout Symmetries

The second set of constraints forces wire fanouts to be symmetric. There are two kinds

of symmetry that we explore. The first one which we call internal symmetry, illustrated in

Figure 6.12a, specifies that whenever a wire u drives a wire v perpendicular to it, it must

also drive a wire v ′ going in the opposite direction from v . We call the second kind external

symmetry and it is illustrated in Figure 6.12b. It specifies that two wires which differ only in

direction, such that they are opposing, must have identical sets of perpendicular wires to which

they fan out and that the sets of parallel wires they fan out to must differ only in direction

(i.e., the directions of the respective wires must be opposing). Both internal and external

symmetry are trivially encoded by equating the switch-type-presence variables of symmetric

pairs of switch types (e.g., xH2La,V 1Ua = xH2La,V 1Da in Figure 6.12a or xH2La,V 1Ua = xH2Ra,V 1Ua

in Figure 6.12b). In the interest of space, we do not present them here in their general form.

6.10.3 Results

All experiments in this section were conducted using an objective that combines usage maxi-

mization and wirelength minimization with a trade-off of 0.5, since this was previously shown

to yield the best results. Fanins and fanouts of all wires were fixed at 6 (disregarding LUT-

related ones) and no additional constraints were applied other than the ones indicated in the

respective plot.

Critical Path Delay: As shown by Figure 6.13, enforcing any of the constraints from this section

brings no benefit to the critical path delay and even slightly deteriorates it.

156

Searching for Regular Switch-Patterns Chapter 6

H2Ra H1Ra
H1Rb

H4Ra

V1Ua

V1Da
H6Ra

H2LaH1La
H1Lb

V1UaV1Ub

V1Da

external symmetry line

internal symmetry line

V1Db

(a) Internal fanout symmetry.

H2LaH1La
H1Lb

H4La

V1Ua

V4Ua

V1Da

H2Ra H1Ra
H1Rb

H4Ra

V1Ua

V4Ua

V1Da

external symmetry line

internal symmetry line

(b) External fanout symmetry.

Figure 6.12: Fanout symmetry illustration. Fanouts of the H2Ra and H2La wires (red) are shown for two
different patterns. (a) Each of the wires has a symmetric fanout: there is a mirror symmetry between
the vertical wires in the fanout, but the fanouts of the two wires are not mutually symmetric. (b) The
two wires have mutually symmetric fanouts: the set of vertical wires they fanout to is identical, while
there is mirror symmetry between the horizontal wires in the fanout. However, neither of them has an
internally symmetric fanout.

Routability: Figure 6.14 shows that most constraints do not bring a tangible improvement

of routability either. Hence, we conclude that there is no benefit in explicitly enforcing them,

unless maybe when CAD tools specifically assume that they are satisfied.

6.11 Enforcing Hop-Distance Optimality

The final set of constraints that we consider is also related solely to the performance of CAD

tools and was inspired by our previous observation in Section 5.10.2.2 that performance of a

switch-pattern might be related to the lower bound on the number of hops needed to connect

any two locations on the FPGA grid. It could be tempting to search for only those solutions for

which this lower bound is the same as if all switch types were present in the pattern.

6.11.1 Encoding: Proof Grid

We start by computing the length of the shortest path from the center of the FPGA grid to

all locations that are at most 12 tiles away from it horizontally, and at most 8 tiles away

from it vertically, when all switch types are present in the switch-pattern. The dimensions are

dictated by twice the length of the longest horizontal (MH) and vertical (MV) wires, respectively

157

Chapter 6 Searching for Regular Switch-Patterns

reference all turns
internal symmetry

external symmetry
full symmetry

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

Ge
om

ea
n

ro
ut

ed
 d

el
ay

 [n
s]

Figure 6.13: Influence of enforcing different topological features on delay. Enforcing any of these
features leads to a deterioration in performance.

160

170

180

190

200

210

220

230

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

reference all turns
internal symmetry

external symmetry
full symmetry

1.35

1.40

1.45

Ro
ut

ed
 d

el
ay

 [n
s]

#iter. 25 25 23 24 24

WL 229.0 226.1 218.5 226.7 223.9 ×103

Figure 6.14: Influence of enforcing different topological features on routability. Enforcing most of the
considered features brings little change.

(Figure 6.1b). Without attempting a formal proof, we assume that proving that the same

shortest path lengths are attainable by a pattern SOL on this grid suffices to prove that they

are attainable by it on an infinite grid, which would render it hop-distance optimal. We

experimentally confirmed hop-distance optimality of all solutions on a 100×100 grid.

158

Searching for Regular Switch-Patterns Chapter 6

6.11.2 Encoding: Shortest Paths

For the switch-pattern to be optimal, for each offset (xδ, yδ), the length of the shortest path

connecting the tiles at this offset must equal the value precomputed above, L(xδ, yδ). Hence,

we need to encode an existence of a path of length L(xδ, yδ) such that the sum of offsets of all

horizontal (vertical) wires on it equals xδ (yδ). We do this similarly to how Hamiltonian Path

can be encoded in SAT [Pap94]: for each position on the path, p ∈ [1,L(xδ, yδ)], and each wire

v , a binary variable x(xδ,yδ),p,v is 1 iff v is the pth node on the path. Each position on the path

must be occupied by exactly one wire:∑
v∈V

x(xδ,yδ),p,v = 1, ∀p ∈ [1,L(xδ, yδ)]. (6.25)

For two wires to be on consecutive positions in the path, there needs to be a switch between

them:

x(xδ,yδ),p,u ∧x(xδ,yδ),p+1,v ≤∑
dL

xu,v,dL ,

∀p ∈ [1,L(xδ, yδ)),∀u, v ∈V.
(6.26)

It only remains to sum up the horizontal wire offsets along the path and force them to xδ
(vertical offsets are analogous):∑

p∈[1,L(xδ,yδ)],v∈V
χ(v)x(xδ,yδ),p,v = xδ, (6.27)

where χ(v) is the horizontal offset of the wire v . To speed up the solution process, we add

some additional constraints. Most importantly, if the number of shortest paths for a particular

offset in the presence of all switch types is less than 100, we enumerate all of them and assign

each another binary variable. Sum of all these path variables for the given offset is set to equal

1, which forces the solver to select exactly one of the paths. Then, the corresponding x(xδ,yδ),p,v

variables are set by appropriate implication constraints.

6.11.3 Results

The experimental setup is the same as in Section 6.10, but because hop-distance optimality

constraints make the problem significantly more complex and increase the solution time from

the order of seconds to the order of minutes, we decided to set the wirelength trade-off to

0, thus avoiding the need to solve multiple ILP problems per iteration, due to multiplexer

placement optimization.

Critical Path Delay: Figure 6.15 indicates that enforcing hop-distance optimality slightly

improves the performance of the obtained architectures, although the difference is rather

insignificant.

Routability: Similar conclusions about the impact that hop-distance optimality has on

159

Chapter 6 Searching for Regular Switch-Patterns

reference hop optimality
1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

Ge
om

ea
n

ro
ut

ed
 d

el
ay

 [n
s]

Figure 6.15: Influence of hop-distance optimality on critical path delay.

170

180

190

200

210

220

230

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

reference hop optimality

1.40

1.45

Ro
ut

ed
 d

el
ay

 [n
s]

#iter. 25 27

WL 231.8 227.5 ×103

Figure 6.16: Influence of hop-distance optimality on routability.

routability can be drawn from the results shown in Figure 6.16. Combining the two results, we

conclude that imposing these constraints is not detrimental; the guaranteed optimality could

perhaps be useful for simplifying the CAD tools.

160

Searching for Regular Switch-Patterns Chapter 6

Table 6.3: ILP complexity.

variables constraints

reg. type general concrete general concrete avg. sol. t [s]
fanins (fanouts) (Mϕ+1)(|V |+1) 336 (Mϕ+1)(|V |+1)+2 |V | 368 7.18
input sharing 3

2 |V |3 +|V |2 3174 9
2 |V |3 +|V |2 +|V | 9418 40.66

all turns 0 0 3 |V | 48 1.32
internal (external) symmetry 0 0 3

2 |V |2 282 2.68
full symmetry 0 0 3|V |2 564 2.67
hop-distance optimality (4MH +1)(4MV +1)2(MH +MV) |V | 92469 (4MH +1)(4MV +1)(2(MH +MV)|V |2 +1) 358846 161.40

6.12 ILP Complexity

Most problem instances that we encountered are solved within second. A notable exception

are the problems which enforce hop-distance optimality that sometimes take minutes and

even tens of minutes to solve. Comparatively difficult instances also occur when sharing of a

large number of inputs is enforced, where solution times sometime also reach minutes.

In Table 6.3, we give average solution times as well as the number of variables and constraints

needed to encode various types of regularity introduced in previous sections. All of the formu-

las are upper bounds. Given that modern architectures, faced with numerous technological

limitations, have highly repetitive interconnect (e.g., planes and lanes in Agilex [Chr20]), the

number of multiplexers that need to participate in the ILP problems is unlikely to ever become

very large. Thus, we expect the proposed method to be scalable even for regularity types for

which the encoding size increases cubically with multiplexer count. Moreover, ILP problem

size does not depend on the size of the circuits used in the exploration, unlike avalanche

routing, which is at present the runtime bottleneck of the exploration algorithm.

6.13 Conclusions

In this chapter, we showed that various types of regularity observed in switch-blocks of

commercial FPGAs do not pose a significant limitation on their performance. In particular,

the best-performing architecture where all wires are forced to have the same fanout and fanin

size (Λ = 0.5 in Figure 6.10) has only ∼ 1.5% worse routed critical path delay than the best

architecture constructed when the router is free to choose switch types according to its needs

(“∞” in Figure 6.4). On the other hand, regularity in fanout and fanin sizes greatly increases

the routability of the architectures on circuits that significantly differ from the ones used in

switch-pattern construction (Figure 6.7). This is certainly important for FPGA vendors, given

the long lifetime of the products and difficulties in predicting how much the target designs

will change over that period.

Regularity of the switch-pattern may allow layout optimizations that are not captured by our

current area and delay models. Hence, the measured loss of performance due to regular-

ization could be even smaller in a commercial setting. For example, we demonstrated that

161

Chapter 6 Searching for Regular Switch-Patterns

sharing inputs between pairs of multiplexers does not have any negative impact on routabil-

ity (Figure 6.9) and that it even provides a slight advantage in terms of performance when

measured using conservative models (Figure 6.8). On the other hand, several authors have

mentioned other reasons why this technique can be beneficial [You98; Chr20], which, when

combined with the above result, may more than suffice for the FPGA architect to seek only

switch-patterns where all multiplexers share some inputs.

Perhaps most importantly, we have demonstrated that automated exploration methods can

be used to construct competitive switch-block architectures that respect arbitrary constraints,

ranging from fairly simple ones motivated by layout considerations, such as those presented

in Section 6.6, to fairly complex ones motivated by design ideas that may enable more efficient

FPGA CAD, presented in Section 6.11. Given that the algorithm which we proposed is generic,

our hope is that it will be useful for both industry and academia in addressing the challenges

that designing future FPGAs may bring.

The source code used to produce the results of the study presented in this chapter is available

at https://github.com/EPFL-LAP/fpga23-regularity.

162

https://github.com/EPFL-LAP/fpga23-regularity

7 Fixed-Connectivity
Pattern Design

In Chapter 4, we have seen that in order to achieve high performance of a programmable

interconnect architecture, it is necessary to reduce the capacitive load on wires as much as

possible. In the limit, the greatest reduction is obtained when a wire is used exclusively to

connect a single pair of LUTs. Not only does this reduce capacitive load on the wire to the

minimum, but it also allows a signal to avoid passing through multiple levels of stored-select

multiplexers, that would be necessary if the direct connection between LUTs did not exist.

Given that multiplexers have been a predominant contributor to the delay of paths through

programmable interconnect before delays of highly resistive metal started to dominate those

of transistors, it should not come as a surprise that direct connections between LUTs, seeking

to avoid this penalty, have been exploited ever since the XC2064 [Xil93]. However, patterns of

such fixed connectivity that could be observed in commercial architectures were rather simple,

usually not going much beyond cascades. In this chapter, largely based on a paper published

at the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays under

the title “Straight to the Point: Intra- and Intercluster LUT Connections to Mitigate the Delay

of Programmable Routing” [Nik20], we present a general algorithm for automated design of

tileable fixed-connectivity patterns of arbitrary complexity, demonstrating that by introducing

a relatively small number of direct connections between LUTs, significant improvements of

critical path delay can be obtained. Unfortunately, since this work predated the development

of the physical modeling flow presented in Chapter 4 and was implemented in VTR-7 [Luu14a]

(the then latest stable version), which has certain limitations with respect to describing routing-

resource graphs representative of modern plane-based architectures [Chr20], we limit this

study to a mature 40nm planar technology, leaving its extension to a more advanced node

for future work. Nevertheless, as stated above, fixed-connectivity patterns are relevant in any

technology, since they allow timing-critical signals to avoid slow routing multiplexers.

7.1 Straight to the Point

To illustrate the appeal of direct wires, let us take a look at Figure 7.1a, depicting the shortest

possible path between two LUTs in different clusters through programmable interconnect in

163

Chapter 7 Fixed-Connectivity Pattern Design

LUT LUT

crossbar
cluster (C

LB
)

connection block

LUT LUT
crossbar

cluster (C
LB

)

connection block

switch block

LUT LUT

crossbar
cluster (C

LB
)

connection block

LUT LUT

crossbar
cluster (C

LB
)

connection block

(a) No direct connections.

LUT LUT

crossbar
cluster (C

LB
)

connection block

LUT

crossbar
cluster (C

LB
)

connection block

switch block

LUT

crossbar
cluster (C

LB
)

connection block

LUT LUT

crossbar
cluster (C

LB
)

connection block

LUT

LUT

(b) With direct connections.

Figure 7.1: Potential benefits of introducing direct connections between LUTs. The figure shows a
minimum length path traversed by a signal generated by one LUT and consumed by another, residing
in a neighboring cluster. In (a), the connection is in an architecture without direct connections between
LUTs and, in (b), in an architecture with direct connections between LUTs.

a typical island-style FPGA. At the very least, the signal has to pass through one multiplexer

of the switch-block, one multiplexer of the connection-block, and one multiplexer of the

crossbar. Needless to say, these multiplexers incur a significant delay, even in technologies in

which it is the metal delay which is dominant. In such technologies in particular, the fact that

wires which are part of the programmable interconnect architecture drive a large number of

stored-select multiplexers has a significant impact on their overall delay.

Let us for the moment imagine that, most of the time, signals on the critical path of the

implemented circuit will connect LUTs at the same relative location on the FPGA grid. If this

assumption were to hold, we could resolve the problem of both the large number of slow

stored-select multiplexers on the critical path, and the high capacitive load on the shared

programmable-interconnect wires by simply hardening a direct connection between the LUTs

at the two designated locations. This is depicted in Figure 7.1b. Not only does the direct

connection avoid all stored-select multiplexers, apart from (depending on implementation;

see Figure 7.2) maybe the one driving an input pin of the target LUT, but its capacitive load is

reduced to that of only one LUT or stored-select multiplexer input.

How successful hardening of direct connections between LUTs will be in practice depends

entirely on the extent to which the assumption that these direct connections bridge locations

which typically form the endpoints of timing-critical signals actually holds. Ensuring that

a particular pattern of direct connections is successful at optimizing the critical path delay

of a typical user circuit hence depends on 1) constructing the pattern so that it captures the

most common locations of endpoints of critical signals in placed circuits and 2) altering the

164

Fixed-Connectivity Pattern Design Chapter 7

placement of the circuit so that it maximizes the extent to which the direct connections are

used by the timing-critical signals. In this chapter we provide an algorithm for solving the first,

exploratory, task. Optimizing exploitation of the constructed patterns by providing adequate

algorithmic support for solving the second task will be the topic of the next chapter.

7.2 Related Work

As we have already mentioned, the idea of using direct connections between LUTs is noth-

ing new. For example, XC2064 allowed one of the two outputs of the fracturable 4-LUT to

connect directly to its right neighbor LUT, whereas the other output could connect to the

LUTs above and below [Xil93]. Many other early FPGAs featured hardened direct connections

between LUTs. Among them were the Xilinx XC4000, which contained a two-level binary

tree pattern of direct connections, UTFPGA-1 from the University of Toronto, with a chain

of three LUTs [Cho91], and the Triptych [Bor95] from the University of Washington, with a

pattern mimicking the reconvergent fanouts that commonly occur in digital circuits. However,

all these architectures appeared before logic clusters were widely adopted. As we have dis-

cussed in Section 3.3, logic clusters provided a single-level multiplexing structure and could

essentially be considered an implementation of a direct-connection pattern corresponding

to a complete graph of N LUTs. The flexibility of this pattern diminished the prior interest

in sparser and more efficient patterns, reducing them mostly to simple cascades, both for

passing special carry-style signals [Lew03] and general LUT-generated ones [Hut02; Par11;

Gai19]. However, it is important to remember that clusters are themselves only a rough, if

very effective, approximation of inherent circuit connectivity that older architectures like the

Triptych attempted to capture through the use of different direct-connection patterns. As

illustrated in Figure 7.1, it is quite reasonable to expect that additional gains can be obtained

by combining the approximation of variable connectivity density through the use of logic

clusters with approximation of recurring sparse connectivity patterns, by hardening specific

LUT-to-LUT connections regardless of whether they are contained within the cluster or cross

its boundaries. To the best of our knowledge, there were no attempts to bridge this divide

with something bolder than a simple chain. It is the goal of this chapter to rectify that and,

furthermore, provide a way to design appropriate fixed-connectivity patterns automatically.

Some FPGAs, such as Stratix 10 [Int20] contain direct connections between neighboring clus-

ters and not individual LUTs. This could be considered a straightforward generalization of

the nearest-neighbor connections of XC2064 to cluster-based architectures. However, these

connections are broadcast to all LUTs within the cluster, which means that they both suffer

from a high capacitive load, and increase the size of a large number of multiplexers. Conse-

quently, they have been removed from the latest 7nm Agilex architecture [Int23a]. Readers

interested in the impact of cluster-level nearest-neighbor interconnect on performance of

FPGAs in older technologies in which broadcasts were not as expensive can refer to the work

of Roopchansingh and Rose [Roo02].

165

Chapter 7 Fixed-Connectivity Pattern Design

Figure 7.2: Direct connections considered in this work. Blue, thicker lines show direct connections
between LUTs that can be both within the same cluster and in different clusters. Each direct connection
is driving the particular LUT input through a multiplexer, which enables selecting the driver from
multiple direct connections, as well as the programmable routing structure. The purpose of this style of
connections is to retain all of the original flexibility of the architecture. In modeling timing in this work,
we assume that decoupling multiplexers shown in blue are explicitly introduced. Alternatively, direct
connections can be added to the existing crossbar multiplexer driving the corresponding LUT input,
thus trading off some of the direct connection performance by passing it through a larger multiplexer,
for reduced impact when the direct connection is not used, by removing the additional decoupling
multiplexer from the programmable path.

7.3 Optional Direct Connections

In this work we attempt to assess the value of introducing direct connections between LUTs

both within the same cluster and in different clusters, with respect to critical path delay

reduction. We assume that each of the direct connections can be optionally selected by

configuring the appropriate multiplexer, as illustrated in Figure 7.2. This enables us to add

direct connections on top of any standard architecture, without reducing its routing flexibility,

and thus always makes it possible to use the same implementation of a particular circuit as

the one found for the original architecture. Essentially, this limits the possible damage to the

critical path delay caused by the introduction of the direct connections to the delays of the

added multiplexers—any improvement has only this small penalty to overcome. Also, we thus

retain the possibility to use the existing CAD algorithms (those in the VTR framework [Luu14],

in particular) without any modification. This is certainly suboptimal but we wish to focus on

the exploration of the design space: we aim at answering the question “What pattern of direct

connections serves best the critical path delay reduction?” Development of a dedicated placer

166

Fixed-Connectivity Pattern Design Chapter 7

is left to the next chapter.

7.3.1 And What about Fully-Hardened Direct Connections?

Such decoupled direct connections have already been used in real commercial products

such as XC4000 [Xil98] and Versal [Gai19], as well as in research publications by e.g., Feng et

al. [Fen18] and Tang et al. [Tan14]. The alternative is to restrict a particular LUT input to only

be driven by one particular other LUT. This avoids the delay penalty of introducing another

multiplexer at the LUT input, or increasing the size of the existing one. However, based on

the experience from our prior work on automated exploration of such architectures [Nik19],

developing CAD tools that can successfully overcome the restrictive nature of these fully-

hardened connections is a great challenge. Most likely, in order for this endeavor to be

successful, it has to be perceived already from the synthesis and technology mapping stage of

the CAD flow, as has been done by Feng et al. [Fen18]. Since advanced mapping algorithms

required for this are highly computationally intensive [Ray12], the size of patterns that can be

successfully processed is very limited. Moreover, it is difficult to envision how these algorithms

could be applied to intercluster connections, since at the time of technology mapping, it is

typically not yet known which LUTs will be part of the same cluster; making assumptions on

this before placement and trying to retain decisions based on these assumptions has, on the

other hand, been shown to lead to inferior performance of implemented designs [Che07].

As we will demonstrate in this chapter, replacing the intercluster routing paths with direct

connections is precisely what brings the highest benefit, because of the larger number stored-

select multiplexers that can be avoided, as well as by avoiding the penalty of entering the

cluster through highly loaded thin-metal wires of the connection-block. Note that in case

of intracluster connections, only a single multiplexing level can be avoided. Furthermore,

Figure 2.17 indicates that in commercial designs, intracluster connections are rarely critical.

7.3.2 Endpoint Alignment

To benefit from the tight bound on negative improvement offered by optionally-used direct

connections, in this exploratory work, we always keep the same packing and placement as

produced for the underlying architecture. We only use the direct connections opportunisti-

cally, where the possibility to do this is naturally created during the placement process. Apart

from the placement of clusters in the programmable fabric, the number of such opportunities

is highly dependent on the local placement of LUTs within the clusters—and thus potentially

underwhelming, given that often, and especially in VPR, intracluster placement is entirely

arbitrary [Luu14a]. Figure 7.3a shows in red the signals of a particular benchmark circuit

implemented on one particular architecture that were successfully converted to use direct

connections: as one could fear, a negligible number. Permuting the LUTs inside the clusters in

an attempt to maximize the usage of direct connections results in the situation of Figure 7.3b.

For the reasons apparent from these two figures, we slightly depart from a purely opportunistic

approach by performing explicit LUT permutation between the placement and the routing

167

Chapter 7 Fixed-Connectivity Pattern Design

(a) Before permutation. (b) After permutation.

Figure 7.3: Influence of LUT permutation on usability of direct connections. The figure shows the same
placement of the sha benchmark from the VTR set (a) before and (b) after permuting LUTs inside the
clusters. Each cell is a location on the fabric grid. Connections implemented as direct are shown in red.

stage. Ideally, the routing algorithm would dynamically permute the LUTs where appropri-

ate [Lew03], but, due to the current limitations of academic tools [Luu14a], we are forced to

resort to explicit permutation.

The previous paragraph anticipates our only modifications to an ordinary FPGA CAD flow,

more precisely described in the experimental methodology section. More aggressive connec-

tion endpoint alignment, by replacing LUTs across clusters, will be covered in the next chapter.

Our main contribution here, with this minimalist approach to exploiting direct connections,

is to systematically explore the large space of possible tileable direct-connection patterns.

7.4 The Space of Tileable Fixed-Connectivity Patterns

As mentioned in Chapter 3, the defining feature of island-style FPGAs is that they are composed

by abutting a large number of copies of a single tile (or a handful of different tiles). Fixed-

connectivity patterns must respect this tileability as well. In Section 3.6, we introduced

the notion of periodic graphs [Hof94] as a unified way to represent tileable architectures,

mentioning that they are particularly useful for representing fixed-connectivity patterns.

Indeed, when we only want to augment an existing programmable interconnect architecture

with a collection of direct connections between LUTs, the node set of the static graph S which

we have to construct reduces to the set of LUTs in a cluster. For instance, an island-style

FPGA without any direct connections between LUTs would be represented by an edgeless

graph. On the other hand, an FPGA with a chain connecting LUTs in the same column

would be represented by the static graph of Figure 7.4a, for the case of a four LUT cluster.

Another example of a slightly more complex pattern—the one for which the mapping of

168

Fixed-Connectivity Pattern Design Chapter 7

0 1 2 3
(0, -1)

(0, 0)(0, 0)(0, 0)

0
1

2
3

(a) Columnar chain.

0

1

2

3

4

5

6

7

8

9

(-1, -1)

(0, -2)

(0, 2)

(2, 0)

(1, 0)

(b) Pattern used in Figure 7.3b.

Figure 7.4: Using static graphs to describe patterns of direct connections. Each square represents a
cluster and each point represents a LUT. Outgoing edges of one replica of the node set (one cluster) are
emphasized in blue.

Figure 7.3b was produced—is shown in Figure 7.4b. Here we can see, for example, that the

edge (u, v, w⃗) = (5,4,(2,0)) represents the connection between the fifth LUT of each cluster

and the fourth LUT of the second cluster to the right, within the same row of the fabric.

The architectural search space considered in this chapter coincides with the space of all

patterns representable as a static graph on N nodes with M edges, and edge-weight bounded

by a Chebyshev length of w (that is, absolute values of both weight components are ≤ w).

Here, N is the cluster size while M and w are parameters. To give some numerical sense of the

size of this design space, we could consider the following. There are N 2 ways to choose the

endpoints of each edge and 2w +1 possible values for each component of its weight. Hence,

we can choose the M edges from ((2w +1) N)2 possible ones. For (N , M , w) = (10,20,4), which

are not particularly large numbers, given the cluster sizes and channel wire lengths of modern

FPGAs, this amounts to ∼1059. Of course, this is a loose bound because it does not account for

isomorphisms; the intention is only to give some rough sense of the scale of the problem.

169

Chapter 7 Fixed-Connectivity Pattern Design

e1

e2

e1

e2

Figure 7.5: Multiplexer placement trade-offs. In the architecture on the left, the connections e1 and
e2 are sharing a common multiplexer and, thus, cannot be used simultaneously. This is addressed in
the right architecture where both direct connections can be used and they are delayed by faster 2:1
multiplexers. However, another input of the LUT is now driven by an additional multiplexer, increasing
the probability that the critical path delay would increase when the direct connection is not used.

7.4.1 Fully Specifying an Architecture

The reader may notice that in Figure 3.12a, multiplexers driving the LUT inputs are also in-

cluded in the static graph. To fully specify the fixed-connectivity pattern, the direct-connection

decoupling multiplexers must be represented in the static graph as well. Nevertheless, to pre-

vent further search space size increase, we retain the level of detail of Figure 7.4, distributing

direct connections among the input pins of the target LUT in a round-robin fashion. This

roughly maximizes the number of direct connections that can be simultaneously used to

drive inputs of any LUT and keeps the LUT input delay increase due to the added decoupling

multiplexers roughly balanced. An alternative approach is shown in the left part of Figure 7.5.

7.5 Searching a Large Design Space

In this section we describe the reasoning about our approach to searching the design space, as

well as the details of the search algorithm itself. The greatest challenge is, of course, navigating

the large size of the search space which, much like in the case of switch-pattern design

presented in Chapter 5, renders the classical brute-force approach [Zgh17] prohibitive. To

explore spaces of comparable size, in Chapter 5, we relied on extracting valuable information

from the routing process, instead of discarding it by perceiving the router as a mere black box

that measures performance. Here, however, the direct connections are intended to replace

entire point-to-point paths, meaning that all the required information—that is, the locations

of the various connection endpoints—is available from placement; this removes the need to

observe the behavior of the router. By formulating the design task as a covering problem and

leveraging a well-known approximation result, we are able to solve it efficiently. This is similar

to optimizing a tractable surrogate, chosen by analyzing the nature of the problem at hand,

that Lemieux et al. used to automatically design highly routable sparse crossbars [Lem00].

170

Fixed-Connectivity Pattern Design Chapter 7

205

e1, e2
84

102

e3
39

(a)

e2
29

80

e1

1

4

(b)

e3
39

e2
19

10

3

e1

69

7

12

(c)

Figure 7.6: Analogy between our best pattern search and the Maximum Coverage problem [Vaz04]. Sets
of connections of a particular placement of the sha benchmark coverable by the edges e1 = (1,9, (0,−1)),
e2 = (2,8,(0,−1)), and e3 = (8,3,(0,−3)) are shown. The grey sets include all coverable connections,
while the blue ones include the edges covered by the pattern composed of the single respective edge,
after a particular permutation of LUTs. Connections covered by the patterns composed of e1 and e2,
and all three edges are shown in red and green, respectively. Coverage achieved by the combinations of
multiple edges is larger than each of their individual coverages, even if they overlap entirely (e.g., e1

and e2), but smaller than their sum, even if the individual coverage sets are disjoint (e.g., e2 and e3).

7.5.1 Our Search Space: A Naive View

Given an FPGA architecture, our task is to select some M edges that will enter the edge set of

the static graph describing the pattern of direct connections that we intend to augment it with.

Let us, for the moment, disregard the fact that our primary goal in doing all this is to reduce

the critical path delay. Then, the value of adding a new edge to the edge set is in increasing the

number of circuit connections covered by the direct connections. Each potential static graph

edge can be assigned a set of circuit connections that it can cover. This set is dependent on the

topology of the circuit to be mapped on the FPGA and its particular placement. Because we

allow arbitrary LUT permutations within the cluster, the set of connections that can potentially

be covered by an edge of the static graph is the set of all connections between clusters whose

relative position corresponds to the weight of the edge, irrespective of the precise location of

the endpoint LUTs in their respective clusters. In Figure 7.6a, these sets are represented in

grey, for the edges e1 = (1,9,(0,−1)), e2 = (2,8,(0,−1)), and e3 = (8,3,(0,−3)), and a particular

placement of the sha VTR benchmark. Because edges e1 and e2 have the same weight, the sets

of connections they can cover are identical, while the set of edge e3 is disjoint from them, due

to its different weight. We could attempt to choose the M edges so as to maximize the union of

the sets of connections they can cover. Because the grey sets of Figure 7.6a are either identical

or disjoint, we could trivially achieve this by greedily choosing edges with disjoint sets. Note,

171

Chapter 7 Fixed-Connectivity Pattern Design

however, that this would be misleading, as it would appear that choosing an edge with the

weight equal to the weight of some edge already in the static graph would bring no benefit,

due to their sets of coverable connections coinciding. Intuitively, of course, we would expect

improvement in some cases, as there could be more than one connection between any two

clusters, whereas a single static graph edge of the appropriate weight could cover only one of

them. Likewise, it would appear that the coverage of edges with different weights is entirely

additive, which is not really the case, as we will soon see.

7.5.2 Our Search Space: One Step at a Time

A more realistic view of the extent to which a particular edge may contribute to covering the

connections of the circuit to be mapped can be obtained by measuring the coverage achieved

by the pattern composed only of that edge. To perform such a measurement, we already

need to consider LUT permutation. When the pattern is composed of any single one of these

edges, or more generally, when the total degree of the static graph is bounded by one (that

is, no two edges share a node and there are no loops), the set of covered edges constitutes

a matching [Bon08]. We search for maximal matchings with the following simple greedy

algorithm:

1. Mark position of all LUTs as free.

2. Sort the circuit connections in decreasing length.

3. For each connection (u, v), between LUTs in clusters at an offset w⃗ , if there is an edge

(up , vp , w⃗) in the static graph, and u and v are either free or fixed to up and vp , respec-

tively, cover (u, v) and fix positions of u and v to up and vp , respectively.

After applying this algorithm to each of the three single-edge patterns, we obtain the blue sets

of Figure 7.6a. Whereas the grey sets corresponded to the unions of all sets of connections

covered by the pattern under all possible permutations, the blue ones are the sets covered

under one particular permutation. Hence, for instance, if the pattern includes only a single

edge of weight (0,−1), a subset of the 205 connections with 84 elements can be covered. Note

that the covered sets of e1 and e2 again coincide, while that of e3 is again disjoint from them.

Apart from the numerical changes of the set cardinality, we are back to where we begun—we

have the same coverage model that appears to be trivial to solve, but counters our intuition.

7.5.3 Our Search Space: Combining Steps

So let us combine e1 and e2 into one common pattern. The degree of this pattern is still

bounded by one, so our algorithm still works, and the coverages it produces are overlaid in

red, in Figure 7.6b. Now the situation already starts becoming more intuitive: the sets of

connections actually covered by e1 and e2 are disjoint, as we can cover each connection only

172

Fixed-Connectivity Pattern Design Chapter 7

once. The combined coverage is now larger than either of the individual coverages (that were

in fact the same), so there is indeed benefit from selecting a second edge of the same weight,

as we intuitively predicted in the beginning. However, the combined coverage is smaller than

the sum of the two individual coverages, indicating that coverage is really not additive.

What happens if we add e3 to the pattern as well? Its coverable connection set (grey) was

disjoint from the others, so will the combined coverage simply be the sum of its coverage

and that of e1 and e2 combined? The new coverage sets are overlaid in green, in Figure 7.6c.

Both the sets of e1 and e2 shrunk with the introduction of e3. This is because e3, which had

precedence due to sorting of circuit connections based on length, fixed the positions of its

endpoints in such a manner that e2 could no longer cover some of the connections it covered

previously. In turn, e2 took over some of the connections from the intersection with e1, causing

a change in its set as well. Hence, even the coverage sets that originally appeared to be disjoint

can have “induced” intersections, caused by conflicting permutation requirements.

