
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Deep Learning Generalization with Limited and Noisy
Labels

Mahsa FOROUZESH

Thèse n° 8988

2023

Présentée le 14 juillet 2023

Prof. A. Argyraki, présidente du jury
Prof. P. Thiran, directeur de thèse
Prof. M. Verleysen, rapporteur
Dr C. Zhang, rapporteur
Prof. S. Süsstrunk, rapporteuse

Faculté informatique et communications
Laboratoire de la dynamique de l’information et des réseaux 2
Programme doctoral en informatique et communications

Logic will get you from A to B.

Imagination will take you everywhere.

— Albert Einstein

To my family

Laleh, Nader, and Kianoush

Acknowledgements

I have been incredibly fortunate to have received tremendous support from family, friends,

and colleagues throughout my Ph.D. journey. The following is a short summary of the generous

contributions they have made towards the development of this thesis and my growth as a

researcher.

First and foremost, I would like to express my heartfelt appreciation to my thesis advisor,

Patrick Thiran. I am particularly thankful for his encouragement to explore diverse ideas

without imposing any constraints, which allowed me the freedom to pursue unconventional

ideas with confidence. Under his supervision, I have progressed to develop a more rigorous

approach to problem-solving, and to analyze and articulate concepts in a more concrete

manner. I am grateful for his patience and support, especially during the early stages of my

research, as I was just beginning to navigate the world of academia.

I am sincerely grateful to Katerina Argyraki, Sabine Süsstrunk, Michel Verleysen, and

Chiyuan Zhang for their participation as members of my jury committee. Throughout my

doctoral journey, I have had the privilege of studying your exceptional contributions to the

field. It is a great honor to engage in discussions regarding my research with such esteemed

scholars.

I am thankful for the kind support I have received from the staff at the lab. Holly Cogliati-

Bauereis has been instrumental in proofreading and enhancing my manuscripts, significantly

improving my writing skills through her valuable feedback. Patricia Hjelt and Angela Devenoge

have provided invaluable assistance with administrative tasks, consistently demonstrating

kindness. I thank Marc-André Lüthi and Yves Lopes for their assistance with our IT infrastruc-

ture.

I would like to extend my gratitude to my academic collaborators for their valuable contri-

butions. I am particularly grateful to Hanie Sedghi, who embraced my ideas wholeheartedly

and dedicated extensive hours to discussing and refining them, playing a crucial role in

shaping my research vision. Working alongside Hanie has been an absolute pleasure and a

genuine source of inspiration. I would also like to express my thanks to Farnood Salehi, who

co-authored my first research paper, and to Yasaman Haghighi and Loic Signer, who provided

assistance in implementing certain aspects of my ideas.

I had the pleasure to work alongside a group of smart and nice people throughout my

time in the INDY Lab. Thank you Alexandre, Arnout, Aswin, Brunella, Daniyar, Greg, Guil-

laume, Jalal, Lars, Lucas, Maximilien, Mladen, Saber, Sadegh, Saeed, Sébastien, Sepehr, Surya-

narayana, Victor, and William!

i

Acknowledgements

To the wonderful friends I have been so lucky to have all around the world, I cannot

express how grateful I am. Spending time with you has made the Ph.D. journey a possible

reality. Thank you all for making life easier!

Lastly, I would like to thank my family, Laleh, Nader and Kianoush. Without their un-

wavering support, I would not have reached this point in my journey. Thank you for your

unconditional love and constant presence. You are truly my rock. A special thanks goes to

Ashkan, for being by my side every step of the way, no matter how tough it got.

Lausanne, June 26, 2023 M. F.

ii

Abstract

Deep neural networks have become ubiquitous in today’s technological landscape, finding

their way in a vast array of applications. Deep supervised learning, which relies on large labeled

datasets, has been particularly successful in areas such as image classification. However, the

effectiveness of these networks heavily depends on the quality of the data they can use. In most

practical applications, obtaining high-quality labeled data is expensive, time-consuming, and

sometimes even impossible, making the available dataset limited both in size and in quality,

as the labeled data may contain noise due to various reasons such as human labeling errors.

The main objective of this thesis is to develop practical methods measuring the quality of

the generalization of deep neural networks in such settings with limited and/or noisy labeled

data. We propose novel methods and metrics for estimating generalization, overfitting, and

memorization throughout training, which are easy to deploy, which eliminate the need for a

high-quality validation/test set and which optimize the use of the available data.

First, we establish a connection between neural network output sensitivity and variance

in the bias-variance decomposition of the loss function. Through extensive empirical results,

we show that sensitivity is strongly correlated with the test loss and can serve as a promising

tool for selecting neural network architectures. We find that sensitivity is particularly effective

in identifying the benefits of certain architectural choices, such as convolutional layers. Addi-

tionally, we promote sensitivity as a zero-cost metric that can estimate model generalization

even before training. Our results show that sensitivity effectively captures the benefits of

specific regularization and initialization techniques, such as batch normalization and Xavier

parameter initialization.

Second, we introduce generalization penalty, which measures how much a gradient step

on one mini-batch negatively affects the performance on another mini-batch. From this, we

derive a new metric called gradient disparity and propose it as an early stopping criterion

for deep neural networks trained with mini-batch gradient descent. Our extensive empirical

experiments demonstrate that gradient disparity is strongly correlated with the generalization

error in state-of-the-art configurations. Moreover, it is very efficient to use because of its

low computational tractability. Gradient disparity even outperforms traditional validation

methods such as k-fold cross-validation when the available data is limited, because it can use

all available samples for training. When the available data has noisy labels, it signals overfitting

better than the validation data.

Third, we propose a metric called susceptibility to evaluate neural network robustness

against label noise memorization. Susceptibility is easy to compute during training and

iii

Abstract

requires only unlabeled data, making it practical for real-world applications. We demonstrate

its effectiveness in tracking memorization on various architectures and datasets, accurately

distinguishing models that maintain low memorization on the training set. We also provide

theoretical insights into the design of susceptibility as a metric for tracking memorization. We

demonstrate its effectiveness through thorough experiments on several datasets with synthetic

and real-world label noise. Susceptibility and the overall training accuracy complement each

other and can distinguish models that maintain low memorization and generalize well on

unseen clean data.

Finally, in the last part of this thesis, we tackle the challenge of filtering noisy samples from

hard-to-learn samples in labeled datasets. To gain a better understanding of these two types

of data, we design synthetic datasets with varying levels of hardness and noisiness. Through

a systematic empirical study on these datasets, we study the ability of various metrics to

distinguish hard samples from noisy samples. The results of this study lead us to propose a

simple and effective method for filtering out noisy-labeled samples while retaining the hard

samples. We demonstrate its effectiveness through empirical evaluations, which paves the

way for future developments in this important yet under-explored topic.

Keywords deep neural networks, generalization, limited data, label noise, early stopping,

memorization, deep supervised learning

iv

Résumé

Les réseaux de neurones profonds sont devenus omniprésents dans le paysage technologique

d’aujourd’hui, trouvant leur place dans une vaste gamme d’applications. L’apprentissage

supervisé profond, qui repose sur de grands ensembles de données étiquetées, a particulière-

ment bien réussi dans des domaines tels que la classification d’images. Cependant, l’efficacité

de ces réseaux dépend fortement de la qualité des données qu’ils peuvent utiliser. Dans la

plupart des applications pratiques, l’obtention de données étiquetées de haute qualité est coû-

teuse, chronophage et parfois même impossible, ce qui rend l’ensemble de données disponible

limité à la fois en taille et en qualité, car les données étiquetées peuvent contenir du bruit pour

diverses raisons, telles que des erreurs d’étiquetage humaines. L’objectif principal de cette

thèse est de développer des méthodes pratiques pour mesurer la qualité de la généralisation

des réseaux de neurones profonds dans de telles configurations avec des données étiquetées

en quantité limité et/ou corrompus par le bruit. Nous proposons de nouvelles méthodes

et métriques pour estimer la généralisation, le surapprentissage et la mémorisation tout au

long de l’entraînement, qui sont faciles à déployer, qui éliminent le besoin d’un ensemble de

validation/test de haute qualité et qui optimisent l’utilisation des données disponibles.

Tout d’abord, nous établissons un lien entre la sensibilité de la sortie du réseau de neu-

rones et la variance dans la décomposition biais-variance de la fonction de perte. À travers

des résultats empiriques approfondis, nous montrons que la sensibilité est fortement corré-

lée avec la fonction de perte de test et peut servir d’outil prometteur pour sélectionner des

architectures de réseau de neurones. Nous constatons que la sensibilité est particulièrement

efficace pour identifier les avantages de certains choix architecturaux, tels que les couches de

convolution. De plus, nous promouvons la sensibilité comme une métrique bon marché, qui

peut estimer la généralisation du modèle même avant l’entraînement. Nos résultats montrent

que la sensibilité capture efficacement les avantages de certaines techniques de régulari-

sation et d’initialisation spécifiques, telles que la normalisation de lot et l’initialisation des

paramètres Xavier.

Deuxièmement, nous introduisons la notion de pénalité de généralisation, qui quantifie

dans quelle mesure une étape de gradient sur un mini-lot affecte négativement les perfor-

mances sur un autre mini-lot. À partir de cela, nous dérivons une nouvelle métrique appelée

disparité de gradient et la proposons comme critère d’arrêt précoce pour les réseaux de neu-

rones profonds entraînés pour descente de gradient par mini-lot. Nos expériences empiriques

approfondies démontrent que la disparité de gradient est fortement corrélée à l’erreur de

généralisation dans les configurations, utilisées dans l’état de l’art actual . De plus, elle est

v

Abstract

très efficace à utiliser en raison de sa faible capacité de calcul. La disparité de gradient sur-

passe même les méthodes de validation traditionnelles telles que la validation croisée “k-fold”

lorsque les données disponibles sont limitées, car elle peut utiliser tous les échantillons dispo-

nibles pour l’entraînement. Lorsque les données disponibles ont des étiquettes corrompus

par le bruit, elle signale mieux le surapprentissage que les données de validation.

Troisièmement, nous proposons une métrique appelée susceptibilité pour évaluer la ro-

bustesse des réseaux de neurones à la mémorisation de l’étiquette bruyante. La susceptibilité

est facile à calculer pendant l’entraînement et ne nécessite que des données non étiquetées, ce

qui la rend pratique pour les applications du monde réel. Nous démontrons son efficacité dans

le suivi de la mémorisation sur diverses architectures et ensembles de données, en distinguant

avec précision les modèles qui maintiennent une faible mémorisation sur l’ensemble d’entraî-

nement. Nous fournissons également une intuition théorique sur la capacité la susceptibilité

à mesurer la mémorisation. Nous démontrons son efficacité grâce à des expériences appro-

fondies sur plusieurs ensembles de données avec des étiquettes bruyantes synthétiques et

réelles. La susceptibilité et la précision globale de l’entraînement se complètent mutuellement

et peuvent distinguer les modèles qui maintiennent une faible mémorisation et généralisent

bien sur des données propres non vues.

Enfin, dans la dernière partie de cette thèse, nous abordons le défi de filtrer les échantillons

bruyants des échantillons difficiles à apprendre dans les ensembles de données étiquetés. Pour

mieux comprendre ces deux types de données, nous concevons des ensembles de données

synthétiques avec des niveaux variables de difficulté et de bruit. À travers une étude empirique

systématique sur ces ensembles de données, nous étudions la capacité de diverses métriques à

distinguer les échantillons difficiles des échantillons bruyants. Les résultats de cette étude nous

conduisent à proposer une méthode simple et efficace pour filtrer les échantillons étiquetés

mais corrompus par le bruit tout en conservant les échantillons difficiles. Nous en démontrons

l’efficacité par des évaluations empiriques, ce qui ouvre la voie à des développements futurs

dans ce domaine important mais peu exploré.

Mots-clés réseaux de neurones profonds, généralisation, données limitées, bruit d’étiquette,

arrêt précoce, mémorisation, apprentissage supervisé profond

vi

Contents

Acknowledgements i

Abstract / Résumé iii

1 Introduction 1

1.1 Background . 1

1.1.1 Deep Supervised Learning . 1

1.1.2 Generalization and Overfitting . 3

1.1.3 Data-Collection Challenges . 4

1.2 Goals and Contributions of the Thesis . 7

2 Neural Network Output Sensitivity 13

2.1 Generalization Comparison of Deep Neural Networks 13

2.1.1 Introduction . 13

2.1.2 Related Work . 14

2.1.3 Preliminaries . 16

2.1.4 Sensitivity versus Loss . 18

2.1.5 Sensitivity as a Proxy for Generalization . 21

2.1.6 Discussion and Conclusion . 25

2.2 Neural Architecture Search Without Training . 27

2.2.1 Introduction and Background . 27

2.2.2 Zero-Cost Metrics . 28

2.2.3 Experiments . 29

2.2.4 Conclusion . 32

Appendices 33

2.A Experimental Details . 33

2.B Computation of Eq. (2.7): The Relation between Variance and Sensitivity 34

2.C The Relation between the Cross Entropy Loss and the Mean Square Error 37

2.D Computation of Eq. (2.10) . 39

2.E CIFAR-10 Experiments . 39

2.F MNIST and CIFAR-100 Experiments . 39

3 Disparity Between Batches 47

vii

Contents

3.1 A Signal for Early Stopping . 47

3.1.1 Introduction . 47

3.1.2 Related Work . 49

3.1.3 Generalization Penalty . 51

3.1.4 Gradient Disparity . 53

3.1.5 Early Stopping . 55

3.1.6 Discussion and Final Remarks . 59

3.2 Time-series Applications . 62

3.2.1 Introduction . 62

3.2.2 Early-stopping Methods for Time-series Applications 62

3.2.3 Experiments . 64

3.2.4 Conclusion . 66

Appendices 69

3.A Organization of the Appendix . 69

3.B Additional Theorem . 70

3.C Proof of Theorem 1 . 70

3.D A Simple Connection Between Generalization Penalty and

Gradient Disparity . 73

3.E Common Experimental Details . 73

3.E.1 Re-scaling the Loss . 74

3.E.2 The Hyper-parameter s . 76

3.E.3 The Surrogate Loss Function . 76

3.F k-fold Cross-Validation . 78

3.F.1 Early Stopping Threshold . 78

3.F.2 Image-classification Benchmark Datasets 82

3.F.3 MRNet Dataset . 83

3.G Additional Experiments . 89

3.G.1 MNIST Experiments . 89

3.G.2 CIFAR-10 Experiments . 90

3.G.3 CIFAR-100 Experiments . 91

3.H Beyond SGD . 99

3.H.1 SGD with Momentum . 99

3.H.2 Adagrad . 99

3.H.3 Adadelta and RmsProp . 100

3.H.4 Adam . 100

3.H.5 Experiments . 101

3.I Comparison to Related Work . 103

3.I.1 Capturing Label Noise Level . 105

3.I.2 Gradient Disparity versus Variance of Gradients 105

4 Leveraging Unlabeled Data to Track Memorization 109

4.1 Introduction . 109

viii

Contents

4.2 Good Models are Resistant to Memorization . 112

4.3 Evaluating Resistance to Memorization . 115

4.4 Good Models are Resistant and Trainable . 117

4.5 Convergence Analysis . 119

4.6 Experiments on Real-world Datasets with noisy labels 120

4.7 On the Generality of the Observed Phenomena 122

4.8 Conclusion . 123

Appendices 125

4.A Additional Related Work . 125

4.B Experimental Setup . 130

4.C Comparison with Baselines . 132

4.D Additional Experiments for Section 4.2 . 135

4.E Additional Experiments for Section 4.4 . 138

4.F Experiments Related to Section 4.7 . 143

4.G Theoretical Preliminaries . 150

4.G.1 Properties of the Gram-matrix . 150

4.G.2 Corollaries Adapted from [Du et al. 2018; Arora et al. 2019] 150

4.G.3 Additional Lemmas . 151

4.H Proof of Lemma 3 . 153

4.I Proof of Lemma 1 . 154

4.J Proof of Theorem 3 . 157

4.K Proof and Numerical Evaluations of Theorem 4 160

5 Differences Between Hard and Noisy-labeled Samples: An Empirical Study 165

5.1 Introduction . 165

5.2 Background and Related Work . 168

5.3 Dataset Design with Different Hardness Levels . 171

5.3.1 Hardness via Imbalance . 172

5.3.2 Hardness via Diversification . 173

5.3.3 Hardness via Closeness to the Decision Boundary 174

5.3.4 Addition of Label Noise; Its Similarities to Hardness 176

5.4 Easy-Hard-Noisy Data Partitioning and Training 177

5.4.1 Partitioning . 177

5.4.2 Training on the Filtered Subset . 179

5.5 Discussion . 179

Appendices 187

5.A Experimental Setup . 187

5.B Comparison to Other Metrics . 188

6 Conclusion 191

ix

Contents

Bibliography 215

Curriculum Vitae 217

x

1 Introduction

Deep learning, which involves training deep neural networks with a large number of parame-

ters in order to learn complex data representations, has become a popular method in many

applications. One widely used approach is supervised learning that has demonstrated success

in tasks such as image classification, due in part to powerful computing resources and to the

availability of large amounts of high-quality labeled data. However, obtaining such labeled

data can be costly, time-consuming, and challenging in real-world settings. Therefore, it is

crucial to develop robust methods that can address this limitation and to propose techniques

that work even in the absence of clean labeled data. In this thesis, we address the issues of

how, without a clean and accurate validation set, to gain insights into model generalization,

learning, memorization, and data quality. We propose several methods as a replacement for

the validation set; they enable us to extract information from the model trained on available

data. In this chapter, we first introduce the background and state the research problem in Sec-

tion 1.1. Then, in Section 1.2, we highlight the significance of our research and provide an

outline of the thesis.

1.1 Background

1.1.1 Deep Supervised Learning

In order to carry out a certain task at hand, instead of directly programming computers,

machine learning can be an effective means. The underlying reasons for this are that the task

is too complicated to extract a well-defined program or that the data might be too large and

complex to analyze, hence learning to detect meaningful underlying patterns is a promising

use-case of machine learning [Shalev-Shwartz and Ben-David 2014]. Moreover, machine-

learning tools are adaptive in nature hence provide the possibility to change over time from

one user to the next.

Machine learning can be broadly categorized into supervised learning and unsupervised

learning, depending on the experience they are permitted to have on a data set during the

1

Chapter 1. Introduction

learning process [Goodfellow et al. 2016]. A data set is a collection of some data samples/points.

Supervised-learning algorithms experience a data set that contains input features x ∈X that

are associated with labels or targets y ∈ Y . The data samples z = (x, y) ∼ D in the data set

come from an unknown distribution D, and the learning task is then formulated as finding

a predictor or a function f : X → Y such that the expected loss Ez∼D

[
l (f , z)

]
on the data

samples is minimized, where l is the loss function, which for instance can be 1{ f (x) 6= y}.

One of the first predictor models used in supervised learning is Perceptron: it was in-

troduced by Rosenblatt [1958], the oldest artificial neural network still in use today. The

introduction of Perceptron in 1958 is due to the early work of McCulloch and Pitts [1943]

in 1943; this was the first work to begin exploring how a network of artificial neurons could

replicate brain-like processes. The structure of Perceptron resembles human learning and

was used to recognize simple patterns in images. Later, in 1984, the Boltzmann machine was

introduced by Hinton et al. [1984]; it showed that neural networks could learn small-scale

complex problems. This was then completed with the introduction of back-propagation in

1986 by Rumelhart et al. [1986], where the potential of neural networks to learn sophisticated

tasks was demonstrated.

In principle, a two-layer neural network should be capable of performing most tasks.

However, getting a back-propagation network to learn can be problematic for many practical

applications [Stone 2019]. One possible solution is to increase the number of hidden units

and to add more hidden layers, but this approach was initially deemed infeasible. It was not

until the advent of faster computers, larger training datasets, and advancements in learning

algorithms that the era of deep neural networks, also known as deep learning, came to fruition.

In particular for the task of image classification, convolutional neural networks (CNNs) were

introduced, with the LeNet architecture [LeCun et al. 1989] being the first to emerge in 1989.

In 2012, the ImageNet computer vision challenge [Russakovsky et al. 2015] brought about a

revolution, with the AlexNet architecture [Krizhevsky et al. 2017] dominating the competition.

Following this, in 2013, many computer vision systems based on the AlexNet architecture

showed significant progress [Simonyan et al. 2013; Sermanet et al. 2013].

In 2014, the modern era of deep learning continued with the introduction of a deep

network called VGG [Simonyan and Zisserman 2014]. Subsequently, the ResNet architecture

[He et al. 2016a] introduced the concept of residual connections in 2015, which once again

led to a significant improvement in computer vision. In recent years, numerous successful

architectures were introduced and consistently demonstrate exceptional performance. Most

common modern state-of-the-art deep neural networks used in image classification share

some traits, such as having a large number of layers or being deep, using the ReLU non-linearity

[Fukushima 1975], pooling [LeCun et al. 1998], and utilizing dropout [Hinton et al. 2012] and

batch normalization [Ioffe and Szegedy 2015] regularizations.

2

1.1. Background

1.1.2 Generalization and Overfitting

As mentioned in the preceding section, the objective of a deep supervised learning algorithm

is to minimize the expected loss Ez∼D

[
l (fθ, z)

]
, where the function fθ is a deep neural network

with parameters θ. As the distribution D is typically unknown, the learner cannot evaluate or

minimize Ez∼D

[
l (fθ, z)

]
directly. However, it can estimate it by using the training set S that is

a collection of n input-output pairs, S = {z1, · · · , zn}. Therefore, the learning task is typically

approached by solving:

min
θ
ÊS

[
l (fθ, z)

]= min
θ

LS(fθ) = 1

n

n∑
i=1

l (fθ, zi), (1.1)

where ÊS
[
l (fθ, z)

]
(also denoted by LS(fθ)) is known as the training loss. Minimizing the

above equation is known as the empirical risk minimization (ERM) problem. To minimize

the training loss, the algorithm typically starts with a randomly initialized parameter vector

θinit [Glorot and Bengio 2010; He et al. 2015; Hanin and Rolnick 2018], then uses mini-batch

stochastic gradient descent (SGD) or one of its variants [Ruder 2016]. Each step of the mini-

batch gradient descent at time/iteration t is as follows:

θt+1 = θt −γ∇θLS t
b

(
fθ

)
, (1.2)

where S t
b is the mini-batch selected at iteration t and γ is the learning rate.

Minimizing the loss in Eq. (1.1) is a necessary but insufficient condition for achieving low

expected loss Ez∼D

[
l (fθ, z)

]
. A model that, by memorizing to output the right label for the data,

fits the training set S too closely, can obtain zero training loss while having a high expected loss.

We are therefore interested in controlling the difference Ez∼D

[
l (fθ, z)

]− ÊS
[
l (fθ, z)

]
known as

the generalization error/gap. This quantity reflects the difference between memorizing and

learning and is a measure of the model’s ability to generalize beyond the training set. A model

with a high generalization gap is said to experience overfitting.

To estimate the generalization gap (particularly the expected loss Ez∼D

[
l (fθ, z)

]
), a com-

mon practice is to use an independent held-out validation/test1 set Sv = {zn+1, · · · , zn+nv }.

The validation set is a collection of nv input-output pairs that are randomly sampled from

the same distribution as the training set. The model is trained on the training set and evalu-

ated on the validation set, thus enabling us to estimate its expected loss on new data. This

estimate is reliable, as long as the validation set is truly independent of the training set, the

number of samples nv is large enough, and the samples of Sv are sampled from the true data

distribution D.

Controlling the generalization gap is crucial for achieving good performance on real-world

tasks. If the model is overfitting, it will perform well on the training set but poorly on new data.

1In this thesis, we use validation and test sets interchangeably. In practice, they serve slightly different purposes,
though in the context studied in this thesis, they can be referred to as the same.

3

Chapter 1. Introduction

Whereas, if it is underfitting, it will perform poorly on both. By estimating the generalization

gap by using a validation set, we can select the best model that balances between underfitting

and overfitting and that achieves good performance on unseen data. This process is called

model selection and is an essential part of the machine-learning workflow.

1.1.3 Data-Collection Challenges

As mentioned in the preceding section, a standard practice for estimating the generalization

gap is to employ an independently held validation set Sv . Before training begins, the given

dataset is partitioned into two subsets, namely the training set S and the validation set Sv .

Care must be taken to balance the sample ratio in S and Sv . If the number of samples in Sv

(denoted by nv) is too large, the machine-learning model will exhibit high variance during

training. Conversely, if nv is too small, the generalization gap estimate and model evaluation

will have a larger variance. In practice, a common ratio is to set n : nv as 80 : 20. We will now

explore the cost of the additional 20% of labeled data (or the extra nv input-output pairs)

present in the validation set Sv : (i) cost in terms of performance, (ii) cost in terms of data

collection.

Cost in Terms of Performance Because of finite resources, this validation set must be a

subset of the overall dataset available, which necessitates removing samples from the training

set S. These removed samples have an effect on the performance of the trained model. For

example, consider the MRNet dataset [Bien et al. 2018]: an image classification dataset for

detecting knee injuries. The dataset contains 1370 magnetic resonance imaging (MRI) exams

for studying the presence of abnormality, anterior cruciate ligament (ACL) tears and meniscal

tears. The labeled data in the MRNet dataset is very limited. From these 1370 MRI scans,

120 of them are kept private and are not accessible. Setting aside another 120 samples for

local evaluation results in 1130 samples remaining. If we were to use 20% of this available

dataset for the validation set Sv and 80% for the training set S, then the size of the training set

reduces to 904. As the data in MRNet dataset is imbalanced (more negatives than positives),

instead of the classification accuracy, the evaluation metric that is used is the area under the

receiver operating characteristics curve (AUC). The receiver operating characteristics curve is

created by plotting the true positive rate against the false positive rate for a binary classifier

system at various discrimination threshold values. One interpretation of AUC is to view it as

the probability that the model ranks a random positive example more highly than a random

negative example. In Fig. 1.1 we show the difference in the test area under curve (AUC) scores

for a model trained on all the available data (1130), and one trained on a smaller dataset due

to the requirement of having a validation set (the one with size 904).

From Fig. 1.1, we can see that in order to improve the test AUC score from 0.89 to 0.91

(values at the end of the training) in this setting, we would need 226 more labeled samples.

This example illustrates the importance of each sample in the training set and the criticality

of losing samples when we have to separate a held-out subset of the dataset for validation.

4

1.1. Background

Figure 1.1: Two area under curve (AUC) scores for models trained on MRNet [Bien et al. 2018]
training sets with different sizes. The scores belong to the detection of anterior cruciate
ligament (ACL) tears; and as the dataset is imbalanced, instead of the test accuracy, AUC is
reported. We observe the rather significant improvement in the generalization performance
resulting from adding more training samples to the training set. In this dataset, an improve-
ment in the generalization performance results in an accurate prediction in detecting ACL
tears for a few new patients and hence facilitates their diagnostic process.

Utilizing every sample in our training can significantly improve model performance, especially

as improving performance can be challenging. Therefore, we must make the most of our

samples, because each data point we add to the training set is valuable. The importance of

labeled data is crucial, as we can see from the above example where we needed 25% additional

data to improve performance by 2.2%. However, acquiring additional labeled data can be

challenging. In the following, we will discuss some of the challenges associated with collecting

extra labeled data.

Cost in Terms of Data Collection In this thesis, our primary focus is on the task of image

classification. Data collection for this task involves the gathering of images and labeling them

accordingly. However, both image and label collection pose their own unique challenges, with

the latter being particularly complex.

Collecting image data can be a costly process because of the requirement of expensive

cameras or the need to hire additional workforce. For instance, when capturing images of

wildlife, obtaining a picture of a particular animal can take several days or even weeks, in

addition to the installment of cameras in place and workforce to check them [Van Horn and

Perona 2017; Beery et al. 2020]. Additionally, there are ethical and legal constraints associated

with image collection [Kaissis et al. 2020]. For instance, when facial recognition is involved,

collecting biometric data can be challenging; and if not done correctly, it can lead to lawsuits.

It is also challenging to determine the amount of data required in advance to ensure a smooth

training process. That necessitates the collection of as many images as possible, which is both

time-consuming and expensive.

5

Chapter 1. Introduction

Once the image data is collected, the next step is to label them. Data labeling is one of

the most expensive tasks in machine-learning algorithms. There are two main approaches to

labeling data: outsourcing it or conducting in-house manual data labeling. Organizations that

outsource data labeling generally have to choose between paying for data labeling services

per hour or per task. Paying per task is more cost-effective, but it can incentivize rushed work

as labelers try to complete more tasks within a given time frame. Either option requires a

significant budget and can be time consuming, particularly if multiple labels are required per

sample to ensure high quality. In-house manual data-labeling teams, even small ones, can

also be expensive due to the time and training required to attain true expertise.

Deep-learning algorithms have shown remarkable performance in detecting and classi-

fying patterns, making them valuable also in applications where labeling is a sensitive and

complex task. Although annotating objects in the real world, such as a cat or a dog, is relatively

straightforward, annotating samples that exceed simple common knowledge can be challeng-

ing. For instance, annotating medical data is an expensive, tedious, and time-consuming

process that requires extensive input from experts, specifically because of the sensitivity of

the domain with respect to the potential impact on people’s health. Furthermore, annotation

might not always be possible, in particular in the case of rare medical conditions [Razzak et al.

2018; Hesamian et al. 2019].

To reduce the cost and time associated with label collection, various alternatives have

emerged. One of the most popular alternatives is crowdsourcing. Crowdsourcing services,

such as Amazon Mechanical Turk, enable the distribution of small labeling tasks to a large

number of workers, thus making it a cost-effective option. However, it has its drawbacks.

Manually verifying the quality of the submitted results can be challenging, leading to issues

with malicious workers who may intentionally submit low-quality labels, resulting in label

noise in the collected dataset [Ipeirotis et al. 2010]. Label noise can also result from the

inherent difficulty in annotating certain types of images. In some cases, image labels can

be obtained from accompanying text on the web, which can lead to inconsistencies and

inaccuracies in labeling. These and other factors can contribute to label noise in real-world

labeled datasets [Frénay and Verleysen 2013; Algan and Ulusoy 2020; Cordeiro and Carneiro

2020; Karimi et al. 2020; Xiao et al. 2015].

As highlighted by Frénay and Verleysen [2013], label noise can significantly impact the

accuracy estimation of a model when the test samples are also corrupted with noise [Lam and

Stork 2003]. This can also lead to biased model comparison. For instance, a spam filter with a

true error rate of 0.5% can be estimated to have an error rate between 5.5% and 6.5% when

evaluated using labels with an error rate of 6.0% [Cormack and Kolcz 2009]. Therefore, it is

crucial to have a high-quality validation set Sv to assess the model’s performance. However, as

we have discussed in this section, creating such a validation set is a difficult and costly task.

6

1.2. Goals and Contributions of the Thesis

(a) Datasets (b) Number of Papers

Figure 1.2: (a) Number of images per class (a token for dataset size) and the label noise level
(LNL)∈ [0,1] of datasets introduced in recent image classification survey papers: Hyperspectral
image classification [Li et al. 2019b; Jia et al. 2021], Cell image classification [Shifat-E-Rabbi
et al. 2020], Diabetic Retinopathy image classification [Kandel and Castelli 2020], COVID-
19 [Aggarwal et al. 2022], Medical images [Karimi et al. 2020], general survey [Song et al.
2022]. (b) The number of images per class and the label noise level (LNL) of datasets in
https://paperswithcode.com/ website under the filtration of image classification. Number of
papers for each dataset is indicated with the size of the marker. We only show those datasets
with more than 200 papers.

1.2 Goals and Contributions of the Thesis

In deep supervised learning (introduced in Section 1.1.1), it is important to estimate gener-

alization (described in Section 1.1.2), but doing so using a validation set poses challenges

(highlighted in Section 1.1.3). One can wonder how relevant these challenges are and why

one should care about data collection challenges. Indeed, in presence of unlimited resources

to collect and label data, one can afford to set aside a validation set and obtain information

about the model’s generalization, learning, memorization and even data quality. However,

this is not always feasible, especially given the limited sizes and significant label noise levels

that affect datasets in practice.

To shed some light on this, we look at datasets recalled in recent survey/review papers

on image classification and find that datasets can have as little as 28 images per class, with

label noise levels (LNL) varying from 0% to around 50%. A summary of these statistics is given

in Fig. 1.2 (a). It is worth noting that being in the top left part of this figure is costly, and even

with large budgets, it may not be possible to achieve this level of quality in some settings, such

as datasets for COVID. This indicates that datasets with label noise and limited data are a

common reality. Interestingly, when we look at the number of papers with experiments on

each dataset, shown in Fig. 1.2 (b), we find that the image classification research community

mostly focuses on datasets with a large number of samples per class and low label noise levels,

7

https://paperswithcode.com/

Chapter 1. Introduction

which are in the top left part of the spectrum. In particular, these machine-learning algorithms

are often bench-marked on such large and clean datasets. This discrepancy between the

research community’s focus and the practical demand for datasets highlights the need to study

image classification methods on datasets that are not in the top left part of the spectrum.

The motivation behind this thesis is to bridge the gap highlighted in Fig. 1.2. In this thesis,

we focus on datasets that have limited labeled data and high label noise levels, which are in

the bottom right of the spectrum of datasets in Fig. 1.2. These datasets are often overlooked

by researchers, but they are of great interest to those who do not have unlimited resources

and encounter label noise. The solutions developed in this thesis share a common feature:

they are all practical tools that individuals or companies can use in their datasets, particularly

when they have limited and/or noisy labeled datasets and value each labeled sample highly.

To keep the problem practically manageable, we propose computationally efficient methods

that do not add computational overhead.

In Chapter 2, we investigate the question When and why certain models generalize to

unseen data? We do so by establishing a link between the test loss and the neural network

output sensitivity to small input perturbations, i.e., the effect of adding an external injected

noise εx to inputs x on fθ. This link is particularly interesting as the test loss requires a test

set, whereas sensitivity does not require any labeled data. This link is due to the connection

between sensitivity and the variance term in the bias-variance decomposition of the loss

function. Our results suggest that the bias term should be negligible in order to predict test

loss by using sensitivity. We demonstrate the connection between sensitivity and loss for

a broad range of settings, beyond fully connected networks and image-classification tasks.

Furthermore, in Section 2.1.4, we compute an expression for the test loss as a function of

sensitivity. We empirically observe a rather strong match between this expression and the

experimental results on state-of-the-art models. Our results in this chapter fully explore

the extent to which this connection is accurate, as this plays an important role for the deep

learning community. Because, as explored by Jiang et al. [2019], measuring generalization is

one of the most important tasks in machine learning. Measuring generalization is also the

objective of the recent NeurIPS competition [Jiang et al. 2020]. It is, however, very important to

explore the exact settings, advantages, and limitations of each particular metric, to know which

metric to choose in which practical scenario; but this is beyond the scope of the competition.

Nevertheless, this is precisely what we do in Chapter 2 particularly for the sensitivity metric.

In the competition, the Jacobian of the neural network output with respect to its inputs, which

is very similar to our sensitivity metric, is presented as one of the baselines. The Jacobian, as a

generalization measure, was originally proposed in [Novak et al. 2018]. A practical motivation

for using sensitivity in real-world applications is its computational tractability as it avoids

backward pass or matrix multiplications contrary to the Jacobian. The wall-clock time drops

from 1.16 seconds to 0.08 seconds when we shift from using the Jacobian to using sensitivity.

But the main reason for using sensitivity is that it is computed before and not after the softmax

layer, contrary to the Jacobian. In Chapter 2, we also provide an alternative explanation for

the benefits of certain design choices. For instance, sensitivity is particularly effective in

8

1.2. Goals and Contributions of the Thesis

identifying the benefits of certain architectural choices, such as convolutional layers, and it

decreases when we add depth instead of width. We also demonstrate that sensitivity effectively

captures the benefits of specific regularization and initialization techniques, such as batch

normalization and Xavier parameter initialization.

In Chapter 3, we address the question When should we stop training in the absence of

sufficient high-quality labeled data to form a held-out validation set? Specifically, we focus

on settings with limited and/or noisy labeled data. We assume that the optimization process

employs a variant of mini-batch gradient descent (Eq. (1.2)). We first introduce a new con-

cept called generalization penalty. It measures the difference between the loss on a single

batch, if another batch is selected for the optimization step, and its loss value, if the batch

itself is selected for the optimization step. The expected penalty quantifies how much, in

an iteration, a model updated on one mini-batch is able to generalize on average to another

mini-batch from the data set. Under the PAC-Bayesian framework [McAllester 1999a;b; 2003],

we establish a probabilistic upper bound on the generalization penalty. This upper bound is

then simplified to a factor of the `2-norm distance between the gradient vectors of the two

mini-batches. We call this `2 distance gradient disparity. We first observe that the value of

gradient disparity computed between two batches from the training data is highly correlated to

gradient disparity between one batch from the training set and one batch from the validation

set. This suggests that, even if we compute gradient disparity entirely on the training set, it

still holds information about the held-out validation set. We propose gradient disparity as a

promising early stopping criterion and, through extensive experiments, compare it to k-fold

cross-validation [Stone 1974]. We choose k-fold cross-validation as the main baseline because

it, similar to our approach, takes all samples in the available dataset and uses all of them both

for training and validation. Our empirical results on settings with limited datasets demonstrate

a significant performance improvement when using gradient disparity as an early stopping

criterion compared to k-fold cross-validation. This mainly occurs because gradient disparity

is computed entirely on the training set hence enables us to use all the available data only

for training. In contrast, with k-fold cross-validation, 1/k-th of the data is still set aside and

not used for training in each of the k folds. Furthermore, our empirical results on settings

with noisy-labeled data also demonstrate a significant performance improvement when using

gradient disparity as an early stopping criterion compared to k-fold cross-validation. This is

primarily due to the fact that gradient disparity is, when the data contains noisy labels, a more

accurate predictor of overfitting than a validation set. Overall, we observe that gradient dispar-

ity is a very robust and effective early stopping criterion that outperforms other early stopping

measures. It has low sensitivity to the early stopping threshold and has a high correlation to

the value of the test error. Gradient disparity is a useful tool in practice, particularly in settings

where the available data is limited and of low quality, such as in medical datasets (e.g., the

MRNet dataset [Bien et al. 2018]).

In Chapter 4, we address the issue How do we track memorization of models when the

available training set contains noisy labels? A recent study by Garg et al. [2021a] shows theoret-

ically that for models trained on a mixture of clean and noisy data, a low accuracy on the noisy

9

Chapter 1. Introduction

subset of the training set and a high accuracy on the clean subset of the training set guarantee

a low generalization error. However, computing these accuracies requires ground-truth labels

that are not feasible in practice. In this chapter, we propose a practical approach to track,

without ground-truth label access or access to a clean validation set, the accuracy on the noisy

subset of the training set. Our approach is based on our theoretical and empirical observation

that models with a high test accuracy are resistant to memorizing a randomly labeled held-out

set. Building on this result, we propose an easy-to-compute metric called susceptibility to

noisy labels; it is the difference in the objective function of a single mini-batch from a held-out

randomly-labeled set, before and after taking an optimization step on it. During training, the

larger the difference is, the more susceptible the model is to the noisy labels in the mini-batch.

Our empirical results demonstrate a strong correlation between susceptibility and accuracy

on the noisy subset of the training set. Unlike the training accuracy on the noisy subset, sus-

ceptibility requires no ground-truth label access, is computed using only unlabeled data, and

is computationally very cheap. Moreover, it outperforms related work in tracking label-noise

memorization. We observe that models that are trainable and resistant to memorization, i.e.,

having a high training accuracy and a low susceptibility, have high test accuracies. We exploit

this observation to propose a model-selection method in the presence of noisy labels. Our

approach is shown to be effective in a variety of experimental settings and datasets with label

noise, ranging from selecting the “best” models from “good” models for easy datasets, such as

Animal-10N 2, to selecting “good” models from “bad” models for more complex datasets, such

as Clothing-1M [Xiao et al. 2015]. Overall, susceptibility is a simple but surprisingly effective

approach to tracking memorization by using only a single mini-batch of unlabeled data. It is a

promising technique for practical model selection in presence of label noise. Our proposed

model-selection method works well for real-world label noise, and our results are persistent

across various datasets, architectures, hyper-parameters, label-noise levels, and label-noise

types.

Lastly, in Chapter 5, we shift our focus from dealing with limited or noisy data to improving

dataset quality. Whereas, in the first three chapters, we emphasize the importance of including

every single sample in the training set, in this chapter, we explore another approach of selecting

high-quality samples. Similarly to Chapters 3 and 4, the settings studied in this chapter involve

datasets with label noise. However, the specific topic of interest is the presence of hard-to-learn

samples, in addition to noisy-labaled samples. The challenge here is that these two types of

data share many characteristics, but should be treated in opposite ways: noisy-labeled samples

should be removed or given less emphasis during training, whereas hard-to-learn samples

should be kept or given more emphasis. Therefore, it is crucial to study these two types of data

and to distinguish between them. However, one challenge in this regard is that hard-to-learn

samples are difficult to quantify. In Chapter 5, we propose a systematic approach to studying

the similarities and differences between hard and noisy samples by introducing a novel

framework for creating synthetically difficult samples. We take three different approaches:

imbalanced-ness, diversification, and closeness to the decision boundary, and we use them

2https://dm.kaist.ac.kr/datasets/animal-10n/

10

https://dm.kaist.ac.kr/datasets/animal-10n/

1.2. Goals and Contributions of the Thesis

to make samples in a baseline dataset more or less difficult. This way, we are able to assign

a hardness score to each individual sample and study them. We introduce and evaluate

various metrics for detecting noisy labels and demonstrate that our proposed static centroid

distance (SCD) metric, inspired by the metric proposed in [Zhang et al. 2022], is the most

effective in distinguishing between hard and noisy-labeled samples. We propose and evaluate

different methods for data cleansing and sample selection and show that a two-dimensional

Gaussian mixture model, which uses the accuracy over the training and SCD as features, is

the most effective at filtering out noisy samples while retaining hard ones. We demonstrate

the superiority of our approach in both synthetic datasets and real-world datasets with label

noise.

Overall, a summary of our contributions in a machine learning framework, including an

exact placement of each chapter is given in Fig. 1.3.

Data Col-
lection and

Pre-procesing
(Chapter 5)

Model
Design

(Chapter 2)

Training and
Evaluation
(Chapter 3)

Model
Selection

(Chapter 4)

Figure 1.3: Schematic overview of a typical machine-learning framework starting with data
collection and model design, followed by training and ending with model selection. In Chap-
ter 5, we propose a label noise detection approach which is compatible with datasets with
hard samples; which is useful in the data pre-processing stage. In Chapter 2, we show that sen-
sitivity recovers model design choices that result in high generalization performance; which is
useful in the model design stage. In Chapter 3, we propose an early stopping criterion which
could be incorporated into training; which is useful in the training and evaluation stages.
Finally, in Chapter 4, we propose a model-selection method which recovers models with a low
memorization of noisy labels; which is useful in the model-selection stage. It is important to
note that the metrics and methods proposed in each chapter of this thesis can also be applied
in other stages of a machine-learning project. However, the figure presented here serves as an
example of how different chapters can be incorporated into a machine-learning setting that is
particularly suitable for working with limited and noisy-labeled datasets.

11

2 Neural Network Output Sensitivity

2.1 Generalization Comparison of Deep Neural Networks

Although recent works have brought some insights into the performance improvement of

techniques used in state-of-the-art deep-learning models, more work is needed to understand

their generalization properties. In this chapter1, we shed light on this matter by linking the

loss function to the output’s sensitivity to its input. We find a rather strong empirical relation

between the output sensitivity and the variance in the bias-variance decomposition of the

loss function, which hints on using sensitivity as a metric for comparing the generalization

performance of networks, without requiring labeled data. We find that sensitivity is decreased

by applying popular methods which improve the generalization performance of the model,

such as (1) using a deep network rather than a wide one, (2) adding convolutional layers to

baseline classifiers instead of adding fully-connected layers, (3) using batch normalization,

dropout and max-pooling, and (4) applying parameter initialization techniques.

2.1.1 Introduction

In machine-learning tasks, the main challenge a network designer faces is to find a model that

learns the training data and that is able to predict the output of unseen data with high accuracy.

The first part is quite easily achievable by current over-parameterized deep neural networks,

but the second part, referred to as generalization, demands careful expert hand-tuning [LeCun

et al. 2015; Goodfellow et al. 2016]. Modern convolutional neural network (CNN) architectures

that achieve state-of-the-art results in computer-vision tasks, such as ResNet [He et al. 2016a]

and VGG [Simonyan and Zisserman 2014], attain high-generalization performance. Part of

their success is due to recent advances in hardware and the availability of large amounts of

data, but their generalization performance remains unequal. Therefore, knowing when and

why some models generalize, still remain open questions to a large extent [Neyshabur et al.

2017a].

1This chapter is based on [Forouzesh et al. 2021].

13

Chapter 2. Neural Network Output Sensitivity

In this chapter, by investigating the link between sensitivity and generalization, we get

one step closer to understanding the generalization properties of deep neural networks.

Our findings suggest a relation between the sensitivity metric, a measure of uncertainty of

the output with respect to input perturbations, and the variance term in the bias-variance

decomposition of the test loss. This relation gives insight in the link between sensitivity and

loss when the bias is small, not only for classification tasks, but also for regression tasks.

Leveraging this relation, we can use the sensitivity metric to examine which network is

more prone to overfitting. Our numerical results suggest sensitivity as an appealing metric

that captures the generalization improvements brought by a large class of architectures and

techniques used in state-of-the-art models. In summary, we make the following contributions:

• We provide an approximate relation between sensitivity and test loss, via the relation

between sensitivity and variance in the bias-variance decomposition of the loss. Our em-

pirical results on state-of-the-art convolutional neural networks suggest a surprisingly

strong match between experimental results and this (rather crude) approximation.

• We propose sensitivity as a promising architecture-selection metric and show that

sensitivity, similarly to the test loss, promotes certain architectures compared to others.

We in particular study the addition of convolutional layers versus fully-connected ones,

and depth versus width. Sensitivity can potentially be used as a neural architecture

search (NAS) tool, a priori (before training), to automate the architecture-design process.

• We provide an alternative explanation for the success of batch normalization in terms

of sensitivity. We further give a new viewpoint on the performance improvement of

dropout and max-pooling, as networks with these methods have a lower sensitivity

alongside a lower test loss. We show that sensitivity retrieves the effectiveness of He and

Xavier parameter initialization techniques.

2.1.2 Related Work

To the best of our knowledge, Dimopoulos et al. [1995] was the first study to suggest a possible

relation between sensitivity and generalization in multi-layer perceptrons, where the numeri-

cal results were limited to synthetic data. Recently, Sokolić et al. [2017] suggested bounding

the generalization error of deep neural networks with the spectral norm of the input-output

Jacobian matrix, a measure of output sensitivity to its inputs. Reference [Novak et al. 2018]

empirically compares sensitivity, measured by the norm of the Jacobian of the output of

the softmax layer, and the generalization gap for fully-connected neural networks in image-

classification tasks, leaving more complex architectures and other machine learning tasks as

future work. Our empirical results presented in Section 2.1.4, together with the computations

in Section 2.1.4, suggest that sensitivity before the softmax layer is related to the test loss, and

that computing the sensitivity before (as in our work) or after (as in [Novak et al. 2018]) the

softmax layer makes a strong difference (see e.g., Fig. 2.13). In our work, we elaborate on

14

2.1. Generalization Comparison of Deep Neural Networks

the relation between sensitivity and loss for a wide range of settings, beyond fully-connected

networks and image-classification tasks. We also show a rather strong match between the

expression computed in Section 2.1.4 and the experimental results on state-of-the-art models.

To avoid overfitting in deep-learning architectures, regularization techniques are applied,

such as weight decay, early stopping, dropout [Srivastava et al. 2014], and batch normalization

(BN) [Ioffe and Szegedy 2015]. A popular explanation for the improved generalization of

dropout is that it combines exponentially many networks to prevent overfitting [Srivastava

et al. 2014]. Reference [Ioffe and Szegedy 2015] argues that the reason for the success of BN is

that it addresses the internal-covariant-shift phenomenon. However, Santurkar et al. [2018]

argue against this belief and explains that the success of BN is due to its ability to make the

optimization landscape smoother. In this chapter, we look at the success of dropout and BN

from another perspective: These methods decrease the output sensitivity to random input

perturbations in a same manner as they decrease the test loss, resulting in better generalization

performance.

Designing neural network architectures is one of the main challenges in machine-learning

tasks. One major line of work in this regard compares deep and shallow networks [Bengio

and Delalleau 2011; Mhaskar et al. 2017; Wu et al. 2019; Ba and Caruana 2014; Montufar et al.

2014; Simonyan and Zisserman 2014]. It is shown in [Telgarsky 2016] that to approximate a

deep network, a shallow network requires an exponentially larger number of units per layer.

After finding a satisfactory architecture, the trainability of the network needs to be carefully

assessed. To avoid exploding or vanishing gradients, [Glorot and Bengio 2010] and [He et al.

2015] introduce parameter initialization techniques that are widely used in current frameworks.

By linking sensitivity and generalization, we present a new viewpoint on understanding the

success of current state-of-the-art architectures and initialization techniques.

Previous theoretical studies attempting to solve the mystery of generalization include

generalization error (GE) bounds that use complexity measures such as VC-dimension and

Rademacher complexities [Mohri et al. 2018]. Encouraged by the ability of neural networks

to fit an entire randomly labeled dataset [Zhang et al. 2016a], studies on data-dependent GE

bounds have recently emerged [Kawaguchi et al. 2017; Bartlett et al. 2017; Arora et al. 2018].

Computing a practical non-vacuous GE bound that completely captures the generalization

properties of deep neural networks is still an evolving area of research [Dziugaite and Roy

2017; Neyshabur et al. 2017a; Nagarajan and Kolter 2019]. In this chapter, we do not study GE

bounds. We propose sensitivity as a practical proxy for generalization in a large number of

settings.

There has been research on sensitivity analysis in neural networks with sigmoid and

tanh activation functions [Dimopoulos et al. 1995; Fu and Chen 1993; Zeng and Yeung 2001].

Reference [Yang et al. 2013] introduces a sensitivity-based ensemble approach which selects

individual networks with diverse sensitivity values from a pool of trained networks. Reference

[Piche 1995] performs a sensitivity analysis in neural networks to determine the required

15

Chapter 2. Neural Network Output Sensitivity

precision of the weight updates in each iteration. In this work, we extend these results to

networks with ReLU non-linearity with a different goal, which is to study the relation between

sensitivity and generalization in state-of-the-art deep neural networks. Moreover, we provide

a link between sensitivity and the variance in the bias-variance decomposition of the loss

function.

There have been recent attempts to predict the test loss for supervised-learning tasks

[Novak et al. 2018; Jiang et al. 2018b; Wang et al. 2018]. Reference [Chatterji et al. 2019] studies

the module criticality, which is a weighted average over the distance of the network parameter

vectors from their initial values. Although there seems to be a positive correlation between

module criticality and generalization among different architectures, the correlation becomes

negative when comparing the same architecture with different widths (as reported in Table 4

in [Chatterji et al. 2019]). Reference [Philipp and Carbonell 2018] introduces the so-called

non-linearity coefficient (NLC) as a gradient-based complexity measure of the neural network,

which is empirically shown to be a predictor of the test error for fully-connected neural net-

works. According to our results on both fully-connected and convolutional neural networks,

sensitivity predicts the test loss, even before the networks are trained, which suggests sensitiv-

ity as a computationally inexpensive architecture-selection metric. Among the mentioned

metrics, the Jacobian norm, studied in [Novak et al. 2018], does not require the computation

of the parameter gradients nor the storage of large parameter vectors, as our metric, and

therefore we compare it to sensitivity in Table 2.1.

Chapter Outline. We formally define loss and sensitivity metrics in Section 2.1.3. In Sec-

tion 2.1.4, we state the main findings of the chapter and present the numerical and analytical

results supporting them. Later in Section 2.1.5, we propose a possible proxy for generalization

properties of certain structures and certain methods and present the empirical results for a

regression task with the Boston housing dataset. Finally in Section 2.1.6, we further discuss

the observations followed up by a conclusion. The empirical results for image-classification

tasks presented in the main part of the chapter are on the CIFAR-10 dataset and the empirical

results for MNIST and CIFAR-100 datasets are deferred to Section 2.F.

2.1.3 Preliminaries

Consider a supervised-learning task, where the model predicts a ground-truth output y ∈Y :=
RK for an input x ∈X :=RD . The predictor fθ : X →Y is a deep neural network parameterized

by the parameter vector θ that is learned on the training dataset S by using the stochastic

learning algorithm A . The training dataset S and the testing (validation) dataset Sv consist

of i.i.d. samples drawn from the same data distribution D. With some abuse of notation,

we use ∼ when the samples are uniformly drawn from a set of samples or from a probability

distribution.

16

2.1. Generalization Comparison of Deep Neural Networks

Loss

Our main focus is a classification task where the loss function is the cross-entropy criterion.

The average test loss can be defined as

L = Eθ∗ [Lθ∗] = Eθ∗
[
E(x,y)∼Sv

[
−

K∑
k=1

yk log f k
θ∗(x)

]]
, (2.1)

where θ∗ is the random2 parameter vector found by A , which minimizes the training loss

defined on S; K is the number of classes and f k
θ∗ is the k-th entry of the vector fθ∗ , which is the

output of the softmax layer, i.e., fθ∗(x) = softmax(Fθ∗(x)), where Fθ∗(x) is the output of the last

layer of the network. In classification tasks, the output space is Y := [0,1]K , and the output

vector is the probability assigned to each class.

Sensitivity

Let us inject an external noise to the input of the network and compute the resulting noise

in the output. If the original input vector is x ∈ X to which we add an i.i.d. normal noise

vector εx ∼N (0,σ2
εx

I), then the output noise due to εx ∈X is εy = Fθ(x +εx)−Fθ(x). We

use the variance of the output noise, averaged over its K entries, as a measure of sensitivity:

Senθ = Var(εy). The average sensitivity is therefore

Sen = Eθ[Senθ] = Eθ
[

Varx,εx

[
1

K

K∑
k=1

εk
y

]]
, (2.2)

where εk
y is the k-th entry of the vector εy . To distinguish the sensitivity Sen computed on un-

trained networks from trained ones, we denote Senbefore = Eθ[Senθ] and Senafter = Eθ∗ [Senθ∗]

when the expectation is over the network parameters before and after training, respectively.

We consider an “unspecific“ sensitivity (meaning that the average is taken over all the entries

of the output noise), which requires unlabeled data samples, as opposed to the “specific“ sen-

sitivity (which is limited to the output of the desired class) defined in Tartaglione et al. [2018].

In our work, the input vectors x used for computing Sen are drawn from Sv , so that given a

new test data point, the sensitivity Sen predicts which trained network performs better for this

particular point, and therefore gives a real-time uncertainty metric for predicting unseen data.