7.5.4 Our Search Problem: An Analogy

The last subsections give us a taste of the challenges that our search problem faces. Maximum

Coverage is a well-known intractable problem where the goal is to select a fixed number of

sets out of several sets which may have some elements in common; in doing so, one wants to

maximize the cardinality of the union of the selected sets [Vaz04]. A standard greedy approach

to solving the problem is known to give the best achievable polynomial-time approximation,

unless P = NP [Fei98]. Without any rigorous analysis of the relations between the problem

of finding the optimum set of direct connections and maximum coverage, relying on the

intuition developed by the observations in the previous example instead, we adopt the greedy

approach to solving our search problem.

7.5.5 The Greedy Algorithm

The pseudocode of our search algorithm is shown in Algorithm 7.1. The algorithm starts

from an edgeless graph on N nodes and performs M rounds of listing all unique expansions

of the previous best-scoring pattern and choosing the new best one among them. During

expansion listing, edges are first added to the static graph without weight assignment. All N 2

such expansions are generated and the resulting graphs are split into classes of isomorphic

ones. The next stage is weight assignment, where, for each tried weight, a class representative

that results in the minimum length of the added connection is chosen. This is based on the

assumption that the LUTs are stacked vertically, like in the Stratix FPGAs [Lew13] (Figure 7.7).

The best pattern is chosen based on the postrouting critical path delay, as this is what we wish

to optimize. Because there are thousands of new patterns appearing in each search iteration,

running the complete CAD flow is infeasible and we need fast predictors to filter out most of

the weak candidates. A prototypical filter is represented by the function filter of Algorithm 7.1.

173

Chapter 7 Fixed-Connectivity Pattern Design

Algorithm 7.1 Greedy pattern search.

1: function SEARCH(N, M, w, cA, cB, cC)
2: g_best = ([0, N), {})
3: for m in [0, M) do
4: G = GET_ALL_UNIQUE_EXPANSIONS(g_best, w)
5: FILTERA(G, cA)
6: FILTERB(G, cB)
7: FILTERC(G, cC)
8: g_best = PICK_BEST(G)

9: return g_best

10: function FILTER(G, c) ▷ A prototypical filter
11: for g in G do
12: for b in benchmarks do
13: scores[b][g] = COMPUTE_SCORE(g, b)

14: for b in benchmarks do
15: SORT(scores[b])
16: for g in G do
17: ranks[g] += INDEX(scores[b], g)

18: SORT(ranks)
19: return ranks[0:c]

1/
3

2/
3

2/
3

1

1
 2/3

Figure 7.7: Connection length calculation. Several examples of connection length calculation are
shown for a cluster size of three with LUTs vertically stacked. The distance between two vertically
adjacent LUTs is equal to 1/N ×LT , where N is the cluster size and LT the height of the tile. The
distance between two horizontally adjacent LUTs is equal to LT . N and LT are 3 and 1 in this example,
respectively. Note that, contrary to the more percise model of Chapter 4, this assumes a 1:1 aspect ratio
of the tile. Although not realistic for commercial architectures [Lew03], this assumption was necessary
to be in line with the identical horizontal and vertical routing channel constraint of VTR 7 [Luu14].

174

Fixed-Connectivity Pattern Design Chapter 7

f

gh

(0, 1)

(1, 0)

(1, 1)

(1
, 0

)

x

y

z

C
Figure 7.8: An example to demonstrate our coverage-based filters. The static graph on the left describes
a pattern, while the fabric on the right shows a cluster, C , of a packed and placed circuit, along with
three of its immediate neighbors. Only circuit connections originating in cluster C are shown.

For each circuit in the benchmark set and each pattern, a score is computed. Patterns are then

ranked for each of the circuits and c of them (where c is a parameter) with the minimum sum

of ranks are kept for the next filtering stage. Details of the filters are discussed below. The

first two are designed to be fast and based only on coverage. They also serve the purpose of

anticipating the accumulated effect of adding multiple edges to the pattern, that may not be

immediately reflected on critical path delay. The final filter is considerably slower, but also

more accurate and tries to predict the critical path delay itself.

7.5.6 Pruning the Candidates: The First Filter

The first filter groups the pattern edges by their weights and treats the groups completely

independently, attempting to quickly assess how much circuit connection coverage the chosen

set of weights can achieve. For a given pattern P , edge weight w⃗ , and a cluster C of the placed

circuit, it works as follows:

1. For each LUT u in P , count the number of edges (u, v, w⃗) and store these counts in s⃗p .

2. For each LUT u′ in C , count the number of connections starting at u′ and ending in a

cluster at an offset equal to w⃗ and store these counts in s⃗c .

3. Sort the vectors s⃗p and s⃗c and compute the score S(P,C , w⃗) as
∑

i mi n(s⃗p (i), s⃗c (i)).

In the example of Figure 7.8, for w⃗ = (1,0), vectors s⃗p and s⃗c are equal to (2,0,0) and (1,1,0),

respectively. Hence, S(P,C , (1,0)) is 1 in this case. The score S(P,C) is obtained simply as∑
w⃗ S(P,C , w⃗), while the final score S(P) is obtained by summing S(P,C) for all C . In the

running example, all the remaining count vectors are equal to (1,0,0) so the score S(P,C) is

equal to 3. A dual version of the filter considering incoming connections is applied in the

same manner, and the two scores are added for each pattern.

175

Chapter 7 Fixed-Connectivity Pattern Design

This is a very simple filter that completely ignores the mutual influence of various pattern

edges through conflicting permutation requirements, as well as distribution of edges of differ-

ent weights among LUTs, therefore largely overestimating the possible coverage. It has one

important virtue, however—it is very fast to compute. Moreover, because we are keeping the

same packing and placement for a given benchmark and random seed pair, we can precom-

pute the score for each (w⃗ , s⃗p) pair on each particular placement. Despite its simplicity, this

filter is effective in reducing the number of possible expansions from several thousands, with

many clearly inferior to others and many essentially equivalent, down to a figure manageable

by the further stages of the algorithm.

7.5.7 Pruning the Candidates: The Second Filter

The second filter attempts to fix some of the problems of the first one. The first filter essentially

assumes that the static graph edges can be swapped between different LUTs dynamically,

to maximize the number of covered circuit connections incident to the given cluster. Here,

the static graph edges are really tied to their endpoint LUTs. An optimal permutation of

the LUTs in a given cluster is computed, considering that each LUT is one endpoint of its

incident connections, and that the other endpoints can be freely permuted, so as to make the

connections truly covered. This assumption means that the effects of conflicting permutation

requirements are still largely neglected, but also that the scores can still be quickly computed.

Computation of the score S(P,C) proceeds as follows:

1. For each LUT u in P , form the multiset of the incoming edge weights mi (u) and the

multiset of the outgoing edge weights mo(u).

2. Perform the same for each LUT u′ in C .

3. For each u in P and each u′ in C , compute the score s(u,u′) as |mi (u)∩mi (u′)|+|mo(u)∩
mo(u′)|.

4. Populate the score matrix Ms with rows corresponding to all u in P and columns to all

u′ in C by computing the appropriate scores s(u,u′).

5. Solve the assignment problem [Mun57] on Ms to obtain the score S(P,C).

The final score S(P) is again computed as
∑

C S(P,C). In the running example, mi (f) =

{(0,−1), (−1,−1)},mo(f) = {(0,1), (1,0), (1,0)}, while mi (x) = {} and mo(x) = {(0,1), (1,1)}. Hence,

s(f , x) = 1. The complete score matrix is

Ms =

x y z

f 1 1 1

g 1 0 0

h 0 0 0

176

Fixed-Connectivity Pattern Design Chapter 7

with the entries participating in an optimum assignment highlighted. S(P,C) is now equal to 2,

which is less than 3 reported by the first filter, because the distribution of edges with different

weights among the LUTs is now taken into account.

7.5.8 Pruning the Candidates: The Last Filter

So far, the filters had only focused on assessing coverage, without any relation to optimizing

delay. We note that this could have been different if each edge was weighted by its postplace-

ment criticality, when computing coverage. However, in this study, the third filter is the first

point when timing directly enters the edge selection process. It relies on optimal permutation

of a small subset of (near) critical nodes, using Integer Linear Programming (ILP), to obtain

a critical path delay prediction, based on the postplacement assessment and the improve-

ment achieved after LUT permutation. The details of choosing which nodes to permute are

described in Section 7.6.3, where the process is referred to as solving the critical core.

Finally, because intracluster connections occur about as often as all intercluster connections

combined, the first two filters would tend to select mostly zero-weighted edges. To prevent

this, we split the search into two stages—first for nonzero-weighted edges, followed by only

zero-weighted edges, with the previous set kept fixed. We will come back to the problem of

intracluster connections in Section 7.7.5.

7.6 Experimental Setup

The evaluation flow that we use in this chapter is based on VTR-7 [Luu14] and depicted in the

flowchart of Figure 7.9. For comparison, the underlying architecture is passed through the

traditional CAD flow of VTR, before being augmented by direct connections. The implementa-

tion flow of the pattern-enhanced architectures starts by reading the underlying architecture

description and the description of the pattern, and generating a modified architecture that

incorporates the pattern into the underlying architecture. The packing and placement files

produced in the reference flow are passed to the LUT permutation algorithm along with all the

postplacement timing information, the benchmark circuit netlist, and the modified architec-

ture model. After LUT permutation, those circuit connections that are implementable as direct

are prerouted, and the modified packing and circuit netlist files are generated. These two files

are then passed to the router along with the unmodified original cluster-level placement, to

obtain the final implementation of the circuit in the new architecture.

To reduce the measurement noise, all benchmark circuits are placed with five different place-

ment seeds; reported results are the median values of the five experiments. To further minimize

noise, we implement the delay targeted routing algorithm of Rubin and DeHon [Rub11].

In all experiments, the 40nm k6_N10_mem32K_40nm architecture from the VTR project is

used as the underlying (reference) architecture. In the following sections, we describe how

177

Chapter 7 Fixed-Connectivity Pattern Design

pattern
description

benchmark
circuit

underlying
architecture

in
pu

t

packing
(AAPack)

placement
(VPR)

routing
(VPR)

.net

.place

architecture
generator .xml

LUT
permutation

pre-routing .net

.blif

routing
(VPR)

results
reference

results reference flow pattern-enhanced flow

Figure 7.9: Pattern evaluation flow. Stages that are not part of the usual VTR flow are shown in blue.

this architecture is transformed to include the specified direct connections. To appropriately

model the added circuitry, we perform SPICE simulations in the closest technology node we

had access to—45nm PTM HP [Zha07]—and scale the delays to match those reported in the

underlying architecture. The details on modeling and the stages of the pattern-enhanced

architecture CAD flow where it departs from the reference one are also discussed in the

following sections.

7.6.1 Architecture Generation

VTR’s XML format used to describe the underlying architecture strives to be compact by

defining each block type (e.g., LUT) only once and then specifying the number of instances

of that block. We need to find a mapping between the node set of the static graph repre-

senting the pattern of direct connections and these iteratively specified blocks. Hence, the

original specifications are “unrolled” so that each instance becomes a uniquely identified

block, corresponding to one node of the static graph.

Each direct connection receives a unique driver block that is tied to the output of its source

178

Fixed-Connectivity Pattern Design Chapter 7

Figure 7.10: Experimental setup for direct connection delay measurement.

Figure 7.11: Experimental setup for multiplexer delay measurement.

node. The entire connection delay, along with that of the driver, is assigned to this block as the

loads of connections are known in advance. The driver blocks implement a separate repeater

blif primitive, which enables simple prerouting of a circuit using direct connections.

7.6.2 Circuit-level Modeling

In this work, we implement fixed-connectivity patterns on top of an existing VTR architecture

with already annotated area and delay of different blocks. Hence, we need to model the delays

of the direct connections to a comparable precision. We do this by representing each direct

connection as a sequence of Π-type RC stages [Bet99]. The per-tile-length RC parameters are

those of the channel wires of the underlying architecture. Each direct connection is modeled

by ⌊L/N⌋ full-tile stages plus one stage with RC parameters scaled by L/N −⌊L/N⌋, where L is

the length of the connection calculated as shown in Figure 7.7 and N the size of the cluster

(N = 10 in all experiments presented here). The drive strength of the first driver stage is set

to that of the first stage of the global wire driver of the underlying architecture, while the

179

Chapter 7 Fixed-Connectivity Pattern Design

0 2 4 6 8 10
length [#tiles]

0

50

100

150

200

250

300

350

de
la

y
[p

s]

(a) Direct connection delays.

0 5 10 15 20 25 30
#inputs

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

de
la

y
[p

s]

(b) Multiplexer delays.

Figure 7.12: Direct connection and multiplexer delays. The dashed line corresponds to the delay of the
reference four-tile-long global-routing channel wire of the underlying architecture.

second stage drive strength is swept in both directions, starting from that of the second stage

of the global wire driver. Once the delay stops decreasing, the sweep is terminated and the

last considered size is taken. When that is advantageous (for short wires), we remove the

second stage of the driver. The SPICE measurements on direct connections are made using the

circuit shown at the bottom of Figure 7.10. The model of a single global wire of the underlying

architecture is shown at the top of the same figure. The slightly reduced load applied to the

direct connection (i.e., 3/3 inverter instead of a 5/5 one) reflects the fact that it drives only

a single LUT input. We multiply all measured delays by the ratio between the delay of the

reference wire reported in the underlying architecture and the corresponding delay obtained

in our technology through SPICE simulation. The final delays are reported in Figure 7.12a.

Multiplexers are modeled as two-level structures [Chi13]. The pass transistor and first-stage

driver sizes are taken from the switch-block of the underlying architecture. The second-

stage driver NMOS and PMOS are assumed to be 3 and 5.4× wider than the minimum width

transistor, respectively. We use the second stage as the load, assuming that a single stage driver

is sufficient, given that the multiplexer is driving only one LUT input. Figure 7.11 shows the

circuit used for measuring the multiplexer delay (on the right) and the circuit of a 2:1 one-level

multiplexer with a two-stage driver used for reference delay measurement (on the left). We

scale all the delays by the ratio of the delay of the BLE [Bet99] output multiplexer reported in

the underlying architecture and the delay measured on the reference circuit. The resulting

delays are reported in Figure 7.12b.

7.6.3 LUT Permutation

As mentioned in Section 7.3, the initial placement of LUTs within the clusters, oblivious to

direct connections, does not offer sufficient opportunity to use them. To overcome this issue,

we employ the LUT permutation algorithm whose pseudocode is shown in Algorithm 7.2. First,

180

Fixed-Connectivity Pattern Design Chapter 7

Algorithm 7.2 LUT permutation.

1: function PERMUTE(pattern, clusters, placement, timing_graph)
2: for c in clusters do
3: RANDOMLY_PERMUTE(c)

4: E = FIND_CANDIDATE_CONS(clusters, placement, pattern)
5: core = EXTRACT_CRITICAL_CORE(timing_graph, E, size)
6: permutations, fixed_nodes = SOLVE_CORE(core)
7: permutations = ANNEAL(clusters \ fixed_nodes)
8: return permutations

9: function EXTRACT_CORE(timing_graph, E, size)
10: for e in E do
11: timing_graph.delay(e) = min_direct_con_delay(e)

12: DO_STA(timing_graph)
13: covered = E
14: V = NODES_INCIDENT_TO(E)
15: while |V| > size do
16: e = LEAST_CRITICAL(covered, timing_graph)
17: covered.remove(e)
18: timing_graph.delay(e) = programmable_delay(e)
19: DO_INCREMENTAL_STA(timing_graph)
20: UPDATE(V)

return V

we find the circuit connections that might possibly be covered by a direct connection—that

is, all connections between clusters whose relative distance equals the weight of some edge

of the pattern (function find_candidate_cons). All other connections are irrelevant for the

permutation process. Our primary goal in permuting the LUTs is to cover as many critical

circuit connections as possible by the fast direct connections of the pattern. Since we are

making decisions after placement, the timing predictions are already quite accurate and the

number of (close to) critical nodes is usually fairly limited. Hence, we can extract the critical

portion of the circuit—the critical core—and optimize its coverage exactly. For this, we proceed

as follows: Initially, we assume that all potentially coverable connections we just identified

are part of the critical core. We then reduce the core size greedily, by removing the edge of

the maximum slack, until the core size is less than a given parameter (function extract_core).

And, finally, ILP is used to find a legal permutation of the clusters containing the core nodes so

that the critical path delay is minimized. In order to keep the runtime reasonable, a timeout

of one minute is imposed on the solver but, in practice, the optimum is often reached much

faster. Because the core contains only a small fraction of the entire circuit, the resulting

permutation does not maximize the overall usage of direct connections, which is important

for reducing pressure on general routing. To achieve that, we conclude by performing a low

temperature simulated annealing, with a setup similar to that of VPR’s non-timing-driven

placement algorithm. A concrete example of the difference created by LUT permutation with

respect to the possibility of using direct connections was shown in Figure 7.3b.

181

Chapter 7 Fixed-Connectivity Pattern Design

7.6.4 Prerouting

After completing LUT permutation, all circuit connections that match an edge of the static

graph are implemented using the appropriate direct connection. This necessitates LUT

input permutation. When several connections share a multiplexer, the one with the least

postplacement slack is selected, while the others are left to be implemented using general

routing. The packed netlist is modified accordingly, as is the benchmark circuit netlist, by

instantiating repeater subcircuits between sources and targets of the prerouted connections.

Thus, instead of truly prerouting the circuit, we leave VPR with only one choice for routing

each prerouted connection.

7.6.5 Further Assumptions and Limitations

In order to preserve the legality of the circuit implementation after explicit permutation of

LUTs, the routing algorithm must no longer consider all LUT outputs to be equivalent. Due to

VPR’s current lack of support for selectively disabling the permutation of outputs [Luu14a],

this calls for preventing any route-time output permutation whatsoever. Allowing LUT output

permutation by the router for the reference architecture alone would be too unfair to the

pattern-enhanced architectures. On the other hand, disabling permutations altogether would

show unrealistically large benefits of direct connections, because there is clearly a trade-off

between choosing the permutation that optimizes direct-connection utilization and the one

that optimizes congestion and wire length in the programmable routing structure. Missing

a better alternative at the moment, we generate 30 different random permutations of each

packing for the reference architecture, prohibit any further output permutation by the router,

and choose the permutation resulting in the median critical path delay as the representative

one. Once we establish that fixed-connectivity patterns are indeed effective for optimizing

critical path delay of the implemented circuits through pattern exploration in this chapter, we

will extend VPR’s capabilities to include selective permutability in Chapter 8, which deals with

dedicated CAD support for such patterns.

Because our permutation algorithm is currently not capable of determining local routability,

we require that the underlying architecture has a fully populated crossbar and that all LUT

inputs are permutable. This means that we are unable to consider fracturable LUTs for the

time being. Similarly, because the algorithm is not aware of a priori fixed LUT positions in

certain clusters, we currently do not support carry chains. Hard-IPs (i.e., multipliers and

memories of the underlying architecture) remain fully supported. All these limitations could

cause the direct connections to appear slightly more appealing than they would have, had

the architectures more representative of the current state of the art been used; still, we do not

believe that this changes our final conclusions.

The search space is limited to patterns on 10 nodes, which conforms to the cluster size

of the underlying architecture, and up to 20 connections of Chebyshev length ≤ 4 (that is,

(N , M , w) = (10,20,4)). The search algorithm filters are set to pass 100, 10, and 3 expansions,

182

Fixed-Connectivity Pattern Design Chapter 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#iteration

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

Figure 7.13: Evolution of the relative change of the geomean postrouting critical path delay. Despite
some unsurprising noise, the overall trend seems clearly towards a monotone improvement. Iteration
counter is zero-based, meaning that the first direct connection was added to the pattern at x = 0.

respectively. The size of the critical core is set to 100 nodes and glpk version 4.64 [Mak19]

is used to solve it. In all experiments, routing channel width is set to 300. A subset of VTR

benchmarks is used for all experiments, with the four largest excluded due to prohibitive

runtime requirements.

7.7 Experimental Results

In this section we discuss the outcome of the search described in the preceding sections.

7.7.1 Intercluster Connections: Convergence

As mentioned in Section 7.5.6, the much larger number of intracluster connections appearing

in an average circuit would overwhelm the coverage-based filters, requiring the search to be

split into two phases. The first phase considers only intercluster connections, which have

higher potential to reduce delay when used successfully. Figure 7.13 shows the evolution

of the relative change of the postrouting critical path delay over the iterations of this first

phase of pattern search. The pattern itself is shown in Figure 7.14, with edges labeled as

weight/iteration, where iteration is the iteration of the search algorithm when the particular

edge was added.

Clearly and perhaps unexpectedly, Figure 7.13 is not perfectly monotonic and has consider-

able noise almost certainly due to low predictability of the routing process. For reference,

183

Chapter 7 Fixed-Connectivity Pattern Design

(0,3)/10

0

1

2
3

4

5

6

7

8

9 (0,-1)/0

(0,1)/1

(0
,2
)/
2

(0,-2)/3

(0,1)/4

(0,-1)/5

(0,2)/6

(0
,3)
/7

(0,-3)/8

(0
,-2
)/9

(-1,0)/11

(1,0)/12

(-
1,
0)
/1

3

(1,0)/14

(0,-1)/15

(0,-3)/16

(0,1)/17

(-4,0)/18

(4,0)/19

0
1

2
3

4
5

6
7

8
9

Figure 7.14: Pattern obtained through the search process. Dashed edges are added after the iteration
which results in the maximum achieved delay improvement (iteration #13) and are thus not considered
further in our analysis. Connections in the fabric depiction on the left correspond to the edges of
this best found pattern originating in one particular cluster. The four red edges are responsible for
achieving 68% of the total achieved gain.

it is interesting to inspect Figure 7.15, which shows the evolution of the critical path delay

change after critical core solving (third filter of the search algorithm), as predicted from VPR’s

postplacement data. This curve is not monotonic either, due to the heuristic nature of critical

core extraction and the limited time given to the ILP solver, but it is much smoother than

the postrouting curve of Figure 7.13. This indicates that, as noisy as it is, the evolution of

Figure 7.13 is not a result of chance but truly driven by a sound, albeit imperfect, predictor.

Note that during the search, the benchmarks bgm, LU8PEEng, stereovision0, and stereovi-

sion2 were temporarily removed to reduce the runtime, while mkPktMerge and stereovision1

were removed to enhance stability. The critical paths of these latter benchmarks contain no

connections between LUTs and are thus not directly improvable by the considered patterns.

184

Fixed-Connectivity Pattern Design Chapter 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#iteration

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

Figure 7.15: Evolution of the relative change of the geomean postplacement critical path delay predic-
tion after critical core solving.

sha

blob_merge

raygentop
diffe

q1
diffe

q2
or1200

ch_intrin
sics

LU8PEEng

mkPktMerge

mkDelayWorker32B

stereovisio
n1

stereovisio
n0

stereovisio
n2

boundtop bgm

mkSMAdapter4B
8

7

6

5

4

3

2

1

0

1

[%
]

Figure 7.16: Relative change of the postrouting critical path delay per benchmark. The orange line
shows the decrease in the geomean critical path delay. Practically, no circuit is worsened by the presence
of the direct connections and the benefit is up to 7%.

7.7.2 Intercluster Connections: Delay Impact

Because our ultimate goal is to minimize the postrouting critical path delay, we take the pat-

tern at iteration #13 (with 14 edges), corresponding to the minimum of the curve of Figure 7.13,

as the final one. Its edges are represented by solid lines in Figure 7.14. The per-benchmark

185

Chapter 7 Fixed-Connectivity Pattern Design

sha

blob_merge

raygentop
diffe

q1
diffe

q2
or1200

ch_intrin
sics

LU8PEEng

mkPktMerge

mkDelayWorker32B

stereovisio
n1

stereovisio
n0

stereovisio
n2

boundtop bgm

mkSMAdapter4B
4

3

2

1

0

1

2

3

[%
]

Figure 7.17: Influence of the permutation on delay changes. This graph shows the delay changes
resulting from fixing the permutations that led to improvements of Figure 7.16, but not using any
of the direct connections. The plot suggest that a part of the previously observed improvement is
caused by the different permutations. The magnitude roughly corresponds to the difference between
postplacement and postrouting delays (Figures 7.15 and 7.13).

delay changes for this pattern are shown in Figure 7.16. It is interesting to note the signifi-

cant differences in the amount of improvement that the obtained pattern brings to different

circuits. In the future, it could be useful to try to understand what circuit characteristics

are causing these differences, perhaps by applying techniques similar to those developed by

Hutton [Hut97]. That information could then be used to design different patterns of direct con-

nections for different classes of circuits, in the spirit of what Betz and Rose proposed [Bet95].

The pattern exploration algorithm presented in this chapter could be readily used for that,

by simply appropriately changing the set of circuits used during exploration to contain only

those from the target class. Due to the decoupling multiplexers through which the direct con-

nections drive the target LUT pins, all other circuits would still be effectively supported, with

the direct connections merely being less useful for them. The delay penalty which the circuits

not belonging to the target class would have to pay is limited to the delay of the decoupling

multiplexers themselves. Due to sparsity of the direct connection patterns, which is necessary

to maintain their speed, this penalty is typically very small, as we will see shortly.

The postplacement predictions of Figure 7.15 suggest that the obtained improvements did

not originate primarily from noise, but implementing connections as direct. Nevertheless,

it is important to know how much of this improvement comes from fixing a different LUT

permutation for the pattern-enhanced than for the reference architecture. To measure that,

we fix the permutations that led to the improvements of Figure 7.16 and report the postrouting

delay change without using the direct connections in Figure 7.17. As we can see, part of

186

Fixed-Connectivity Pattern Design Chapter 7

sha

blob_merge

raygentop
diffe

q1
diffe

q2
or1200

ch_intrin
sics

LU8PEEng

mkPktMerge

mkDelayWorker32B

stereovisio
n1

stereovisio
n0

stereovisio
n2

boundtop bgm

mkSMAdapter4B
0.0

0.2

0.4

0.6

0.8

1.0

[%
]

Figure 7.18: Maximum delay overhead. The graph shows the impact of the added multiplexer delay
on the circuit implementation found for the underlying architecture. We can always opt for these
implementations.

the observed improvement indeed comes from the chosen permutation. This explains, for

instance, why the circuits mkPktMerge and stereovision1 which do not even have connections

between LUTs on their critical paths appear as improved. Moreover, the magnitude of the

improvement contributed by the chosen permutation corresponds well with the mismatch

between the observed postrouting delay of Figure 7.13 and the postplacement delay predic-

tion of Figure 7.15. Despite this noise, the main source of improvement clearly does not lie

in different permutation fixing. We can conclude that the actual improvement due to the

introduction of direct connections is 2.77% instead of the 3.26% reported in Figure 7.16, with

the 0.49% difference contributed by permutation fixing.

In this chapter we have taken a specific avenue in adding direct connections. We have intro-

duced it in Section 7.3 with the visual help of Figure 7.2: we used direct connections connected

through multiplexers at the input of the LUTs; the rationale is that this would bring a minimal

penalty to the normal routing process whenever direct connections are not helpful. It seems

appropriate to verify such penalty. Figure 7.18 shows the relative postrouting delay changes for

the benchmark circuits implemented in the pattern-enhanced architecture with unmodified

packing of the reference (i.e., without any LUT permutation) and no use of direct connections.

As we can see, the penalty is indeed pretty insubstantial. Had the decoupling multiplexers

been merged into those of the crossbar, the penalty would likely have been even smaller, at

the expense of a slightly reduced effectiveness of direct connections.

187

Chapter 7 Fixed-Connectivity Pattern Design

-4 -3 -2 -1 0 1 2 3 4

4

3

2

1

0

-1

-2

-3

-4

0.7% 0.4% 0.6% 0.7% 1.3% 1.1% 0.7% 0.8% 0.5%

0.9% 0.6% 0.6% 1.0% 2.4% 1.0% 0.9% 0.7% 0.7%

0.7% 0.8% 0.7% 1.9% 3.6% 1.9% 0.7% 0.8% 0.9%

1.1% 0.8% 1.2% 2.4% 6.2% 2.1% 1.1% 0.8% 0.7%

1.6% 1.1% 2.2% 3.4% 0.0% 3.4% 1.6% 1.1% 1.3%

1.1% 1.1% 1.3% 2.0% 6.0% 1.9% 1.2% 0.8% 0.9%

1.1% 0.9% 0.9% 1.1% 3.2% 1.3% 0.7% 0.8% 0.6%

0.9% 0.7% 0.5% 1.2% 1.9% 1.1% 0.8% 0.3% 0.7%

0.7% 0.7% 0.5% 0.6% 1.2% 0.5% 0.5% 0.4% 0.5%

Figure 7.19: Distribution of target-cluster locations of intercluster connections bounded by w = 4. The
x-axis corresponds to the horizontal offset and the y-axis to the vertical offset. The data comes from the
sha benchmark. Dominant frequency of vertical connections and rough symmetry of the heat map
help explain the choices made by the search algorithm.

7.7.3 Intercluster Connections: The Pattern

Let us comment briefly on the found pattern itself. It is interesting that most of the selected

edges are vertical. This results from both the placement of circuits and the search algorithm

favoring vertical edges in case of ties. The latter decision is due to their potentially shorter

length (see Figure 7.7). To illustrate the distribution of postplacement intercluster connections,

irrespective of any direct connection, we show in Figure 7.19 a heat map of the average fraction

of signals going to each location in the neighbourhood of a cluster. For this we use the

sha benchmark which appears fairly representative of the whole set. The map indicates, for

instance, that 6.2% of the signals leaving any cluster, on average, connect to a LUT in the cluster

just above it. As we can see, there are indeed more connections that are vertical than those

that are horizontal, while the diagonal ones are even rarer. Another interesting observation

is that the heat map is fairly symmetrical, which could explain why pairs of opposed vectors

often occur as consecutive pairs of edge weights chosen by the search algorithm.

Finally, the area overhead of the added connections is equivalent to 612 minimum width

transistors, with 374 contributed by the drivers, and 238 by the multiplexers. This represents a

mere 1.13% increase of the cluster area of the underlying architecture (not counting the global

routing).

188

Fixed-Connectivity Pattern Design Chapter 7

7.7.4 Intercluster Connections: A Trade-Off

We may note that 68% of the entire achieved gain came from the first four edges added to the

pattern. They are shown in red in Figure 7.14. By sacrificing some of the performance gain, the

required minimum width transistor investment reduces to 147 or merely 0.27% of the cluster

area. Not only is the pattern formed by these four edges perfectly symmetrical in terms of

edge weights, but the edges were also chosen at each step to be the shortest ones with the

given weight, while maintaining the node degree bound of one. If we recall the discussion of

Section 7.5.2, this feature greatly simplifies the problem of permutation. Hence, it is probably

not only the good selection of edge weights, but also the possibility for an imperfect mapping

algorithm to actually use them that makes this pattern successful.

7.7.5 Intracluster Connections

As mentioned before, starting from intercluster connections seemed more reasonable both in

terms of easier filtering of best connection candidates and in terms of optimization potentials.

In fact, contribution of the intracluster connections to the geomean critical path delay of the

benchmark set used during the search is a mere 2.84%, compared to 33.6% for intercluster

connections. This confirms the expectations derived from the absence of local connections

from the typical critical path of Figure 2.17. Despite the drastically smaller margin for im-

provement, we did an experiment to add local direct connections to the best previous pattern,

by including in the ILP formulation only those connections that have both endpoints in the

critical core after it has already been extracted: this way, the solver can still return the previous

solution but can also opt for covering a local connection instead, if beneficial. As we can see

from Figure 7.20, there is little improvement in critical path delay, without any visible trend

towards this improvement increasing with addition of further local direct connections.

7.8 Conclusions

In this chapter, we demonstrated empirically that FPGA performance can benefit from intro-

duction of direct connections between LUTs, without any compromise in flexibility. More

importantly, we developed an efficient algorithm for automated design of fixed-connectivity

patterns. The 2.77% average improvement of the critical path delay may not seem large at

first, but it is comparable with the ≤ 3% improvement resulting from introduction of time-

borrowing capabilities to Stratix V [Lew13]. In the next chapter, we will develop dedicated

CAD tools for mapping circuits onto FPGA architectures with direct connections between

LUTs, to further increase their effectiveness. Exploring use of direct connections for replacing

portions of programmable interconnect in order to improve area efficiency (and hence in turn

delay through reduction in wire length) of reconfigurable fabrics, rather than just augment

the programmable interconnect with direct connections to improve its performance, is an

interesting avenue that we plan to pursue in future work.

189

Chapter 7 Fixed-Connectivity Pattern Design

0 1 2 3 4 5
#iteration

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

(a) Postplacement

0 1 2 3 4 5
#iteration

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

(b) Postrouting

Figure 7.20: Relative change of the geomean critical path delay while adding local connections to the
pattern of Figure 7.14.

7.9 A Note on Timing Assumptions

Since direct connections replace different paths through programmable interconnect, conclu-

sions about their effectiveness fundamentally depend on the delays of the resources which

they replace. This, in turn, depends on fabrication technology. For example, it may happen

190

Fixed-Connectivity Pattern Design Chapter 7

that the utility of intracluster direct connections would be much higher in scaled technologies,

as they could provide a low-load alternative to crossbar wires, especially if a relatively large

cluster size of previous technologies is retained (see Chapter 4). Unfortunately, due to some

logistical details related to the version of VTR that this study was based on, at the moment we

are not able to repeat the experiments presented here in a newer technology. Nevertheless, the

exploration algorithm which we developed is entirely technology-agnostic and can be used to

this end in the future, without any modification.

A more fundamental problem with timing assumptions is related to handling differences in

LUT input delays. Namely, delays of different inputs of a 6-LUT in Stratix IV, which formed the

basis for the underlying architecture used in this study are [Luu14]: 82, 173, 261, 263, 398, and

397 ps. However, since VTR, as of version 8, cannot route until LUT inputs in a timing-driven

mode (rather projecting sinks to cluster inputs during packing) [Luu14; Mur20], all inputs

are reported to have the average delay of 261 ps [Luu14]. This means that the present study

may have slightly overestimated the utility of direct connections, since their use is perceived

as beneficial whenever it is possible. If LUT input delays are faithfully represented, however,

if e.g., a direct connection is driving the input with the delay of 398 ps and the router can

reach the input with the delay of 82 ps through programmable interconnect, delay savings

caused by replacing the programmable path with the direct connection will be reduced by

398−82 = 316 ps—a very large number in comparison with the 126 ps delay of a length-4

channel wire in this architecture. Of course, this input-rotation penalty is exaggerated for the

pattern of Figure 7.14, since the in-degree distribution among its LUTs is (1,3,2,0,2,1,2,0,1,2).

Not only does this greatly reduce the rotation penalty (even to 0 for some of the LUTs), but

the low in-degrees also allow introduction of a more flexible input access structure without

incurring a large area and delay cost; this would make it possible to bring the most critical

signals to the fastest LUT pins through direct connections as well.

We should also note that some of the large delay discrepancy between the above LUT input

delays are caused by high complexity of the fracturable ALM used in Stratix IV [Lew05] which

would not exist in other implementations. In fact, alternatives that largely suppress even the

natural differences in input delays caused by the tree structure of the LUT’s multiplexer have

been invented [Chi08]. Finally, and perhaps most importantly, as technology scales, LUT

delays become less and less problematic in comparison with wire delays, meaning that input-

rotation penalty will be more easily offset by replacing wires of programmable interconnect by

low-load, minimum-length direct connections.

191

Chapter 7 Fixed-Connectivity Pattern Design

192

8 Dedicated Placement for
Fixed-Connectivity Patterns

In the last chapter, we developed an algorithm to automatically design patterns of direct

connections between LUTs by extracting information from placed circuits. In doing so, we were

constructing the pattern to fit the direct-connection-oblivious mapping of circuits, with little

effort invested in the opposite direction, to map the circuits to fit the constructed pattern: our

sole modification to the usual CAD flow was to permute LUTs within their respective clusters

after placement, so as to align them with the endpoints of the added direct connections, which

only altered the otherwise arbitrary intracluster placement produced by VPR.

There are multiple reasons why basing early exploration on existing standard CAD tools is ben-

eficial, one of them being purely practical. Namely, a problem in exploring such architectures

is that there could be two different causes for failing to achieve the anticipated effect of the

additional connections. One could, for instance, expect that a cascade of LUTs is reasonably

useful for reducing the critical path delay of a typical circuit. Failure to observe any benefit

could lead to a guess that the CAD tools do not provide adequate support for such cascades.

However, before dedicating effort to envisioning new algorithms, it would be useful to know

that the problem does not lie in the simplicity of the cascade itself, because, for instance, it

cannot cover multiple fanouts or fanins. Unfortunately, without an optimal algorithm for

putting the cascades to use, one cannot be sure which of these two potential sources led to the

unexpected result. In other words, a lack of good algorithms makes it hard to assess the quality

of architectures, while the lack of a good architecture makes it hard to assess the quality of

algorithms, unless they are proven to be optimal.

By demonstrating in the last chapter that fixed-connectivity patterns are indeed effective for

critical path delay optimization, we have broken this cycle of uncertainty: the constructed

patterns can only be rendered still more effective if coupled with dedicated CAD tools. In this

chapter, largely based on a paper previously published at the 30th International Conference on

Field-Programmable Logic and Applications in 2020, under the title “Timing-Driven Placement

for FPGA Architectures with Dedicated Routing Paths” [Nik20a], as well as its journal extension

which appeared in 2022 in ACM Transactions on Reconfigurable Technology and Systems,

under the title “Detailed Placement for Dedicated LUT-Level FPGA Interconnect” [Nik22], we

193

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT5

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT0

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT7

LUT8

LUT9

LUT5

Figure 8.1: Influence of movement freedom on delay minimization. Arrows depict a subset of con-
nections of the or1200 circuit, placed by standard VPR, on the architecture of Figure 8.2. The blue
arrows mark the connections that are successfully implemented as direct after appropriately moving
their endpoint LUTs, while those that remain programmable are shown in orange. In the left figure,
LUTs can only move within their respective cluster (indicated by the light green region depicting the
allowed positions for the central LUT shown in dark green), while in the right, they can also move to
the adjacent clusters, resulting in a 900 ps smaller delay.

develop a dedicated detailed placer that uses ILP to move LUTs across clusters, in order to

better align them with the direct connections of the FPGA.

8.1 Quantifying Expectations

Before diving into details, it is useful to quantify our hopes. In the previous chapter, we have

observed a ∼ 3% improvement of the average critical path delay of a subset of VTR circuits.

If the delays of all connections between LUTs were reduced to the average of the delays of

the direct connections in the best found architecture of the last chapter, the improvement

would rise to about 19%. This is clearly not achievable, but it shows that there is likely a fairly

big margin for improvement. A more illustrative example is given in Figure 8.1. Each cell

represents one 60-input cluster of ten 6-LUTs. The architecture also contains a number of

direct connections between individual LUTs, shown in Figure 8.2. The arrows show a subset

of connections of the or1200 circuit placed on this architecture by standard VPR [Luu14],

oblivious of existence of the direct connections, with a resulting postplacement delay of 13 ns.

Moving the LUTs within their respective clusters, in an attempt to improve this delay by

aligning the connections depicted by arrows with the direct connections of the architecture,

produces the figure on the left. The blue connections are the ones successfully aligned,

resulting in a delay of 12.57 ns. Allowing the LUTs to move to the adjacent clusters as well

produces the situation on the right, with the delay of 11.67 ns. These numbers were produced

by actual optimization, as described in the following sections, and clearly demonstrate the

benefits of moving LUTs across clusters.

194

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

LUT

to S
B

9 8 7 6 5 4 3 2 1 0

0.N.1

5.N.2 8.E.1

3.N.2

3.N.3 3.N.1

3.E.1

4.W.1

7.S.2

7.S.3

3.S.2
3.S.3
8.S.1 7.S.1

4 5 6 54 4 6 4 3 5

8.W
.1

1.N
.1

0.N
.1

2.N
.2

2.N
.3

9.S
.2

4.E.1

1.N
.2

1.N
.3

4.W
.1

5.S
.1

6.S
.2

6.S
.3

9.S
.1

e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

Figure 8.2: Target architecture corresponding to solid edges of the static graph of Figure 7.14. The
other endpoint of each direct connection is labeled as L.O.D, where L ∈ (0,9) is the index of the LUT
in its cluster, O ∈ {N ,S,E ,W } is the connection orientation with respect to the shown cluster, and D
the distance to the other cluster. Diagonal connections are also supported, but are not present in this
architecture.

Figure 8.3: Position of the proposed detailed placement algorithm in a typical FPGA CAD flow.

8.2 Target Architectures

In this chapter, we develop a general detailed placement algorithm that can target all direct-

connection architectures from the space defined in Section 7.4. The most important feature

of these architectures, without which the detailed placement approach presented in the

subsequent sections would not be possible, is that any direct connection can be used only

optionally, owing to the decoupling multiplexers at the inputs of the target LUTs. This guaran-

tees that every legal implementation of a circuit on the underlying FPGA architecture without

the dedicated interconnect will also be legal for the architecture augmented with the direct

connections. Even though the algorithm supports any architecture from the aforementioned

space, throughout this chapter, most experiments will use the best found architecture from

the previous chapter, the schematic of which is repeated in Figure 8.2. Whenever another

architecture is used, this will be stated explicitly.

8.3 General Approach

We tackle the problem of placement for FPGA architectures with direct connections between

LUTs by constructing a detailed placement algorithm which 1) selects a minimal subset of LUTs

that allows the desired critical path delay reduction to be obtained by implementing some of

the connections incident to the selected LUTs as direct; then 2) solves an ILP to determine

the new positions of the selected LUTs such that the critical path delay is actually improved.

Technical details of these two steps are explained in Sections 8.5 and 8.6, respectively, while

their relation to the existing work on detailed placement algorithms is presented in Section 8.4.

In this section, we attempt to give a higher level view of the important decisions that formed

our approach to the problem. Notably, we answer the question of why a placement algorithm

is imperative in the first place, why it is necessary to move individual LUTs, and why we

opted for a detailed placer which acts upon an already constructed placement oblivious of the

195

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

CLB

CLB

CLB

CLB

CLB

CLB

CLB

SB

LUT
B

LUT
A

(a) Implementing a connection using programmable
interconnect. Determined during routing.

CLB

CLB

CLB

CLB

CLB

CLB

CLB

SB

LUT
B

LUT
A

(b) Implementing a connection using a direct connec-
tion of the FPGA. Must be determined during place-
ment.

Figure 8.4: Importance of placement for using direct connections. Which wires and multiplexers will
implement a connection of the circuit using programmable interconnect (a) can be determined at
route time. However, whether it is possible to use a particular direct connection of the FPGA instead is
fully determined by the placement of the two endpoint LUTs of the circuit’s connection (b).

existence of the direct connections between LUTs. The position of the proposed algorithm in

the overall CAD flow is shown in Figure 8.3.

This section also includes a discussion of why arguably the most obvious solution to the place-

ment problem from an academic standpoint—using simulated annealing—is not particularly

well suited to the situation when the purpose of doing a placement is targeted implementation

of critical connections of the circuit by direct connections of the FPGA.

8.3.1 Is this not a Routing Problem?

The purpose of this chapter is to develop adequate CAD support for FPGA architectures

equipped with optional direct connections between LUTs, so that these fast dedicated connec-

tions may be used to implement the most critical connections of the user’s circuit and increase

its performance. In a standard FPGA CAD flow [Bet99] (Figure 8.3), it is typically the router

which determines the exact path through the programmable interconnect that will implement

a particular connection of the circuit, once its endpoints have been fixed during placement.

This is the case illustrated in Figure 8.4a.

Given that our goal is to determine if some connections of the circuit can be profitably routed

by the direct connections of the FPGA, a question could be raised if it is actually a routing and

not a placement algorithm that is required. Similarly to the carry chains [Luu14b], the direct

connections of the FPGA have uniquely defined endpoints. Hence, if a circuit connection

(A,B) is to be implemented using a direct connection between points f and g , A (respectively

B) must be aligned with f (respectively g) during placement; otherwise there will be no way

of accessing this particular direct connection. This is illustrated in Figure 8.4b.

196

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

A

B C

(a) An example circuit.

5

LUT

to S
B

LUT

to S
B

LUT
to S

B
2 1 0

1.W.2 1.W.1
6 5

0.E.1

1.E.2
(b) An example architecture.

LUT2

LUT1

LUT0

LUT1

LUT3

LUT2

LUT0

LUT1

B

A

C

(c) An example cluster placement.

LUT1

LUT1

LUT3

LUT2

LUT0

LUT2

LUT0

LUT1A

B

C

(d) An alternative cluster placement.

LUT2

LUT2

LUT0

LUT2

LUT3

LUT2

LUT0

LUT1

B

A C

(e) An example LUT placement.

Figure 8.5: Necessity of placing individual LUTs. Figures 8.5a and 8.5b respectively show a portion of
a circuit and a simple FPGA architecture on which it is to be implemented. Two alternative cluster
placements are shown in Figures 8.5c and 8.5d, both assuming {A}, {B ,C } for the initial packing of
LUTs into clusters. Each cluster is represented by a vertical column of three LUTs, designated by the
label of the circuit’s LUT that it implements, or LUT0–2 when left unoccupied. The architecture’s direct
connections are depicted in blue: dark when used, light when unused. With this initial packing of
LUTs, at most one connection of the circuit may be implemented using the direct connections of the
FPGA, when only entire clusters are placed. If individual LUTs are able to move independently during
placement, however, the outcome in Figure 8.5e can be obtained, with both connections of the circuit
implemented as direct and its critical path optimized.

Unlike the case of carry chains, timing criticality of a set of connections between LUTs cannot

be readily ascertained in the synthesis phase. At the same time, the number of possible topolo-

gies that the direct connections between LUTs can support vastly surpasses the columnar

cascade of the carry chains. For these reasons, strategies such as a priori locking blocks to-

gether and moving them in unison during placement [Luu14b] would be too constraining for

the problem at hand; not only could such a strategy fail to maximize the benefit of using direct

connections but it could even damage circuit’s performance, by prematurely fixing relative

positions of a group of LUTs.

8.3.2 Necessity of Placing Individual LUTs

Treating individual LUTs as movable objects during placement can result in superior place-

ment quality [Che04] and some modern placement algorithms demonstrate that this is practi-

cable at scale [Li19]. However, a typical FPGA CAD flow includes a packing stage before the

actual placement [Bet99], which groups LUTs together so that each group can be implemented

by a logic cluster of the FPGA. Then, these clusters, instead of LUTs, become movable objects

in the placement process, greatly reducing the time needed to complete it [Chi11].

To actually use the direct connections of the FPGA, the endpoint LUTs of a circuit’s connection

must be aligned with the endpoint LUTs of a direct connection. This is often impossible to

197

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

Figure 8.6: Critical path delay improvement due
to placement. The figure shows the relative criti-
cal path delay improvement achieved by VPR at
the end of the placement process, compared to
the initial random placement of a subset of VTR
benchmarks. A highly optimistic estimate of the
average potential additional delay reduction due
to usage of direct connections of the target FPGA
from Figure 8.2 (Section 8.1) is superimposed in
orange.

Figure 8.7: Postplacement critical path delay
evolution as a function of temperature update
iteration while placing the blob_merge circuit.
The orange line depicts the critical path delay
which is 5% worse than the one obtained at the
end of VPR’s placement process. To achieve this
final 5% improvement—roughly comparable to
what one could realistically expect from appro-
priately using direct connections—a significant
portion of iterations is used.

achieve by moving entire clusters of LUTs, as Figure 8.5 illustrates. Our goal is to optimize

the critical path delay of a circuit, which often requires implementing a small but precisely

selected subset of the circuit’s connections using the direct connections of the FPGA, and this

can be met only by appropriately placing individual LUTs and not clusters.

Hence, for the currently popular cluster sizes of about 10 LUTs, the problem we are facing

could involve up to an order of magnitude more movable objects with an order of magnitude

more candidate positions than what is usually tackled by a placer that follows a packing stage.

8.3.3 Global, Detailed, or Combined Placer?

General FPGA placers are very effective in optimizing the critical path delay of a circuit. To

illustrate this, we measure the critical path delays of the subset of VTR circuits for which

we previously computed the potential average critical path delay improvement due to di-

rect connections (Section 8.1) at two instants of the VPR’s placement process: 1) the very

beginning—that is, when all clusters are placed randomly and 2) at the end, when simulated

annealing converges. The relative delays are plotted in Figure 8.6. On average, they improve

by almost 45%.

The average additional improvement over that achieved by VPR, obtainable through the

implementation of connections between LUTs as direct, lies in the interval between ∼ 3%—the

value confirmed in the last chapter—and ∼ 19%—the upper bound presented in Section 8.1.

This means that the final combined improvement over the initial random placement will

198

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

fall somewhere in the orange strip of Figure 8.6. Whatever the actually obtained value of

improvement due to direct connections may be, it is clear that it will be dwarfed by the

improvement initially achieved by the general placer. Hence, it is meaningful to neglect the

impact of direct connections on critical path delay, until the critical path delay itself is reduced

sufficiently for this additional optimization to become important. This enables runtime

savings, since the initial part of the placement process can be performed at the cluster level.

8.3.4 Direct Connections at Low Temperature

Let us for the moment stay in the framework of simulated annealing used by VPR. An obvious

solution to the problem of individual LUT placement that would partially mitigate the runtime

increase would be to perform cluster placement until a certain temperature level, continuing

with placement of individual LUTs afterwards, until convergence.

8.3.4.1 Runtime Surge Persists

This approach has two issues, however. The first one is that it would not really resolve the

problem of runtime surge. To illustrate this, we plot in Figure 8.7 the evolution of the post-

placement critical path delay over temperature update iterations during a placement of the

blob_merge circuit. The orange line indicates the point where the critical path delay is 5%

larger than the final postplacement critical path delay that VPR was able to achieve. This value

was chosen as a reasonable estimate of what impact direct connections could have.

As Figure 8.7 shows, a large portion of the temperature update iterations is spent on this final

5% delay reduction. Let us optimistically assume for the moment that, with some tuning of

the exit criteria, the process would be able to end in 60 iterations. This would mean that about

a third of the time would be spent on the final 5% of the delay reduction and this would be the

time when placement of individual LUTs would have to be performed if the direct connections

are to be used appropriately. Given that a typical number of moves per iteration depends

on the number of movable objects with Θ(n4/3) [Bet99], a tenfold increase in the number of

movable objects when switching from placing clusters to placing LUTs would increase this

third of the runtime almost 22×, increasing the overall time about 8×. Since runtimes of

simulated-annealing-based placers are already not competitive by today’s standards [Van15],

this would likely be prohibitive in a production setting.

8.3.4.2 Difficulties in Utilizing Direct Connections

The much more significant issue with this approach is its inaptness for the problem of aligning

endpoints of circuit connections with the direct connections of the FPGA. As an illustration,

let us take a look at Figure 8.8. In the top part of the figure, a portion of an FPGA without any

direct connections is shown, with a pair of LUTs that eventually need to be connected. For

the sake of simplicity, let us assume that the delay of the implemented connection is some

199

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

A B

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

BA LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1 B

A

A B

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

UT1

UT2

UT3

LUT1LUT1

A B

A B

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1

LUT2

LUT3

LUT1LUT1

A

B

A B

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1

LUT2

LUT3

LUT1LUT1A B

A B

Figure 8.8: Difficulty of appropriately utilizing direct connections with simulated-annealing-based
placement. To implement a circuit connection as direct, both of its endpoints must be aligned with the
endpoints of the direct connection. This is not easy to achieve using the standard moves of swapping
pairs of randomly selected objects [Bet99]. Once a connection is implemented as direct, changing it
back to programmable would be expensive, which could lead to suboptimal usage of scarce direct
connections.

function of the Manhattan distance between the clusters in which the two endpoint LUTs

reside at the given instant of the placement process (dM in Figure 8.8). Let us also assume that

each move performed by the placer is a swap of two randomly selected LUTs [Bet99]. Each

move will be reflected on the cost function, allowing the optimization to favor moves that

improve it, as the temperature of the anneal decreases.

The bottom of Figure 8.8 depicts the same architecture augmented with one type of direct

connections. To appropriately model the impact that this has on the delay of the implemented

connection of the circuit, we must introduce a discontinuity in the cost function. Namely, if A

and B are positioned at LUT1, two clusters apart horizontally, the direct connection may be

used, resulting in a dramatic drop in delay. In all other cases, the delay is the same as it would

have been in the original architecture without direct connections. This is illustrated by the

formula at the bottom of Figure 8.8, with cluster (u).x (cluster (u).y) designating the x− (y−)

coordinate of the cluster in which the node u resides and u 7→ LU T1 describing the fact that

u is placed at LUT1 of its respective cluster. Let us assume that a move of B was generated,

resulting in the placement in the middle of the figure. In order for the LUTs to be properly

200

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

aligned with the endpoints of the direct connection, a move bringing A to LUT1 of its current

cluster must be generated. If this happens, the sudden drop in cost function will make it

unlikely for the connection to be broken again, provided that the temperature is low enough.

This illustrates two important issues: 1) if one endpoint of a circuit connection is aligned

with an endpoint of a direct connection of the FPGA (B in the middle placement above),

there are no guarantees that the other endpoint will be appropriately moved to complete the

implementation of the circuit connection as direct, before the first endpoint moves again; and

2) once a connection is implemented as direct, unless the temperature is high, it is unlikely

that it will move back to being programmable, which may prevent another, more critical

connection of the circuit from using the particular direct connection of the FPGA.

While both of these issues could perhaps be partially mitigated by clever engineering of the

cost function and adoption of directed moves [Vor07], it is evident that an approach better

suited to the landscape created by the direct connections would be highly beneficial. Needless

to say, appropriately capturing the discontinuities of the direct connections in other popular

frameworks for large-scale placement, such as analytical [Mar19], would be difficult as well.

Adopting a detailed placement approach can resolve most of the above issues. This amounts

to starting from a general placement produced by a placer which is unaware of the existence

of the direct connections and then strategically repositioning some of the nodes to improve

the critical path delay through appropriate use of the fast direct connections. Another benefit

of this approach is that it can be largely oblivious to which general placement algorithm is

used to produce the starting placement. This would have been much more difficult if the

direct connections were not strictly increasing the flexibility of the interconnect, as discussed

in Section 8.2. Of course, the starting general placement does impact the ability of the detailed

placer to improve the critical path delay. A more detailed discussion of this issue is given in

Section 8.9.2.3.

8.4 Prior Work on Detailed Placers

There is an abundance of published work introducing detailed placers, both for FPGAs and

ASICs [Li07; Cau11; Li12; Mih13; Mih13a; Dha16; Dha17]. Most of them operate on a sliding-

window principle, where a fixed region of the chip is selected for optimization and then

iteratively changed by sliding the window that determines it [Mar12]. One basic distinction

between the various algorithms is how they optimize inside the window. Some of them rely

on heuristics [Li07; Dha16] while others use exact optimization methods, such as ILP [Cau11;

Li12], SAT [Mih13], or SMT [Mih13a]. The virtue of heuristics lies in their scalability which

allows them to target larger windows at once, possibly increasing the improvement margin.

Exact methods are usually not as scalable, so they are confined to smaller windows, with

possibly smaller improvement margin, but are guaranteed to actually meet it. We take a

different approach to selecting which portion of the circuit will be optimized and describe it

in more details in Section 8.5. In this section, we analyze the existing approaches to provide

201

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

(a) Sliding window centered at cluster (9, 12).

(b) Sliding window centered at cluster (10, 12).

Figure 8.9: Sliding-window-based movable node selection [Mar12]. The figure shows two different
positions of a 3×3 cluster sliding window, on a portion of an FPGA containing a placement of the
blob_merge circuit. All nodes inside the window are considered movable. Red edges in the timing
graph of the circuit, shown on the left, connect different movable nodes. Clearly, the method gives little
control over which edges may have their delays improved as a result of the moves.

motivation for introducing the proposed one. We also express the reasoning that led us to

decide on using ILP as the optimization technique.

8.4.1 Movable Node Selection

The sliding-window approach to guiding local optimization is illustrated in Figure 8.9. One

obvious downside of this approach is that it gives little control over which edges of the circuit’s

timing graph may suffer a change in delay as a result of moving the nodes inside the window.

These edges are highlighted in red in Figure 8.9.

Detailed placers that iteratively optimize edges of the critical path itself, thus avoiding this

problem, have also been proposed [Dha17]. Such an approach naturally alleviates the poten-

tially artificial spatial constraints imposed by the sliding windows, as illustrated in Figure 8.10a.

However, optimizing only one simple path at a time may not be sufficient to actually decrease

the critical path delay. Hence, we adopt a related, but much more powerful approach, which

selects a number of edges whose timing should be improved, regardless of their location in the

timing graph, such that optimizing them maximizes the final critical path delay reduction. It

then considers the endpoint nodes of the selected edges movable, regardless of the location of

these nodes on the FPGA grid. An example of applying this method, described in Section 8.5,

on the same circuit used to demonstrate the previous two approaches is shown in Figure 8.10b.

Clearly, the selected edges form a more complex topology in the timing graph than a simple

path, while the movable nodes are distributed over a larger set of clusters than in either of

202

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

(a) Moving the nodes of the critical path.

(b) Selecting a subset of nodes that maximizes delay reduction (Section 8.5).

Figure 8.10: Movable node selection techniques without spatial constraints. Figure 8.10a shows the
results of deeming the nodes on a critical path of the circuit movable [Dha17], for the same example
previously shown in Figure 8.9. Figure 8.10b shows results of applying the method introduced in
Section 8.5. This method also imposes no constraints on the spatial distribution of movable nodes,
but it enables optimization of subgraphs of the timing graph of arbitrary complexity, maximizing the
chance that the critical path delay is actually reduced once the selected nodes are moved. We note
again that only a portion of the FPGA is shown; the movable nodes are in fact not in the corner.

the two previously described methods. Another example of spatial distribution of movable

nodes obtained by the method proposed in Section 8.5 is shown in Figure 8.1. Given that each

cell represents a cluster of ten LUTs, that is, ten potentially movable objects, a sliding-window

approach would likely be limited to not more than a few cells in width and height [Mar12].

8.4.2 Movement Freedom

A sliding-window-based selection method typically assumes that each node in the window can

move anywhere within the window, as illustrated in Figure 8.11a. We take a similar approach

by allowing each movable node to move anywhere within a square of half-width W , centered

at its original cluster. This is illustrated in Figure 8.11b.

The fact that the sliding-window-based movable node selection assumes all nodes within the

window to be movable has one important benefit: the subsequent optimization can guarantee

that there are no overlaps between nodes. While the method that we use also guarantees that

at the end of the optimization there will be no overlaps between the movable nodes, it leaves a

possibility for a movable node to overlap with a stationary one, within its movement region.

Such overlaps are only removed in a final postprocessing step, discussed in Section 8.7.2. The

rationale is that if the set of movable nodes is appropriately selected, the benefit of optimally

203

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

3 3-Sliding window

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0LUT0

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0LUT0

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

B

A

C

LUT2

LUT0

LUT2

LUT1LUT1

LUT2LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT1

LUT0

LUT2

LUT1

LUT0

(a) Sliding window.

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

B

A

C

W
 =

 1

W = 1
Movement region of A

(b) Adopted method.

Figure 8.11: Movement freedom of movable nodes. Figure 8.11a shows a portion of the FPGA with a
sliding window of 3×3 clusters used to select movable nodes. Inside this window, all nodes are movable
and each of them can be placed anywhere in the window. Figure 8.11b shows the approach we take in
this chapter. Only a subset of nodes in each square region of the FPGA is selected for movement. Each
of them can be placed at any position inside a square of half-width W , centered at its original cluster.

positioning them would most of the time far outweigh the penalty suffered from suboptimally

moving some other, less critical nodes standing in their way. If all nodes within the movement

regions of the originally selected movable nodes (Figure 8.11b) were to be considered movable

at the same time, the problem would quickly become impractically large, unless the number

of originally selected movable nodes is itself severely restricted.

8.4.3 Choice of the Optimization Method

Direct connections are very sparse in a typical architecture considered here, thus requiring

a high level of precision in placing the LUTs if the right connections of the circuit are to be

aligned with them. As we have seen in Section 8.3.4, this leaves heuristics with less space for

doing a good-enough job at various points in the circuit that would accumulate to a large

net improvement than they could have had if the direct connections were a more abundant

resource. For this reason, instead of attempting to design elaborate heuristics, we choose

the exact approach. In particular, we opt for ILP, as it allows straightforward modeling of the

timing information. Yet, we formulate the placement problem itself in a way that can be easily

converted to SAT.

The necessity to precisely position individual LUTs increases the potential number of mov-

able nodes as well as candidate locations for each of them by an order of magnitude when

compared to the classical problem of placing entire clusters [Dha17]. However, as we will see

shortly, it is exactly the sparsity of the dedicated interconnect that will help us resolve this

problem, by enabling more efficient ILP formulations than in the case of general detailed

204

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

B

A

C

1

3

1

4

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

B

A

C

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

B

A C

Architecture

e0e1

LUT

to S
B

LUT

to S
B

LUT

to S
B

2 1 0

1.W.2 1.W.1
6 5 5

0.E.1

1.E.2

A

B C

Circuit

Figure 8.12: Illustration of LP variables. Each edge in the timing graph of a circuit is assigned an
imp-variable determining the amount by which its delay should be improved so that the target critical
path delay is met. In order for the assignments of values to the imp-variables to reflect the restrictions
on node movement, each variable is bounded from above by the difference between the initial post-
placement delay and the minimum achievable delay, given the movement regions of its endpoints.

placement [Mih13].

8.5 The LP-Based Node Selector

The first step in our placement flow is to determine the LUTs that will be moved from their

initial positions. This problem is fundamentally linked to determining which connections of

the circuit should have their delays reduced so that the reduction of the critical path delay is

maximized.

8.5.1 Which Connections Should be Improved?

Let T be the critical path delay that should be met after the detailed placement. Our goal is to

select a minimal number of edges of the circuit’s timing graph which should have their delays

improved by their endpoint nodes being aligned with the endpoints of the direct connections

of the FPGA, such that the postplacement critical path delay is reduced below T . The rationale

is that the fewer edges there are to be improved, the fewer nodes will need to be moved and

more likely it is that the placement method of Section 8.6 will be able to find a solution in the

allowed runtime budget.

Let τu,v be the initial postplacement delay of the connection e = (u, v), as determined by

205

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

the general placer. In the example of Figure 8.12, this is illustrated using a simple model

based on Manhattan distance between the initial clusters of u and v , which we already saw in

Section 8.3.4. In practice, any model used by the general placer can be used for obtaining the

initial delays. Let us also assign to each edge e = (u, v) a variable impu,v describing how much

its delay should be improved so that the critical path delay bound is met. Then, the final delay

of the edge can be expressed as tu,v = τu,v − impu,v . In order to reduce the critical path delay

below T , we need to find an assignment of imp-variables, which will appropriately reduce the

delay of each edge. We can achieve this by solving a Linear Program (LP) of the following form,

introduced by Hambrusch and Tu [Ham97]:

min
∑

(u,v)∈E
impu,v , (8.1)

s.t. tau ≤ T, ∀u ∈V , (8.2)

tav ≥ tau + tu,v , ∀(u, v) ∈ E , (8.3)

0 ≤ impu,v ≤ Iu,v , ∀(u, v) ∈ E . (8.4)

Here tau represents the arrival time of node u, and constraints (8.2)–(8.3) model the timing

constraints in the usual manner. Note that to actually minimize the number of edges selected

for improvement, the objective should be

min
∣∣{(u, v) ∈ E : impu,v > 0

}∣∣, (8.5)

but representing it would require introduction of integral variables, which would render

solving the program on the entire timing graph prohibitive.

The imp-variables must be nonnegative, as assigning a negative improvement to an edge

with substantial slack could allow increasing the imp-variables of many other edges without

changing the minimization objective. Representing the possibility of edges being slowed down

due to node movement, to which negative imp-variables would correspond, is not needed at

this level, where we only wish to determine which edges should be improved. This situation

changes during actual movement of nodes and hence in Section 8.6, we model the full range

of delay values an edge can attain.

Similarly, the minimum values that can be assigned to the t-variables should reflect the

minimum achievable delay for the particular edge, given the movement regions of its endpoint

nodes. Hence, the imp-variables are bounded from above by the difference between the initial

postplacement delay τ and the minimum delay that the edge can realistically achieve (the I -

variables in (8.4)), as illustrated in Figure 8.12. Since we are constructing a dedicated placer for

architectures with direct connections between LUTs, we assume that the starting placement is

of high quality and that the delay of each edge can only be improved if it is implemented by a

direct connection. For example, if the initial clusters of A and C in Figure 8.12 were one more

cluster apart, horizontally, I A,C would have been zero, for W = 1.

206

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

8.5.2 Determining Movable Nodes

To extract the set of movable nodes, which we denote as Vm , from the solution of the above

LP, we simply introduce a threshold θ on the minimum delay improvement. Then, the set of

edges which should be improved and are thus candidates for implementation by the direct

connections of the FPGA is Es =
{
(u, v) ∈ E : impu,v ≥ θ}

. To actually implement these edges

with direct connections, nodes incident to them must be moved and thus enter Vm .

Controlling |Vm | can be done only indirectly, by specifying the bound on the critical path delay,

T . In general, the smaller the value of T , the more edges will have to be improved to meet

it and |Vm | will rise accordingly. The fractional nature of the imp-variables, however, allows

improvement to be spread among more edges than necessary, meaning that a more relaxed T

does not necessarily result in smaller |Vm |. We comment on this further in Section 8.8.1, while

the explanation of choosing the critical path delay bound is given in Section 8.7.

8.6 The ILP-Based Placer

In this section, we discuss various aspects of formulating the ILP that models the movement

of the nodes selected by the process described in the previous section.

8.6.1 Naive ILP Formulation

Each LUT of the FPGA can be described by a triple (x, y, i), where x and y are the coordinates

of its cluster and i the index within it. Let P (u,W) be the set of positions within the square

of half-width W , centered at the initial cluster of a movable node u (Figure 8.11). Each LUT

inside P (u,W) is a candidate for placing u. To each node u ∈Vm , we can assign the following

set of variables: xu,p ∈ {0,1},∀p ∈ P (u,W). The variable xu,p is 1 iff node u is placed at position

p. The following set of constraints describes a valid placement, where we again note that

overlaps with nodes outside Vm are removed in a postprocessing step:∑
u∈Vm

xu,p ≤ 1, ∀p, (8.6)∑
p∈P (u,W)

xu,p = 1, ∀u. (8.7)

The first set of constraints prevents overlaps of movable nodes and the second makes sure that

each movable node is assigned a unique position. Let Eψ = {(u, v) ∈ E \ Es : u ∈Vm ∨ v ∈Vm} be

the set of edges which have at least one incident movable node and are thus affected by the

placement, but have not been selected for improvement. The delay of each edge in Es ∪Eψ is

determined by the location of its endpoints:

tu,v =
∑

pu∈P (u,W),pv∈P (v,W)
τpu ,pv eu,v,pu ,pv , (8.8)

eu,v,pu ,pv ∈ {0,1}, ∀pu , pv , (8.9)

207

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

eu,v,pu ,pv ≤ xu,pu , (8.10)

eu,v,pu ,pv ≤ xv,pv , (8.11)

eu,v,pu ,pv +1 ≥ xu,pu +xv,pv . (8.12)

Here, τpu ,pv are constants corresponding to the least delay of the connection with its endpoints

placed at pu and pv , respectively. Constraints (8.10)–(8.12) are merely a way to linearize a

product of two binary variables [Wil13]. With the timing graph modeled as in the selection LP

(constraints (8.2)–(8.3)), we have a complete formulation of the placement ILP. If (u, v) is from

Eψ, some variables may become constants, simplifying the corresponding constraints.