For a few network architectures, we computed Sen on the training set S and observed that

its value is practically the same as Sen computed on the testing set Sv (see Fig. 2.14), which

suggests that Sen as a generalization metric does not require sacrificing a set of training points

for validation.

17

Chapter 2. Neural Network Output Sensitivity

0 20 40

0

10

20

ρ = 0.9707

log(Senafter)

lo
g(

L
)

AlexNet AlexNet standard normal
4 layer CNN standard normal VGG16

VGG13 standard normal ResNet18
ResNet18 standard normal Eq. (2.9)

Figure 2.1: Test loss L versus sensitivity Senafter for popular CNN architectures. The parameter
initialization is Xavier [Glorot and Bengio 2010] with uniform distribution, unless stated as
standard normal distribution. The networks are trained on a subset of the CIFAR10 training
dataset and are evaluated on the entire CIFAR10 test dataset. Each point of the plot indicates a
network with a different number of channels and hidden units, and its coordinates log(L) and
log(Senafter) are averaged over 10 runs. For more details on configurations refer to Section 2.A.
The Pearson correlation coefficient ρ between the data points is 0.9707.

2.1.4 Sensitivity versus Loss

Numerical Experiments

An ideal predictor should be robust: given similar inputs, the outputs should be close to each

other. Assuming that the unseen data is drawn from the same distribution as the training data,

the two concepts of robustness and generalization should therefore be related. Robustness

here is the average-case robustness, not the worst-case robustness (adversarial robustness).

We measure it by computing Sen (Eq. (2.2)), and considering near-zero training loss, we refer

to the test loss L (Eq. (2.1)) as the generalization error. According to our observations on a wide

set of experiments, including ResNets [He et al. 2016a] and VGGs [Simonyan and Zisserman

2014], we find a rather strong relation between Sen and L. State-of-the-art networks decrease

the generalization error alongside with the sensitivity of the output of the network with respect

to the input (Fig. 2.1).

Many factors influence the generalization performance of deep-learning models, among

which network topology, initialization technique, and regularization method. In Section 2.1.5,

we study the influence of each of these three factors on Sen and keep all the other factors,

including the learning algorithm, the same throughout the experiments. These experiments

suggest the use of Senafter as a proxy to the test loss, which is particularly advantageous for

settings where labeled training data is limited; assessing generalization performance can then

be done without having to sacrifice training data for the validation set. Furthermore, Senbefore

can potentially be used as an architecture-selection metric before training the models. We

refer to fully-connected neural networks as FC, and to convolutional neural networks as CNN.

2The randomness is introduced by the stochastic optimization algorithm A and the randomized parameter
initialization technique.

18

2.1. Generalization Comparison of Deep Neural Networks

Bias-Variance Decomposition

In this section, a crude approximate relation between sensitivity and generalization error is

established through the link between sensitivity and the variance term in the bias-variance

decomposition of the mean square error (MSE). First, we find the link between the cross-

entropy loss and MSE. Next, we develop the relation between sensitivity and the variance term,

and finally, the link between sensitivity Sen and generalization error L.

When the predictor fθ∗(x) assigns the probability f c
θ∗(x) to the correct class c and 1− f c

θ∗(x)

to another class (see Section 2.C for details), the cross-entropy loss L can be approximated as3

L ≈ E(x,y,θ∗)

 1p
2

√√√√ K∑
k=1

(
f k
θ∗(x)− yk

)2

 . (2.3)

We roughly approximate the right-hand side in Eq. (2.3) with
p

LMSE/2, where LMSE is the

mean square error criterion defined as

LMSE = Eθ∗ [Lθ∗MSE] = Eθ∗
[
E(x,y)∼Sv

[∥∥ fθ∗(x)− y
∥∥2

2

]]
. (2.4)

Consider the classic notion of bias-variance decomposition for the MSE loss [Geman et al.

1992; Tibshirani 1996; Neal et al. 2018; Mehta et al. 2019], where the generalization error is

the sum of three terms: bias, variance and noise, i.e., LMSE = εbias +εvariance +εnoise. In this

chapter, we consider the labels to be noiseless and neglect the third term εnoise. The bias term

is formally defined as

εbias = Ex,y

[∥∥Eθ∗ [fθ∗(x)]− y
∥∥2

2

]
, (2.5)

and the variance term is

εvariance =
K∑

k=1
Ex

[
Varθ∗(f k

θ∗(x))
]

. (2.6)

Let us now draw an again crude approximate relation between εvariance and Sen under

strong assumptions on the probability distributions of θ, x, and εx (refer to Section 2.B for

more details). Given a feed-forward neural network with M hidden layers and Hl units per

layer, 1 ≤ l ≤ M , where the non-linear activation function is positive homogeneous4 with

parameters α and β (Eq. (2.11) in Section 2.B), we have

εvariance ≈
(

K −1

K

)(
Sen · σ

2
x

σ2
εx

+Σ
)

, (2.7)

where

Σ= 1

K

M∑
l=1

σ2
bl

M∏
i=l+1

(
α2 +β2

2

)
σ2

wi
Hi , (2.8)

3This is more accurate for over-confident predictors (see Section 2.C).
4ReLU is a positive homogeneous function with α= 1 and β= 0.

19

Chapter 2. Neural Network Output Sensitivity

where K is the number of units in the output of the softmax layer and σ2
wl

, σ2
bl

, σ2
x , and σ2

εx
are

the second moment of weights and biases of layer l , input x and input noise εx , respectively.

Eq. (2.8) can be extended to convolutional neural networks5 by replacing Hi with f ani n of

layer i .

Given an infinite amount of training data, the bias represents the best performance of the

model, which can be approximated by the training loss [Mehta et al. 2019; Ng 2012; Fortmann-

Roe 2012]. In deep learning settings (and thus in our experiments), the training loss is close to

zero, hence if we neglect the bias term εbias in the decomposition of LMSE we have

L ≈
√√√√1

2

(
K −1

K

)(
Sen · σ

2
x

σ2
εx

+Σ
)

, (2.9)

where Σ is given by Eq. (2.8). In the experiments, we observe that σ2
bl

is usually very small or

zero (for instance in ResNets because bl = 0), making Σ≈ 0.

According to Eq. (2.7) and the relation between LMSE and L, to compare networks with

a small value of εbias (which is usually the case in deep neural networks where the bias

is approximated by the near-zero training loss), the test loss can be approximated using

the sensitivity by Eq. (2.9). Despite the strong assumptions and crude approximations to

get Eq. (2.9), the numerical experiments show a rather surprisingly good match with Eq. (2.9)

(Fig. 2.1, Fig. 2.2 and Fig. 2.3), even if Σ is neglected in Eq. (2.9). It is interesting to note that the

right-hand side of Eq. (2.9) is computed without requiring labeled data points, whereas the

left-hand side requires the ground-truth output vector y .

If εbias can no longer be approximated by the training loss, which may in part explain

the poorer match in lower values of Senafter in Fig. 2.1, we need more training data to make

this approximation valid. In Section 2.1.6 we train the networks with more data samples and

observe that numerical results become closer to Eq. (2.9).

Sensitivity Before Versus After The Softmax Layer

Metric ρ Computation time
J after softmax 0.116 1.166 ± 0.111

J before softmax 0.414 1.165 ± 0.111
Sen after softmax 0.381 0.086 ± 0.006

Sen before softmax 0.648 0.085 ± 0.006

Table 2.1: Pearson’s correlation coefficient ρ between each metric (Sen, J) and the test loss (L),
and average computation time (in seconds) of each metric for VGG13, VGG16, ResNet18 and
ResNet34 networks trained on the CIFAR-10 dataset. The test accuracy of the networks are up
to 87%.

5 f ani n = the number of input channels ∗ the kernel size.

20

2.1. Generalization Comparison of Deep Neural Networks

It is interesting to compare the sensitivity Sen given by Eq. (2.2) with the Frobenius norm

of the Jacobian matrix J of the output of the softmax layer [Novak et al. 2018], in terms of their

ability to gauge the generalization error L. A practical motivation for using Sen instead of J in

real-world applications is computational tractability: to find the network architecture(s) with

the best generalization ability among a collection of trained networks, the computation of Sen

does not require to make a backward pass through each network architecture, contrary toJ .

In Table 2.1 we observe that computing Jacobian is more than 10 times slower than computing

sensitivity. But the main motivation for using Sen is that it is computed before and not after

the softmax layer, contrary to J in [Novak et al. 2018]. Because of the chain rule, J depends

on the derivative of the softmax function with respect to the logits, which has very low values

for highly confident predictors (the ones which assign a very high probability to one class

and almost zero probability to the other classes). For instance, if the predictor erroneously

assigns a high probability to a wrong class, the derivative of the softmax function is very low,

resulting in a very low J . In this case, J would be misleading as it would mistakenly indicate

good generalization. In contrast, Sen does not depend on the confidence level of the predictor.

The difference is illustrated in Table 2.1 (see also Fig. 2.13 in the appendix), where the strong

correlation between Sen and L (and the good match with Eq. (2.9)) is not found when Sen is

replaced by the sensitivity after the softmax layer. Therefore, we observe from Table 2.1 that

Sen computed before the softmax layer (given by Eq. (2.2)), is preferred to J (defined in [Novak

et al. 2018]), both in terms of correlation to the test loss and of computation time.

2.1.5 Sensitivity as a Proxy for Generalization

In this section, we argue that methods improving the generalization performance of neural

networks remarkably reduce the sensitivity Sen. We also present the experimental results for

a regression task.

Comparing Different Architectures

Convolutional vs Fully-Connected Layers. The relation between the sensitivity Sen and

the generalization error L supports the common view that CNNs outperform FCs in image-

classification tasks. In Fig. 2.2 (a) we empirically observe that, given a CNN and an FC with the

same number of parameters, the CNN has lower sensitivity and test loss than the FC. Moreover,

some CNNs with more parameters than FCs have both lower sensitivity and lower test loss,

even though they are more over-parameterized.

Let us start from a baseline classifier with one hidden layer (2 layers in total displayed in teal

blue points in Fig. 2.2 (a), where each point represents a network with a different number of

hidden units). We compare the effect of adding another fully-connected layer with adding

a convolutional layer in Fig. 2.2 (a). We vary the number of parameters of 1-layer CNNs

(which consist of 2 fully-connected (fc) layers and 1 conv layer, displayed by pink points) from

450k to 10M by increasing the number of channels and hidden units, whereas the number of

parameters for 3-layer FCs varies from 320k to 1.7M (displayed by dark blue points). Despite

21

Chapter 2. Neural Network Output Sensitivity

(a)
0 5 10

5

ρ = 0.9739

mark

log(Senafter)

lo
g(

L
)

2 layer FC (2 fc layers)
3 layer FC (2 fc layers + 1 fc layer)

1 layer CNN (2 fc layers + 1 conv layer)

(b)
0 10 20 30

5

10

15

20

ρ = 0.9625

mark

log(Senafter)

lo
g(

L
)

2 layer FC
3 layer FC
4 layer FC
5 layer FC
6 layer FC
7 layer FC
Eq. (2.9)

(c)
0 10 20

5

10

ρ = 0.9658

log(Senafter)

lo
g(

L
)

1 layer CNN
2 layer CNN
3 layer CNN
4 layer CNN

Eq. (2.9)

(d)
0 5 10 15

5

10

ρ = 0.9127

log(Senafter)

lo
g(

L
)

4 layer FC
4 layer FC+dropout

4 layer FC+BN
Eq. (2.9)

(e)
0 10 20

5

10

ρ = 0.9469

log(Senafter)

lo
g(

L
)

3 layer CNN
3 layer CNN+BN

3 layer CNN+dropout
3 layer CNN+max-pooling

Eq. (2.9)

Figure 2.2: Test loss L versus sensitivity Senafter for networks trained on a subset of the CIFAR-
10 training dataset where the network parameters are initially drawn from a standard normal
distribution. Each point of the plot indicates a network with a different number of channels
and hidden units, and its coordinates log(L) and log(Senafter) are averaged over 10 runs.
The shaded areas are contained by the minimum and maximum values of log(Senafter) over
multiple runs of each experiment (point). (a) Comparison between adding a convolutional
layer and adding a fully-connected layer to a baseline classifier that is a fully-connected neural
network with one hidden layer. (b) Fully-connected neural networks. (c) Convolutional neural
networks. (d) 4-layer FC trained with or without regularization. (e) 3-layer CNN trained with
or without regularization.

the large number of parameters of CNNs, they suffer from less overfitting and have a lower

sensitivity Sen than FCs. Next, let us compare a FC to a CNN with the same number of

parameters in Fig. 2.2 (a): A 3-layer FC with 140 units in each layer (yellow mark) and a 1-layer

CNN with 5 channels and 100 units (green mark), both have 450k parameters. The CNN has

remarkably lower sensitivity and test loss than the FC, which indicates better performance

compared to the FC with the same number of parameters.

Depth vs Width. Consider a feedforward FC with ReLU activation function where all the

network parameters follow the standard normal distribution and are independent from each

other and from the input. If we have M layers with H units in each hidden layer, K units in the

output layer and D units in the input layer, then (see Section 2.D for details)

Sen = D

K

(
H

2

)M

σ2
εx

. (2.10)

According to Eq. (2.10), considering two neural networks with the same value for H M , one

deep and narrow (higher M and lower H), and the other one shallow and wide (lower M

and higher H), the deeper network has lower sensitivity Sen. Assuming that both networks

have near-zero training losses, depth is better than width regarding generalization in fully-

connected neural networks. The empirical results in Fig. 2.2 (b) support Eq. (2.10). For instance,

22

2.1. Generalization Comparison of Deep Neural Networks

0 10 20 30

0

5

10

15

20

ρ = 0.9623

log(Senafter)

lo
g(

L
)

6-7 layer FC SN
6-7 layer FC XU
6-7 layer FC HU
6-7 layer FC HN

Eq. (2.9)

−4 −2 0

2.2

2.4

2.6

2.8

ρ = 0.9284

log(Senafter)

lo
g(

L
)

Figure 2.3: Test loss L versus sensitivity Senafter for networks trained on a subset of the CIFAR-
10 training dataset where networks are initialized with different methods. On the right, we
have a zoom in plot of the bottom left frame of the left figure.

a 4-layer FC with 500 units per layer (the top right most point among all 4-layer FCs, indicated

by a yellow mark), has the same value for (H/2)M as a 5-layer FC with 165 units per layer (the

4th point among 5-layer FCs, which exactly matches the yellow mark). In Fig. 2.2 (b), these

two networks have the same values of both Senafter and L, and all narrower 5-layer networks

(with 100, 120, and 140 units) have better performance than the wide 4-layer network (with

500 units). A similar trend is observed for CNNs in Fig. 2.2 (c): having a narrower and deeper

CNN is preferable to having a wider and shallower CNN.

Regularization Techniques

Fig. 2.2 (d) and (e) show the sensitivity Senafter versus the test loss L, for different regularization

methods. In particular, we study the effect of dropout [Srivastava et al. 2014] and batch

normalization (BN) [Ioffe and Szegedy 2015] on the sensitivity in the FCs; and we apply

dropout, BN and max-pooling for the CNNs. The results are consistent with the relation

between sensitivity Senafter and loss L. For all these regularization techniques, we observe a

shift of the points towards the bottom left. This shift shows that these techniques known to

improve generalization simultaneously decrease the network sensitivity to input perturbations.

This is particularly noticeable in the BN case, where both the sensitivity and test loss decrease

dramatically. This suggests that batch normalization improves performance by making the

network less sensitive to input perturbations.

Initialization Methods

Another interesting observation is the effect of various parameter initialization techniques

on the sensitivity and loss values, after the networks are trained (Fig. 2.3). We consider four

initialization techniques for network parameters in our experiments: (i) Standard Normal

distribution (SN), (ii) Xavier [Glorot and Bengio 2010] initialization method with uniform

distribution (XU), (iii) He [He et al. 2015] initialization method with uniform distribution

(HU), and (iv) He initialization method with normal distribution (HN). As shown in Fig. 2.3,

the relation between sensitivity Senafter and test loss L provides us with a new viewpoint on

the success of the state-of-the-art initialization techniques; HN has the best generalization

23

Chapter 2. Neural Network Output Sensitivity

performance, alongside the lowest sensitivity value (the black points in Fig. 2.3).

Sensitivity of Untrained Networks as a Proxy for Generalization Loss

0 20 40 60 80

0

20

40

ρ = 0.9757

log(Senbefore)

lo
g(

L
)

2-7 layer FC

1-3 layer CNN

Alexnet

VGG11

VGG13

Eq. (2.9)

Figure 2.4: Test loss of trained models, L, versus sensitivity of untrained models, Senbefore, for
networks whose parameters are initially drawn from the standard normal distribution. Note
that the regularization techniques BN, dropout and max-pooling are removed from Alexnet,
VGG11, and VGG13 configurations.

A similar trend is observed for neural networks that are not yet trained. In Fig. 2.4, the

sensitivity Senbefore is measured before the networks are trained, and the test loss L is mea-

sured after the networks are trained. The parameters in the fully-connected and convolutional

networks are initialized by sampling from the standard normal distribution, and no explicit

regularization (dropout, BN, max-pooling) is used in the training process. These two condi-

tions are necessary, because regularization techniques only affect the training process, hence

Senbefore is the same for networks with or without regularization layers, and the He and Xavier

initialization techniques force the sensitivity to be the same regardless of the number of units

in hidden layers. Therefore, under these two conditions, the generalization performance of

untrained networks with different architectures can be compared. The strong link between the

sensitivity of untrained networks Senbefore and the test loss L observed in Fig. 2.4 suggests that

the generalization of neural networks can be compared before the networks are even trained,

making sensitivity a computationally inexpensive architecture-selection method. Later in this

chapter, in Section 2.2, we present the results of using sensitivity before training as a neural

architecture search (NAS) zero-cost tool in more details.

−10 0 10 20 30 40

10

20

30

40

ρ = 0.7681

log(Senafter)

lo
g(

L
M

SE
)

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

8 layer FC

Figure 2.5: Test loss LMSE versus sensitivity Senafter for a regression task with the MSE loss
criterion. The networks are trained and evaluated on the Boston house price dataset. Each
point of the plot indicates a network with a different width and its coordinates are averaged
over 10 runs.

24

2.1. Generalization Comparison of Deep Neural Networks

Regression Task and MSE Loss

In this part, we investigate the relation between sensitivity and generalization error for re-

gression tasks with the mean square error criterion (MSE). The loss function in this setting

is defined in Eq. (2.4) where θ∗ is found by minimizing MSE on training dataset S using the

stochastic learning algorithm A . Note that the output is the last layer of the neural network

(the softmax layer is not applied), and that the output layer has 1 unit, i.e., K = 1, and that y

is a scalar. The sensitivity is defined as Sen = Eθ∗
[
Varx,εx

[
fθ∗(x +εx)− fθ∗(x)

]]
and the bias

and variance terms are defined by Eq. (2.5) and Eq. (2.6), respectively. We consider the Boston

housing dataset where the objective is to predict the price of a house given 14 features (includ-

ing crime rate, distance to employment centers, etc.). Fig. 2.5 shows sensitivity versus test loss

among fully-connected neural networks with 3-8 layers and 100-500 hidden units per layer;

the networks are trained on 70% of the dataset and then evaluated on the remaining 30%.

The results are consistent with the relation between sensitivity Sen and generalization error,

which for the regression task is LMSE. For a more detailed view, we observe that sensitivity

is related to the variance in the bias-variance decomposition of the MSE loss (Fig. 2.11 (d)

in the appendix), and the MSE loss is the sum of bias and variance terms (Fig. 2.11 (c) in the

appendix).

2.1.6 Discussion and Conclusion

Discussion Regarding Bias

In this part, we discuss the role of the number of training samples and of the stage of the

training on the validity of the approximation made in Eq. (2.9) where we neglect εbias. In

our experiments, we observe that when the number of training samples is low (see for in-

stance Fig. 2.12 (a) for ResNet18 and ResNet34 networks), the match between experiments

and Eq. (2.9) is rather poor. We show (in Fig. 2.12 (b) in the appendix) that this problem

can be solved (at least in part) by training the networks with more samples: for instance,

in Fig. 2.12 (b) the yellow marks are ResNet18, the green marks are ResNet34, and the results

show a relation between log(Senafter) and log(L) that becomes linear as we add more training

data samples in the training process. Therefore, the larger the number of training samples

is, the better the approximation εbias ≈ tr ai nloss becomes, and εvariance becomes the more

dominant term in the test loss. We also observe that, when computing sensitivity and loss at

different stages of training, the bias term εbias in the test loss cannot be neglected at initial

stages of the training. As the training progresses, the experimental results get closer to Eq. (2.9)

(see Fig. 2.12 (d) in the appendix).

Final Remarks

As discussed in Section 2.1.4, the loss can be decomposed in three terms: εvariance, εbias, and

εnoise. The proposed relation between sensitivity Sen and variance εvariance is extended to a

25

Chapter 2. Neural Network Output Sensitivity

relation between Sen and generalization loss L when εvariance is the dominant term in the

decomposition of the loss, which is often the case in deep learning settings. In the previous

section, we discussed the possibility that the bias term εbias might not be negligible compared

to εvariance, when the number of training samples is low and when the training loss is large.

When the available data contains randomly labeled samples, then εnoise can no longer be

neglected. As Sen does not depend on the labels, the randomness in the labels, and therefore

the generalization performance of the model, can no longer be entirely captured by sensitivity

in this setting. Furthermore, the pixel-wise linear input perturbations considered in our

experiments might not be realistic; ideally, we would like to perturb the input in the latent

space of the generative model of the input image. Also, the relation between Sen and L requires

the non-linearity to be positive homogeneous. The generalization properties of networks with

sigmoid and tanh activation functions are left for future work.

The sensitivity Sen changes with input-output re-scaling: For a homogeneous predictor,

if the input data scale is multiplied by a factor α, and the output is divided by the factor

α, then L remains unchanged, whereas Sen gets divided by α4. However, as long as we

compare networks subject to the same input data distribution, this re-scaling obviously does

not happen. Moreover, Sen can be affected by output re-scaling: If the output of a classifier

is divided by a factor α, then the classification accuracy remains the same, whereas L and

Sen get divided by (approximately) α and α2, respectively. While the relation between L

and Sen remains valid, there is a mismatch between accuracy and loss, which suggests that

the networks are miscalibrated. Applying network calibration methods such as temperature

scaling [Guo et al. 2017] can potentially increase the correlation between the cross-entropy

loss L and the classification error (i.e., 1 - accuracy), as well as the correlation between the

sensitivity Sen and the classification error (see e.g., Table 2.3 in the appendix).

The relation between sensitivity and variance can be extended to any loss that admits

a bias-variance decomposition. Therefore, if such a decomposition is found for the classifi-

cation error (which might not be purely additive [Domingos 2000]), which is still an active

research topic, then the link between sensitivity and error would follow. We note that there is

a difference between causality and correlation between a complexity measure and generaliza-

tion, as discussed in [Jiang et al. 2019]. We study the correlation between sensitivity Sen and

generalization loss L, however, this does not imply that there is a causal relation between the

two.

Conclusion. We find that the sensitivity metric is a strong indicator of overfitting. Given

multiple networks having near-zero training losses to choose from with different hyper-

parameters, the best architecture appears to be the one with the lowest sensitivity value.

Sensitivity can also potentially be used as an architecture-selection method. One of the advan-

tages of the sensitivity metric is that it can provide a loose prediction of the test loss without

the use of any labeled data. This is especially important in applications where labeling data is

expensive.

26

2.2. Neural Architecture Search Without Training

2.2 Neural Architecture Search Without Training

Neural Architecture Search (NAS) is a research field focused on automating neural network

design. The process typically involves selecting a base network and modifying its architecture

to optimize test performance. However, current NAS algorithms can be computationally

expensive, limiting their practical applications. To address this issue, in this chapter, we

examine the neural network output sensitivity, computed prior to training, as a zero-cost

metric that could accelerate NAS algorithms. Our results demonstrate that this metric can be

efficiently calculated for networks with a high number of parameters and effectively utilized

as a pruner for the NAS search space.

2.2.1 Introduction and Background

Over the past decade, deep learning has demonstrated remarkable effectiveness in automating

various tasks, particularly in Computer Vision. This is primarily due to the network’s ability

to learn relevant features for each domain, the abundance of data available from various

disciplines, and the increase in computational power facilitated by GPUs and TPUs [Jouppi

et al. 2017]. However, deep learning also requires architectural engineering to design a neural

network that can be trained efficiently and effectively for a given task. This can also be done

via automating the network design process. Neural architecture search (NAS) [Zoph and Le

2016; Elsken et al. 2019] is a research field that has emerged from various efforts to automate

architectural design and has been able to produce numerous state-of-the-art networks. A NAS

procedure typically involves the search space, optimization method, and candidate evaluation

method, which we briefly discuss below.

The Search Space is crucial for NAS procedures as it determines the networks we examine

to create the final architecture. Choosing a suitable search space can reduce complexity and

computational demands, allowing random searches to produce excellent results. However,

creating a good search space is challenging; Firstly, it needs prior dataset knowledge, lim-

iting its usefulness for new areas. Secondly, it introduces bias by disregarding unexplored

architectures that may provide superior performance [Kyriakides and Margaritis 2020].

The Optimization Method used in NAS affects the search efficiency and the final archi-

tecture. It involves balancing exploration and exploitation. Choosing the right strategy can

ensure adequate exploration of the search space and optimal architecture. Various methods,

including evolutionary [Chen et al. 2018] and reinforcement learning algorithms [Zoph and Le

2016], have been proposed in recent years.

The Evaluation Method in NAS refers to the process of assessing the performance of

candidate architectures to identify the most effective one. Typically, the evaluation involves

training and testing the architecture on a given dataset using a specific metric or a combination

of metrics, such as accuracy [Kyriakides and Margaritis 2020].

27

Chapter 2. Neural Network Output Sensitivity

In this study, our aim is to utilize the output sensitivity approach introduced in Section 2.1

to accelerate the search space by pruning the available networks. We do not focus on the

optimization method and keep it consistent with the NAS benchmark used in our study.

Furthermore, we use test accuracy as the evaluation method for finally selecting models. Our

study focuses on the NAS-bench201 [Dong and Yang 2020] environment, which is a popular

NAS benchmark. NAS benchmarks provide a standardized and cost-effective environment

for evaluating various algorithms by pre-computing network evaluations for the entire search

space and using table look-up for easy access to architecture performance. NAS-bench201

is a NAS benchmark that uses a fixed cell search space inspired by popular neural cell-based

searching algorithms. Each architecture has a predefined skeleton and a searched cell, which

is represented as a directed acyclic graph (DAG). The benchmark has 5 operation candidates

and generates 15625 architectures, each trained on three datasets (CIFAR106, CIFAR100, and

ImageNET [Deng et al. 2009]) multiple times. Training statistics and performance, including

accuracy, loss, and number of parameters and floating-point operations (FLOPs), are provided

for every run.

2.2.2 Zero-Cost Metrics

To evaluate candidate architectures for NAS, the most straightforward approach is to train

and evaluate each one on a dataset. However, this is computationally expensive and time-

consuming. To reduce costs, alternative methods emerge such as training for fewer epochs or

using transfer learning. Another approach is to use zero-cost proxies to estimate the accuracy

of a network before training. These proxies should be correlated with validation accuracy and

preserve the ranking between models. In this section, we recall zero-cost proxies proposed

in recent years. Furthermore, we suggest sensitivity, studied in Section 2.1 as an alternative

zero-cost metric for estimating network test accuracy, before training.

We denote the i -th input sample of the dataset by xi ∈ RD , and the network parameter

vectors by θ. The neural network is denoted by f :RD →RK , where K is the number of classes.

Synflow: a parameter pruning metric which is computed at initialization and proposed

by Abdelfattah et al. [2021]. This criterion approximates the change in loss when a specific

parameter is removed:

Synflow : Sp (θ) = ∂L

∂θ
¯θ

where L is the product of all parameters in the network, ¯ is the Hadamard product, and Sp

is the per-parameter synflow values. The network metric will be then calculated by taking the

sum of synflow over all parameters. No data is needed to compute synflow, and hence it is a

zero-cost metric as it doesn’t require network training.

Jacob-cov: for a mini-batch of data {xi }nB
1 with size nB with the Jacobian vector J =(

∂ f (x1)
∂x1

, ∂ f (x2)
∂x2

, · · · ,
∂ f (xnB)
∂xnB

)
, the Pearson correlation coefficient matrix of J is denoted by C .

6https://www.cs.toronto.edu/~kriz/cifar.html

28

https://www.cs.toronto.edu/~kriz/cifar.html

2.2. Neural Architecture Search Without Training

Jacob-cov [Mellor et al. 2021] is then defined as
∑P

p=1

(
log(λp +ε)+ 1

λp+ε
)
, where λp is the

p-th eigenvalue of C and ε is a small constant. Mellor et al. [2021] suggest that this metric is

negatively correlated with the test accuracy of the networks.

EPE: is similar to Jacob-cov, but the Jacobians are grouped together based on the label of

each data point. Lopes et al. [2021] suggest that the test accuracy is positively related to the

sum of the calculated correlation values.

Condition value of the neural tangent kernel (NTK): The condition value of the corre-

sponding kernel matrix H for NTK is proposed as a metric of trainability by Chen et al. [2021b]

and is suggested that this metric is negatively correlated to the final network test accuracy.

Number of linear regions: Chen et al. [2021b] propose that expressivity plays a critical

role in the performance of the network. The expressivity of a ReLU network is measured by

the number of linear regions it can generate.

Sensitivity: In Section 2.1, we show that the output sensitivity of a trained neural network

with respect to its inputs can estimate the generalization performance of the network. It

was also briefly studied how the sensitivity computed before training could also estimate

generalization. We use sensitivity metric Senbefore defined in Equation 2.2 for networks that

are not yet trained. Sensitivity is computationally efficient as it does not require any backward

computation, and is zero-cost as it is computed at initialization, before training.

2.2.3 Experiments

In this section, we empirically compare the zero-cost metrics recalled in the previous section

in terms of their correlation to the test accuracy and their applicability as a NAS search space

pruner.

Correlation Between Each Metric and Test Accuracy: We conducted a comparison of the

correlation between each metric and the test accuracy of the NAS-bench201 networks in Ta-

ble 2.2 for CIFAR-10, CIFAR-100, and ImageNet datasets. Our analysis shows that synflow and

Senbefore exhibit the highest correlations across all three datasets, with Senbefore consistently

outperforming synflow. Furthermore, NTK and number of linear regions display the lowest

correlations among all metrics. Additionally, the correlation values reveal that Jacob-cov is not

a stable metric, as it positively correlates with the test accuracy of the CIFAR-10 and CIFAR-100

networks but negatively with the ImageNet networks.

Using Each Metric in NAS Search Space: One approach to reduce the search space in

NAS is to leverage the proposed metrics. To implement this approach, we first calculate each

metric for all networks and identify the top 10% networks based on each metric. We then select

the best 10% networks with the highest test accuracy and compare their mean and maximum

accuracy with the mean and maximum accuracy of the networks selected by each metric. The

results for each dataset are presented in Fig. 2.6. The results reveal that, synflow and Senbefore

29

Chapter 2. Neural Network Output Sensitivity

Metric Spearman Kendall τ

Synflow 0.777 0.581
Jacob-cov 0.689 0.524

EPE 0.675 0.496
NTK 0.331 0.244

Linear Regions 0.267 0.218
Senbefore 0.792 0.607

(a) CIFAR-10

Metric Spearman Kendall τ

Synflow 0.763 0.568
Jacob-cov 0.687 0.523

EPE 0.694 0.515
NTK 0.519 0.377

L inear Regions 0.477 0.345
Senbefore 0.763 0.583

(b) CIFAR-100

Metric Spearman Kendall τ

Synflow 0.751 0.561
Jacob-cov -0.713 -0.534

EPE 0.634 0.457
NTK 0.414 0.295

Linear Regions 0.278 0.222
Senbefore 0.764 0.585

(c) ImageNet

Table 2.2: Spearman and Kendall τ correlation coefficients between each metric and the test
accuracy of the networks trained on CIFAR-10, CIFAR-100 and ImageNet datasets in NAS-
bench201. We can observe that Senbefore consistently outperforms other metrics in all three
datasets.

consistently select the best networks for all three datasets. Since selecting networks based

on these metrics is equivalent to choosing the top 10% networks based on test accuracy, we

can conclude that these metrics effectively function as a pruner, significantly reducing the

number of networks that need to be trained.

Computational Cost: The primary goal of utilizing metrics to prune the NAS search space

is to reduce computational costs and accelerate the search process. Therefore, a suitable metric

should not impose significant computational overhead. Sensitivity Senbefore, for instance,

requires only two forward passes, while other metrics require both forward and backward

passes, as well as additional computations, such as eigenvalue decomposition. Since final

computations are more expensive than the forward pass, it can be inferred that Senbefore is

30

2.2. Neural Architecture Search Without Training

Sy
nfl

ow

Jac
ob

-co
v

EP
E

Lin
ea

r R
eg

ion NTK

Se
nsi

tiv
ity

1

Se
nsi

tiv
ity

2

Ran
do

m

Metric

82

84

86

88

90

92

94

Ac
cu

ra
cy

Mean
Max
Best mean
Best max

(a) CIFAR-10

Sy
nfl

ow

Jac
ob

-co
v

EP
E

Lin
ea

r R
eg

ion NTK

Se
nsi

tiv
ity

1

Se
nsi

tiv
ity

2

Ran
do

m

Metric

55

60

65

70

Ac
cu

ra
cy

Mean
Max
Best mean
Best max

(b) CIFAR-100

Sy
nfl

ow

Jac
ob

-co
v

EP
E

Lin
ea

r R
eg

ion NTK

Se
nsi

tiv
ity

1

Se
nsi

tiv
ity

2

Ran
do

m

Metric

20

25

30

35

40

45

Ac
cu

ra
cy

Mean
Max
Best mean
Best max

(c) ImageNet

Figure 2.6: The mean and maximum accuracy of the top 10% networks based on each metric. Sensitiv-

ity1 and sensitivity2 are both variants of Senbefore, where sensitivity1 is exactly computed according

to Eq. (2.2) and sensitivity2 is the expectation of the `2 norm of εy . Random refers to the uniform

selection of 10% of networks. The blue dashed line and the purple points refer to the average and to the

maximum test accuracy of the selected networks according to each metric, respectively. The red and

the green lines show the average and the maximum test accuracy of the top 10% models with highest

test accuracies, respectively. These two lines serve as a reference to the optimal pruner. We can observe

that Synflow and both variants of Senbefore perform rather comparatively to the optimal pruner in all

three datasets. Hence, these metrics can be used to select models without any training, at least to prune

the NAS search space.

more computationally efficient than other metrics. Moreover, other metrics necessitate a

considerable amount of memory as they perform memory-intensive computations, such as

computing the correlation matrix and eigenvalue decomposition. In contrast, Senbefore does

not require as much memory.

31

Chapter 2. Neural Network Output Sensitivity

2.2.4 Conclusion

In our study, we focused on sensitivity as a zero-cost metric that correlates with the final

test accuracy of a network. We found that this metric can be efficiently calculated even for

networks with a large number of parameters, where other existing metrics may struggle. Our

results demonstrate that sensitivity is a reliable indicator of a network’s performance and can

serve as a useful tool for network architecture search (NAS).

One significant advantage of sensitivity is that it can be used as a NAS search space

pruner. By ranking candidate architectures based on their sensitivity values, we can signifi-

cantly reduce the search space and focus on the most promising architectures. This can save

considerable computational resources and accelerate the search process.

Looking ahead, a future direction is to extend our study to non-vision tasks such as natural

language processing (NLP). The definition of input perturbation differs for NLP tasks, and

the approach to compute sensitivity needs to change accordingly. Nevertheless, it would be

interesting to explore the potential of sensitivity as a valuable metric for NLP tasks, as we

believe it could yield promising results in this domain. Overall, our study demonstrates the

versatility and utility of sensitivity as a metric for network architecture search.

32

Appendices

2.A Experimental Details

The CIFAR-107 and the Boston house pricing8 datasets are used for the image-classification

and regression experiments presented in the main part of the chapter. The fully-connected

neural networks have the same number of units in the hidden layers, varying from 100 to

500 with a step size of 20. For the convolutional neural networks the number of channels in

convolutional layers vary from 5 to 25 with a step size of 5 (note that each time a channel is

added in the convolutional layers, an extra 20 units is added to the fully-connected layers

of the CNN accordingly). As it is computationally expensive to reach zero training loss for

the entire dataset, we choose a randomly sampled subset of the training set containing 1000

samples of the CIFAR-10 dataset. Zero training loss is necessary for a fair comparison between

different networks since we would like to have the same value for εbias and εnoise among

them. For the optimization algorithm, we choose the Adam optimizer with l r = 0.001 and

bet as = (0.9,0.999). We initialize the weights and biases with random values drawn from the

distribution stated in each figure. The non-linear activation function is set to be the ReLU

function throughout the experiments. We stop the training when the training loss reaches

below the threshold 10−5 for 10 times. In case this condition is not met, we stop the training

after 2000 epochs (each epoch is iterations over the mini-batches with size 128 of the training

set). The noise added to the input image is a random tensor with the same size as the input

and is drawn from the Gaussian distribution with zero mean and 0.1 standard deviation. The

output noise is first averaged over all its K entries (for CIFAR-10 the number of classes is

K = 10), then we take its variance over inputs of the testing dataset and the input noise. All the

reported experimental results are averaged over 10 runs. Each experiment took few hours on

one Nvidia Titan X Maxwell GPU.

We use the notations:

• Conv(number of filters, kernel size, stride, padding)

• Maxpool(kernel size)

7https://www.cs.toronto.edu/~kriz/cifar.html
8https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

33

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Chapter 2. Neural Network Output Sensitivity

• Linear(number of units)

• Dropout(dropout rate)

for layers of a convolutional neural network where Conv and Linear layers also include the

ReLU non-linearity except the very last linear layer. The configurations that are used are:

• The Alexnet [Krizhevsky et al. 2012]: Conv(h, 3, 2, 1) - Maxpool(2) - Conv(3*h, 3, 1, 1)

- Maxpool(2) - Conv(6*h, 3, 1, 1) - Conv(4*h, 3, 1, 1) - Conv(4*h, 3, 1, 1) - Maxpool(2) -

Dense layer - Dropout(0.5) - Linear(4096) - Dropout(0.5) - Linear(4096) - Linear(K)

where h ∈ [16,32,48,64,80]

• VGG13 [Simonyan and Zisserman 2014] : 2 x Conv(64*s, 3, 1, 1) - Maxpool(2) - 2 x

Conv(128*s, 3, 1, 1) - Maxpool(2) - 2 x Conv(256*s, 3, 1, 1) - Maxpool(2) - 2 x Conv(512*s,

3, 1, 1) - Maxpool(2) - 2 x Conv(512*s, 3, 1, 1) - Maxpool(2) - Avgpool(2) - Dense layer -

Linear(K)

where s ∈ [0.25,0.5,1,1.5,2] and all Conv layers have batch normalization

• Each block of a ResNet [He et al. 2016a] configuration: 2 x Conv(h, 3, 1, 1) + Conv(h, 1, 1,

1) which Conv layers include BN and ReLU and the result of the summation goes into a

ReLU layer and h is the number of channels.

VGG16 is the same as VGG13 with the difference that it has three layers in the last three blocks.

VGG11 configuration is the same as VGG13 except that in the first and second block it has one

convolutional layer instead of 2. VGG19 is the same as VGG13 except that there is 4 conv layers

instead of 2 in the last three blocks. ResNet18 has 2 blocks with h=64*s, 2 blocks with h=128*s,

2 blocks with h=256*s, and 2 blocks with h=512*s where s ∈ [0.25,0.5,1,1.5,2]. ResNet34 has 3

blocks with h=64*s, 4 blocks with h=128*s, 6 blocks with h=256*s, and 3 blocks with h=512*s

where s ∈ [0.25,0.5,1,1.5,2].

2.B Computation of Eq. (2.7): The Relation between Variance and

Sensitivity

Computations of this section do not depend on the stage of the training, hence θ denotes

the parameter vector at any stage of training. Let us recall the sensitivity metric (Eq. (2.2))

definition

Sen = Eθ
[
Varx,εx

[
εy

]]
,

where εy = 1/K
∑K

k=1 ε
k
y , εk

y is the k-th entry of output noise vector εy given by

εk
y = F k

θ (x +εx)−F k
θ (x)u εx ·∇>

x F k
θ (x),

where we apply a first order Taylor expansion of the output. For a one hidden layer fully-

connected neural network with D input units, H hidden units, and K output units, we have

34

2.B. Computation of Eq. (2.7): The Relation between Variance and Sensitivity

θ = {w1 ∈ RD×H , w2 ∈ RH×K ,b1 ∈RH ,b2 ∈ RK } where wl and bl are the weights and biases of

layer l (l = 1 is the hidden layer and l = 2 is the output layer), which are independently drawn

from a zero-mean normal distribution: w1 ∼N (0,σ2
w1

I), w2 ∼N (0,σ2
w2

I), b1 ∼N (0,σ2
b1

I),

and b2 ∼N (0,σ2
b2

I) (this assumption has been studied in [Bellido and Fiesler 1993]). We have

F k
θ (x) =

H∑
h=1

whk
2 a(ph)+bk

2 ,

where w i j
l is the weight connecting unit i in layer l to unit j in layer l +1, bh

l is the bias term

added to unit h in layer l +1, ph is the output of the linear transformation in the hidden unit

h, i.e.,

ph =
D∑

d=1
wdh

1 xd +bh
1 ,

and the non-linear activation function a(·) is a positive homogeneous function of degree 1;

i.e.,

a(x) =
αx x > 0,

βx otherwise,
(2.11)

where α and β are non-negative hyper-parameters. ReLU follows Eq. (2.11) with α= 1 and

β= 0. By applying the chain rule we obtain

εk
y ≈

D∑
d=1

εd
x

∂F k
θ

(x)

∂xd
=

D∑
d=1

εd
x

H∑
h=1

whk
2 wdh

1
∂a(ph)

∂ph
.

Therefore, we have

εy = 1

K

K∑
k=1

H∑
h=1

D∑
d=1

εd
x whk

2 wdh
1
∂a(ph)

∂ph
.

The network parameters are assumed to be independent from each other, and it is assumed

that x ⊥⊥ θ, and εx ⊥⊥ {θ, x}. Moreover, the entries of the input vector x are independent from

each other with the same second moment, i.e., σ2
x = E[(xd)2] for 1 ≤ d ≤ D . Consider the input

noise εx to be a vector of zero mean random variables, hence Sen = Eθ,x,εx [
(
εy

)2]. Then the

sensitivity becomes

Sen = 1

K 2

K∑
k=1

H∑
h=1

D∑
d=1

Eεx [(εd
x)2]Eθ,x

[
(whk

2)2(wdh
1)2

(
∂a(ph)

∂ph

)2]

= 1

K 2

K∑
k=1

H∑
h=1

D∑
d=1

σ2
εx
σ2

w2
σ2

w1

α2 +β2

2
= HD

K
σ2
εx
σ2

w2
σ2

w1

α2 +β2

2
, (2.12)

where the second equation follows by computing the expectation for zero-mean normal

parameters. Let

var = Ex [Varθ[out]] , (2.13)

35

Chapter 2. Neural Network Output Sensitivity

where out = 1/K
∑K

k=1 F k
θ

(x). Because of the homogeneity of the non-linearity a(·), we have

a(ph) = ph · ∂a(ph)
∂ph . Hence

out = 1

K

K∑
k=1

[
H∑

h=1
whk

2

(
D∑

d=1
wdh

1 xd +bh
1

)
∂a(ph)

∂ph
+bk

2

]
.

Because the parameters are zero-mean, var = Eθ,x
[
out 2

]
and we have

var = 1

K 2

K∑
k=1

H∑
h=1

D∑
d=1

E

[
(xd)2(whk

2)2(wdh
1)2

(
∂a(ph)

∂ph

)2]

+ 1

K 2

K∑
k=1

H∑
h=1

E
[

(whk
2)2

]
E

[
(bh

1)2

(
∂a(ph)

∂ph

)2]
+ 1

K 2

K∑
k=1

E
[

(bk
2)2

]
= 1

K 2

K∑
k=1

H∑
h=1

D∑
d=1

σ2
xσ

2
w2
σ2

w1

α2 +β2

2

+ 1

K 2

K∑
k=1

H∑
h=1

σ2
w2
σ2

b1

α2 +β2

2
+ 1

K 2

K∑
k=1

σ2
b2

= HD

K
σ2

xσ
2
w2
σ2

w1

α2 +β2

2
+ H

K
σ2

w2
σ2

b1

α2 +β2

2
+ 1

K
σ2

b2
,

which follows by taking the expectations over the parameters with zero-mean normal distribu-

tions. Therefore, we obtain

var = Sen · σ
2
x

σ2
εx

+ H

K
σ2

w2
σ2

b1

α2 +β2

2
+
σ2

b2

K
,

whereσ2 denotes the second moment of a random variable. Following the same computations

for a neural network with M hidden layers, we have

var = Sen · σ
2
x

σ2
εx

+ 1

K

M∑
l=1

σ2
bl

M∏
i=l+1

α2 +β2

2
σ2

wi
Hi , (2.14)

where K is the number of units of the output layer M +1. We refer to the second term in the

right-hand side of Eq. (2.14) as Σ. Its value is a very rough approximation given the numerous

assumptions made above, but in practice it can often be neglected because σ2
bl

is very small

or zero (the ResNet configurations do not have biases) in most of our experiments. So far,

an approximate relation between sensitivity and variance before the softmax function was

established. Next, we find a relation between sensitivity before the softmax Sen and variance

after the softmax layer εvariance.

The first order Taylor expansion for an arbitrary function at the average of its input is

g (x) ≈ g (E[x])+ g ′(E[x])(x −E[x]).

36

2.C. The Relation between the Cross Entropy Loss and the Mean Square Error

Taking the variance of g (x), we have

Var(g (x)) ≈ (
g ′(E[x])

)2 Var(x).

Here the function g (·) is the softmax function with input vector Fθ(x) and output indices

f k
θ (x) =

exp(F k
θ

(x))∑K
i=1 exp(F i

θ
(x))

,

for 1 ≤ k ≤ K . The input of the softmax function is a K -dimensional vector, so the variance of

the output includes the vector-matrix multiplication of the covariance matrix of the input and

the gradient vector. We assume that the outputs of the last layer are independent from each

other (F i
θ
⊥⊥ F j

θ
for 1 ≤ i , j ≤ K , i 6= j), so the covariance matrix is a diagonal matrix. Because

the parameters are considered to be zero-mean, the input of the softmax has zero mean,

E[F k
θ

(x)] = 0 for 1 ≤ k ≤ K , then

Var(f k
θ (x)) ≈

K∑
i=1

 ∂ f k
θ

(x)

∂F i
θ

(x)

∣∣∣∣∣
E[F k

θ
(x)]=0

2

Var(F i
θ(x))

≈
(

1

K
·
(
1− 1

K

))2

Var(F k
θ (x))+

(
− 1

K 2

)2 K∑
i=1
i 6=k

Var(F i
θ(x)),

as softmax(0) = 1/K . Therefore,

εvariance =
K∑

k=1
Ex

[
Var(f k

θ (x))
]
≈ K

(
(K −1)2

K 4 + K −1

K 4

)
K · var =

(
K −1

K

)(
Sen · σ

2
x

σ2
εx

+Σ
)

,

which completes the computations.

2.C The Relation between the Cross Entropy Loss and the Mean Square

Error

We rewrite the cross-entropy loss (Eq. (2.1)) as

L = Eθ∗ [Lθ∗] = Ex,c,θ∗
[− log(f c

θ∗)
]

,

where 1 ≤ c ≤ K is the index of the true class for the input x, i.e., yc = 1 and yk = 0 for k 6= c .

For simplicity we use the notation f c
θ∗ instead of f c

θ∗(x) in this section. For the MSE loss we

have

LMSE = Ex,y,θ∗

[
K∑

k=1

(
f k
θ∗ − yk

)2
]

.

37

Chapter 2. Neural Network Output Sensitivity

Because
K∑

k=1
f k
θ∗ = f c

θ∗ +
K∑

j=1
j 6=c

f j
θ∗ = 1 the summation inside the above expectation, can be rewrit-

ten by replacing yk by their 0−1 values

K∑
k=1

(
f k
θ∗ − yk

)2 = (
1− f c

θ∗
)2 +

K∑
j=1
j 6=c

(
f j
θ∗

)2 = (
1− f c

θ∗
)2 + (

1− f c
θ∗

)2 −
K∑

i=1
i 6=c

K∑
j=1

j 6=i ,c

f i
θ∗ f j

θ∗

= 2
(
1− f c

θ∗
)2 −

K∑
i=1
i 6=c

K∑
j=1

j 6=i ,c

f i
θ∗ f j

θ∗ .

Since 0 ≤ f j
θ∗ ≤ (1− f c

θ∗) for 1 ≤ j ≤ K , j 6= c and
K∑

j=1
j 6=c

f j
θ∗ = 1− f c

θ∗ , the above equation is bounded

by (
K

K −1

)(
1− f c

θ∗
)2 ≤

K∑
k=1

(
f k
θ∗ − yk

)2 ≤ 2
(
1− f c

θ∗
)2 . (2.15)

The lower bound in the above inequality occurs when f j
θ∗ = (1− f c

θ∗)/(K −1) for 1 ≤ j ≤ K , j 6= c

and the upper bound above occurs when all the remaining probability (i.e., 1− f c
θ∗) is given to

one class besides the true class c , and the rest of the classes are assigned with zero probability.

The inequality in Eq. (2.15) can be rewritten in the following inequality√√√√1

2

K∑
k=1

(
f k
θ∗ − yk

)2 ≤ 1− f c
θ∗ ≤

√√√√K −1

K

K∑
k=1

(
f k
θ∗ − yk

)2
. (2.16)

Intuitively, the upper bound above is preferable in practice, because we would like the net-

work to be less confident in assigning probabilities to wrong classes. If we take expectations

in Eq. (2.16) and apply Jensen’s inequality, the upper bound is upper bounded by
√

K−1
K

p
LMSE.

However, in our experiments, we often observe that the network assigns the probability 1− f c
θ∗

to a wrong class and zero to the remaining classes, i.e., the network is over-confident. There-

fore, if we consider this scenario, we then approximate 1− f c
θ∗ with the lower bound above.

Hence, by approximating the expectation of a squared root with the squared root of expecta-

tion, and by applying a first order Taylor expansion for the logarithm, i.e., − log(f c
θ∗) ≈ 1− f c

θ∗ ,

we have9

L ≈
√

LMSE

2
. (2.17)

9Note that if instead we would have considered the scenario that the network is not over-confident, then by

approximating 1− f c
θ∗ with the upper bound of inequality Eq. (2.16), we would have had L ≈

√
(K−1)LMSE

K , which
differs from Eq. (2.17) by only a constant scaling factor.

38

2.D. Computation of Eq. (2.10)

2.D Computation of Eq. (2.10)

Consider a feedforward FC with ReLU activation function (α= 1,β= 0) where i.i.d. zero mean

random noise εx with variance σ2
εx

is added to the input. Then, assuming the output noise

entries are independent from each other, we have

Sen = 1

K 2

K∑
k=1

Var
[
εk

y

]
= 1

K 2

K∑
k=1

E
[

(εk
y)2

]
.

If we have M hidden layers with Hl ,1 ≤ l ≤ M units per layer, assuming the parameters are

i.i.d. and independent from the input noise εx , and are drawn from the standard normal

distribution, following the same computations as in Eq. (2.12) for a network with M hidden

layers, D input units and K output units,

Sen = 1

K 2

K∑
k=1

Dσ2
εx

M∏
l=1

Hl

2
.

If all the hidden layers have the same number of units, H1 = H2 = ·· · = HM = H , then,

Sen = D

K

(
H

2

)M

σ2
εx

.

2.E CIFAR-10 Experiments

Fig. 2.7 shows the effect of different initialization techniques, and of adding dropout and batch

normalization layers to fully-connected and convolutional neural networks trained on 1000

samples of the CIFAR-10 training dataset, and evaluated on the entire CIFAR-10 testing dataset.

We observe again the strong relation between sensitivity Senafter and generalization error L

and the effect of these techniques on both Senafter and L. In Fig. 2.8, we present the empirical

results on the relation between var defined in Eq. (2.13) and Sen defined in Eq. (2.2). We

experiment for 5 cases, where we change the second moment of the input σ2
x and the input

noiseσ2
εx

. In Fig. 2.8 (a) and (b), the original CIFAR-10 images are considered and in Fig. 2.8 (c),

(d) and (e), we normalize the inputs accordingly to change σ2
x . In all the figures, the empirical

relation between var and S shows a good match with Eq. (2.14) where Σ is neglected.

2.F MNIST and CIFAR-100 Experiments

In this section, we present the experimental results for networks trained on 6000 samples of

the MNIST10 training dataset and evaluated on the entire MNIST testing dataset. Fig. 2.9 (a)

and (b) show the results for fully-connected neural networks with different numbers of layers

and hidden units and using regularization techniques batch normalization and dropout.

Fig. 2.9 (c) and (d) show the results for convolutional neural networks. Finally, Fig. 2.9 (e)

10http://yann.lecun.com/exdb/mnist/

39

http://yann.lecun.com/exdb/mnist/

Chapter 2. Neural Network Output Sensitivity

0 10 20

0

5

10

15

ρ = 0.8845

log(Senafter)

lo
g(

L
)

networks SN
networks XU

Eq. (2.9)

(a) Effect of initialization

0 20

0

10

20

ρ = 0.9131

log(Senafter)

lo
g(

L
)

networks
networks+dropout

Eq. (2.9)

(b) Effect of adding dropout

0 20

0

10

20

ρ = 0.9642

log(Senafter)

lo
g(

L
)

networks
networks+BN

Eq. (2.9)

(c) Effect of adding batch normalization

Figure 2.7: Test loss L versus sensitivity Senafter for networks trained on 1000 samples of the
CIFAR-10 training dataset presenting the effect of initialization, dropout and batch normal-
ization. Each point represents a different architecture and its coordinates are averaged over
10 runs. (a) The networks are 5 layer FC, 2-4 layer CNN where the parameters are initially
drawn from either Xavier uniform distribution (XU) or standard normal distribution (SN).
(b) The networks are 3, 5, 7 layer FC and 1-4 layer CNN. The top right most pink point is the
same network architecture as the top right most teal blue point when dropout is added to the
configuration. Hence, for all network architectures we observe a shift of the numerical points
towards bottom left of the figure when dropout is applied. (c) The networks are 3, 5, 7 layer
FC and 1-4 layer CNN. In (b) and (c) the networks parameters are initially drawn from the
standard normal distribution.

and (f) show the results on the comparison of the sensitivity of untrained networks Senbefore

with the test loss L after the networks are trained. Fig. 2.10 shows the sensitivity Sen versus

the loss L for networks trained on 1000 samples of the CIFAR-100 dataset11. The empirical

results on these two datasets also show a rather strong match to Eq. (2.9), and once again we

observe the relation between sensitivity and generalization and the effect of state-of-the-art

techniques on both sensitivity and generalization.