This formulation is generic and can be used to place circuits on architectures with or without

direct connections. It is also rather intuitive and well known in literature. In a very similar form,

it has been used for SAT [Mih13] and SMT-based [Mih13a] timing-driven FPGA placement, as

well as for ILP-based wirelength-driven ASIC placement [Cau11].

The problem lies in the large number of position variables and quadratic length of delay

assignment constraints (8.8) with respect to that number. Fixing W to 3—the length of the

longest connection in the architecture of Figure 8.2—leads to 7× 7 = 49 clusters and 490

potential positions for each movable node. Any edge can have up to 4902 > 240,000 addends in

the delay assignment constraint. This is clearly an issue and we address it in the next section.

8.6.2 Exploiting the Sparsity of Dedicated Interconnect

Direct connections are sparse. If they were not, the width and count of the additional multiplex-

ers and the increased loading of LUT outputs would greatly reduce their speed, slowing down

the general routing as well. In the architecture of Figure 8.2, there are only 14 connections

originating in one cluster.

Let Ed (u, v) ⊆ P (u,W)×P (v,W) be the set of direct connections that can implement (cover)

the edge (u, v) ∈ Es . The exact position of a LUT matters only when an edge e ∈ Es incident

to it is being covered. In all other cases, knowing its cluster is sufficient, since placement-

time delay models of general placers rarely differentiate between different exact positions of

LUTs [Mar00], which may be subject to change during routing, to reduce congestion [Lew03].

Instead of listing all exact positions for all movable LUTs and inspecting which edges are

covered, we can list the edge covering possibilities and derive the LUT positions from them.

Let C (u,W) be the set of clusters within the square of half-width W , centered at the initial

cluster of a movable node u. A binary variable xu,c indicates that u is placed in cluster

c ∈C (u,W). We can now model the edge delays as follows:

tu,v =
∑

(pu ,pv)∈Ed (u,v)
τpu ,pv eu,v,pu ,pv + cu,v

∑
cu∈C (u,W),cv∈C (v,W)

τcu ,cv eu,v,cu ,cv , (8.13)

cu,v = 1−∑
(pu ,pv)∈Ed (u,v)

eu,v,pu ,pv . (8.14)

208

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

If there is a direct connection that covers the edge (u, v) in the current subproblem, the

appropriate τ from the first sum will determine the delay because the coverage indicator cu,v

will be 0. In all other cases, the indicator will be 1, causing the second sum to determine the

delay. The τ constants in that sum are the delays between the two appropriate clusters, as

modeled by the general placer. The eu,v,cu ,cv variables are products of the cluster position

variables, linearized using constraints similar to (8.10)–(8.12). Another level of linearlization is

applied to products with the coverage indicators. Note that constraints (8.13–8.14) are merely

an ILP-encoding of a generalized version of the delay model used in Figure 8.8. While the

sparsity of direct connections created problems for convergence of common formulations of

simulated-annealing-based placement, it allows compact modeling of the problem as an ILP.

The maximum length of the delay assignment constraint for W = 3 and the architecture of

Figure 8.2 is now 49×14+492 ≪ 4902. The first addend corresponds to ≤ 49 ways to choose the

starting cluster for the direct connection and 14 ways to choose the exact direct connection

leaving it, while the second addend equals the number of cluster pairs that determine the edge

delay if it is implemented as programmable. Similarly, the number of exact position variables

for each node u ∈Vm is reduced from |P (u,W)| to |∪{u,v}∈Es {pu : {pu , pv } ∈ Ed (u, v)}|; that is,

to only those positions implied by covering of some edge incident to the given node.

Our model is still not complete. The linearizations (8.10)–(8.12) are of course kept, and they

cause any eu,v,pu ,pv to imply exact positions of u and v . What is missing is that each exact

position xu,p=(x,y,i) implies the corresponding cluster position xu,c=(x,y). The following set of

constraints achieves that:

xu,c=(x,y) ≥
∑

i
xu,p=(x,y,i), ∀u ∈Vm ,c ∈C (u,W). (8.15)

Finally, we need to make sure that each node is assigned exactly one cluster, using constraints

similar to (8.7).

8.6.3 Delay-Based Model Compaction

Further compaction of the model can be achieved by excluding the irrelevant portions of

the timing graph. Edges could be irrelevant either because their delay does not change

during placement and they do not carry any information relevant for computing of arrival and

required times of the nodes affected by placement, or because they can never become critical,

under any feasible assignment of delays to the remaining edges.

8.6.3.1 Simplification of Fixed-Delay Subgraphs

An example of simplification of the fixed-delay subgraphs is shown in Figure 8.13, where the

graphs are constructed merely for the purpose of illustration and have no further meaning.

Edges selected for improvement (Es), and the nodes incident to them (Vm) are shown in green,

209

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

1

2 3
4

5 6

7

8

9

10

11 12

13

14
15

16 17 18

a b c

d

m

M

5 6

7

9

10

11 12

14
15

17 18

Figure 8.13: Illustration of timing graph compaction through simplification of fixed-delay subgraphs.
Green edges are selected for improvement (∈ Es) and their endpoint nodes are movable (∈Vm). Red
edges are affected by the movement of nodes, but were not selected for improvement (∈ Eψ). The
remaining edges, shown in black, are unaffected by node movement. The graph on the right shows how
the starting graph on the left can be simplified, by excluding some of its fixed-delay subgraphs and
replacing them with additional constraining nodes, depicted as squares. Edge (m, M) is used to store
the delay of the longest path in the part of the timing graph not represented in the compacted version
(G[V \V ′]).

while other edges whose delay may change as nodes move (Eψ) as well as the stationary nodes

incident to them are shown in red. For sufficient timing information to be represented, all

colored nodes from the graph in the figure are kept in its compacted version. Node 14 must

also be kept, as it informs the solver that there is an alternative path between nodes 11 and 18,

which may at some point become the determining factor for the arrival time of node 18. If

that happens, no more effort should be spent on trying to further decrease this arrival time, by

decreasing the delay of edge (15,17); optimizing other edges should be tried instead.

Let us now take a look at node 13. Since none of the movable nodes is reachable from it, it

cannot affect the arrival time of any of them. It can, however, affect their required time and it is

important to represent this correctly in the compacted graph, as otherwise, critical subgraphs

may be left out of optimization. To do this, it is not necessary to include any nodes from

the transitive fanout of 13, because all the delays in it are unaffected by repositioning of the

movable nodes. Instead, we can introduce an additional node, labeled as d in Figure 8.13,

and connect it to 11 by an edge with a delay equal to the delay of the edge between 11 and 13

(fixed throughout the placement as neither 11 nor 13 are movable) increased by the difference

between the original critical path delay and the required time of 13. This increase represents

210

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

the total delay of the downstream portion of the graph unaffected by the movement of nodes.

A similar approach can be applied to e.g., node 3, but with its arrival time being relevant to

represent the fixed delay of the upstream portion of the graph. This can be generalized as

follows:

1. Find all nodes V ′ ∈V which can both reach and are reachable from nodes in Vm .

2. For each v added to V ′ in step 1 and each u : (u, v) ∈ E , if u was not added to V ′ in step 1,

add a new node n to V ′ and connect v to it by an edge with delay tn,v = tu,v + tau , where

tau is the arrival time of u.

3. For each u added to V ′ in step 1 and each v : (u, v) ∈ E , if v was not added to V ′ in step

1, add a new node n to V ′ and connect it to u by an edge with delay tu,n = tu,v +T − trv ,

where trv is the required time of v and T the original critical path delay.

Finally, we need to add another edge to the compacted graph which will represent the critical

path delay of the portion of the original graph which was excluded from its compacted version.

Otherwise, it may appear to the solver that the critical path delay can be reduced more than

what is actually possible. This edge is labeled as (m, M) in Figure 8.13. Although the toy

example of Figure 8.13 fails to illustrate it, given that |Es | typically does not exceed a few tens

or perhaps a few hundred, the above technique can provide great reduction in the size of the

timing graph.

In principle, it would suffice to include additional nodes only for the most constraining

parents/children, in steps 2 and 3, but savings from this would not be very high, so we do

not do that in our implementation. Similarly, the path 11 → 14 → 18 could be replaced by

a single edge connecting nodes 11 and 18 and carrying the delay of the entire path. While

this approach could result in significant further compaction, generalizing it to subgraphs

with more complex connectivity is not as straightforward, so we chose to stay with the simple

procedure described above.

8.6.3.2 Filtering Slow Edges

A lower bound on critical path delay achievable by solving the placement ILP can be easily

computed from the solution of the selection LP (Section 8.5). The maximum delay of each

edge can be easily computed by considering the allowed positions of its endpoint nodes. We

annotate the timing graph with these maximum delays and compute the slacks of all edges,

given the lower bound on the critical path delay. All edges which have a positive slack are

guaranteed not to be critical for any valid solution of the ILP and can thus be safely removed

from the timing graph.

211

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

Algorithm 8.1 Detailed Placer

1: Ti ncumbent ← Tst ar t

2: gapincumbent ←∞
3: Tlow ← get_lower_bound()
4: Thi g h ← Tst ar t

5: while Thi g h −Tlow > T mi n
δ

do
6: Tt ar g et ← (Tlow +Thi g h)/2
7: movable, TLP ← lp_select_movable_nodes(Tt ar g et)
8: status, placement, TI LP , gap ←
9: ilp_place_nodes(movable, TLP ≤ T ≤ Ti ncumbent , Tlb = TLP −2T mi n

δ
)

10: if (TI LP < Ti ncumbent)∨ ((TI LP = Ti ncumbent)∧ (gap < gapincumbent))
11: update_incumbent(TI LP , gap, placement)

12: if (gap < 1)∨ (status = infeas)
13: Thi g h ← Tt ar g et

14: else
15: Tl ow ← Tt ar g et

16: legalize(incumbent)

8.6.3.3 Filtering Slow Position-Pairs

Another very straightforward compaction method that we use is to compute the slacks of all

edges on a timing graph annotated with the minimum achievable delay for each edge and then

remove all eu,v,pu ,pv (eu,v,cu ,cv) position pairs for which τpu ,pv (τcu ,cv) exceeds the minimum

delay of (u, v) increased by its slack.

8.7 The Complete Algorithm

In this section, we combine together the two stages of the placement flow, presented in

Sections 8.5 and 8.6, and introduce a postprocessing step that removes overlaps between the

movable and the stationary nodes.

8.7.1 Composing the Detailed Placer

We use a simple binary search to minimize the target critical path delay specified when

selecting the movable nodes (Section 8.5). The lower bound of the search range is determined

by performing a timing analysis on the timing graph of the circuit with the delay of each edge

replaced by the minimum it can attain, given the movement regions of its endpoint nodes.

This is represented by line 3 of Algorithm 8.1. The upper bound is set to the critical path delay

of the starting placement produced by the general placer, assuming that all connections are

implemented as programmable. The search stops when the two bounds differ less than T mi n
δ

,

which we set to 30 ps in the subsequent experiments.

212

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

LP select nodes

ILP place nodes

LP target

generic placement

No

ILP infeasible
or gap tight?

Yes

tighten LP targetloosen LP target

target change
suceeded?

Yes

legalize incumbent

No

routing

main optimization
steps

cr
iti

ca
l p

at
h

de
la

y
m

in
im

iza
tio

n
co

nt
ro

l l
og

ic

Figure 8.14: Flowchart of the complete algorithm.

The main loop consists of solving an improvement LP with the current target bound, to obtain

the set of movable nodes (line 7; see Section 8.5) followed by solving the related placement

ILP to actually position the movable nodes (line 9; see Section 8.6). The solver is instructed to

minimize the critical path delay, TI LP , as much as possible, given the allowed runtime budget.

The solution is constrained to have a critical path delay at most as large as the smallest one

encountered so far, Ti ncumbent . The lower bound on achievable critical path delay used for

pruning the edges which can never become critical (see Section 8.6.3) is set to the critical path

delay obtained after thresholding the LP solution, TLP (see Section 8.5), reduced slightly to

leave some margin for round-off.

If the obtained critical path delay, TI LP , is lower than the current best, Ti ncumbent , or they

are equal, but TI LP is proven by the solver to be closer to the optimum for the current set of

movable nodes, the incumbent solution is updated (line 11). When the solution is proven to be

within 1% of the optimum, the algorithm considers that the current placement problem was

successfully solved and that an attempt to achieve more critical path delay reduction should

be made. Hence, the binary search range is constricted from the right, on line 13. The same

213

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1 3

1

2

4

6

5

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

7

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1 3

1

2

4

6

5

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

7

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT2

LUT0

LUT1LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1

LUT2

LUT1

LUT0

LUT2

LUT0

LUT1 3

1

2

4

6

5

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

7

Figure 8.15: Determining movement cost between a pair of clusters during legalization. The figure
illustrates the cost of moving nodes 2 and 3 from the cluster (3, 0) to the cluster (4, 0). The postmove
worst negative slack is the same for both nodes. Hence, the timing cost difference between the starting
situation and after the move is used to break the tie. The difference is lower for node 3, hence it will be
the moved by the legalizer.

happens when the problem is proven infeasible. This means that the incumbent solution

cannot be improved with the current selection of movable nodes. To resolve this, the set of

movable nodes should likely be increased, which is achieved by reducing the target critical

path delay so that more edges need to be improved to meet it. If the solver failed to provide a

definitive answer in the allowed runtime budget (even if it did find a new incumbent solution,

but failed to prove it optimal) the problem is deemed too difficult to be solved in the allowed

runtime budget and the binary search range is constricted from the left (line 15) in a hope that

a looser target critical path delay would result in an easier placement problem.

Once the binary search converges, any overlaps which may have occurred between the mov-

able and the stationary nodes must be removed. This is done by the postprocessing step on

line 16, discussed in more detail in the next section.

8.7.2 Legalizer

For removing overlaps between the movable and the stationary nodes, we adapt the algorithm

of Darav et al. [Dar19]. Since our main goal is to optimize performance of the processed circuit,

the legalizer must be timing-aware itself, not to undo the critical path reduction achieved by

the detailed placer, unless that is necessary for achieving a legal placement.

8.7.2.1 Pricing LUT Movement

When faced with a decision about which LUT should be moved between clusters A and B , as a

primary factor, we use the postmove worst negative slack of all connections incident to the

LUT we are attempting to move, and choose the LUT for which the magnitude of this slack is

214

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

the smallest. This is illustrated in Figure 8.15. In case of ties, we compute the difference in the

timing cost of the LUT before and after the move and pick the LUT with the smallest increase

in this cost. The timing cost is adopted from VPR’s timing-driven placer [Mar00]:

cr i tu,v = 1− sl acku,v

T
, (8.16)

t cost
u =

∑
(u,v)∈E

tu,v × cr i tαu,v +
∑

(p,u)∈E
tp,u × cr i tαp,u , α ∈R+. (8.17)

Here, T designates the current critical path delay. For the selectivity parameter α, we use 8 in

the subsequent experiments. We first run the legalizer without performing any slack updates,

relying on the values obtained in the first static timing analysis after the detailed placement

converged. If the legalized critical path delay exceeds the one computed by the ILP solver

during detailed placement by more than 100 ps, we rerun the legalizer, committing each move

to the timing graph as soon as it is decided and updating the slacks accordingly, to prevent

suboptimal local move decisions from having a large cumulative effect.

8.7.2.2 Bounding Overlaps

Success of targeted application of the placement ILP to a limited set of movable nodes spread

over wide regions of the starting placement relies on the observation that in many circuits,

the gain from appropriately positioning a small number of critical nodes far exceeds the loss

created by suboptimally moving other, less critical nodes that stand in their way. However,

this only holds if not too many nodes need to be moved from their original positions during

postprocessing. Otherwise, the timing information that was presented to the ILP solver, which

assumes that all stationary nodes will retain their original positions, may be too significantly

disturbed in the overlap removal process, leading to an inevitable loss in the achieved delay

reduction. To prevent this from happening, we need to control the amount of overlap occurring

in each cluster. This is easily achieved with the help of the following constraints:∑
u∈Vm

xu,c ≤ωc , ∀c (8.18)

The constant ωc ∈ N sets a limit on the number of movable nodes which can be placed in

cluster c = (x, y). We determine it as follows:

s = |{V \Vm}∩ c| (8.19)

ωc = N − s +min(s,δ) (8.20)

Constant s holds the number of stationary nodes in cluster c, while N is the cluster size in

the underlying FPGA architecture. The allowed overflow is determined by the parameter δ,

which we set at 2 in the subsequent experiments, as we observed that this value does not limit

achieved postplacement delay reduction and rarely leads to an increase in this delay after

legalization. The N − s part of Equation (8.20) specifies that all positions which were originally

215

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

LUT

to S
B

LUT

to S
B

1 0

0.S.1
5 6

1.N
.1 Circuit

A

C

B

Architecture
Figure 8.16: Pitfalls of the basic selection LP. An architecture is shown on the left, and a piece of a circuit
on the right. A solution selecting both circuit connections for improvement is valid, but not supported
by the architecture in which each LUT has only one incident direct connection.

unoccupied, or were occupied by the movable nodes, can be filled by the movable nodes.

The min(s,δ) part guarantees that overlaps within the cluster can be resolved by removal of

stationary nodes in the postprocessing step. As mentioned before, overlaps between movable

nodes which are assigned exact positions are impossible due to constraints (8.6). However,

some of the movable nodes may not be assigned an exact position but merely a cluster,

in which case they could overlap with other movable nodes. Since the movable nodes are

necessarily critical (albeit for the LP target critical path delay), as otherwise the minimum

improvement solution of the improvement LP (Section 8.5) would not affect them, they should

be positioned with care. Allowing them to overlap with other movable nodes, by letting the

amount of overlap exceed the number of stationary nodes in the cluster, would leave their

positioning to the fast but suboptimal legalizer.

8.8 Optimization

In the previous sections, we described the basic form of the proposed algorithm. It first

solves an LP to determine which edges in the circuit’s timing graph should have their delays

reduced by moving their endpoint nodes to align them with the endpoint LUTs of the direct

connections available in the FPGA architecture. Then it solves a related ILP to perform the

actual placement. We focused on simplifying the ILP model to the extent that would allow for

its solving in reasonable time. Until now, the solution of the improvement LP determined the

formulation of the placement ILP, but we have done little to formulate the improvement LP

itself in such a manner that its solution is more likely to produce a feasible ILP. In this section

we focus on extending the formulation of the improvement LP to more tightly couple it to the

placement ILP. We also extend the formulation of the placement ILP itself, so as to make it

easier to solve.

8.8.1 Specialization of the Improvement LP to the Architecture

Keeping the set of edges selected for improvement (the number of movable nodes, |Vm |)
reasonable is necessary for the related placement ILP to be solved in a reasonable amount

216

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

of time. That was the reason for which the formulation of the improvement LP presented

in Section 8.5 minimized the total delay improvement. Let us for the moment disregard the

aforementioned fact that minimizing the total improvement does not necessarily translate

to smaller |Vm |, nor does this necessarily translate to an easier-to-solve ILP. Let us assume

instead that the obtained ILP can be solved in the allowed amount of time. The ILP can still be

infeasible, for various different reasons and we would like to predict and ideally prevent this

already at the LP level. For example, simultaneous improvement of two different connections

might imply two nodes being placed at the same position or one node being placed at two

distinct positions at once.

Aside from the initial placement of the circuit and the allowed movement regions, the FPGA ar-

chitecture strongly influences feasibility of the placement ILPs constructed from the solutions

of the improvement LPs. Figure 8.16 shows a simple architecture and a piece of a circuit. With

the current LP formulation, there is nothing that would prevent the solution from including

both edges of the circuit, although it is clear that the architecture will not be able to improve

both of them. We cannot enforce exclusivity in choosing between these two edges without

introducing integer variables, but we can use additional constraints to increase the chance

of obtaining solutions that the architecture can support. To begin with, we can introduce a

bound on the sum of the improvements of the two edges, equal to the maximum of the two

individual bounds. This still does not prevent the solution from including both connections,

but covering only one of them during the placement process will suffice for this short path to

meet what is expected of it in terms of overall delay reduction. For that reason, we introduce

pairwise improvement bounds, for each pair of edges sharing a common node. In general,

this will not be the maximum of the two individual bounds, but the largest total improvement

achievable within the movement regions of the three incident nodes. To further improve

feasibility, we include bounds on the total improvement of the incoming, the outgoing, and all

the edges incident to each individual node.

8.8.2 Solving Successive ILPs

During the binary search for the smallest achievable critical path delay, the placer may have to

solve many ILPs. However, since all of them are describing a detailed placement problem of the

same circuit, on the same FPGA architecture, and with the same starting general placement,

they will inevitably be related. We can use this fact to make the solution of the ILPs simpler, as

well as improve the chances that they are feasible, by slightly adjusting the LP formulation.

8.8.2.1 Enforcing ILP Solution Overlaps

During experimentation, we observed that the number of covered edges rarely substantially

decreases between two consecutive incumbent solutions. Moreover, in most cases that we

have inspected, there was a substantial overlap between two consecutive incumbent solutions

in terms of which edges were covered in them. We can use this fact to help the solver find

217

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

feasible solutions more easily. Let E i
s be the set of edges selected for improvement in the

problem that led to the incumbent solution and E i
c ⊆ E i

s the set of edges that are actually

covered in the incumbent solution. We denote the set of edges selected for improvement in

the current problem as Es , like before. Similarly, Ec denotes the set of edges covered in a valid

solution of the current problem. Then we add the following two constraints to the ILP:

|Ec | ≥η
∣∣∣E i

c

∣∣∣× |Es |
max

(|Es | ,
∣∣E i

s

∣∣) , η ∈ (0,1), (8.21)

∣∣∣Ec ∩E i
c

∣∣∣≥ ζ
∣∣∣E i

c

∣∣∣× ∣∣Es ∩E i
s

∣∣∣∣E i
s

∣∣ , ζ ∈ (0,1). (8.22)

The first constraint specifies the minimum number of covered edges, with respect to the num-

ber of covered edges in the incumbent solution, appropriately scaled down if the number of

edges selected for improvement is smaller than in the problem which produced the incumbent

solution. The second constraint specifies the minimum amount of overlap between the set

of covered edges in the incumbent solution and the solution of the current problem. Note

that
∣∣E i

c

∣∣ and
∣∣E i

s

∣∣ are constants obtained by inspecting the incumbent solution, while |Es | and∣∣Es ∩E i
s

∣∣ are also constants obtained from the solution of the improvement LP. Hence, the

right-hand side of both constraints is constant. The left-hand side is a single sum, encoded

using the coverage indicators cu,v = 1− cu,v , where cu,v was introduced in Section 8.6.2. In the

subsequent experiments, parameters η and ζ are set to empirically determined values of 0.7

and 0.3, respectively. In general, there is no requirement that η+ζ = 1.

8.8.2.2 Using ILP Solutions to Improve LP Formulation

Anticipating which edges selected for improvement will not actually improve due to conflicts

with improvement of other selected edges is difficult at the LP level. On the other hand,

whenever the ILP returns a feasible solution, it is possible to inspect it for selected edges which

did not actually get covered and discourage their repeated selection in the LP solution. To do

that, we extend the objective of the LP to

min
∑

(u,v)∈E
αu,v impu,v , αu,v ∈R+∪ {0}. (8.23)

We temporarily set αu,v to 0 for all edges covered by the incumbent solution (E i
c), to prevent

unnecessary restriction of possible overlap between it and the solution of the next problem

(Section 8.8.2.1). For the remaining edges of the timing graph, the coefficients are initially set

to 1. Each time a solution to the ILP is found, for every edge (u, v) ∈ Es , we multiply αu,v by 0.9

if it is covered by the solution and 1.1 if it is not.

In this manner, we encourage the solution of the improvement LPs to include edges that

were repeatedly shown to be successfully coverable and discourage it from selecting the ones

which were repeatedly shown to be difficult to cover. Note that since we do not modify the

218

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

Architecture

A

B C

LUT

to S
B

LUT

to S
B

1 0

3.W.1 1.W.1
LUT

2

to S
B

5 5 5

2.E.1

1.E.1

LUT
3

to S
B

6

3.W.1

0.E.1

LUT2

LUT0

LUT1

LUT3

LUT2

LUT0

LUT1

LUT3

(0, 0) (1, 0)Circuit

Figure 8.17: Example used to illustrate formulation tightening through node degree matching.

bound on achievable improvement of any edge, but merely the way in which the invested

improvement enters the objective, if the target critical path delay is small enough to require

selection of edges which over time grew expensive, there is nothing that would prevent this

from happening. Of course, exact values of the scaling parameters can be changed as required.

8.8.3 ILP Formulation Tightening

In Section 8.6.2, we have exploited a specific characteristic of FPGA architectures with direct

connections to encode the placement ILP much more efficiently. We can exploit characteristics

of a particular architecture further, but this time to produce additional constraints that will

tighten the formulation of the ILP.

The approach that we use is to classify LUT positions based on the number of incoming and

outgoing direct connections they have. Then, we introduce constraints which keep count of

the incoming and outgoing direct connections that each movable node has under the current

assignment of values to the variables. Finally, we use these counts in implications that help

exclude the positions which cannot accommodate the required number of direct connections.

To illustrate this, let us take a look at the example in Figure 8.17.

Let us for the sake of simplicity neglect the timing information, assume that all nodes of the

circuit are movable and that the objective is to maximize the number of covered edges. This

can be described with the following ILP:

max cA,B + cA,C ,

cA,B = e A,B ,(0,0,3),(1,0,2) +e A,B ,(0,0,3),(1,0,1) +e A,B ,(0,0,1),(1,0,0),

cA,C = e A,C ,(0,0,3),(1,0,2) +e A,C ,(0,0,3),(1,0,1) +e A,C ,(0,0,1),(1,0,0),

e A,B ,(0,0,3),(1,0,2) ≤ xA,(0,0,3), xB ,(1,0,2); e A,B ,(0,0,3),(1,0,2) +1 ≥ xA,(0,0,3) +xB ,(1,0,2),

e A,B ,(0,0,3),(1,0,1) ≤ xA,(0,0,3), xB ,(1,0,1); e A,B ,(0,0,3),(1,0,1) +1 ≥ xA,(0,0,3) +xB ,(1,0,1),

e A,B ,(0,0,1),(1,0,0) ≤ xA,(0,0,1), xB ,(1,0,0); e A,B ,(0,0,1),(1,0,0) +1 ≥ xA,(0,0,1) +xB ,(1,0,0),

e A,C ,(0,0,3),(1,0,2) ≤ xA,(0,0,3), xC ,(1,0,2); e A,C ,(0,0,3),(1,0,2) +1 ≥ xA,(0,0,3) +xC ,(1,0,2),

e A,C ,(0,0,3),(1,0,1) ≤ xA,(0,0,3), xC ,(1,0,1); e A,C ,(0,0,3),(1,0,1) +1 ≥ xA,(0,0,3) +xC ,(1,0,1),

e A,C ,(0,0,1),(1,0,0) ≤ xA,(0,0,1), xC ,(1,0,0); e A,C ,(0,0,1),(1,0,0) +1 ≥ xA,(0,0,1) +xC ,(1,0,0),

219

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

xA,(0,0,3) +xA,(0,0,2) +xA,(0,0,1) +xA,(0,0,0) +xA,(1,0,3) +xA,(1,0,2) +xA,(1,0,1) +xA,(1,0,0) = 1,

xB ,(0,0,3) +xB ,(0,0,2) +xB ,(0,0,1) +xB ,(0,0,0) +xB ,(1,0,3) +xB ,(1,0,2) +xB ,(1,0,1) +xB ,(1,0,0) = 1,

xC ,(0,0,3) +xC ,(0,0,2) +xC ,(0,0,1) +xC ,(0,0,0) +xC ,(1,0,3) +xC ,(1,0,2) +xC ,(1,0,1) +xC ,(1,0,0) = 1,

xA,(0,0,3) +xB ,(0,0,3) +xC ,(0,0,3) ≤ 1,

xA,(0,0,2) +xB ,(0,0,2) +xC ,(0,0,2) ≤ 1,

xA,(0,0,1) +xB ,(0,0,1) +xC ,(0,0,1) ≤ 1,

xA,(0,0,0) +xB ,(0,0,0) +xC ,(0,0,0) ≤ 1,

xA,(1,0,3) +xB ,(1,0,3) +xC ,(1,0,3) ≤ 1,

xA,(1,0,2) +xB ,(1,0,2) +xC ,(1,0,2) ≤ 1,

xA,(1,0,1) +xB ,(1,0,1) +xC ,(1,0,1) ≤ 1,

xA,(1,0,0) +xB ,(1,0,0) +xC ,(1,0,0) ≤ 1.

While solving the continuous relaxation of the above program the solver could yield the

following fractional solution

e A,B ,(0,0,3),(1,0,2) = e A,C ,(0,0,3),(1,0,2) = e A,B ,(0,0,1),(1,0,0) = e A,C ,(0,0,1),(1,0,0) = 0.5

cA,B = cA,C = 1

xA,(0,0,3) = xA,(0,0,1) = 0.5

xB ,(1,0,2) = xC ,(1,0,2) = xB ,(1,0,0) = xC ,(1,0,0) = 0.5,

with all other variables at zero. Of course, this solution is not feasible for the ILP itself, since

it implies that all nodes partially occupy two positions each. It would be good to make this

solution infeasible for the relaxation too. To do so, let us start by introducing covered fanout

counting variables, f ou , and covered fanin counting variables, f iu , for each movable node. In

the running example, these would be:

f oA = cA,B + cA,C ; f i A = 0, (8.24)

f oB = 0; f iB = cA,B , (8.25)

f oC = 0; f iC = cA,C . (8.26)

Let us focus on f oA , since no other variable in the current example is interesting, as will

soon become apparent. Let the binary variable xu,i =
∑

pu∈{p=(x,y, j)∈P (u,W): j =i} xu,pu designate

that the movable node u is placed at LUTi in one of the clusters within its movement region.

The following implication always holds: (f oA > 1) =⇒ xA,3 = 1. To encode this, we can first

introduce another binary variable f obu,θ, indicating that f ou ≥ θ. We can assign a valid value

to this variable with the help of the following two constraints [Wil13]

θ f obu,θ ≤ f ou , (8.27)

(µ−θ+1) f obu,θ+θ−1 ≥ f ou , (8.28)

where µ is the largest number of connections originating at u which could potentially be

220

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

covered (upper bound on f ou). In the running example the constraints would be:

2 f obA,2 ≤ f oA , (8.29)

f obA,2 +1 ≥ f oA . (8.30)

In the previous fractional solution, (cA,B = cA,C = 1) =⇒ f oA = 2. Hence, constraint (8.30)

implies that f obA,2 = 1. To complete the implication that the fanout constraint has on valid

placement positions, we merely need to add the following constraint

f obA,2 ≤ xA,3 = xA,(0,0,3) +xA,(1,0,3), (8.31)

which makes the previous fractional solution invalid in the continuous relaxation of the

program as well. As can be seen in Figure 8.2, in a typical architecture, the fanin and the

fanout of LUTs is rather small, which means that not many values of the θ-threshold need to

be considered. This also allows for combining the fanin and fanout constraints. For example,

encoding (f i bu,2∧ f obu,1) =⇒ xu,4 would constraint a movable node with at least two covered

incoming edges and one covered outgoing edge to LUT4, as it is the only one which can support

that in the architecture of Figure 8.2. It is important to note, however, that depending on

the value of µ, degree matching may not be as effective as the above example illustrates. For

instance, if µ and θ are 6 and 2, respectively, f obu,2 can be as low as 1/5.

In principle this degree-matching approach could be recursively extended to counting the

covered fanins/fanouts of predecessors and successors up to a certain distance [Nik19], to

further constrain the set of valid positions in the continuous relaxation. We have not tried this

in practice yet.

8.9 Results

In this section, we present the results of applying the proposed placement algorithm on the

target architecture.

8.9.1 Experimental Setup

We inherit the delay modeling from the previous chapter. We also retain the experimental

methodology, along with its limitations. Notably, we do not support carry chains, fracturable

LUTs, nor sparse crossbars at the moment. One important restriction of the previous method-

ology is now lifted, however. We extended VPR to support cluster output equivalence specifi-

cation after placement, independently for each cluster. As a result, there are no longer any

constraints on route-time LUT permutation for the reference architecture, while for the one

with the direct connections, only those LUTs that actually use a direct connection are kept

fixed; the others may be freely permuted by the router. To further improve realism, we allow

each cluster output in both architectures to reach all four adjacent routing channels. Thus

221

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

we avoid the situation where different pins have access to different channels, which is not

representative of industrial architectures, such as Agilex [Chr20]. At the moment, we do not

have a sound method for legalizing the number of inputs to each cluster, so we increase the

number of physical cluster inputs to 60 for both architectures (the maximum for a ten 6-LUT

cluster). As this is not uncommon in industrial architectures [Fen12; Li19], we do not believe

that it has any impact on the validity of the results.

All experiments were performed on a 20-core (40-thread) Xeon-based server with 256 GB of

RAM, using CPLEX 12.10 with a timeout of 10 minutes for the solver. The reported results are

medians of five different starting placements and each circuit was routed by the delay-targeted

routing algorithm of Rubin and DeHon [Rub11], implemented on top of VTR 7.0 [Luu14], with

the channel width fixed at 300 tracks.

8.9.2 Delays

In this section, we present the impact of applying the proposed algorithm to the architecture

of Figure 8.2 on the critical path delay of the implemented benchmark circuits.

8.9.2.1 Postplacement Delays

For the cases when the LUTs are allowed to move only within their initial clusters (W = 0) and

in a region of 3×3 clusters centered at the initial clusters (W = 1), the delays obtained through

solving the sequence of placement ILPs (Section 8.7) are shown in the columns labeled as

covered in Table 8.1. The > 400 ps difference between the average delays of 10.09 ns and 9.68

ns is significant and translates to about 3× greater relative average improvement over the

reference, when LUTs are allowed to change clusters.