11https://www.cs.toronto.edu/~kriz/cifar.html

40

https://www.cs.toronto.edu/~kriz/cifar.html

2.F. MNIST and CIFAR-100 Experiments

0 10 20

0

10

20

30

ρ = 0.9670

log(Senafter)

lo
g(

v
a

r)

3 layer FC SN 3 layer FC XU

3 layer FC HN 3 layer FC SN BN

3 layer FC SN dropout 4 layer FC SN

4 layer FC XU 4 layer FC HN

4 layer FC SN BN ResNet18 HN

ResNet34 HN ResNet50 HN

VGG11 HN VGG13 HN

VGG16 HN VGG19 HN

Eq. (2.14)

(a) σ2
x = 0.2648 and σ2

εx
= 0.01

0 10 20

0

10

20

ρ = 0.8910

log(Senafter)

lo
g(

v
a

r)

3-4 layer FC SN 3-4 layer FC XU

3-4 layer FC HN 3-4 layer FC SN BN

3 layer FC SN dropout VGG11 HN

Eq. (2.14)

(b) σ2
x = 0.2648 and σ2

εx
= 0.04

−10 0 10 20

0

10

20

30

ρ = 0.9501

log(Senafter)

lo
g(

v
a

r)

3-4 layer FC SN 3-4 layer FC XU

3-4 layer FC HN 3-4 layer FC SN BN

3 layer FC SN dropout VGG11 HN

Eq. (2.14)

(c) σ2
x = 1 and σ2

εx
= 0.01

−10 0 10 20

0

10

20

30

ρ = 0.9742

log(Senafter)

lo
g(

v
a

r)

3-4 layer FC SN 3-4 layer FC XU

3-4 layer FC HN 3-4 layer FC SN BN

3 layer FC SN dropout VGG11 HN

Eq. (2.14)

(d) σ2
x = 1 and σ2

εx
= 0.04

0 10 20

0

10

20

30

ρ = 0.9537

log(Senafter)

lo
g(

v
a

r)

3-4 layer FC SN 3-4 layer FC XU

3-4 layer FC HN 3-4 layer FC SN BN

3 layer FC SN dropout Eq. (2.14)

(e) σ2
x = 1.25 and σ2

εx
= 0.01

Figure 2.8: var (Eq. (2.13)) versus Sen (Eq. (2.2)) for networks trained on 1000 samples of the
CIFAR-10 training dataset for different input x and input noise εx scales. The expression Σ is
neglected in the computation of Eq. (2.14) in the figures. (a), (b) The non-normalized original
CIFAR-10 input images. (c), (d) Normalized input images with zero-mean and unit variance.
(e) Normalized inputs with unit variance and the same mean as the original images.

41

Chapter 2. Neural Network Output Sensitivity

0 20 40

0

10

20

ρ = 0.8534

log(Senafter)

lo
g(

L
)

Alexnet Alexnet SN

4 layer CNN SN VGG16

VGG13 SN ResNet18

ResNet18 SN Equation (2.9)

(a) Replicate of Fig. 2.1 for MNIST

0 20 40

0

10

20

ρ = 0.9599

log(Senafter)

lo
g(

L
)

2 layer FC 3 layer FC

4 layer FC 5 layer FC

6 layer FC 7 layer FC

1 layer CNN 2 layer CNN

3 layer CNN Equation (2.9)

(b) Fully-connected neural networks

0 10 20

0

5

10

ρ = 0.9065

log(Senafter)

lo
g(

L
)

4 layer FC

4 layer FC + dropout

4 layer FC + BN

Equation (2.9)

(c) 4-layer fully-connected neural networks
trained with or without regularization

0 20 40

0

10

20

ρ = 0.9559

log(Senbefore)

lo
g(

L
)

2 layer FC 3 layer FC

4 layer FC 5 layer FC

6 layer FC 7 layer FC

1 layer CNN 2 layer CNN

3 layer CNN Equation (2.9)

(d) Sensitivity before training

0 10 20

0

5

10

ρ = 0.9586

log(Senafter)

lo
g(

L
)

2 layer CNN

2 layer CNN + BN

2 layer CNN + dropout

2 layer CNN + max-pooling

Eq. (2.9)

(e) 2-layer convolutional neural networks
trained with or without regularization tech-
niques

Figure 2.9: Test loss Sen versus sensitivity S for networks trained on 6000 samples of the
MNIST training dataset. Each point in each color indicates a network with a different width
and the sensitivity and test loss are averaged over multiple runs.
42

2.F. MNIST and CIFAR-100 Experiments

0 20 40

0

10

20

ρ = 0.9695

log(Senafter)

lo
g(

L
)

Alexnet Alexnet SN

4 layer CNN SN VGG16

VGG13 SN ResNet18

ResNet18 SN Eq. (2.9)

(a) Replicate of Fig. 2.1 for CIFAR-100

20 40

10

20 ρ = 0.9708

log(Senafter)

lo
g(

L
)

2 layer FC

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

1 layer CNN

2 layer CNN

3 layer CNN

Eq. (2.9)

(b) Sensitivity after training vs test loss

0 10 20 30 40 50

0

10

20

ρ = 0.9524

log(Senafter)

lo
g(

L
)

7 layer FC

7 layer FC + dropout

7 layer FC + BN

Eq. (2.9)

(c) Effect of regularization on fully-connected
neural networks

0 20 40

0

10

20

ρ = 0.9277

log(Senbefore)

lo
g(

L
)

2 layer FC

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

1 layer CNN

2 layer CNN

3 layer CNN

Eq. (2.9)

(d) Sensitivity before training vs test loss

0 10 20 30

0

5

10

15

ρ = 0.9644

log(Senafter)

lo
g(

L
)

3 layer CNN

3 layer CNN + dropout

3 layer CNN + BN

Eq. (2.9)

(e) Effect of regularization on convolutional
neural networks

Figure 2.10: Test loss L versus sensitivity Sen for networks trained on 1000 samples of the
CIFAR-100 training dataset. Each point indicates a network with a different width and the
sensitivity and test loss are averaged over 10 runs.

43

Chapter 2. Neural Network Output Sensitivity

before calibration after calibration
ρ between L and Sen 0.958 0.841

ρ between L and classification error -0.797 0.137
ρ between Sen and classification error -0.757 0.087

Table 2.3: Comparison of Pearson’s correlation coefficient ρ between cross-entropy loss L,
sensitivity Sen and classification error for 4-layer CNN and 4-layer FC trained on a subset of
the MNIST dataset before and after applying temperature scaling [Guo et al. 2017], which is a
network calibration method.

0 20 40

10

20

30

40

log(εvar i ance)

lo
g(

L
M

SE
)

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

8 layer FC

(a) Test loss versus variance

0 10 20 30 40

10

20

30

40

log(εbi as)

lo
g(

L
M

SE
)

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

8 layer FC

(b) Test loss versus bias

10 20 30 40

10

20

30

40

ρ = 0.9999

log(εbi as +εvar i ance)

lo
g(

L
M

SE
)

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

8 layer FC

(c) Test loss versus sum of bias and variance

0 20 40

0

20

40

log(Senafter)

lo
g(
ε

va
ri

an
ce

)

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

8 layer FC

(d) Variance versus sensitivity Senafter

0 20 40

10

20

30

40

ρ = 0.7681

log(Senafter)

lo
g(

L
M

SE
)

3 layer FC

4 layer FC

5 layer FC

6 layer FC

7 layer FC

8 layer FC

(e) Test loss versus sensitivity Senafter

Figure 2.11: Test loss L versus variance εvariance, bias εbias and sensitivity Sen for a regression
task using the MSE loss. The fully-connected neural networks are trained and evaluated on
the Boston house price dataset. Each point represents a network with a different width and its
coordinates are averaged over multiple runs.

44

2.F. MNIST and CIFAR-100 Experiments

0 10

0

5

log(Senafter)

lo
g(

L
)

1-2 layer CNN SN

ResNet18 HN and ResNet34 HN

Eq. (2.9)

(a) Networks trained on 1000 samples of the
training dataset

−4 −2 0

−1

0

1

log(Senafter)

lo
g(

L
)

trained on 1000 samples

trained on 2000 samples

trained on 5000 samples

trained on 10000 samples

Eq. (2.9)

(b) ResNet18 and ResNet34, the yellow marks
are ResNet18 with s=1, and the green marks are
ResNet34 with s=0.5

5 10 15 20

4

6

8

10

12

log(Senafter)

lo
g(

L
)

trained on 100 samples

trained on 1000 samples

trained on 2000 samples

trained on 5000 samples

Eq. (2.9)

(c) 1-2 layer CNN

5 10 15 20

4

6

8

10

12

log(Sen)

lo
g(

L
)

not trained

after 10 epochs of training

after 100 epochs of training

fully trained

Eq. (2.9)

(d) 1-2 layer CNN

Figure 2.12: Test loss L versus sensitivity Sen for networks at different stages of training
and trained on different numbers of training samples. Each point indicates an average over
multiple runs of a network with a different width and depth. (b) is the zoom in of (a) on the
bottom left, and we add the results of the same networks trained on a different number of
samples. In (b) the network parameters are initially drawn from a normal distribution by using
the He technique. (c) and (d) are the zoom in of (a) on the top right, and we add the results for
the same networks trained with different number of training samples in (c) and at different
stages of training in (d). In (c) and (d) the network parameters are drawn from the standard
normal distribution. In all the figures the red and black points are the same experiments
(1-2 layer CNNs trained on 1000 samples for the black points and ResNet18 and ResNet34
trained on 1000 samples for the red points). In (b) we observe how adding number of training
samples, results in closer values to Eq. (2.9). In (d) with some abuse of notation, L is computed
at different stages of training.

45

Chapter 2. Neural Network Output Sensitivity

10 20 30

5

10

15

ρ = 0.9675

log(Senafter)

lo
g(

L
)

1-3 layer CNN and 4-7 layer FC Eq. (2.9)

(a) Test loss versus sensitivity before softmax

−5.6 −5.4 −5.2 −5 −4.8 −4.6

5

10

15

ρ =−0.599

log(ˆSenafter)

lo
g(

L
)

1-3 layer CNN and 4-7 layer FC

(b) Test loss versus sensitivity after softmax

Figure 2.13: Test loss L versus sensitivity before and after the softmax layer for 1-3
layer CNNs and 4-7 layer FCs. The networks are trained on a subset of the CIFAR-10
training set. Senafter is computed after training and before the softmax layer and fol-
lows Eq. (2.2); ˆSenafter is computed after training and after the softmax layer, i.e., ˆSenafter =
Eθ∗

[
Varx,εx

[1
K

∑K
k=1 f k

θ∗(x +εx)− f k
θ∗(x)

]]
. By expanding ˆSenafter up to the first order, it is ap-

proximated by the product of σ2
εx

and the Frobenius norm of the Jacobian J of the output.

0 5 10 15 20

0

5

10

log(Senafter)

lo
g(

L
)

Sen on test 4-layer FC Sen on train 4-layer FC

Sen on test 4-layer CNN Sen on train 4-layer CNN

Sen on test VGG13 Sen on train VGG13

Eq. (2.9)

(a) MNIST dataset

0 10 20 30 40

0

10

20

log(Senafter)

lo
g(

L
)

4-layer CNN VGG13

VGG16 XU Alexnet

Alexnet XU ResNet18 XU

ResNet18 Eq. (2.9)

(b) CIFAR-10 dataset

Figure 2.14: (a) Test loss versus sensitivity computed on the training set and the testing set for
networks that are trained on 6000 samples of the MNIST training set. The Pearson correlation
between Sen computed on the training set and Sen computed on the testing set is ρ = 0.9999
and in the figure these two values meet each other at the exact same points. (b) Test loss
versus sensitivity computed on the training set for networks that are trained on 1000 samples
of the CIFAR-10 training set. We observe that the strong match between the empirical results
and Eq. (2.9) also holds for the sensitivity metric Sen when it is computed on the training
dataset. It is interesting to note that the y-axis is computed over the testing dataset, whereas
the x-axis is computed without using the testing set, suggesting Sen as a metric that does
not require sacrificing the training samples for a validation set. In both figures the network
parameters are initially drawn from the standard normal distribution unless otherwise stated
as XU (Xavier technique with the uniform distribution).

46

3 Disparity Between Batches

3.1 A Signal for Early Stopping

In this chapter1, we propose a metric for evaluating the generalization ability of deep neural

networks trained with mini-batch gradient descent. Our metric, called gradient disparity,

is the `2 norm distance between the gradient vectors of two mini-batches drawn from the

training set. It is derived from a probabilistic upper bound on the difference between the

classification errors over a given mini-batch, when the network is trained on this mini-batch

and when the network is trained on another mini-batch of points sampled from the same

dataset. We empirically show that gradient disparity is a very promising early-stopping cri-

terion (i) when data is limited, as it uses all the samples for training and (ii) when available

data has noisy labels, as it signals overfitting better than the validation data. Furthermore,

we show in a wide range of experimental settings that gradient disparity is strongly related to

the generalization error between the training and test sets, and that it is also very informative

about the level of label noise.

3.1.1 Introduction

Early-stopping using a separate validation set is one of the most popular techniques used

to avoid under/over fitting deep neural networks trained with iterative methods, such as

gradient descent [Prechelt 1998; Yao et al. 2007; Gu et al. 2018]. The optimization is stopped

when the performance of the model on a validation set starts to diverge from its performance

on the training set. Early stopping requires an accurately labeled validation set, separated

from the training set, to act as an unbiased proxy on the unseen test error. Obtaining such a

reliable validation set can be expensive in many real-world applications as data collection is a

time-consuming process that might require domain expertise. Furthermore, deep learning

is becoming popular in applications for which there is simply not enough available data

[Roh et al. 2019; Ipeirotis et al. 2010]. Finally, inexperienced label collectors, complex tasks

1This chapter is based on [Forouzesh and Thiran 2021].

47

Chapter 3. Disparity Between Batches

(e.g., distinguishing a guinea pig from a hamster), and corrupted labels due for instance to

adversarial attacks result in datasets that contain noisy labels [Frénay and Verleysen 2013].

Deep neural networks have the unfortunate ability to overfit to such small and/or noisy labeled

datasets, an issue that cannot be completely solved by popular regularization techniques

[Zhang et al. 2016a]. A signal of overfitting during training is therefore particularly useful, if

it does not need a separate, accurately labeled validation set, which is the purpose of this

chapter.

θ

R2

LS2
LS1

θ(t)

θ
(t+1)
2θ

(t+1)
1

LS2(fθ1)

LS2(fθ2)L
os
s

Figure 3.1: An illustration of the penalty term

R2, where the y-axis is the loss, and the x-axis

indicates the parameter of the model. LS1 and

LS2 are the average losses over mini-batches

S1 and S2, respectively. θ(t) is the parameter at

iteration t and θ(t+1)
i is the parameter at itera-

tion t +1 if batch Si was selected for the update

step at iteration t , with i ∈ {1,2}.

Let S1 and S2 be two mini-batches of

points sampled from the available (training)

dataset. Suppose that S1 is selected for an it-

eration (step) of the mini-batch gradient de-

scent (SGD), at the end of which the param-

eter vector is updated to θ1. The average loss

over S1 (denoted by LS1 (fθ1)) is in principle

reduced, given a sufficiently small learning

rate. The average loss LS2 (fθ1) over the other

mini-batch S2 is not as likely to be reduced.

It is more likely to remain larger than the

loss LS2 (fθ2) computed over S2, if it was S2 in-

stead of S1 that had been selected for this iter-

ation. The difference R2 = LS2 (fθ1)−LS2 (fθ2)

is the penalty that we pay for choosing S1

over S2 (and similarly, R1 is the penalty that

we would pay for choosing S2 over S1). R2 is

illustrated in Fig. 3.1 for a hypothetical non-

convex loss as a function of a one dimen-

sional parameter θ. The expected penalty measures how much, in an iteration, a model

updated on one mini-batch (S1) is able to generalize on average to another mini-batch (S2)

from the dataset. Hence, we call R the generalization penalty.

We establish a probabilistic upper bound on the sum of the expected penalties E [R1]+
E [R2] by adapting the PAC-Bayesian framework [McAllester 1999a;b; 2003], given a pair of

mini-batches S1 and S2 sampled from the dataset (Theorem 1). Interestingly, under some

mild assumptions, this upper bound is essentially a simple expression driven by
∥∥g1 − g2

∥∥
2,

where g1 and g2 are the gradient vectors over the two mini-batches S1 and S2, respectively.

We call it gradient disparity: it measures how much a small gradient step on one mini-batch

negatively affects the performance on the other one.

We propose gradient disparity as an effective early stopping criterion, because of its

computational tractability that makes it simple to use during the course of training, and

because of its strong link with generalization error, as evidenced in the experiments that we

run on state-of-the-art configurations. Gradient disparity is particularly well suited when the

48

3.1. A Signal for Early Stopping

Task Method Test Loss Test AUC Score (in percentage)

Abnormal
5-fold CV 0.284±0.016(0.307±0.057) 71.016±3.66(87.44±1.35)

GD 0.274±0.004(0.275±0.053) 72.67±3.85(88.12±0.35)

ACL
5-fold CV 0.973±0.111(1.246±0.142) 79.80±1.23(89.32±1.47)

GD 0.842±0.101(1.136±0.121) 81.81±1.64(91.52±0.09)

Meniscal
5-fold CV 0.758±0.04(1.163±0.127) 73.53±1.30(72.14±0.74)

GD 0.726±0.019(1.14±0.323) 74.08±0.79(73.80±0.24)

Table 3.1: Test loss and area under the receiver operating characteristic curve (AUC score)
of the MRNet dataset [Bien et al. 2018] when using 5-fold cross-validation (5-fold CV) and
gradient disparity (GD) as early stopping criteria for detecting the presence of abnormally,
ACL tears, and meniscal tears from the sagittal plane MRI scans. The corresponding curves
during training are shown in Fig. 3.15 (see Section 3.F.3 for more details). The results of early
stopping are given, both when the metric (GD or validation loss) has increased for 5 epochs
from the beginning of training and between parenthesis when the metric has increased for 5
consecutive epochs. Using GD outperforms 5-fold CV with either choice of the early stopping
threshold. The standard deviations are obtained from 5 runs.

available dataset has limited labeled data, because it does not require splitting the available

dataset into training and validation sets: all the available data can be used during training,

unlike for instance k-fold cross-validation. We observe that using gradient disparity, instead of

an unbiased validation set, results in a predictive improvement of at least 1% for classification

tasks with limited and very costly available data, such as the MRNet dataset, which is a small

size image-classification dataset used for detecting knee injuries (Table 3.1).

Moreover, we find that gradient disparity is a more accurate early stopping criterion than

validation loss when the available dataset contains noisy labels. Gradient disparity reflects

the label noise level quite well throughout the training process, especially at early stages of

training. Finally, we observe that gradient disparity has a strong positive correlation with the

test error across experimental settings that differ in training set size, batch size, and network

width.

3.1.2 Related Work

The coherent gradient hypothesis [Chatterjee 2020] states that the gradient is stronger in

directions where similar examples exist and towards which the parameter update is biased.

He and Su [He and Su 2020] study the local elasticity phenomenon, which measures how the

prediction over one sample changes, as the network is updated on another sample. Motivated

by [He and Su 2020], reference [Deng et al. 2020] proposes generalization upper bounds using

locally elastic stability. The generalization penalty introduced in our work measures how the

prediction over one sample (batch) changes when the network is updated on the same sample,

instead of being updated on another sample.

49

Chapter 3. Disparity Between Batches

Finding a practical metric that completely captures the generalization properties of deep

neural networks, and in particular indicates the level of label noise and decreases with the

size of the training set, is still an active research direction [Dziugaite and Roy 2017; Neyshabur

et al. 2017a; Nagarajan and Kolter 2019; Chatterji et al. 2020]. Recently, there have been a few

studies that propose similarity between gradients as a generalization metric. The benefit of

tracking generalization by measuring the similarity between gradient vectors is its tractability

during training, and the dispensable access to unseen data. Sankararaman et al. [2019]

propose gradient confusion, which is a bound on the inner product of two gradient vectors,

and shows that the larger the gradient confusion is, the slower the convergence is. Gradient

interference (when the gradient inner product is negative) has been studied in multi-task

learning, reinforcement learning and temporal difference learning [Riemer et al. 2018; Liu

et al. 2019; Bengio et al. 2020]. Yin et al. [2017] study the relation between gradient diversity,

which measures the dissimilarity between gradient vectors, and the convergence performance

of distributed SGD algorithms. Fort et al. [2019] propose a metric called stiffness, which is

the cosine similarity between two gradient vectors, and show empirically that it is related

to generalization. Fu et al. [2020] study the cosine similarity between two gradient vectors

for natural language processing tasks. Reference [Mehta et al. 2020] measures the alignment

between the gradient vectors within the same class (denoted byΩc) , and studies the relation

betweenΩc and generalization as the scale of initialization (the variance of the probability

distribution the network parameters are initially drawn from) is increased. These metrics

are usually not meant to be used as early stopping criteria, and indeed in Table 3.2 and

Table 3.15 in the appendix, we observe that none of them consistently outperforms k-fold

cross-validation.

Another interesting line of work is the study of the variance of gradients in deep learning

settings. Negrea et al. [2019] derive mutual information generalization error bounds for

stochastic gradient Langevin dynamics (SGLD) as a function of the sum (over the iterations)

of square gradient incoherences, which is closely related to the variance of gradients. Two-

sample gradient incoherences also appear in [Haghifam et al. 2020], which are taken between a

training sample and a “ghost" sample that is not used during training and therefore taken from

a validation set (unlike gradient disparity). The upper bounds in [Negrea et al. 2019; Haghifam

et al. 2020] are cumulative bounds that increase with the number of iterations and are not

intended to be used as early stopping criteria. As shown in Section 3.H, gradient disparity can

be used as an early stopping criterion not only for SGD with additive noise (such as SGLD),

but also other adaptive optimizers. Reference [Qian and Klabjan 2020] shows that the variance

of gradients is a decreasing function of the batch size. However, reference [Jastrzebski et al.

2020] hypothesizes that gradient variance counter-intuitively increases with the batch size,

by studying the effect of the learning rate on the variance of gradients, which is consistent

with our results on convolutional neural networks in Section 3.1.6. References [Jastrzebski

et al. 2020; Qian and Klabjan 2020] mention the connection between variance of gradients

and generalization as promising future directions. Our study shows that variance of gradients

used as an early stopping criterion outperforms k-fold cross-validation (see Table 3.15).

50

3.1. A Signal for Early Stopping

Min GD/Var EB GSNR gi · g j sign(gi · g j) cos(gi · g j) Ωc OV k-fold No ES

TE 13.76 16.66 24.63 35.68 37.92 24.63 35.68 29.40 34.36 17.86 25.72
TL 0.75 1.08 0.86 1.68 1.82 0.86 1.68 1.46 1.65 1.09 0.91

Table 3.2: Test error (TE) and test loss (TL) achieved by using various metrics as early stopping
criteria for an AlexNet trained on the MNIST dataset with 50% random labels. See Table 3.15
in the appendix for further details and experiments.

Liu et al. [2020a] propose a relation between gradient signal-to-noise ratio (SNR), called

GSNR, and the one-step generalization error, with the assumption that both the training

and test sets are large. Mahsereci et al. [2017] also study gradient SNR and propose an early

stopping criterion called evidence-based criterion (EB) that eliminates the need for a held-out

validation set. Reference [Liu et al. 2008] proposes an early stopping criterion based on the

signal-to-noise ratio figure, which is further studied in [Piotrowski and Napiorkowski 2013], a

study that shows the average test error achieved by standard early stopping is lower than the

one obtained by this criterion. Zhang et al. [2021c] empirically show that the variance term in

the bias-variance decomposition of the loss function dominates the variations of the test loss,

and hence propose optimization variance (OV) as an early stopping criterion.

Summary of Comparison to Related Work In Table 3.2 and Section 3.I, we compare gra-

dient disparity (GD) to EB, GSNR, gradient inner product, sign of the gradient inner product,

variance of gradients, cosine similarity,Ωc , and OV. We observe that the only metrics that con-

sistently outperform k-fold cross-validation as early stopping criteria across various settings

(see Table 3.15 in the appendix), and that reflect well the label noise level (see in Fig. 3.26

and Fig. 3.27 that metrics such as EB and sign(gi · g j) do not correctly detect the label noise

level), are gradient disparity and variance of gradients. The two are analytically very close as

discussed in Section 3.I.2. However, we observe that the correlation between gradient disparity

and the test loss is in general larger than the correlation between variance of gradients and the

test loss (see Table 3.16 in the appendix).

3.1.3 Generalization Penalty

Consider a classification task with input x ∈X :=RD and ground truth label y ∈ {1,2, · · · ,K },

where K is the number of classes. Let fθ ∈F : X →Y :=RK be a predictor (classifier) parame-

terized by the parameter vector θ ∈Rd , and l (·, ·) be the 0-1 loss function

l
(

fθ(x), y
)=1[

fθ(x)[y] < max
j 6=y

fθ(x)[j]

]
,

for all fθ ∈F and (x, y) ∈X × {1,2, · · · ,K }. The expected loss and the empirical loss over the

training set S of size n are respectively defined as

L(fθ) = E(x,y)∼D

[
l
(

fθ(x), y
)]

, (3.1)

51

Chapter 3. Disparity Between Batches

and

LS(fθ) = 1

n

n∑
i=1

l (fθ(xi), yi), (3.2)

where D is the probability distribution of the data points and S = {(xi , yi)}n is a collection

of n i.i.d. samples drawn from D. Similar to the notation used in [Dziugaite and Roy 2017],

distributions on the hypotheses space F are simply distributions on the underlying parameter-

ization. With some abuse of notation, ∇LSi refers to the gradient with respect to the surrogate

differentiable loss function, which in our experiments is cross entropy2.

In a mini-batch gradient descent (SGD) setting, let mini-batches S1 and S2 have sizes n1

and n2, respectively, with n1 +n2 ≤ n. Let θ = θ(t) be the parameter vector at the beginning of

an iteration t . If S1 is selected for the next iteration, θ gets updated to θ1 = θ(t+1) with

θ1 = θ−γ∇LS1

(
fθ

)
, (3.3)

where γ is the learning rate. The generalization penalty R2 is defined as the gap between the

loss over S2, LS2

(
fθ1

)
, and its target value, LS2

(
fθ2

)
, at the end of iteration t .

When selecting S1 for the parameter update, Eq. (3.3) makes a step towards learning

the input-output relations of mini-batch S1. If this negatively affects the performance on

mini-batch S2, R2 will be large; the model is learning the data structures that are unique to

S1 and that do not appear in S2. Because S1 and S2 are mini-batches of points sampled from

the same distribution D, they have data structures in common. If, throughout the learning

process, we consistently observe that, in each update step, the model learns structures unique

to only one mini-batch, then it is very likely that the model is memorizing the labels instead of

learning the common data-structures. This is captured by the generalization penalty R.

We adapt the PAC-Bayesian framework [McAllester 1999a;b] to account for the trajectory

of the learning algorithm; For each learning iteration t we define a prior, and two possible

posteriors depending on the choice of the batch selection. Let θ ∼ P follow a prior distribu-

tion P , which is a Ft -measurable function, where Ft denotes the filtration of the available

information at the beginning of iteration t . Let fθ1 , fθ2 be the two learned single predictors,

at the end of iteration t , from S1 and S2, respectively. In this framework, for i ∈ {1,2}, each

predictor fθi is randomized and becomes fνi with νi = θi +ui , where ui is a random variable

whose distribution might depend on Si . Let Qi be the distribution of νi , which is a distribution

over the predictor space F that depends on Si via θi and possibly ui . Let Gi be a σ-field such

that σ(Si)∪Ft ⊂Gi and such that the posterior distribution Qi is Gi -measurable for i ∈ {1,2}.

We further assume that the random variable ν1 ∼ Q1 is statistically independent from the

draw of the mini-batch S2 and, vice versa, that ν2 ∼Q2 is independent from the batch S1
3, i.e.,

2We have also studied networks trained with the mean square error in Section 3.E.3, and we observe that there
is a strong positive correlation between the test error/loss and gradient disparity for this choice of the surrogate
loss function as well (see Fig. 3.11).

3Mini-batches S1 and S2 are drawn without replacement, and the random selection of indices of mini-batches

52

3.1. A Signal for Early Stopping

G1 ⊥⊥σ(S2) and G2 ⊥⊥σ(S1).

Theorem 1. For any δ ∈ (0,1], with probability at least 1−δ over the sampling of sets S1 and S2,

the sum of the expected penalties conditional on S1, and S2, respectively, satisfies

E [R1]+E [R2] ≤
√

2KL(Q2||Q1)+2ln 2n2
δ

n2 −2
+

√
2KL(Q1||Q2)+2ln 2n1

δ

n1 −2
. (3.4)

In this chapter, the goal is to get a signal of overfitting that indicates at the beginning

of each iteration t whether to stop or to continue training. This signal should track the

performance of the model at the end of iteration t by investigating its evolution over all the

possible outcomes of the batch sampling process during this iteration. For simplicity, we

consider two possible outcomes: either mini-batch S1 or mini-batch S2 is chosen for this

iteration (we later in the next section extend to more pairs of batches). If we were to use

bounds such as the ones in [McAllester 2003; Neyshabur et al. 2017b] for one iteration at a

time, the generalization error at the end of that iteration can be bounded by a function of

either KL(Q1||P) or KL(Q2||P), depending on the selected batch. Therefore, as each of the two

batches is equally likely to be sampled, we should track KL(Q1||P) and KL(Q2||P) for a signal of

overfitting at the end of the iteration, which requires in turn access to the three distributions

P , Q1 and Q2. In contrast, the upper bound on the generalization penalty given in Theorem 1

only requires the two distributions Q1 and Q2, which is a first step towards a simpler metric

since, loosely speaking, the symmetry between the random choices for S1 and S2 should carry

over these two distributions, leading us to assume the random perturbations u1 and u2 to

be identically distributed. If furthermore we assume them to be Gaussian, then we show in

the next section that KL(Q2||Q1) and KL(Q1||Q2) are equal and boil down to a very tractable

generalization metric, which we call gradient disparity.

3.1.4 Gradient Disparity

In Section 3.1.3, the randomness modeled by the additional perturbation ui , conditioned

on the current mini-batch Si , comes from (i) the parameter vector at the beginning of the

iteration θ, which itself comes from the random parameter initialization and the stochasticity

of the parameter updates until that iteration, and (ii) the gradient vector ∇LSi (simply denoted

by gi), which may also be random because of the possible additional randomness in the

network structure due for instance to dropout [Srivastava et al. 2014]. A common assump-

tion made in the literature is that the random perturbation ui follows a normal distribution

[Bellido and Fiesler 1993; Neyshabur et al. 2017b]. The upper bound in Theorem 1 takes a

particularly simple form if we assume that for i ∈ {1,2}, ui are zero mean i.i.d. normal variables

(ui ∼N (0,σ2I)), and that θi is fixed, as in the setting of [Dziugaite and Roy 2017].

As θi = θ−γgi for i ∈ {1,2}, the KL-divergence between Q1 =N (θ1,σ2I) and Q2 =N (θ2,σ2I)

S1 and S2 is independent from the dataset S. Hence, similarly to [Negrea et al. 2019; Dziugaite et al. 2020], we have
σ(S1) ⊥⊥σ(S2).

53

Chapter 3. Disparity Between Batches

(Lemma 1 in Section 3.B) is simply

KL(Q1||Q2) = 1

2

γ2

σ2

∥∥g1 − g2
∥∥2

2 = KL(Q2||Q1), (3.5)

which shows that, keeping a constant step size γ and assuming the same variance for the

random perturbations σ2 in all the steps of the training, the bound in Theorem 1 is driven

by
∥∥g1 − g2

∥∥
2. This indicates that the smaller the `2 distance between gradient vectors is,

the lower the upper bound on the generalization penalty is, and therefore the closer the

performance of a model trained on one batch is to a model trained on another batch.

For two mini-batches of points Si and S j , with respective gradient vectors gi and g j , we

define the gradient disparity (GD) between Si and S j as

Di , j =
∥∥gi − g j

∥∥
2 . (3.6)

To compute Di , j , a first option is to sample Si from the training set and S j from the

held-out validation set, which we refer to as the “train-val" setting, following [Fort et al. 2019].

The generalization penalty R j in this setting measures how much, during the course of an

iteration, a model updated on a training set is able to generalize to a validation set, making the

resulting (“train-val”) gradient disparity Di , j a natural candidate for tracking overfitting. But it

requires access to a validation set to sample S j , which we want to avoid. The second option is

to sample both Si and S j from the training set, as proposed in this chapter, to yield now a value

of Di , j that we could call “train-train" gradient disparity (GD) by analogy. Importantly, we

observe a strong positive correlation between the two types of gradient disparities (ρ = 0.957)

in Fig. 3.2. Therefore, we can expect that both of them do (almost) equally well in detecting

overfitting, with the advantage that the latter does not require to set data aside, contrary to the

former. We will therefore consider GD when both batches are sampled from the training set

and evaluate it in this chapter.

Figure 3.2: “Train-val" gradient disparity versus “train-train" gradient disparity for 220 experi-
mental settings that vary in architecture, dataset, training set size, label noise level and initial
random seed. Pearson’s correlation coefficient is ρ = 0.957.

54

3.1. A Signal for Early Stopping

To track the upper bound of the generalization penalty for more pairs of mini-batches,

we can compute an average gradient disparity over B mini-batches, which requires all the

B gradient vectors at each iteration, which is computationally expensive if B is large. We

approximate it by computing GD over only a much smaller subset of the mini-batches, of size

s ¿ B ,

D=
s∑

i=1

s∑
j=1, j 6=i

Di , j

s(s −1)
. (3.7)

In our experiments, s = 5; we observe that such a small subset is already sufficient (see

Section 3.E.2 for an experimental comparison of different values of s).

Consider two training iterations t1 and t2 where t1 ¿ t2. At earlier stages of the training

(iteration t1), the parameter vector (θ(t1)) is likely to be located in a steep region of the training

loss landscape, where the gradient vector of training batches, gi , and the training loss LSi (fθ(t1))

take large values. At later stages of training (iteration t2), the parameter vector (θ(t2)) is more

likely in a flatter region of the training loss landscape where gi and LSi (fθ(t2)) take small values.

To compensate for this scale mismatch when comparing the distance between gradient vectors

at different stages of training, we re-scale the loss values within each batch before computing

D (see Section 3.E.1 for more details). Note that this re-scaling is only done for the purpose of

using GD as a metric, and therefore does not have any effect on the training process itself.

We focus on the vanilla SGD optimizer. In Section 3.H, we extend the analysis to other

stochastic optimization algorithms: SGD with momentum, Adagrad, Adadelta, and Adam. In

all these optimizers, we observe that GD (Eq. (3.6)) appears in KL(Q1||Q2) with other factors

that depend on a decaying average of past gradient vectors. Experimental results support

the use of GD as an early stopping metric also for these popular optimizers (see Fig. 3.25 in

Section 3.H). For vanilla SGD optimizer, we also provide an alternative and simpler derivation

leading to gradient disparity from the linearization of the loss function in Section 3.D.

3.1.5 Early Stopping

In the presence of large amounts of reliable data, it is affordable to split the available dataset

into a training and a validation set and to perform early stopping by evaluating the perfor-

mance of the model on the held-out validation set. However, if the dataset is limited, this

approach makes an inefficient use of the data because the model never learns the information

that is still present in the validation set. Moreover, if the dataset is noisy, held-out validation

might poorly estimate the performance of the model as the validation set might contain a

high percentage of noisy samples. To avoid these issues, k-fold cross-validation [Stone 1974]

is a solution that makes an efficient usage of the available data while providing an unbiased

estimate of the performance, at the expense of a high computational overhead and of a pos-

sibly underestimated variance [Bengio and Grandvalet 2004]. While each of its k rounds is

itself a setting with a held-out validation set, k-fold cross-validation (as opposed to held-out

validation) would be therefore advantageous to use in the presence of limited and/or noisy

55

Chapter 3. Disparity Between Batches

Setting Method Test loss Test accuracy

CIFAR-10, VGG-13
5-fold CV 1.846±0.016 35.982±0.393

GD 1.793±0.016 36.96±0.861

MNIST, AlexNet
5-fold CV 1.123±0.25 62.62±6.36

GD 0.656±0.080 79.12±3.04

Table 3.3: Test loss and accuracy when using gradient disparity (GD) and k-fold cross-
validation (CV) (k =5) as early stopping criteria when the available dataset is limited: (top)
VGG-13 trained on 1.28 k samples of the CIFAR-10 dataset, and (bottom) AlexNet trained on
256 samples of the MNIST dataset. The corresponding curves during training are presented in
Fig. 3.13. The results below are obtained by stopping the optimization when the metric (either
validation loss or GD) has increased for 5 epochs from the beginning of training.

data. It extracts more information from the dataset as it uses all the data samples for both

training and validation, and it is less dependent on how the data is split into training and

validation sets.

The baseline to beat is therefore k-fold cross-validation (CV). We compare gradient

disparity to CV in the two target settings: (i) when the available dataset is limited and (ii)

when the available dataset has corrupted labels. Medical applications are one of the practical

examples of setting (i), where datasets are costly because they require the collection of patient

data, and the medical staff’s expertise to label the data. An example of such an application

is the MRNet dataset [Bien et al. 2018], which contains a limited number of MRI scans to

study the presence of abnormally, ACL tears and meniscal tears in knee injuries. This dataset

is by nature limited and we use the entire available data for both early stopping methods

GD and k-fold CV. In addition, to further simulate setting (i), we use small subsets of three

image classification benchmark datasets: MNIST, CIFAR-10 and CIFAR-100. Performing early

stopping in the presence of label noise (setting (ii)) is also practically very important, because

it has been empirically observed that deep neural networks trained on noisy datasets overfit

to noisy labeled samples at later stages of training. A good early stopping signal can therefore

prevent such an overfitting [Li et al. 2020c; Song et al. 2020a; Xia et al. 2021]. To simulate

setting (ii), we use a corrupted version of these image classification benchmark datasets, where

for a fraction of the samples (the amount of noise), we choose the labels at random.

(i) We observe that using gradient disparity instead of a validation loss in k-fold CV results

in an improvement of more than 1% (on average over all three tasks) in the test AUC score

of the MRNet dataset, and therefore adds a correct detection for more than one patient for

each task (see Table 3.1). Furthermore, we observe that gradient disparity performs better

than k-fold CV as an early stopping criterion for image-classification benchmark datasets as

well (see Table 3.3). A plausible explanation for the better peformance of GD over k-fold CV

is that, although CV uses the entire set of samples over the k rounds for both training and

validation, it trains the model only on a (1−1/k) portion of the dataset in each individual

56

3.1. A Signal for Early Stopping

round. In contrast, GD allows to train the model over the entire dataset in a single run, which

therefore results in a better performance on the final unseen (test) data when data is limited.

For more experimental results refer to Table 3.13 and Fig. 3.13 and Fig. 3.15 in Section 3.F.

(ii) We observe that gradient disparity performs better than k-fold cross-validation as an

early stopping criterion when data is noisy (see Table 3.4). When the labels of the available data

are noisy, the validation set is no longer a reliable estimate of the test set. Nevertheless, and

although it is computed over the noisy training set, gradient disparity reflects the performance

on the test set quite well4 For more experimental results refer to Table 3.14 and Fig. 3.14 in

Section 3.F.

Quite surprisingly, we observe that GD performs better in terms of accuracy than an

extension of k-fold CV, which we call k+-fold CV, which uses the entire dataset for training with

the early stopping signal found by k-fold CV (see Table 3.4, where k = 10 for these settings).

More precisely, k+-fold CV is done in 3 steps: (1) perform k-fold CV, (2) compute the stopping

epoch by tracking the validation loss found in step (1), and (3) retrain the model on the entire

dataset and stop at the epoch obtained in step (2). k+-fold CV uses therefore k +1 rounds

because of step (3), thus one more round than k-fold CV, but unlike k-fold CV (and similarly

to GD), k+-fold CV produces models that are trained on the entire dataset. It is therefore

interesting to note that using GD still outperforms k+-fold CV in terms of accuracy (although

not in terms of loss).

Setting Method Test loss Test accuracy

CIFAR-100, ResNet-18
10-fold CV 5.023±0.083 1.59±0.15 (top-5: 6.47±0.52)

GD 4.463±0.038 3.68±0.52 (top-5: 15.22±1.24)
10+-fold CV 4.964±0.057 1.68±0.24 (top-5: 7.05±0.71)

MNIST, AlexNet
10-fold CV 0.656±0.034 97.28±0.20

GD 0.654±0.031 97.32±0.27

10+-fold CV 0.639±0.029 97.31±0.15

Table 3.4: Test loss and accuracy when using gradient disparity (GD) and k-fold cross-
validation (CV) (k =10) as early stopping criteria when the available dataset is noisy: 50% of
the available data has random labels. The corresponding curves during training are shown in
Fig. 3.14. The results above are obtained by stopping the optimization when the metric (either
validation loss or GD) has increased for 5 epochs from the beginning of training. The last row
in each setting, which we call 10+-fold CV, refers to the test loss and accuracy reached at the
epoch suggested by 10-fold CV, for a network trained on the entire set. Notice that for the
CIFAR-100 experiments (the top rows), for computational reasons, the models are trained on
only 1.28 k samples of the dataset which explains the very low test accuracy for this experiment.
However, for the MNIST experiments (the bottom rows), the models are trained on the entire
dataset, and we observe rather high test accuracies.

4See for example Fig. 3.14 (left column) where the validation loss fails to estimate the test loss, but where GD
(Fig. 3.14 (middle left column)) does signal overfitting correctly.

57

Chapter 3. Disparity Between Batches

(a)

Figure 3.3: Test Accuracy achieved by using GD and k-fold CV as early stopping methods
in 7 experimental settings (indicated in the x-axis by Set1-7). The result is averaged over 20
choices of the early stopping threshold. The complete set of results are reported in Table 3.10
and Table 3.11. For the CIFAR-100 experiments (Set1, 4, and 5) the top-5 accuracy is reported.

The metrics used as early stopping criteria, whether they are the validation loss or gradient

disparity, are measured on signals that are subject to random fluctuations. As a result, they

rely on a pre-defined threshold p (sometimes called patience by practitioners) that sets the

number of iterations during which the metric increases before the algorithm is stopped. We

use two popular thresholds: (t1) the first one is to stop the algorithm when the metric (GD or

validation loss) has increased for p = 5 (possibly non consecutive) epochs from the beginning

of training, and (t2) the second is the same as (t1) but the p = 5 epochs must be consecutive.

Both GD and k-fold CV might be sensitive to the choice of (t1) or (t2), or even to the value

of p itself. It is therefore important to study the sensitivity of an early stopping metric to

the choice of the threshold p, which is done in Section 3.F.1 for both GD and k-fold CV for

ten different values of p ∈ {1, · · · ,10} and the two thresholds (t1) and (t2). We observe that

GD always gives similar or higher test accuracy than k-fold CV for all 20 possible thresholds

(see Fig. 3.3). More importantly, GD is much more robust to the choice of the early stopping

threshold (see Table 3.5).

Method Sensitivity of the Test Accuracy Sensitivity of the Test Loss

GD 0.916 0.886

CV 1.613 1.019

Table 3.5: Sensitivity of each method to the choice of the early stopping threshold. The
sensitivity is computed from the reported values of Table 3.10 and Table 3.11 according to
Eq. (3.16) in the appendix.

When data is abundant and clean, the validation loss is affordable and trustworthy to

use as an early stopping signal. GD does also correctly signal overfitting in this case (see

for example Fig. 3.4). However, when data is limited and/or noisy (which is also when early

stopping is particularly important), we observe that the validation loss is costly and unreliable

to use as an early stopping signal. In contrast, in these settings, GD does not cost a separate

58

3.1. A Signal for Early Stopping

(a) Loss vs gradient disparity (b) Error vs gradient disparity

Figure 3.4: The cross entropy loss, error percentage, and average gradient disparity during
training for a 4-layer fully connected neural network with 500 hidden units trained on the
entire MNIST dataset with 0% label noise. The parameter initialization is the He initialization
with normal distribution. Pearson’s correlation coefficient ρ between D and generalization
loss/error over all the training iterations are ρD,gen loss = 0.967 and ρD,gen error = 0.734. The
gray vertical bar indicates when GD increases for 5 epochs from the beginning of training.
The magenta vertical bar indicates when GD increases for 5 consecutive epochs. We observe
that the gray bar signals when overfitting is starting, which is when the training and testing
curves are starting to diverge. The magenta bar would be a good stopping time, because if we
train beyond this point, although the test error remains the same, the test loss would increase,
which would result in overconfidence on wrong predictions.

held-out validation set and is a reliable signal of overfitting even in the presence of label noise.

In practice, the label noise level of a given dataset is in general not known a priori and we

do not know whether the size of the dataset is large enough to afford sacrificing a subset for

validation. We often do not know whether we are in the former setting, with abundant and

clean data, or in the later setting, with limited and/or noisy data. It is therefore important to

have a good early stopping criterion that works for both settings. Unlike the validation loss,

GD is such a signal.

3.1.6 Discussion and Final Remarks

We propose gradient disparity (GD), as a simple to compute early stopping criterion that

is particularly well-suited when the dataset is limited and/or noisy. Beyond indicating the

early stopping time, GD is well aligned with factors that contribute to improve or degrade the

generalization performance of a model, which have an often strikingly similar effect on the

value of GD as well. We briefly discuss in this section some of these observations that further

validate the use of GD as an effective early stopping criterion; more details are provided in the

appendix.

Label Noise Level. We observe that GD reflects well the label noise level throughout the

training process, even at early stages of training, where the generalization gap fails to do so

(see Fig. 3.5, and Fig. 3.17, Fig. 3.21, and Fig. 3.24 in Section 3.G).

Training Set Size. We observe that GD, similarly to the test error, decreases with training

59

Chapter 3. Disparity Between Batches

(a) Test error (b) Generalization error (c) D

Figure 3.5: The error percentage and D during training for an AlexNet trained on a subset of
12.8 k points of the MNIST training dataset with different amounts of label noise. Pearson’s
correlation coefficient between gradient disparity and test error (TE)/test loss (TL) over all
iterations and label noise levels are ρD,TE = 0.861 and ρD,TL = 0.802. The generalization error
(gap) is the difference between the train and test errors and for this experiment fails to account
for the label noise level, unlike gradient disparity.

set size, unlike many previous metrics as shown by [Neyshabur et al. 2017a; Nagarajan and

Kolter 2019]. Moreover, we observe that applying data augmentation decreases the values of

both GD and the test error (see Fig. 3.6 and Fig. 3.22 in Section 3.G).

(a) ρ
D,TE = 0.979 (b) ρ

D,TE = 0.984 (c) ρ
D,TE = 0.619

Figure 3.6: Test error (TE) (bottom row) and gradient disparity (D) (top row) for a ResNet-18
trained on the CIFAR-10 dataset with different training set sizes. (a) Results with data augmen-
tation (DA) . (b) Results without using any data augmentation technique. (c) Combined results
of (a) and (b). We observe a strong positive correlation between D and TE regardless of using
data augmentation. We also observe that using data augmentation decreases the values of
both gradient disparity and the test error.

Batch Size. We observe that both the test error and GD increase with batch size. This

observation is counter-intuitive because one might expect that gradient vectors get more

similar when they are averaged over a larger batch. GD matches the ranking of test errors for

different networks, trained with different batch sizes, as long as the batch sizes are not too

large (see Fig. 3.7 and Fig. 3.23 in Section 3.G).

60

3.1. A Signal for Early Stopping

Figure 3.7: Test error and gradient disparity for networks that are trained with different batch
sizes trained on 12.8 k points of the CIFAR-10 dataset. The training is stopped when the
training loss is below 0.01. The correlation between normalized gradient disparity and test
error is ρD̃,TE = 0.893.

Width. We observe that both the test error and GD (normalized with respect to the

number of parameters) decrease with the network width for ResNet, VGG and fully connected

neural networks (see Fig. 3.8 and Fig. 3.20 in Section 3.G).

Figure 3.8: Test error and normalized gradient disparity for networks trained on the CIFAR-10
dataset with different number of channels and hidden units for convolutional neural networks
(CNN) (scale = 1 recovers the original configurations). The correlation between normalized
gradient disparity and test loss ρD̃,TL and between normalized gradient disparity and test error
ρD̃,TE are ρD̃,TL = 0.970 and ρD̃,TE = 0.939, respectively.

Gradient disparity belongs to the same class of metrics based on the similarity between

two gradient vectors [Sankararaman et al. 2019; Fort et al. 2019; Fu et al. 2020; Mehta et al.

2020; Jastrzebski et al. 2020]. A common drawback of all these metrics is that they are not

informative when the gradient vectors are very small. In practice however, we observe (see

for instance Fig. 3.18 in the appendix) that the time at which the test and training losses start

to diverge, which is the time when overfitting kicks in, does not only coincide with the time

at which gradient disparity increases, but also occurs much before the training loss becomes

infinitesimal. This drawback is therefore unlikely to cause a problem for gradient disparity

when it is used as an early stopping criterion. Nevertheless, as a future direction, it would be

interesting to explore this further especially for scenarios such as epoch-wise double-descent

[Heckel and Yilmaz 2020].

61

Chapter 3. Disparity Between Batches

3.2 Time-series Applications

This section aims to address the challenge of cross-validation in time-series applications,

where the standard approach of random-shuffling over the data may result in imbalanced

subsets that are dependent on each other. We propose to investigate alternative methods to

cross-validation in this context. Specifically, we will explore the potential benefits of using

gradient disparity, which was introduced in Section 3.1, as an early stopping criterion that

does not require a held-out validation set. Our study aims to provide insights into the efficacy

of gradient disparity as a replacement for cross-validation in time-series applications.

3.2.1 Introduction

The aim of neural network training is to achieve optimal generalization performance, but

neural networks are prone to overfitting, where the error on unseen observations increases

despite decreasing training error [Geman et al. 1992]. To avoid overfitting in deep neural

networks trained with iterative methods like gradient descent, early stopping using a separate

validation set is a popular technique [Gu et al. 2018; Prechelt 1998]. Early stopping involves

stopping optimization when overfitting is detected, typically by observing an increase in the

validation set error, estimated by the average error on a validation set not used for training.

Choosing a suitable performance estimation method for neural networks depends on the

nature of the data used. Cross-validation is commonly used when the data is assumed to be

independent and identically distributed, due to its efficient use of data [Arlot and Celisse 2010].

However, cross-validation may not be suitable for dependent data, such as time series, as the

validation set is often drawn randomly, which can lead to evaluating past observations in the

validation set using future observations in the training set.

A possible alternative to cross-validation for time series data is gradient disparity, an early

stopping criterion introduced in Section 3.1 that does not require a held-out validation set.

Recall that gradient disparity is the l2 norm distance between the gradient vectors of two

mini-batches drawn from the training set. In this study, we aim to compare the performance

of gradient disparity and cross-validation in evaluating the generalization ability of neural

networks. We will evaluate multiple variants of cross-validation adapted for time series data

and compare their performance on different datasets.

3.2.2 Early-stopping Methods for Time-series Applications

In this section, we introduce a few cross-validation approaches that we use as baselines to

compare with gradient disparity in terms of early stopping methods for time-series applica-

tions.

k-fold Cross-Validation In the k-fold cross-validation (CV) technique, the original dataset

is first divided randomly into k equal-sized subsets. Out of the k subsets, one subset is set

62

3.2. Time-series Applications

aside and used as the validation data to test the model, while the remaining k −1 subsets are

used as training data. This process is repeated k times, with each of the k subsets used exactly

once as the validation data. For datasets with independent samples, this cross-validation

technique makes the optimal use of the data as all samples are used in both training and

validation, hence this was the main baseline technique we used in Section 3.1.

Leave One Block Out Cross-Validation (LOBO CV) In LOBO cross-validation, one or

more contiguous blocks of data are held out as the validation set while the rest of the data is

used for training. The validation set consists of a single block of data, which is left out of the

training set in each iteration. This process is repeated for each block of data in the dataset. The

advantage of LOBO cross-validation compared to k-fold CV is that it preserves the temporal or

spatial order of the data.

Hv-Blocked Cross-Validation The main idea behind this technique is similar to that

of Leave-One-Block-Out (LOBO) cross-validation, but with an additional step of removing

dependent values between the validation and training data. In the case of time series data,

values that are next to each other can often be highly dependent, and including them in both

the validation and training sets may lead to biased evaluations of the model’s performance.

Temporal Block Cross-Validation In time series data, the temporal order of observations

is crucial, and ignoring it can result in poor performance of the model. In order to preserve

the temporal aspect of time series, temporal block cross-validation is used. Temporal block is

similar to k-fold cross-validation but instead of randomly partitioning the data, it splits the

available sample into k equal-sized subsets. In the first fold, the first subset is used as the

training set and the second subset is used as the validation set, with all subsequent subsets

being discarded. For the second fold, the third subset is used as the validation set and the

first and the second subsets are used as the training set, with all subsequent subsets being dis-

carded. This process is repeated until all the subsets have been used as the validation set once.

In each fold, the validation set is contiguous and comes after the training set in the temporal

order of the data. This ensures that the validation set is always composed of observations that

come after the training set, which is essential for time series data. Although temporal block

CV preserves the temporal aspect of time series, it comes at the cost of discarding most of the

data for each fold and not being able to use all the available data for training. However, using

different parts of the data as the validation set makes temporal block CV more robust than

other out-of-sample evaluation methods. Out-of-sample evaluation (OOS) refers to holding

out the last part of the time series for validation and using the rest for training, which is done

only once over the whole dataset. Temporal block CV is the cross-validation equivalent of

OOS.

Gradient Disparity We observed that traditional cross-validation (CV) methods have

limitations in preserving the temporal ordering of time series data and require discarding

parts of the available data to achieve this. Additionally, these methods assume independence

of data which may not be true for time series. To overcome these limitations, we are interested

63

Chapter 3. Disparity Between Batches

in studying the potential benefits of gradient disparity (GD) as an early-stopping criterion for

time series data. Recall the introduction of GD in Eq. (3.7). In Section 3.1 it was extensively

shown that GD is a useful criterion for early stopping. In this study, we are interested in

exploring the applicability of GD to time series data, particularly its ability to use all available

observations for training without the need for data partitioning. Additionally, we aim to

compare the performance of GD to traditional CV methods in signaling overfitting in time

series data.

Early-Stopping Threshold After selecting an early stopping metric, the next step is to

define a threshold to apply on top of the metric. The two early stopping metrics that are studied

in this section are gradient disparity and validation loss, and because both are negatively

correlated with the test accuracy, an increase in their value is a sign of overfitting. In this study,

we explore four different early stopping thresholds to ensure the generalizability of our results.