We may note that the 1.94% average improvement for the W = 0 case is noticeably lower than

what was previously reported in Chapter 7. This could be an artifact of an inferior movable

node selection method, although the lower bounds in Table 8.1 suggest a more fundamental

cause. The cause is in fact of architectural nature: because we use a 60- instead of a 40-input

cluster architecture, a much denser packing is obtained, bringing some of the intercluster

routing delay into the clusters. Since the architecture has no local direct connections, when

W = 0, the placer cannot do anything to improve their delay, while when W > 0 it can. To verify

the hypothesis, we reran the experiments for W = 0 on a subset of circuits for which the average

relative improvement was 2.22%, using a 40-input architecture. The improvement rose to

3.55%, which is much closer to the previously reported results. This illustrates the importance

of considering other architectural parameters when deciding which direct connections are the

most beneficial.

The placements for W = 0 are legal by construction, but those for W = 1 are not. The postle-

galization results are also reported in Table 8.1. The delay does sometimes deteriorate due to

legalization, but in most cases by a modest amount.

222

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

Table 8.1: Delays in nanoseconds. Each entry corresponds to a median of delays obtained for five
different placement seeds. Entries have been computed independently of the corresponding entries in
other columns. For instance, the routed critical path delay of or1200 amounting to 12.20 ns does not
necessarily correspond to the postrouting critical path delay of the placement for which the median
postplacement critical path delay of 11.75 ns was obtained. Rather, the entries state that the median
postplacement delay for this circuit was 11.75 ns, whereas the median routed delay was 12.20 ns.
Similarly, the 230 ps of overhead due to direct-connection-selection multiplexers is the median penalty
that was paid and does not necessarily correspond to the amount of overhead which contributed to the
median routed delay being 12.20 ns.

postplacement postrouting

lower bound covered
circuit ref. W = 0 W = 1 W = 0 W = 1 legal. −∆[%] ref. w/ dir. mux −∆[%] w/o dir.
raygentop 4.70 4.70 4.70 4.70 4.70 4.70 0.00 4.87 4.88 0.02 -0.21 4.88
ch_intrinsics 3.15 3.15 2.84 3.15 3.15 3.15 0.00 3.28 3.27 0.03 0.30 3.27
mkDelayWorker32B 6.83 6.83 6.55 6.83 6.58 6.58 3.66 7.09 7.04 0.03 0.71 7.36
mkSMAdapter4B 5.16 5.11 4.97 5.11 5.02 5.02 2.71 5.38 5.26 0.05 2.23 5.63
bgm 23.56 23.56 22.21 23.56 22.66 22.66 3.82 23.66 23.04 0.20 2.62 26.33
boundtop 6.10 6.01 5.57 6.01 5.73 5.73 6.07 6.05 5.82 0.05 3.80 6.37
stereovision0 3.74 3.74 3.31 3.74 3.52 3.52 5.88 3.74 3.57 0.06 4.55 4.06
diffeq1 20.45 19.48 18.24 19.81 19.19 19.19 6.16 21.16 20.01 0.12 5.43 21.86
diffeq2 15.69 14.92 13.46 15.02 14.48 14.48 7.71 16.14 15.14 0.11 6.20 16.68
blob_merge 9.90 8.76 6.79 9.44 8.90 9.16 7.47 9.89 9.21 0.11 6.88 10.56
or1200 13.08 12.66 10.76 12.77 11.69 11.75 10.17 13.12 12.20 0.23 7.01 15.66
LU8PEEng 105.05 101.07 91.47 101.49 95.57 95.63 8.97 104.86 96.45 0.98 8.02 110.17
sha 11.89 11.02 9.15 11.25 10.65 10.83 8.92 11.88 10.86 0.15 8.59 12.59
geomean 10.29 9.99 9.03 10.09 9.68 9.72 5.54 10.46 10.01 0.09 4.30 11.07

8.9.2.2 Postrouting Delays

The postrouting delays are reported in the column designated as w/ dir. The postlegalization

relative improvement is generally retained throughout the routing process. Many of the cases

where a nonnegligible deterioration occurs can be explained by the delays of the additional

multiplexers that are not modeled during placement. Those circuit connections that are

implemented as direct are forced to suffer this additional delay, while the others are rarely

impacted by it. This is due to the sparsity of the direct connections, which causes relatively few

LUT inputs to be delayed. The difference that dedicated placement brings to the postrouting

delay is shown in Figure 8.18.

In the placement ILP formulation, we allow connection delays to decrease only when imple-

mented as direct. However, it is possible that some of the delay improvements in Table 8.1 are

due to shortening of programmable connections or packing improvement. To verify if this is

the case, we also routed the circuits placed with the dedicated algorithm, but without actually

using the direct connections. The results are reported in the w/o dir. column of Table 8.1.

Clearly, it is not the overall improvement of placement that led to the positive results. In fact,

the dedicated placer significantly distorts the general placement, in a way that makes sense

only in the presence of direct connections.

223

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

sha

LU8PEEng
or1200

blob_merge
diffeq2

diffeq1

stereovision0
boundtop bgm

mkSMAdapter4B

mkDelayWorker32B

ch_intrin
sics

raygentop

8

7

6

5

4

3

2

1

0

1

[%
]

Figure 8.18: Relative change in the postrouting critical path delay. The W = 0
and the W = 1 cases are shown in orange and blue, respectively. The dashed
red line represents the relative change of the geomean critical path delay over
all circuits, for W = 0, while the solid line represents the same for W = 1.

sha

LU8PEEng
or1200

blob_merge
diffeq2

diffeq1

stereovision0
boundtop bgm

mkSMAdapter4B

mkDelayWorker32B

ch_intrin
sics

raygentop

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 8.19: Sensitivity to starting placement. Starting postplacement delays
for all five starting placements of each circuit are shown in grey. Postlegal-
ization delays for W = 1 are shown in blue. All values are normalized by the
maximum starting postplacement delay occurring for the particular circuit.

224

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

8.9.2.3 Sensitivity to the Starting Placement

In Section 8.3.3, we argued that it is sufficient to apply a dedicated detailed placer to a general

starting placement produced without knowledge of existence of the fast direct connections,

because the additional delay decrease due to appropriate usage of these direct connections is

small compared to the amount of optimization that the general placer can achieve with respect

to a random, unoptimized placement. Given that in practice, during detailed placement, a

small subset of movable nodes can be moved only to a limited distance, how much of this

further delay reduction can actually be achieved could depend on the starting placement.

To assess this, we plot in Figure 8.19 the starting postplacement delays (grey) and the final

postplacement delays after legalization (blue) for all five starting placements of each circuit. All

delays corresponding to the same circuit are normalized by the largest starting postplacement

delay occurring for that circuit. We can see that there are significant differences in the achieved

relative delay improvement between different placements of the same circuit, even if the

starting postplacement delay is the same. A notable example is the blob_merge circuit.

As discussed in Section 8.3, we believe that successfully constructing a dedicated placer that

would combine global and detailed placement in a scalable manner, while actually maxi-

mizing the benefit from using the direct connections, is not particularly likely. Nevertheless,

Figure 8.19 suggests that providing some information about the direct connections to the

general placer may allow it to create more opportunity for the detailed placer to improve the

critical path delay.

8.9.3 Improvement Subgraphs

The size and the structure of the circuit subgraphs induced by the connections selected for

improvement (the solid edges in Figure 8.20) influence both the time needed to solve the

placement ILPs and the achievable critical path delay reduction. Some basic properties of the

last successfully placed subgraph in the run resulting in the median postplacement delay are

given in Table 8.2. The circuits that achieved a final delay improvement of < 3% are omitted, as

their subgraphs were either very small, or no successful placement was found for any of them.

Perhaps the most apparent feature of the subgraphs is their fragmentedness, visible in the

components columns which show the sizes of the weakly connected components (maximal

subgraphs where every node can be reached from all others when edge orientation is ne-

glected). The diameter (longest of the shortest paths between all pairs of nodes) often remains

substantial, however. The node degrees are low, which is appropriate for the architecture of

Figure 8.2.

The subgraphs induced by the connections that are actually implemented as direct (the blue

edges in Figure 8.20) are noticeably smaller than the ones originally selected for improvement,

but they still cover a large portion of their edges.

225

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

Table 8.2: Properties of the subgraphs induced by the connections selected for improvement. The
shaded rows show the corresponding properties of the subgraphs induced by the connections that were
successfully improved by being implemented as direct. Columns W and H correspond respectively to
the width and the height, in number of clusters, of the region bounding the movable nodes. Angular
brackets denote an average.

size components degrees

circuit |V | |E | W H # 〈|V |〉 max|V | 〈total〉 max total max in max out diameter
boundtop 29 18 18 9 11 2.64 5 1.24 3 2 1 4

25 14 18 9 11 2.27 3 1.12 2 2 1 3
stereovision0 51 39 39 13 12 4.25 16 1.53 5 4 2 6

36 20 39 12 16 2.25 3 1.11 2 2 2 3
diffeq1 38 32 7 6 6 6.33 14 1.68 6 1 5 9

31 19 7 6 12 2.58 4 1.23 3 1 2 4
diffeq2 38 33 6 4 5 7.60 17 1.74 4 3 2 11

30 17 6 4 13 2.31 3 1.13 2 2 1 3
blob_merge 49 37 4 8 15 3.27 9 1.51 5 2 4 6

47 28 4 8 19 2.47 3 1.19 2 2 2 3
or1200 97 71 14 16 26 3.73 11 1.46 3 3 2 11

87 50 14 15 37 2.35 4 1.15 3 3 1 3
LU8PEEng 334 227 24 21 111 3.01 10 1.36 5 4 5 8

294 164 24 21 130 2.26 4 1.12 3 3 2 3
sha 74 52 13 8 23 3.22 10 1.41 4 2 3 7

59 33 13 8 26 2.27 4 1.12 2 2 2 4

Without the information on how the individual connections selected for improvement are

positioned within the entire circuit graph, it is not apparent how covering each of them

influences the reduction of the critical path delay. We show one particular improvement

subgraph in Figure 8.20. The dashed arrows mark the edges between the movable nodes

that were not selected for improvement. It should not be surprising that they often occur as

intermediate edges of paths that were selected for improvement. The intention of the selection

LPs of Section 8.5—although there is no guarantee that it will actually be realized—is to select

a minimal subset of edges of a path as this directly influences the size of the placement ILPs.

We can see that, in this case, the numerous small connected components are not merely pieces

of unrelated paths, but in fact constitute a carefully selected subgraph of a nontrivial graph.

This showcases the generality of the movable node selection method that was mentioned in

Section 8.4.

Another interesting observation that can be made from Figure 8.20 is that the connections that

were successfully covered use a wide variety of direct connections available in the architecture,

with different span lengths and directions, both vertical and horizontal. This seems to confirm

what we concluded in Chapter 7: that using only very simple patterns of direct connections,

such as the vertical cascades, may not expose their full potential.

226

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

e9

e9

e9

e4 e4

e4

e4

e10

e9

e3

e3

e7

e7

e13

e13

e0

e0

e0

e0

e0

e1

e12

e12e5

e12 e8

e1

e8

Figure 8.20: Subgraph selected for improvement in the blob_merge circuit. All nodes are movable.
The blue solid arrows correspond to the edges that were successfully implemented as direct after
dedicated placement. The orange solid arrows represent the edges selected for improvement that were
not successfully implemented as direct. Finally, the dashed arrows depict the edges that exist between
the movable nodes but were not selected for improvement. Those nodes that have an incident direct
connection have their final positions as labels. The label of each blue edge corresponds to the identifier
used in Figure 8.2 to mark the direct connection that implemented it.

Table 8.3: Solution runtime. All runtimes are in seconds. Columns under ILP preparation hold the
average time taken to set up each ILP as well as the average time taken to solve the preceding LP.
Columns under ILP status hold the number of algorithm iterations which resulted in a feasible ILP, an
infeasible ILP, and a timed-out ILP, respectively. Columns under flexibility hold the average number
of positions per movable node (covering position pairs per edge selected for improvement). Finally,
columns under 〈ILP sol.t〉 hold the average time taken by the ILP solver to find a feasible solution (prove
infeasibility), as well as the average size of the branching tree. The remaining runtime entering the wall
clock time includes loading of datastructures, setting up the initial LP, attempts to solve infeasible LPs,
and final legalization.

ILP preparation ILP status flexibility (last feas.) 〈ILP sol. t〉

circuit #LUTs
wall

clock
CPU 〈LP sol. t〉 〈setup t〉 feas. infeas. timeout 〈pos./u〉 〈pair/e〉 〈|tree|〉 feas. infeas.

diffeq2 322 92.05 370.63 0.05 3.12 4 0 0 42 81 73 12.88 —
diffeq1 485 156.86 810.27 0.07 3.69 5 0 0 43 78 215 22.93 —
mkSMAdapter4B 1982 52.82 34.92 0.33 2.38 2 1 0 32 37 0 0.06 0.04
sha 2280 2355.68 38358.80 0.21 6.44 5 0 2 38 88 4561 210.42 —
or1200 3054 279.96 1423.68 0.11 6.71 3 0 0 44 85 682 59.12 —
boundtop 3070 87.45 73.94 0.22 3.64 4 1 0 31 50 0 0.44 0.02
mkDelayWorker32B 5602 127.45 110.88 0.26 5.44 3 0 0 42 39 0 0.09 —
blob_merge 6019 2967.47 47072.96 0.46 4.76 5 0 2 42 93 9455 311.82 —
stereovision0 14779 274.80 271.00 0.41 10.13 3 1 0 36 79 0 2.13 0.02
LU8PEEng 26455 4637.07 55084.80 3.43 72.80 3 0 4 37 81 4666 264.04 —
bgm 36480 1624.23 3445.75 3.38 71.54 4 0 0 36 82 5412 43.03 —

8.9.4 Runtimes

Runtime breakdowns for the placement run that resulted in the median postplacement delay

of the given circuit are reported in Table 8.3. Circuits ch_intrinsics and raygentop are omitted

because for them no improvement was possible in the median case, and this was detected

immediately after computing the lower bound on achievable critical path delay (Section 8.7).

In all cases, the number of ILPs solved until convergence is small (≤ 7). For majority of

227

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

the solved ILPs, a solution at least as good as the previous best one was obtained, meaning

that infeasible cases were often eliminated at the LP level, because the sought critical path

delay was impossible to meet. The LP solution time was generally very small, with a trend of

increasing with the increasing circuit size, which is expected since the LP models the entire

circuit. This solution time can be further reduced by considering only the critical subgraphs of

the timing graphs.

The solution times for the ILPs are displayed in the last two columns of the table. There seems

to be no correlation between the size of the circuit and the solution time, which is expected, as

the size of the movable node set has no a priori correlation with the circuit size either. Some of

the ILPs are solved by merely solving the continuous relaxation of the problem in the root of

the search tree (〈|tree|〉 = 0). Others, however, require substantial branching. In these cases,

the capability of CPLEX to branch in parallel can be useful. For this size of the search trees,

memory is, however, not a concern. The largest trees required on the order of a few hundreds

of megabytes.

Each ILP also needs time to be constructed. This time is reported under 〈setup t〉. In some

cases, it is nontrivial, but this is mostly due to a fairly inefficient Python implementation.

The average number of positions per movable node (〈pos./u〉) is substantial in most cases,

though lower than the theoretical maximum of 90. The average number of covering pairs per

edge (〈pair/e〉) is also much lower than the 8100 that would occur in the naive formulation.

Finally, the table also shows wall-clock times measuring the duration of the entire detailed

placement run, from loading datastructures with the output of VPR to storing the postlegaliza-

tion results. These times also include a one-time LP setup, which is later updated by merely

changing the target critical path delay bound and the objective of Section 8.8.2.2. As with ILP

setup, the combined overhead of the aforementioned steps is tolerable, but not always negligi-

ble (maximum being 1,140s for bgm); we believe this to be mostly due to a fairly inefficient

Python implementation.

The reader may notice that the runtime spent on dedicated detailed placement is substantial,

given the size of the circuits in Table 8.3. In some cases, it even overshadows the rest of the

CAD flow; for example, the standard VTR 7.0 flow takes only 22.34 s on the blob_merge circuit,

with a fixed routing channel width. The fact that this single additional stage in the CAD flow

requires 133× more runtime than the rest may seem daunting at first, but it is important to

note that its most runtime-intensive phase—solving the placement ILPs—depends not on

circuit size, but on the size of the movable node sets. On the other hand, runtime expanded on

the rest of the CAD flow is directly related to the circuit size, meaning that for larger circuits,

the algorithm proposed here would likely take but a fraction of the total runtime.

228

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

Table 8.4: Critical path delays obtained on the architecture of Figure 8.21.

postplacement postrouting

circuit ref. W = 1 −∆ [%] W = 2 −∆ [%] ref. W = 1 −∆ [%] W = 2 −∆ [%]
raygentop 4.70 4.70 0.00 4.70 0.00 4.87 4.88 -0.21 4.88 -0.21
ch_intrinsics 3.15 3.15 0.00 3.15 0.00 3.28 3.30 -0.61 3.29 -0.30
mkDelayWorker32B 6.83 6.63 2.93 6.58 3.66 7.09 7.06 0.42 7.04 0.71
mkSMAdapter4B 5.16 5.02 2.71 5.02 2.71 5.38 5.31 1.30 5.25 2.42
bgm 23.56 22.85 3.01 22.66 3.82 23.66 23.20 1.94 22.84 3.47
boundtop 6.10 5.89 3.44 5.69 6.72 6.05 5.91 2.31 5.73 5.29
stereovision0 3.74 3.74 0.00 3.74 0.00 3.74 3.76 -0.53 3.76 -0.53
diffeq1 20.45 19.62 4.06 19.42 5.04 21.16 20.33 3.92 20.20 4.54
diffeq2 15.69 14.97 4.59 14.61 6.88 16.14 15.46 4.21 15.18 5.95
blob_merge 9.90 9.26 6.46 9.17 7.37 9.89 9.26 6.37 9.23 6.67
or1200 13.08 12.13 7.26 11.95 8.64 13.12 12.50 4.73 12.21 6.94
LU8PEEng 105.05 97.51 7.18 94.55 10.00 104.86 98.03 6.51 95.03 9.37
sha 11.89 10.97 7.74 10.87 8.58 11.88 11.01 7.32 10.92 8.08
geomean 10.29 9.90 3.79 9.78 4.96 10.46 10.16 2.87 10.04 4.02

8.9.5 Independent Subpattern

In Section 7.7.4, we observed that the first four direct connections that were added to the

pattern were responsible for 68% of the geomean routed critical path delay reduction achieved

by the complete pattern of Figure 8.2. The subpattern containing these four connections is

shown in Figure 8.21. A particularly interesting feature of this architecture is that each LUT has

at most one incident direct connection, meaning that the set of edges selected for improvement

that are covered by any valid solution of a placement ILP will constitute a matching in the

circuit graph. Since matchings can be found efficiently [Gib85], we can intuitively expect

that the placement problems formulated for this class of architectures are easier to solve

in practice, although the timing dependence between the edges and the necessity to avoid

overlaps between the movable nodes could mean that they are not necessarily easier in theory.

8.9.5.1 Optimization-Runtime Trade-Off

To assess whether the subpattern of Figure 8.21 still causes bulk of the improvement achieved

by the entire pattern of Figure 8.2 when nodes are allowed to move across clusters, we repeat

the experiments on it as well. The results shown in Table 8.4 indeed confirm this, with the

architecture achieving a 2.87% geomean routed delay reduction, or 67% of the 4.30% achieved

by the complete architecture. The total wall-clock runtime spent for median-postplacement-

delay runs of all circuits was 2,760s, while the total CPLEX runtime amounted to only 336s.

For the complete architecture, the total wall-clock runtime was 12,720s, while the solver alone

used 8,790s. Hence, 67% of the delay improvement was achieved in 4.6× less total time and

using 26× less solver runtime.

229

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

Figure 8.21: The architecture composed of the first four direct connections
added to the best pattern found in the architectural study of Chapter 7. Each
LUT has at most one incident direct connection. LUTs without incident direct
connections are omitted from the figure.

sha

LU8PEEng
or1200

blob_merge
diffeq2

diffeq1

stereovision0
boundtop bgm

mkSMAdapter4B

mkDelayWorker32B

ch_intrin
sics

raygentop

8

7

6

5

4

3

2

1

0

1

[%
]

Figure 8.22: Relative change in the postrouting critical path delay due to direct
connections of the architecture of Figure 8.21. The W = 1 and the W = 2 cases
are shown in orange and blue, respectively. The dashed red line represents
the relative change of the geometric mean critical path delay over all circuits,
for W = 1, while the solid line represents the same for W = 2.

230

Dedicated Placement for Fixed-Connectivity Patterns Chapter 8

8.9.5.2 Increasing Movement Freedom

The much smaller solver runtime spent on the small independent subpattern of Figure 8.21

allowed us to assess the potential benefits of increasing the movement freedom of the movable

nodes on the obtained critical path delay reduction. Results for W = 2—allowing each node to

move in a 5×5 cluster region with 250 candidate positions—are also shown in Table 8.4, as

well as in Figure 8.22. They show that a number of circuits experience a large additional

improvement and that the average improvement is significantly increased as well. This

suggests that future effort invested in making the solution of the placement problems more

scalable with respect to freedom of movement may pay off. As an illustration, with W = 2 the

solver runtime rose to 7,025s (21× increase).

It is also interesting to observe that by increasing W to 2, the simple architecture of Figure 8.21

was able to achieve 93% of the geomean routed critical path delay reduction achieved by

the architecture of Figure 8.2 for W = 1, while still using less runtime. This illustrates that

increased CAD effort may compensate for architectural inefficiencies. It could also make the

direct connections more compelling, given that the architecture of Figure 8.21 is significantly

simpler to implement.

8.10 Conclusions and Future Work

In this chapter, we introduced an efficient ILP-based placement algorithm for FPGA archi-

tectures with direct connections between LUTs, which vastly improves their effectiveness

compared to architecture-oblivious algorithms. We also removed some important limitations

of the previously used experimental methodology and showed that the direct connections

continue to bring benefits in this more realistic setting.

The fact that a simple change in the underlying architecture—increase in the number of

cluster inputs—substantially altered the conclusions about the utility of a particular type of

direct connections suggests that a comprehensive study of the mutual influence of direct

connections and other architectural parameters is due.

Our experiments showed that increasing the freedom of movement beyond what was done

in this chapter would lead to increased benefits. Another future step on the algorithmic

front should therefore be to address the scalability issues that prevent this at the moment,

by integrating incremental solution approaches [Li12], or even other solution techniques,

such as SAT or SMT [Mih13; Mih13a], that could be better suited to the nature of the problem.

Additional performance gains could perhaps also be achieved by repeated application of the

algorithm with previously replaced nodes kept fixed and by further improving the problem

formulation along the lines of the discussion of Section 8.8.3.

Finally, results of Section 8.9.2.3 suggest that more effort should be put into informing the

general placer which precedes the algorithm presented in this section about the existence

231

Chapter 8 Dedicated Placement for Fixed-Connectivity Patterns

of dedicated connections, so that it can create more opportunities for their subsequent use.

Ideally, one would consider the existence of fixed-connectivity patterns already at the synthesis

and technology mapping stage, in the spirit of prior work by Ray et al. [Ray12]. The ability to

use the direct connections only optionally could enable faster heuristic algorithms that give

up on local optimality, which is anyway inevitably destroyed during general placement.

An implementation of the proposed placement algorithm is available at https://github.com/

EPFL-LAP/fpl20-placement.

232

https://github.com/EPFL-LAP/fpl20-placement
https://github.com/EPFL-LAP/fpl20-placement

9 Conclusions and Future Work

We have started this thesis by describing the challenges that modern reconfigurable archi-

tectures are facing due to recent changes in technological evolution. In this chapter, we

summarize the contributions of this thesis aimed at helping to overcome these challenges.

We also list some potential avenues for future work, inspired by the conclusions of the pre-

ceding chapters, that could be beneficial for ensuring that FPGAs and other reconfigurable

architectures [Sch22a] deliver the performance that is expected from them.

9.1 What Have We Done?

In Chapter 2, we explained in detail the evolution of FPGA architecture design and, in par-

ticular, why design automation algorithms comparable to the ones which exist for ASIC

development have thus far not been devised for programmable interconnect architectures. By

describing the different integration and application contexts in which reconfigurable fabrics

can be expected to be required, we have also anticipated the need for rapid design of optimized

programmable interconnect. Yet, our main premise, drawn from the recent developments of

AMD and Intel FPGAs, was that the primary driver of the need to automate programmable

architecture exploration at a much larger scale than has been done before are the changes

in technology scaling. In order to empirically verify that this is indeed the case, as well as to

enable such wide architectural exploration in advanced technologies for which it is relevant,

in Chapter 4, we have introduced a new fast physical modeling framework.

9.1.1 Modeling Programmable Interconnect in Advanced Technologies

Initial experiments using this new framework demonstrated that technological changes trigger

a need to revisit even such common rules of thumb of FPGA architecture design as the optimal

cluster sizes. This also gave empirical support for an explanation of recent changes in the

Intel Agilex FPGA family. Besides explaining the recent commercial developments, we were

able to predict what may come in near future, and the picture was not pretty: with only local

233

Chapter 9 Conclusions and Future Work

optimization around a previously known architectural solution, as has been customary in the

past two decades, FPGAs are unlikely to be able to profit from transitioning to technology

nodes beyond 5nm. This is even if modifications applied to Agilex, such as removal of inter-

mediate taps from channel wires or cluster size reduction are retained. In fact, our predictions

(see Figure 4.18) show that with only minor optimizations, moving to a new technology node

would not only bring no benefit, but result in performance deterioration.

These conclusions of Chapter 4 clearly demonstrated the need for a significantly more ex-

tensive architectural exploration. Due to rising resistance, some of the problems that have

to be tackled to achieve this goal become easier. In particular, the problem of optimizing

channel segmentation can even be solved by exhaustive exploration, once the constraints of

modern technologies and design principles are taken into account. On the other hand, rising

resistance increases the importance of solving some other difficult combinatorial optimization

problems, due to a need to reduce the distance that signals travel at low metal layers, as well

as the capacitive load on shared wires, exerted by the numerous stored-select multiplexers of

the programmable interconnect.

9.1.2 Letting the Router Automatically Design Switch-Blocks

One such problem is that of designing switch-patterns in switch-blocks, which we tackle

in Chapter 5. The classical approach to solving this problem is to propose a set of explicit

solutions and test each one of them by routing appropriate circuits. Whether the solutions

are listed by hand, or produced by some automated search method, their number that can be

evaluated in practice is inevitably very small, due to the high computational cost of running

a routing algorithm. By observing that in the process of using the router as a mere black

box to output one single performance measurement for each proposed architecture a large

amount of valuable information is lost, we were able to altogether avoid explicitly listing

solutions. Namely, instead of running the router on one particular proposed architecture, we

extended the routing-resource graph on which it operates such that it contains an implicit

representation of the entire search space. By slightly modifying the router’s cost function,

using the same congestion negotiation principles that it normally uses [McM95; Kap12], only

applied in reverse, we were able to essentially leave it to the router itself to choose the switches

which should be fabricated so that the performance of the circuits routed during exploration

is maximized. We call this new algorithm avalanche search, due to the avalanche effect that

occurs on the costs of different switches as the signals perform this negotiation.

Although avalanche search overcomes the fundamental scalability issue of having to list an

exponential number of different potential solutions, in its present implementation, it suffers

from some scalability issues of its own. Namely, the avalanche costs which enable switch

presence negotiation are currently rendering A* routing—a crucial ingredient that enables

the classical PathFinder algorithm to scale to the size of modern FPGAs—almost entirely

ineffective. When coupled with a large increase of the routing-resource graph size, caused by

234

Conclusions and Future Work Chapter 9

embedding the entire search space in it, this limits the applicability of the algorithm in practice

to designing FPGAs comprising only a few thousands of LUTs. Nevertheless, we strongly

believe that these limitations are surmountable, unlike the previously existing fundamental

barrier of having to explicitly list individual solutions; we suggested some possible remedies

towards the end of Chapter 5. In recent years, the focus of FPGA architecture and CAD

research has mostly been geared towards supporting large circuits, of the order of hundreds of

thousands and even millions of LUTs, which are representative of flagship products of the main

FPGA vendors [Mur20]. Yet, in Chapter 2, we have listed several reasons why design of highly

optimized, custom reconfigurable architectures of relatively small size may again be of interest.

In particular, relatively small eFPGAs are entering more and more SoCs, whereas standalone

FPGAs with unprecedentedly low cost are being introduced for use in edge applications. For

all these cases, avalanche search is relevant even as is.

9.1.3 A General Method to Project Layout and CAD Constraints on Architecture

Besides scalability, there is another reason that could limit the practical relevance of avalanche

search as presented in Chapter 5 when designing switch-patterns for an actual product.

Namely, avalanche search as such produces highly irregular switch-patterns and has no mech-

anism for ensuring that the output solutions respect any of the numerous layout constraints

which may have to be imposed on a switch-pattern intended for actual fabrication. To rectify

this, in Chapter 6, we proposed a general method for designing switch-patterns that respect

arbitrary constraints encodable as ILP, with which we extended avalanche search of Chapter 5.

We then measured the impact of enforcing many of the regularity constraints that can be

observed in some commercial architectures, as well as others for which we believed that they

could improve the efficiency of CAD tools which map user circuits on the produced architec-

tures. We concluded that in almost all cases, with the help of the new constraint-enforcing

method, avalanche search can find regular solutions with essentially equivalent performance.

It is, however, the generality of this extension which makes it the most relevant: a given FPGA

vendor could encode any constraints that may be related to the specificities of their layout

process or the limitations and capabilities of their CAD tools, of which we were naturally not

aware while performing the study presented in Chapter 6.

9.1.4 Making the Fastest Connections Nonprogrammable

When one observes the difference between a direct wire connecting two terminals in an ASIC

and a long programmable connection with several stored-select multiplexers along its way that

achieves the same in a reconfigurable architecture, the question of whether this is truly always

necessary naturally arises. Of course, it is self-evident that the numerous multiplexers are often

necessary, as otherwise the architecture would not be reconfigurable in the sense defined

in Chapter 3, but the question of whether they are always necessary remains. To answer

that question, in Chapter 7 we introduced an efficient algorithm for automatically designing

235

Chapter 9 Conclusions and Future Work

1.53
1.46
1.38
1.32 (?)

original measurement
different channel segmentation

switch-pattern optimization
extrapolated direct connections

ro
u
te

d
 d

e
la

y
 [

n
s]

Figure 9.1: Estimate of combined improvement of all proposed algorithms. Original measurements
correspond to Figure 4.18. Direct connection impact is a projection of the results of Chapter 8.

fixed-connectivity patterns of direct connections between individual LUTs, which enable

timing-critical signals to avoid passing through multiple levels of stored-select multiplexers.

9.1.5 Making the Timing-Critical Signals Use the Direct Connections

Fixed-connectivity patterns are only as useful as the CAD tools are able to leverage them to

reduce the critical path delay of a given circuit. This depends on successfully aligning timing-

critical signals of the circuit with the fast direct connections of the interconnect architecture.

In Chapter 7, we tried to avoid the complex task of developing dedicated CAD tools that

would support this before that was justified by demonstrating that direct connections have

a measurable utility. We did so by, for the most part, only aligning the direct connections

of the constructed fixed-connectivity pattern with the timing-critical signals of the placed

user circuits. In Chapter 8, we added support for alignment in the other direction—that is,

aligning timing-critical signals of a user circuit with the direct connections of any single fixed-

connectivity pattern—by introducing a dedicated, ILP-based detailed placement algorithm.

9.2 Where Has This Brought Us?

Impact of different architectural exploration as well as CAD algorithms presented until now

has been measured through extensive experimentation and reported in the chapter that in-

troduced each respective algorithm. Due to different underlying technologies and baseline

architectures that were used in these experiments, as a result of research taken to develop the

algorithms spanning several years, it is difficult to unify the impact of each individual contri-

bution, without reimplementing several of the algorithms such that they could be integrated

with newer and more capable versions of externally developed modeling and CAD tools that

236

Conclusions and Future Work Chapter 9

we rely on (i.e., the VTR project [Mur20]). This, however, would take a significant amount of

additional time, which, unfortunately, is no longer at the author’s disposal. Nevertheless, these

difficulties do not exempt us from at least trying to use some plausible projections and make

predictions of where all of the presented contributions could have potentially lead us on our

quest to overcome the technological challenges faced by future reconfigurable architectures,

had they been successfully combined in a single design automation flow.

Figure 9.1 captures our best attempt at this. It repeats a part of the plot of Figure 4.18, showing

that in the original measurements, moving an architecture with a cluster of eight 6-LUTs from

a 5nm to a 4nm technology would result in 19.5% deterioration of the average critical path

delay. A lower-bandwidth channel segmentation inspired by Agilex [Chr20] that we adopted in

Chapter 5 improved the performance of the N = 8 architecture in 4nm by 4.6%, demonstrating

the opportunities created by a more extensive segmentation exploration, which, as we have

explained in detail in Section 5.12.2, can be performed exhaustively in new technologies.