The default reported values are based on stopping training when there are p consecutive or

nonconsecutive increases in the value of the early stopping metric (either the validation loss

in CV or the value of gradient disparity) from the previous one. The value of p is referred to

as the patience parameter and is set to 5 by default. Another early stopping threshold we

found useful in this study, especially when the results had a lot of variations, is the following:

Stop training when a defined variable that starts at 0 reaches the value p; the variable would

increase by 1 if the early stopping metric increased from the previous one and decreased by

0.5 otherwise.

3.2.3 Experiments

We conducted our experiments using the datasets and data preprocessing approach presented

by Lara-Benítez et al. [2021]. Specifically, we worked with the following datasets:

• The CIF 2016 competition dataset [Štěpnička and Burda 2016], which includes 72

monthly time series. Of these, 12 have a 6-month forecasting horizon and the remaining

57 have a 12-month forecasting horizon. The time series consist of bank risk analysis

indicators, some of which are real and others that are artificially generated.

• The NN5 competition dataset [NNGC 2008], which comprises 111 time series, each with

735 values. This dataset captures two years of daily cash withdrawals at automatic teller

machines (ATMs) in England. The competition required forecasting 56 days ahead.

• The WikiWebTraffic dataset, which was part of a Kaggle competition [Google 2017]

aimed at predicting the future web traffic for a set of Wikipedia pages. The dataset

contains daily counts of page visits, and the forecasting horizon is set at 59 days.

In order to assess the predictive performance of our models, we utilized the weighted

64

3.2. Time-series Applications

absolute percentage error (WAPE), which is defined as

WAPE(y,o) = mean(|y −o|)
mean(y)

, (3.8)

where y and o represent the real and predicted values, respectively. WAPE scales the error

by dividing it by the mean, allowing for comparison across time series with varying scales.

This metric is a variation of the mean absolute percentage error (MAPE), which is a widely

used measure of forecast accuracy due to its advantages of being scale-independent and

interpretable [Kim and Kim 2016].

Results on the CIF 2016 dataset: When examining the performance of various methods,

as shown in Table 3.6, we can observe that training on the complete dataset and using gradient

disparity (GD) as an early stopping criterion results in the lowest error, while temporal block

cross-validation (CV) was the most effective CV method. The superiority of temporal block CV

may be due to its preservation of the temporal order of the time series. 5-Fold and leave-one-

block-out (LOBO) CV showed similar outcomes, possibly because they do not take into account

temporal ordering but still use all available observations. The least satisfactory outcome was

obtained with Hv-Blocked, which may be due to the fact that it discards a large amount of

data to maintain the independence of the validation and training sets, resulting in significant

loss of information for a small dataset. Note that for this dataset, because of varying lengths of

the time series in different samples, we combined all samples and treated them as a single

large time-series to perform cross-validation.

Method WAPE Epoch

5-fold 0.231 10

LOBO 0.239 9

Hv-blocked 0.259 8

Temporal block 0.212 12

Gradient disparity 0.181 8

Table 3.6: Test WAPE results and stopping epoch for different early stopping methods applied
to networks trained on the CIF 2016 dataset. We observe that training on the complete dataset
using Gradient Disparity yields the lowest error, while temporal block CV is the most effective
CV method.

Results on the NN5 and WikiWebTraffic datasets: To emphasize the importance of using

gradient disparity with limited data, we selected a subset of the original NN5 and WikiWeb-

Traffic datasets containing only 10 time series. Since all samples had the same time-series

length, we were able to apply adaptive cross-validation by performing cross-validation on

each individual time series. Unlike the CIF dataset, we did not combine all samples to make

them a single large time-series. After conducting a comprehensive ablation study on the early

stopping threshold for each of the early stopping metrics, we selected the best WAPE result

65

Chapter 3. Disparity Between Batches

according to each method and reported the results in Table 3.7 and Table 3.8, for datasets NN5

and WikiWebTraffic, respectively. It can be observed that training on the entire dataset and

using gradient disparity as an early stopping criterion results in the best performance.

Method WAPE Epoch

5-fold 0.167 41

LOBO 0.166 16

Hv-blocked 0.176 16

Temporal block 0.204 42

Gradient disparity 0.164 23

Table 3.7: Test WAPE results and stopping epoch for different early stopping methods applied
to networks trained on the NN5 dataset. The optimum early stopping threshold is chosen for
each of the early stopping methods. We observe that training on the complete dataset using
Gradient Disparity yields the lowest error, while LOBO CV is the most effective CV method.

Method WAPE Epoch

5-fold 0.539 15

LOBO 0.558 17

Hv-blocked 0.589 28

Temporal block 0.573 42

Gradient disparity 0.514 19

Table 3.8: Test WAPE results and stopping epoch for different early stopping methods applied
to networks trained on the WikiWebTraffic dataset. The optimum early stopping threshold
is chosen for each of the early stopping methods. We observe that training on the complete
dataset using Gradient Disparity yields the lowest error, while LOBO CV is the most effective
CV method.

3.2.4 Conclusion

In this project, we explored the use of gradient disparity as an early stopping criterion for

time series forecasting, compared to four different cross-validation methods. We tested our

approach on the CIF 2016, NN5, and WikiWebTraffic datasets, and evaluated the performance

of each approach by measuring the weighted absolute percentage error (WAPE). Our results

showed that gradient disparity outperforms other cross-validation methods on the time-series

datasets as an early stopping signal. Gradient disparity detects the optimal early stopping

iteration and enables the usage of the entire available dataset for training, which decreases

the achieved error of the trained model especially when the available time-series dataset is

limited in size.

66

3.2. Time-series Applications

We also experimented with different early stopping thresholds and found that the best

threshold for detecting overfitting was when we stopped training when a defined variable

reached a value of p, which was increased by 1 if the early stopping metric increased from the

previous one and decreased by 0.5 if it decreased from the previous one.

Our study suggests that gradient disparity is a promising approach for early stopping in

time series forecasting, as it was able to detect overfitting accurately and outperformed other

cross-validation methods on small datasets. For large datasets, gradient disparity performs

comparable to some other cross-validation methods. In future work, it would be interesting

to explore the use of gradient disparity in other domains and test its robustness on different

types of data. Additionally, it would be beneficial to investigate the use of gradient disparity in

conjunction with other early stopping methods to see if the combination can lead to further

improvements in performance.

67

Appendices

3.A Organization of the Appendix

This appendix includes sections that are provided here for the sake of completeness and

reproducibility. It is structured as follows.

• Section 3.C gives the proof of Theorem 1, which also uses Hoeffding’s bound recalled in

Section 3.B.

• Section 3.D provides a simple relation between gradient disparity and generalization

penalty from linearization.

• A number of details common to all experiments are provided in Section 3.E, which

discusses in particular how the loss is re-scaled before computing gradient disparity

(Section 3.E.1) and how gradient disparity can also be applied to networks trained with

the mean square error (Section 3.E.3).

• A detailed comparison of gradient disparity to k-fold cross validation as early stopping

criteria is given in Section 3.F, which includes a study on the robustness to the early

stopping threshold in Section 3.F.1 (Table 3.10, Table 3.11 and Table 3.12) and additional

experiments on four image classification datasets (Fig. 3.13, Fig. 3.14, and Fig. 3.15

together with Table 3.13, and Table 3.14).

• Additional experiments on benchmark datasets are provided in Section 3.G to study the

effect of label noise level, training set size, batch size and network width on the value of

gradient disparity. The results, which support the claims made in the main chapter, are

displayed in Fig. 3.5 to Fig. 3.24.

• Besides the vanilla SGD algorithm adopted in the main chapter, gradient disparity can be

extended to other stochastic optimization algorithms (SGD with momentum, Adagrad,

Adadelta, and Adam) as shown in Section 3.H.

• Finally, a detailed comparison with related work is presented in Section 3.I (Table 3.15

and Table 3.16 together with Fig. 3.26 and Fig. 3.27).

69

Chapter 3. Disparity Between Batches

3.B Additional Theorem

Hoeffding’s bound is used in the proof of Theorem 1, and Lemma 1 is used in Section 3.1.4.

Theorem 2 (Hoeffding’s Bound). Let Z1, · · · , Zn be independent bounded random variables on

[a,b] (i.e., Zi ∈ [a,b] for all 1 ≤ i ≤ n with −∞< a ≤ b <∞). Then

P

(
1

n

n∑
i=1

(Zi −E[Zi]) ≥ t

)
≤ exp

(
− 2nt 2

(b −a)2

)

and

P

(
1

n

n∑
i=1

(Zi −E[Zi]) ≤−t

)
≤ exp

(
− 2nt 2

(b −a)2

)
for all t ≥ 0.

Lemma 1 If N1 =N (µ1,Σ1) and N2 =N (µ2,Σ2) are two multivariate normal distributions

in Rd , where Σ1 and Σ2 are positive definite,

KL(N1||N2) = 1

2

(
tr

(
Σ−1

2 Σ1
)−d + (µ2 −µ1)TΣ−1

2 (µ2 −µ1)+ ln

(
detΣ2

detΣ1

))
.

3.C Proof of Theorem 1

Proof. We compute the upper bound in Eq. (3.4) using a similar approach as in [McAllester

2003]. The main challenge in the proof is the definition of a function XS2 of the variables

and parameters of the problem, which can then be bounded using similar techniques as

in [McAllester 2003]. S1 is a batch of points (with size n1) that is randomly drawn from the

available set S at the beginning of iteration t , and S2 is a batch of points (with size n2) that

is randomly drawn from the remaining set S \ S1. Hence, S1 and S2 are drawn from the set

S without replacement (S1 ∩S2 =;). Similar to the setting of [Negrea et al. 2019; Dziugaite

et al. 2020], as the random selection of indices of S1 and S2 is independent from the dataset

S, σ(S1) ⊥⊥σ(S2), and as a result, G1 ⊥⊥σ(S2) and G2 ⊥⊥σ(S1). Recall that νi is the random

parameter vector at the end of iteration t that depends on Si , for i ∈ {1,2}. For a given sample

set Si , denote the conditional probability distribution of νi by QSi . For ease of notation, we

represent QSi by Qi .

Let us denote

∆
(

fν1 , fν2

)
,

(
LS2 (fν1)−L(fν1)

)− (
LS2 (fν2)−L(fν2)

)
, (3.9)

and

XS2 , sup
Q1,Q2

(n2

2
−1

)
Eν1∼Q1

[
Eν2∼Q2

[(
∆

(
fν1 , fν2

))2
]]

−KL(Q2||Q1). (3.10)

70

3.C. Proof of Theorem 1

Note that XS2 is a random function of the batch S2. Expanding the KL-divergence, we find that(n2

2
−1

)
Eν1∼Q1

[
Eν2∼Q2

[(
∆

(
fν1 , fν2

))2
]]

−KL(Q2||Q1)

= Eν1∼Q1

[(n2

2
−1

)
Eν2∼Q2

[(
∆

(
fν1 , fν2

))2
]
+ Eν2∼Q2

[
ln

Q1(ν2)

Q2(ν2)

]]
≤ Eν1∼Q1

[
lnEν2∼Q2

[
e(

n2
2 −1)

(
∆

(
fν1 , fν2

))2 Q1(ν2)

Q2(ν2)

]]
= Eν1∼Q1

[
lnEν′1∼Q1

[
e

(
n2
2 −1)

(
∆

(
fν1 , fν′1

))2]]
,

where the inequality above follows from Jensen’s inequality as logarithm is a concave function.

Therefore, again by applying Jensen’s inequality

XS2 ≤ lnEν1∼Q1Eν′1∼Q1

[
e

(
n2
2 −1)

(
∆(fν1 , fν′1

)
)2]

.

Taking expectations over S2, we have that

ES2

[
e XS2

]≤ ES2Eν1∼Q1Eν′1∼Q1

[
e

(
n2
2 −1)

(
∆(fν1 , fν′1

)
)2]

= Eν1∼Q1Eν′1∼Q1
ES2

[
e

(
n2
2 −1)

(
∆(fν1 , fν′1

)
)2]

, (3.11)

where the change of order in the expectation follows from the independence of the draw of

the set S2 from ν1 ∼Q1 and ν′1 ∼Q1, i.e., Q1 is G1-measurable and G1 ⊥⊥σ(S2).

Now let

Zi , l (fν1 (xi), yi)− l (fν′1 (xi), yi),

for all 1 ≤ i ≤ n2. Clearly, Zi ∈ [−1,1] and because of Eqs. (3.2) and of the definition of ∆ in

Eq. (3.9),

∆
(

fν1 , fν′1

)
= 1

n2

n2∑
i=1

(Zi −E[Zi]) .

Hoeffding’s bound (Theorem 2) implies therefore that for any t ≥ 0,

PS2

(
|∆

(
fν1 , fν′1

)
| ≥ t

)
≤ 2e−

n2
2 t 2

. (3.12)

Denoting by p(∆) the probability density function of |∆
(

fν1 , fν′1

)
|, inequality (3.12) implies

that for any t ≥ 0, ∫ ∞

t
p(∆)d∆≤ 2e−

n2
2 t 2

. (3.13)

The density p̃(∆) that maximizes
∫ ∞

0 e(
n2
2 −1)∆2

p(∆)d∆ (the term in the first expectation of

the upper bound of Eq. (3.11)), is the density achieving equality in Eq. (3.13), which is

71

Chapter 3. Disparity Between Batches

p̃(∆) = 2n2∆e−
n2
2 ∆

2
. As a result,

ES2

[
e(

n2
2 −1)∆2

]
≤

∫ ∞

0
e(

n2
2 −1)∆2

2n2∆e−
n2
2 ∆

2
d∆

=
∫ ∞

0
2n2∆e−∆

2
d∆= n2

and consequently, inequality (3.11) becomes

ES2

[
e XS2

]≤ n2.

Applying Markov’s inequality on XS2 , we have therefore that for any 0 < δ≤ 1,

PS2

[
XS2 ≥ ln

2n2

δ

]
=PS2

[
e XS2 ≥ 2n2

δ

]
≤ δ

2n2
ES2

[
e XS2

]≤ δ

2
.

Replacing XS2 by its expression defined in Eq. (3.10), the previous inequality shows that with

probability at least 1−δ/2(n2

2
−1

)
Eν1∼Q1Eν2∼Q2

[(
∆(fν1 , fν2)

)2
]
−KL(Q2||Q1) ≤ ln

2n2

δ
.

Using Jensen’s inequality and the convexity of
(
∆(fν1 , fν2)

)2, and assuming that n2 > 2, we

therefore have that with probability at least 1−δ/2,(
Eν1∼Q1Eν2∼Q2 [∆

(
fν1 , fν2

)
]
)2 ≤ Eν1∼Q1Eν2∼Q2

[(
∆

(
fν1 , fν2

))2
]

≤ KL(Q2||Q1)+ ln 2n2
δ

n2
2 −1

.

Replacing ∆(fν1 , fν2) by its expression Eq. (3.9) in the above inequality, yields that with proba-

bility at least 1−δ/2 over the choice of the sample set S2,

Eν1∼Q1

[
LS2 (fν1)−L(fν1)

] ≤ Eν2∼Q2

[
LS2 (fν2)−L(fν2)

]+
√

2KL(Q2||Q1)+2ln 2n2
δ

n2 −2
. (3.14)

Similar computations with S1 and S2 switched, and considering that n1 > 2, yields that with

probability at least 1−δ/2 over the choice of the sample set S1,

Eν2∼Q2

[
LS1 (fν2)−L(fν2)

] ≤ Eν1∼Q1

[
LS1 (fν1)−L(fν1)

]+
√

2KL(Q1||Q2)+2ln 2n1
δ

n1 −2
. (3.15)

The events in Eq. (3.14) and Eq. (3.15) jointly hold with probability at least 1−δ over the choice

of the sample sets S1 and S2 (using the union bound and De Morgan’s law), and by adding the

72

3.D. A Simple Connection Between Generalization Penalty and
Gradient Disparity

two inequalities we therefore have

Eν1∼Q1

[
LS2 (fν1)

]+Eν2∼Q2

[
LS1 (fν2)

]≤ Eν2∼Q2

[
LS2 (fν2)

]+Eν1∼Q1

[
LS1 (fν1)

]
+

√
2KL(Q2||Q1)+2ln 2n2

δ

n2 −2
+

√
2KL(Q1||Q2)+2ln 2n1

δ

n1 −2
,

which concludes the proof.

3.D A Simple Connection Between Generalization Penalty and

Gradient Disparity

In this section, we present an alternative and much simpler connection between the notions

of generalization penalty and gradient disparity than the one presented in Section 3.1.3 and

Section 3.1.4. Recall that each update step of the mini-batch gradient descent is written as

θi = θ−γgi for i ∈ {1,2}. By applying a first order Taylor expansion over the loss, we have

LS1 (fθ1) = LS1 (fθ−γg1) ≈ LS1 (fθ)−γg1 · g1.

The generalization penalties R1 and R2 would therefore be

R1 = LS1 (fθ2)−LS1 (fθ1) ≈ γg1 · (g1 − g2),

and

R2 = LS2 (fθ1)−LS2 (fθ2) ≈ γg2 · (g2 − g1),

respectively. Consequently,

R1 +R2 ≈ γ
∥∥g1 − g2

∥∥2
2 .

This derivation requires the loss function to be (approximately) linear near parameter vectors

θ1 and θ2, which does not necessarily hold. Therefore, in the main chapter we only focus on

the connection between generalization penalty and gradient disparity via Theorem 1, which

does not require such an assumption. Nevertheless, it is interesting to note that this simple

derivation recovers the connection between generalization penalty and gradient disparity.

3.E Common Experimental Details

The training objective in our experiments is to minimize the cross-entropy loss, and both

the cross entropy and the error percentage are displayed in the figures. The training error is

computed using Eq. (3.2) over the training set. The empirical test error also follows Eq. (3.2) but

73

Chapter 3. Disparity Between Batches

it is computed over the test set. The generalization loss (respectively, error) is the difference

between the test and the training cross entropy losses (resp., classification errors). The batch

size in our experiments is 128 unless otherwise stated. The SGD learning rate is γ= 0.01 and

no momentum is used (unless otherwise stated). All the experiments took at most few hours

on one Nvidia Titan X Maxwell GPU. All the reported values throughout the chapter are an

average over at least 5 runs.

To present results throughout the training, in the x-axis of figures, both epoch and iteration

are used: an epoch is the time spent to pass through the entire dataset, and an iteration is

the time spent to pass through one batch of the dataset. Thus, each epoch has B iterations,

where B is the number of batches. The convolutional neural network configurations we use

are: AlexNet [Krizhevsky et al. 2012], VGG [Simonyan and Zisserman 2014] and ResNet [He

et al. 2016a]. In those experiments with varying width, we use a scaling factor to change

both the number of channels and the number of hidden units in convolutional and fully

connected layers, respectively. The default configuration is with scaling factor = 1. For the

experiments with data augmentation (Fig. 3.6) we use random crop with padding = 4 and

random horizontal flip with probability = 0.5.

In experiments with a random labeled training set, we modify the dataset similarly to

[Chatterjee 2020]. For a fraction of the training samples, which is the amount of noise (0%,

25%, 50%, 75%, 100%), we choose the labels at random. For a classification dataset with a

number K of classes, if the label noise is 25%, then on average 75%+25%∗1/K of the training

points still have the correct label.

3.E.1 Re-scaling the Loss

Let us track the evolution of gradient disparity (Eq. (3.6)) during training. As training pro-

gresses, the training losses of all the batches start to decrease when they get selected for the

parameter update. Therefore, the value of gradient disparity might decrease, not necessarily

because the distance between the two gradient vectors is decreasing, but because the value of

each gradient vector is itself decreasing. To avoid this, a re-scaling or normalization is needed

to compare gradient disparity at different stages of training.

If we perform a re-scaling with respect to the gradient vectors, then the gradient disparity

between two batches S1 and S2 would be
∥∥g1/std(g1)− g2/std(g2)

∥∥
2, where std(gi) is the

standard deviation of the gradients within batch Si for i ∈ {1,2}. However, such a re-scaling

would also absorb the variations of g1 and g2 with respect to each other. That is, if after an

iteration, g1 is scaled by a factorα< 1, while g2 remains unchanged, this re-scaling would leave

the gradient disparity unchanged, although the performance of the network has improved

only on S1 and not on S2, which might be a signal of overfitting.

5Note that in this figure, both the gradient disparity re-scaled and the generalization loss are increasing from
the very first epoch. If we would use gradient disparity as an early stopping criterion, optimization would stop
at epoch 5 and we would have a 0.36 drop in the test loss value, compared to the loss reached when the model

74

3.E. Common Experimental Details

Figure 3.9: Normalizing versus re-scaling loss

before computing average gradient disparity

D for a VGG-11 trained on 12.8 k points of the

CIFAR-10 dataset5. For this experiment, Pear-

son’s correlation coefficient between gradient

disparity re-scaled (our chosen metric) and the

test loss is 0.91. If we would have instead nor-

malized the loss values the correlation would

be 0.88. If we would have re-scaled with re-

spect to the gradients (instead of the loss), the

correlation would be 0.79.

We therefore propose to normalize the

loss values instead, before computing gra-

dient disparity, so that the initial losses of

two different iterations would have the same

scale. We can normalize the loss values by

LS j =
1

n j

n j∑
i=1

li −Mini (li)

Maxi (li)−Mini (li)
,

where with some abuse of notation, li is the

cross entropy loss for the data point i in the

batch S j . However, this normalization might

be sensitive to outliers, making the bulk of

data end up in a very narrow range within 0

and 1, and degrading in turn the accuracy of

the signal of overfitting. Re-scaling is usually

less sensitive to outliers in comparison with

normalization, it leads to loss values that are

given by

LS j =
1

n j

n j∑
i=1

li

stdi (li)
.

We experimentally compare these two ways of computing gradient disparity in Fig. 3.9.

Both the re-scaled and normalized losses might get unbounded, if within each batch the loss

values are very close to each other. However, in our experiments, we do not observe gradient

disparity becoming unbounded either way. We observe that the correlation between gradient

disparity and the test loss is the highest if we re-scale the loss values before computing gradient

disparity. This is therefore how we compute gradient disparity in all experiments presented

in the chapter. Note that this re-scaling does not affect the training algorithm, since it is

only used to compute the gradient disparity metric (we do not perform loss re-scaling before

opt.step()).

achieves 0 training loss.

75

Chapter 3. Disparity Between Batches

3.E.2 The Hyper-parameter s

Figure 3.10: Average gradient disparity for dif-

ferent averaging parameter s for a ResNet-18

that has been trained on 12.8k points of the

CIFAR-10 dataset.

In this section, we briefly study the choice of

the size s of the subset of batches to compute

the average gradient disparity

D= 1

s(s −1)

s∑
i=1

s∑
j=1, j 6=i

Di , j .

Fig. 3.10 shows the average gradient dispar-

ity when averaged over s number of batches6.

When s = 2, gradient disparity is the `2 norm

distance of the gradients of two randomly

selected batches and has a quite high vari-

ance. Although with higher values of s the re-

sults have lower variance, computing it with

a large value of s is more computationally ex-

pensive (refer to Section 3.F for more details). Therefore, we find the choice of s = 5 to be

sufficient enough to track overfitting; in all the experiments reported in this chapter, we use

s = 5.

3.E.3 The Surrogate Loss Function

Cross entropy has been shown to be better suited for computer-vision classification tasks,

compared to mean square error [Kline and Berardi 2005; Hui and Belkin 2020]. Hence, we

choose the cross entropy criterion for all our experiments to avoid possible pitfalls of the mean

square error, such as not tracking the confidence of the predictor.

[Soudry et al. 2018] argues that when using cross entropy, as training proceeds, the

magnitude of the network parameters increases. This can potentially affect the value of

gradient disparity. Therefore, we compute the magnitude of the network parameters over

iterations in various settings. We observe that this increase is very low both at the end of

the training and, more importantly, at the time when gradient disparity signals overfitting

(denoted by GD epoch in Table 3.9). Therefore, it is unlikely that the increase in the magnitude

of the network parameters affects the value of gradient disparity.

Furthermore, we examine gradient disparity for models trained on the mean square

error, instead of the cross entropy criterion. We observe a high correlation between gradient

disparity and test error/loss (Fig. 3.11), which is consistent with the results obtained using the

cross entropy criterion. The applicability of gradient disparity as a generalization metric is

therefore not limited to settings with the cross entropy criterion.

6In the setting of Fig. 3.10, if we use gradient disparity as an early stopping criterion, optimization would stop
at epoch 9 and we would have a 0.28 drop in the test loss value compared to the loss reached when the model
achieves 0 training loss.

76

3.E. Common Experimental Details

Figure 3.11: Test error (TE), test loss (TL), and gradient disparity (D) for VGG-16 trained
with different training set sizes to minimize the mean square error criterion on the CIFAR-10
dataset. The Pearson correlation coefficient between TE and D and between TL and D are
ρD,TE = 0.976 and ρD,TL = 0.943, respectively.

Setting at epoch
0

at GD
epoch

at epoch
200

(1) 1 1.00034 1.00123

(2) 1 1.00019 1.00980

(3) 1 1.00107 1.00127

(4) 1 1.00222 1.00233

Table 3.9: The ratio of the magnitude of the network parameter vector at epoch t to the
magnitude of the network parameter vector at epoch 0, for t ∈ {0,GD,200}, where GD stands
for the epoch when gradient disparity signals to stop the training. Setting (1): AlexNet, MNIST,
(2): AlexNet, MNIST, 50% random, (3): VGG-16, CIFAR-10, and (4): VGG-16, CIFAR-10, 50%
random.

77

Chapter 3. Disparity Between Batches

3.F k-fold Cross-Validation

k-fold cross-validation (CV) splits the available dataset into k sets, training on k −1 of them

and validating on the remaining one. This is repeated k times so that every set is used once as

the validation set. Each experiment out of k folds can itself be viewed as a setting where the

available data is split into a training and a validation set. Early stopping can then be done by

evaluating the network performance on the validation set and stopping the training as soon as

there is an increase in the value of the validation loss. However, in practice, the validation loss

curve is not necessarily smooth (as can be clearly observed in our experiments throughout the

chapter), and therefore as discussed in [Prechelt 1998; Lodwich et al. 2009], there is no obvious

early stopping rule (threshold) to obtain the minimum value of the generalization error.

3.F.1 Early Stopping Threshold

In this chapter, we adapt two different early stopping thresholds: (t1) stop training when

there are p = 5 (consecutive or nonconsecutive) increases in the value of the early stopping

metric (the hyper-parameter p is commonly referred to as the “patience” parameter among

practitioners), which is indicated by the gray vertical bars in Fig. 3.13 and Fig. 3.14, and (t2)

stop training when there are p consecutive increases in the value of the early stopping metric,

which is indicated by the magenta vertical bars in Fig. 3.13 and Fig. 3.14. When there are either

low variations or a sharp increase in the value of the metric, the two coincide (for instance, in

Fig. 3.13 (b) (middle left)). For k-fold CV, the early stopping metric is the validation loss, and

for our proposed method, the early stopping criterion is gradient disparity (GD).

Which exact patience parameter to choose as an early stopping threshold, or whether it

should include non-consecutive increases or not, are indeed interesting questions [Prechelt

1998], which do not have a definite answer to date even for k-fold CV. Table 3.10 and Table 3.11

give the results obtained by 20 different early stopping thresholds for both k-fold CV (shown on

the left tables) and GD (shown on the right tables). We also give the best, mean and standard

deviation of test loss and test accuracy across all thresholds. In the following two paragraphs,

we summarize the findings of these two tables.

Performance In Fig. 3.12, we observe that the test accuracy (averaged over 20 thresholds)

is higher when using GD as an early stopping criterion, than k-fold CV. Note that beforehand

we do not have access to the test set to choose the best possible threshold, hence in Fig. 3.12

the average test accuracy is reported over all thresholds. However, even if we did have the test

set to choose the best threshold, we can still observe from Table 3.10 and Table 3.11 that GD

either performs comparably to CV, or that it significantly outperforms CV.

Sensitivity to Threshold Ideally, we would like to have a robust metric that does not

strongly depend on the early stopping threshold. To compute the sensitivity of each method

78

3.F. k-fold Cross-Validation

Figure 3.12: Test Accuracy achieved by using GD and k-fold CV as early stopping methods
in 7 experimental settings (indicated in the x-axis by Set1-7). The result is averaged over 20
choices of the early stopping threshold. The complete set of results are reported in Table 3.10
and Table 3.11. For the CIFAR-100 experiments (Set1, 4, and 5) the top-5 accuracy is reported.

to the choice of the threshold, we compute

Sensitivity to the threshold =
7∑

i=1
std(Seti)/Mean(Seti), (3.16)

where Mean(Seti) and std(Seti) are the mean and standard deviation of the test accuracy/loss

across different thresholds, respectively, of setting i across the early stopping thresholds, which

are reported in Table 3.10 and Table 3.11. The lower the sensitivity is, the more the method is

robust to the choice of the early stopping threshold. In Table 3.5, we observe that GD is less

sensitive and more robust to the choice of the early stopping threshold than k-fold CV, which

is another advantage of GD over CV. This can also be observed from our figures: In most of the

experiments (more precisely, in 5 out of 7 experiments of Fig. 3.13 and Fig. 3.14), GD is not

sensitive to the choice of the threshold (see Fig. 3.13 (a), Fig. 3.13 (b), Fig. 3.14 (a), Fig. 3.13 (b)

and Fig. 3.13 (c) on the 2nd column, where the gray and magenta bars almost coincide). In

contrast, k-fold CV is more sensitive (see for example the leftmost column of Fig. 3.13 (a) and

Fig. 3.13 (b), where the gray and magenta bars are very far away when using k-fold CV). In

the other 2 experiments (Fig. 3.13 (c) and Fig. 3.14 (d), both with the MNIST dataset), the

thresholds (t1) and (t2) do not coincide for neither GD nor k-fold CV. In Table 3.12, we further

study these two settings: we provide the test accuracy for experiments of Fig. 3.13 (c) and

Fig. 3.14 (d) (both with the MNIST dataset), for different values of p. We again observe that

even if we optimize p for k-fold CV (reported in bold in Table 3.12), GD still outperforms k-fold

CV.

79

Chapter 3. Disparity Between Batches

Threshold Loss ACC top-5 ACC Epoch

(t11) 4.63 0.98 5.02 1
(t12) 4.65 0.98 5.0 2
(t13) 4.65 1.19 5.99 3
(t14) 4.25 6.73 21.47 12
(t15) 4.25 6.79 22.19 14
(t16) 4.23 7.46 22.48 17
(t17) 4.25 7.22 22.18 18
(t18) 4.21 7.69 23.50 21
(t19) 4.23 7.94 23.72 22
(t110) 4.27 7.58 22.84 24
(t21) 4.63 0.98 5.02 1
(t22) 4.65 0.98 5.0 2
(t23) 4.65 1.19 5.99 3
(t24) 4.12 9.50 26.71 45
(t25) 4.12 9.45 26.32 46
(t26) 4.19 9.51 26.43 314
(t27) 4.20 9.54 26.47 -b

(t28) - - - -
(t29) - - - -
(t210) - - - -

best 4.11 9.51 26.71 -
mean 4.42 4.64 14.74 38.33
std 0.23 3.70 9.56 84.53
range 4.11−4.65 0.98−9.51 5.0−26.71 1−314

(a) CV, CIFAR-100, ResNet-34, limited dataset (Fig. 3.13(a))

Threshold Loss ACC top-5 ACC Epoch

(t11) 4.27 7.36 23.58 17
(t12) 4.19 7.88 24.28 19
(t13) 4.14 8.85 25.67 22
(t14) 4.13 9.08 25.91 23
(t15) 4.06 9.99 27.84 24
(t16) 4.12 9.32 26.61 25
(t17) 4.07 9.86 27.34 26
(t18) 4.06 10.04 27.89 27
(t19) 4.04 10.43 28.35 28
(t110) 4.04 10.41 28.40 29
(t21) 4.27 7.36 23.58 17
(t22) 4.13 9.08 25.91 23
(t23) 4.06 9.99 27.84 24
(t24) 4.12 9.33 26.61 25
(t25) 4.07 9.86 27.34 26
(t26) 4.06 10.04 28.89 27
(t27) 4.04 10.43 28.35 28
(t28) 4.04 10.41 28.40 29
(t29) 4.05 10.29 28.41 30
(t210) 4.05 10.39 28.31 31

best 4.04 10.43 28.41 -a

mean 4.1 9.52 26.93 25
std 0.07 0.98 1.57 3.89
range 4.04−4.27 7.4−10.4 23.6−28.4 17−31

(b) GD, CIFAR-100, ResNet-34, limited dataset (Fig. 3.13(a))

Threshold Loss ACC Epoch

best 1.84 37.03 -
mean 1.97 31.05 12.25
std 0.22 8.80 10.54
range 1.84−2.35 15.84−37.03 1−30

(c) CV, CIFAR-10, VGG-13, limited dataset (Fig. 3.13(b))

Threshold Loss ACC Epoch

best 1.79 38.16 -
mean 1.80 36.97 6.5
std 0.02 1.27 2.87
range 1.79−1.85 33.71−38.16 2−11

(d) GD, CIFAR-10, VGG-13, limited dataset (Fig. 3.13(b))

Threshold Loss ACC Epoch

best 0.56 81.39 34
mean 1.09 62.63 21.71
std 0.36 13.46 9.59
range 0.63−1.64 41.15−81.39 9−41

(e) CV, MNIST, AlexNet, limited dataset (Fig. 3.13(c))

Threshold Loss ACC Epoch

best 0.45 86.39 39
mean 1.13 64.27 17.58
std 0.72 22.38 13.91
range 0.45−2.18 30.19−86.39 1−40

(f) GD, MNIST, AlexNet, limited dataset (Fig. 3.13(c))

Table 3.10: The test accuracy, test loss, top-5 accuracy, and stopping epoch obtained by using
k-fold cross-validation (CV) (left columns (a), (c), and (e)) and by using gradient disparity
(GD) (right columns (b), (d), and (f)) as early stopping criteria for different patience values and
for different thresholds (t1) and (t2). (t1p): training is stopped after p increases in the value
of the validation loss in k-fold CV, and of GD, respectively. (t2p): training is stopped after p
consecutive increases in the value of the validation loss in k-fold CV, and of GD, respectively.
For the rest of the experiments we only report the best values, mean and standard deviation
(std) over all thresholds. −a : The epoch to have the best test loss does not coincide with the
epoch to have the best test accuracy. −b : The metric does not have p consecutive increases
during training.

80

3.F. k-fold Cross-Validation

Threshold Loss ACC top-5
ACC

Epoch

best 4.69 2.00 9.38 19
mean 4.94 1.60 6.72 12.3
std 0.1 0.14 0.98 4.47
range 4.69−

5.03
1.42−
2.00

5.62−
9.38

6−20

(a) CV, CIFAR-100, ResNet-18, noisy dataset
(Fig. 3.14(a))

Threshold Loss ACC top-5
ACC

Epoch

best 4.38 4.38 17.76 -
mean 4.47 3.79 15.43 29.25
std 0.08 0.75 2.31 6.41
range 4.38−

4.69
2.13−
4.38

9.74−
17.76

18−
41

(b) GD, CIFAR-100, ResNet-18, noisy dataset
(Fig. 3.14(a))

Threshold Loss ACC top-5
ACC

Epoch

best 3.87 12.14 37.06 -
mean 4.16 10.19 32.46 11.5
std 0.25 1.27 2.72 2.87
range 3.87−

4.5
8.47−
12.14

27.80−
37.06

7−16

(c) CV, CIFAR-100, ResNet-34, noisy dataset
(Fig. 3.14(b))

Threshold Loss ACC top-5
ACC

Epoch

best 3.82 15.81 40.97 -
mean 4.37 12.82 35.53 14.75
std 0.25 1.76 6.08 6.59
range 3.82−

4.59
10.41−
15.81

23.51−
40.97

3−23

(d) GD, CIFAR-100, ResNet-34, noisy dataset
(Fig. 3.14(b))

Threshold Loss ACC Epoch

best 1.69 43.02 2
mean 2.19 36.89 6.5
std 0.35 3.21 2.87
range 1.69−

2.66
32.41−
43.02

2−11

(e) CV, CIFAR-10, VGG-13, noisy dataset
(Fig. 3.14(c))

Threshold Loss ACC Epoch

best 1.77 42.45 -
mean 2.35 38.9 10.1
std 0.27 2.98 3.59
range 1.77−

2.59
32.92−
42.45

4−16

(f) GD, CIFAR-10, VGG-13, noisy dataset
(Fig. 3.14(c))

Threshold Loss ACC Epoch

best 0.59 97.44 -
mean 0.63 96.33 23.5
std 0.18 1.68 13.11
range 0.59−

0.69
92.03−
97.44

7−49

(g) CV, MNIST, AlexNet, noisy dataset
(Fig. 3.14(d))

Threshold Loss ACC Epoch

best 0.62 97.49 -
mean 0.65 96.22 20.4
std 0.02 1.81 13.81
range 0.62−

0.66
92.58−
97.49

10−48

(h) GD, MNIST, AlexNet, noisy dataset
(Fig. 3.14(d))

Table 3.11: The test accuracy, test loss, top-5 accuracy, and stopping epoch obtained by using
k-fold cross-validation (CV) (left columns (a), (c), (e), and (g)) and by using gradient disparity
(GD) (right columns (b), (d), (f), and (h)) as early stopping criteria for different patience values
and for different thresholds (t1) and (t2). (t1p): training is stopped after p increases in the
value of the validation loss in k-fold CV, and of GD, respectively. (t2p): training is stopped after
p consecutive increases in the value of the validation loss in k-fold CV, and of GD, respectively.
We report the best values, mean and standard deviation (std) over 20 thresholds.

81

Chapter 3. Disparity Between Batches

3.F.2 Image-classification Benchmark Datasets

Limited Data Fig. 3.13 and Table 3.13 show the results for MNIST, CIFAR-10 and CIFAR-100

datasets, where we simulate the limited data scenario by using a small subset of the training

set. For the CIFAR-100 experiment (Fig. 3.13 (a) and Table 3.13 (top row), we observe (from

the left figure) that the validation loss predicts the test loss pretty well. We observe (from

the middle left figure) that gradient disparity also predicts the test loss quite well. However,

the main difference between the two settings is that when using cross-validation, 1/k of the

data is set aside for validation and 1−1/k of the data is used for training. Whereas when

using gradient disparity, all the data (1−1/k +1/k = 1) is used for training. Hence, the test

loss in the leftmost and middle left figures differ. The difference between the test accuracy

(respectively, test loss) obtained in each setting is visible in the rightmost figure (resp., middle

right figure). We observe that there is over 3% improvement in the test accuracy when using

gradient disparity as an early stopping criterion. This improvement is consistent for the MNIST

and CIFAR-10 datasets (Fig. 3.13 (b) and (c) and Table 3.13). We conclude that in the absence

of label noise, both k-fold cross-validation and gradient disparity predict the optimal early

stopping moment, but the final test loss/error is much lower for the model trained with all the

available data (thus, when gradient disparity is used), than the model trained with a (1−1/k)

portion of the data (thus when k-fold cross-validation is used). To further test on a dataset

that is itself limited, a medical application with limited labeled data is empirically studied

later in this section (Section 3.F.3). The same conclusion is made for this dataset.

Noisy Labeled Data The results for datasets with noisy labels are shown in Fig. 3.14 and Ta-

ble 3.14 for the MNIST, CIFAR-10 and CIFAR-100 datasets. We observe (from Fig. 3.14 (a) (left))

that for the CIFAR-100 experiment, the validation loss does no longer predict the test loss.

Nevertheless, although gradient disparity is computed on a training set that contains cor-

rupted samples, it predicts the test loss quite well (Fig. 3.14 (a) (middle left)). There is a 2%

improvement in the final test accuracy (for top-5 accuracy there is a 9% improvement) (Ta-

ble 3.14 (top two rows)) when using gradient disparity instead of a validation set as an early

stopping criterion. This is also consistent for other configurations and datasets (Fig. 3.14 and

Table 3.14). We conclude that, in the presence of label noise, k-fold cross-validation does no

longer predict the test loss and fails as an early stopping criterion, unlike gradient disparity.

Computational Cost Denote the time, in seconds, to compute one gradient vector, to

compute the `2 norm between two gradient vectors, to take the update step for the network

parameters , and to evaluate one batch (find its validation loss and error) by t1, t2, t3 and t4,

respectively. Then, one epoch of k-fold cross-validation takes

CVepoch = k ×
(

k −1

k
B(t1 + t3)+ B

k
t4

)
seconds, where B is the number of batches. Performing one epoch of training and computing

82

3.F. k-fold Cross-Validation

Method
Patience

1 5 10 15 20 25

5-fold CV 41.15±5.68 62.62±6.36 81.39±3.64 80.39±2.88 84.84±2.53 83.55±2.84

GD 30.19±6.21 79.12±3.04 84.82±2.14 85.35±2.09 87.28±1.24 86.69±1.31

(a) MNIST, AlexNet, limited dataset (Fig. 3.13 (c))

Method
Patience

1 5 10 15 20 25

10-fold CV 96.54±0.15 97.28±0.20 97.35±0.23 97.22±0.19 96.60±0.33 94.69±0.87

GD 97.07±0.16 97.32±0.15 97.41±0.15 96.57±0.64 95.44±0.96 92.58±0.65

(b) MNIST, AlexNet, noisy dataset (Fig. 3.14 (d))

Table 3.12: The test accuracies achieved by using k-fold cross-validation (CV) and by using
gradient disparity (GD) as early stopping criteria for different patience values. For a given
patience value of p, the training is stopped after p increases in the value of the validation loss
in k-fold CV (top rows) and of GD (bottom rows). Throughout the chapter, we have chosen
p = 5 as the default patience value for all methods without optimizing it even for GD. However,
in this table (also in Table 3.10 and Table 3.11), we observe that even if we tune the patience
value for k-fold CV and for GD separately (which is indicated in bold), GD still outperforms
k-fold CV. Moreover, as we discussed in Section 3.F.1, even if we take an average over patience
values and early stopping thresholds (to avoid the need to tune this parameter), GD again
outperforms CV (Fig. 3.12).

the gradient disparity takes

GDepoch = B(t1 + t3)+ s

(
t1 + s −1

2
t2

)
seconds. In our experiments, we observe that t1 ≈ 5.1t2 ≈ 100t3 ≈ 3.4t4, hence the approximate

time to perform one epoch for each setting is

CVepoch ≈ (k −1)B t1, and GDepoch ≈ (B + s)t1.

Therefore, as s < B , we have CVepoch À GDepoch.

3.F.3 MRNet Dataset

So far, we have shown the improvement of gradient disparity over cross-validation for limited

subsets of MNIST, CIFAR-10 and CIFAR-100 datasets. In this sub-section, we give the results

for the MRNet dataset [Bien et al. 2018] used for diagnosis of knee injuries, which is by itself

limited. The dataset contains 1370 magnetic resonance imaging (MRI) exams to study the

presence of abnormality, anterior cruciate ligament (ACL) tears and meniscal tears. The

labeled data in the MRNet dataset is therefore very limited. Each MRI scan is a set of S slices of

83

Chapter 3. Disparity Between Batches

Setting Method Test loss Test accuracy

CIFAR-100, ResNet-34
5-fold CV 4.249±0.028 6.79±0.49 (top-5: 22.19±0.77)

GD 4.057±0.043 9.99±0.92 (top-5: 27.84±1.30)

CIFAR-10, VGG-13
5-fold CV 1.846±0.016 35.982±0.393

GD 1.793±0.016 36.96±0.861

MNIST, AlexNet
5-fold CV 1.123±0.25 62.62±6.36

GD 0.656±0.080 79.12±3.04

Table 3.13: The loss and accuracy on the test set comparing 5-fold cross-validation and gradient
disparity as early stopping criterion when the available dataset is limited. The corresponding
curves during training are presented in Fig. 3.13. The results above are obtained by stopping
the optimization when the metric (either validation loss or gradient disparity) has increased
for five epochs from the beginning of training.

(a) ResNet-34 trained on 1.28 k points of CIFAR-100

(b) VGG-13 trained on 1.28 k points of CIFAR-10

(c) AlexNet trained on 256 points of MNIST

Figure 3.13: Comparing 5-fold cross-validation (CV) with gradient disparity (GD) as an early
stopping criterion when the available dataset is limited. (left) Validation loss versus test loss in
5-fold cross-validation. (middle left) Gradient disparity versus test and generalization losses.
(middle right and right) Performance on the unseen (test) data for GD versus 5-fold CV. (a)
The parameters are initialized by Xavier techniques with uniform distribution. (b, c) The
parameters are initialized using He technique with normal distribution. (c) The batch size is
32. The gray and magenta vertical bars indicate the epoch in which the metric (the validation
loss or gradient disparity) has increased for 5 epochs from the beginning of training and for 5
consecutive epochs, respectively. In (b) the middle left figure, these two bars meet each other.

84

3.F. k-fold Cross-Validation

Setting Method Test loss Test accuracy

CIFAR-100, ResNet-18
10-fold CV 5.023±0.083 1.59±0.15 (top-5: 6.47±0.52)

GD 4.463±0.038 3.68±0.52 (top-5: 15.22±1.24)
10+-fold CV 4.964±0.057 1.68±0.24 (top-5: 7.05±0.71)

CIFAR-100, ResNet-34
10-fold CV 4.062±0.091 9.62±1.08 (top-5: 32.06±1.47)

GD 4.592±0.179 10.41±1.40 (top-5: 36.92±1.20)
10+-fold CV 4.134±0.185 10.11±1.60 (top-5: 34.19±2.10)

CIFAR-10, VGG-13
10-fold CV 2.126±0.063 34.88±1.66

GD 2.519±0.062 36.98±0.77

10+-fold CV 2.195±0.142 35.40±3.00

MNIST, AlexNet
10-fold CV 0.656±0.034 97.28±0.20

GD 0.654±0.031 97.32±0.27

10+-fold CV 0.639±0.029 97.31±0.15

Table 3.14: The loss and accuracy on the test set comparing 10-fold cross-validation and
gradient disparity as early stopping criterion when the available dataset is noisy. In all the
experiments, 50% of the available data has random labels. The corresponding curves during
training are shown in Fig. 3.14. The results below are obtained by stopping the optimization
when the metric (either validation loss or gradient disparity) has increased for five epochs
from the beginning of training. The last row in each setting, which we call 10+-fold CV, refers to
the test loss and accuracy reached at the epoch suggested by 10-fold CV, for a network trained
on the entire set. In all these settings, using GD still results in a higher test accuracy.

85

Chapter 3. Disparity Between Batches

(a) ResNet-18 trained on 1.28 k points of CIFAR-100 dataset with 50% label noise

(b) ResNet-34 trained on the entire CIFAR-100 dataset with 50% label noise

(c) VGG-13 trained on the entire CIFAR-10 dataset with 50% label noise

(d) AlexNet trained on the entire MNIST dataset with 50% label noise

Figure 3.14: Comparing 10-fold cross-validation with gradient disparity as early stopping
criteria when the available dataset is noisy. (left) Validation loss versus test loss in 10-fold
cross-validation. (middle left) Gradient disparity versus test and generalization losses. (middle
right and right) Performance on the unseen (test) data for GD versus 10-fold CV. (a) The
parameters are initialized by Xavier techniques with uniform distribution. (b, c, and d) The
parameters are initialized using He technique with normal distribution.

86

3.F. k-fold Cross-Validation

images stacked together. Note that, in this dataset, because slice S changes from one patient

to another, it is not possible to stack the data into batches, hence the batch size is 1, which

may explain the fluctuations of both the validation loss and gradient disparity in this setting.

Each patient (case) has three MRI scans: sagittal, coronal and axial. The MRNet dataset is split

into training (1130 cases), validation (120 cases) and test sets (120 cases). The test set is not

publicly available. We need however to set aside some data to evaluate both gradient disparity

and k-fold cross-validation, hence, in our experiments, the validation set becomes the unseen

(test) set. To perform cross-validation, we split the set used for training in [Bien et al. 2018]

into a first subset used for training in our experiments, and a second subset used as validation

set. We use the SGD optimizer with the learning rate 10−4 for training the model. Each task in

this dataset is a binary classification with an unbalanced set of samples, hence we report the

area under the curve of the receiver operating characteristic (AUC score).

The results for three tasks (detecting ACL tears, meniscal tears and abnormality) are

shown in Fig. 3.15 and Table 3.1. We can observe that both the validation loss (despite a small

bias) and the gradient disparity predict the generalization loss quite well. Yet, when using

gradient disparity, the final test AUC score is higher (Fig. 3.15 (right)). As mentioned above,

for this dataset, both the validation loss and gradient disparity vary a lot. Hence, in Table 3.1,

we show the results of early stopping, both when the metric has increased for 5 epochs from

the beginning of training, and between parenthesis when the metric has increased for 5

consecutive epochs. We conclude that with both approaches, the use of gradient disparity

as an early stopping criterion results in more than 1% improvement in the test AUC score.

Because the test set used in [Bien et al. 2018] is not publicly available, it is not possible to

compare our predictive results with [Bien et al. 2018]. Nevertheless, we can take as a baseline

the results presented in the work given at https://github.com/ahmedbesbes/mrnet, which

report a test AUC score of 88.5% for the task of detecting ACL tears. We observe in Table 3.1

that stopping training after 5 consecutive increases in gradient disparity leads to 91.52% test

AUC score for this task. With further tuning, and combining the predictions found on two

other MRI planes of each patient (axial and coronal), our final prediction results could even be

improved.

87

https://github.com/ahmedbesbes/mrnet

Chapter 3. Disparity Between Batches

(a) Task: detecting ACL tears

(b) Task: detecting meniscal tears

(c) Task: detecting abnormality

Figure 3.15: Detecting three tasks from the MRNet dataset from the sagittal plane MRI scans.
(left) Validation loss versus test loss in 5-fold cross-validation. (middle) Gradient disparity
versus generalization loss. (right) Performance comparison on the final unseen data when
applying 5-fold CV versus gradient disparity. For the results of applying early stopping refer to
Table 3.1.

88

3.G. Additional Experiments

3.G Additional Experiments

In this section, we provide additional experiments on benchmark image-classification datasets.

3.G.1 MNIST Experiments

Fig. 3.5 shows the test error for networks trained with different amounts of label noise. Inter-

estingly, observe that for this setting the test error for the network trained with 75% label noise

remains relatively small, indicating a good resistance of the model against memorization of

corrupted samples. As suggested both from the test error (Fig. 3.5 (a)) and gradient disparity

(Fig. 3.5 (c)), there is no proper early stopping time for these experiments7. The generalization

error (Fig. 3.5 (b)) remains close to zero, regardless of the level of label noise, and hence fails

to account for label noise. In contrast, gradient disparity is very sensitive to the label noise

level in all stages of training, even at early stages of training, as desired for a metric measuring

generalization.

Fig. 3.16 shows the results for an AlexNet [Krizhevsky et al. 2012] trained on the MNIST

dataset8. This model generalizes quite well for this dataset. We observe that, throughout

the training, the test curves are even below the training curves, which is due to the dropout

regularization technique [Srivastava et al. 2014] being applied during training and not during

testing. The generalization loss/error is almost zero, until around iteration 1100 (indicated

in the figure by the gray vertical bar), which is when overfitting starts and the generalization

error becomes non-zero, and when gradient disparity signals to stop training.

Fig. 3.17 shows the results for a 4-layer fully connected neural network trained on the

entire MNIST training set. Fig. 3.17 (e) and (f) show the generalization losses. We observe that

at the early stages of training, generalization losses do not distinguish between different label

noise levels, whereas gradient disparity does so from the beginning (Fig. 3.17 (g) and (h)). At

the middle stages of training we can observe that, surprisingly in this setting, the network with

0% label noise has higher generalization loss than the networks trained with 25%, 50% and

75% noise, and this is also captured by gradient disparity. The final gradient disparity values

for the networks trained with higher label noise level are also larger. For the network trained

with 0% label noise we show the results with more details in Fig. 3.18, and observe again how

gradient disparity is well aligned with the generalization loss/error. In this experiment, the

early stopping time suggested by gradient disparity is epoch 9, which is the exact same time

when the training and test losses/errors start to diverge, and signals therefore the start of

overfitting.

7According to Table 3.12, for the noisy MNIST dataset, the patience value of p = 10 is preferred for both GD
and CV. Therefore, in Fig. 3.5 (c), even for the setting with 75% label noise, gradient disparity does not increase for
p = 10 consecutive iterations, and would therefore not signal overfitting throughout training.

8http://yann.lecun.com/exdb/mnist/

89

http://yann.lecun.com/exdb/mnist/

Chapter 3. Disparity Between Batches

3.G.2 CIFAR-10 Experiments

Fig. 3.19 shows the results for a ResNet-18 [He et al. 2016a] trained on the CIFAR-10 dataset9.

Around iteration 500 (which is indicated by a thick gray vertical bar in the figures), the training

and test losses (and errors) start to diverge, and the test loss reaches its minimum. This is

indeed when gradient disparity increases and signals overfitting.

To compare models with a different number of parameters using gradient disparity, we

need to normalize it. The dimension of a gradient vector is the number d of parameters

of the model. Gradient disparity being the `2-norm of the difference of gradient vectors

will thus grow proportionally to
p

d , hence to compare different architectures, we propose

to use the normalized gradient disparity D̃ =D/
p

d . We observe in Fig. 3.20 that both the

normalized10 gradient disparity and test error decrease with the network width (the scale is

a hyper-parameter used to change both the number of channels and hidden units in each

configuration).

Fig. 3.21 shows the results for a 4-layer fully connected neural network, which is trained

on the entire CIFAR-10 training set. We observe that gradient disparity reflects the test error

at the early stages of training quite well. In the later stages of training we observe that the

ranking of gradient disparity values for different label noise levels matches with the ranking

of generalization losses and errors. In all experiments the gradient disparity is indeed very

informative about the test error.

The test error decreases with the size of the training set (Fig. 3.6 (bottom)) and a reliable

signal of overfitting should therefore reflect this property. Many of the previous metrics

fail to do so, as shown by [Neyshabur et al. 2017a; Nagarajan and Kolter 2019]. In contrast,

gradient disparity indeed decreases with the training set size, as shown in Fig. 3.6 (top) and

Fig. 3.22. In Fig. 3.6, we study the effect of data augmentation [Shorten and Khoshgoftaar

2019], which is one of the popular techniques used to reduce overfitting given limited labeled

data. Consistently with the rest of the chapter, we observe a strong positive correlation

(ρ = 0.979) between the test error and gradient disparity for networks that are trained with

data augmentation. Moreover, we observe that applying data augmentation decreases the

values of both gradient disparity and the test error.

Fig. 3.22 shows the test error and gradient disparity for networks that are trained with

different training set sizes. In Fig. 3.23, we observe that, as discussed in Section 3.1.6, gradient

disparity, similarly to the test error, increases with the batch size for not too large batch sizes.

As expected, when the batch size is very large (512 for the CIFAR-10 experiment and 256 for

the CIFAR-100 experiments) gradient disparity starts to decrease, because gradient vectors

are averaged over a large batch. Note that even with such large batch sizes, gradient disparity

9https://www.cs.toronto.edu/~kriz/cifar.html
10Note that the normalization with respect to the number of parameters is different than the normalization

mentioned in Section 3.E.1 which was with respect to the loss values. The value of gradient disparity reported
everywhere is the re-scaled gradient disparity; further if comparison between two different architectures is taking
place the normalization with respect to dimensionality will also take place.

90

https://www.cs.toronto.edu/~kriz/cifar.html

3.G. Additional Experiments

(a) Cross entropy loss (b) D vs. loss

(c) D vs. error

Figure 3.16: The cross entropy loss, the error percentage and the average gradient disparity
during training for an AlexNet trained on a subset of 12.8 k points of the MNIST training
set (the parameters are initialized according to the He [He et al. 2015] method with Normal
distributions). For this experiment, ρD,gen loss = 0.465 and ρD,gen error = 0.457. The blue,
orange, green, and red curves are the test loss/error, train loss/error, generalization loss/error,
and the average gradient disparity D, respectively.

correctly detects the early stopping time, although it can no longer be compared to the value

of gradient disparity found with other batch sizes.

3.G.3 CIFAR-100 Experiments

Fig. 3.24 shows the results for a ResNet-18 that is trained on the CIFAR-100 training set11.

Clearly, the model is not sufficient to learn the complexity of the CIFAR-100 dataset: It has 99%

error for the network with 0% label noise, as if it had not learned anything about the dataset

and is just making a random guess for classification (because there are 100 classes, random

guessing would give 99% error on average). We observe from Fig. 3.24 (f) that as training

progresses, the network overfits more, and the generalization error increases. Although the

test error is high (above 90%), very surprisingly for this example, the networks with higher

label noise level have a lower test loss and error (Fig. 3.24 (b) and (d)). Quite interestingly,

gradient disparity (Fig. 3.24 (g)) captures also this surprising trend as well.

11https://www.cs.toronto.edu/~kriz/cifar.html

91

https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 3. Disparity Between Batches

(a) Training loss (b) Test loss

(c) Training error (d) Test error

(e) Generalization loss (f) Generalization loss for epoch < 80

(g) D (h) D for epoch < 80

Figure 3.17: The cross entropy loss, error percentage, and average gradient disparity dur-
ing training with different amounts of randomness in the training labels for a 4-layer fully
connected neural network with 500 hidden units trained on the entire MNIST dataset. The
parameter initialization is the He initialization with normal distribution.

92

3.G. Additional Experiments

(a) Loss vs gradient disparity (b) Error vs gradient disparity

Figure 3.18: The cross entropy loss, error percentage, and average gradient disparity during
training for a 4-layer fully connected neural network with 500 hidden units trained on the
entire MNIST dataset with 0% label noise. The parameter initialization is the He initialization
with normal distribution. Pearson’s correlation coefficient ρ between D and generalization
loss/error over all the training iterations are ρD,gen loss = 0.967 and ρD,gen error = 0.734. The
gray vertical bar indicates when GD increases for 5 epochs from the beginning of training.
The magenta vertical bar indicates when GD increases for 5 consecutive epochs. We observe
that the gray bar signals when overfitting is starting, which is when the training and testing
curves are starting to diverge. The magenta bar would be a good stopping time, because if we
train beyond this point, although the test error remains the same, the test loss would increase,
which would result in overconfidence on wrong predictions.

(a) Cross entropy loss (b) D vs. loss

(c) D vs. error

Figure 3.19: The cross entropy loss, the error percentage and the average gradient disparity
during training for a ResNet-18 trained on a subset of 12.8 k points of the CIFAR-10 training
set (the parameter initialization is Xavier [Glorot and Bengio 2010]). Pearson’s correlation
coefficient ρ between D and generalization loss/error over all the training iterations are
ρD,gen loss = 0.755 and ρD,gen error = 0.846.

93

Chapter 3. Disparity Between Batches

(a) ρD̃,TL = 0.970 and ρD̃,TE = 0.939

(b) ρD̃,TL = 0.655,ρD̃,TE = 0.958

(c) ρD̃,TL = 0.771,ρD̃,TE = 0.601

Figure 3.20: Test error and normalized gradient disparity for networks trained on the CIFAR-10
dataset with different number of channels and hidden units for convolutional neural networks
(CNN) (scale = 1 recovers the original configurations) and fully connected neural networks
(FC). The correlation between normalized gradient disparity and test loss ρD̃,TL and between
normalized gradient disparity and test error ρD̃,TE are reported in the captions.

94

3.G. Additional Experiments

(a) Training loss (b) Test loss

(c) Training error (d) Test error

(e) Generalization loss (f) Generalization error

(g) D (h) D for epoch > 20

Figure 3.21: The cross entropy loss, error percentage, and average gradient disparity during
training with different amounts of randomness in the training labels for a 4-layer fully con-
nected neural network with 500 hidden units trained on the entire CIFAR-10 dataset. The
parameter initialization is the Xavier initialization with uniform distribution.

95

Chapter 3. Disparity Between Batches

(a) VGG-16, CIFAR-10, ρ
D,TE

= 0.972

(b) ALexNet, MNIST, ρ
D,TE

= 0.929

Figure 3.22: Test error and gradient disparity for networks that are trained with different
training set sizes. The training is stopped when the training loss is below 0.01.

96

3.G. Additional Experiments

(a) CIFAR-10, ρ
D, TE

= 0.893

(b) CIFAR-10, ρ
D,TE

= 0.631

(c) CIFAR-100, ρ
D,TE

= 0.909

Figure 3.23: Test error and gradient disparity for networks that are trained with different batch
sizes trained on 12.8 k points of the CIFAR-10 and CIFAR-100 datasets. The training is stopped
when the training loss is below 0.01.

97

Chapter 3. Disparity Between Batches

(a) Training loss (b) Test loss

(c) Training error (d) Test error

(e) Generalization loss (f) Generalization error (g) D

Figure 3.24: The cross entropy loss, error percentage, and average gradient disparity during
training with different amounts of randomness in the training labels for a ResNet-18 trained
on the CIFAR-100 training set. The parameter initialization is the Xavier initialization.

98

3.H. Beyond SGD

3.H Beyond SGD

In the following, we discuss how the analysis of Section 3.1.4 can be extended to other opti-

mizers (refer to [Ruder 2016] for an overview on popular optimizers).

3.H.1 SGD with Momentum

The momentum method [Qian 1999] is a variation of SGD which adds a fraction of the update

vector of the previous step to the current update vector to accelerate SGD:

υ(t+1) = ηυ(t) +γg (t),

θ(t+1) = θ(t) −υ(t+1),

where g (t) is either g1 or g2 depending on the selection of the batch S1 or S2 for the current

update step. As υ(t) remains the same for either choice, the KL-divergence between Q1 and Q2

for SGD with momentum, is the same as Eq. (3.5).

3.H.2 Adagrad

Adagrad [Duchi et al. 2011] performs update steps with a different learning rate for each

individual parameter. By denoting each coordinate of the parameter vector θ by d , one update

step of the Adagrad algorithm is

θ(t+1)
d = θ(t)

d − γ√
G (t)

dd +ε
g (t)

d , (3.17)

where the vector g (t) is either g1 or g2 depending on the selection of the batch for the current

update step, and G (t)
dd is the accumulative squared norm of the gradients up until iteration t .

Hence, for Adagrad, Eq. (3.5) is replaced by

KL(Q1||Q2) = 1

2

γ2

σ2

∥∥∥∥ 1

G (t) +ε ¯
(
g1 − g2

)∥∥∥∥2

2

≤ 1

2

γ2

σ2

∥∥∥∥ 1

G (t) +ε
∥∥∥∥2

2

∥∥g1 − g2
∥∥2

2 , (3.18)

where ¯ denotes the element-wise product of two vectors, where division is also taken element-

wise and where ε is a small positive constant that avoids a possible division by 0. To compare

the upper bound in Theorem 1 from one iteration to the next one (as needed to determine the

early stopping moment in Section 3.1.5), gradient disparity is not the only factor in Eq. (3.18)

that evolves over time. Indeed G (t) is an increasing function of t . However, after a few iterations

when the gradients become small, this value becomes approximately constant (the initial

gradient values dominate the sum in G (t)). Then the right hand side of Eq. (3.18) varies mostly

as a function of gradient disparity, and therefore gradient disparity approximately tracks down

the generalization penalty upper bound.

99

Chapter 3. Disparity Between Batches

3.H.3 Adadelta and RmsProp

Adadelta [Zeiler 2012] is an extension of Adagrad, which computes a decaying average of the

past gradient vectors instead of the accumulative squared norm of the gradients during the pre-

vious update steps. G (t)
dd in Eq. (3.17) is then replaced by υ(t+1)

d where υ(t+1)
d = ηυ(t)

d + (1−η)(g (t)
d)2.

As training proceeds, the gradient magnitude decreases. Also, η is usually close to 1. There-

fore, the dominant term in υ(t+1)
d becomes ηυ(t)

d . Then, if we approximate υ(t+1)
1 = ηυ(t) + (1−

η)
(
g1

)2 ≈ ηυ(t) + (1−η)
(
g2

)2 = υ(t+1)
2 (squares are done element-wise), then for Adadelta we

have

KL(Q1||Q2) ≤ 1

2

γ2

σ2

∥∥∥∥ 1

υ(t+1) +ε
∥∥∥∥2

2

∥∥g1 − g2
∥∥2

2 , (3.19)

where again the division is done element-wise. The denominator in Eq. (3.19) is smaller than

the denominator in Eq. (3.18). In both equations, the first non-constant factor in the upper

bound of KL(Q1||Q2) decreases as a function of t , and therefore an increase in the value of

KL(Q1||Q2) should be accounted for by an increase in the value of gradient disparity. Moreover,

as training proceeds, gradient magnitudes decrease and the first factor on the upper bound

of Eq. (3.18) and Eq. (3.19) becomes closer to a constant. Therefore, an upper bound on the

generalization penalties can be tracked by gradient disparity. The update rule of RmsProp12 is

very similar to Adadelta, and the same conclusions can be made.

3.H.4 Adam

Adam [Kingma and Ba 2014] combines Adadelta and momentum by storing an exponentially

decaying average of the previous gradients and squared gradients:

m(t+1) =β1m(t) + (1−β1)g (t), υ(t+1) =β2υ
(t) + (1−β2)

(
g (t))2

,

m̂(t+1) = m(t+1)

1− (
β1

)t , υ̂(t+1) = υ(t+1)

1− (
β2

)t ,

θ(t+1) = θ(t) − γp
υ̂(t+1) +ε

m̂(t+1).

All the operations in the above equations are done element-wise. As β2 is usually very close

to 1 (around 0.999), and as squared gradient vectors at the current update step are much

smaller than the accumulated values during the previous steps, we approximate: υ(t+1)
1 =

β2υ
(t) + (1−β2)

(
g1

)2 ≈β2υ
(t) + (1−β2)

(
g2

)2 = υ(t+1)
2 (squares are done element-wise). Hence,

Eq. (3.5) becomes

KL(Q1||Q2) ≤ 1

2

γ2

σ2

1−β1

1− (β1)t

∥∥∥∥ 1p
υ̂(t+1) +ε

∥∥∥∥2

2

∥∥g1 − g2
∥∥2

2 . (3.20)

The first non-constant factor in the equation above decreases with t (becauseβ1 < 1). However,

it is not clear how the second factor varies as training proceeds. Therefore, unlike previous

12https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

100

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

3.H. Beyond SGD

optimizers, it is more hazardous to claim that the factors other than gradient disparity in

Eq. (3.20) become constant as training proceeds. Hence, tracking only gradient disparity

for the Adam optimizer may be insufficient. This is empirically investigated in the next

sub-section.

3.H.5 Experiments

Fig. 3.25 shows gradient disparity and the test loss curves during the course of training for

adaptive optimizers. The epoch in which the fifth increase in the value of the test loss and

gradient disparity has happened is shown in the caption of each experiment. We observe

that the two suggested epochs for stopping the optimization (the one suggested by gradient

disparity (GD) and the other one suggested by test loss) are extremely close to each other,

except in Fig. 3.25 (c) where the fifth epoch with an increase in the value of gradient disparity

is much later than the epoch with the fifth increase in the value of test loss. However, in this

experiment, there is a 23% improvement in the test accuracy if the optimization is stopped

according to GD compared to test loss, due to many variations of the test loss compared to

gradient disparity.

As an early stopping criterion, the increase in the value of gradient disparity coincides

with the increase in the test loss in all our experiments presented in Fig. 3.25. In Fig. 3.25 (h),

for the Adam optimizer, we observe that after around 20 epochs, the value of gradient disparity

starts to decrease, whereas the test loss continues to increase. This mismatch between test loss

and gradient disparity might result from other factors that appear in Eq. (3.20). Nevertheless,

even in this experiment, the increase in the test loss and gradient disparity coincide, and

hence gradient disparity can correctly detect early stopping time. These experiments are a

first indication that gradient disparity can be used as an early stopping criterion for optimizers

other than SGD.

101

Chapter 3. Disparity Between Batches

(a) SGD with Momentum, test loss
epoch: 11, GD epoch: 10

(b) Adagrad, test loss epoch: 19,
GD epoch: 18

(c) RmsProp, test loss epoch: 15
(err: 54%), GD epoch: 36 (err: 31%)

(d) Adam, test loss epoch: 19,
GD epoch: 20

(e) Adagrad, test loss epoch: 21,
GD epoch: 21

(f) Adadelta, test loss epoch: 12,
GD epoch: 15

(g) RmsProp, test loss epoch: 20,
GD epoch: 18

(h) Adam, test loss epoch: 12,
GD epoch: 10

Figure 3.25: (a-d) VGG-19 configuration trained on 12.8 k training points of CIFAR-10 dataset.
(e-h) VGG-11 configuration trained on 12.8 k points of the CIFAR-10 dataset. The training
is stopped when the training loss gets below 0.01. The presented results are an average over
5 runs. The captions below each figure give the epoch number where test loss and gradient
disparity have respectively been increased for 5 epochs from the beginning of training.

102

3.I. Comparison to Related Work

Min GD/Var EB GSNR gi · g j sign(gi · g j) cos(gi · g j) Ωc OV k-fold No ES

TE 4.84 4.84 4.84 12.82 22.30 12.82 18.31 8.30 11.79 4.84 4.96
TL 0.18 0.18 0.18 0.46 0.82 0.46 0.69 0.32 0.38 0.18 0.22

(a) MNIST, AlexNet

Min GD/Var EB GSNR gi · g j sign(gi · g j) cos(gi · g j) Ωc OV k-fold No ES

TE 13.76 16.66 24.63 35.68 37.92 24.63 35.68 29.40 34.36 17.86 25.72
TL 0.75 1.08 0.86 1.68 1.82 0.86 1.68 1.46 1.65 1.09 0.91

(b) MNIST, AlexNet, 50% random

Min GD/Var EB GSNR gi · g j sign(gi · g j) cos(gi · g j) Ωc OV k-fold No ES

TE 45.54 45.95 61.76 70.46 70.46 55.84 67.09 67.37 70.61 51.64 64.19
TL 1.32 1.45 1.68 1.92 1.92 1.52 1.83 1.85 1.92 1.49 1.98

(c) CIFAR-10, ResNet-18

Min GD/Var EB GSNR gi · g j sign(gi · g j) cos(gi · g j) Ωc OV k-fold No ES

TE 59.77 71.97 73.17 77.08 75.91 65.80 75.43 77.71 76.65 72.56 75.96
TL 1.75 2.00 2.03 2.12 2.13 1.93 2.07 2.13 2.10 2.02 2.30

(d) CIFAR-10, ResNet-18, 50% random

Table 3.15: Test error (TE) and test loss (TL) achieved by using various metrics as early stopping
criteria. On the leftmost column, the minimum values of TE and TL over all the iterations are
reported (which is not accessible during training). The results of 5-fold cross validation are
reported on the right, which serve as a baseline. For each experiment, we have underlined
those metrics that result in a better performance than 5-fold cross-validation. We observe
that gradient disparity (GD) and variance of gradients (Var) consistently outperform k-fold
cross-validation, unlike other metrics. On the rightmost column (No ES) we report the results
without performing early stopping (ES) (training is continued until the training loss is below
0.01).

3.I Comparison to Related Work

In Table 3.15, we compare gradient disparity (GD) to a number of metrics that were proposed

either directly as an early stopping criterion, or as a generalization metric. For those metrics

that were not originally proposed as early stopping criteria, we choose a similar method for

early stopping as the one we use for gradient disparity. We consider two datasets (MNIST

and CIFAR-10), and two levels of label noise (0% and 50%). Here is a list of the metrics that

we compute in each setting (see Section 3.1.2 of the main chapter where we introduce each

metric):

1. Gradient disparity (GD) (ours): we report the error and loss values at the time when the

value of GD increases for the 5th time (from the beginning of the training).

2. The EB-criterion [Mahsereci et al. 2017]: we report the error and loss values when EB

becomes positive.

103

Chapter 3. Disparity Between Batches

3. Gradient signal to noise ratio (GSNR) [Liu et al. 2020a]: we report the error and loss

values when the value of GSNR decreases for the 5th time (from the beginning of the

training).

4. Gradient inner product, gi ·g j [Fort et al. 2019]: we report the error and loss values when

the value of gi · g j decreases for the 5th time (from the beginning of the training).

5. Sign of the gradient inner product, sign(gi · g j) [Fort et al. 2019]: we report the error and

loss values when the value of sign(gi ·g j) decreases for the 5th time (from the beginning

of the training).

6. Cosine similarity between gradient vectors, cos(gi · g j) [Fort et al. 2019]: we report the

error and loss values when the value of cos(gi · g j) decreases for the 5th time (from the

beginning of the training).

7. Variance of gradients (Var) [Negrea et al. 2019]: we report the error and loss values when

the value of Var increases for the 5th time (from the beginning of the training). Variance

is computed over the same number of batches used to compute gradient disparity, in

order to compare metrics given the same computational budget.

8. Average gradient alignment within the classΩc [Mehta et al. 2020]: we report the error

and loss values when the value ofΩc decreases for the 5th time (from the beginning of

the training).

9. Optimization variance (OV) [Zhang et al. 2021c]: we report the error and loss values

when the value of OV increases for the 5th time (from the beginning of the training).

On the leftmost column of Table 3.15, we report the minimum values of the test error

and the test loss over all the iterations, which may not necessarily coincide. For instance, in

setting (c), the test error is minimized at iteration 196, whereas the test loss is minimized at

iteration 126. On the rightmost column of Table 3.15 we report the values of the test error

and loss when no early stopping is applied and the training is continued until training loss

value is below 0.01. Next to this, we report the values of the test error and the test loss when

using 5-fold cross-validation, which serves as a baseline. We have underlined the metrics

that outperform k-fold cross validation. We observe that the only metrics that consistently

outperform k-fold CV are GD and Variance of gradients.

The EB-criterion, sign(gi · g j), and cos(gi · g j) are metrics that perform quite well as early

stopping criteria, although not as well as GD and Var. In Section 3.I.1, we observe that these

metrics are not informative of the label noise level, contrary to gradient disparity.

It is interesting to observe that gradient disparity and variance of gradients produce

the exact same results when used as early stopping criteria (Table 3.15). Moreover, these

two are the only metrics that consistently outperform k-fold cross-validation. However, in

Section 3.I.2, we observe that the correlation between gradient disparity and the test loss is in

general larger than the correlation between variance of gradients and the test loss.

104

3.I. Comparison to Related Work

3.I.1 Capturing Label Noise Level

In this section, we show in particular three metrics that even though perform relatively well as

early stopping criteria, fail to account for the level of label noise, contrary to gradient disparity.

• The sign of the gradient inner product, sign(gi ·g j), should be inversely related to the test

loss; it should decrease when overfitting increases. However, we observe that the value of

sign(gi ·g j) is larger for the setting with the higher label noise level; it incorrectly detects

the setting with the higher label noise level as the setting with the better generalization

performance (see Fig. 3.26).

• The EB-criterion should be larger for settings with more overfitting. In most stages of

training, the EB-criterion does not distinguish between settings with different label

noise levels, contrary to gradient disparity (see Fig. 3.26). At the end of the training, the

EB-criterion even mistakenly signals the setting with the higher label noise level as the

setting with the better generalization performance.

• The cosine similarity between gradient vectors, cos(gi · g j), should decrease when

overfitting increases and therefore with the level of label noise in the training data. But

cos(gi · g j) does not appear to be sensitive to the label noise level, and in some cases

(Fig. 3.27 (a)) it even increases with the noise level. Gradient disparity is much more

informative of the label noise level compared to cosine similarity and the correlation

between gradient disparity and the test error is larger than the correlation between

cosine similarity and the test accuracy (see Fig. 3.27).

3.I.2 Gradient Disparity versus Variance of Gradients

It has been shown that generalization is related to gradient alignment experimentally in

[Fort et al. 2019], and to variance of gradients theoretically in [Negrea et al. 2019]. Gra-

dient disparity can be viewed as bringing the two together. Indeed, one can check that

E
[
D2

i , j

]
= 2σ2

g +2µT
g µg −2E

[
g T

i g j
]
, given that µg = E[gi] = E[g j] and σ2

g = tr
(
Cov

[
gi

]) =
tr

(
Cov

[
g j

])
. This shows that gradient variance σ2

g and gradient alignment g T
i g j both appear

as components of gradient disparity. We conjecture that the dominant term in gradient dispar-

ity is the variance of gradients, hence as early stopping criteria these two metrics almost always

signal overfitting simultaneously. This is indeed what our experiments show; we show that

variance of gradients is also a very promising early stopping criterion (Table 3.15). However,

because of the additional term in gradient disparity (the gradients inner product), gradient

disparity emphasizes the alignment or misalignment of the gradient vectors. This could be

the reason why gradient disparity in general outperforms variance of gradients in tracking the

value of the generalization loss; the positive correlation between gradient disparity and the

test loss is often larger than the positive correlation between variance of gradients and the test

loss (Table 3.16).

105

Chapter 3. Disparity Between Batches

Setting ρD,TL ρVar,TL

AlexNet, MNIST 0.433 0.169

AlexNet, MNIST, 50% random labels 0.535 0.161

VGG-16, CIFAR-10 0.190 0.324

VGG-16, CIFAR-10, 50% random labels 0.634 0.623

VGG-19, CIFAR-10 0.685 0.508

VGG-19, CIFAR-10, 50% random labels 0.748 0.735

ResNet-18, CIFAR-10 0.975 0.958

ResNet-18, CIFAR-10, 50% random labels 0.471 0.457

Table 3.16: Pearson’s correlation coefficient between gradient disparity (D) and test loss (TL)
over the training iterations is compared to the correlation between variance of gradients (Var)
and test loss.

Figure 3.26: Test loss, gradient disparity, EB-criterion [Mahsereci et al. 2017], and sign(gi · g j)
for a ResNet-18 trained on the CIFAR-10 dataset, with 0% and 50% random labels. Gradient
disparity, contrary to EB-criterion and sign(gi ·g j), clearly distinguishes the setting with correct
labels from the setting with random labels.

106

3.I. Comparison to Related Work

(a) CIFAR-10, ResNet-18

(b) MNIST, AlexNet

Figure 3.27: The test error (TE), average gradient disparity (D), and cosine similarity (cos(gi ·
g j)) during training with different amounts of randomness in the training labels for two sets of
experiments. (a) ResNet-18 trained on 12.8k points of the CIFAR-10 training set. The Pearson
correlation coefficient between test accuracy (TA) and cosine similarity (cos) over all levels of
randomness and over all the iterations is ρcos,TA =−0.0088, whereas the correlation between
test error/generalization error and gradient disparity is ρD,TE = 0.2029 and ρD,GE = 0.5268,
respectively. (b) AlexNet configuration trained on 12.8k points of the MNIST dataset. The
correlation between the test accuracy and cosine similarity is ρcos,TA = 0.7521, which is positive
and relatively high for this experiment. Yet, it is still lower than the correlation between test
error and gradient disparity which is ρD,TE = 0.8019.

107

4 Leveraging Unlabeled Data to Track
Memorization

Deep neural networks may easily memorize noisy labels present in real-world data, which

degrades their ability to generalize. It is therefore important to track and evaluate the ro-

bustness of models against noisy label memorization. In this chapter1, we propose a metric,

called susceptibility, to gauge such memorization for neural networks. Susceptibility is simple

and easy to compute during training. Moreover, it does not require access to ground-truth

labels and it only uses unlabeled data. We empirically show the effectiveness of our metric in

tracking memorization on various architectures and datasets and provide theoretical insights

into the design of the susceptibility metric. Finally, we show through extensive experiments

on datasets with synthetic and real-world label noise that one can utilize susceptibility and

the overall training accuracy to distinguish models that maintain a low memorization on the

training set and generalize well to unseen clean data.

4.1 Introduction

Deep neural networks are prone to memorizing noisy labels in the training set, which are

inevitable in many real-world applications [Frénay and Verleysen 2013; Zhang et al. 2016b;

Arpit et al. 2017; Song et al. 2022; Nigam et al. 2020; Han et al. 2020; Zhang et al. 2021a; Wei

et al. 2021]. Given a new dataset that contains clean and noisy labels, one refers to the subset

of the dataset with correct labels (respectively, with incorrect labels due to noise), as the clean

(respectively, noisy) subset. When neural networks are trained on such a dataset, it is important

to find the sweet spot from no fitting at all to fitting every sample. Indeed, fitting the clean

subset improves the generalization performance of the model (measured by the classification

accuracy on unseen clean data), but fitting the noisy subset, referred to as “memorization”2,

degrades its generalization performance. New methods have been introduced to address this

issue (for example, robust architectures [Xiao et al. 2015; Li et al. 2020b], robust objective

functions [Li et al. 2019a; Ziyin et al. 2020], regularization techniques [Zhang et al. 2017;

1This chapter is based on [Forouzesh et al. 2023].
2Fitting samples that have incorrect random labels is done by memorizing the assigned label for each particular

sample. Hence, we refer to it as memorization, in a similar spirit as Feldman and Zhang [2020].

109

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Pereyra et al. 2017; Chen et al. 2019; Harutyunyan et al. 2020], and sample selection methods

[Nguyen et al. 2019]), but their effectiveness cannot be assessed without oracle access to the

ground-truth labels to distinguish the clean and the noisy subsets, or without a clean test set.

Our goal in this chapter is to track memorization during training without any access to

ground-truth labels. To do so, we sample a subset of the input data and label it uniformly at

random from the set of all possible labels. The samples can be taken from unlabeled data,

which is often easily accessible, or from the available training set with labels removed. This

new held-out randomly-labeled set is created for evaluation purposes only, and does not affect

the original training process.

First, we compare how different models fit the held-out randomly-labeled set after mul-

tiple steps of training on it. We observe empirically that models that have better accuracy

on unseen clean test data show more resistance towards memorizing the randomly-labeled

set. This resistance is captured by the number of steps required to fit the held-out randomly-

labeled set. In addition, through our theoretical convergence analysis on this set, we show that

models with high/low test accuracy are resistant/susceptible to memorization, respectively.

Building on this result, we then propose an easy-to-compute metric that we call suscepti-

bility to noisy labels, which is the difference in the objective function of a single mini-batch

from the held-out randomly-labeled set, before and after taking an optimization step on it. At

each step during training, the larger this difference is, the more the model is affected by (and

is therefore susceptible to) the noisy labels in the mini-batch. Fig. 4.1 (bottom/middle left)

provides an illustration of the susceptibility metric. We observe a strong correlation between

the susceptibility and the memorization within the training set, which is measured by the fit

on the noisy subset. We then show how one can utilize this metric and the overall training ac-

curacy to distinguish models with a high test accuracy across a variety of state-of-the-art deep

learning models, including DenseNet [Huang et al. 2017], EfficientNet [Tan and Le 2019], and

ResNet [He et al. 2016a] architectures, and various datasets including synthetic and real-world

label noise (Clothing-1M, Animal-10N, CIFAR-10N, Tiny ImageNet, CIFAR-100, CIFAR-10,

MNIST, Fashion-MNIST, and SVHN), see Fig. 4.1 (right).

Our main contributions and takeaways are summarized below:

• We empirically observe and theoretically show that models with a high test accuracy are

resistant to memorizing a randomly-labeled held-out set (Section 4.2 and Section 4.5).

• We propose the susceptibility metric, which is computed on a randomly-labeled subset

of the available data. Our extensive experiments show that susceptibility closely tracks

memorization of the noisy subset of the training set (Section 4.3).

• We observe that models which are trainable and resistant to memorization, i.e., having

a high training accuracy and a low susceptibility, have high test accuracies. We leverage

110

4.1. Introduction

Figure 4.1: Models trained on CIFAR-10 with 50% label noise. Top (Oracle access to ground-truth
labels): We observe that the fit on the clean subset of the training set (shown in the top left) and the
fit on the noisy subset (located below the fit on the clean subset) affect the predictive performance
(measured by the classification accuracy) on unseen clean test data differently. Fitting the clean (resp.,
noisy) subset improves (resp., degrades) test accuracy, as shown by the green (resp., red) arrow. With
oracle access to the ground-truth label, one can therefore select models with a high fit on the clean
subset and a low fit on the noisy subset, as it is done in the top right to find desirable models. Bottom
(Our approach in practice): In practice however, the ground-truth label, and hence the fit on the clean
and noisy subsets are not available. In this chapter, we propose the metric called susceptibility ζ to
track the fit on the noisy subset of the training set. Susceptibility is computed using a mini-batch of
data that is assigned with random labels independently from the dataset labels. We observe a strong
correlation between susceptibility and memorization. Moreover, the susceptibility metric together
with the training accuracy on the entire set, is used to recover models with low “memorization” (low fit
on the noisy subset) and high “trainability” (high fit on the clean subset) without any ground-truth
label oracle access. The average test accuracy of models in the top-left rectangle of the right figures
are 77.93±4.68% and 76.15±6.32% for the oracle and our approach, respectively. Hence, our method
successfully recovers desirable models.

this observation to propose a model-selection method in the presence of noisy labels

(Section 4.4).

• We show through extensive experiments that our results hold for real-world label noise,

and are persistent for various datasets, architectures, hyper-parameters, label noise

levels, and label noise types (Section 4.6 and Section 4.7).

Related work Garg et al. [2021a] show that for models trained on a mixture of clean and

noisy data, a low accuracy on the noisy subset of the training set and a high accuracy on the

clean subset of the training set guarantee a low generalization error. With oracle access to the

ground-truth labels to compute these accuracies, one can therefore predict which models

perform better on unseen clean data. This is done in Fig. 4.1 (Oracle part). However, in practice,

111

Chapter 4. Leveraging Unlabeled Data to Track Memorization

there is no access to ground-truth labels. Our work therefore complements the results of [Garg

et al. 2021a] by providing a practical approach (see Fig. 4.1 (Practice part)). Moreover, both our

work and [Zhang et al. 2019c] emphasize that a desirable model differentiates between fitting

clean and noisy samples. Zhang et al. [2019c] showcase this intuition by studying the drop in

the training accuracy of models trained when label noise is injected in the dataset. We do it

by studying the resistance/susceptibility of models to noisy labels of a held-out set. Zhang

et al. [2019c] only study the training accuracy drop for settings where the available training

set is clean. However, when the training set is itself noisy, which is the setting of interest in

our work, we observe that this training accuracy drop does not predict memorization, unlike

our susceptibility metric (see Fig. 4.8 (left) in Section 4.A). Furthermore, even though the

metric proposed in Lu and He [2022] is rather effective as an early stopping criterion, it is not

able to track memorization, contrary to susceptibility (see Fig. 4.8 (middle)). For a thorough

comparison to other related work refer to Section 4.A.

4.2 Good Models are Resistant to Memorization

Consider models fΘ(x) with parameter matrixΘ trained on a dataset S = {
(
xi , yi

)
}n
1 , which is

a collection of n input-output pairs that are drawn from a data distribution D over X ×Y

in a multi-class classification setting. We raise the following question: How much are these

models resistant/susceptible to memorization of a new low-label-quality (noisy) dataset when

they are trained on it? Intuitively, we expect a model with a high accuracy on correct labels to

stay persistent on its predictions and hence to be resistant to the memorization of this new

noisy dataset. We use the number of steps that it requires to fit the noisy dataset, as a measure

for this resistance. The larger this number, the stronger the resistance (hence, the lower the

susceptibility). In summary, we conjecture that models with high test accuracy on unseen

clean data are more resistant to memorization of noisy labels, and hence take longer to fit a

randomly-labeled held-out set.

To mimic a noisy dataset, we create a set with random labels. More precisely, we define a

randomly-labeled held-out set of samples S̃ = {
(
x̃i , ỹi

)
}ñ
1 , which is generated from ñ unlabeled

samples {x̃i }ñ
1 ∼X that are either accessible, or are a subset of {xi }n

1 . The outputs ỹi of dataset

S̃ are drawn independently (both from each other and from labels in S) and uniformly at

random from the set of possible classes. Therefore, to fit S̃, the model needs to memorize the

labels. We track the fit (memorization) of a model on S̃ after k̃ optimization steps on the noisy

dataset S̃.

We perform the following empirical test. In Fig. 4.2, we compare two deep neural networks.

The first one has a high classification accuracy on unseen clean test data, whereas the other

one has a low test accuracy. We then train both these models on a single sample with an

incorrect label (S̃ contains a single incorrectly-labeled sample). We observe that the model

with a high test accuracy takes a long time (in terms of the number of training steps) to fit

this sample; hence this model is resistant to memorization as the number of steps k̃ required

112

4.2. Good Models are Resistant to Memorization

Figure 4.2: The evolution of output prediction of two neural networks during training on a single
sample with a wrong randomly-assigned label (the assigned label is “cat” while the ground-truth label
is “deer”) versus the number of epochs (steps) k̃. Network1 is a GoogLeNet [Szegedy et al. 2015] (pre-
)trained on CIFAR-10 dataset with clean labels and has initial test accuracy of 95.36%. Network2 is a
GoogLeNet (pre-)trained on CIFAR-10 dataset with 50% label noise level and has initial test accuracy of
58.35%. Network2 has a lower test accuracy compared to Network1, and we observe that it memorizes
this new sample after only k̃ = 2 steps. In contrast, Network1 persists in predicting the correct output
for this sample for longer and memorizes the new sample only after k̃ = 99 steps. More examples and an
ablation study on the effect of calibration are given in Fig. 4.9 and Fig. 4.11 in Section 4.D, respectively.

to fit S̃ is large. In contrast, the model with a low test accuracy memorizes this sample after

taking only a few steps; hence this model is susceptible to memorization as k̃ required to fit S̃

is small3. This observation reinforces our intuition, that good models, measured by a high test

accuracy, are more resistant to memorization of noisy labels.

Next, we further validate this observation theoretically by performing a convergence

analysis on the held-out set S̃, where the input samples {x̃i }ñ
1 of S̃ are the same as the inputs of

dataset S (and hence ñ = n). We consider the binary-classification setting. The output vector

ỹ = (
ỹ1, · · · , ỹn

)T is a vector of independent random labels that take values uniformly in {−1,1}.

Therefore, creating this dataset S̃ does not require extra information, and in particular no

access to the data distribution D. Consider the network fΘ(x) as a two-layer neural network

with ReLU non-linearity (denoted by σ(x) = max{x,0}) and m hidden-units:

fΘ(x) = 1p
m

m∑
r=1

arσ
(
θT

r x
)

,

where x ∈RD is the input vector,Θ= (θ1, · · · ,θm) ∈RD×m , a = (a1, · · · , am) ∈Rm are the weight

matrix of the first layer, and the weight vector of the second layer, respectively. For simplicity,

the outputs associated with the input vectors {xi }n
1 are denoted by vector fΘ ∈ Rn instead

of { fΘ(xi)}n
1 . The first layer weights are initialized as θr (0) ∼ N

(
0,κ2I

)
, ∀r ∈ [m], where

0 < κ≤ 1 is the magnitude of initialization and N denotes the normal distribution. ar s are

independent random variables taking values uniformly in {−1,1}, and are considered to be

fixed throughout training.

3Interestingly, we observe that the situation is different for a correctly-labeled sample. Fig. 4.10 in Section 4.D
shows that models with a higher test accuracy typically fit an unseen correctly-labeled sample faster than models
with a lower test accuracy.

113

Chapter 4. Leveraging Unlabeled Data to Track Memorization

We define the objective function on datasets S and S̃, respectively, as

Φ(Θ) = 1

2

∥∥fΘ−y
∥∥2

2 =
1

2

n∑
i=1

(
fΘ(xi)− yi

)2 , Φ̃(Θ) = 1

2

n∑
i=1

(
fΘ(xi)− ỹi

)2 . (4.1)

Label noise level (LNL) of S (and accordingly of the label vector y) is the ratio n1/n, where

n1 is the number of samples in S that have labels that are independently drawn uniformly in

{−1,1}, and the remaining n −n1 samples in S have the ground-truth label. Hence, the two

extremes are S with LNL = 0, which is the clean dataset, and S with LNL = 1, which is a dataset

with entirely random labels.

To study the convergence of different models on S̃, we compute the objective function

Φ̃(Θ) after k̃ steps of training on the dataset S̃. Therefore, the overall training/evaluation

procedure is as follows; for r ∈ [m], the first layer weights of the neural network are updated

according to gradient descent:

θr (t +1)−θr (t) =−γ∂Φ (Θ(t))

∂θr
,

where for 0 ≤ t < k: Φ=Φ, and for k ≤ t < k + k̃: Φ= Φ̃, and γ is the learning rate. Note that we

refer toΦ(Θ(t)) asΦ(t) and to Φ̃(Θ(t)) as Φ̃(t).

When a model fits the set S̃, the value of Φ̃ becomes small, say below some threshold ε.

The resistance of a model to memorization (fit) on the set S̃ is then measured by the number

of steps k̃∗(ε) such that Φ̃(k + k̃) ≤ ε for k̃ > k̃∗(ε). The larger (respectively, smaller) k̃∗ is, the

more the model is resistant (resp, susceptible) to this memorization. We can reason on the

link between a good model and memorization from the following proposition.

Proposition 1 (Informal). The objective function Φ̃ at step k + k̃ is a decreasing function of the

label noise level (LNL) in S, and of the number of steps k̃.

Proposition 1 yields that models trained on S with a low LNL (which are models with a

high test accuracy on clean data) push Φ̃(k + k̃) to become large. The number of steps k̃∗(ε)

should therefore be large for Φ̃ to become less than ε: these models resist the memorization

of S̃. Conversely, models trained on S with a high LNL (which are models with a low test

accuracy), allow for k̃∗(ε) to be small and give up rapidly to the memorization of S̃. These

conclusions match the empirical observation in Fig. 4.2, and therefore further support the

intuition that good models are resistant to memorization.

Refer to Section 4.5 for the formal theoretical results that produce Proposition 1.

114

4.3. Evaluating Resistance to Memorization

4.3 Evaluating Resistance to Memorization

In Section 4.2, we showed that desirable models in terms of high classification accuracy on

unseen clean data are resistant to the memorization of a randomly-labeled set. In this section,

we describe a simple and computationally efficient metric to measure this resistance. To

evaluate it efficiently at each step of the forward pass, we propose to take a single step on

multiple randomly labeled samples, instead of taking multiple steps on a single randomly

labeled sample (as done in Fig. 4.2). To make the metric even more computationally efficient,

instead of the entire randomly labeled set S̃ (as in our theoretical developments), we only take

a single mini-batch of S̃. For simplicity and with some abuse of notation, we still refer to this

single mini-batch as S̃.

Algorithm 1: Computes the susceptibility to

noisy labels ζ

1: Input: Dataset S, Number of Epochs T

2: Sample a mini-batch S̃ from S; Replace its

labels with random labels

3: Initialize network fΘ(0)

4: Initialize ζ(0) = 0

5: for t = 1, · · · ,T do

6: Update fΘ(t) from fΘ(t−1) using dataset S

7: Compute Φ̃(Θ(t))

8: Update fΘ̃(t+1) from fΘ(t) using dataset S̃

9: Compute Φ̃(Θ̃(t +1))

10: Compute ζ(t) = 1
t

[
(t − 1)ζ(t − 1) +

Φ̃(Θ(t))− Φ̃(Θ̃(t +1))
]

11: end for

12: Return ζ.

To track the prediction of the model over

multiple samples, we compare the objective

function (Φ̃) on S̃ before and after taking a

single optimization step on it. The learn-

ing rate, and its schedule, have a direct ef-

fect on this single optimization step. For cer-

tain learning rate schedules, the learning rate

might become close to zero (e.g., at the end

of training), and hence the magnitude of this

single step would become too small to be

informative. To avoid this, and to account

for the entire history of the optimization tra-

jectory4, we compute the average difference

over the learning trajectory (a moving aver-

age). We propose the following metric, which

we call susceptibility to noisy labels, ζ(t). At

step t of training,

ζ(t) = 1

t

t∑
τ=1

[
Φ̃ (Θ(τ))− Φ̃(

Θ̃ (τ+1)
)]

, (4.2)

where Θ (τ), Θ̃ (τ+1) are the model parameters before and after a single update step on S̃.

Algorithm 1 describes the computation of ζ. The lower ζ(t) is, the less the model changes

its predictions for S̃ after a single step of training on it, and thus the less it memorizes the

randomly-labeled samples. We say therefore that a model is resistant (to the memorization of

randomly-labeled samples) when the susceptibility to noisy labels ζ(t) is low.

Susceptibility ζ tracks memorization for different models The classification accuracy

of a model on a set is defined as the ratio of the number of samples where the label predicted

4The importance of the entire learning trajectory including its early phase is emphasized in prior work such as
[Jastrzebski et al. 2020].

115

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Figure 4.3: Accuracy on the noisy subset of the training set versus susceptibility ζ(t) (Eq. (4.2)) for deep
convolutional neural networks (ranging from a 5−layer cnn to more sophisticated structures such as
EfficientNet [Tan and Le 2019]) trained on CIFAR-10 with 50% label noise. We observe a strong Pearson
correlation coefficient between Train ACC Noisy and ζ(t): ρ = 0.884.

by the model matches the label on the dataset, to the total number of samples. We refer to the

subset for which the dataset label is different from the ground-truth label as the noisy subset

of the training set. Its identification requires access to the ground-truth label. Recall that we

refer to memorization within the training set as the fit on the noisy subset, which is measured

by the accuracy on it. We call this accuracy “Train ACC Noisy” in short. In Fig. 4.3, we observe

a strong positive correlation between the memorization of the held-out randomly labeled set,

which is tracked by ζ(t) (Eq. (4.2)) and the memorization of noisy labels within the training set,

tracked by Train ACC Noisy. Susceptibility ζ, which is computed on a mini-batch with labels

independent from the training set, can therefore predict the resistance to memorization of the

noisy subset of the training set. In Fig. 4.30, we show the robustness of susceptibility ζ to the

mini-batch size, and to the choice of the particular mini-batch.

Susceptibility ζ tracks memorization for a single model It is customary when investi-

gating different capabilities of a model, to keep checkpoints/snapshots during training and

decide which one to use based on the desired property, see for example [Zhang et al. 2019a;

Chatterji et al. 2019; Neyshabur et al. 2020; Andreassen et al. 2021; Baldock et al. 2021]. With

access to ground-truth labels, one can track the fit on the noisy subset of the training set

to find the model checkpoint with the least memorization, which is not necessarily the end

checkpoint, and hence an early-stopped version of the model. However, the ground-truth

label is not accessible in practice, and therefore the signals presented in Fig. 4.3 (left) are

absent. Moreover, as discussed in Fig. 4.6, the training accuracy on the entire training set is

also not able to recover these signals. Using susceptibility ζ, we observe that these signals can

be recovered without any ground-truth label access, as shown in Fig. 4.3 (right). Therefore, ζ

can be used to find the model checkpoint with the least memorization. For example, in Fig. 4.3,

for the ResNet model, susceptibility ζ suggests to select model checkpoints before it sharply

increases, which exactly matches with the sharp increase in the fit on the noisy subset. On the

other hand, for the EfficientNet model, susceptibility suggests to select the end checkpoint,

which is also consistent with the selection according to the fit on the noisy subset.

116

4.4. Good Models are Resistant and Trainable

(a) Test accuracy versus train accuracy for all models
at all epochs

(b) Test accuracy versus train accuracy for models that
have ζ(t) ≤ 0.05

Figure 4.4: The effect of filtering the models based on the susceptibility metric ζ(t) for models trained
on CIFAR-10 with 50% label noise. We observe that by removing models with a high value of ζ(t), the
correlation between the training accuracy (accessible to us in practice) and the test accuracy (not
accessible) increases a lot, and we observe that among the selected models, a higher training accuracy
implies a higher test accuracy. Refer to Fig. 4.13, Fig. 4.15, Fig. 4.18, Fig. 4.21, Fig. 4.23 for similar results
on 5 other datasets. We use a threshold such that half of the models have ζ < threshold and hence
remain after filtration.

4.4 Good Models are Resistant and Trainable

When networks are trained on a dataset that contains clean and noisy labels, the fit on the clean

and noisy subsets affect the generalization performance of the model differently. Therefore, as

we observe in Fig. 4.4a for models trained on a noisy dataset (details are deferred to Section 4.B),

the correlation between the training accuracy (accuracy on the entire training set) and the test

accuracy (accuracy on the unseen clean test set) is low. Interestingly however, we observe in

Fig. 4.4b that if we remove models with a high memorization on the noisy subset, as indicated

by a large susceptibility to noisy labels ζ(t), then the correlation between the training and the

test accuracies increases significantly (from ρ = 0.608 to ρ = 0.951), and the remaining models

with low values of ζ(t) have a good generalization performance: a higher training accuracy

implies a higher test accuracy. This is especially important in the practical settings where we

do not know how noisy the training set is, and yet must reach a high accuracy on clean test

data.

After removing models with large values of ζ(t), we select models with a low label noise

memorization. However, consider an extreme case: a model that always outputs a constant is

also low at label noise memorization, but does not learn the useful information present in the

clean subset of the training set either. Clearly, the models should be “trainable” on top of being

resistant to memorization. A “trainable model" is a model that has left the very initial stages of

training, and has enough capacity to learn the information present in the clean subset of the

dataset to reach a high accuracy on it. The training accuracy on the entire set is a weighted

average of the training accuracy on the clean and noisy subsets. Therefore, among the models

with a low accuracy on the noisy subset (selected using susceptibility ζ in Fig. 4.4b), we should

further restrict the selection to those with a high overall training accuracy, which corresponds

to a high accuracy on the clean subset.

117

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) For models trained on CIFAR-10 with 50% label
noise, we use two thresholds on susceptibility and
accuracy to divide these models into 4 regions and
corresponding categories as follows. We use the
average values of ζ(t) and of the training accuracy
over the available models as the thresholds. Re-
gion 1: Trainable and resistant, with average test
accuracy of 76%. Region 2: Trainable and but not
resistant, with average test accuracy of 70.59%. Re-
gion 3: Not trainable but resistant, with average
test accuracy of 52.49%. Region 4: Neither train-
able nor resistant, with average test accuracy of
58.23%. We observe that the models in Region 1
generalize well on unseen data, as they have a high
test accuracy.

(b) The lower (dashed lines) and upper (solid lines)
bound terms of Theorem 4 that depend on the la-
bel noise level (LNL). They are computed from the
eigenvectors and eigenvalues of the Gram-matrix for
1000 samples of the MNIST dataset, computed over 10
random draws computed with hyper-parameters γ=
10−6, k = 10000 and δ = 0.05. We observe that both
the lower and the upper bounds in Theorem 4 are
a decreasing function of LNL and of the number of
epochs k̃. Therefore, we conclude that Φ̃(k + k̃) is also
a decreasing function of LNL and of k̃ (Proposition 1).

We can use the two metrics, susceptibility to noisy labels ζ(t) and overall training accuracy,

to partition models that are being trained on some noisy dataset in different regions. For

simplicity, we use the average values of ζ and training accuracy as thresholds that are used to

obtain four different regions. In Section 4.F and Fig. 4.33, we observe that our model selection

approach is robust to this threshold choice. According to this partitioning and as shown in

Fig. 4.5a the models in each region are: Region 1: Trainable and resistant to memorization (i.e.,

having a high training accuracy and a low ζ), Region 2: Trainable but not resistant, Region 3:

Not trainable but resistant, and Region 4: Neither trainable nor resistant. Note that the colors

of each point, which indicate the value of the test accuracy are only for illustration and are not

used to find these regions. The average test accuracy is the highest for models in Region 1 (i.e.,

that are resistant to memorization on top of being trainable). In particular, going from Region 2

to Region 1 increases the average test accuracy of the selected models from 70.59% to 76%,

i.e., a 7.66% relative improvement in the test accuracy. This improvement is consistent with

other datasets as well: 6.7% for Clothing-1M (Fig. 4.5g), 4.2% for Animal-10N (Fig. 4.5h), 2.06%

for CIFAR-10N (Fig. 4.5i), 31.4% for noisy MNIST (Fig. 4.12), 33% for noisy Fashion-MNIST

(Fig. 4.14), 33.6% for noisy SVHN (Fig. 4.16), 15.1% for noisy CIFAR-100 (Fig. 4.19), and 8% for

noisy Tiny ImageNet (Fig. 4.22) datasets (refer to Section 4.E for detailed results).

Comparison with using a noisy validation set: Given a dataset containing noisy labels, a

correctly-labeled validation set is not accessible without ground-truth label access. One can

however use a subset of the available dataset and assess models using this noisy validation set.

An important advantage of our approach compared to this assessment is the information that

118

4.5. Convergence Analysis

it provides about the memorization within the training set, which is absent from performance

on a test set or a noisy validation set. For example, in Fig. 4.28a and Fig. 4.29a we observe

models (on the very top right) that have memorized 100% of the noisy subset of the training

set, and yet have a high test accuracy. However, some models (on the top middle/left part of

the figure), which have the same fit on the clean subset but lower memorization, have lower

or similar test accuracy. For more details, refer to Section 4.C.

Moreover, as formally discussed in [Lam and Stork 2003], the number of noisy validation

samples that are equivalent to a single clean validation sample depends on the label noise level

of the dataset and on the true error rate of the model, which are both unknown in practice,

making it difficult to pick an acceptable size for the validation set without compromising the

training set. If we use a small validation set (which allows for a large training set size), then

we observe a very low correlation between the validation and the test accuracies (as reported

in Table 4.1 and Fig. 4.9a in Section 4.C). In contrast, our approach provides much higher

correlation to the test accuracy. We also conducted experiments with noisy validation sets with

larger sizes and observed that the size of the noisy validation set would need to be increased

around ten-fold to reach the same correlation as our approach. Increasing the size of the

validation set removes data out of the training set, which may degrade the overall performance,

whereas our approach leaves the entire available dataset for training. Overall, in addition

to robustness against label noise level and dataset size, our approach brings advantages in

offering a gauge on memorization, without needing extra data, while maintaining a very low

computational cost.

4.5 Convergence Analysis

In this section, we elaborate on the analysis that leads to (the informal) Proposition 1. A matrix,

a vector, and a scalar are denoted respectively by A,a, and a. The identity matrix is denoted

by I. The indicator function of a random event A is denoted by I(A). The (i , j)−th entry of

Matrix A is Ai j .

Consider the setting described in Section 4.2 with ‖x‖2 = 1 and
∣∣y

∣∣ ≤ 1 for (x, y) ∼ D :=
X ×Y , where X = Rd and Y = R. For input samples {xi }n

1 , the n ×n Gram matrix H∞ has

entries

H∞
i j = Eθ∼N (0,I)

[
xT

i x j I{θ
T xi ≥ 0,θT x j ≥ 0}

]= xT
i x j

(
π−arccos(xT

i x j)
)

2π
, ∀i , j ∈ [n], (4.3)

and its eigen-decomposition is H∞ =∑n
i=1λi vi vT

i , where the eigenvectors vi ∈Rn are orthonor-

mal and λ0 = min{λi }n
1 . Using the eigenvectors and eigenvalues of H∞, we have the following

theorem.

Theorem 3. For κ=O
(
ε
p
δλ0

n3/2

)
, m =Ω

(
n9

λ6
0ε

2κ2δ4

)
, and γ=O

(
λ0

n2

)
, with probability at least 1−δ

over the random parameter initialization described in Section 4.2 , we have:

119

Chapter 4. Leveraging Unlabeled Data to Track Memorization

∥∥fΘ(k+k̃) − ỹ
∥∥

2
=

√
n∑

i=1

[
vT

i y−vT
i ỹ− (

1−ηλi
)k vT

i y
]2

(1−γλi)2k̃ ±ε.

The proof is provided in Section 4.J.

Theorem 3 enables us to approximate the objective function on dataset S̃ (Section 4.2) as

follows:

Φ̃(k + k̃) ≈ 1

2

n∑
i=1

[
pi − p̃i −

(
1−γλi

)k pi

]2
(1−γλi)2k̃ , (4.4)

where pi = vT
i y and p̃i = vT

i ỹ. Let us define

µ=
n∑

i=1
E
[
p2

i

][
1− (

1−γλi
)k

]2 (
1−γλi

)2k̃ , Σ= Varp̃,p
[
Φ̃(k + k̃)

]
. (4.5)

We numerically observe that µ/2±p
Σ/δ are both decreasing functions of the label noise level

(LNL) of the label vector y, and of k̃ (see Fig. 4.5b, and Fig. 4.34, Fig. 4.35, Fig. 4.36, Fig. 4.37 in

Section 4.K for different values of the learning rate γ, number of steps k, and datasets). The

approximation in Eq. (4.4) together with the above observation then yields the following lower

and upper bounds for Φ̃(k + k̃).

Theorem 4. With probability at least 1−δ over the draw of the random label vector ỹ, given the

approximation made in Eq. (4.4),

µ

2
−

√
Σ

δ
≤ Φ̃(k + k̃)− 1

2

n∑
i=1

(
1−γλi

)2k̃ ≤ µ

2
+

√
Σ

δ
(4.6)

The proof is provided in Section 4.K. Because the term
∑n

i=1

(
1−γλi

)2k̃ is independent

of LNL of the label vector y, we can conclude that Φ̃(k + k̃) is a decreasing function of LNL.

Moreover, Since 0 < 1−γλi < 1, the term
∑n

i=1

(
1−γλi

)2k̃ is also a decreasing function of k̃.

Therefore, similarly, we can conclude that Φ̃(k + k̃) is a decreasing function of k̃. Proposition 1

summarizes this result.