Applying the avalanche search algorithm of Chapter 5 to produce a switch-pattern more

appropriate for the given technological and target application setting than the parametric

one of Chapter 4 lead to a further 5.5% reduction of the average critical path delay. Such a

significant improvement—on par with performance increase that addition of time-borrowing

support produced on UltraScale+ FPGAs [Gan16]—demonstrates the effectiveness of design

automation in overcoming the limitations of prior intuition; we once more note that the para-

metric switch-pattern of Chapter 4 represented our best effort at capturing the connectivity of

recent FPGAs, before we even isolated switch-pattern design as an important candidate for

automation and started developing a solution for it, which ultimately resulted in the algorithm

presented in Chapter 5. Of course, there is little doubt that commercial switch-patterns are

capable of achieving higher performance than the parametric design that we were able to

envision, which may make it more difficult for avalanche search to make as significant a

difference in a production setting as we can observe here. Furthermore, it is likely that com-

mercial user circuits, which are of much larger size than the ones that we used in Chapter 5,

require richer connectivity and do not allow as significant switch-pattern sparsification as

avalanche search was able to achieve in Chapter 5. Nevertheless, we believe that the experi-

mental results clearly demonstrate the effectiveness of automated switch-pattern design in

finding more optimal solutions than what relying on intuition can produce. This is not only

important for designing reconfigurable architectures for different fabrication technologies,

which may change the validity of usual assumptions like we have seen in Chapter 4, but also

for different SoC-integration contexts and different target applications, where carrying over

prior results [Koc21] clearly leads to suboptimal performance.

As we have mentioned in Chapter 7, experiments related to exploration of fixed-connectivity

patterns have unfortunately been performed in a reasonably old planar technology and

their results cannot be immediately compared to the ones of Figure 4.18. Yet, in order to

make a rough estimate of what their contribution would have been, we for the moment

assume that the 4.3% average critical path delay improvement of Chapter 8 is maintained.

237

Chapter 9 Conclusions and Future Work

Although it is difficult to assess how the utility of direct connections would really change in

new technologies without performing actual experiments, we believe this assumption to be

reasonable. Namely, we can observe once more that there are two main effects contributing to

the perceived effectiveness of direct connections, which are impacted by technology scaling

in an opposing manner: 1) the speed of multiplexers that the direct connections replace

increases with scaling, which makes direct connections less appealing and 2) sensisitivty

to capacitive loading of shared wires of the programmable interconnect also increases with

scaling, making the nonshared direct connections which do not suffer from this load more

appealing.

When all contributions are combined in this manner, the overall performance of the N = 8

architecture at 4nm is improved by 13.7%. This still did not make it faster than the 5nm

implementation, but the gap is reduced from 19.5% to 3.1%, which is well within the reach

of other modifications, such as optimizing the local interconnect, as evidenced by the 3.3%

improvement of the average critical path delay when cluster size is reduced to four.

Notwithstanding the remaining uncertainties of these projections, in this thesis we have

demonstrated that design of programmable interconnect can be successfully automated

despite inherent difficulty of various combinatorial optimization problems that have to be

solved to this end. It is only necessary to carefully analyze each problem and leverage its

specificities to avoid explicit evaluation of a large number of possible design points. We have

also demonstrated that this can lead to a great improvement of programmable interconnect

performance in advanced technologies, making such techniques highly appealing for helping

FPGAs successfully transition to new nodes. As mentioned in Chapter 4 and as exemplified by

our hypothetical F3b node, leveraging Design Technology Co-Optimization (DTCO) can lead

to even greater improvements. Rapid architectural exploration using algorithms presented

in this thesis could be of great use there as well. Finally, although we have not attempted it

in this work, design of customized programmable interconnect architectures for different

target applications, that we have mentioned in Chapter 2 as potentially key to continued

performance improvement of SoCs equipped with reconfigurable fabrics, is hard to envision

without use of design automation algorithms such as the ones presented in this thesis.

9.3 Future Work

Many reasonably obvious extensions to the proposed algorithms that would make for nat-

ural research directions in near future have been proposed in the preceding chapters. For

instance, resolving A* issues of avalanche search is imperative for making it scale to larger

FPGA fabrics, as well as for leveraging the method to simultaneously design a larger fraction

of programmable interconnect of an island-style FPGA (for example by embedding both the

switch-block and the connection-block search space in the routing-resource graph). Rather

than repeating other such directions that can be easily found at the end of each chapter, in

this Section, we list some problems whose solution is at the moment further from reach, but

238

Conclusions and Future Work Chapter 9

for which the experiments of the preceding chapters lead us to believe that solving them could

be of great importance for future developments of reconfigurable architectures.

9.3.1 Separating High-Performance and High-Bandwidth Interconnect

As we have already stated many times over, reduction of capacitive loads, distance traversed

at low metal layers, and tile area in general, so that the lengths of channel wires can also be

reduced, is imperative for enabling further performance increase of reconfigurable architec-

tures. Yet, it is highly unlikely that such reductions will be achievable uniformly in all areas of

the programmable interconnect architecture. Even if that were possible, additional increase

in performance could be obtained by making resources commonly catering to timing-critical

signals particularly fast. We have explored this using one possible approach in Chapter 7, by

adding fast direct connections between LUTs on top of an existing programmable architecture

that could provide flexible interconnect for the majority of the remaining, noncritical signals.

Another approach was mentioned in Section 4.8.4, in relation to a plausible explanation of

the construction of a 32 6-LUT cluster in Versal FPGAs [Gai19]. Namely, we conjectured that

the large cluster is in fact a hierarchical super-cluster of several smaller clusters, which allows

low-performance, high-bandwidth local interconnect between them, leaving the few timing-

critical signals to be routed through a faster combination of cluster-level local interconnect

and lower-resistance channel wires. Further development of such architectures, where largely

disjoint networks are optimized respectively for minimum area/maximum bandwidth, and

minimum delay/maximum usability by timing-critical signals of typical circuits, rather than

attempting to strike a balance between the two objectives within the same network, seems

to be a very promising direction for future research. We note that using avalanche search in

routability-only mode (Section 5.13.5), driven by a large number of circuits with high Rent’s ex-

ponents, could be used for developing architectures which meet the minimum area/maximum

bandwidth criterion. Then, a second run in timing-driven mode could be used to augment

the architecture with an appropriate set of routing resources optimized for performance.

9.3.2 Routing Comes after Synthesis but Cannot Be an Afterthought

As we have mentioned in Section 3.9, FPGA CAD algorithms rarely consider routing in early

stages of the flow, other than attempting to minimize some metric derived from the total

number of connections which remain to be routed. While minimizing the total number

of connections is important, it is not sufficient to fully profit from the existence of a clear

distinction between the high-bandwidth resources geared towards satisfying the needs of the

vast majority of signals, and the high-performance ones, which should be used for preventing

delays on the timing-critical signals. Instead, CAD tools in the previous stages of the CAD flow

(especially synthesis and technology mapping) should plan ahead the split of signals between

the two networks, so that the scarce fast resources can be properly utilized. As discussed in

Section 7.3.1, when fast resources do not offer flexible access, they cannot simply be accounted

for in terms of density in a region; rather, they have to be perceived as combinatorial structures,

239

Chapter 9 Conclusions and Future Work

for which advanced algorithms in early CAD flow stages are particularly important.

9.3.3 LUT and Multiplexer SRAM Sharing

One of the primary ways of reducing area that we identified in Secrion 4.8.9 is reduction of the

number of SRAM bits required by the stored-select multiplexers. This can be achieved by using

more encoding-efficient multiplexer designs [DeH95], or sharing SRAM bits between multi-

plexers that form a multi-bit bus [Ye06]. However, solving the above problem of accounting for

inflexible connectivity patterns in all CAD flow stages could open up a rather interesting new

possibility: SRAM bits could be shared between LUTs and routing multiplexers. Oftentimes,

the LUT mask is only partially used, and the remaining bits could be utilized for configuring

routing multiplexers. The difficulties arise, however, when the bits used by the multiplexers

are also used by the LUT. Can we simultaneously use both the LUT and the multiplexer? An

important observation is that configuring the LUT fixes a connectivity pattern formed by

the multiplexers that share SRAM bits with it. If we assume existence of algorithms which

can take into account fixed-connectivity patterns at scale during synthesis, then they will be

capable of making use of fixed-connectivity patterns induced by LUT configuration as well. Of

course, LUT input permutations can be used to swap rows in the LUT’s truth table, making the

configuration more favorable for routing using induced patterns. For one-level and two-level

multiplexers, which currently dominate FPGA architecture, many LUT configurations would

lead to short circuits in the multiplexers that share the configuration bits with them. However,

since switching to fully-encoded multiplexers would reduce the amount of SRAM used in the

first place, and since contrary to SRAM, the area of encoded multiplexers continues to improve

in the latest technologies [Sch22], this problem could be easily avoided in the future.

9.3.4 Turning Strict Design Rules Into an Advantage

In Chapter 4, we have seen how the strict gridded nature of FinFET layouts enables develop-

ment of precise, yet remarkably simple layout models. We also mentioned in the conclusion

of that chapter that these severe restrictions of layout engineer’s freedom can be leveraged for

more than modeling—in the limit, we could create a fully integrated design automation flow,

which would not only define a programmable interconnect architecture using approximate

layout models, but also generate the entire layout itself. Besides enabling more informed

decisions about architectural design, a great advantage that this could bring would be the

ability to lose the tileability constraint. Once manual layout effort is eliminated, the primary

reason to adopt tileable architectures is removed as well. Such increased flexibility for intro-

ducing heterogeneity of routing resources could bring further benefits to the performance of

reconfigurable architectures. For example, different parts of a user circuits could be mapped

onto regions of the reconfigurable fabric that have different connectivity, thus matching the

needs of the circuit more closely. In a sense, this would be analogous to heterogeneous CPUs,

comprising multiple different cores [Nay22]. Alternatively, it could be seen as integration of an

entire family of custom programmable interconnect architectures, like suggested by Betz and

240

Conclusions and Future Work Chapter 9

Rose [Bet95], on a single chip.

Besides a fully-integrated design flow which would remove the need for manual layout, to

make this approach beneficial, algorithms capable of adequately partitioning user circuits and

mapping the pieces to the most appropriate fabric regions are also required. From our prior

experience [Nik19], an effective approach to solving this problem could be obtained by adapt-

ing graph-similarity measures used in other scientific fields, such as social network theory and

computational biology, where comparison [Spa93] and alignment [Kin12] of graphs with size

comparable to that of a typical circuit mapped onto FPGAs are regularly required [Zha20].

9.3.5 Are We Solving the Right Problem?

Once the tileability constraint is removed, it is useful to consider whether we should still be

choosing prefabricated channel wires and switches which connect them while designing a

programmable interconnect architecture. A reason for doubt lies in the abstract definition

of the programmable interconnect design problem presented in Section 3.1, which is much

broader. Once more, the programmable interconnect architecture is essentially just a network

of stored-select multiplexers, in which multiple different circuit graphs can be embedded.

That edges of this network can be interpreted as channel wires in an island-style FPGA is

merely an implementational detail. Rather than constructing wire and switch sets as has

traditionally been done, why not approach the problem directly? Can we automatically

synthesize a minimal (in terms of total size, average configured depth, or some other precisely

defined metric) multiplexer network that can implement all circuits from some set Γ? We

believe that with the help of the aforementioned scalable network alignment algorithms,

satisfactory solutions for this problem could be efficiently found. This approach would be

especially appealing if the reconfigurable architecture under design is intended to be highly

customized for a specific set of applications that can be captured by a small set of concrete

circuits. However, much like when designing a classical island-style FPGA, making the set of

circuits used in synthesis large and varied enough would ensure that, in practice, CAD tools will

be able to map an arbitrary circuit of interest onto the produced architecture, albeit perhaps

with a lower performance. By enforcing existence of certain paths in the architecture, as in

Section 6.11, it may even be possible to prove some form of universality of the architecture.

9.4 Final Remarks

In this thesis, we have described the historical evolution of FPGA architecture design along

with the challenges caused by recent changes in technology scaling that triggered a need for

changing the design approach as well. We postulated that design automation is the most

promising way to allow reconfigurable architectures to overcome these challenges and de-

veloped several algorithms for solving different, hard combinatorial problems that arise in

the process of programmable interconnect design. Generality of these algorithms gives us

hope that they will find practical use, perhaps in augmented and somewhat modified form,

241

Chapter 9 Conclusions and Future Work

and contribute to producing high-performance reconfigurable architectures in many years to

come. Of course, it is impossible to know whether this will truly be the case or the proposed

algorithms will be quickly supplanted by other, still better ones. However, we believe that

the lasting effect of this thesis will be the demonstration that automation of programmable

interconnect design is feasible, despite the inherent difficulty of the combinatorial optimiza-

tion problems that have to be solved along the way, or the various constraints imposed by

practical layout and CAD tool limitations that the produced solutions must respect. Looking

once more at the historical perspective, this should not come as a surprise, however. Although

programmable interconnect design has a number of interesting and challenging peculiarities,

difficult problems have been solved in every aspect of ASIC design automation for decades.

The main difference between ASIC and programmable interconnect design automation is that

there has been a great need for the former for more than half a century, whereas a real need for

the later has only started to appear in the last few years. We hope that the results of Chapter 4

will be convincing enough for the reader to appreciate that the day has finally come when

design automation for programmable interconnect is not only feasible, but also important.

Finally, we hope that the attempt which we made in Chapter 3 to twist the formulation of the

problem from how it is customarily presented will convince the reader that design automation

for programmable interconnect is not only feasible and important, but also interesting. We

admit that listing and counting wires and switches probably appears a bit boring—especially

in comparison with designing a brand new embedded AI acceleration block—which may drive

many prospective researchers away from this intriguing field. But, who can resist the appeal

of aligning networks and searching for minimal common supergraphs?

242

Bibliography

[Abd14] Mohamed S. Abdelfattah and Vaughn Betz. “The Case for Embedded Networks

on Chip on Field-Programmable Gate Arrays”. In: IEEE Micro 34.1 (Jan. 2014),

pp. 80–89. ISSN: 1937-4143.

[Abu14] Monther Abusultan and Sunil P. Khatri. “A Comparison of FinFET-Based FPGA

LUT Designs”. In: Proceedings of the 24th Edition of the Great Lakes Symposium on

VLSI. Houston, TX, USA, May 2014, pp. 353–58.

[Ach21] Achronix Semiconductor Corporation. 10 Millionth Achronix Speedcore eFPGA IP

Core Shipped. https://www.achronix.com/press-releases/10-millionth-achronix-

speedcore-efpga-ip-core-shipped. Accessed on 06.04.2023. 2021.

[Ahm00] Elias Ahmed and Jonathan Rose. “The effect of LUT and cluster size on deep-

submicron FPGA performance and density”. In: Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays. Monterey, CA, USA,

Feb. 2000, pp. 3–12.

[Ahm01] Elias Ahmed. “The Effect of Logic Block Granularity on Deep-Submicron FPGA

Performance and Density”. Master Thesis. Toronto: University of Toronto, 2001.

[Ahm04] E. Ahmed and J. Rose. “The Effect of LUT and Cluster Size on Deep-Submicron

FPGA Performance and Density”. In: IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems 12.3 (Mar. 2004), pp. 288–98.

[Ahm09] Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. “Packing Tech-

niques for Virtex-5 FPGAs”. In: ACM Trans. Reconfigurable Technol. Syst. 2.3 (Sept.

2009). ISSN: 1936-7406.

[Alo84] Noga Alon and V.D. Milman. “Eigenvalues, Expanders and Superconcentrators”. In:

Proceedings of the 25th Annual Symposium on Foundations of Computer Science.

Singer Island, FL, USA, Oct. 1984, pp. 320–22.

[Alt01] Altera Corporation. FLEX 10K Embedded Programmable Logic Device Family. ver.

4.1. 101 Innovation Drive, San Jose, CA 95134, Mar. 2001.

[Alt04] Altera Corporation. APEX 20K Programmable Logic Device Family. ver. 5.1. 101

Innovation Drive, San Jose, CA 95134, Mar. 2004.

[Alt90] Altera Corporation. Data Book. 1990.

243

https://www.achronix.com/press-releases/10-millionth-achronix-speedcore-efpga-ip-core-shipped
https://www.achronix.com/press-releases/10-millionth-achronix-speedcore-efpga-ip-core-shipped

BIBLIOGRAPHY

[AMD23] AMD. Adaptable Accelerator Cards for Data Center Workloads. https://www.xilinx.

com/products/boards-and-kits/alveo.html. Accessed on 06.04.2023. 2023.

[And06] J.H. Anderson and F.N. Najm. “Active leakage power optimization for FPGAs”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

25.3 (2006), pp. 423–37.

[Ans23] Tim Ansell. “Google Investment in Open Source Custom Hardware Development

Including No-Cost Shuttle Program”. In: Proceedings of the 2023 International

Symposium on Physical Design. Virtual Event, 2023.

[Aro21] Aman Arora, Samidh Mehta, Vaughn Betz, and Lizy K. John. “Tensor Slices to

the Rescue: Supercharging ML Acceleration on FPGAs”. In: The 2021 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. Virtual Event, 2021,

pp. 23–33.

[Bau20] Harald Bauer, Ondrej Burkacky, Peter Kenevan, Stephanie Lingemann, Klaus

Pototzky, and Bill Wiseman. Semiconductor design and manufacturing: Achieving

leading-edge capabilities. Tech. rep. McKinsey, Aug. 2020.

[Bea08] Michael J. Beauchamp, Scott Hauck, Keith D. Underwood, and K. Scott Hemmert.

“Architectural Modifications to Enhance the Floating-Point Performance of FP-

GAs”. In: IEEE Trans. Very Large Scale Integr. Syst. 16.2 (Feb. 2008), pp. 177–87. ISSN:

1063-8210.

[Bec17] Tobias Becker, Pavel Burovskiy, Anna Maria Nestorov, Hristina Palikareva, Enrico

Reggiani, and Georgi Gaydadjiev. “From exaflop to exaflow”. In: Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), 2017. Lausanne, Switzerland,

Mar. 2017, pp. 404–9.

[Bet20] Vaughn Betz. “Parallel CAD for FPGAs: A Personal Retrospective and Thoughts for

the Future”. In: 2020 30th International Conference on Field-Programmable Logic

and Applications (FPL). Virtual Event, 2020.

[Bet95] Vaughn Betz and Jonathan Rose. “Using Architectural “Families” to Increase FPGA

Speed and Density”. In: Proceedings of the 1995 ACM Third International Sym-

posium on Field-Programmable Gate Arrays. Monterey, CA, USA, 1995, pp. 10–

16.

[Bet97] Vaughn Betz and Jonathan Rose. “VPR: A New Packing, Placement and Routing

Tool for FPGA Research”. In: Proceedings of the 7th International Workshop on

Field-Programmable Logic and Applications. London, UK, Sept. 1997, pp. 213–22.

[Bet98] Vaughn Betz and Jonathan Rose. “How Much Logic Should Go in an FPGA Logic

Block?” In: IEEE Des. Test Comput. 15.1 (1998), pp. 10–15.

[Bet99] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for

Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999. ISBN: 0-7923-8460-1.

244

https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html

BIBLIOGRAPHY

[Bet99a] Vaughn Betz and Jonathan Rose. “FPGA Routing Architecture: Segmentation and

Buffering to Optimize Speed and Density”. In: Proceedings of the 1999 ACM/SIGDA

Seventh International Symposium on Field Programmable Gate Arrays. Monterey,

CA, USA, 1999, pp. 59–68.

[Bha15] Kitri Narayan Bhanushali and W. Rhett Davis. “FreePDK15: An Open-Source Pre-

dictive Process Design Kit for 15nm FinFET Technology”. In: Proceedings of the

2015 Symposium on International Symposium on Physical Design. Monterey, CA,

USA, Mar. 2015, pp. 165–70.

[Blu81] M. Blum, R.M. Karp, O. Vornberger, C.H. Papadimitriu, and M. Yannakakis. “The

complexity of testing whether a graph is a superconcentrator”. In: Information

Processing Letters 13.4 (1981), pp. 164–67. ISSN: 0020-0190.

[Bon08] J.A. Bondy and U.S.R Murty. Graph Theory. 1st. Springer Publishing Company,

Incorporated, 2008. ISBN: 1846289696.

[Bor95] Gaetano Borriello, Carl Ebeling, Scott Hauck, and Steven M. Burns. “The Triptych

FPGA architecture”. In: IEEE Trans. VLSI Syst. 3.4 (1995), pp. 491–501.

[Bou18] Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz. “You Cannot Improve

What You Do Not Measure: FPGA vs. ASIC Efficiency Gaps for Convolutional Neural

Network Inference”. In: ACM Trans. Reconfigurable Technol. Syst. 11.3 (Dec. 2018).

ISSN: 1936-7406.

[Bou21] Andrew Boutros and Vaughn Betz. “FPGA Architecture: Principles and Progres-

sion”. In: IEEE Circuits and Systems Magazine 21.2 (May 2021), pp. 4–29. ISSN:

1558-0830.

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.

In: IEEE Transactions on Computers C-35.8 (Aug. 1986), pp. 677–91. ISSN: 1557-

9956.

[Bun00] H. Bunke, X. Jiang, and A. Kandel. “On the Minimum Common Supergraph of Two

Graphs”. In: Computing 65.1 (Aug. 2000), pp. 13–25. ISSN: 0010-485X.

[Cad21] Cadence Design Systems. Cadence Unveils Next-Generation Palladium Z2 and Pro-

tium X2 Systems to Dramatically Accelerate Pre Silicon Hardware Debug and Soft-

ware Validation. https://www.cadence.com/en_US/home/company/newsroom/

press-releases/pr/2021/cadence-unveils-next-generation-palladium-z2-and-

protium-x2-syst.html. Accessed on 04.04.2023. 2021.

[Cau11] Stephen Cauley, Venkataramanan Balakrishnan, Y. Charlie Hu, and Cheng-Kok

Koh. “A parallel branch-and-cut approach for detailed placement”. In: ACM Trans.

Design Autom. Electr. Syst. 16.2 (2011), 18:1–19.

245

https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2021/cadence-unveils-next-generation-palladium-z2-and-protium-x2-syst.html
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2021/cadence-unveils-next-generation-palladium-z2-and-protium-x2-syst.html
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2021/cadence-unveils-next-generation-palladium-z2-and-protium-x2-syst.html

BIBLIOGRAPHY

[Cen23] Center for Game Science (University of Washington), Institute for Protein Design

(University of Washington), Cooper Lab (Northeastern University), Dartmouth)

Khatib Lab (University of Massachusetts, Davis) Siegel Lab (University of CA,

Meiler Lab (Vanderbilt University), and Horowitz Lab (University of Denver). Foldit.

https://fold.it/. Accessed on 07.04.2023. 2023.

[Cha01] Yao-Wen Chang, Jai-Ming Lin, and M.D.F. Wong. “Matching-based algorithm for

FPGA channel segmentation design”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 20.6 (2001), pp. 784–791.

[Cha15] Shant Chandrakar, Dinesh Gaitonde, and Trevor Bauer. “Enhancements in Ul-

traScale CLB Architecture”. In: Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA, 2015, pp. 108–

16.

[Cha22] Chih-Hao Chang, V.S. Chang, K.H. Pan, K.T. Lai, J. H. Lu, J.A. Ng, C.Y. Chen, B.F. Wu,

C.J. Lin, C.S. Liang, et al. “Critical Process Features Enabling Aggressive Contacted

Gate Pitch Scaling for 3nm CMOS Technology and Beyond”. In: 2022 International

Electron Devices Meeting (IEDM). San Francisco, CA, USA, Dec. 2022, pp. 27.1.1–

27.1.4.

[Cha96] Yao-Wen Chang, D. F. Wong, and C. K. Wong. “Universal Switch Modules for FPGA

Design”. In: ACM Transactions on Design Automation of Electronic Systems 1.1 (Jan.

1996), pp. 80–101.

[Che04] Gang Chen and Jason Cong. “Simultaneous Timing Driven Clustering and Place-

ment for FPGAs”. In: Field Programmable Logic and Application. Berlin, Heidel-

berg, 2004, pp. 158–67.

[Che07] Doris T. Chen, Kristofer Vorwerk, and Andrew Kennings. “Improving Timing-

Driven FPGA Packing with Physical Information”. In: 2007 International Confer-

ence on Field Programmable Logic and Applications. Amsterdam, The Netherlands,

Aug. 2007, pp. 117–23.

[Che14] James Hsueh-Chung Chen, Theodorus Standaert, Emre Alptekin, Terry Spooner,

and Vamsi Paruchuri. “Interconnect performance and scaling strategy at 7 nm

node”. In: IEEE International Interconnect Technology Conference. San Jose, Cali-

fornia, USA, May 2014, pp. 93–96.

[Che20] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu, Yimin

Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, Chunqiang Li, Yu Pu, Jianyi Meng, Xiaolang

Yan, Yuan Xie, and Xiaoning Qi. “Xuantie-910: A Commercial Multi-Core 12-Stage

Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with Vector Ex-

tension”. In: 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). Valencia, Spain, May 2020, pp. 52–64.

[Chi08] Manoj Chirania. “Lookup Table with Relatively Balanced Delays”. US 7471,104 B1.

patent assignee: Xilinx Inc. 2008.

246

https://fold.it/

BIBLIOGRAPHY

[Chi11] Scott Y. L. Chin and Steven J. E. Wilton. “Towards scalable FPGA CAD through

architecture”. In: Proceedings of the ACM/SIGDA 19th International Symposium on

Field Programmable Gate Arrays. Monterey, CA, USA, Feb. 2011, pp. 143–52.

[Chi13] Charles Chiasson. “Optimization and Modeling of FPGA Circuitry in Advanced

Process Technology”. MA thesis. University of Toronto, 2013.

[Chi13a] Charles Chiasson and Vaughn Betz. “COFFE: Fully-Automated Transistor Siz-

ing for FPGAs”. In: Proceedings of the 2013 International Conference on Field-

Programmable Technology. Kyoto, Japan, Dec. 2013, pp. 34–41.

[Cho91] Paul Chow, Soon Ong Seo, Dennis Au, Bahram Fallah, Cherry Li, and Jonathan Rose.

“A 1.2µm CMOS FPGA Using Cascaded Logic Blocks and Segmented Routing”.

In: Proceedings of the International Workshop on Field Programmable Logic and

Applications. Oxford, UK, Sept. 1991.

[Chr00] P. Christie and D. Stroobandt. “The interpretation and application of Rent’s rule”.

In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8.6 (Dec. 2000),

pp. 639–48. ISSN: 1557-9999.

[Chr20] Jeffrey Chromczak, Mark Wheeler, Charles Chiasson, Dana How, Martin Lang-

hammer, Tim Vanderhoek, Grace Zgheib, and Ilya Ganusov. “Architectural En-

hancements in Intel® Agilex™ FPGAs”. In: Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA,

Feb. 2020, pp. 140–49.

[Cio16] Ivan Ciofi, Antonino Contino, Philippe J. Roussel, Rogier Baert, Victor-H. Vega-

Gonzalez, Kristof Croes, Mustafa Badaroglu, Christopher J. Wilson, Praveen Ragha-

van, Abdelkarim Mercha, Diederik Verkest, Guido Groeseneken, Dan Mocuta, and

Aaron Thean. “Impact of Wire Geometry on Interconnect RC and Circuit Delay”.

In: IEEE Transactions on Electron Devices 63.6 (May 2016), pp. 2488–96.

[Cio17] Ivan Ciofi, Philippe J. Roussel, Yves Saad, Victor Moroz, Chia-Ying Hu, Rogier Baert,

Kristof Croes, Antonino Contino, Kevin Vandersmissen, Weimin Gao, Philippe

Matagne, Mustafa Badaroglu, Christopher J. Wilson, Dan Mocuta, and Zsolt Tőkei.

“Modeling of Via Resistance for Advanced Technology Nodes”. In: IEEE Transac-

tions on Electron Devices 64.5 (Apr. 2017), pp. 2306–13.

[Cla16] Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh Sinha,

Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. “ASAP7: A 7-nm

FinFET Predictive Process Design Kit”. In: Microelectronics Journal 53 (July 2016),

pp. 105–15.

[Com17] Computer History Museum. Oral History of Steve Trimberger. https://archive.

computerhistory.org/resources/access/text/2018/07/102740229-05-01-acc.pdf.

Oct. 2017.

247

https://archive.computerhistory.org/resources/access/text/2018/07/102740229-05-01-acc.pdf
https://archive.computerhistory.org/resources/access/text/2018/07/102740229-05-01-acc.pdf

BIBLIOGRAPHY

[Con94] Jason Cong and Yuzheng Ding. “FlowMap: an optimal technology mapping al-

gorithm for delay optimization in lookup-table based FPGA designs”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 13.1

(Jan. 1994), pp. 1–12. ISSN: 1937-4151.

[Cor09] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduc-

tion to Algorithms, Third Edition. 3rd. The MIT Press, 2009. ISBN: 0262033844.

[Cut21] Ian Cutress. Intel’s Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!

AnandTech, https : / / www. anandtech . com / show / 16823 / intel - accelerated -

offensive - process - roadmap - updates - to - 10nm - 7nm - 4nm - 3nm - 20a - 18a -

packaging-foundry-emib-foveros. Accessed on 29.03.2023. 2021.

[Dar19] N. K. Darav, A. A. Kennings, K. Vorwerk, and A. Kundu. “Multi-Commodity Flow-

Based Spreading in a Commercial Analytic Placer”. In: Proceedings of the 2019

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Sea-

side, CA, USA, Feb. 2019, pp. 122–31.

[DeH04] A. DeHon and R. Rubin. “Design of FPGA interconnect for multilevel metalliza-

tion”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12.10

(Oct. 2004), pp. 1038–50. ISSN: 1557-9999.

[DeH95] André DeHon. Entropy, Counting, and Programmable Interconnect. Transit Note

128. University of CA, Berkeley, 1995.

[DeH99] André DeHon. “Balancing Interconnect and Computation in a Reconfigurable

Computing Array (or, Why You Don’t Really Want 100% LUT Utilization)”. In:

Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field

Programmable Gate Arrays. Monterey, CA, USA, 1999, pp. 69–78.

[DeM94] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,

1994. ISBN: 0070163332.

[Den22] M. Denton and H. Schmit. “Direct Spatial Implementation of Sparse Matrix Mul-

tipliers for Reservoir Computing”. In: 2022 IEEE International Symposium on

High-Performance Computer Architecture (HPCA). Los Alamitos, CA, USA, Apr.

2022, pp. 1–11.

[Des04] Design & Reuse. Xilinx Ships 90-Nanometer Devices In Volume Production - Ad-

dresses Record Demand For It’s Low Cost Spartan-3 FPGAs. https://www.design-

reuse.com/news/8546/xilinx-90-nanometer-devices-volume-record-demand-

it-cost-spartan-3-fpgas.html. Accessed on 20.03.2023. 2004.

[Des05] Design & Reuse. Xilinx Virtex-II Pro World’s Most Popular 130nm FPGA. https:

//www.design-reuse.com/news/10557/xilinx-virtex-ii-pro-popular-130nm-

fpga.html. Accessed on 20.03.2023. 2005.

248

https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros
https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros
https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros
https://www.design-reuse.com/news/8546/xilinx-90-nanometer-devices-volume-record-demand-it-cost-spartan-3-fpgas.html
https://www.design-reuse.com/news/8546/xilinx-90-nanometer-devices-volume-record-demand-it-cost-spartan-3-fpgas.html
https://www.design-reuse.com/news/8546/xilinx-90-nanometer-devices-volume-record-demand-it-cost-spartan-3-fpgas.html
https://www.design-reuse.com/news/10557/xilinx-virtex-ii-pro-popular-130nm-fpga.html
https://www.design-reuse.com/news/10557/xilinx-virtex-ii-pro-popular-130nm-fpga.html
https://www.design-reuse.com/news/10557/xilinx-virtex-ii-pro-popular-130nm-fpga.html

BIBLIOGRAPHY

[Des06] Design & Reuse. Xilinx Unveils 65nm Virtex-5 Family - Industry’s Highest Per-

formance Platform FPGAs. https : / / www. design - reuse . com / news / 13342 /

xilinx- 65nm- virtex- 5- highest- performance- platform- fpgas.html. Accessed

on 20.03.2023. 2006.

[Des07] Design & Reuse. Altera Ships First Member of High-End Stratix III FPGA Family.

https://www.design-reuse.com/news/16566/altera-member-end-stratix-iii-

fpga-family.html. Accessed on 29.03.2023. 2007.

[Des08] Design & Reuse. Altera Starts Shipping Its 40-nm Stratix IV FPGA Family. https:

//www.design-reuse.com/news/19725/40-nm-stratix-iv-fpga.html. Accessed on

29.03.2023. 2008.

[Des09] Design & Reuse. Xilinx Starts Shipments of Virtex-6 FPGAs. https://www.design-

reuse.com/news/20394/xilinx-virtex-6.html. Accessed on 20.03.2023. 2009.

[Des10] Design & Reuse. Xilinx 7 Series FPGAs Slash Power Consumption by 50% and Reach

2 Million Logic Cells on Industry’s First Scalable Architecture. https://www.design-

reuse.com/news/23745/xilinx- virtex- 7- kintex- 7- artix- 7.html. Accessed on

20.03.2023. 2010.

[Des14] Design & Reuse. Xilinx Tapes-out First Virtex UltraScale All Programmable Device

as Part of Industry’s Only High-End 20nm Family. https://www.design-reuse.com/

news/33730/xilinx-virtex-ultrascale-tape-out-20nm-family.html. Accessed on

20.03.2023. 2014.

[Des14a] Design & Reuse. Altera and TSMC Collaborate to Bring Advanced Packaging Tech-

nology to Arria 10 FPGAs and SoCs. https://www.design-reuse.com/news/34406/

altera-tsmc-packaging-arria-10-fpga.html. Accessed on 20.03.2023. 2014.

[Des15] Design & Reuse. Altera Reveals Stratix 10 Innovations Enabling the Industry’s

Fastest and Highest Capacity FPGAs and SoCs. https://www.design-reuse.com/

news/37587/altera-stratix-10-innovations.html. Accessed on 20.06.2023. 2015.

[Des15a] Design & Reuse. Xilinx Announces Publicly Available Tools and Documentation for

16nm UltraScale+ Devices. https://www.design-reuse.com/news/38857/xilinx-

16nm-ultrascale-tools.html. Accessed on 20.03.2023. 2015.