4.6 Experiments on Real-world Datasets with noisy labels

To evaluate the performance of our approach on real-world datasets, we have conducted

additional experiments on the Clothing-1M dataset [Xiao et al. 2015], which is a dataset with

1M images of clothes, on the Animal-10N dataset [Song et al. 2019], which is a dataset with

50k images of animals and on the CIFAR-10N dataset [Wei et al. 2022], which is the CIFAR-10

dataset with human-annotated noisy labels obtained from Amazon Mechanical Turk. In the

Clothing-1M dataset, the images have been labeled from the texts that accompany them,

hence there are both clean and noisy labels in the set, and in the Animal-10N dataset, the

120

4.6. Experiments on Real-world Datasets with noisy labels

C
o

m
p

u
ta

ti
o

n

(a) The Clothing-1M dataset (b) The Animal-10N dataset (c) The CIFAR-10N dataset

Se
le

ct
io

n

(d) The Clothing-1M dataset (e) The Animal-10N dataset (f) The CIFAR-10N dataset

E
va

lu
at

io
n

(g) The Clothing-1M dataset (h) The Animal-10N dataset (i) The CIFAR-10N dataset

Figure 4.5: For real-world noisy labeled datasets, we show in three steps the efficiency of
our model-selection approach. Top: Training accuracy and susceptibility ζ are computed
for models trained on each dataset. Middle: According to the average values of the training
accuracy and susceptibility ζ the figure is divided into 4 regions. Our model-selection approach
suggests selecting models in Region 1, which are resistant to memorization on top of being
trainable. Bottom: The test accuracy of the models is visualized using the color of each point
(which is only for illustration and is not used to find different regions). We can observe that
models in Region 1 have the highest test accuracies in each dataset.

images have been gathered and labeled from search engines. In these datasets, some images

have incorrect labels and the ground-truth labels in the training set are not available. Hence

in our experiments, we cannot explicitly track memorization as measured by the accuracy on

the noisy subset of the training set.

We train different settings on these two datasets with various architectures (including

ResNet, AlexNet and VGG) and varying hyper-parameters (refer to Section 4.B for details). We

compute the training accuracy and susceptibility ζ during the training process for each setting

and visualize the results in Fig. 4.5 (a)-(c).

We divide the models of Fig. 4.5 (a)-(c) into 4 regions, where the boundaries are set to the

average value of the training accuracy (horizontal line) and the average value of susceptibility

(vertical line): Region 1: Models that are trainable and resistant to memorization, Region 2:

Trainable and but not resistant, Region 3: Not trainable but resistant and Region 4: Neither

121

Chapter 4. Leveraging Unlabeled Data to Track Memorization

trainable nor resistant. This is shown in Fig. 4.5 (d)-(f).

Our approach suggests selecting models in Region 1 (low susceptibility, high training

accuracy). In order to assess how our approach does in model selection, we can reveal the test

accuracy computed on a held-out clean test set in Fig. 4.5 (g)-(i). We observe that the average

(± standard deviation) of the test accuracy of models in each region is as follows:

• Clothing-1M dataset: Region 1: 61.799% ± 1.643; Region 2: 57.893% ± 3.562; Region 3:

51.250% ± 17.209; Region 4: 51.415% ± 9.709.

• Animal-10N dataset: Region 1: 96.371% ± 1.649; Region 2: 92.508% ± 2.185; Region 3:

91.179% ± 6.601; Region 4: 89.352% ± 3.142.

• CIFAR-10N dataset: Region 1: 87.2% ± 0.99; Region 2: 85.44% ± 2.52; Region 3: 77.87% ±

8.15; Region 4: 78.45% ± 3.86.

We observe that using our approach we are able to select models with very high test

accuracy. In addition, the test accuracies of models in Region 1 have the least amount of

standard deviation. Note that our susceptibility metric ζ does not use any information about

the label noise level or the label noise type that is present in these datasets. Similarly to the

rest of this chapter, random labeling is used for computing ζ. Interestingly, even though within

the training sets of these datasets the label noise type is different than random labeling (label

noise type is instance-dependent [Xia et al. 2020; Wei et al. 2022]), ζ is still successfully tracking

memorization.

Therefore, our approach selects trainable models with low memorization even for datasets

with real-world label noise. Observe that selecting models only on the basis of their training

accuracy or only on the basis of their susceptibility fails: both are needed. It is interesting

to note that in the Clothing-1M dataset, as the dataset is more complex, the range of the

performance of different models varies and our approach is able to select “good” models from

“bad” models. On the other hand, in the Animal-10N dataset, as the dataset is easier to learn

and the estimated label noise level is lower, most models are already performing rather well.

Here, our approach is able to select the “best” models from “good” models.

4.7 On the Generality of the Observed Phenomena

In this section, we provide additional experiments that show our empirical results hold across

different choices of dataset, training, and architecture design as well as label noise level and

form.

Dataset: In addition to the real-world datasets provided in the previous section, our

results consistently hold for datasets MNIST, Fashion MNIST, SVHN, CIFAR-100, and Tiny

ImageNet datasets; see Fig. 4.12-Fig. 4.23 in Section 4.E.

122

4.8. Conclusion

Learning rate schedule: Our results are not limited to a specific optimization scheme.

In our experiments, we apply different learning rate schedules, momentum values, and opti-

mizers (SGD and Adam) (for details see Section 4.B). More specifically, we show in Fig. 4.25

(in Section 4.F) that the strong correlation between memorization and our metric ζ(t) stays

consistent for both learning rate schedulers cosineannealing and exponential.

Architecture: Results of Section 4.3 and Section 4.4 are obtained from a variety of ar-

chitecture families, such as DenseNet [Huang et al. 2017], MobileNet [Howard et al. 2017],

VGG [Simonyan and Zisserman 2014], and ResNet [He et al. 2016a]. For the complete list of

architectures, see Section 4.B. We observe that ζ(t) does not only detect resistant architecture

families (as done for example in Fig. 4.3), but that it is also able to find the best design choice

(e.g., width) among configurations that are already resistant, see Fig. 4.24 in Section 4.F.

Low label noise levels: In addition to the real-world datasets with low label noise levels

(label noise level of Animal-10N and CIFAR-10N are 8% and 9%, respectively), we studied

low label noise levels in datasets with synthetic label noises as well. For models trained on

CIFAR-10 and CIFAR-100 datasets with 10% label noise (instead of 50%), we still observe a

high correlation between accuracy on the noisy subset and ζ(t) in Fig. 4.26 and Fig. 4.27 in

Section 4.F. Moreover, we observe in Fig. 4.28 and Fig. 4.29 in Section 4.F that the average test

accuracy of the selected models using our metric is comparable with the average test accuracy

of the selected models with access to the ground-truth label.

Asymmetric label noise: In addition to the real-world datasets with asymmetric label

noises (label noise type of the datasets in Section 4.6 is instance-dependent [Xia et al. 2020;

Wei et al. 2022]), we studied synthetic asymmetric label noise as well. We have performed

experiments with asymmetric label noise as proposed in [Xia et al. 2021]. Using our approach,

the average test accuracy of the selected models is 66.307%, whereas the result from oracle is

66.793% (see Fig. 4.32 in Section 4.E).

4.8 Conclusion

We have proposed a simple but surprisingly effective approach to track memorization of the

noisy subset of the training set using a single mini-batch of unlabeled data. Our contributions

are three-fold. First, we have shown that models with a high test accuracy are resistant

to memorization of a held-out randomly-labeled set. Second, we have proposed a metric,

susceptibility, to efficiently measure this resistance. Third, we have empirically shown that

one can utilize susceptibility and the overall training accuracy to distinguish models (whether

they are a single model at various checkpoints, or different models) that maintain a low

memorization on the training set and generalize well to unseen clean data while bypassing

the need to access the ground-truth label. We have studied model selection in a variety of

experimental settings and datasets with label noise, ranging from selecting the “best” models

from “good” models (for easy datasets such as Animal-10N) to selecting “good” models from

“bad” models (for more complex datasets such as Clothing-1M).

123

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Our theoretical results have direct implications for online settings. When the quality of

the labels for new data stream is low, Theorem 3 can directly compare how different models

converge on this low-quality data, and help in selecting resistant models, which converge

slowly on this data. Our empirical results provide new insights on the way models memorize

the noisy subset of the training set: the process is similar to the memorization of a purely

randomly-labeled held-out set.

124

Appendices

4.A Additional Related Work

Memorization Arpit et al. [2017] describe memorization as the behavior shown by neural

networks when trained on noisy data. Patel and Sastry [2021] define memorization as the

difference in the predictive performance of models trained on clean data and on noisy data

distributions, and propose a robust objective function that resists to memorization. The effect

of neural network architecture on their robustness to noisy labels is studied in [Li et al. 2021],

which measures robustness to noisy labels by the prediction performance of the learned

representations on the ground-truth target function. Feldman and Zhang [2020] formally

define memorization of a sample for an algorithm as the inability of the model to predict the

output of a sample based on the rest of the dataset, so that the only way that the model can fit

the sample is by memorizing its label. Our definition of memorization as the fit on the noisy

subset of the training set follows the same principle; the fit of a randomly-labeled individual

sample is only possible if the totally random label associated with the sample is memorized,

and it is impossible to predict using the rest of the dataset.

Learning before Memorization Multiple studies have reported that neural networks learn

simple patterns first, and memorize the noisy labeled data later in the training process [Arpit

et al. 2017; Gu and Tresp 2019; Krueger et al. 2017; Liu et al. 2020b]. Hence, early stopping might

be useful when learning with noisy labels. Parallel to our study, Lu and He [2022] propose

early stopping metrics that are computed on the training set. These early stopping metrics

are computed by an iterative algorithm (either a GMM or k-Means) on top of the training loss

histograms. This adds computational overhead compared to our approach, which is based

on a simple metric that can be computed on the fly. Moreover, we can observe in Fig. 4.8

(middle) that the metric proposed in Lu and He [2022], which is the mean difference between

distributions obtained from the GMM applied on top of the training losses, does not correlate

with memorization on the training set, as opposed to our metric susceptibility. Hence, we can

conclude that, even though the mean difference metric might be a rather well early stopping

criterion for a single setting, it does not perform well in terms of comparing different settings

to one another. Moreover, Rahaman et al. [2019]; Xu et al. [2019a;b] show that neural networks

learn lower frequencies in the input space first and higher frequencies later. However, the

monotonic behavior of neural networks during the training procedure is recently challenged

125

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Figure 4.6: Accuracy on the entire, the clean and the noisy subsets of the training set, versus
susceptibility in Eq. (4.2) for a 5−layer convolutional neural network trained on CIFAR-10
with 50% label noise without any regularization, with Mixup [Zhang et al. 2017], and with
Active Passive loss using the normalized cross entropy together with reverse cross-entropy
loss (denoted by NCE) [Ma et al. 2020]. The sharp increases in the overall training accuracy
(illustrated by the red and yellow stars) can be caused by an increase in the accuracy of either
the clean (the yellow star) or noisy (the red star) subsets. Therefore, this sharp increase could
not predict memorization, contrary to the susceptibility ζ, which is strongly correlated with the
accuracy on the noisy subset (Pearson correlation between Train ACC Noisy and susceptibility
ζ is ρ = 0.636).

by the epoch-wise double descent [Zhang et al. 2020a; Nakkiran et al. 2021]. When a certain

amount of fit is observed on the entire training set, how much of this fit corresponds to the

fit on the clean and noisy subsets, respectively, is still unclear. In this chapter, we propose an

approach to track the fit to the clean subset and the fit to the noisy subset (memorization)

explicitly.

Training Speed Lyle et al. [2020] show there is a connection between training speed and

the marginal likelihood for linear models. Jiang and Gal [2021] also find an explanation for the

connection between training speed and generalization, and Ru et al. [2021] use this connection

for neural architecture search. However, in Fig. 4.6, we observe that a sharp increase in the

training accuracy (a high training speed), does not always indicate an increase in the value of

accuracy on the noisy subset. This result suggests that studies that relate training speed with

generalization [Lyle et al. 2020; Ru et al. 2021] might not be extended as such to noisy-label

training settings. On the other hand, we observe a strong correlation between susceptibility ζ

and accuracy on the noisy subset.

Leveraging Unlabeled/Randomly-labeled Data Unlabeled data has been leveraged pre-

viously to predict out-of-distribution performance (when there is a mismatch between the

126

4.A. Additional Related Work

training and test distributions) [Garg et al. 2021b]. Li et al. [2019a] introduce synthetic noise

to unlabeled data, to propose a noise-tolerant meta-learning training approach. Zhang et al.

[2021b] use randomly labeled data to perform neural architecture search. In this chapter, we

leverage unlabeled data to track the memorization of label noise.

Benefits of Memorization Studies on long-tail data distributions show potential bene-

fits from memorization when rare and atypical instances are abundant in the distribution

[Feldman 2020; Feldman and Zhang 2020; Brown et al. 2021]. These studies argue that the

memorization of these rare instances is required to guarantee low generalization error. On a

separate line of work, previous empirical observations suggest that networks trained on noisy

labels can still induce good representations from the data, despite their poor generalization

performance [Li et al. 2020b; Maennel et al. 2020]. In this work, we propose an approach to

track memorization when noisy labels are present.

Theoretical Results To analyze the convergence of different models on some randomly

labeled set, we rely on recent results obtained by modeling the training process of wide neural

networks by neural tangent kernels (NTK) [Du et al. 2018; Jacot et al. 2018; Allen-Zhu et al.

2018; Arora et al. 2019; Bietti and Mairal 2019; Lee et al. 2019]. In particular, the analysis in

this chapter is motivated by recent work on convergence analysis of neural networks [Du

et al. 2018; Arora et al. 2019]. Arora et al. [2019] perform fine-grained convergence analysis

for wide two-layered neural networks using gradient descent. They study the convergence

of models trained on different datasets (datasets with clean labels versus random labels). In

Section 4.5, we study the convergence of different models trained on some randomly-labeled

set. In particular, our models are obtained by training wide two-layered neural networks on

datasets with varying label noise levels. As we highlight in the proofs, our work builds on

previous art, especially [Du et al. 2018; Arora et al. 2019], yet we build in a non-trivial way and

for a new problem statement.

Robustness to Adversarial Examples Deep neural networks are vulnerable to adversar-

ial samples [Szegedy et al. 2013; Goodfellow et al. 2014; Akhtar and Mian 2018]: very small

changes to the input image can fool even state-of-the-art neural networks. This is an im-

portant issue that needs to be addressed for security reasons. To this end, multiple studies

towards generating adversarial examples and defending against them have emerged [Carlini

and Wagner 2017; Papernot et al. 2016b;a; Athalye et al. 2018]. As a side topic related to the

central theme of the chapter, we examined the connection between models that are resistant

to memorization of noisy labels and models that are robust to adversarial attacks. Fig. 4.7

compares the memorization of these models trained on some noisy dataset, with their robust-

ness to adversarial attacks. We do not observe any positive or negative correlation between

the two. Some models are robust to adversarial attacks, but perform poorly when trained

on datasets with noisy labels, and vice versa. This means that the observations made in this

chapter are orthogonal to the ongoing discussion regarding the trade-off between robustness

to adversarial samples and test accuracy [Tsipras et al. 2018; Stutz et al. 2019; Yang et al. 2020;

Pedraza et al. 2021; Zhang et al. 2019b; Yin et al. 2019].

127

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) Success rate versus accuracy on the noisy
subset of the training set

(b) Success rate versus susceptibility to noisy
labels ζ

Figure 4.7: SimBa [Guo et al. 2019] adversarial attack success rate versus accuracy on the noisy
subset of the training set for networks trained on CIFAR-10 with 50% label noise. To evaluate
the robustness of different models with respect to adversarial attacks, we compare the success
rate of the adversarial attack SimBa proposed in [Guo et al. 2019] after 1000 iterations. We
observe no correlation between the success rate and neither accuracy on the noisy subset nor
susceptibility ζ.

128

4.A. Additional Related Work

Figure 4.8: Left: Accuracy on the noisy subset of the training set, versus the training accu-
racy drop presented in [Zhang et al. 2019c] for the following neural network configurations
trained on the CIFAR-10 dataset with 50% label noise: a 5-layer convolutional neural network,
DenseNet, EfficientNet, MobileNet, MobileNetV2, RegNet, ResNet, ResNeXt, SENet, and Shuf-
fleNetV2. As proposed in [Zhang et al. 2019c], to compute the training accuracy drop, we create
a new dataset from the available noisy training set, by replacing 25% of its labels with random
labels. We then train these networks on the new dataset, and then compute the difference in
the training accuracy of the two setups, divided by 25 (the level of label noise that was injected).
This is reported above as Train ACC Drop. Zhang et al. [2019c] state that desirable networks
should have a large drop; therefore there should ideally be a negative correlation between
the training accuracy drop and the accuracy on the noisy subset. However, we observe a
slightly positive correlation. Therefore, it is difficult to use the results of Zhang et al. [2019c]
to track memorization, i.e., training accuracy on the noisy subset. Middle: Accuracy on the
noisy subset of the training set, versus the mean difference between the distributions obtained
by applying GMM on the training losses, which is proposed in Lu and He [2022] as an early
stopping criterion. We observe a negative correlation between the two, and hence conclude
that this metric cannot be used to compare memorization of different settings at different
stages of training. Right: As opposed to the other two metrics, we observe a strong positive
correlation between our metric susceptibility ζ and memorization.

129

Chapter 4. Leveraging Unlabeled Data to Track Memorization

4.B Experimental Setup

Generating Noisy-labeled Datasets We modify original datasets similarly to Chatterjee [2020];

for a fraction of samples denoted by the label noise level (LNL), we replace the labels with

independent random variables drawn uniformly from {1, · · · ,c} for a dataset with c number of

classes. On average (1−LNL)+ (LNL) ·1/c of the samples still have their correct labels. Note

that LNL for S̃ is 1.

Experiments of Fig. 4.2, Fig. 4.9, Fig. 4.10 and Fig. 4.11 The models at epoch 0 are pre-

trained models on either the clean or noisy versions of the CIFAR-10 dataset for 200 epochs

using SGD with learning rate 0.1, momentum 0.9, weight decay 5·10−4, and cosineannealing
learning rate schedule with T max= 200. The new sample is a sample drawn from the training

set, and its label is randomly assigned to some class different from the correct class label. In

Fig. 4.10, the new sample is an unseen sample drawn from the test set.

CIFAR-105 Experiments The models are trained for 200 epochs on the cross-entropy ob-

jective function using SGD with weight decay 5·10−4 and batch size 128. The neural network ar-

chitecture options are: cnn (a simple 5-layer convolutional neural network), DenseNet [Huang

et al. 2017], EfficientNet [Tan and Le 2019] (with scale=0.5, 0.75, 1, 1.25, 1.5),

GoogLeNet [Szegedy et al. 2015], MobileNet [Howard et al. 2017] (with scale=0.5, 0.75, 1,
1.25, 1.5), ResNet [He et al. 2016a], MobileNetV2 [Sandler et al. 2018] (with scale=0.5,
0.75, 1, 1.25, 1.5), Preact ResNet [He et al. 2016b], RegNet [Radosavovic et al. 2020],

ResNeXt [Xie et al. 2017], SENet [Hu et al. 2018], ShuffleNetV2 [Ma et al. 2018] (with scale=0.5,
1, 1.5, 2), DLA [Yu et al. 2018], and VGG [Simonyan and Zisserman 2014]. The learning

rate value options are: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5. The learning rate schedule options are:

cosineannealing with T max 200, cosineannealing with T max 100, cosineannealing
with T max 50, and no learning rate schedule. Momentum value options are 0.9, 0. In addition,

we include experiments with Mixup [Zhang et al. 2017], active passive losses: normalized

cross entropy with reverse cross entropy (NCE+RCE) [Ma et al. 2020], active passive losses:

normalized focal loss with reverse cross entropy (NFL+RCE) [Ma et al. 2020], and robust early

learning [Xia et al. 2021] regularizers.

CIFAR-100 Experiments The models are trained for 200 epochs on the cross-entropy ob-

jective function using SGD with learning rate 0.1, weight decay 5 ·10−4, momentum 0.9, learn-

ing rate schedule cosineannealing with T max 200 and batch size 128. The neural network

architecture options are: cnn, DenseNet, EfficientNet (with scale=0.5, 0.75, 1, 1.25,
1.5), GoogLeNet, MobileNet (with scale=0.5, 0.75, 1, 1.25, 1.5), ResNet, MobileNetV2

(with scale=0.5, 0.75, 1, 1.25, 1.5), RegNet, ResNeXt, ShuffleNetV2 (with scale=0.5,
1, 1.5, 2), DLA, and VGG. In addition, we include experiments with Mixup, active passive

losses: NCE+RCE, active passive losses: NFL+RCE, and robust early learning regularizers.

SVHN [Netzer et al. 2011] Experiments The models are trained for 200 epochs on the

5https://www.cs.toronto.edu/~kriz/cifar.html

130

https://www.cs.toronto.edu/~kriz/cifar.html

4.B. Experimental Setup

cross-entropy objective function with learning rate 0.1 and batch size 128. The optimizer

choices are SGD with weight decay 5 ·10−4, and momentum 0.9, and Adam optimizers. The

learning rate schedule options for the SGD experiments are: cosineannealing with T max
200, and exponential. The neural network architecture options are: DenseNet, Efficient-

Net (with scale=0.25, 0.5, 0.75, 1), GoogLeNet (with scale= 0.25, 1, 1.25), Mo-

bileNet (with scale= 1, 1.25, 1.5, 1.75), MobileNetV2 (with scale= 1, 1.25, 1.5,
1.75), ResNet (with scale=0.25, 0.5, 1, 1.25, 1.5, 1.75), ResNeXt, SENet (with

scale=0.25, 0.5, 0.75, 1), ShuffleNetV2 (with scale=0.25, 0.5, 0.75, 1), DLA (with

scale=0.25, 0.5, 0.75, 1), and VGG (with scale=0.25, 0.5, 0.75, 1, 1.25, 1.5,
1.75).

MNIST6 and Fashion-MNIST [Xiao et al. 2017] Experiments The models are trained for

200 epochs on the cross-entropy objective function with batch size 128, using SGD with learn-

ing rate 0.1, weight decay 5 ·10−4, and momentum 0.9. The learning rate schedule options

are: cosineannealing with T max 200, and exponential. The neural network architecture

options are: AlexNet [Krizhevsky et al. 2012] (with scale=0.25, 0.5, 0.75, 1), ResNet18

(with scale=0.25, 0.5, 0.75, 1), ResNet34 (with scale=0.25, 0.5, 0.75, 1), ResNet50

(with scale=0.25, 0.5, 0.75, 1), VGG11 (with scale=0.25, 0.5, 0.75, 1), VGG13

(with scale=0.25, 0.5, 0.75, 1), VGG16 (with scale=0.25, 0.5, 0.75, 1), VGG19

(with scale=0.25, 0.5, 0.75, 1).

Tiny ImageNet [Le and Yang 2015] Experiments The models are trained for 200 epochs

on the cross-entropy objective function with batch size 128, using SGD with weight decay

5 · 10−4, and momentum 0.9. The learning rate schedule options are: cosineannealing
with T max 200, exponential, and no learning rate schedule. The learning rate options

are: 0.01,0.05,0.1,0.5. The neural network architecture options are: AlexNet, DenseNet, Mo-

bileNetV2, ResNet, SqueezeNet [Iandola et al. 2016], and VGG.

Clothing-1M [Xiao et al. 2015] Experiments The models are trained for 20 epochs on the

cross-entropy objective function with batch size 128 using SGD with weight decay 5 ·10−4,

and momentum 0.9. The learning rate schedule options are: cosineannealing with T max
20, and exponential. The learning rate options are: 0.01,0.005,0.001. The neural network

architecture options are: AlexNet, ResNet18, ResNet 34, ResNeXt, and VGG. Note that because

this dataset has random labels we do not introduce synthetic label noise to the labels.

Animal-10N [Song et al. 2019] Experiments The models are trained for 50 epochs on the

cross-entropy objective function with batch size 128 using SGD with weight decay 5 ·10−4,

and momentum 0.9. The learning rate schedule options are: cosineannealing with T max
50, and exponential. The learning rate options are: 0.001,0.005,0.01. The neural network

architecture options are: ResNet18, ResNet34, SqueezeNet, AlexNet and VGG. Note that

because this dataset has random labels we do not introduce synthetic label noise to the labels.

6http://yann.lecun.com/exdb/mnist/

131

http://yann.lecun.com/exdb/mnist/

Chapter 4. Leveraging Unlabeled Data to Track Memorization

CIFAR-10N [Wei et al. 2022] Experiments On these experiments, we work with the aggre-

gate version of the label set which has label noise level of 9% (CIFAR-10N-aggregate in Table 1

of Wei et al. [2022]). The models are trained for 200 epochs on the cross-entropy objective

function with batch size 128 using SGD with weight decay 5 ·10−4, and momentum 0.9 with

cosineannealing learning rate schedule with T max 200. The learning rate options are:

0.1,0.05. The neural network architecture options are: cnn, EfficientNet, MobileNet, ResNet,

MobileNetV2, RegNet, ResNeXt, ShuffleNetV2, SENet, DLA and VGG.

Each of our experiments take few hours to run on a single Nvidia Titan X Maxwell GPU.

4.C Comparison with Baselines

Comparison to a Noisy Validation Set Following the notations from Chen et al. [2021a] (only

in this paragraph we use these notations), let the clean and noisy data distributions be denoted

by D and D̃, respectively, the classifiers by h, and the classification accuracy by A. Suppose

that the optimal classifier in terms of accuracy on the clean data distribution is h∗, i.e.,

h∗ = argmaxh AD (h). [Chen et al. 2021a] states that under certain assumptions on the label

noise, the accuracy on the noisy data distribution is also maximized by h∗, that is h∗ =
argmaxh AD̃ (h). However, these results do not allow us to compare any two classifiers h1 and

h2, because we cannot conclude from the results in [Chen et al. 2021a] that if AD (h1) > AD (h2),

then AD̃ (h1) > AD̃ (h2). Moreover, it is important to note that these results hold when the

accuracy is computed on unlimited dataset sizes. As stated in [Lam and Stork 2003], the

number of noisy validation samples that are equivalent to a single clean validation sample

depends on the label noise level and on the true error rate of the model, which are both

unknown in practice. Nevertheless, below we thoroughly compare our approach with having

a noisy validation set.

As discussed in Section 4.4, the susceptibility ζ together with the training accuracy are

able to select models with a high test accuracy. Another approach to select models is to use

a subset of the available noisy dataset as a held-out validation set. Table 4.1 provides the

correlation values between the test accuracy on the clean test set and the validation accuracy

computed on noisy validation sets with varying sizes. On the one hand, we observe that the

correlation between the validation accuracy and the test accuracy is very low for small sizes of

the noisy validation set. On the other hand, in the same table, we observe that if the same size

is used to compute ζ, our approach provides a high correlation to the test accuracy, even for

very small sizes of the held-out set.

In our approach, we first filter out models for which the value of ζ exceeds a threshold.

We set the threshold so that around half of the models remain after this filtration. We then

report the correlation between the training and test accuracies among the remaining models.

As a sanity check, we doubled checked that, with this filtration, the model with the highest test

accuracy was not filtered out.

132

4.C. Comparison with Baselines

Size of the set Train Acc Val Acc Our approach
10

0.513

0.244 0.792
128 0.458 0.890
256 0.707 0.878
512 0.799 0.876

1024 0.830 0.877
2048 0.902 0.917
4096 0.886 0.912
8192 0.940 0.923

10000 0.956 0.914

Table 4.1: The Kendall τ correlation between each metric and the test accuracy for CNN,
ResNet, EfficientNet, and MobileNet trained on CIFAR-10 with 50% label noise, where the
validation accuracy (Val Acc) on a held-out subset of the data and the susceptibility ζ use
a set with the size indicated in each row. We observe that our approach results in a much
higher correlation compared to using a noisy validation set. Furthermore, our approach is less
sensitive to the size of the held-out set, compared to using a noisy validation set. In particular,
to reach the same correlation value, our approach with set size = 10 is equivalent to using
a noisy validation set with size = 512 (highlighted in red). Also, our approach with set size
= 128 is almost equivalent to using a noisy validation set with size = 1024 (highlighted in blue).
Hence, to use a noisy validation set, one requires around ten-fold the amount of held-out data.

Moreover, in Fig. 4.9a, we report the advantage of using our approach compared to using

a noisy validation set for various values of the dataset label noise level (LNL) and the size of

the set that computes the validation accuracy and susceptibility ζ. We observe that the lower

the size of the validation set, and the higher the LNL, the more advantageous our approach is.

Note also that for high set sizes and low LNLs, our approach produces comparable results to

using a noisy validation set.

Comparison to Label Noise Detection Approaches Another line of work is studying meth-

ods that detect whether a label assigned to a given sample is correct or not [Zhu et al. 2021b;

Song et al. 2020b; Pleiss et al. 2020a; Pulastya et al. 2021]. Such methods can estimate the clean

and noisy subsets. Then, by tracking the training accuracy on the clean and noisy subsets,

similar to what is done in Fig. 4.5a, they can select models that are located in Region 1, i.e.,

that have a low estimated accuracy on the noisy subset and a high estimated accuracy on the

clean subset. In Fig. 4.9b, we compare the average test accuracy of models selected by our

approach with those selected by such subset-selection methods. Let X be the accuracy of

the detection of the correct/incorrect label of a sample by the subset selection benchmark: if

X = 100%, then the method has full access to the ground truth label for each label, if X = 90%

the method correctly detects 90% of the labels. We observe a clear advantage of our method

for X up to 96%, and comparable performance for X > 96%.

133

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) The Kendall τ correlation between our ap-
proach and the test accuracy minus the Kendall
τ correlation between validation accuracy (com-
puted on a noisy set) and the test accuracy for
various label noise levels (LNL) and set sizes.
We observe the advantage of our approach to
using a noisy validation set particularly for high
LNLs and low set sizes. For other combinations,
we also observe comparable results (the corre-
lation difference is very close to zero). Note that
the bottom row can be recovered from the dif-
ference in correlation values of Table 4.1.

(b) Comparison between the average test accuracy ob-
tained using our approach and the average test accuracy
obtained using a method that detects correctly-labeled
samples within the training set from the incorrectly-
labeled ones with X % accuracy (the x-axis). The results
are obtained from training {CNN, ResNet, EfficientNet,
MobileNet}×{without regularization, +Mixup, +NCERCE,
+ NFLRCE, +robust early learning} on CIFAR-10 with 50%
label noise. We observe that to have the same perfor-
mance as our approach, such methods require a very high
accuracy (above 96%), and even with higher accuracies,
our approach gives comparable results.

134

4.D. Additional Experiments for Section 4.2

4.D Additional Experiments for Section 4.2

In this section, we provide additional experiments for the observation presented in Section 4.2.

In Fig. 4.9, we observe that networks with a high test accuracy are resistant to memorizing a

new incorrectly-labeled sample. On the other hand, in Fig. 4.10, we observe that networks

with a high test accuracy tend to fit a new correctly-labeled sample faster.

(a) Example 1: original label: horse, assigned label:
frog

(b) Example 2: original label: cat, assigned label:
truck

(c) Example 3: original label: dog, assigned label:
automobile

(d) Example 4: original label: ship, assigned label:
deer

Figure 4.9: The evolution of output prediction of two networks that are trained on a single
randomly labeled sample. In all sub-figures, Network 1 has a higher test accuracy compared
to Network 2, and we observe it is more resistance to memorization of the single incorrectly-
labeled sample. Example 1: Network 1 is a ResNeXt trained on CIFAR-10 dataset with 50%
random labels and has test accuracy of 58.85%. Network 2 is a ResNeXt that is not pre-trained
and has test accuracy of 9.74%. Example 2: Network 1 is a SENet trained on CIFAR-10 dataset
with original labels and has test accuracy of 95.35%. Network 2 is a SENet that is trained on
CIFAR-10 with 50% label noise and has test accuracy of 56.38%. Example 3: Network 1 is
a RegNet trained on CIFAR-10 dataset with original labels and has test accuracy of 95.28%.
Network 2 is a RegNet that is trained on CIFAR-10 with 50% label noise and has test accuracy
of 55.36%. Example 4: Network 1 is a MobileNet trained on CIFAR-10 dataset with original
labels and has test accuracy of 90.56%. Network 2 is a MobileNet that is trained on CIFAR-10
with 50% label noise and has test accuracy of 82.76%.

Moreover, we study the effect of calibration on the observations of Fig. 4.2 and Fig. 4.9. A

poor calibration of a model may affect the confidence in its predictions, which in turn might

affect the susceptibility/resistance to new samples. Therefore, in Fig. 4.11, we compare models

that have almost the same calibration value. More precisely, Network 1 is trained on the clean

dataset, and Network 2 (calibrated) is a calibrated version of the model that is trained on the

noisy dataset using the Temperature scaling approach [Guo et al. 2017]. We observe that even

with the same calibration level, the model with a higher test accuracy is more resistant to

memorizing a new incorrectly-labeled sample.

135

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) Example 1: original label: dog, assigned label:
dog

(b) Example 2: original label: frog, assigned label:
frog

(c) Example 3: original label: horse, assigned label:
horse

(d) Example 4: original label: cat, assigned label:
cat

(e) Example 5: original label: truck, assigned label:
truck

Figure 4.10: The evolution of output prediction of two networks that are trained on a single
unseen correctly-labeled sample. In all sub-figures, Network 1 has a higher test accuracy
compared to Network 2. We observe that given a new correctly-labeled sample Network
2 learns it later, unlike our observation in Figure 4.2 for a new incorrectly-labeled sample.
Example 1: Network 1 is a GoogLeNet trained on CIFAR-10 dataset with clean labels and
has test accuracy of 95.36%. Network 2 is a GoogLeNet trained on CIFAR-10 dataset with 50%
label noise level and has test accuracy of 58.35%. Example 2: Network 1 is a ResNeXt trained
on CIFAR-10 dataset with 50% random labels and has test accuracy of 58.85%. Network 2
is a ResNeXt that is not pre-trained and has test accuracy of 9.74%. Example 3: Network 1
is a SENet trained on CIFAR-10 dataset with original labels and has test accuracy of 95.35%.
Network 2 is a SENet that is trained on CIFAR-10 with 50% label noise and has test accuracy of
56.38%. Example 4: Network 1 is a RegNet trained on CIFAR-10 dataset with original labels
and has test accuracy of 95.28%. Network 2 is a RegNet that is trained on CIFAR-10 with 50%
label noise and has test accuracy of 55.36%. Example 5: Network 1 is a MobileNet trained
on CIFAR-10 dataset with original labels and has test accuracy of 90.56%. Network 2 is a
MobileNet that is trained on CIFAR-10 with 50% label noise and has test accuracy of 82.76%.

136

4.D. Additional Experiments for Section 4.2

(a) Example 1: original label: ship, assigned label:
dog

(b) Example 2: original label: cat, assigned label:
truck

Figure 4.11: The evolution of output prediction of networks that are trained on a single
randomly labeled sample. In all sub-figures, Network 1 (trained on the clean dataset) has a
higher test accuracy than Network 2 (trained on the noisy dataset), and we observe it is more
resistant to memorization of the single incorrectly-labeled sample. Furthermore, we have
ensured using the temperature scaling method [Guo et al. 2017] that the two models have
the same calibration (ECE) value. Example 1: Network 1 is a GoogleNet trained on CIFAR-10
dataset with original labels and has test accuracy of 95.36%. Network 2 is a GoogleNet that
is trained on CIFAR-10 with 50% label noise and has test accuracy of 58.35%. Example 2:
Network 1 is a RegNet trained on CIFAR-10 dataset with original labels and has test accuracy
of 95.28%. Network 2 is a RegNet that is trained on CIFAR-10 with 50% label noise and has test
accuracy of 55.36%.

137

Chapter 4. Leveraging Unlabeled Data to Track Memorization

4.E Additional Experiments for Section 4.4

In this section, we provide additional experiments for our main results for MNIST, Fashion-

MNIST, SVHN, CIFAR-100, and Tiny Imagenet datasets.

In Fig. 4.12, we observe that for networks trained on the noisy MNIST datasets, models

that are resistant to memorization and are trainable have on average more than 20% higher

test accuracy compared to models that are trainable but not resistant (similar results for

other datasets are observed in Fig. 4.14, Fig. 4.16, Fig. 4.19, and Fig. 4.22). Furthermore,

without access to the ground-truth, the models with a high (respectively, low) accuracy on

the clean (resp., noisy) subsets are recovered using susceptibility ζ as shown in Fig. 4.17

and Fig. 4.20. Moreover, in Fig. 4.13, we observe that by selecting models with a low value of

ζ(t) the correlation between training accuracy and test accuracy drastically increases from

−0.766 to 0.863, which shows the effectiveness of the susceptibility metric ζ(t) (similar results

for other datasets are observed in Fig. 4.15, Fig. 4.18, Fig. 4.21, and Fig. 4.23).

Figure 4.12: Using susceptibility ζ(t) and training accuracy, we can obtain 4 different regions
for models trained on MNIST with 50% label noise (details in Section 4.B). Region 1: Trainable
and resistant, with average test accuracy of 95.38%. Region 2: Trainable and but not resistant,
with average test accuracy of 72.65%. Region 3: Not trainable but resistant, with average test
accuracy of 47.69%. Region 4: Neither trainable nor resistant.

(a) Test accuracy versus train accuracy for all
models at all epochs

(b) Test accuracy versus train accuracy for models
that have ζ(t) ≤ 0.05

Figure 4.13: For models trained on MNIST with 50% label noise (details in Section 4.B), the
correlation between training accuracy and test accuracy increases a lot by removing models
based on the susceptibility metric ζ(t).

138

4.E. Additional Experiments for Section 4.4

Figure 4.14: Using susceptibility ζ(t) and training accuracy we can obtain 4 different regions
for models trained on Fashion-MNIST with 50% label noise (details in Section 4.B). Region 1:
Trainable and resistant, with average test accuracy of 95.82%. Region 2: Trainable and but
not resistant, with average test accuracy of 72.04%. Region 3: not trainable but resistant, with
average test accuracy of 52.68%. Region 4: Neither trainable nor resistant.

(a) Test accuracy versus train accuracy for all
models at all epochs

(b) Test accuracy versus train accuracy for models
that have ζ(t) ≤ 0.05

Figure 4.15: For models trained on Fashion-MNIST with 50% label noise (details in Section 4.B),
the correlation between training accuracy and test accuracy increases a lot by removing models
based on the susceptibility metric ζ(t).

Figure 4.16: Using susceptibility ζ(t) and training accuracy we can obtain 4 different regions
for models trained on SVHN with 50% label noise (details in Section 4.B). Region 1: Trainable
and resistant, with average test accuracy of 88.64%. Region 2: Trainable and but not resistant,
with average test accuracy of 66.34%. Region 3: Not trainable but resistant, with average test
accuracy of 53.25%. Region 4: Neither trainable nor resistant, with average test accuracy of
85.17%.

139

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) With oracle access to the ground-truth label.
Average test accuracy of the selected models =
87.56%

(b) Without access to the ground-truth label.
Average test accuracy of the selected models =
85.44%

Figure 4.17: For models trained on SVHN with 50% label noise (details in Section 4.B), with the
help of our susceptibility metric ζ(t) and the overall training accuracy, we can recover models
with a high/low accuracy on the clean/noisy subset.

(a) Test accuracy versus train accuracy for all mod-
els at all epochs

(b) Test accuracy versus train accuracy for models
that have ζ(t) ≤ 0.05

Figure 4.18: For models trained on SVHN with 50% label noise (details in Section 4.B), the
correlation between training accuracy and test accuracy increases a lot by removing models
based on the susceptibility metric ζ(t).

Figure 4.19: Using susceptibility ζ(t) and training accuracy we can obtain 4 different regions for
models trained on CIFAR-100 with 50% label noise (details in Section 4.B). Region 1: Trainable
and resistant, with average test accuracy of 47.09%. Region 2: Trainable and but not resistant,
with average test accuracy of 40.96%. Region 3: Not trainable but resistant, with average test
accuracy of 22.65%. Region 4: Neither trainable nor resistant, with average test accuracy of
39.07%.

140

4.E. Additional Experiments for Section 4.4

(a) With oracle access to the ground-truth label.
Average test accuracy of the selected models =
51.39%

(b) Without access to the ground-truth label.
Average test accuracy of the selected models =
49.57%

Figure 4.20: For models trained on CIFAR-100 with 50% label noise, with the help of our
susceptibility metric ζ(t) and the overall training accuracy, we can recover models with a
high/low accuracy on the clean/noisy subset.

(a) Test accuracy versus train accuracy for all mod-
els at all epochs

(b) Test accuracy versus train accuracy for models
that have ζ(t) ≤ 0.1

Figure 4.21: For models trained on CIFAR-100 with 50% label noise (details in Section 4.B), the
correlation between training accuracy and test accuracy increases a lot by removing models
based on the susceptibility metric ζ(t).

Figure 4.22: Using susceptibility ζ(t) and training accuracy we can obtain 4 different regions
for models trained on Tiny Imagenet with 10% label noise (details in Section 4.B). Region 1:
Trainable and resistant, with average test accuracy of 57.51%. Region 2: Trainable and but
not resistant, with average test accuracy of 53.25%. Region 3: Not trainable but resistant, with
average test accuracy of 18.53%. Region 4: Neither trainable nor resistant, with average test
accuracy of 53.26%.

141

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) Test accuracy versus train accuracy for all mod-
els at all epochs

(b) Test accuracy versus train accuracy for models
that have ζ(t) ≤ 0.05

Figure 4.23: For models trained on Tiny Imagenet with 10% label noise (details in Section 4.B),
the correlation between training accuracy and test accuracy increases by removing models
based on the susceptibility metric ζ(t).

142

4.F. Experiments Related to Section 4.7

4.F Experiments Related to Section 4.7

In this section, we provide some ablation studies that are discussed in Section 4.7.

In Fig. 4.24, we observe that even among neural network architectures with a good resis-

tance to memorization, susceptibility to noisy labels ζ(t) detects the most resistant model.

We observe that the high correlation between ζ and memorization of the noisy subset is

not limited to a specific learning rate schedule in Fig. 4.25, or a label noise level in Fig. 4.26

and Fig. 4.27. Moreover, in Fig. 4.28 and Fig. 4.29, we observe that for datasets with the label

noise level of 10%, the susceptibility to noisy labels ζ and training accuracy still select models

with high test accuracy. The same consistency is observed in Fig. 4.32 for models trained with

asymmetric label noise.

In this chapter, we choose S̃ to be only a single mini-batch of a randomly-labeled set

for computational efficiency. But we also made sure that this does not harm the correlation

between Train ACC Noisy and ζ(t). We analyze the effect of size of S̃ in Fig. 4.30 (left), which

confirms that a single mini-batch is large enough to have a high correlation between Train

ACC Noisy and ζ(t). Moreover, we observe the robustness of the susceptibility metric to the

exact choice of the mini-batch in Fig. 4.30 (right).

To better illustrate the match between Train ACC Noisy and ζ(t), we provide the overlaid

curves in Fig. 4.31. This figure clearly shows how using ζ, one can detect/select checkpoints of

the model with low memorization.

Figure 4.24: Accuracy on the noisy subset of the training set versus the susceptibility ζ(t)
(Eq. (4.2)) for MobileNet and ShuffleNetV2 configurations trained on CIFAR-100 with 50%
label noise. Pearson correlation between the Train ACC Noisy and susceptibility ζ is ρ = 0.749.
Scale is a hyper-parameter that proportionally scales the number of hidden units and number
of channels in the neural network configuration.

143

Chapter 4. Leveraging Unlabeled Data to Track Memorization

(a) Exponential

(b) Cosineannealing

Figure 4.25: Accuracy on the noisy subset of the training set versus the susceptibility ζ(t) for
networks trained on MNIST with 50% label noise. On top and bottom, we have models trained
with exponential and cosineannealing learning rate schedulers, respectively. Pearson cor-
relation between Train ACC Noisy and ζ for exponential and cosineannealing schedules
are ρ = 0.89 and ρ = 0.772, respectively.

Figure 4.26: Accuracy on the noisy subset of the training set versus susceptibility to noisy labels
ζ(t) for networks trained on CIFAR-10 with 10% label noise. Pearson correlation between Train
ACC Noisy and ζ is ρ = 0.634.

144

4.F. Experiments Related to Section 4.7

Figure 4.27: Accuracy on the noisy subset of the training set versus susceptibility to noisy labels
ζ(t) for networks trained on CIFAR-100 with 10% label noise. Pearson correlation between
Train ACC Noisy and ζ is ρ = 0.849.

(a) With access to the ground-truth label.
Average test accuracy of the selected models
= 82.93%

(b) Without access to the ground-truth label.
Average test accuracy of the selected models
= 86.08%

Figure 4.28: For models trained on CIFAR-10 with 10% label noise for 200 epochs, using
susceptibility ζ and the overall training accuracy, the average test accuracy of the selected
models is comparable with (even higher than) the case of having access to the ground-truth
label.

(a) With access to the ground-truth label.
Average test accuracy of the selected models
= 62.61%

(b) Without access to the ground-truth label.
Average test accuracy of the selected models
= 64.33%

Figure 4.29: For models trained on CIFAR-100 with 10% label noise for 200 epochs, using
susceptibility ζ and the overall training accuracy, the average test accuracy of the selected
models is comparable with (even higher than) the case of having access to the ground-truth
label.

145

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Figure 4.30: Left: Pearson correlation coefficient between the accuracy on the noisy subset
of the training set and susceptibility ζ (Eq. (4.2)) for different choices of dataset size for S̃ for
ResNet [He et al. 2016a], MobileNet [Howard et al. 2017], and 5−layer cnn that are trained
on CIFAR-100 dataset with 50% label noise. We observe that unless the dataset is very small,
the choice of the dataset size S̃ does not affect the correlation value. Therefore, throughout
our experiments, we choose the size 128 for this set, which is the batch size used for the
regular training procedure as well. Note that this size is very small compared to the size of
the training set itself, which is 50000, hence the computational overhead to compute ζ is
negligible compared to the original training process. Right: We can observe the variance of
the susceptibility metric over 10 different random seeds. We can observe that as the variance
is quite low, the metric is robust to the exact choice of the mini-batch and to the random labels
that are assigned to the mini-batch.

Figure 4.31: Accuracy on the noisy subset (solid lines) versus Susceptibility ζ(t) (dashed lines)
for neural networks trained on CIFAR-10 with 50% label noise. We observe a very strong match
between the two, which suggests that susceptibility can be used to perform early stopping
by selecting the checkpoint for each model with the least memorization. For example, for
MobileNet and EfficientNet, ζ does not warn about memorization, hence one can select the
end checkpoint. On the other hand, for DenseNet and GoogleNet, ζ suggests selecting those
checkpoints that are before the sharp increases. This is also consistent with the signal given by
the fit on the noisy subset, which requires ground-truth label access, unlike susceptibility ζ
which does not require such access.

146

4.F. Experiments Related to Section 4.7

(a) With access to the ground-truth label.
Average test accuracy of the selected models
= 66.793%

(b) Without access to the ground-truth label.
Average test accuracy of the selected models
= 66.307%

Figure 4.32: For models trained for 200 epochs on CIFAR-10 with 50% asymmetric label noise
as proposed in [Xia et al. 2021], using susceptibility ζ and the overall training accuracy, the
average test accuracy of the selected models is comparable with the case of having access to
the ground-truth label.

147

Chapter 4. Leveraging Unlabeled Data to Track Memorization

A study on different thresholds used to select models We would like to point out that if

we can tune these thresholds (instead of using the average values of training accuracy and

susceptibility over the available models), we can select models with even higher test accuracies

than what is reported in this chapter. For example, for models of Fig. 4.5a, by tuning these

two thresholds one could reach a test accuracy of 79.15% (instead of the reported 76%) as

shown in Fig. 4.33 (left). However, we want to remain in the practical setting where we do

not have any access to a clean validation set for tuning. As a consequence, we must avoid

any hyper-parameter tuning. And indeed, throughout our experiments, these thresholds

are never tuned nor set manually to any extent. Among thresholds that can be computed

without access to a clean validation set, we opted for the average values of susceptibility and

training accuracy (over the available models) for simplicity. We empirically observe that this

choice is robust and produces favorable results in various experimental settings. We could

take other percentiles for the threshold, but they are more complex to obtain than simple

averages, because they would then depend on the distribution among models. In Fig. 4.33,

we study various values of percentiles for these thresholds. We observe that depending on

the available models and the given dataset, some other percentiles might give higher test

accuracies than simply using the average values. These percentiles range however typically

from 35 to 55 and are therefore not far from the mean, hence their benefit in increasing test

accuracy appears small compared to the increased complexity to compute them or relying on

additional assumptions on the distribution of susceptibility and training accuracy. We observe

in Fig. 4.33 (right) that except for very extreme values of the thresholds (which basically select

all models as resistant to memorization), the average test accuracy of models in Region 1

is much higher than the average test accuracy of models in Region 2. Hence, our proposed

model selection approach is robust to the choice of these thresholds.

148

4.F. Experiments Related to Section 4.7

Figure 4.33: Left: Average test accuracy of models in Region 1 of Fig. 4.5a for various thresholds
used to find Region 1. In Fig. 4.5a and throughout this chapter, Region 1 has models with
susceptibility ζ < t1 and training accuracy > t2, where t1 and t2 are average ζ and training
accuracy over the available models, respectively. Here, we study different values of these
thresholds t1 and t2, and their effect on the average test accuracy of models of Region 1. We
explore different percentiles of ζ and training accuracy over all models to be used to find these
thresholds. The extreme would be to have 100th percentiles for both thresholds (low rightmost
item of this table), which means models of Region 1 have ζ < maximum susceptibility and
training accuracy > minimum training accuracy. In this extreme case, all models are selected
in Region 1. Overall, we observe that some other percentiles might give higher test accuracies
than simply using the average values. These percentiles range however typically from 35 to
55 and are therefore not far from the mean, hence their benefit in increasing test accuracy
appears small compared to the increased complexity to compute them or relying on additional
assumptions on the distribution of susceptibility and training accuracy. Right: The difference
in the average test accuracies of models in Region 1 and models in Region 2 for various values
of percentiles used to find different regions. A positive value implies that models in Region 1
have a higher average test accuracy. We can observe that except for very extreme values of the
thresholds, which basically select all models as trainable, the average test accuracy of models
in Region 1 is much higher than the average test accuracy of models in Region 2. Hence, our
approach to select resistant and trainable models is robust to the choice of these thresholds.

149

Chapter 4. Leveraging Unlabeled Data to Track Memorization

4.G Theoretical Preliminaries

In this section, we provide some technical tools that we use throughout our proofs. Recall

from Section 4.2 that the first layer weights of the neural network are initialized as

θr (0) ∼N
(
0,κ2I

)
, ∀r ∈ [m], (4.7)

where 0 < κ≤ 1 is the magnitude of initialization and N denotes the normal distribution. And

the second layer weights ar s are independent random variables taking values uniformly in

{−1,1} at initialization.

4.G.1 Properties of the Gram-matrix

Properties Here, we recall a few useful properties of the Gram-matrix (Eq. (4.3)).

1. As shown by [Du et al. 2018], H∞ is positive definite and λ0 =λmin(H∞) > 0.

2. The matrix H∞ has eigen decomposition H∞ =∑n
i=1λi vi vT

i , where the eigenvectors are

orthonormal. Therefore, vT
i v j = δi , j for i , j ∈ [n], the n ×n identity matrix I is decom-

posed as
∑n

i=1 vi vT
i and any n-dimentional (column-wise) vector y can be decomposed

as I y =∑n
i=1(vT

i y)vi .

3. (Recalled from [Du et al. 2018; Arora et al. 2019]) We have ‖H∞‖2 ≤ tr(H∞) = n
2 =∑n

i=1λi ,

and

γ=O(
λ0

n2) =O

(
λmin(H∞)

‖H∞‖2
2

)
≤ 1

‖H∞‖2
.

Hence, ∥∥I−γH∞∥∥
2 ≤ 1−γλ0.

4.G.2 Corollaries Adapted from [Du et al. 2018; Arora et al. 2019]

Corollary 1. (Adapted Theorem 3.1 of [Arora et al. 2019] to our setting) For m =Ω
(

n6

λ4
0κ

2δ3

)
and

γ=O
(
λ0

n2

)
, for any δ ∈ (0,1], with probability at least 1−δ over random initialization Eq. (4.7):

Φ (Θ(0)) =O
(n

δ

)
,

and Φ (Θ(t +1)) ≤ (1− ηλ0

2)Φ(Θ(t)), if 0 ≤ t < k,

Φ̃ (Θ(t +1)) ≤ (1− ηλ0

2)Φ̃(Θ(t)), if k ≤ t < k + k̃.

150

4.G. Theoretical Preliminaries

Therefore, by replacing Eq. (4.1), throughout the proof we can use:

∥∥fΘ(0) −y
∥∥

2 =O

(√
n

δ

)
,

and
∥∥fΘ(t+1) −y

∥∥
2 ≤

√
1− γλ0

2

∥∥fΘ(t) −y
∥∥

2

≤
(
1− γλ0

4

)∥∥fΘ(t) −y
∥∥

2 , if 0 ≤ t < k,∥∥fΘ(t+1) − ỹ
∥∥

2 ≤
(
1− γλ0

4

)∥∥fΘ(t) − ỹ
∥∥

2 , if k ≤ t < k + k̃,

where we use inequality
p

1−α≤ 1−α/2, which holds for 0 ≤α≤ 1.

Corollary 2. (Adapted from Equation (25) of [Arora et al. 2019]) If the parameter vector is

updated at step t by one gradient descent step on 1
2

∥∥fΘ(t) −u
∥∥2

2 for some label vector u, and for t

such that with probability at least 1−δ:

‖H(t)−H(0)‖F =O

(
n3

p
mλ0κδ3/2

)
,

then the output of the neural network is as follows

fΘ(t+1) − fΘ(t) =−γH∞ (
fΘ(t) −u

)+ξ(t),

where ξ(·) is considered to be a perturbation term that can be bounded with probability at least

1−δ over random initialization Eq. (4.7) by

‖ξ(t)‖2 =O

(
γn3

p
mλ0κδ3/2

)∥∥fΘ(t) −u
∥∥

2 . (4.8)

Remark: In our setting, this corollary holds for 0 ≤ t ≤ k −1 with u = y, and for k ≤ t ≤
k + k̃ −1 with u = ỹ. We only need to show that for our setting for t ≥ k, ‖H(t)−H(0)‖F is

bounded, which is done in Lemma 3.

Corollary 3. (From Equation (27) of [Arora et al. 2019]) We have for 1 ≤ t ≤ k

fΘ(t) −y = (
I−γH∞)t (

fΘ(0) −y
)+ t−1∑

s=0

(
I−ηH∞)s

ξ (t − s −1) ,

where ‖ξ(·)‖2 is some perturbation term that can be bounded using Eq. (4.8) with u = y.

4.G.3 Additional Lemmas

Lemma 1. For the setting described in Section 4.2, we have

fΘ(k) − ỹ =
n∑

i=1

[
(vT

i y)− (
1−γλi

)k (vT
i y)− (vT

i ỹ)
]

vi +χ(k), (4.9)

151

Chapter 4. Leveraging Unlabeled Data to Track Memorization

where χ(k) is some perturbation term that with probability at least 1−δ over the random

initialization Eq. (4.7)

∥∥χ(k)
∥∥

2 =O

(
n3/2κp
δλ0

+ n9/2

p
mλ3

0κδ
2

)
. (4.10)

Lemmas to Bound H(t) with H∞

Because the two datasets S and S̃ have the same input samples, the Gram matrix defined in

Eq. (4.3) is the same for both of them. We now recall two lemmas from [Du et al. 2018; Arora

et al. 2019] and provide a lemma extending them to bound H(t) with H∞, where

Hi j (t) = xT
i x j

m

m∑
r=1

Ir,i (t)Ir, j (t),

and Ir,i (t) = I{θT
r (t)xi ≥ 0}.

Lemma 2. (recalled from [Du et al. 2018; Arora et al. 2019]) For λ0 = λmin(H∞) > 0, m =
Ω

(
n6

λ4
0κ

2δ3

)
, and γ=O

(
λ0

n2

)
with probability at least 1−δ over the random initialization Eq. (4.7),

for all 0 ≤ t ≤ k, we have:

‖H(t)−H(0)‖F =O

(
n3

p
mλ0κδ3/2

)
.

Lemma 3. (Our extension) For λ0 =λmin(H∞) > 0, m =Ω
(

n6

λ4
0κ

2δ3

)
, and γ=O

(
λ0

n2

)
with proba-

bility at least 1−δ over the random initialization Eq. (4.7), for all k +1 ≤ t ≤ k + k̃, we have:

‖H(t)−H(0)‖F =O

(
n3

p
mλ0κδ3/2

)
.

Lemma 4. (recalled from [Du et al. 2018; Arora et al. 2019]) With probability at least 1−δ over

the random initialization Eq. (4.7), we have:

∥∥H(0)−H∞∥∥
F =O

n
√

log n
δp

m

 .

Remark for Lemma 4: The indicator function I{θr (t)T xi ≥ 0} is invariant to the scale κ

of θr , hence E[Hi j (0)] = H∞
i j , even though the expectation on the left hand side is taken with

respect to θ ∼N (0,κ2I) and the expectation on the right hand side is taken with respect to

θ ∼N (0,I).

152

4.H. Proof of Lemma 3

4.H Proof of Lemma 3

Proof. We recall from the proof of Lemma C.2 of [Arora et al. 2019] that if with probability at

least 1−δ, ‖θr (t)−θr (0)‖2 ≤ R, then with probability at least 1−δ, we have ‖H(t)−H(0)‖F ≤
4n2Rp
2πκδ

+ 2n2

m . So, we first find an upper bound on ‖θr (t)−θr (0)‖2 for t > k and replace its value

R in 4n2Rp
2πκδ

+ 2n2

m .

To find an upper bound on ‖θr (t)−θr (0)‖2 for t > k, we can follow a similar approach as

in the proof of Lemma C.1 of [Arora et al. 2019]:

‖θr (t)−θr (0)‖2 ≤
t−1∑
τ=0

‖θr (τ+1)−θr (τ)‖2

=
k−1∑
τ=0

‖θr (τ+1)−θr (τ)‖2 +
t−1∑
τ=k

‖θr (τ+1)−θr (τ)‖2

(a)≤
k−1∑
τ=0

γ
p

np
m

∥∥fΘ(τ) −y
∥∥

2 +
t−1∑
τ=k

γ
p

np
m

∥∥fΘ(τ) − ỹ
∥∥

2

(b)≤
k−1∑
τ=0

γ
p

np
m

(
1− γλ0

4

)τ∥∥fΘ(0) −y
∥∥

2

+
t−1∑
τ=k

γ
p

np
m

(
1− γλ0

4

)τ−k ∥∥fΘ(k) − ỹ
∥∥

2

(c)≤ O

(
γnp
mδ

)k−1∑
τ=0

(
1− γλ0

4

)τ
+

t∑
τ=k

γ
p

np
m

(
1− γλ0

4

)τ−k [∥∥fΘ(k) −y
∥∥

2 +
∥∥ỹ−y

∥∥
2

]
(d)≤ O

(
γnp
mδ

)k−1∑
τ=0

(
1− γλ0

4

)τ
+O

(
γnp
mδ

) t−k∑
τ=0

(
1− γλ0

4

)τ
≤O

(
γnp
mδ

) ∞∑
τ=0

(
1− γλ0

4

)τ
≤O

(
n

λ0
p

mδ

)
, (4.11)

where (a) holds because for an update step on label vector u according to gradient descent,

we have

‖θr (τ+1)−θr (τ)‖ =
∥∥∥∥∥ γp

m
ar

n∑
i=1

(
fΘ(τ)(xi)−ui

)
Ir,i (k)xi

∥∥∥∥∥
≤ γp

m

n∑
i=1

∣∣ fΘ(τ)(xi)−ui
∣∣≤ γ

p
np

m

∥∥fΘ(τ) −u
∥∥ ,

inequalities (b) and (c) use Corollary 1. Inequality (d) holds because we have
∣∣yi

∣∣ ≤ 1 and∣∣ỹi
∣∣= 1, so again by using Corollary 1

∥∥fΘ(k) −y
∥∥

2 +
∥∥ỹ−y

∥∥
2 ≤

(
1− γλ0

4

)k

O

(√
n

δ

)
+O(

p
n) =O

(√
n

δ

)
. (4.12)

153

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Therefore, with probability at least 1−δ over random initialization Eq. (4.7) for t > k

‖H(t)−H(0)‖F ≤ 4n2Rp
2πκδ

+ 2n2

m
=O

(
n3

κλ0δ3/2
p

m

)
,

where we replaced R with the upper bound in Eq. (4.11).

4.I Proof of Lemma 1

Proof. Note that throughout the proof, we refer to events with probability at least 1−δ, as

high probability events. Using the union bound, the probability of intersection of α high-

probability events is an event with probability at least 1−αδ. Therefore, we can again refer to

this event as a high probability event with probability at least 1−δ, but re-scale δ in the event

accordingly. Because δ only appears on bounds of the perturbation terms, and therefore in

the form of O(δ−1), then re-scaling δ would not change the order of these perturbation terms.

Hence, throughout the proof we do not put concerns on the exact probability of events, we

only refer to them as high probability events, and eventually we know that the probability of

our computations is at least 1−δ over the random initialization Equation (4.7).

Because Lemma 2 holds for t = k −1, we use Corollary 2 with t = k −1 and u = y:

fΘ(k) − fΘ(k−1) =−ηH∞ (
fΘ(k−1) −y

)+ξ(k −1),

where with probability at least 1−δ

‖ξ(k −1)‖2 =O

(
γn3

p
mλ0κδ3/2

)∥∥fΘ(k−1) −y
∥∥

2 ,

because of Eq. (4.8). We then compute

fΘ(k) − ỹ = fΘ(k−1) − ỹ−γH∞ (
fΘ(k−1) −y

)+ξ(k −1)

= fΘ(0) − ỹ−γ
k−1∑
t=0

H∞ (
fΘ(t) −y

)+ k−1∑
t=0

ξ(t). (4.13)

Let

χ(k) =−γ
k−1∑
t=0

H∞ (
I−γH∞)t fΘ(0)

−γ
k−1∑
t=1

t−1∑
s=0

H∞ (
I−γH∞)s

ξ (t − s −1)+
k−1∑
t=0

ξ(t)+ fΘ(0). (4.14)

154

4.I. Proof of Lemma 1

Then Eq. (4.13) becomes:

fΘ(k) − ỹ = γ
k−1∑
t=0

H∞ (
I−γH∞)t y− ỹ+χ(k), (4.15)

where we have replaced fΘ(t) −y for 1 ≤ t ≤ k in Eq. (4.13) using Corollary 3 by

(
I−γH∞)t (fΘ(0) −y)+

t−1∑
s=0

(
I−γH∞)s

ξ(t − s −1).

Next, we would like to find an upper bound for
∥∥χ(k)

∥∥. As shown in Du et al. [2018]; Arora

et al. [2019], with probability at least 1−δ over random initialization Eq. (4.7), we have

∥∥fΘ(0)
∥∥2

2 ≤
nκ2

δ
. (4.16)

The first term in χ(k) (Section 4.I) is bounded because of Eq. (4.16) from above with high

probability as ∥∥∥∥∥γk−1∑
t=0

H∞ (
I−γH∞)t fΘ(0)

∥∥∥∥∥
2

≤ γ
k−1∑
t=0

∥∥H∞∥∥
2

∥∥I−γH∞∥∥t
2

∥∥fΘ(0)
∥∥

2

≤ γ
k−1∑
t=0

n

2

(
1−γλ0

)t O

(p
nκp
δ

)
=O

(
n3/2κp
δλ0

)
,

where the second inequality uses Property 3.

155

Chapter 4. Leveraging Unlabeled Data to Track Memorization

The second term of χ(k) in Section 4.I can also be bounded with high probability by∥∥∥∥∥γk−1∑
t=1

t−1∑
s=0

H∞ (
I−γH∞)s

ξ(t − s −1)

∥∥∥∥∥
2

≤ γ
k−1∑
t=1

t−1∑
s=0

∥∥H∞∥∥
2

∥∥I−γH∞∥∥s
2 ‖ξ(t − s −1)‖2

(a)≤ η
k−1∑
t=1

t−1∑
s=0

n

2

(
1−γλ0

)s O

(
γn3

p
mλ0κδ3/2

)∥∥fΘ(t−s−1) −y
∥∥

2

(b)≤ γ
k−1∑
t=1

t−1∑
s=0

n

2

(
1−γλ0

)s O

(
γn3

p
mλ0κδ3/2

)(
1− γλ0

4

)t−s−1

O

(√
n

δ

)

=O

(
γ2n9/2

p
mλ0κδ2

)k−1∑
t=1

t−1∑
s=0

(
1−γλ0

)s
(
1− γλ0

4

)t−s−1

=O

(
γ2n9/2

p
mλ0κδ2

)k−1∑
t=1

(
1− γλ0

4

)t−1 t−1∑
s=0

(
1−γλ0

1−γλ0/4

)s

=O

(
γ2n9/2

p
mλ0κδ2

)k−1∑
t=1

(
1− γλ0

4

)t−1 4−γλ0

3γλ0

[
1−

(
1−γλ0

1−γλ0/4

)t]

=O

(
γ2n9/2

p
mλ0κδ2

) (
4−γλ0

)(
3γλ0

)(
1−γλ0/4

) k−1∑
t=1

[(
1− γλ0

4

)t

− (
1−γλ0

)t
]

=O

(
γ2n9/2

p
mλ0κδ2

)
4

3γλ0

[
1− (

1−γλ0/4
)k

γλ0/4
− 1− (

1−γλ0
)k

γλ0

]

≤O

(
n9/2

p
mλ3

0κδ
2

)
,

where (a) uses Property 3 and Eq. (4.8), (b) uses Corollary 1, and the rest of the computations

use algebraic tricks.

The third term of χ(k) in Section 4.I can be bounded with high probability using Eq. (4.8) by:∥∥∥∥∥k−1∑
t=0

ξ(t)

∥∥∥∥∥
2

≤
k−1∑
t=0

‖ξ(t)‖2 ≤
k−1∑
t=0

O

(
γn3

p
mλ0κδ3/2

)∥∥fΘ(t) −y
∥∥

2

≤O

(
γn3

p
mλ0κδ3/2

)
O

(√
n

δ

)k−1∑
t=0

(
1− γλ0

4

)t

≤O

(
n7/2

p
mλ2

0κδ
2

)
,

where we use Corollary 1.

Summing up, and using Eq. (4.16) to bound the last term of Section 4.I, we showed that with

156

4.J. Proof of Theorem 3

high probability:

∥∥χ(k)
∥∥

2 ≤O

(
n3/2κp
δλ0

+ n9/2

p
mλ3

0κδ
2
+ n7/2

p
mλ2

0κδ
2
+
p

nκp
δ

)

=O

(
n3/2κp
δλ0

+ n9/2

p
mλ3

0κδ
2

)
. (4.17)

We now reformulate Section 4.I in terms of the eigenvectors and eigenvalues of the Gram

matrix (Eq. (4.3)) as follows, by repeatedly using Property 2

fΘ(k) − ỹ = γ
k−1∑
t=0

H∞(I−γH∞)t y− ỹ+χ(k)

= γ
k−1∑
t=0

n∑
i=1

λi vi vT
i

n∑
j=1

(
1−γλ j

)t v j vT
j

n∑
z=1

(vT
z y)vz −

n∑
i=1

(vT
i ỹ)vi +χ(k)

= γ
k−1∑
t=0

n∑
i=1

n∑
j=1

n∑
z=1

λi
(
1−γλ j

)t vi (vT
i v j)(vT

j vz)(vT
z y)−

n∑
i=1

(vT
i ỹ)vi +χ(k)

(a)= γ
k−1∑
t=0

n∑
i=1

n∑
j=1

n∑
z=1

λi
(
1−γλ j

)t viδi , jδ j ,z (vT
z y)−

n∑
i=1

(vT
i ỹ)vi +χ(k)

= γ
k−1∑
t=0

n∑
i=1

λi
(
1−γλi

)t vi (vT
i y)−

n∑
i=1

(vT
i ỹ)vi +χ(k)

= γ
n∑

i=1
λi

k−1∑
t=0

(
1−γλi

)t (vT
i y)vi −

n∑
i=1

(vT
i ỹ)vi +χ(k)

=
n∑

i=1

[
1− (

1−γλi
)k

]
(vT

i y)vi −
n∑

i=1
(vT

i ỹ)vi +χ(k)

=
n∑

i=1

[
(vT

i y)− (
1−γλi

)k (vT
i y)− (vT

i ỹ)
]

vi +χ(k), (4.18)

where in (a) with some abuse of notation δi , j and δ j ,z refer to the Kronecker delta function.

This concludes the proof.

4.J Proof of Theorem 3

Proof. We start similarly to the proof of Lemma 1. Because for t = k + k̃ −1 Lemma 3 holds,

using Corollary 2 for t = k + k̃ −1 and u = ỹ, we have:

fΘ(k+k̃) − fΘ(k+k̃−1) =−γH∞ (
fΘ(k+k̃−1) − ỹ

)+ξ(k + k̃ −1),

where from Eq. (4.8) with high probability

∥∥ξ(k + k̃ −1)
∥∥

2 =O

(
γn3

p
mλ0κδ3/2

)∥∥fΘ(k+k̃−1) − ỹ
∥∥

2
.

157

Chapter 4. Leveraging Unlabeled Data to Track Memorization

Therefore, recursively we can write:

fΘ(k+k̃) − ỹ = fΘ(k+k̃−1) − ỹ−γH∞ (
fΘ(k+k̃−1) − ỹ

)+ξ(k + k̃ −1)

= (
I−γH∞)(

fΘ(k+k̃−1) − ỹ
)+ξ(k + k̃ −1)

= (
I−γH∞)k̃ (

fΘ(k) − ỹ
)+ k̃−1∑

t=0

(
I−γH∞)t

ξ(k + k̃ −1− t)

= (
I−γH∞)k̃

[
y− ỹ−

n∑
i=1

(
1−γλi

)k (
vT

i y
)

vi +χ(k)

]

+
k̃−1∑
t=0

(
I−γH∞)t

ξ(k + k̃ −1− t)

= (
I−γH∞)k̃

[
y− ỹ−

n∑
i=1

(
1−ηλi

)k (
vT

i y
)

vi

]

+(
I−ηH∞)k̃

χ(k)+
k̃−1∑
t=0

(
I−ηH∞)t

ξ
(
k + k̃ −1− t

)
, (4.19)

where the 4th operation follows from Lemma 1. Now, we find bounds for the perturbation

terms. Let

κ=O(
ε
p
δλ0

n3/2
), m =Ω(

n9

λ6
0ε

2κ2δ4
). (4.20)

Then, using Lemma 1, the first perturbation term of Eq. (4.19) is upper bounded as

∥∥∥(
I−γH∞)k̃

χ(k)
∥∥∥

2
≤ (

1−γλ0
)k̃ O

(
n3/2κp
δλ0

+ n9/2

p
mλ3

0κδ
2

)
=O

(
(1−γλ0)k̃ε

)
∈O(ε),

158

4.J. Proof of Theorem 3

where the last line comes from inserting our choices of κ and m from Eq. (4.20).

The last term of Eq. (4.19) can be upper bounded with high probability as∥∥∥∥∥k̃−1∑
t=0

(
I−γH∞)t

ξ(k + k̃ −1− t)

∥∥∥∥∥≤
k̃−1∑
t=0

∥∥I−γH∞∥∥t
2

∥∥ξ(k + k̃ −1− t)
∥∥

2

(a)≤
k̃−1∑
t=0

(
1−γλ0

)t O

(
γn3

p
mλ0κδ3/2

)∥∥fΘ(k+k̃−1−t) − ỹ
∥∥

2

(b)≤ O

(
γn3

p
mλ0κδ3/2

) k̃−1∑
t=0

(
1−γλ0

)t
(
1− γλ0

4

)k̃−1−t ∥∥fΘ(k) − ỹ
∥∥

2

≤O

(
γn3

p
mλ0κδ3/2

) k̃−1∑
t=0

(
1−γλ0

)t
(
1− γλ0

4

)k̃−1−t [∥∥fΘ(k) −y
∥∥

2 +
∥∥ỹ−y

∥∥
2

]
(c)≤ O

(
γn3

p
mλ0κδ3/2

) k̃−1∑
t=0

(
1−γλ0

)t
(
1− γλ0

4

)k̃−1−t [
O

(√
n

δ

)]

≤O

(
γn7/2

p
mλ0κδ2

)(
1− γλ0

4

)k̃−1 k̃−1∑
t=0

(
1−γλ0

1−γλ0/4

)t

≤ 4

3γλ0
O

(
γn7/2

p
mλ0κδ2

)
=O

(
n7/2

p
mλ2

0κδ
2

)
(d)= O

(
λ0ε

n

)
,

where (a) uses Property 3 and Eq. (4.8), (b) uses Corollary 1 and (c) uses Eq. (4.12). Finally

(d) follows from inserting our choice of m from Eq. (4.20). Because we have
∑n

i=1λi = n/2

from Property 3, and λ0 = min{λi }n
i , then λ0 ≤ 1/2. Both perturbation terms in Section 4.J are

therefore at most in the order of ε with our choices of m and κ from Eq. (4.20).

Using Property 2, the squared norm of the first term in Eq. (4.19) is∥∥∥∥∥ n∑
i=1

(
1−γλi

)k̃
[

(vT
i y)− (

1−γλi
)k (vT

i y)− (vT
i ỹ)

]
vi

∥∥∥∥∥
2

2

=
n∑

i=1

n∑
j=1

(
1−γλi

)k̃
[

(vT
i y)− (

1−γλi
)k (vT

j y)− (vT
j ỹ)

]
(
1−γλ j

)k̃
[

(vT
j y)− (

1−γλ j
)k (vT

j y)− (vT
j ỹ)

]
vT

i v j

=
n∑

i=1

[
(vT

i y)− (
1−γλi

)k (vT
j y)− (vT

j ỹ)
]2 (

1−γλi
)2k̃ (4.21)

The norm of Eq. (4.19) is therefore, for our choice of κ and m given in Eq. (4.20), with

probability at least 1−δ

∥∥fΘ(k+k̃) − ỹ
∥∥

2
=

√
n∑

i=1

[
vT

i y−vT
i ỹ− (

1−γλi
)k vT

i y
]2

(1−γλi)2k̃ ±ε,

which concludes the proof.

159

Chapter 4. Leveraging Unlabeled Data to Track Memorization

4.K Proof and Numerical Evaluations of Theorem 4

Proof. Because ỹ j ∼U ({−1,1}) and ỹ j ⊥⊥ ỹi for i 6= j , and ‖vi‖2 = 1, for i ∈ [n], we have:

E
[
p̃2

i

]= E
 n∑

j=1
v2

i , j ỹ2
j +

n∑
j=1

n∑
k=1
k 6= j

vi , j ỹ j vi ,k ỹk

=
n∑

j=1
v2

i , j +
n∑

j=1

n∑
k=1
k 6= j

vi , j vi ,kE
[

ỹ j
]
E
[

ỹk
]= 1+0 = 1.

Recall from Eq. (4.4) that

Φ̃(k + k̃) = 1

2

n∑
i=1

[
pi − p̃i −pi

(
1−γλi

)k
]2 (

1−γλi
)2k̃ .

This expression is a random variable that depends on random vectors p̃ and p, which are

functions of the random label vectors ỹ and y, respectively. We now compute the expectation

of the above objective function with respect to p̃ and p:

Ep̃,p
[
Φ̃(k + k̃)

]= 1

2

n∑
i=1

E
[
p2

i

][
1− (

1−γλi
)k

]2 (
1−γλi

)2k̃

+1

2

n∑
i=1

E
[
p̃2

i

](
1−γλi

)2k̃ −
n∑

i=1
E
[
pi p̃i

][
1− (

1−γλi
)k

](
1−γλi

)2k̃

= 1

2

n∑
i=1

E
[
p2

i

][
1− (

1−γλi
)k

]2 (
1−γλi

)2k̃ + 1

2

n∑
i=1

(
1−γλi

)2k̃

−
n∑

i=1

[
n∑

j=1

n∑
k=1

vi , j vi ,kE
[

ỹ j yk
]][

1− (
1−γλi

)k
](

1−γλi
)2k̃

= 1

2
µ+ 1

2

n∑
i=1

(
1−γλi

)2k̃ , (4.22)

where follows with µ given by Eq. (4.5), and because ỹ j ⊥⊥ yk for all j ,k ∈ [n].

Because of Chebyshev inequality and Eq. (4.22), with probability at least 1−δ, we have:

∣∣∣∣∣Φ̃(k + k̃)− 1

2

n∑
i=1

(
1−γλi

)2k̃ − µ

2

∣∣∣∣∣≤
√
Σ

δ
, (4.23)

where

Σ= Varp̃,p
[
Φ̃(k + k̃)

]
, (4.24)

which concludes the proof.

Numerical Evaluations We now empirically evaluate the lower and upper bounds in

160

4.K. Proof and Numerical Evaluations of Theorem 4

Eq. (4.23) for networks trained on label vector y with varying label noise levels (LNL). To do

so, we discard the middle term of the left hand side of Eq. (4.23), as it does not depend on y.

We then study the rest in Fig. 4.34, Fig. 4.35, Fig. 4.36 and Fig. 4.37 for different datasets and

values of γ and k. We observe consistently that both the lower and the upper bounds are a

decreasing function of the label noise level (LNL) in the label vector y.

γ
=

10
−6

(a) k = 100 (b) k = 1000 (c) k = 10000

γ
=

10
−3

(d) k = 10 (e) k = 100 (f) k = 1000

Figure 4.34: The lower (dashed lines) and upper (solid lines) bound terms of Theorem 4 that
depend on the label noise level (LNL) are depicted as a function of the number of epochs k̃,
for different hyper-parameter values (the learning rate γ and k) with δ= 0.05. The eigenvector
projections pi that appear in µ and Σ are computed from the Gram-matrix of 1000 samples
from the MNIST dataset. The resulting values are obtained from an average over 10 random
draws of the label vector y. We observe that both the lower and the upper bounds of Eq. (4.23)
are decreasing functions of LNL and of k̃.

161

Chapter 4. Leveraging Unlabeled Data to Track Memorization
γ
=

10
−6

(a) k = 100 (b) k = 1000 (c) k = 10000

γ
=

10
−3

(d) k = 10 (e) k = 100 (f) k = 1000

Figure 4.35: The lower (dashed lines) and upper (solid lines) bound terms of Theorem 4 that
depend on the label noise level (LNL) are depicted as a function of the number of epochs k̃,
for different hyper-parameter values (the learning rate γ and k) with δ= 0.05. The eigenvector
projections pi that appear in µ and Σ are computed from the Gram-matrix of 1000 samples
from the Fashion-MNIST dataset. The resulting values are obtained from an average over 10
random draws of the label vector y. We observe that both the lower and the upper bounds of
Eq. (4.23) are decreasing functions of LNL and of k̃.

γ
=

10
−6

(a) k = 100 (b) k = 1000 (c) k = 10000

γ
=

10
−3

(d) k = 100 (e) k = 1000 (f) k = 10000

Figure 4.36: The lower (dashed lines) and upper (solid lines) bound terms of Theorem 4 that
depend on the label noise level (LNL) are depicted as a function of the number of epochs k̃,
for different hyper-parameter values (the learning rate γ and k) with δ= 0.05. The eigenvector
projections pi that appear in µ and Σ are computed from the Gram-matrix of 1000 samples
from the CIFAR-10 dataset. The resulting values are obtained from an average over 10 random
draws of the label vector y. We observe that both the lower and the upper bounds of Eq. (4.23)
are decreasing functions of LNL and of k̃.

162

4.K. Proof and Numerical Evaluations of Theorem 4

γ
=

10
−6

(a) k = 100 (b) k = 1000 (c) k = 10000

γ
=

10
−3

(d) k = 100 (e) k = 1000 (f) k = 10000

Figure 4.37: The lower (dashed lines) and upper (solid lines) bound terms of Theorem 4 that
depend on the label noise level (LNL) are depicted as a function of the number of epochs k̃,
for different hyper-parameter values (the learning rate γ and k) with δ= 0.05. The eigenvector
projections pi that appear in µ and Σ are computed from the Gram-matrix of 1000 samples
from the SVHN dataset. The resulting values are obtained from an average over 10 random
draws of the label vector y. We observe that both the lower and the upper bounds of Eq. (4.23)
are decreasing functions of LNL and of k̃.

163

5 Differences Between Hard and Noisy-
labeled Samples: An Empirical Study

Extracting noisy or incorrectly labeled samples from a labeled dataset with hard/difficult

samples is an important yet under-explored topic. Two general and often independent lines

of work exist, one focuses on addressing noisy labels, and another deals with hard samples.

However, when both types of data are present, most existing methods treat them equally, which

results in a decline in the overall performance of the model. In this chapter, we first design

various synthetic datasets with custom hardness and noisiness levels for different samples.

Our proposed systematic empirical study enables us to better understand the similarities

and more importantly the differences between hard-to-learn samples and incorrectly-labeled

samples. These controlled experiments pave the way for the development of methods that

distinguish between hard and noisy samples. Through our study, we introduce a simple yet

effective metric that filters out noisy-labeled samples while keeping the hard samples. We

study various data partitioning methods in presence of label noise and observe that filtering

out noisy samples from hard samples with this proposed metric results in the best datasets as

evidenced by the high test accuracy achieved after models are trained on the filtered datasets.

We demonstrate this for both our created synthetic datasets and for datasets with real-world

label noise.

5.1 Introduction

Deep neural networks have revolutionized many applications, especially in the field of image

classification, mostly due to the availability of large, high-quality labeled datasets [Rawat and

Wang 2017]. In practice, obtaining such datasets is often challenging, time-consuming, and

expensive, thus leading to the inclusion of label noise in the obtained datasets [Roh et al.

2019]. Label noise can arise for various reasons such as the use of cheap label collection

alternatives, for instance crowdsourcing, or the obtainment of the label of an image from the

accompanying text on the Web [Cordeiro and Carneiro 2020; Frénay and Verleysen 2013; Algan

and Ulusoy 2020; Karimi et al. 2020]. The problem with label noise is that deep neural networks

tend to easily memorize these noisy labels, which can negatively impact their generalization

performance [Zhang et al. 2021a]. Many methods propose to mitigate the effects of label noise,

165

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

including the use of robust loss functions [Ma et al. 2020; Thulasidasan et al. 2019; Wang et al.

2019; Patrini et al. 2017] and modifications to the training procedures [Yu et al. 2019; Zhang

et al. 2020b; Jiang et al. 2018a; Malach and Shalev-Shwartz 2017]. Another popular approach

to deal with label noise is to use a noisy-label detection method [Nguyen et al. 2019; Li et al.

2020a; Huang et al. 2019; Pleiss et al. 2020b;a]. This approach can involve data cleansing,

where the noisy data is entirely removed from the data set altogether, data re-weighting, where

noisy data are given lower weights during training, or re-labeling, where the noisy data is

re-annotated by experts.

When using noisy-label detection methods, an issue that often arises is their inability

to differentiate between noisy-labeled samples and hard-to-learn samples. Hard-to-learn

samples, also simply known as hard samples, refer to samples in a dataset that are particularly

challenging for the classifier to learn [Arpit et al. 2017; Kishida and Nakayama 2019; Wu

et al. 2018]. Empirical observations have revealed that noisy samples and hard samples share

certain characteristics, such as high loss or low confidence or being learned later in the training

process. Consequently, when noisy label detection methods are employed, which are based

on these characteristics, hard samples are also treated as noisy samples and are either filtered

out or given lower emphasis during training. Unfortunately, discarding hard samples may

result in gaps in the classifier’s knowledge of the true decision boundary, making it crucial

to preserve as many hard samples as possible and prioritize their leaning [Chang et al. 2017;

Bengio et al. 2009; Wang et al. 2020]. It is thus vital to propose noisy-label detection methods

capable of distinguishing between noisy-labeled samples and hard samples, keeping as many

hard samples as possible while removing noisy ones.

Recent studies that propose noisy-label detection methods which are claimed to retain

hard samples lack a quantitative evaluation of such claim, as there is no precise measure to

quantify sample difficulty [Liang et al. 2022; Bai and Liu 2021; Zhu et al. 2021a; Zhang et al.

2022]. To overcome this limitation, in this work, we propose synthetic datasets that simulate

varying levels of hardness and noisiness. Although synthetic label noise has been previously

studied [Zhang et al. 2021a; Rolnick et al. 2017], our work, to the best of our knowledge, is the

first to introduce synthetic hardness/difficulty levels and to assign each sample with a custom

hardness level.

There are various reasons that a sample is difficult to classify: it can be under-represented

in the data set, or it can have distinct characteristics from other samples in its class, or it can

be near the decision boundary. We propose three main approaches to artificially, by applying

transformations to the original dataset samples, produce hard samples, we refer to these

three approaches as hardness type. We have: (i) imbalanced-ness, (ii) diversification, and (iii)

closeness to the decision boundary. The first approach (i) introduces sample difficulty by

creating an imbalanced dataset, and subsampling different classes with varying cardinality.

This results in under-represented classes being more difficult to learn. In the second approach

(ii), the difficulty is introduced by making different classes more or less distinct in their samples,

through custom data augmentations. This is achieved by applying a varying number of data

166

5.1. Introduction

augmentations to different classes, thus resulting in classes with fewer distinct samples and

with more augmented samples per distinct sample being easier to learn. In the third approach

(iii), the difficulty is introduced by modifying the input samples to be closer to the decision

boundary. The decision boundary is estimated using a pre-trained model with a high test

accuracy, and the samples are modified to be closer to this estimated decision boundary.

Overall, we do not claim these approaches cover all contexts in which hard samples arise, and

in practice, a sample might be difficult because of any combination of the aforementioned

reasons, or some other reason. Yet, these common-sense approaches of introducing sample

difficulty enable us to perform controlled experiments to assess different metrics and methods

in terms of their ability to distinguish between hard and noisy samples.

In this chapter, our key observation is that the feature embeddings of hard samples be-

come closer to each other during training, whereas noisy-labeled samples do not necessarily

exhibit this behavior because of the visual dissimilarity between samples in the same class.

This observation leads us to propose the distance between the feature layer vector of each

sample and the centroid feature vector of its assigned class, as a metric to distinguish be-

tween hard and noisy-labeled samples, which we call static-centroid distance (SCD). Next, we

propose a label noise detection method based on SCD. While other methods perform well

in only one of the two tasks among filtering out noisy samples and retaining hard samples,

our method is the only one that performs well in both tasks, and consistently so in all of our

synthetic datasets as well as datasets with real-world label noise. We demonstrate the superior

performance of this approach for noisy label detection when used for data cleansing. Overall,

our key contributions are as follows:

• We propose a novel approach for creating synthetically difficult samples using three

different approaches: imbalanced-ness, diversification, and closeness to the decision

boundary. To the best of our knowledge, we are the first to use controlled experiments to

simulate hard samples and assess how different label noise detection methods perform

in terms of retaining hard samples.

• We study various metrics for detecting noisy labels and show that static centroid distance

(SCD) is the most effective metric in distinguishing between hard and noisy-labeled

samples. While other metrics remain monotonic by increasing either as a function

of hardness or noisiness, we show that SCD is the only metric that is increasing with

noisiness but is not increasing with hardness.

• We propose and evaluate different methods for data cleansing and sample selection and

we show that a two-dimensional Gaussian mixture model, which uses (i) the accuracy

over the training and (ii) SCD as features, performs the best in terms of filtering out

noisy samples while retaining hard ones, on the synthetic datasets.

• We empirically show that our method produces the best generalization performance

when models are trained on the filtered datasets. This holds both in the synthetic

datasets and even better in datasets with real-world label noise.

167

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

5.2 Background and Related Work

In this section, we first introduce the problem setup developed in this work to produce datasets

with custom noisiness and hardness levels. Then, we recall some metrics from previous works

that are relevant to our study. Next, we introduce static centroid distance (SCD). Finally, we

present various partitioning approaches that can be used in conjunction with each metric for

sample selection.

Consider a classification task with input x ∈ X and ground truth one-hot label vector

y ∈ {0,1}K , where K is the number of classes. The original training set, with ground-truth labels,

is denoted by Sorg = {(xi , yi)}i=1,··· ,Norg , which consists of Norg input-output pairs. We assume

that the available given training set S is a transformation of Sorg. The available training set S

consists of N 1 training sample pairs S =T (Sorg) = {(x̃i , ỹi)}i=1,··· ,N , where the transformation

T applied to Sorg is such that S might have label noise and might contain samples which are

more difficult for a classifier to learn compared to the rest.

We partition the training set S = Sn ∪Se ∪Sh , where Sn are the incorrectly-labeled samples

(or noisy samples), Se are the correctly-labeled and easy-to-learn samples, and Sh are the

correctly-labeled and hard-to-learn samples. In practical applications, it is often challenging to

clearly distinguish between easy and hard samples in a given dataset. This can be a limitation

when studying the performance of different models or algorithms, as the lack of a clear

differentiation between easy and hard samples can result in inaccurate estimates of the sets

Sh and Se . To address this issue, we synthetically, from some original available dataset Sorg,

create a spectrum of samples that have different hardness levels h ∈ {0,1,2,3,4} and noisiness

levels n ∈ {0,1,2,3,4}: samples are harder to learn as h increases, and are noisier as n increases.

We will now discuss how we transform an original dataset Sorg = {(xi , yi)}i=1,··· ,Norg , with no

label noise and with uniform hardness levels among its samples, to a dataset S =T (Sorg). This

transformation provides us with a knob that we can tune to make alterations, allowing for a

systematic study of easy, hard, and noisy samples while offering a good comparison base.

Noisiness transformation Let S′ = {(xi , yi)}i=1,··· ,N ′ ⊂ Sorg, be a subset of size N ′ from

the original dataset Sorg. We want to transform S′ such that the resulted set S′
t =Tn(S′) has

samples with noisiness level n ∈ {0,1,2,3,4}. The noisiness level n determines the label noise

level q(n). The transformation Tn is such that S′
t = {(xi , ỹi)}i=1,··· ,N ′ , where with probability

1− q(n), ỹi = yi , and with probability q(n), the non-zero element of ỹi is set (uniformly at

random) at index j ∼U ({1,2, · · · ,k}). Such dataset transformation is a common practice to

study label noise in a controlled setting, which is done by fixing some label noise level q for

the entire transformed dataset.

Hardness transformation Let S′ = {(xi , yi)}i=1,··· ,N ′ ⊂ Sorg, be a subset of size N ′ from

the original dataset Sorg. We want to transform S′ such that the resulted set S′
t =Th(S′) has

1Note that only in this chapter the training set size is denoted by N , whereas in the rest of the thesis it is denoted
by n. In this chapter, with some abuse of notation compared to the rest of the thesis, we use n for the noisiness
level.

168

5.2. Background and Related Work

samples with hardness level h ∈ {0,1,2,3,4}. In this chapter, we consider this transformation

to be a composition of two transformations, i.e., Th = Fh ◦Ih . The first transformation is

one-to-one, and maps S′ into S′′ =Ih(S′) = {(x j , y j)} j∈Jh , where Jh ⊂ {1, · · · , N ′}. The second

transformation is one-to-many, and maps S′′ into S′
t =Fh(S′′) = {(x̃I (j), y j)} j∈Jh , where x̃I (j)

is a transformed version of input sample x j , and I (j) can be a one-to-many function. In

Section 5.3, we discuss how the transformation Th is done.

The final transformed dataset is S =∪S′
h,n

Tn ◦Th(S′
h,n), where the subsets S′

h,n ⊂ Sorg∀h ∈
{0,1,2,3,4},n ∈ {0,1,2,3,4} are determined according to a pre-defined policy. With S′

t ,h,n =
Tn ◦Th(S′

h,n), the three sets partitioning S are

Sh = {(x̃i , ỹi) ∈ S′
t ,h,n |ỹi = yi },

Sn = {(x̃i , ỹi) ∈ S|ỹi 6= yi },

Se = S \ (Sh ∪Sn).

We consider the classifier trained on the dataset S to be a neural network. For each

input sample xi , let p(xi) = (p1
i , p2

i , · · · , pk
i) be the prediction probability output vector of

the neural network. Furthermore, the last layer of the neural network is a fully-connected

layer with feature vector h(xi) ∈ Rm , where m is the number of units in the feature layer of

the neural network. Note that because the parameters of the neural network depend on

the epoch during training, both vectors p(xi) and f(xi) depend on the epoch t ∈ {1,2, · · · ,k},

where k is the maximum number of training epochs. We often remove the dependence on

t for simplicity. Training is done by performing stochastic gradient descent (SGD) on the

cross-entropy training loss function at each epoch t

LS(t) = 1

N

N∑
i=1

li (t) =− 1

N

N∑
i=1

K∑
j=1

y j
i log p j

i (t) =− 1

N

N∑
i=1

log pci

i (t)

where li (t) is the training cross-entropy loss of sample xi at epoch t ∈ {1,2, · · · ,k}. The predic-

tion of the neural network classifier at epoch t for sample xi is class c̃i = argmax j p j
i (t), and

the confidence of the classifier is p c̃i

i that is the prediction probability of the classifier for the

predicted class label.

Metrics Here, we recall a few metrics that are introduced in prior work and introduce a

new metric, static centroid distance (SCD). In the following sections, we perform a compre-

hensive study on all these metrics in order to detect which metric, or combination of which

metrics, is the best at distinguishing between samples in Sn and Sh . In order to remain on a

computationally limited budget, we study metrics that require only a single model and not an

ensemble of models. For each sample xi , we compute the following metrics defined below.

Throughout our study, we primarily focus on loss, confidence, and SCD metrics. The former

two are widely used in the literature due to the valuable information they provide about each

sample, while the latter is a metric proposed in our work.

169

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

• Loss: The training loss li (k) at the end of the training, i.e., at epoch k.

• Confidence: The prediction probability p c̃i

i (k) at the end of the training, i.e., at epoch k.

• First Prediction Epoch: The epoch t∗ such that c̃i (t∗) = ci (t∗) and c̃i (s) 6= ci (s) for s < t∗.

• Accuracy of Predictions over Training: The accuracy of the classifier predictions for xi

against the assigned class label ci over the training process, i.e., 1
k

∑k
t=11(ci (t) = c̃i (t)),

where1 is the indicator function. This is used by Sun et al. [2020] to detect noisy samples

and to remove them from the dataset.

• AUL: Area under Loss:
∑k

t=1 li (t), which is used by Pleiss et al. [2020b] to detect noisy

samples.

• AUM: Area under Margin: 1
k

∑k
t=1 p c̃i

i (t)−p
c ′

i

i (t), where p
c ′

i

i (t) is the largest second logit

at time t . This is used by Pleiss et al. [2020a] to detect noisy samples.

• JSD: Jensen-Shannon divergence between pi and ỹi at the end of the training, i.e., at

epoch k. Its weighted version, WJSD, is proposed by Zhang et al. [2022] to detect noisy

samples.

• ACD: Adaptive Centroid Distance, which is the cosine distance between the feature

vector h(xi) and the adaptive centroid of feature vectors oci at the end of the training,

i.e., at epoch k. The term adaptive refers to the computation of oci as it is the centroid

for samples that the classifier suspects to be in class ci : either these samples have been

assigned to another class but the classifier predicts them to be in class ci , or they have

been assigned to class ci and the classifier has high pci

i . This metric is proposed by

Zhang et al. [2022] to detect noisy samples.

• SCD (in our work): Static Centroid Distance, which is the Euclidean distance between

h(xi) and the static centroid of feature vectors os
ci

at the middle of training, k∗, where

ACC (k∗) ≥ 50% and ACC (s) < 50% for s < k∗. This is developed in our work as opposed

to ACD, as a result of our empirical observations in studying hard samples. The adapta-

tions from ACD to compute SCD are the following: (1) the distance function in SCD is

Euclidean distance instead of cosine distance as we are interested in different regions of

the feature space and not in different angles/directions of the feature vectors; (2) SCD is

computed in the middle of training, where the training accuracy is 50%. This eliminates

the need to proceed with training until the very end, when the purpose of training is

only to detect noisy samples. However, we observe that in this intermediate stage of

training the differences between hard and noisy samples are at their highest; (3) the

centroid vector os
ci

is computed for all samples that are assigned to class ci , and not

only for those samples which the classifier predicts to be in class ci . Because for hard

classes, the classifier, which might not have learned them correctly, does not predict

samples that actually belong to class ci , the distance to oci becomes rather meaningless.

We observe that relying too much on the classifier to compute this centroid, which is

170

5.3. Dataset Design with Different Hardness Levels

done in the computation of ACD, results in inferior performance, especially when the

quality of the data is low.

Partitioning Methods Using the above metrics, one can then cluster the available samples

in S in order to find estimates for the easy, hard and noisy subsets, which we refer to by S̃e , S̃h

and S̃n , respectively. Note that our overall goal is to find the estimated noisy subset S̃n and the

estimated clean S̃c = S̃e ∪ S̃h , but not precisely the two subsets S̃e and S̃h .

• Thresholding (Thres in short) - In this method, a threshold value is chosen for the specific

metric, which can be the average value over the samples or any other predetermined

value. The samples are then partitioned into two regions, one containing samples whose

values on the metric are greater than the threshold, and the other one containing the

samples whose values on the metric are smaller than the threshold Because we work

with values in the dataset that might have outliers (in particular for hard samples and

noisy samples), we choose the median value as the default threshold when using this

method.

• 1d-GMM - A one-dimensional Gaussian mixture model is used for partitioning the

dataset into multiple subsets or partitions by modeling the values of the metric for each

sample as a mixture of several Gaussian distributions, and each Gaussian distribution

represents one of the partitions.

• 2d-GMM - Similarly to 1d-GMM, a two-dimensional GMM can partition the dataset by

using two metrics instead of only one.

5.3 Dataset Design with Different Hardness Levels

We introduce three new datasets, which are transformations of a real-world dataset, that are

created to assess the robustness of machine-learning models against label noise and sample

difficulty. These datasets are transformed from the TinyImagenet dataset [Le and Yang 2015],

with each dataset having 200 classes, i.e., Sorg is the TinyImagenet training set. To ensure

consistency within each class, we systematically adjusted the hardness h and noisiness n

levels across five levels, such that all samples of a given class hold the same h and n. To provide

a comprehensive spectrum of samples, we varied h and n along two orthogonal axes, resulting

in a 2D space with four quadrants (and a total of 25 different sample categories): easy-clean

(h = 0 and n = 0), easy-noisy (h = 0 and n = 4), hard-clean (h = 4 and n = 0), and hard-noisy

(h = 4 and n = 4). Each sample in Sorg has a pair of (h,n) according to Fig. 5.1. The set of

samples with (h,n) pair is denoted by S′
h,n .

Denote the set of samples with hardness level h by S′
h with size N ′

h . These samples under-

go a transformation Th = Fh ◦Ih to become more or less hard to learn depending on the

value of h. We refer to the hardest samples, which are samples with h = 4, in the transformed

171

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

Figure 5.1: The hardness level h and noisi-
ness level n of samples in the datasets are
determined by their class, as shown on the
2-dimensional plot. For each pair (h,n), we
allocate class number c = 40∗(4−n)+8∗h+β
where β ∈ {0,1, · · · ,7}, so that each pair (h,n)
is represented by 8 different classes. For ex-
ample, samples with h = 0 and n = 4 are in
classes 0 to 7. We first adjust the difficulty
level h of each sample, based on its class-
specific hardness, by using the original labels
from the TinyImagenet dataset. We then in-
troduce label noise and assign new labels to
each sample, based on the level of noise n
that is determined by the original class la-
bel. This process results in a comprehensive
dataset with samples that range in difficulty
from easy to hard, and with labels that can
be either correct or noisy.

0-7

h

n

0 1 32 4

0

1
2

3
4 8-15 16-23

40-47

32-3924-31

48-55

80-87

72-7964-7156-63

88-95 96-103 104-111 112-119

152-159144-151136-143128-135120-127

176-183168-175160-167 184-191 192-199

dataset as the hard subset Sh . In Sections 5.3.1, 5.3.2, and 5.3.3, we provide details of the

transformation Th in each of the three hardness types. We then demonstrate the effectiveness

of this sample creation process in terms of making samples more or less difficult. This is

achieved by using metrics that are widely accepted from the literature and that quantify

sample difficulty/hardness, such as loss [Kishida and Nakayama 2019; Loshchilov and Hutter

2015], and confidence [Swayamdipta et al. 2020; Chang et al. 2017; Wang et al. 2020]. Prior

studies show that hard samples have larger losses and lower confidence. By examining the

correlation between loss/confidence and the hardness levels assigned by our approach, we

find that our assignments are accurate, as shown in Fig. 5.2 (using a one-way ANOVA test).

Finally, in the last part of this section, we describe how we create samples with different values

noise levels n. We then observe that the same correlation sign between loss/confidence and

hardness also exists between loss/confidence and noisiness. This indicates that hardness and

noisiness exhibit similar characteristics, and that removing noisy samples from the training

dataset by using loss or confidence could also lead to the inadvertent removal of correctly-

labeled hard-to-learn samples.

5.3.1 Hardness via Imbalance

In this dataset, we make samples with different h values, by making the dataset imbalanced.

To achieve this, we subsample the dataset such that the number of samples for each class

with hardness h is X /2h , where X is the maximum number of samples per class in the dataset.

With this approach, the number of samples per class decreases exponentially as h increases,

172

5.3. Dataset Design with Different Hardness Levels

(a) Hardness via Imbalance (b) Hardness via Diversification (c) Hardness via Closeness to the
Decision Boundary

Figure 5.2: In each of the three created datasets, we observe that samples in classes with
higher h have generally traits that correspond to their difficulty. These traits include having a
higher loss value and having a lower confidence (or prediction probability). To further show
the significance of loss and confidence values as h increases, we perform a one-way ANOVA
test, which results in the following F-statistics and p-values: (a) Hardness via Imbalance: for
loss we have F=672 and p< 1e −100, for confidence we have F=1519 and p= 0; (b) Hardness
via Diversification: for loss we have F=234 and p< 1e−190, for confidence we have F=237 and
p< 1e −200; (c) Hardness via Closeness to the Decision Boundary: For loss we have F=5.7
and p< 1e −3; for confidence we have F=5.8 and p< 1e −3. We can observe that in all three
settings, the F-statistics are relatively large and the p-values are small. We conclude that our
assigned h values do indeed indicate sample difficulty and in all three settings our approaches
for creating hard samples is justified.

which makes these samples under-represented hence more difficult to learn. We have

S′
t =Th(S′

h) =Ih(S′
h) = {(x j , y j)} j∈Jh

where Jh ∼ {1, · · · , N ′
h} is a subset of size X /2h . In this hardness type the transformation Fh is

the identity map and Th =Ih .

Are samples in Sh=4 with this hardness type actually more difficult to learn? As we can see

in Fig. 5.2a, samples that are assigned with a larger hardness h value have indeed a higher loss

and lower confidence values. We conclude that samples with h = 4, which are those in Sh , are

more difficult for the classifier to learn than the rest of the samples.

5.3.2 Hardness via Diversification

Compare the following two set of samples: (i) 16 images of different cats possibly with different

breads, (ii) 16 images of the same cat with different image augmentations, e.g., rotation,

flipping, etc. Which of the two set of samples is more difficult for a classifier to learn? We can

argue that the first set is more difficult, because the classifier requires to learn some common

features that belong to all 16 different images. The first set of samples are more diverse and

hence harder. Such diversification is the second hardness type we consider.

In this dataset, we keep the number of samples balanced between classes, but we vary the

173

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

Figure 5.3: This figure illustrates an example of how a sample can be made more difficult by
moving it closer to the decision boundary of the estimated ground-truth model, using a similar
approach as in fast gradient sign method[Goodfellow et al. 2014]. In this case, the epsilon
value ε is set as 0.01.

diversity of samples per class. To do so, we maintain the original samples in hard classes in

order to preserve their level of diversity/difficulty. For samples in the easy classes, we perform

data augmentation techniques, such as rotation or flipping, to make samples less diverse and

hence easier to learn. This approach, by changing the number of data augmentations used

in each level of hardness h, enables us to generate a range of hardness levels within a single

dataset. In particular, for hardness level h, we first subsample the number of samples per class

by X /24−h , where X is the maximum number of unique samples per class. Then, we create

24−h −1 new augmented samples per sample. As a result, all classes have the same overall

number of samples and the dataset is balanced. We have

S′
t =Th(S′

h) =Fh ◦Ih(S′
h)

=Fh
(
{(x j , y j)} j∈Jh

)
= {(x̃Ih (j), y j)} j∈Jh ,

where Jh ∼ {1, · · · , N ′
h} is a subset of size X /24−h , Ih(j) = { j + a · |Jh |}a∈{0,··· ,24−h−1}, and for

Ih(j) 6= j , x̃Ih (j) is an augmented version of x j .

Are samples in Sh=4 with this hardness type actually more difficult to learn? As we can see

in Fig. 5.2b, samples that are assigned with a larger hardness h value, have higher loss and

lower confidence values. Hence, we conclude that samples with h = 4, which are in Sh , are the

most difficult for the classifier to learn.

5.3.3 Hardness via Closeness to the Decision Boundary

In this dataset, we produce hard samples by modifying them to be closer to the decision

boundary. To achieve this, we must first identify the true decision boundary for the classi-

174

5.3. Dataset Design with Different Hardness Levels

fication task at hand. As we are working with the TinyImagenet dataset, the true decision

boundary is unknown. The closest estimate to the true decision boundary that we found

is a DeiT model [Touvron et al. 2021] that was pre-trained on ImageNet and fine-tuned on

TinyImagenet, with a training accuracy of 98.8% and a test accuracy of 90.88% on the original

train and test sets of TinyImagenet. Then, we create samples that are closer to the decision

boundary of this model, hoping that they will also be closer to the decision boundary of the

actual ground truth model.

We have

S′
t =Th(S′

h) =F (S′
h) = {(x̃ j , y j)} j∈Jh ,

where Jh = {1, · · · , N ′
h}, and x̃ j is a transformation of the sample x j , such that x̃ j is closer to

the decision boundary compared to x j . In this hardness type the transformation Ih is an

identical map and Th =Fh . Our hard sample creation is done similarly to the fast gradient

sign method for creating adversarial samples, which is introduced by Goodfellow et al. [2014].

This method, for an input sample xi , creates adversarial input

xadv
i = xi +εsign(∇x li)

where ε is a hyper-parameter used for scaling the added noise. For creating adversarial

samples, ε should large enough to change the label of the sample. For our dataset creation

however, unlike with adversarial sample creation, we make sure that the resulting sample x̃i

does not change its label, by adjusting ε (see an example in Fig. 5.3). Different levels of h are

obtained by adjusting the value of ε. Higher values of ε move the sample closer to the decision

boundary, making it harder to learn with a new model. After generating new samples, we keep

only those that maintain their original class label, as our goal is to increase the difficulty of

samples in their original class. It is critical to choose the appropriate range of ε, as a value that

is too high can cause most samples to change their predicted class and be excluded from the

data set. This would result in the remaining samples being easier to learn instead of harder,

because they were originally very easy and far from the decision boundary. Therefore, we

carefully choose the range of ε during our dataset creation, which results in a smaller range

of the hardness levels, as seen in Fig. 5.2c. These samples are challenging particularly for

models that make decisions near the decision boundary, which is why in this setting, unlike

the other settings, we use models which are pre-trained on the ImageNet dataset instead of

using random parameter initialization.

Are samples in Sh=4 with with hardness type actually more difficult to learn? As we can see

in Fig. 5.2c, samples that are assigned with a larger hardness h value, have higher loss and

lower confidence values. The loss values vary however less with the hardness level h than in

the two previous settings. This is due to the sensitivity of the range of ε that must be large

enough to bring the sample close to the boundary, but small enough to keep it from changing

its label. But Fig. 5.2c still concludes that samples with h = 4, which are in Sh , are more difficult

for the classifier to learn compared to the rest of the samples.

175

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

(a) Hardness via Imbalance (b) Hardness via Diversification (c) Hardness via Closeness to the
Decision Boundary

Figure 5.4: We observe that, similarly to the effect of hardness increase discussed in Sec-
tion 5.3.1-Section 5.3.3, an increase in the level of noisiness increases loss and decreases
confidence. Therefore, if we were to rely solely on these metrics to identify and remove noisy-
labeled samples, hard samples can also be mistakenly removed from the dataset. This is
problematic because hard samples contain valuable information about the underlying data
distribution and should not be ignored. We can observe the created harder sample has still
the same prediction class but with a lower confidence, which suggests that it is closer to the
decision boundary.

5.3.4 Addition of Label Noise; Its Similarities to Hardness

After creating each of the hard datasets, we then add label noise to samples of the dataset

according to Fig. 5.1. For each sample with noisiness n, we assign the label noise level of

δ∗n/4, where δ ∈ [0,1] is the maximum label noise level of the created dataset (by default

we use δ = 0.4 in our experiments). Label-noise level refers to the probability of the label

being replaced uniformly at random with one of the class labels. For example, samples with

n = 1, have 0.25δ probability of having a noisy label. To prevent confusion between samples

in classes with different levels of noisiness n, we limit the choice of class labels to only those

with the same n when assigning noisy labels. This ensures that samples are assigned to a class

with n = 0 if and only if they actually belong to that class. Overall, for a set of samples with

noisiness level n, denoted by S′
n , we have

S′
t =Tn(S′

n) = {(xi , ỹi)}i∈{1,··· ,N ′
h },

where with probability 1−q(n), ỹi = yi , and with probability q(n), the non-zero element of ỹi

is at index j ∼U (1,2, · · · ,k), where U is the uniform distribution, for q(n) = δ∗n/4.

In Fig. 5.4, we observe that increasing n, similar to increasing h discussed in previous sections,

results in a higher loss, and a lower confidence. The similar behavior of the loss and confidence

on as function of h and n hints on the inefficiency of these metrics to distinguish between hard

samples and noisy labels. If these metrics were used to remove incorrectly labeled samples,

hard samples would also be eliminated, which is undesirable. This highlights the need for

more advanced metrics/methods to identify and preserve hard samples while removing noisy-

labeled ones.