[Des18] Design & Reuse. Xilinx Unveils Versal: The First in a New Category of Platforms

Delivering Rapid Innovation with Software Programmability and Scalable AI Infer-

ence. https://www.design-reuse.com/news/44859/xilinx-versal.html. Accessed

on 20.03.2023. 2018.

[Des19] Design & Reuse. Intel Ships First 10nm Agilex FPGAs. https://www.design-reuse.

com/news/46667/intel-10nm-agilex-fpga.html. Accessed on 20.03.2023. 2019.

[Dha16] Shounak Dhar, Saurabh N. Adya, Love Singhal, Mahesh A. Iyer, and David Z.

Pan. “Detailed placement for modern FPGAs using 2D dynamic programming”.

In: Proceedings of the 35th International Conference on Computer-Aided Design.

Austin, TX, USA, Nov. 2016, pp. 1–8.

249

https://www.design-reuse.com/news/13342/xilinx-65nm-virtex-5-highest-performance-platform-fpgas.html
https://www.design-reuse.com/news/13342/xilinx-65nm-virtex-5-highest-performance-platform-fpgas.html
https://www.design-reuse.com/news/16566/altera-member-end-stratix-iii-fpga-family.html
https://www.design-reuse.com/news/16566/altera-member-end-stratix-iii-fpga-family.html
https://www.design-reuse.com/news/19725/40-nm-stratix-iv-fpga.html
https://www.design-reuse.com/news/19725/40-nm-stratix-iv-fpga.html
https://www.design-reuse.com/news/20394/xilinx-virtex-6.html
https://www.design-reuse.com/news/20394/xilinx-virtex-6.html
https://www.design-reuse.com/news/23745/xilinx-virtex-7-kintex-7-artix-7.html
https://www.design-reuse.com/news/23745/xilinx-virtex-7-kintex-7-artix-7.html
https://www.design-reuse.com/news/33730/xilinx-virtex-ultrascale-tape-out-20nm-family.html
https://www.design-reuse.com/news/33730/xilinx-virtex-ultrascale-tape-out-20nm-family.html
https://www.design-reuse.com/news/34406/altera-tsmc-packaging-arria-10-fpga.html
https://www.design-reuse.com/news/34406/altera-tsmc-packaging-arria-10-fpga.html
https://www.design-reuse.com/news/37587/altera-stratix-10-innovations.html
https://www.design-reuse.com/news/37587/altera-stratix-10-innovations.html
https://www.design-reuse.com/news/38857/xilinx-16nm-ultrascale-tools.html
https://www.design-reuse.com/news/38857/xilinx-16nm-ultrascale-tools.html
https://www.design-reuse.com/news/44859/xilinx-versal.html
https://www.design-reuse.com/news/46667/intel-10nm-agilex-fpga.html
https://www.design-reuse.com/news/46667/intel-10nm-agilex-fpga.html

BIBLIOGRAPHY

[Dha17] Shounak Dhar, Mahesh A. Iyer, Saurabh N. Adya, Love Singhal, Nikolay Rubanov,

and David Z. Pan. “An Effective Timing-Driven Detailed Placement Algorithm for

FPGAs”. In: Proceedings of the 2017 ACM International Symposium on Physical

Design. Portland, OR, USA, Mar. 2017, pp. 151–57.

[Eib12] Christopher B Eiben, Justin B Siegel, Jacob B Bale, Seth Cooper, Firas Khatib,

Betty W Shen, Foldit Players, Barry L Stoddard, Zoran Popovic, and David Baker.

“Increased Diels-Alderase activity through backbone remodeling guided by Foldit

players”. In: Nature Biotechnology 30 (Feb. 2012), pp. 190–92. ISSN: 1546-1696.

[ElG81] Abbas El Gamal. “Two-dimensional stochastic model for interconnections in

master slice integrated circuits”. In: IEEE Transactions on Circuits and Systems

28.2 (1981), pp. 127–38.

[Eve16] T. Evensen. “A Sofware Developer’s Journey into a Deeply Heterogeneous World”.

In: Proceedings of the 26th International Conference on Field Programmable Logic

and Applications. Lausanne, Switzerland, Aug. 2016.

[Fei98] Uriel Feige. “A Threshold of Ln N for Approximating Set Cover”. In: J. ACM 45.4

(July 1998), pp. 634–52. ISSN: 0004-5411.

[Fen08] Wenyi Feng and Sinan Kaptanoglu. “Designing Efficient Input Interconnect Blocks

for LUT Clusters Using Counting and Entropy”. In: ACM Trans. Reconfigurable

Technol. Syst. 1.1 (Mar. 2008). ISSN: 1936-7406.

[Fen12] W. Feng. “K-way partitioning based packing for FPGA logic blocks without input

bandwidth constraint”. In: 2012 International Conference on Field-Programmable

Technology. Seoul, Korea (South), Dec. 2012, pp. 8–15.

[Fen18] Wenyi Feng, Jonathan W. Greene, and Alan Mishchenko. “Improving FPGA Per-

formance with a S44 LUT Structure”. In: Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA,

Feb. 2018, pp. 61–66.

[Fer77] Ferranti Semiconductors. The 225 Cell Uncommitted Array Family. ULA 2000

Series. Chadderton, UK, Mar. 1977.

[Fer84] Ferranti Semiconductor. Quick Reference: The ULA. Chadderton, UK, 1984.

[Fie15] Nathalie Fiévet, Praveen Raghavan, Rogier Baert, Frédéric Robert, Abdelkarim

Mercha, Diederik Verkest, and Aaron Thean. “Impact of device and interconnect

process variability on clock distribution”. In: 2015 International Conference on IC

Design & Technology (ICICDT). Leuven, Belgium, June 2015, pp. 1–4.

[Fra08] Rosemary Francis, Simon Moore, and Robert Mullins. “A Network of Time-Division

Multiplexed Wiring for FPGAs”. In: Proceedings of the Second ACM/IEEE Interna-

tional Symposium on Networks-on-Chip. Newcastle upon Tyne, UK, Apr. 2008,

pp. 35–44.

250

BIBLIOGRAPHY

[Fra18] H. Fraisse and D. Gaitonde. “A SAT-based Timing Driven Place and Route Flow for

Critical Soft IP”. In: 2018 28th International Conference on Field Programmable

Logic and Applications (FPL). Dublin, Ireland, Aug. 2018, pp. 8–87.

[Fra91] Robert Francis, Jonathan Rose, and Zvonko Vranešić. “Chortle-Crf: Fast Tech-

nology Mapping for Lookup Table-Based FPGAs”. In: Proceedings of the 28th

ACM/IEEE Design Automation Conference. San Francisco, CA, USA, 1991, pp. 227–

33.

[Gai19] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. “Xilinx

Adaptive Compute Acceleration Platform: Versal Architecture”. In: Proceedings

of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. Seaside, CA, USA, Feb. 2019, pp. 84–93.

[Gan16] Ilya Ganusov and Benjamin Devlin. “Time-borrowing platform in the Xilinx Ul-

traScale+ family of FPGAs and MPSoCs”. In: 2016 26th International Conference

on Field Programmable Logic and Applications (FPL). Lausanne, Switzerland, Aug.

2016, pp. 1–9.

[Gib85] Alan M. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

[Gop06] P. Gopalakrishnan, Xin Li, and L. Pileggi. “Architecture-aware FPGA placement

using metric embedding”. In: 2006 43rd ACM/IEEE Design Automation Conference.

San Francisco, CA, July 2006, pp. 460–65.

[Gor12] Marcel Gort and Jason H. Anderson. “Analytical placement for heterogeneous

FPGAs”. In: 22nd International Conference on Field Programmable Logic and

Applications (FPL). Oslo, Norway, Aug. 2012, pp. 143–50.

[Gor13] Marcel Gort and Jason H. Anderson. “Combined Architecture/Algorithm Approach

to Fast FPGA Routing”. In: IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 21.6 (June 2013), pp. 1067–79. ISSN: 1557-9999.

[Gre11] Jonathan Greene, Sinan Kaptanoglu, Wenyi Feng, Volker Hecht, Joel Landry, Fei Li,

Anton Krouglyanskiy, Mihai Morosan, and Val Pevzner. “A 65nm Flash-Based FPGA

Fabric Optimized for Low Cost and Power”. In: Proceedings of the 19th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays. Monterey, CA, USA,

2011, pp. 87–96.

[Gre23] Jonathan W. Greene. “FPGA Mux Usage and Routability Estimates without Explicit

Routing”. In: Proceedings of the 2023 ACM/SIGDA International Symposium on

Field Programmable Gate Arrays. Monterey, CA, USA, 2023, pp. 141–47.

[Gue15] Serigne Gueye and Philippe Michelon. “A linear formulation with O (n2) variables

for quadratic assignment problems with Manhattan distance matrices”. In: EURO

Journal on Computational Optimization 3.2 (2015), pp. 79–110. ISSN: 2192-4406.

[Haa19] Winston J. Haaswijk. “SAT-Based Exact Synthesis for Multi-Level Logic Networks”.

PhD thesis. École Polytechnique Fédérale de Lausanne, 2019.

251

BIBLIOGRAPHY

[Hal96] Eldon C. Hall. Journey to the Moon: The History of the Apollo Guidance Computer.

Reston, Virginia, USA: American Institute of Aeronautics and Astronautics, Jan.

1996. ISBN: 978-1-56347-185-8.

[Ham97] Susanne E. Hambrusch and Hung-Yi Tu. “Edge Weight Reduction Problems in

Directed Acyclic Graphs”. In: Journal of Algorithms 24.1 (1997), pp. 66–93.

[Han22] Narender Hanchate. “Improving Chip Design Performance and Productivity Us-

ing Machine Learning”. In: Proceedings of the 2022 International Symposium on

Physical Design. Virtual Event, 2022.

[Hau07] S. Hauck and A. DeHon, eds. Reconfigurable Computing: The Theory and Practice

of FPGA-Based Computation. Morgan Kaufmann, 2007. ISBN: 9780123705228.

[Hen19] John L. Hennessy and David A. Patterson. “A New Golden Age for Computer

Architecture”. In: Communications of the ACM 62.2 (Feb. 2019), pp. 48–60. ISSN:

0001-0782.

[Hil93] D. Hill, B. Britton, B. Oswald, N. -S. Woo, S. Singh, C. -T. Chen, and B. Krambeck.

“ORCA: A new architecture for high-performance FPGAs”. In: Field-Programmable

Gate Arrays: Architecture and Tools for Rapid Prototyping. Berlin, Heidelberg, 1993,

pp. 52–60.

[Hof94] Franz Höfting and Egon Wanke. “Polynomial Time Analysis of Torodial Periodic

Graphs”. In: Proceedings of the 21st International Colloquium on Automata, Lan-

guages and Programming. Jerusalem, Israel, July 1994, pp. 544–55.

[Hua17] Zhihong Huang, Xing Wei, Grace Zgheib, Wei Li, Yu Lin, Zhenghong Jiang, Kaihui

Tu, Paolo Ienne, and Haigang Yang. “NAND-NOR: A Compact, Fast, and Delay

Balanced FPGA Logic Element”. In: Proceedings of the 2017 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA, 2017,

pp. 135–40.

[Hut01] Michael Hutton, Khosrow Adibsamii, and Andrew Leaver. “Timing-Driven Place-

ment for Hierarchical Programmable Logic Devices”. In: Proceedings of the 2001

ACM/SIGDA Ninth International Symposium on Field Programmable Gate Arrays.

Monterey, CA, USA, 2001, pp. 3–11.

[Hut02] Michael Hutton, Vinson Chan, Peter Kazarian, Victor Maruri, Tony Ngai, Jim Park,

Rakesh Patel, Bruce Pedersen, Jay Schleicher, and Sergey Shumarayev. “Intercon-

nect Enhancements for a High-Speed PLD Architecture”. In: Proceedings of the

2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate

Arrays. Monterey, CA, USA, Feb. 2002, pp. 3–10.

[Hut04] Michael D. Hutton, Jay Schleicher, David M. Lewis, Bruce Pedersen, Richard Yuan,

Sinan Kaptanoglu, Gregg Baeckler, Boris Ratchev, Ketan Padalia, Mark Bourgeault,

Andy Lee, Henry Kim, and Rahul Saini. “Improving FPGA Performance and Area

Using an Adaptive Logic Module”. In: Proceedings of the 14th International Confer-

ence on Field Programmable Logic and Application. Leuven, Belgium, Aug. 2004,

pp. 135–44.

252

BIBLIOGRAPHY

[Hut97] Michael Hutton. “Characterization and Parameterized Generation of Digital Cir-

cuits”. PhD thesis. University of Toronto, 1997.

[Int20] Intel Corporation. Intel® Stratix® 10 Logic Array Blocks and Adaptive Logic Mod-

ules User Guide. UG-S10LAB, ver. 2020.04.24. Apr. 2020.

[Int23] Intel Corporation. Intel® Stratix® Series FPGAs and SoCs. https://www.intel.com/

content/www/us/en/products/details/fpga/stratix.html. Accessed on 29.03.2023.

2023.

[Int23a] Intel Corporation. Intel Agilex® 7 Logic Array Blocks and Adaptive Logic Modules

User Guide. UG-20204, ver. 2023.03.27. Mar. 2023.

[Jam06] Peter Jamieson and Jonathan Rose. “Enhancing the area-efficiency of FPGAs with

hard circuits using shadow clusters”. In: 2006 IEEE International Conference on

Field Programmable Technology. Bangkok, Thailand, Dec. 2006, pp. 1–8.

[Jan09] Stephen Jang, Billy Chan, Kevin Chung, and Alan Mishchenko. “WireMap: FPGA

Technology Mapping for Improved Routability and Enhanced LUT Merging”. In:

ACM Trans. Reconfigurable Technol. Syst. 2.2 (June 2009). ISSN: 1936-7406.

[Jar22] Andy Jaros. The Future of Embedded FPGAs — eFPGA: The Proof is in the Tape Out.

Circuit Cellar, https://circuitcellar.com/insights/the-future-of-embedded-fpgas-

efpga-the-proof-is-in-the-tape-out/. Accessed on 30.03.2023. 2022.

[Jos22] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. “From C/C++ Code to High-

Performance Dataflow Circuits”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 41.7 (2022), pp. 2142–2155.

[Jou21] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B.

Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas

Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David

Patterson. “Ten Lessons from Three Generations Shaped Google’s TPUv4i”. In:

Proceedings of the 48th Annual International Symposium on Computer Architecture.

Virtual Event, 2021, pp. 1–14.

[Kah21] Andrew B. Kahng. “Advancing Placement”. In: Proceedings of the 2021 Interna-

tional Symposium on Physical Design. Virtual Event, 2021, pp. 15–22.

[Kap12] Sinan Kaptanoglu. “Pathfinder: A Negotiation- Based Performance-Driven Router

for FPGAs”. In: FPGA and Reconfigurable Computing Hall-of-Fame Endorsement

(2012).

[Kha22] Vishal Khandelwal. “Machine-Learning Enabled PPA Closure for Next-Generation

Designs”. In: Proceedings of the 2022 International Symposium on Physical Design.

Virtual Event, 2022.

[Kim17] Jin Hee Kim and Jason H. Anderson. “Synthesizable Standard Cell FPGA Fabrics

Targetable by the Verilog-to-Routing CAD Flow”. In: ACM Trans. Reconfigurable

Technol. Syst. 10.2 (Apr. 2017). ISSN: 1936-7406.

253

https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://circuitcellar.com/insights/the-future-of-embedded-fpgas-efpga-the-proof-is-in-the-tape-out/
https://circuitcellar.com/insights/the-future-of-embedded-fpgas-efpga-the-proof-is-in-the-tape-out/

BIBLIOGRAPHY

[Kin12] Carl Kingsford and Rob Patro. “Global network alignment using multiscale spectral

signatures”. In: Bioinformatics 28.23 (Oct. 2012), pp. 3105–14.

[Koc13] Dirk Koch. Partial Reconfiguration on FPGAs. Vol. 153. Lecture Notes in Electrical

Engineering. Springer-Verlag New York, 2013. ISBN: 978-1-4614-1225-0.

[Koc21] Dirk Koch, Nguyen Dao, Bea Healy, Jing Yu, and Andrew Attwood. “FABulous: An

Embedded FPGA Framework”. In: The 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. Virtual Event, Feb. 2021, pp. 45–56.

[Kuc19] Anastasiia Kucherenko, Stefan Nikolić, and Paolo Ienne. “On Feasibility of FPGAs

Without Dedicated Programmable Interconnect Structure”. In: Proceedings of the

2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

Seaside, CA, USA, Feb. 2019.

[Kuo04] Ian Carlos Kuon. “Automated FPGA Design, Verification and Layout”. MA thesis.

University of Toronto, 2004.

[Kuo06] Ian Kuon and Jonathan Rose. “Measuring the Gap between FPGAs and ASICs”.

In: Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field

Programmable Gate Arrays. Monterey, CA, USA, 2006, pp. 21–30.

[Lan21] Martin Langhammer, Eriko Nurvitadhi, Bogdan Pasca, and Sergey Gribok. “Stratix

10 NX Architecture and Applications”. In: The 2021 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. Virtual Event, 2021, pp. 57–67.

[Law63] Eugene L. Lawler. “The Quadratic Assignment Problem”. In: Management Science

9.4 (1963), pp. 586–99.

[Lee06] Edmund Lee, Guy Lemieux, and Shahriar Mirabbasi. “Interconnect Driver Design

for Long Wires in Field-Programmable Gate Arrays”. In: 2006 IEEE International

Conference on Field Programmable Technology. Bangkok, Thailand, Dec. 2006,

pp. 89–96.

[Lei20] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler

W. Lampson, Daniel Sanchez, and Tao B. Schardl. “There’s plenty of room at

the Top: What will drive computer performance after Moore’s law?” In: Science

368.6495 (June 2020), pp. 1–7.

[Lem00] Guy Lemieux, Paul Leventis, and David Lewis. “Generating Highly-Routable Sparse

Crossbars for PLDs”. In: Proceedings of the 2000 ACM/SIGDA Eighth International

Symposium on Field Programmable Gate Arrays. Monterey, CA, USA, 2000, pp. 155–

64.

[Lem01] Guy Lemieux and David Lewis. “Using Sparse Crossbars within LUT Clusters”.

In: Proceedings of the 2001 ACM/SIGDA Ninth International Symposium on Field

Programmable Gate Arrays. Monterey, CA, USA, 2001, pp. 59–68.

[Lem02] Guy G. Lemieux and David M. Lewis. “Analytical Framework for Switch Block De-

sign”. In: Proceedings of the 12th International Conference on Field-Programmable

Logic and Applications. Leuven, Belgium, Sept. 2002, pp. 122–31.

254

BIBLIOGRAPHY

[Lem04] G. Lemieux, E. Lee, M. Tom, and A. Yu. “Directional and single-driver wires in

FPGA interconnect”. In: Proceedings of the 2004 IEEE International Conference on

Field-Programmable Technology. Brisbane, Australia, Dec. 2004, pp. 41–48.

[Lem04a] G. Lemieux and D. Lewis. Design of Interconnection Networks for Programmable

Logic. USA: Kluwer Academic Publishers, 2004. ISBN: 1402077009.

[Lem93] G. Lemieux and S. Brown. “A Detailed Router for Allocating Wire Segments in

FPGAs”. In: ACM/SIGDA Physical Design Workshop. Lake Arrowhead, CA, USA, Apr.

1993, pp. 215–26.

[Lew03] David Lewis, Vaughn Betz, David Jefferson, Andy Lee, Chris Lane, Paul Leventis,

Sandy Marquardt, Cameron McClintock, Bruce Pedersen, Giles Powell, Srinivas

Reddy, Chris Wysocki, Richard Cliff, and Jonathan Rose. “The Stratix Routing and

Logic Architecture”. In: Proceedings of the 2003 ACM/SIGDA Eleventh International

Symposium on Field Programmable Gate Arrays. Monterey, Calif., Feb. 2003, pp. 12–

20.

[Lew05] David Lewis, Elias Ahmed, Gregg Baeckler, Vaughn Betz, Mark Bourgeault, David

Cashman, David Galloway, Mike Hutton, Chris Lane, Andy Lee, et al. “The Stratix

II Logic and Routing Architecture”. In: Proceedings of the 2005 ACM/SIGDA 13th

International Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA,

Feb. 2005, pp. 14–20.

[Lew09] David Lewis, Elias Ahmed, David Cashman, Tim Vanderhoek, Chris Lane, Andy

Lee, and Philip Pan. “Architectural Enhancements in Stratix-III™ and Stratix-

IV™”. In: Proceedings of the ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays. Monterey, CA, USA, 2009, pp. 33–42.

[Lew12] David Lewis and Jeffrey Chromczak. “Process technology implications for FPGAs”.

In: Proceedings of the 2012 International Electron Devices Meeting. San Francisco,

CA, USA, Dec. 2012, pp. 25.2.1–4.

[Lew13] David Lewis, David Cashman, Mark Chan, Jeffery Chromczak, Gary Lai, Andy Lee,

Tim Vanderhoek, and Haiming Yu. “Architectural Enhancements in Stratix V™”. In:

Proceedings of the ACM/SIGDA International Symposium on Field Programmable

Gate Arrays. Monterey, CA, USA, Feb. 2013, pp. 147–56.

[Lew16] David Lewis, Gordon Chiu, Jeffrey Chromczak, David Galloway, Ben Gamsa, Vala-

van Manohararajah, Ian Milton, Tim Vanderhoek, and John Van Dyken. “The

Stratix™ 10 Highly Pipelined FPGA Architecture”. In: Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Mon-

terey, CA, USA, Feb. 2016, pp. 159–68.

[Li07] Chen Li, Min Xie, Cheng-Kok Koh, Jason Cong, and Patrick Madden. “Routability-

Driven Placement and White Space Allocation”. In: IEEE Trans. on CAD of Inte-

grated Circuits and Systems 26.5 (2007), pp. 858–71.

255

BIBLIOGRAPHY

[Li12] Shuai Li and Cheng-Kok Koh. “Mixed integer programming models for detailed

placement”. In: International Symposium on Physical Design. Napa, CA, USA, Mar.

2012, pp. 87–94.

[Li19] Wuxi Li, Yibo Lin, and David Z. Pan. “elfPlace: Electrostatics-based Placement for

Large-Scale Heterogeneous FPGAs”. In: 2019 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD). Westminster, CO, USA, Nov. 2019, pp. 1–8.

[Li19a] Wuxi Li and David Z. Pan. “A New Paradigm for FPGA Placement Without Explicit

Packing”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 38.11 (Nov. 2019), pp. 2113–26. ISSN: 1937-4151.

[Lin10] M. Lin, J. Wawrzynek, and A. E. Gamal. “Exploring FPGA Routing Architecture

Stochastically”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 29.10 (Sept. 2010), pp. 1509–22.

[Lin23] Burn J. Lin. “Immersion and EUV Lithography: Two Pillars to Sustain Single-Digit

Nanometer Nodes”. In: Proceedings of the 2023 International Symposium on Phys-

ical Design. Virtual Event, 2023.

[Luu14] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Kon-

stantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed, Kenneth B.

Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. “VTR 7.0: Next Generation

Architecture and CAD System for FPGAs”. In: ACM Transactions on Reconfigurable

Technology and Systems 7.2 (July 2014). ISSN: 1936-7406.

[Luu14a] Jason Luu. “Architecture-Aware Packing and CAD Infrastructure for Field-

Programmable Gate Arrays”. Ph.D. Thesis. Toronto: University of Toronto, 2014.

[Luu14b] Jason Luu, Conor McCullough, Sen Wang, Safeen Huda, Bo Yan, Charles Chiasson,

Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. “On Hard

Adders and Carry Chains in FPGAs”. In: Proceedings of the 2014 IEEE 22nd Interna-

tional Symposium on Field-Programmable Custom Computing Machines. Boston,

MA, USA, May 2014, pp. 52–59.

[Maa18] Dani Maarouf, Abeer Alhyari, Ziad Abuowaimer, Timothy Martin, Andrew Gunter,

Gary Grewal, Shawki Areibi, and Anthony Vannelli. “Machine-Learning Based

Congestion Estimation for Modern FPGAs”. In: 2018 28th International Conference

on Field Programmable Logic and Applications (FPL). Dublin, Ireland, Aug. 2018,

pp. 427–34.

[Mak19] Andrew O. Makhorin. GLPK (GNU Linear Programming Kit). https://www.gnu.

org/software/glpk/. 2019.

[Mar00] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. “Timing-Driven Place-

ment for FPGAs”. In: Proceedings of the 2000 ACM/SIGDA Eighth International

Symposium on Field Programmable Gate Arrays. Monterey, CA, USA, Feb. 2000,

pp. 203–13.

256

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

BIBLIOGRAPHY

[Mar12] Igor L. Markov, Jin Hu, and Myung-Chul Kim. “Progress and challenges in VLSI

placement research”. In: 2012 IEEE/ACM International Conference on Computer-

Aided Design. San Jose, CA, USA, Nov. 2012, pp. 275–82.

[Mar19] Timothy Martin, Dani Maarouf, Ziad Abuowaimer, Abeer Alhyari, Gary Grewal,

and Shawki Areibi. “A Flat Timing-Driven Placement Flow for Modern FPGAs”. In:

2019 56th ACM/IEEE Design Automation Conference (DAC). Las Vegas, NV, USA,

June 2019, pp. 1–6.

[Mar92] David Marple. “An MPGA-Like FPGA”. In: IEEE Des. Test 9.4 (Oct. 1992), pp. 51–60.

ISSN: 0740-7475.

[McM95] L. McMurchie and C. Ebeling. “PathFinder: A Negotiation-Based Performance-

Driven Router for FPGAs”. In: Proceedings of the 1995 ACM Third International

Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA, Feb. 1995,

pp. 111–17.

[Mih13] A. Mihal and S. Teig. “A Constraint Satisfaction Approach for Programmable Logic

Detailed Placement”. In: Proceedings of the 16th International Conference on The-

ory and Applications of Satisfiability Testing. Helsinki, July 2013, pp. 208–23.

[Mih13a] Andrew Mihal. “A Difference Logic Formulation and SMT Solver for Timing-Driven

Placement”. In: Informal Proceedings of the 11th International Workshop on Satis-

fiability Modulo Theories. Helsinki, Finland, July 2013, pp. 16–25.

[Mis06] A. Mishchenko, S. Chatterjee, and R. Brayton. “DAG-aware AIG rewriting: a fresh

look at combinational logic synthesis”. In: 2006 43rd ACM/IEEE Design Automation

Conference. San Francisco, CA, July 2006, pp. 532–535.

[Mis23] Alan Mishchenko. ABC: A System for Sequential Synthesis and Verification. Berkeley

Logic Synthesis and Verification Group, https : / / people . eecs . berkeley. edu /

~alanmi/abc/. Accessed on 05.05.2023. 2023.

[Moh12] Yehdhih Ould Mohammed Moctar, Guy Lemieux, and Philip Brisk. “Routing al-

gorithms for FPGAs with sparse intra-cluster routing crossbars”. In: 22nd Inter-

national Conference on Field Programmable Logic and Applications (FPL). Oslo,

Norway, Aug. 2012, pp. 91–98.

[Mor23] Victor Moroz. “Gate-All-Around Technology is Coming.: What’s Next After GAA?”

In: Proceedings of the 2023 International Symposium on Physical Design. Virtual

Event, 2023.

[Mor71] Robert L. Morris and John R. Miller, eds. Designing with TTL Integrated Circuits.

Texas Instruments Electronics Series. McGraw-Hill Book Company, 1971.

[Mun57] James Raymond Munkres. “Algorithms for the Assignment and Transportation

Problems”. In: Journal of the Society for Industrial and Applied Mathematics 5.1

(1957).

257

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/

BIBLIOGRAPHY

[Mur15] Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. “Timing-

Driven Titan: Enabling Large Benchmarks and Exploring the Gap between Aca-

demic and Commercial CAD”. In: ACM Trans. Reconfigurable Technol. Syst. 8.2

(Mar. 2015). ISSN: 1936-7406. URL: https://doi.org/10.1145/2629579.

[Mur20] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jia Min Wang, Mohamed Eldafrawy,

Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean Wu, Matthew J. P.

Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu, Kenneth B. Kent, and Vaughn

Betz. “VTR 8: High-Performance CAD and Customizible FPGA Architecture Mod-

elling”. In: ACM Transactions on Reconfigurable Technology and Systems (TRETS)

13.2 (May 2020), 9:1–60.

[Nag98] S.K. Nag and R.A. Rutenbar. “Performance-driven simultaneous placement and

routing for FPGAs”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 17.6 (June 1998), pp. 499–518.

[Nan11] ASU Nanoscale Integration and Modeling (NIMO) Group. Predictive Technology

Model. http://ptm.asu.edu/. Accessed: 26.08.2020. 2011.

[Nay22] Ashish Nayak, HsinChen Chen, Hugh Mair, Rolf Lagerquist, Tao Chen, Anand

Rajagopalan, Gordon Gammie, Ramu Madhavaram, Madhur Jagota, CJ Chung,

et al. “A 5nm 3.4GHz Tri-Gear ARMv9 CPU Subsystem in a Fully Integrated 5G

Flagship Mobile SoC”. In: 2022 IEEE International Solid- State Circuits Conference

(ISSCC). Vol. 65. San Francisco, CA, USA, Feb. 2022, pp. 50–52.

[Nik19] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. “Finding a Needle in the Haystack

of Hardened Interconnect Patterns”. In: 2019 29th International Conference on

Field Programmable Logic and Applications (FPL). Barcelona, Spain, Sept. 2019,

pp. 31–37.

[Nik20] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. “Straight to the Point: Intra- and

Intercluster LUT Connections to Mitigate the Delay of Programmable Routing”. In:

FPGA ’20: The 2020 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, Seaside, CA, USA, February 23-25, 2020. Seaside, CA, USA, Feb. 2020,

pp. 150–60.

[Nik20a] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. “Timing-Driven Placement for

FPGA Architectures with Dedicated Routing Paths”. In: 2020 30th International

Conference on Field-Programmable Logic and Applications (FPL). Virtual Event,

Aug. 2020, pp. 153–61.

[Nik21] Stefan Nikolić, Francky Catthoor, Zsolt Tőkei, and Paolo Ienne. “Global Is the

New Local: FPGA Architecture at 5nm and Beyond”. In: The 2021 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. Virtual Event, 2021,

pp. 34–44.

258

https://doi.org/10.1145/2629579
http://ptm.asu.edu/

BIBLIOGRAPHY

[Nik21a] Stefan Nikolić and Paolo Ienne. “Turning PathFinder Upside-Down: Exploring

FPGA Switch-Blocks by Negotiating Switch Presence”. In: 31st International Con-

ference on Field-Programmable Logic and Applications. Virtual Event, Sept. 2021,

pp. 225–33.

[Nik22] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. “Detailed Placement for Dedicated

LUT-Level FPGA Interconnect”. In: ACM Trans. Reconfigurable Technol. Syst. 15.4

(Dec. 2022). ISSN: 1936-7406.

[Nik23] Stefan Nikolić and Paolo Ienne. “Regularity Matters: Designing Practical FPGA

Switch-Blocks”. In: Proceedings of the 2023 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. Monterey, CA, USA, Feb. 2023.

[Nik23a] Stefan Nikolić and Paolo Ienne. “Exploring FPGA Switch-Blocks without Explicit

Pattern Listing”. In: ACM Trans. Reconfigurable Technol. Syst. (2023). Accepted, to

appear.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. ISBN:

9780201530827.

[Par11] Hadi Parandeh-Afshar, Grace Zgheib, Philip Brisk, and Paolo Ienne. “Reducing the

pressure on routing resources of FPGAs with generic logic chains”. In: Proceedings

of the ACM/SIGDA 19th International Symposium on Field. Monterey, CA, USA,

Feb. 2011, pp. 237–46.

[Par12] Hadi Parandeh-Afshar, Hind Benbihi, David Novo, and Paolo Ienne. “Rethinking

FPGAs: Elude the Flexibility Excess of LUTs with and-Inverter Cones”. In: Proceed-

ings of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays. Monterey, CA, USA, 2012, pp. 119–28.

[Par13] Hadi Parandeh-Afshar, Grace Zgheib, David Novo, Madhura Purnaprajna, and

Paolo Ienne. “Shadow And-Inverter Cones”. In: 2013 23rd International Conference

on Field programmable Logic and Applications. Porto, Portugal, Sept. 2013, pp. 1–4.

[Pet15] Oleg Petelin and Vaughn Betz. “Wotan: A tool for rapid evaluation of FPGA archi-

tecture routability without benchmarks”. In: Proceedings of the 25th International

Conference on Field Programmable Logic and Applications. London, UK, Sept.

2015, pp. 1–4.

[Pet16] Oleg Petelin and Vaughn Betz. “The Speed of Diversity: Exploring Complex FPGA

Routing Topologies for the Global Metal Layer”. In: Proceedings of the 26th Inter-

national Conference on Field Programmable Logic and Applications. Lausanne,

Switzerland, Aug. 2016, pp. 1–10.

[Pet21] Morten B. Petersen, Stefan Nikolić, and Mirjana Stojilović. “NetCracker: A Peek

into the Routing Architecture of Xilinx 7-Series FPGAs”. In: Proceedings of the 2021

ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Virtual

Event, Feb. 2021, pp. 11–22.

259

BIBLIOGRAPHY

[Pis03] Joachim Pistorius and Mike Hutton. “Placement Rent Exponent Calculation Meth-

ods, Temporal Behaviour and FPGA Architecture Evaluation”. In: Proceedings of the

2003 International Workshop on System-Level Interconnect Prediction. Monterey,

CA, USA, 2003, pp. 31–38.

[Pra19] Divya Prasad, SS Teja Nibhanupudi, Shidhartha Das, Odysseas Zografos, Bilal

Chehab, Satadru Sarkar, Rogier Baert, Alex Robinson, Anshul Gupta, Alessio Spes-

sot, et al. “Buried Power Rails and Back-side Power Grids: Arm® CPU Power Deliv-

ery Network Design Beyond 5nm”. In: Proceedings of the 2019 IEEE International

Electron Devices Meeting. San Francisco, CA, USA, Dec. 2019, pp. 19.1.1–4.

[Qia21] Jiadong Qian, Yuhang Shen, Kaichuang Shi, Hao Zhou, and Lingli Wang. “General

routing architecture modelling and exploration for modern FPGAs”. In: Proceed-

ings of the 2021 International Conference on Field-Programmable Technology.

Auckland, Dec. 2021, pp. 1–9.

[Raj22] Rachel Selina Rajarathnam, Mohamed Baker Alawieh, Zixuan Jiang, Mahesh Iyer,

and David Z. Pan. “DREAMPlaceFPGA: An Open-Source Analytical Placer for Large

Scale Heterogeneous FPGAs Using Deep-Learning Toolkit”. In: 2022 27th Asia and

South Pacific Design Automation Conference (ASP-DAC). Taipei, Taiwan, 2022,

pp. 300–306.

[Ram80] Frank R. Ramsay. “Automation of Design for Uncommitted Logic Array”. In: Pro-

ceedings of the 17th Design Automation Conference. Minneapolis, Minnesota, USA,

1980, pp. 100–107.

[Ray12] Sayak Ray, Alan Mishchenko, Niklas Eén, Robert K. Brayton, Stephen Jang, and

Chao Chen. “Mapping into LUT structures”. In: 2012 Design, Automation & Test in

Europe Conference & Exhibition. Dresden, Germany, Mar. 2012, pp. 1579–84.

[Red09] Sherief Reda. “Using Circuit Structural Analysis Techniques for Networks in Sys-

tems Biology”. In: Proceedings of the 11th International Workshop on System Level

Interconnect Prediction. San Francisco, CA, USA, 2009, pp. 37–44.

[Ren21] Renesas Electronics Corporation. Renesas Enters FPGA Market with the First Ultra-

Low-Power, Low-Cost Family Addressing Low-Density, High-Volume Applications.

https://www.renesas.com/us/en/about/press- room/renesas- enters- fpga-

market-first-ultra-low-power-low-cost-family-addressing-low-density-high-

volume. Accessed on 06.04.2023. 2021.

[Roo02] Ajay Roopchansingh and Jonathan Rose. “Nearest Neighbour Interconnect Archi-

tecture in Deep Submicron FPGAs”. In: IEEE Custom Integrated Circuits Conference.

San Diego, CA, USA, May 2002, pp. 59–62.

[Ros18] Jonathan Rose. “A User Programmable Reconfigurable Logic Array”. In: FPGA and

Reconfigurable Computing Hall-of-Fame Endorsement (2018).

[Ros89] J. Rose, R.J. Francis, P. Chow, and D. Lewis. “The effect of logic block complexity

on area of programmable gate arrays”. In: 1989 Proceedings of the IEEE Custom

Integrated Circuits Conference. San Diego, CA, USA, May 1989, pp. 5.3/1–5.3/5.

260

https://www.renesas.com/us/en/about/press-room/renesas-enters-fpga-market-first-ultra-low-power-low-cost-family-addressing-low-density-high-volume
https://www.renesas.com/us/en/about/press-room/renesas-enters-fpga-market-first-ultra-low-power-low-cost-family-addressing-low-density-high-volume
https://www.renesas.com/us/en/about/press-room/renesas-enters-fpga-market-first-ultra-low-power-low-cost-family-addressing-low-density-high-volume

BIBLIOGRAPHY

[Ros91] J. Rose and S. Brown. “Flexibility of interconnection structures for field-program-

mable gate arrays”. In: IEEE Journal of Solid-State Circuits 26.3 (1991), pp. 277–82.

[Ros93] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. “Architecture of field-

programmable gate arrays”. In: Proceedings of the IEEE 81.7 (July 1993), pp. 1013–

29. ISSN: 1558-2256.

[Rub11] Raphael Rubin and André DeHon. “Timing-Driven Pathfinder Pathology and

Remediation: Quantifying and Reducing Delay Noise in VPR-Pathfinder”. In: Pro-

ceedings of the ACM/SIGDA 19th International Symposium on Field Programmable

Gate Arrays. Monterey, CA, USA, Feb. 2011, pp. 173–76.

[Ryz11] Nikolai Ryzhenko and Steven Burns. “Physical synthesis onto a layout fabric with

regular diffusion and polysilicon geometries”. In: 2011 48th ACM/EDAC/IEEE De-

sign Automation Conference (DAC). San Diego, CA, USA, June 2011, pp. 83–88.

[Sai17] Christopher Saint and Judy Lynne Saint. Fabricating ICs. Encyclopedia Britannica

Online, https://www.britannica.com/technology/integrated-circuit/Fabricating-

ICs. Accessed on 20.03.2023. 2017.

[San23] Alberto Sangiovanni-Vincentelli, Zheng Liang, Zhe Zhou, and Jiaxi Zhang. “Auto-

mated Design of Chiplets”. In: Proceedings of the 2023 International Symposium

on Physical Design. Virtual Event, 2023, pp. 1–8.

[Sax03] Tim Saxe and Brian Faith. EFLX® eFPGA Resources. https://www.eetimes.com/

metal-layers-a-key-to-interconnect-delay/. Accessed on 24.04.2023. 2003.

[Sch02] Herman Schmit and Vikas Chandra. “FPGA Switch Block Layout and Evaluation”.

In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-

Programmable Gate Arrays. Monterey, CA, USA, Feb. 2002, pp. 11–18.

[Sch03] Herman Schmit. “Extra-dimensional Island-Style FPGAs”. In: Proceedings of the

13th International Conference on Field Programmable Logic and Applications.

Lisbon, Portugal, Sept. 2003, pp. 406–15.

[Sch21] Pasquale Davide Schiavone, Davide Rossi, Alfio Di Mauro, Frank K. Gürkaynak,

Timothy Saxe, Mao Wang, Ket Chong Yap, and Luca Benini. “Arnold: An eFPGA-

Augmented RISC-V SoC for Flexible and Low-Power IoT End Nodes”. In: IEEE

Transactions on Very Large Scale Integration Systems 29.4 (Apr. 2021), pp. 677–90.

ISSN: 1557-9999.

[Sch22] David Schor. IEDM 2022: Did We Just Witness The Death Of SRAM? WikiChip,

https://fuse.wikichip.org/news/7343/iedm- 2022-did-we- just- witness-the-

death-of-sram/. Accessed on 24.04.2023. 2022.

[Sch22a] Herman Schmit and Matthew Denton. “Multi-Input Serial Adders for FPGA-like

Computational Fabric”. In: Proceedings of the 2022 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. Virtual Event, 2022, pp. 35–41.

[Sha49] Claude. E. Shannon. “The synthesis of two-terminal switching circuits”. In: The

Bell System Technical Journal 28.1 (Jan. 1949), pp. 59–98. ISSN: 0005-8580.

261

https://www.britannica.com/technology/integrated-circuit/Fabricating-ICs
https://www.britannica.com/technology/integrated-circuit/Fabricating-ICs
https://www.eetimes.com/metal-layers-a-key-to-interconnect-delay/
https://www.eetimes.com/metal-layers-a-key-to-interconnect-delay/
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram/
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram/

BIBLIOGRAPHY

[She18] S.M. Yasser Sherazi, Jung Kyu Chae, P. Debacker, L. Matti, P. Raghavan, V. Gerousis,

D. Verkest, A. Mocuta, R.H. Kim, A. Spessot, and J. Ryckaert. “Track height reduc-

tion for standard-cell in below 5nm node: how low can you go?” In: Proc. of SPIE.

Vol. 10588. SPIE, 2018, 1058809:1–13.

[Shi22] Kaichuang Shi, Xuegong Zhou, Hao Zhou, and Lingli Wang. “An Optimized GIB

Routing Architecture with Bent Wires for FPGA”. In: ACM Trans. Reconfigurable

Technol. Syst. 16.1 (Dec. 2022). ISSN: 1936-7406.

[Shr23] Shashwat Shrivastava, Stefan Nikolić, Chirag Ravishankar, Dinesh Gaitonde, and

Mirjana Stojilović. “Mitigating the Last-Mile Bottleneck: A Two-Step Approach

For Faster Commercial FPGA Routing”. In: Proceedings of the 2023 ACM/SIGDA

International Symposium on Field Programmable Gate Arrays. Monterey, CA, USA,

2023.

[Sin02] Deshanand P. Singh and Stephen D. Brown. “Constrained Clock Shifting for Field

Programmable Gate Arrays”. In: Proceedings of the 2002 ACM/SIGDA Tenth Interna-

tional Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA, 2002,

pp. 121–26.

[Sin05] D.P. Singh, V. Manohararajah, and S.D. Brown. “Two-stage physical synthesis for

FPGAs”. In: Proceedings of the IEEE 2005 Custom Integrated Circuits Conference,

2005. San Jose, CA, USA, Sept. 2005, pp. 171–78.

[Sin92] S. Singh, J. Rose, P. Chow, and D. Lewis. “The effect of logic block architecture on

FPGA performance”. In: IEEE Journal of Solid-State Circuits 27.3 (1992), pp. 281–

87.

[Spa93] Malcolm K. Sparrow. “A linear algorithm for computing automorphic equiva-

lence classes: the numerical signatures approach”. In: Social Networks 15.2 (1993),

pp. 151–70. ISSN: 0378-8733.

[Sti17] Aaron Stillmaker and Bevan Baas. “Scaling Equations for the Accurate Prediction

of CMOS Device Performance from 180nm to 7nm”. In: Integration 58 (June 2017),

pp. 74–81.

[Str99] Dirk Stroobandt, Jo Depreitere, and Jan Van Campenhout. “Generating new bench-

mark designs using a multi-terminal net model”. In: Integration 27.2 (1999),

pp. 113–29.

[Swa98] Jordan S. Swartz, Vaughn Betz, and Jonathan Rose. “A Fast Routability-Driven

Router for FPGAs”. In: Proceedings of the 1998 ACM/SIGDA Sixth International

Symposium on Field Programmable Gate Arrays. Monterey, CA, USA, 1998, pp. 140–

49.

[Tan14] Xifan Tang, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “Pattern-

based FPGA logic block and clustering algorithm”. In: 24th International Confer-

ence on Field Programmable Logic and Applications. Munich, Germany, Sept. 2014,

pp. 1–4.

262

BIBLIOGRAPHY

[Tan19] X. Tang, E. Giacomin, A. Alacchi, and P. Gaillardon. “A Study on Switch Block Pat-

terns for Tileable FPGA Routing Architectures”. In: 2019 International Conference

on Field-Programmable Technology (ICFPT). Tianjin, China, Dec. 2019, pp. 247–50.

[Tan19a] Xifan Tang, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere, and Pierre-

Emmanuel Gaillardon. “OpenFPGA: An Opensource Framework Enabling Rapid

Prototyping of Customizable FPGAs”. In: 2019 29th International Conference on

Field Programmable Logic and Applications (FPL). Barcelona, Spain, Sept. 2019,

pp. 367–74.

[Tho21] Neil C. Thompson and Svenja Spanuth. “The Decline of Computers as a General

Purpose Technology”. In: Communications of the ACM 64.3 (Feb. 2021), pp. 64–72.

ISSN: 0001-0782.

[Tok16] Zs. Tőkei, I. Ciofi, Ph. Roussel, P. Debacker, P. Raghavan, M.H. van der Veen, N.

Jourdan, C.J. Wilson, V.V. Gonzalez, C. Adelmann, L. Wen, K. Croes, O.Varela Pe-

dreira K. Moors, M. Krishtab, S. Armini, and J. Bömmels. “On-chip interconnect

trends, challenges and solutions: How to keep RC and reliability under control”.

In: 2016 IEEE Symposium on VLSI Technology. Honolulu, Hawaii, USA, June 2016,

pp. 1–2.

[Tok22] Zs. Tőkei. “Logic Scaling Options for the Next 10 Years: From FinFet to CFET, from

Dual Damascene to Semi Damascene”. In: Proceedings of the 2022 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. Virtual Event, 2022.

[Tri15] Stephen M. Trimberger. “Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology”. In: Proceedings of the IEEE 103.3 (Mar. 2015), pp. 318–

31. ISSN: 1558-2256.

[Tri94] Stephen Trimberger. Field-programmable gate array technology. Springer Sci-

ence+Business Media New York, 1994.

[Tri97] Steve Trimberger, Khue Duong, and Bob Conn. “Architecture Issues and Solutions

for a High-Capacity FPGA”. In: Proceedings of the 1997 ACM Fifth International

Symposium on Field-Programmable Gate Arrays. Monterey, CA, USA, 1997, pp. 3–9.

[TSM23] TSMC. Logic Technology. https://www.tsmc.com/english/dedicatedFoundry/

technology/logic. Accessed on 29.03.2023. 2023.

[Tyh15] Jeffrey Tyhach, Mike Hutton, Sean Atsatt, Arifur Rahman, Brad Vest, David Lewis,

Martin Langhammer, Sergey Shumarayev, Tim Hoang, Allen Chan, Dong-Myung

Choi, Dan Oh, Hae-Chang Lee, Jack Chui, Ket Chiew Sia, Edwin Kok, Wei-Yee Koay,

and Boon-Jin Ang. “Arria™ 10 Device Architecture”. In: Proceedings of the IEEE

Custom Integrated Circuit Conference. San Jose, CA, USA, May 2015, pp. 1–8.

[Van15] Elias Vansteenkiste, Alireza Kaviani, and Henri Fraisse. “Analyzing the divide be-

tween FPGA academic and commercial results”. In: 2015 International Conference

on Field Programmable Technology (FPT). Queenstown, New Zealand, Dec. 2015,

pp. 96–103.

263

https://www.tsmc.com/english/dedicatedFoundry/technology/logic
https://www.tsmc.com/english/dedicatedFoundry/technology/logic

BIBLIOGRAPHY

[Vaz04] Vijay V. Vazirani. Approximation algorithms. Springer, 2004. ISBN: 9783540653677.

[Vor07] Kristofer Vorwerk, Andrew Kennings, Jonathan Greene, and Doris T. Chen. “Im-

proving Annealing via Directed Moves”. In: 2007 International Conference on Field

Programmable Logic and Applications. Amsterdam, The Netherlands, Aug. 2007,

pp. 363–70.

[Wan06] G. Wang, S. Sivaswamy, C. Ababei, K. Bazargan, R. Kastner, and E. Bozorgzadeh.

“Statistical Analysis and Design of HARP FPGAs”. In: IEEE Transactions on Com-

puter-Aided Design of Integrated Circuits and Systems 25.10 (2006), pp. 2088–102.

[Wan14] Cheng C. Wang, Fang-Li Yuan, Tsung-Han Yu, and Dejan Markovic. “A multi-

granularity FPGA with hierarchical interconnects for efficient and flexible mobile

computing”. In: 2014 IEEE International Solid-State Circuits Conference Digest of

Technical Papers (ISSCC). San Francisco, CA, USA, Feb. 2014, pp. 460–61.

[Wil13] H. Paul Williams. Model Building in Mathematical Programming. Fifth. Wiley,

2013.

[Wil97] Steven J.E. Wilton. “Architectures and Algorithms for Field-Programmable Gate

Arrays with Embedded Memory”. PhD thesis. University of Toronto, 1997.

[Wol23] Claire Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/. Accessed on

05.05.2023. 2023.

[Wol23a] Claire Wolf and Mathias Lasser. Project IceStorm. http://bygone.clairexen.net/

icestorm/. 2023.

[Won00] Shyh-Chyi Wong, Gwo-Yann Lee, and Dye-Jyun Ma. “Modeling of interconnect

capacitance, delay, and crosstalk in VLSI”. In: IEEE Transactions on Semiconductor

Manufacturing 13.1 (Feb. 2000), pp. 108–11.

[Wu13] Shien-Yang Wu, Colin Yu Lin, MC Chiang, JJ Liaw, JY Cheng, SH Yang, Ming Liang,

Tadakazu Miyashita, CH Tsai, BC Hsu, et al. “A 16nm FinFET CMOS Technology

for Mobile SoC and Computing Applications”. In: Proceedings of the 2013 IEEE

International Electron Devices Meeting. Washington, DC, USA, Dec. 2013, pp. 9.1.1–

4.

[Wu16] S. Wu, C. Y. Lin, M. C. Chiang, J. J. Liaw, J. Y. Cheng, S. H. Yang, C. H. Tsai, P. N. Chen,

T. Miyashita, C. H. Chang, et al. “A 7nm CMOS Platform Technology Featuring 4th

Generation FinFET Transistors with a 0.027 um2 High Density 6-T SRAM Cell for

Mobile SoC Applications”. In: Proceedings of the 2016 IEEE International Electron

Devices Meeting. San Francisco, CA, USA, Dec. 2016, pp. 2.6.1–4.

[Wu20] Tao Wu, Haowen Luo, Xingsheng Wang, Asen Asenov, and Xiangshui Miao. “A

Predictive 3-D Source/Drain Resistance Compact Model and the Impact on 7 nm

and Scaled FinFETs”. In: IEEE Transactions on Electron Devices 67.6 (May 2020),

pp. 2255–62.

264

https://yosyshq.net/yosys/
http://bygone.clairexen.net/icestorm/
http://bygone.clairexen.net/icestorm/

BIBLIOGRAPHY

[Wu22] Shien-Yang Wu, C.H. Chang, M.C. Chiang, C.Y. Lin, J.J. Liaw, J.Y. Cheng, J.Y. Yeh,

H.F. Chen, S.Y. Chang, K.T. Lai, et al. “A 3nm CMOS FinFlex™ Platform Technol-

ogy with Enhanced Power Efficiency and Performance for Mobile SoC and High

Performance Computing Applications”. In: 2022 International Electron Devices

Meeting (IEDM). San Francisco, CA, USA, Dec. 2022, pp. 27.5.1–27.5.4.

[Xia22] Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-

Hait, and A. DeHon. “PLD: Fast FPGA Compilation to Make Reconfigurable Acceler-

ation Compatible with Modern Incremental Refinement Software Development”.

In: Proceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems. Lausanne, Switzerland, 2022,

pp. 933–45.

[Xil01] Xilinx Inc. Virtex-II Platform FPGA Handbook. 2001.

[Xil11] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.

DS083 (v5.0). June 2011.

[Xil93] Xilinx Inc. XC2000 Logic Cell Array Families. San Jose, CA, USA, 1993.

[Xil98] Xilinx Inc. The Programmable LogicData Book. Apr. 1998.

[Yan02] Andy Yan, Rebecca Cheng, and Steven J. E. Wilton. “On the Sensitivity of FPGA

Architectural Conclusions to Experimental Assumptions, Tools, and Techniques”.

In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-

Programmable Gate Arrays. Monterey, CA, USA, Feb. 2002, pp. 147–56.

[Yan16] Stephen Yang, Aman Gayasen, Chandra Mulpuri, Sainath Reddy, and Rajat Aggar-

wal. “Routability-Driven FPGA Placement Contest”. In: Proceedings of the 2016 on

International Symposium on Physical Design. Santa Rosa, CA, USA, 2016, pp. 139–

43.

[Yan91] Saeyang Yang. Logic Synthesis and Optimization Benchmarks User Guide, Version

3.0. Technical Report. Microelectronics Center of North Carolina, Jan. 1991.

[Yaz19] Sadegh Yazdanshenas and Vaughn Betz. “COFFE 2: Automatic Modelling and

Optimization of Complex and Heterogeneous FPGA Architectures”. In: TRETS

12.11 (2019), 3:1–27.

[Ye06] A. Ye and J. Rose. “Using bus-based connections to improve field-programmable

gate-array density for implementing datapath circuits”. In: IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 14.5 (May 2006), pp. 462–73. ISSN:

1557-9999.

[Ye10] Andy Gean Ye. “Using the Minimum Set of Input Combinations to Minimize the

Area of Local Routing Networks in Logic Clusters Containing Logically Equiva-

lent I/Os in FPGAs”. In: IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 18.1 (Jan. 2010), pp. 95–107. ISSN: 1557-9999.

265

BIBLIOGRAPHY

[Yea19] G. Yeap, S. S. Lin, Y. M. Chen, H. L. Shang, P. W. Wang, H. C. Lin, Y. C. Peng, J. Y. Sheu,

M. Wang, X. Chen, et al. “5nm CMOS Production Technology Platform Featuring

Full-Fledged EUV, and High Mobility Channel FinFETs with Densest 0.021µm2

SRAM Cells for Mobile SoC and High Performance Computing Applications”. In:

Proceedings of the 2019 IEEE International Electron Devices Meeting. San Francisco,

CA, USA, Dec. 2019, pp. 36.7.1–4.

[You15] Steven P. Young, Yang Song, and Nui Chong. “Two Gate Pitch FPGA Memory Cell”.

US 9177634 B1. patent assignee: Xilinx Inc. 2015.

[You98] Steven P. Young. “Six-input Multiplexer with Two Gate Levels and Three Memory

Cells”. US 5744995. patent assignee: Xilinx Inc. 1998.

[Zgh16] Grace Zgheib, Manana Lortkipanidze, Muhsen Owaida, David Novo, and Paolo

Ienne. “FPRESSO: Enabling Express Transistor-Level Exploration of FPGA Archi-

tectures”. In: Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. Monterey, CA, USA, Feb. 2016, pp. 80–89.

[Zgh17] Grace Zgheib and Paolo Ienne. “Evaluating FPGA Clusters Under Wide Ranges of

Design Parameters”. In: Proceedings of the 27th International Conference on Field

Programmable Logic and Applications. Ghent, Belgium, Sept. 2017, pp. 1–8.

[Zha07] Wei Zhao and Yu Cao. “Predictive technology model for nano-CMOS design ex-

ploration”. In: ACM Journal on Emerging Technologies in Computing Systems 3.1

(2007).

[Zha20] Si Zhang and Hanghang Tong. “Network Alignment: Recent Advances and Fu-

ture Directions”. In: Proceedings of the 29th ACM International Conference on

Information & Knowledge Management. Virtual Event, 2020, pp. 3521–22.

[Zha22] Yue Zha and Jing Li. “Revisiting PathFinder Routing Algorithm”. In: Proceedings

of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. Virtual Event, 2022, pp. 24–34.

266

Stefan Nikolić Updated May 11, 2023

Education École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
PhD in Computer Science 09.2017–Present
Advisor: Paolo Ienne

University of Novi Sad Novi Sad, Serbia
BEng (Hons) in Electrical and Computer Engineering 09.2013–07.2017
GPA: 9.98/10.00
Thesis: “On the Problem of FPGA Realization of Asynchronous Circuits”
Advisor: Ivan Mezei

Awards and Honors Michal Servit Memorial Award at FPL’21 (acceptance rate 22%)

Michal Servit Memorial Award at FPL’20 (acceptance rate 15%)

EPFL EDIC Doctoral Fellowship (2017)

Languages Serbian (native), English (fluent), French (basic), Russian (basic)

Publications Exploring FPGA Switch-Blocks without Explicit Pattern Listing (TRETS’23)
Stefan Nikolić and Paolo Ienne
(Accepted, to appear)

Regularity Matters: Designing Practical FPGA Switch-Blocks (FPGA’23)
Stefan Nikolić and Paolo Ienne

Mitigating the Last-Mile Bottleneck: A Two-Step Approach
for Faster Commercial FPGA Routing (FPGA’23)
Shashwat Shrivastava, Stefan Nikolić, Chirag Ravishankar,
Dinesh Gaitonde, and Mirjana Stojilović
(Abstract only)

Detailed Placement for Dedicated LUT-Level FPGA Interconnect (TRETS’22)
Stefan Nikolić, Grace Zgheib, and Paolo Ienne

Turning PathFinder Upside-Down: Exploring FPGA Switch-Blocks (FPL’21)
by Negotiating Switch Presence
Stefan Nikolić and Paolo Ienne
(Michal Servit Best Paper Award)

Global Is the New Local: FPGA Architecture at 5nm and Beyond (FPGA’21)
Stefan Nikolić, Francky Catthoor, Zsolt Tőkei, and Paolo Ienne

NetCracker: A Peek into the Routing Architecture (FPGA’21)
of Xilinx 7-Series FPGAs
Morten B. Petersen, Stefan Nikolić, and Mirjana Stojilović

Timing-Driven Placement for FPGA Architectures (FPL’20)
with Dedicated Routing Paths
Stefan Nikolić, Grace Zgheib, and Paolo Ienne
(Michal Servit Best Paper Award)

267

Straight to the Point: Intra- and Intercluster LUT Connections (FPGA’20)
to Mitigate the Delay of Programmable Routing
Stefan Nikolić, Grace Zgheib, and Paolo Ienne

Finding a Needle in the Haystack of (FPL’19)
Hardened Interconnect Patterns
Stefan Nikolić, Grace Zgheib, and Paolo Ienne
(Short paper)

On Feasibility of FPGAs without a Dedicated (FPGA’19)
Programmable Interconnect Structure
Anastasiia Kucherenko, Stefan Nikolić, and Paolo Ienne
(Abstract only)

Internships Xilinx, Inc., Longmont, CO, USA
Architecture Engineer Intern, 09.2021–02.2022

Worked in the FPGA architecture team under the supervision of Chirag Ravishankar
and Dinesh Gaitonde, exploring novel FPGA interconnect and CAD algorithm ideas.

Frobas d.o.o, Novi Sad, Serbia
Hardware Design Intern 11.2016–02.2017

Worked on preliminary architecture design and prototype development of a Support
vector machine accelerator. The project was a joint effort between Frobas d.o.o and
the Chair of Electronics of the Faculty of Technical Sciences, headed by Rastitslav
Struharik and Mihajlo Katona.

EPFL, LAP, Lausanne, Switzerland
Research Intern 07.2016–09.2016

Worked on transistor-level design and optimization of And-Inverter Cones (AICs) for
use in FPGA logic clusters, under the supervision of Grace Zgheib and Paolo Ienne.

268

	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Thesis Outline

	Where Did the FPGAs Come From and Where Are They Headed?
	Mass Production at a Micro Scale
	Discarding the Last Mask
	Turns on a Grid
	Prefabricated Wires
	Stored-Select Multiplexers
	What about the Logic Cells?

	Price of Removing the Last Mask
	Race for the Latest Technology
	What Happens when the Road Gets Bumpy?
	A New Age for FPGAs
	FPGA or ASIC? No Longer a Question!
	What Is an FPGA, Again?
	FPGA Evolution: The Stratix Case
	Major Developments
	What about Programmable Interconnect Topology?

	Where Does this Thesis Come into Play?

	Background
	The Problem of Programmable Interconnect Design
	Simplicity of the Complete Graph
	A Collection of Cliques
	Rent's Rule
	How Many Inputs Does a Cluster Need?
	Sparse Crossbars

	Wire Sharing
	Tree-Based Hierarchical FPGAs
	Multiplexer Cascades

	Periodic Graphs: A Unified Way to Represent Tiled Architectures
	Academic Terminology of Island-Style FPGAs
	Ideal and (Currently) Realistic Design Goals
	FPGA CAD flow
	Synthesis
	Technology Mapping
	Placement
	Routing
	Bridging the Gaps Between the Stages

	Modeling Programmable Routing in Advanced Technologies
	A Nanometer Asteroid Strike
	Global Is the New Local?
	Wait a Minute, Isn't Industry Going in the Opposite Direction?!

	Area and Wirelength Modeling
	Tile Floorplan
	LUT Dimensions
	Routing Multiplexers

	Interconnect Modeling
	Layers
	Cross-Sectional Wire Dimensions
	Resistance
	Capacitance
	Vias

	Device Modeling
	Delay Extraction Methodology
	Look-up Tables
	Local Wires
	Global Wires

	Extracted Local Wire Delays
	The Low Performance of Low Metal Layers
	Can You Repeat, Please?
	The Rise of Thick Metal Wires
	Thick Metal Wires Are Scarce
	This Looks Familiar...

	To Minimize or Maximize Channel Width? That Is the Question
	Crossbar
	Routing Channels: General Approach
	Routing Channels: Maximum Wire Spans
	Routing Channels: Reference Composition
	Routing Channels: Taps and Scaling
	Switch-Block Patterns
	Experimental Setup

	The Asteroid Strikes
	A Future of Small Clusters
	What Can the Large Clusters Tell Us?
	So, Is Global the New Local?
	Return of the Super-Cluster
	The End of an Era
	What Is to Be Done?
	Custom Technology Nodes for FPGAs
	And What about Density?
	The Issue of Nonshrinking SRAM

	Low-Hanging Fruit Fell to the Ground
	Conclusions and Future Work

	Switch Presence Negotiation
	A Little Bit of History
	Importance of Parametric Patterns
	Importance of Per-Segmentation Switch-Pattern Optimization
	Danger of Neglecting Assumptions
	Importance of Considering Physical Implementation Aspects

	Inaptness of the Black Box Approach
	How Large is the Switch-Pattern Search Space?
	Black Box in the Loop
	Proxy Oracles

	A Brief Review of Negotiated-Congestion Routing
	Main Idea
	Implicit Search Space Representation
	Negotiating Switch Types

	Problem Definition
	Basic Algorithm
	Benefits of Iteration
	Shortcomings of Uncompressed Usage Statistics

	Turning PathFinder Upside-Down
	Avalanche Costs
	Negotiating Both Congestion and Switch Presence
	Functional Form of Avalanche Costs
	A Note on Implementation
	Respecting the Critical Paths

	Completing the Algorithm
	Conveying Physical Information
	Preventing Overspecialization

	Experimental Setup
	Effectiveness of Avalanche Costs
	Direct Comparison with Greedy
	Comparison with Truncated Greedy

	Multi-Stage Search
	Convergence
	Pattern Changes

	Comparison with Simulated Annealing
	Initial Pattern
	Channel Segmentation Revisited
	What about Floorplan Optimization?
	Setup
	Results

	Analysis of Some Further Aspects of Avalanche Search
	Parameters
	Circuit-Level Parallelization
	Sensitivity to Circuit Choice
	Influence of Approximate Switch Type Delay on Adoption
	Routability-Driven Search

	Runtime Scalability
	Routing Graph Size
	A*
	Periodically Forcing Rip-Up
	Congested Nodes

	Conclusions and Future Work

	Searching for Regular Switch-Patterns
	Who Cares about ``Regularity''?
	Related Work
	Summary of Avalanche Search
	Regularization Algorithm
	General Flow
	Base ILP Problem

	Experimental Setup
	Limiting Multiplexer Size Variation
	Encoding
	Results

	Limiting Fanout Size Variation
	Results

	Multiplexer Input Sharing
	Encoding
	Results

	Minimizing Wirelength
	Encoding: Modeling Wirelength
	Encoding: Combined Objective
	Results

	Enforcing Turns and Symmetries
	Encoding: Turns
	Encoding: Fanout Symmetries
	Results

	Enforcing Hop-Distance Optimality
	Encoding: Proof Grid
	Encoding: Shortest Paths
	Results

	ILP Complexity
	Conclusions

	Fixed-Connectivity Pattern Design
	Straight to the Point
	Related Work
	Optional Direct Connections
	And What about Fully-Hardened Direct Connections?
	Endpoint Alignment

	The Space of Tileable Fixed-Connectivity Patterns
	Fully Specifying an Architecture

	Searching a Large Design Space
	Our Search Space: A Naive View
	Our Search Space: One Step at a Time
	Our Search Space: Combining Steps
	Our Search Problem: An Analogy
	The Greedy Algorithm
	Pruning the Candidates: The First Filter
	Pruning the Candidates: The Second Filter
	Pruning the Candidates: The Last Filter

	Experimental Setup
	Architecture Generation
	Circuit-level Modeling
	LUT Permutation
	Prerouting
	Further Assumptions and Limitations

	Experimental Results
	Intercluster Connections: Convergence
	Intercluster Connections: Delay Impact
	Intercluster Connections: The Pattern
	Intercluster Connections: A Trade-Off
	Intracluster Connections

	Conclusions
	A Note on Timing Assumptions

	Dedicated Placement for Fixed-Connectivity Patterns
	Quantifying Expectations
	Target Architectures
	General Approach
	Is this not a Routing Problem?
	Necessity of Placing Individual LUTs
	Global, Detailed, or Combined Placer?
	Direct Connections at Low Temperature

	Prior Work on Detailed Placers
	Movable Node Selection
	Movement Freedom
	Choice of the Optimization Method

	The LP-Based Node Selector
	Which Connections Should be Improved?
	Determining Movable Nodes

	The ILP-Based Placer
	Naive ILP Formulation
	Exploiting the Sparsity of Dedicated Interconnect
	Delay-Based Model Compaction

	The Complete Algorithm
	Composing the Detailed Placer
	Legalizer

	Optimization
	Specialization of the Improvement LP to the Architecture
	Solving Successive ILPs
	ILP Formulation Tightening

	Results
	Experimental Setup
	Delays
	Improvement Subgraphs
	Runtimes
	Independent Subpattern

	Conclusions and Future Work

	Conclusions and Future Work
	What Have We Done?
	Modeling Programmable Interconnect in Advanced Technologies
	Letting the Router Automatically Design Switch-Blocks
	A General Method to Project Layout and CAD Constraints on Architecture
	Making the Fastest Connections Nonprogrammable
	Making the Timing-Critical Signals Use the Direct Connections

	Where Has This Brought Us?
	Future Work
	Separating High-Performance and High-Bandwidth Interconnect
	Routing Comes after Synthesis but Cannot Be an Afterthought
	LUT and Multiplexer SRAM Sharing
	Turning Strict Design Rules Into an Advantage
	Are We Solving the Right Problem?

	Final Remarks

	Bibliography
	Curriculum Vitae