176

5.4. Easy-Hard-Noisy Data Partitioning and Training

5.4 Easy-Hard-Noisy Data Partitioning and Training

In this section, we use the metrics and methods discussed in Section 5.2 to partition the

synthetic datasets constructed in Section 5.3 into two subsets: the estimated clean subset

S̃c and the estimated noisy subset S̃n . We evaluate the effectiveness of these methods and

metrics in this partitioning task, with a focus on the quality of the filtering between hard and

noisy samples. We then compare the performance of different partitioning methods based

on the test accuracy of models trained on the estimated clean subset produced from each

method. It is important to note that although the training datasets can contain samples with

issues, such as hardness or noisiness in certain classes, the test datasets do not contain any

such noisy-labeled or imbalanced samples. Therefore, traditional evaluation metrics, such as

test accuracy, provide a fair representation of the models’ generalization performance in each

setting.

5.4.1 Partitioning

We compare different methods that partition the available dataset into two subsets: S̃c and

S̃n . Our primary objective is to include the incorrectly labeled samples within S̃n , which

is the focus of previous studies as well, but in addition, we are also interested in including

all hard samples within S̃c . Therefore, we aim to achieve high recall for hard samples, i.e.,

Recallh = |S̃c∩Sh |
|Sh | , while maintaining a high recall for noisy samples, i.e., Recalln = |S̃n∩Sn |

|Sn | .

Although having a high precision for noisy samples, i.e., Precisionn = |S̃n∩Sn |
|S̃n | , is desirable,

it is less critical. Even if some easy samples are mistakenly included in S̃n , this is not too

harmful because they can be either relabeled or not used in training. This is because such

easy and correctly labeled samples are often redundant in the training set, and are likely to be

inexpensive to label or replace.

Various label-noise detection and data partitioning methods have been proposed in

the literature, including ThresLoss [Huang et al. 2019], Thresacc over training [Sun et al. 2020],

ThresAUM [Pleiss et al. 2020a], 1d-GMMAUL [Pleiss et al. 2020b], and 2d-GMMWJSD−ACD [Zhang

et al. 2022]. However, as discussed in Section 5.3, metrics such as loss and confidence fail

to differentiate between hardness h and noisiness n, making it challenging to remove only

noisy samples without removing hard ones. The same issue applies to other metrics such

as accuracy over training, AUL, AUM, JSD, and ACD, as depicted in Fig. 5.7 provided in the

appendix; these metrics are monotonic in both h and n, as shown in the figure. Consequently,

if these metrics are used for data partitioning, the identified noisy subset may mistakenly

contain hard samples, reducing the reliability of these methods when dealing simultaneously

with noisy and hard samples. In contrast, SCD increases with n but does not increase with

h. We can observe this behavior in Fig. 5.5 and compare it with for example the behavior of

JSD when hardness and noisiness increase. This behavior makes SCD a particularly promising

metric for removing noisy samples while preserving hard samples.

177

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

(d) Hardness via Imbalance (e) Hardness via Diversification (f) Hardness via Closeness to the
Decision Boundary

Figure 5.5: JSD (top) and SCD (botton) applied to the modified datasets with noisiness level n
and hardness level h. We observe that SCD increases with n, but this is not observed with h.
In contrast, JSD increases with both n and h.

While SCD is a promising metric for distinguishing hard samples from noisy ones, it is

beneficial to pair it with another metric that can detect easy samples from the hard and noisy

ones. In our experiments, we have observed that accuracy over training is an effective metric

for this purpose. It can accurately identify the easy samples in the dataset while mixing the

hard and noisy samples together. Since these two metrics - SCD and accuracy over training

- are complementary, we use a 2d-GMM with them as its dimensions to estimate all three

subsets - Se , Sh , and Sn . By combining SCD and accuracy over training, we are able to achieve

better subset detection overall. Specifically, using SCD improves Recallh, while accuracy over

training improves Recalln.

Table 5.1 presents the results of different partitioning methods on all three synthetic hard

datasets, including the resulting dataset size, correct label percentage, Precisionn, Recalln, and

Recallh. Several interesting observations emerge from the results. Firstly, some methods, such

as ThresAUM, have high Recalln but low Recallh. These methods struggle to differentiate hard

samples from noisy ones, and thus discard most of the hard samples. Secondly, some methods,

such as 2d-GMMWJSD−ACD, have high Recallh but low Recalln. Although they preserve hard

samples, they also retain noisy ones. Thirdly, these observations vary depending on the type

of hardness, making the conclusions less robust. However, we consistently observe that our

proposed method, 2d-GMMacc−SCD, performs the best overall and robustly across all three

datasets, with high Recalln and Recallh. Such robustness is particularly crucial in practice

178

5.5. Discussion

since samples can be hard to learn due to any combination of the hardness types, making a

reliable metric even more necessary.

5.4.2 Training on the Filtered Subset

In this section, we present the results of training models from scratch on the estimated clean

datasets S̃c obtained in the previous section. Table 5.2 displays the generalization performance

of models trained on the estimated clean datasets using each method. The results demonstrate

that our proposed method 2d-GMMacc−SCD consistently outperforms the other methods in

all three settings. We observe that the 1d-GMMAUL method performs slightly better than

2d-GMMacc−SCD in the second and third settings. However, in the first setting, 1d-GMMAUL

performs significantly worse than 2d-GMMacc−SCD, which suggests that it is not robust to the

hardness type and thus unreliable for practical use.

Overall, the table emphasizes the importance of selecting an appropriate metric/approach

for data filtration in presence of both noisy and hard samples. Moreover, our experiments

highlight the advantage of using the label noise detection method 2d-GMMacc−SCD in different

settings.

Experiments on datasets with real-world label noise To further evaluate and compare

the performance of each data filtration method, we apply them to datasets with real-world

label noise. Tables 5.3 and 5.4 display the results of each method for partitioning and data

filtration, for models trained on the Animal-10N 2 and CIFAR-10N [Wei et al. 2022] datasets,

respectively. Both datasets have real-world label noise and unknown easy-hard-noisy subsets.

Since we lack knowledge of which samples are difficult or incorrectly labeled, we cannot com-

pute Recallh or Recalln, as we did for our created synthetic datasets in Table 5.1. Nonetheless,

we can apply each partitioning/label-noise detection method to these datasets, partition them

into an estimated clean subset S̃c and an estimated noisy subset S̃n , and train models on S̃c .

The generalization performance of models trained on S̃c obtained from each method is an

indication of the quality of the estimated clean subsets S̃c . Our results in Tables 5.3 and 5.4

demonstrate that our proposed method, 2d-GMMacc−SCD, outperforms all other methods by

a significant margin in terms of test performance and in terms of estimating the label noise

level of the given dataset.

5.5 Discussion

Robustness to Hardness Type In this study, we aimed to explore different approaches for

manipulating the difficulty of samples and investigate their impact on label noise detection

methods. We simulated three different hardness types and compared the performance of

various methods in identifying and removing noisy samples while retaining hard ones. It is

important to highlight that sample difficultyh is a relative concept and can only be evaluated

2https://dm.kaist.ac.kr/datasets/animal-10n/

179

https://dm.kaist.ac.kr/datasets/animal-10n/

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

when comparing samples within a given dataset. This is different from noisiness level n,

which is an absolute measure. Our simulations showed that the three hardness types that we

tested were sufficiently distinct. Interestingly, we found that some methods perform better in

distinguishing certain types of hard samples from noisy ones, while not performing well in

distinguishing other hard samples. However, the 2D-GMM on top of accuracy over training

and SCD, demonstrated the most robust performance across all three types of hardness. The

reason for the rather significant superior performance of this method in real-world datasets

stems from its ability to effectively detect label noise and hard samples caused by various

underlying reasons, which are often unpredictable in real-world datasets. When proposing a

label noise detection method, it is essential to consider the unpredictability of hard samples

in real-world datasets.

Number of Clusters in GMM We observe that in our synthetic datasets, the location

of easy Se , hard Sh , and noisy Sn samples in the 2D spectrum with accuracy over training

and SCD followed a certain pattern. We illustrate this pattern in Figure 5.6 for the hardness

via diversification dataset. Furthermore, we found that this pattern was consistent across

different hardness types. To further investigate this observation, we trained GMM models on

two and three clusters and analyzed the resulting clusters. We found that when we used two

clusters, many hard and noisy samples were clustered together, resulting in poor detection

performance. However, when we used three clusters, the detection performance improved

significantly, and the resulting clusters were much more coherent with the actual clusters.

This observation led us to use a 3-cluster GMM in our proposed method, 2d-GMMacc−SCD,

which produced more accurate results. It is important to note that such investigation is only

possible through our controlled experiments on synthetic datasets because we know the

exact partitions of the datasets into easy, hard, and noisy samples. Nevertheless, our findings

provide valuable insights into the design of label noise detection methods.

Conclusion We propose an empirical approach to investigate hard samples in an image

classification setting. To this end, we create synthetic datasets that enable us to study hard

and noisy samples in a controlled environment. Through our investigation, we make several

interesting observations, including the importance of analyzing feature layer vectors of neural

networks to distinguish between hard and noisy samples. Furthermore, we propose a label

noise detection method that outperforms other existing methods in terms of both removing

noisy samples and retaining hard ones. Our method can be applied to filter datasets with

label noise, leading to better generalization performance when training models on the filtered

set. Importantly, our label noise detection method is of quite general use and can be used in

combination with any other method designed to deal with label noise and/or hard samples.

Although our synthetic datasets were tailored towards image classification tasks, our conclu-

sions could be applied to any application that involves a neural network and label noise. As a

future direction, it would be interesting to test our method in other applications/domains as

well. Moreover, our data filtration method could be combined with semi-supervised learning

methods, such as FixMatch and FlexMatch, to further improve the model’s generalization

performance by making use of the discarded subset of the data. Overall, our study provides

180

5.5. Discussion

valuable insights into the design and optimization of label noise detection methods and their

applications in improving the performance of machine learning models in real-world settings.

181

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

Method |S̃c | Correct Label Precisionn Recalln Recallh

% of S̃c
|S̃n∩Sn |
|S̃n |

|S̃n∩Sn |
|Sn |

|S̃c∩Sh |
|Sh |

Original dataset 31k 0.80 NA NA NA
ThresLoss [Huang et al. 2019] 15.5k 0.88 0.27 0.69 0.03

Thresacc over training [Sun et al. 2020] 15.7k 0.95 0.35 0.88 0.003
ThresAUM [Pleiss et al. 2020a] 15.5k 0.95 0.34 0.86 0.001
1d-GMMLoss [Li et al. 2020a] 29.1k 0.81 0.31 0.10 0.57

1d-GMMAUL [Pleiss et al. 2020b] 25.6k 0.88 0.59 0.52 0.12
2d-GMMWJSD−ACD [Zhang et al. 2022] 18.4k 0.77 0.14 0.30 0.73

2d-GMMacc−SCD (Ours) 25.7k 0.83 0.44 0.46 0.61

(a) Hardness via imbalance dataset

Original dataset 80k 0.80 NA NA NA
ThresLoss [Huang et al. 2019] 40k 0.89 0.29 0.73 0.38

Thresacc over training [Sun et al. 2020] 41k 0.96 0.36 0.90 0.41
ThresAUM [Pleiss et al. 2020a] 40k 0.96 0.35 0.90 0.37
1d-GMMLoss [Li et al. 2020a] 65.8k 0.84 0.38 0.34 0.66

1d-GMMAUL [Pleiss et al. 2020b] 63k 0.91 0.58 0.63 0.69
2d-GMMWJSD−ACD [Zhang et al. 2022] 46.1k 0.80 0.19 0.41 0.50

2d-GMMacc−SCD (Ours) 62.2k 0.86 0.38 0.43 0.68

(b) Hardness via diversification dataset

Original dataset 27.6k 0.80 NA NA NA
ThresLoss [Huang et al. 2019] 13.8k 0.93 0.32 0.82 0.46

Thresacc over training [Sun et al. 2020] 15.9k 0.99 0.46 0.99 0.59
ThresAUM [Pleiss et al. 2020a] 13.8k 0.99 0.39 0.99 0.51
1d-GMMLoss [Li et al. 2020a] 26.2k 0.84 0.84 0.22 0.79

1d-GMMAUL [Pleiss et al. 2020b] 19.4k 0.99 0.65 0.97 0.70
2d-GMMWJSD−ACD [Zhang et al. 2022] 22k 0.85 0.37 0.38 0.67

2d-GMMacc−SCD (Ours) 23.1k 0.92 0.81 0.68 0.77

(c) Hardness via closeness to the decision boundary dataset

Table 5.1: Partitioning results obtained by applying various label noise detection methods on
our three synthetic datasets with hard samples. We can observe that, on one hand, some meth-
ods have good performance on recall only on noisy samples (for example Thresacc over training),
whereas they have very bad performance in terms of recalling hard samples. This means
that, in an attempt to remove noisy samples from the dataset, they remove almost all hard
samples as well. On the other hand, some methods have a good performance in terms of
keeping hard samples (for example 2d-GMMWJSD−ACD), but fail to remove the noisy samples
from the training dataset, as evidenced by the very low value of Recalln. Our proposed metric,
2d-GMMacc−SCD, shows the overall best performance in terms of removing noisy samples
while keeping hard samples, as evidenced by the relatively high values of Recallh and Recalln.
The result is consistent in all three settings, unlike some methods that only perform well in
one of the settings.

182

5.5. Discussion

Method Test Accuracy Test Loss Top-5 Test Accuracy

ThresLoss 25.83±0.06% 4.59±0.02 43.94±0.17%
Thresacc over training 25.34±0.42% 6.04±0.02 39.66±0.25%

ThresAUM 23.85±0.21% 6.31±0.01 36.65±0.08%
1d-GMMLoss 31.08±0.13% 3.68±0.02 53.98±0.30%
1d-GMMAUL 30.27±0.34% 5.22±0.01 47.55±0.26%

2d-GMMWJSD−ACD 32.11±0.15% 3.29±0.00 56.26±0.11%
2d-GMMacc−SCD (Ours) 34.88±0.13% 3.27±0.01 60.17±0.29%

(a) Hardness via imbalance dataset

ThresLoss 42.65±0.07% 2.86±0.01 67.08±0.17%
Thresacc over training 44.39±0.16% 2.75±0.00 69.79±0.15%

ThresAUM 44.35±0.41% 2.74±0.02 70.10±0.39%
1d-GMMLoss 42.93±0.37% 2.96±0.02 66.02±0.23%
1d-GMMAUL 45.56±0.39% 2.74±0.01 70.36±0.13%

2d-GMMWJSD−ACD 38.83±0.34% 3.11±0.04 62.78±0.67%
2d-GMMacc−SCD (Ours) 45.36±0.33% 2.78±0.01 69.25±0.32%

(b) Hardness via diversification dataset

ThresLoss 43.30±0.33% 2.61±0.00 69.27±0.15%
Thresacc over training 49.130.43% 2.42±0.01 74.20±0.12%

ThresAUM 47.67±0.09% 2.44±0.01 72.79±0.05%
1d-GMMLoss 44.93±0.17% 2.65±0.01 69.29±0.18%
1d-GMMAUL 50.67±0.26% 2.31±0.00 75.68±0.10%

2d-GMMWJSD−ACD 43.23±0.21% 2.70±0.00 68.04±0.18%
2d-GMMacc−SCD (Ours) 49.80±0.24% 2.34±0.01 75.17±0.09%

(c) Hardness via closeness to the decision boundary dataset

Table 5.2: DenseNet performance comparison on the estimated clean datasets using different
metrics/approaches in three experimental settings. Our method 2d-GMMacc−SCD consistently
performs well in all settings, unlike the 1d-GMMAUL method that performs well only in the
second and third settings. It is important to choose a method that works well in all settings
because, in practice, hard samples can arise from any of the three reasons tested here.

Method Test Accuracy Test Loss Estimated LNL

ThresLoss 80.32±0.38 0.62±0.01 50%
Thresacc over training 83.03±0.11 0.52±0.01 2.48%

ThresAUM 76.30±0.16 0.90±0.04 50%
1d-GMMLoss 83.05±0.25% 0.53±0.01 2.82%
1d-GMMAUL 82.80±0.28% 0.53±0.01 2.11%

2d-GMMWJSD−ACD 83.06±0.26% 0.54±0.01 1.03%
2d-GMMacc−SCD (Ours) 83.11±0.10% 0.51±0.01 3.3%

Table 5.3: Performance comparison of models trained on the estimated clean datasets using
different metrics/approaches in the Animal-10N dataset. The estimated label noise level (LNL)
of this dataset is around 8%, and we observe that our method provides the best LNL estimate.
The LNL estimate of each method is computed using 1− ∣∣S̃c

∣∣/ |S|. Moreover, our method
2d-GMMacc−SCD provides the cleanest dataset as evidenced by the very large margin in the
generalization performance improvement; both test accuracy and test loss are the best for
2d-GMMacc−SCD.

183

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

Method Test Accuracy Test Loss Estimated LNL

ThresLoss 85.45±0.22 0.64±0.01 50%
Thresacc over training 83.61±0.17 0.78±0.01 46%

ThresAUM 81.89±0.18 0.83±0.01 50%
1d-GMMLoss 85.87±0.30 0.62±0.00 46%
1d-GMMAUL 86.21±0.06 0.66±0.01 30%

2d-GMMWJSD−ACD 89.44±0.22 0.35±0.01 17%
2d-GMMacc−SCD (Ours) 89.90±0.21 0.31±0.00 10%

Table 5.4: Performance comparison of models trained on the estimated clean datasets using
different metrics/approaches in the CIFAR-10N dataset. The label noise level (LNL) of this
dataset is 9.01%, and we observe that our method 2d-GMMacc−SCD provides the best LNL
estimate, computed from 1−∣∣S̃c

∣∣/ |S|. Moreover, 2d-GMMacc−SCD provides the cleanest dataset
as evidenced by the generalization performance improvement; both test accuracy and test
loss are the best for 2d-GMMacc−SCD.

184

5.5. Discussion

(a) Easy/Hard/Noisy Clusters (b) Results of a GMM with 2 Clusters

(c) Results of a GMM with 3 Clusters

Figure 5.6: (a) Easy-hard-noisy clusters for samples of the hardness via diversification dataset
with their associated static centroid distance (SCD) and accuracy over training values. We
can observe that noisy samples are located on the top left of the figure, followed by the hard
samples in the middle parts and the easy samples on the other end, i.e., the bottom right. Easy
samples have a high accuracy over training and a low SCD. Depicting such figure requires
full ground-truth access of the available dataset and the knowledge about label noise and
hardness levels of samples. However, this information is not possible in practice, hence in the
sub-figures (b) and (c) we evaluate the results of Gaussian mixture models to recover these
clusters without any knowledge about samples. (b) Clustering results of 2d-GMMacc−SCD with
2 number of clusters. This clustering does not require the ground-truth access of samples and
only requires computation of SCD and accuracy over training. If we compare the clusters with
actual easy-hard-noisy partitions in sub-figure (a) we can observe that most of the hard and
noisy samples are mixed in the second cluster. (c) Clustering results of 2d-GMMacc−SCD with 3
number of clusters. In contrast to clustering with 2 clusters, we can observe that clustering
with 3 cluster is much better at including as much noisy samples as possible in the second
cluster while not including hard samples. Hence, throughout our study, when referred to our
label noise detection method 2d-GMMacc−SCD, we apply 3 clusters and use the top left cluster
as the detected noisy subset.

185

Appendices

5.A Experimental Setup

Generating Noisy-labeled Datasets We modify original datasets similarly to Chatterjee [2020];

for a fraction of samples denoted by the label noise level (LNL), we replace the labels with

independent random variables drawn uniformly from other classes with the same noisiness

level n.

For each hardness type, there are two sets of experiments: (i) experiments done to detect

clean-noisy subsets, (ii) experiments done to train on filtered sets. We provide details for each

of these experiments below.

Hardness via Imbalance Experiments (i) The models are trained for 200 epochs on the

cross-entropy objective function with batch size 100, using SGD with learning rate 0.001,

weight decay 5 · 10−4, and momentum 0.9. The maximum label noise is set as 40%. The

neural network architecture is MobileNetV2. (ii) The models are trained for 50 epochs on

the cross-entropy objective function with batch size 100, using SGD with learning rate 0.001,

weight decay 5 ·10−4, and momentum 0.9. The neural network architecture is DenseNet121,

pre-trained on ImageNet dataset.

Hardness via Diversification Experiments (i) The models are trained for 200 epochs on

the cross-entropy objective function with batch size 100, using SGD with learning rate 0.001,

weight decay 5 · 10−4, and momentum 0.9. The maximum label noise is set as 40%. The

neural network architecture is MobileNetV2. (ii) The models are trained for 50 epochs on

the cross-entropy objective function with batch size 100, using SGD with learning rate 0.001,

weight decay 5 ·10−4, and momentum 0.9. The neural network architecture is DenseNet121,

pre-trained on ImageNet dataset.

Hardness via Closeness to the Decision Boundary Experiments (i) The models are trained

for 50 epochs on the cross-entropy objective function with batch size 100, using SGD with

learning rate 0.001, weight decay 5 ·10−4, and momentum 0.9. The maximum label noise is

set as 40%. The neural network architecture is DesneNet121, pre-trained on ImageNet. (ii)

The models are trained for 50 epochs on the cross-entropy objective function with batch size

100, using SGD with learning rate 0.001, weight decay 5 ·10−4, and momentum 0.9. The neural

187

Chapter 5. Differences Between Hard and Noisy-labeled Samples: An Empirical Study

network architecture is DenseNet121, pre-trained on ImageNet dataset.

CIFAR-10N Experiments The models are trained for 50 epochs on the cross-entropy

objective function with batch size 64, using SGD with learning rate 0.05, weight decay 5 ·10−4,

and momentum 0.9. The neural network architecture is MobileNetV2.

Animal-10N Experiments The models are trained for 40 epochs on the cross-entropy

objective function with batch size 64, using SGD with learning rate 0.001, weight decay 5 ·10−4,

and momentum 0.9. The neural network architecture is AlexNet.

5.B Comparison to Other Metrics

Fig. 5.7 shows a comparison of different metrics and how they behave concerning changes

in the hardness level h and noisiness level n. From the graph, we can see that all metrics

either increase or decrease as the value of n increases. However, we also observe that the same

increase or decrease happens when at least one type of hardness h increases. In contrast, the

SCD metric stands out as it does not show the same trend towards an increase in any type of

hardness level h as the value of n increases.

188

5.B. Comparison to Other Metrics

(m) Hardness via Imbalance (n) Hardness via Diversifica-
tion

(o) Hardness via Closeness
to the Decision Boundary

Figure 5.7: Different metrics applied to the transformed datasets with noisiness level n and
hardness level h. Left, middle and right figures correspond to hardness types imbalanced,
diversification, and closeness to the decision boundary, respectively. We observe that all
the metrics have at least one type of hardness h that with its increase, the metric shows the
same behavior as with increase of noisiness n. In contrast, SCD is the only metric that shows
different behaviors with increases in h and n.

189

6 Conclusion

The goal of this thesis is to investigate practical methods to gain information regarding model

generalization, learning, memorization and the dataset quality specifically in the regime of

datasets with non-zero label noise level and limited labeled samples. In this concluding chap-

ter, we summarize the key findings that emerged from our research. We have demonstrated

the practical advantages of our proposed methods. However, our research was not without

limitations, and we will discuss them as well, along with suggestions for future research di-

rections. Ultimately, this thesis has contributed to a deeper understanding of deep neural

networks generalization ability and has provided valuable insights that can inform both the

deep-learning research and industrial communities.

The motivation for this thesis came from our observation summarized in Fig. 1.2. We

showed in Fig. 1.2, there is a need to put more emphasis on studies that focus on datasets with

limited size and with label noise, which are commonly encountered in practical applications.

Deep learning research often benefits from working with large and high-quality datasets,

which require significant resources in terms of funding, time, and expertise. However, many

practitioners who apply machine learning methods may not have access to such resources.

Therefore, it is crucial to develop and evaluate methods that can effectively operate under these

more realistic conditions. This is the mindset that motivated the development of different

methods presented in this thesis. In the end, we are confident that we have achieved our

goal. In Fig. 6.1, we showcase the datasets examined in the publications resulting from this

thesis. Our research successfully fills the gap in the right-center/bottom segment of the dataset

spectrum, that is datasets with limited size and label noise.

In Chapter 2, we explore the advantages and limitations of sensitivity, defined in Eq. (2.2),

a computationally cheap metric that requires only unlabeled data, as a generalization measure

and provide alternative explanations for benefits of certain design choices. We establish

a link between neural network output sensitivity and test loss, which allows for sensitivity

to be potentially used in applications beyond just classification. By linking sensitivity and

generalization, we present a new viewpoint on understanding the success of current state-

of-the-art architectures and initialization techniques. In this chapter, we look at the success

191

Chapter 6. Conclusion

(a) Datasets (b) Number of Papers

Figure 6.1: (a) Number of images per class (a token for dataset size) and the label noise level
(LNL) of datasets introduced in recent image classification survey papers. (b) Evolution of
Fig. 1.2(b) positioning the contributions of the thesis: The number of images per class and
the label noise level (LNL) of datasets in https://paperswithcode.com/ website under the
filtration of image classification. In addition, in this figure, we add the three papers which
were published as part of this thesis. Chapter 2 is based on [Forouzesh et al. 2021]. Chapter 3
is based on [Forouzesh and Thiran 2021]. Chapter 4 is based on [Forouzesh et al. 2023].

of dropout and batch normalization from another perspective: These methods decrease the

output sensitivity to random input perturbations in a same manner as they decrease the test

loss, resulting in better generalization performance. Our conclusion is that, sensitivty is a

very accurate generalization measure. In particular, when the parameter initialization of the

neural networks follows standard normal, and when the architecture is rather shallow (for

example a 4-layer fully-connected neural network, or a 4-layer convolutional neural network),

then the test loss prediction can be done very accurately; the empirical values follow our

established link rather strongly, which is positively surprising. This is very important to note,

so that when in practice, the setting does not allow us to use fancy architectures, we are able

to predict test loss to a decent degree. We also further test sensitivity, as a zero-cost neural

architecture search tool, and show its great potential compared to other metrics, having in

mind that sensitivity does not require training, that it can be computed at initialization, and

that it does not require any backward pass, and that it is very computationally cheap.

In Chapter 3, we introduce gradient disparity, defined by Eq. (3.7), as an efficient early

stopping criterion computed entirely on the training set. Gradient disparity is derived from

a probabilistic upper bound on generalization penalty (Eq. (3.4)) under the PAC-Bayesian

framework, by assuming that the weight vectors of the neural network follow a Gaussian distri-

bution. Its computational efficiency stems from the fact that it requires only the computation

of gradients of two mini-batches, which are already computed in an iterative optimization

method based on gradient descent. Hence, no computational overhead is added to the regular

192

https://paperswithcode.com/

training process for computing gradient disparity. The advantage of gradient disparity lies

in its use of only the training set, making it particularly effective when compared to k-fold

cross-validation. Despite using all available samples in both training and validation, k-fold

cross-validation still results in worse performance than models trained on the entire dataset,

as part of the data is always set aside for validation in each of its k folds. Our experiments

demonstrate the performance improvement brought by gradient disparity when dealing with

limited and/or noisy datasets. Additionally, gradient disparity as an early stopping criterion

is less sensitive to the early stopping threshold than the validation loss, and is computation-

ally advantageous compared to k-fold cross-validation. Furthermore, our tests of gradient

disparity on different cross-validation methods in time-series applications suggest that it is a

promising technique in such settings, outperforming other cross-validation methods due to

its ability to train the model on the entire available dataset.

In Chapter 4, we propose an efficient and effective method to track label noise memoriza-

tion, using the susceptibility metric defined in Eq. (4.2), which uses only a single mini-batch

of unlabeled data. This metric is motivated by our empirical and theoretical observations

that models with high test accuracy are less prone to memorizing a randomly-labeled set of

samples. Our theoretical observation is based on convergence analysis of models trained

on randomly-labeled datasets. Specifically, in Theorem 4, we demonstrate that models pre-

trained on high-quality data, and hence with high generalization performance, take longer

to converge on low-quality data. Our proposed susceptibility metric efficiently computes a

model’s resistance to memorizing a randomly-labeled set. Furthermore, through extensive

experiments on various datasets, architectures, and hyper-parameters, we demonstrate that

combining susceptibility with overall training accuracy is an effective approach for model

selection. Models with low susceptibility and high training accuracy demonstrate lower mem-

orization on the training set and better generalization to unseen data. This method eliminates

the need for accessing ground-truth labels for tracking memorization or conducting model

selection. We also perform ablation studies to show the robustness of our approach, including

varying levels of label noise and mini-batch sizes. In summary, we propose our model selection

method as a superior alternative to using a validation set, particularly in datasets with high

levels of label noise and limited size. In other scenarios, our method performs comparably

to using a validation set. Our approach ensures that we do not sacrifice performance in

good-quality datasets while achieving substantial gains in low-quality datasets.

In Chapter 5, we present a novel label noise detection method based on the static centroid

distance metric, defined in Section 5.2. This metric is well-suited for datasets that contain

both noisy and hard samples. We introduce this metric through a controlled empirical study

on datasets with synthetically created hard samples. To create these samples, we use three

different approaches that cover a wide range of reasons why a sample might be difficult for a

classifier to learn. Our results demonstrate that our method has high recall jointly for both

noisy and hard samples, contrary to existing label noise detection methods. These methods

often struggle to distinguish between hard and noisy samples, resulting in the incorrect

removal of hard samples or retention of noisy samples. However, our method consistently

193

Chapter 6. Conclusion

outperforms others in all three types of hardness, resulting in the best overall performance

for removing noisy samples while retaining hard ones. Furthermore, when we train models

on the filtered datasets, we observe that our method outperforms other label noise detection

methods. Additionally, when we apply our method to datasets with real-world label noise,

we find that it, even much more significantly than our controlled experiments, outperforms

other methods in terms of filtering noisy data. This is evidenced by the high generalization

performance of models trained on the filtered set.

We now discuss some of this work’s limitations.

In the rich man’s world. The central focus of this thesis is to address the challenges

associated with datasets that have label noise and are limited in size. Although extensive

research has been conducted on datasets with a large number of samples and low label noise

levels, datasets with limited size and label noise levels require a specific approach. This thesis

does not target researchers or practitioners who have access to a dataset with high quality and

a large number of samples, and have high computational resources. However, it is crucial to

acknowledge that high-quality data is not always easily accessible, even for large companies

with seemingly unlimited resources such as money and expertise. Time constraints can often

prove to be a limiting factor. Companies need to develop and improve their products as

quickly as possible to generate revenue, but data collection rates may not keep up with the

demand for such products. Therefore, even large companies may face challenges in obtaining

high-quality data.

Thesis focus. Our studies are primarily focused on image classification tasks. For in-

stance, the synthetic datasets that we developed in Chapter 5, in particular the hardness via

diversification dataset was created with the intent of diversifying image hardness and was

exclusively designed for images. Consequently, our claims are limited to this specific task. Al-

though several of the metrics and methods that we proposed have potential for generalization

to other tasks like text classification, we have not extensively evaluated them in those domains.

Thorough testing in other contexts would broaden the scope of our work. Nonetheless, our

study offers valuable insights and strategies for enhancing image classification performance,

which could serve as a foundation for future research in various domains.

Method requirements. In addition to our primary focus on image classification tasks,

our research is further constrained by the specific settings that we assume and study. For

instance, in the gradient disparity metric proposed in Chapter 3, we make the assumption that

the optimization process is a variant of mini-batch gradient descent, which is a commonly

used optimization method in deep learning. Although such constraints are unavoidable, we

have made a diligent effort to clearly state our assumptions and the settings we have studied.

Theoretical assumptions. Our research is also constrained by certain assumptions in our

theoretical work. For instance, in Chapter 4, our theoretical results apply to a one-layer neural

network with a large number of hidden units. While this assumption is commonly used in

theoretical deep learning research, it is not necessarily reflective of the neural networks utilized

194

in practice. As a result, our theoretical results may not be directly applicable to real-world

scenarios, as most theoretical results in this area, but they offer valuable insights into the

issues that arise in such scenarios. Moreover, while we have attempted to provide theoretical

justifications for our proposed methods and metrics, we do not have theoretical guarantees

for every claim we make. It is challenging to prove every empirical observation, especially

in the context of deep learning, where the complexity of the models can make theoretical

analysis difficult.

Empirical limits. The majority of our claims in this thesis are based on empirical findings,

and we acknowledge that we cannot definitively prove the generalizability of our claims in

every situation. Despite our efforts to provide detailed, thorough, and systematic empirical

studies, there may be certain scenarios that we did not test, such as specific architectures,

methods, or datasets. This is partly due to time and computational budget constraints. How-

ever, for each study, we made a decent attempt to test the most critical elements that could

affect the results by conducting thoughtful ablation studies. While we cannot claim univer-

sal generalizability, we believe that our findings provide valuable insights and directions for

further research in the field of deep learning.

What have we done to the world? It is essential to consider the environmental impact

of our empirical studies. This aspect should be given greater attention in the scientific com-

munity. While this thesis involved running numerous experiments, which inevitably results

in negative environmental effects, our goal was to propose methods that can replace more

environmentally harmful approaches. For instance, in Chapter 3, we outperformed the com-

monly used k-fold cross-validation approach, which requires training k times; whereas our

approach only requires one round of training. Although we acknowledge the negative environ-

mental impact of our work, our aim is to ultimately contribute to the development of more

environmentally friendly machine learning experiments.

We now discuss some directions for future research.

Testing generalizability. An important direction for future work is to test the gener-

alizability of the methods developed in this thesis by exploring their applicability in other

machine-learning tasks. For instance, natural language processing (NLP) has recently emerged

as a promising area of research, with large language models dominating the field. To stay up

to date with the latest trends, it would be interesting to investigate the performance of our

metrics and methods in NLP tasks. However, it should be noted that some of the metrics may

need to be tailored for these tasks. For instance, sensitivity, as defined in Eq. (2.2), may need

to be adjusted to incorporate input perturbations, such as adding small noise into the word

embeddings or replacing words with their closest neighbors. These adjustments should be

studied before directly applying our metrics to NLP tasks.

Combination of techniques. This thesis primarily focused on studying supervised learn-

ing methods, which involve training models on labeled datasets to make predictions on new,

unseen data. However, there are other techniques that have been developed to deal with small

195

Chapter 6. Conclusion

datasets, such as semi-supervised learning and few-shot learning. Semi-supervised learning

involves training a model on both labeled and unlabeled data to improve its performance

on the target task, while few-shot learning aims to learn from a small number of examples,

often just one or a few, for the target task. Exploring the combination of these techniques

with our approach could provide interesting insights and improvements for addressing the

challenges of small datasets. For instance, combining our supervised learning method with

semi-supervised learning could help leverage the additional unlabeled data and potentially

improve the performance of the model. It is important to note that incorporating these tech-

niques does not make our research on basic supervised learning methods obsolete, as they are

complementary and can be used in conjunction to further enhance performance. Moreover,

such an exploration could open up new research avenues and lead to the development of more

powerful and robust machine learning models. By leveraging the strengths of each method,

we may achieve even better performance and generalizability.

Expanding applicability. Exploring the potential applications of the proposed metrics

and methods in various contexts presents a fascinating avenue for future research. For in-

stance, an exciting direction to investigate is whether sensitivity, as defined in Eq. (2.2), can

serve as a regularizer. This would entail examining the effects of sensitivity as a regularization

term on different machine learning models and tasks. Another investigation could involve

incorporating gradient disparity, as defined in Eq. (3.6), into the optimization algorithm and

developing a novel variant of stochastic gradient descent. Furthermore, susceptibility, as

defined in Eq. (4.2), could potentially be utilized as a noisy-label detection approach, where

the training procedure of different samples could be compared to susceptibility. Noisy-labeled

samples might exhibit similar training changes in one step, as susceptibility, which measures

loss changes on the loss of randomly-labeled samples. Such extensions would enhance the

practical benefits of the proposed metrics and methods, making them more widely applicable

across diverse fields.

Strengthening theoretical guarantees. Another essential direction for future research is

to provide stronger theoretical guarantees for the proposed methods. While the empirical

results of our metrics have been promising, it is crucial to establish theoretical guarantees

to ensure their reliability and usefulness in practical applications. Currently, most of the

claims made about the proposed methods are based on empirical evidence. Although we

do have some theoretical claims, they often rely on assumptions that may not be close to

real-world scenarios. Therefore, further research is needed to develop stronger theoretical

frameworks that can provide more reliable and accurate predictions of the proposed methods’

performance. By establishing stronger theoretical guarantees, we can enhance the credibility

of the proposed methods and enable their widespread adoption in various fields.

196

Bibliography

Abdelfattah, M. S., Mehrotra, A., Dudziak, Ł., and Lane, N. D. (2021). Zero-cost proxies for

lightweight nas. arXiv preprint arXiv:2101.08134.

Aggarwal, P., Mishra, N. K., Fatimah, B., Singh, P., Gupta, A., and Joshi, S. D. (2022). Covid-

19 image classification using deep learning: Advances, challenges and opportunities.

Computers in Biology and Medicine, page 105350.

Akhtar, N. and Mian, A. (2018). Threat of adversarial attacks on deep learning in computer

vision: A survey. Ieee Access, 6:14410–14430.

Algan, G. and Ulusoy, I. (2020). Label noise types and their effects on deep learning. arXiv

preprint arXiv:2003.10471.

Allen-Zhu, Z., Li, Y., and Liang, Y. (2018). Learning and generalization in overparameterized

neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918.

Andreassen, A., Bahri, Y., Neyshabur, B., and Roelofs, R. (2021). The evolution of out-of-

distribution robustness throughout fine-tuning. arXiv preprint arXiv:2106.15831.

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection.

Statistics surveys, 4:40–79.

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. (2019). Fine-grained analysis of optimization

and generalization for overparameterized two-layer neural networks. In International

Conference on Machine Learning, pages 322–332. PMLR.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018). Stronger generalization bounds for deep

nets via a compression approach. arXiv preprint arXiv:1802.05296.

Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer,

A., Courville, A., Bengio, Y., et al. (2017). A closer look at memorization in deep networks.

In International Conference on Machine Learning, pages 233–242. PMLR.

Athalye, A., Carlini, N., and Wagner, D. (2018). Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples. In International conference on

machine learning, pages 274–283. PMLR.

197

Bibliography

Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In Advances in neural

information processing systems, pages 2654–2662.

Bai, Y. and Liu, T. (2021). Me-momentum: Extracting hard confident examples from noisily

labeled data. In Proceedings of the IEEE/CVF international conference on computer vision,

pages 9312–9321.

Baldock, R., Maennel, H., and Neyshabur, B. (2021). Deep learning through the lens of example

difficulty. Advances in Neural Information Processing Systems, 34.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for

neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249.

Beery, S., Liu, Y., Morris, D., Piavis, J., Kapoor, A., Joshi, N., Meister, M., and Perona, P. (2020).

Synthetic examples improve generalization for rare classes. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, pages 863–873.

Bellido, I. and Fiesler, E. (1993). Do backpropagation trained neural networks have normal

weight distributions? In International Conference on Artificial Neural Networks, pages

772–775. Springer.

Bengio, E., Pineau, J., and Precup, D. (2020). Interference and generalization in temporal

difference learning. arXiv preprint arXiv:2003.06350.

Bengio, Y. and Delalleau, O. (2011). On the expressive power of deep architectures. In Interna-

tional Conference on Algorithmic Learning Theory, pages 18–36. Springer.

Bengio, Y. and Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-

validation. Journal of machine learning research, 5(Sep):1089–1105.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceed-

ings of the 26th annual international conference on machine learning, pages 41–48.

Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., Bereket, M., Patel, B. N., Yeom,

K. W., Shpanskaya, K., et al. (2018). Deep-learning-assisted diagnosis for knee magnetic

resonance imaging: development and retrospective validation of mrnet. PLoS medicine,

15(11):e1002699.

Bietti, A. and Mairal, J. (2019). On the inductive bias of neural tangent kernels. arXiv preprint

arXiv:1905.12173.

Brown, G., Bun, M., Feldman, V., Smith, A., and Talwar, K. (2021). When is memorization of

irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd

Annual ACM SIGACT Symposium on Theory of Computing, pages 123–132.

Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural networks. In

2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE.

198

Bibliography

Chang, H.-S., Learned-Miller, E., and McCallum, A. (2017). Active bias: Training more accurate

neural networks by emphasizing high variance samples. Advances in Neural Information

Processing Systems, 30.

Chatterjee, S. (2020). Coherent gradients: An approach to understanding generalization in

gradient descent-based optimization. In International Conference on Learning Represen-

tations.

Chatterji, N., Neyshabur, B., and Sedghi, H. (2020). The intriguing role of module critical-

ity in the generalization of deep networks. In International Conference on Learning

Representations.

Chatterji, N. S., Neyshabur, B., and Sedghi, H. (2019). The intriguing role of module criticality

in the generalization of deep networks. arXiv preprint arXiv:1912.00528.

Chen, P., Liao, B. B., Chen, G., and Zhang, S. (2019). Understanding and utilizing deep neural

networks trained with noisy labels. In International Conference on Machine Learning,

pages 1062–1070. PMLR.

Chen, P., Ye, J., Chen, G., Zhao, J., and Heng, P.-A. (2021a). Robustness of accuracy metric and

its inspirations in learning with noisy labels. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 35, pages 11451–11461.

Chen, W., Gong, X., and Wang, Z. (2021b). Neural architecture search on imagenet in four gpu

hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535.

Chen, Y., Meng, G., Zhang, Q., Xiang, S., Huang, C., Mu, L., and Wang, X. (2018). Reinforced

evolutionary neural architecture search. arXiv preprint arXiv:1808.00193.

Cordeiro, F. R. and Carneiro, G. (2020). A survey on deep learning with noisy labels: How to

train your model when you cannot trust on the annotations? In 2020 33rd SIBGRAPI

conference on graphics, patterns and images (SIBGRAPI), pages 9–16. IEEE.

Cormack, G. V. and Kolcz, A. (2009). Spam filter evaluation with imprecise ground truth. In

Proceedings of the 32nd international ACM SIGIR conference on Research and development

in information retrieval, pages 604–611.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee.

Deng, Z., He, H., and Su, W. J. (2020). Toward better generalization bounds with locally elastic

stability. arXiv preprint arXiv:2010.13988.

Dimopoulos, Y., Bourret, P., and Lek, S. (1995). Use of some sensitivity criteria for choosing

networks with good generalization ability. Neural Processing Letters, 2(6):1–4.

199

Bibliography

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of 17th Interna-

tional Conference on Machine Learning, pages 231–238.

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural

architecture search. arXiv preprint arXiv:2001.00326.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent provably optimizes

over-parameterized neural networks. arXiv preprint arXiv:1810.02054.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning

and stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159.

Dziugaite, G. K., Hsu, K., Gharbieh, W., and Roy, D. M. (2020). On the role of data in pac-bayes

bounds. arXiv preprint arXiv:2006.10929.

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization bounds for

deep (stochastic) neural networks with many more parameters than training data. arXiv

preprint arXiv:1703.11008.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. The Journal

of Machine Learning Research, 20(1):1997–2017.

Feldman, V. (2020). Does learning require memorization? a short tale about a long tail. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages

954–959.

Feldman, V. and Zhang, C. (2020). What neural networks memorize and why: Discovering the

long tail via influence estimation. arXiv preprint arXiv:2008.03703.

Forouzesh, M., Salehi, F., and Thiran, P. (2021). Generalization comparison of deep neural net-

works via output sensitivity. In 2020 25th International Conference on Pattern Recognition

(ICPR), pages 7411–7418. IEEE.

Forouzesh, M., Sedghi, H., and Thiran, P. (2023). Leveraging unlabeled data to track memo-

rization. In The Eleventh International Conference on Learning Representations.

Forouzesh, M. and Thiran, P. (2021). Disparity between batches as a signal for early stopping.

In Machine Learning and Knowledge Discovery in Databases. Research Track: European

Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II

21, pages 217–232. Springer.

Fort, S., Nowak, P. K., Jastrzebski, S., and Narayanan, S. (2019). Stiffness: A new perspective on

generalization in neural networks. arXiv preprint arXiv:1901.09491.

Fortmann-Roe, S. (2012). Understanding the bias-variance tradeoff. http://scott.fortmann-

roe.com/docs/BiasVariance.html.

200

Bibliography

Frénay, B. and Verleysen, M. (2013). Classification in the presence of label noise: a survey.

IEEE transactions on neural networks and learning systems, 25(5):845–869.

Fu, J., Liu, P., Zhang, Q., and Huang, X. (2020). Rethinking generalization of neural models: A

named entity recognition case study. arXiv preprint arXiv:2001.03844.

Fu, L. and Chen, T. (1993). Sensitivity analysis for input vector in multilayer feedforward neural

networks. In Neural Networks, 1993., IEEE International Conference on, pages 215–218.

IEEE.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological

cybernetics, 20(3-4):121–136.

Garg, S., Balakrishnan, S., Kolter, J. Z., and Lipton, Z. C. (2021a). Ratt: Leveraging unlabeled

data to guarantee generalization. arXiv preprint arXiv:2105.00303.

Garg, S., Balakrishnan, S., Lipton, Z. C., Neyshabur, B., and Sedghi, H. (2021b). Leveraging

unlabeled data to predict out-of-distribution performance. In NeurIPS 2021 Workshop on

Distribution Shifts: Connecting Methods and Applications.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance

dilemma. Neural computation, 4(1):1–58.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 249–256.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572.

Google (2017). Web traffic time series forecasting competi- tion. www.kaggle.com/c/

web-traffic-time-series-forecasting.

Gu, J. and Tresp, V. (2019). Neural network memorization dissection. arXiv preprint

arXiv:1911.09537.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J.,

et al. (2018). Recent advances in convolutional neural networks. Pattern Recognition,

77:354–377.

Guo, C., Gardner, J., You, Y., Wilson, A. G., and Weinberger, K. (2019). Simple black-box

adversarial attacks. In International Conference on Machine Learning, pages 2484–2493.

PMLR.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural

networks. arXiv preprint arXiv:1706.04599.

201

www.kaggle.com/c/web-traffic-time-series -forecasting
www.kaggle.com/c/web-traffic-time-series -forecasting

Bibliography

Haghifam, M., Negrea, J., Khisti, A., Roy, D. M., and Dziugaite, G. K. (2020). Sharpened

generalization bounds based on conditional mutual information and an application to

noisy, iterative algorithms. arXiv preprint arXiv:2004.12983.

Han, B., Yao, Q., Liu, T., Niu, G., Tsang, I. W., Kwok, J. T., and Sugiyama, M. (2020). A sur-

vey of label-noise representation learning: Past, present and future. arXiv preprint

arXiv:2011.04406.

Hanin, B. and Rolnick, D. (2018). How to start training: The effect of initialization and architec-

ture. In Advances in Neural Information Processing Systems, pages 571–581.

Harutyunyan, H., Reing, K., Ver Steeg, G., and Galstyan, A. (2020). Improving generaliza-

tion by controlling label-noise information in neural network weights. In International

Conference on Machine Learning, pages 4071–4081. PMLR.

He, H. and Su, W. (2020). The local elasticity of neural networks. In International Conference

on Learning Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In Proceedings of the IEEE international

conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks. In

European conference on computer vision, pages 630–645. Springer.

Heckel, R. and Yilmaz, F. F. (2020). Early stopping in deep networks: Double descent and how

to eliminate it. arXiv preprint arXiv:2007.10099.

Hesamian, M. H., Jia, W., He, X., and Kennedy, P. (2019). Deep learning techniques for medical

image segmentation: achievements and challenges. Journal of digital imaging, 32:582–

596.

Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann machines: Constraint

satisfaction networks that learn. Carnegie-Mellon University, Department of Computer

Science Pittsburgh, PA.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012).

Improving neural networks by preventing co-adaptation of feature detectors. arXiv

preprint arXiv:1207.0580.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and

Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

202

Bibliography

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 7132–7141.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4700–4708.

Huang, J., Qu, L., Jia, R., and Zhao, B. (2019). O2u-net: A simple noisy label detection approach

for deep neural networks. In Proceedings of the IEEE/CVF international conference on

computer vision, pages 3326–3334.

Hui, L. and Belkin, M. (2020). Evaluation of neural architectures trained with square loss vs

cross-entropy in classification tasks. arXiv preprint arXiv:2006.07322.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. (2016).

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.

arXiv preprint arXiv:1602.07360.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Ipeirotis, P. G., Provost, F., and Wang, J. (2010). Quality management on amazon mechanical

turk. In Proceedings of the ACM SIGKDD workshop on human computation, pages 64–67.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and general-

ization in neural networks. arXiv preprint arXiv:1806.07572.

Jastrzebski, S., Szymczak, M., Fort, S., Arpit, D., Tabor, J., Cho, K., and Geras, K. (2020). The

break-even point on optimization trajectories of deep neural networks. arXiv preprint

arXiv:2002.09572.

Jia, S., Jiang, S., Lin, Z., Li, N., Xu, M., and Yu, S. (2021). A survey: Deep learning for hyperspec-

tral image classification with few labeled samples. Neurocomputing, 448:179–204.

Jiang, A. Q. and Gal, L. S. C. L. Y. (2021). Can network flatness explain the training speed-

generalisation connection?

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. (2018a). Mentornet: Learning data-driven

curriculum for very deep neural networks on corrupted labels. In International conference

on machine learning, pages 2304–2313. PMLR.

Jiang, Y., Foret, P., Yak, S., Roy, D. M., Mobahi, H., Dziugaite, G. K., Bengio, S., Gunasekar, S.,

Guyon, I., and Neyshabur, B. (2020). Neurips 2020 competition: Predicting generalization

in deep learning. arXiv preprint arXiv:2012.07976.

Jiang, Y., Krishnan, D., Mobahi, H., and Bengio, S. (2018b). Predicting the generalization gap in

deep networks with margin distributions. arXiv preprint arXiv:1810.00113.

203

Bibliography

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2019). Fantastic generaliza-

tion measures and where to find them. arXiv preprint arXiv:1912.02178.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,

Boden, N., Borchers, A., et al. (2017). In-datacenter performance analysis of a tensor

processing unit. In Proceedings of the 44th annual international symposium on computer

architecture, pages 1–12.

Kaissis, G. A., Makowski, M. R., Rückert, D., and Braren, R. F. (2020). Secure, privacy-preserving

and federated machine learning in medical imaging. Nature Machine Intelligence,

2(6):305–311.

Kandel, I. and Castelli, M. (2020). Transfer learning with convolutional neural networks for

diabetic retinopathy image classification. a review. Applied Sciences, 10(6):2021.

Karimi, D., Dou, H., Warfield, S. K., and Gholipour, A. (2020). Deep learning with noisy labels:

Exploring techniques and remedies in medical image analysis. Medical image analysis,

65:101759.

Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017). Generalization in deep learning. arXiv

preprint arXiv:1710.05468.

Kim, S. and Kim, H. (2016). A new metric of absolute percentage error for intermittent demand

forecasts. International Journal of Forecasting, 32(3):669–679.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kishida, I. and Nakayama, H. (2019). Empirical study of easy and hard examples in cnn

training. In Neural Information Processing: 26th International Conference, ICONIP 2019,

Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part IV 26, pages 179–188.

Springer.

Kline, D. M. and Berardi, V. L. (2005). Revisiting squared-error and cross-entropy functions for

training neural network classifiers. Neural Computing & Applications, 14(4):310–318.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems,

pages 1097–1105.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6):84–90.

Krueger, D., Ballas, N., Jastrzebski, S., Arpit, D., Kanwal, M. S., Maharaj, T., Bengio, E., Fischer,

A., and Courville, A. (2017). Deep nets don’t learn via memorization.

Kyriakides, G. and Margaritis, K. (2020). An introduction to neural architecture search for

convolutional networks. arXiv preprint arXiv:2005.11074.

204

Bibliography

Lam, C. P. and Stork, D. G. (2003). Evaluating classifiers by means of test data with noisy labels.

In IJCAI, volume 3, pages 513–518. Citeseer.

Lara-Benítez, P., Carranza-García, M., and Riquelme, J. C. (2021). An experimental review on

deep learning architectures for time series forecasting. International journal of neural

systems, 31(03):2130001.

Le, Y. and Yang, X. (2015). Tiny imagenet visual recognition challenge. CS 231N, 7(7):3.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,

L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural

computation, 1(4):541–551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J.

(2019). Wide neural networks of any depth evolve as linear models under gradient

descent. Advances in neural information processing systems, 32:8572–8583.

Li, J., Socher, R., and Hoi, S. C. (2020a). Dividemix: Learning with noisy labels as semi-

supervised learning. arXiv preprint arXiv:2002.07394.

Li, J., Wong, Y., Zhao, Q., and Kankanhalli, M. S. (2019a). Learning to learn from noisy la-

beled data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5051–5059.

Li, J., Zhang, M., Xu, K., Dickerson, J., and Ba, J. (2021). How does a neural network’s architec-

ture impact its robustness to noisy labels? Advances in Neural Information Processing

Systems, 34.

Li, J., Zhang, M., Xu, K., Dickerson, J. P., and Ba, J. (2020b). Noisy labels can induce good

representations. arXiv preprint arXiv:2012.12896.

Li, M., Soltanolkotabi, M., and Oymak, S. (2020c). Gradient descent with early stopping is

provably robust to label noise for overparameterized neural networks. In International

Conference on Artificial Intelligence and Statistics, pages 4313–4324. PMLR.

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., and Benediktsson, J. A. (2019b). Deep learning

for hyperspectral image classification: An overview. IEEE Transactions on Geoscience and

Remote Sensing, 57(9):6690–6709.

Liang, X., Yao, L., Liu, X., and Zhou, Y. (2022). Tripartite: Tackle noisy labels by a more precise

partition. arXiv preprint arXiv:2202.09579.

205

Bibliography

Liu, J., Bai, Y., Jiang, G., Chen, T., and Wang, H. (2020a). Understanding why neural networks

generalize well through gsnr of parameters. In International Conference on Learning

Representations.

Liu, S., Niles-Weed, J., Razavian, N., and Fernandez-Granda, C. (2020b). Early-learning regu-

larization prevents memorization of noisy labels. arXiv preprint arXiv:2007.00151.

Liu, V., Yao, H., and White, M. (2019). Toward understanding catastrophic interference in value-

based reinforcement learning. Optimization Foundations for Reinforcement Learning

Workshop at NeurIPS.

Liu, Y., Starzyk, J. A., and Zhu, Z. (2008). Optimized approximation algorithm in neural

networks without overfitting. IEEE transactions on neural networks, 19(6):983–995.

Lodwich, A., Rangoni, Y., and Breuel, T. (2009). Evaluation of robustness and performance of

early stopping rules with multi layer perceptrons. In 2009 international joint conference

on Neural Networks, pages 1877–1884. IEEE.

Lopes, V., Alirezazadeh, S., and Alexandre, L. A. (2021). Epe-nas: Efficient performance

estimation without training for neural architecture search. In Artificial Neural Networks

and Machine Learning–ICANN 2021: 30th International Conference on Artificial Neural

Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part V, pages 552–563.

Springer.

Loshchilov, I. and Hutter, F. (2015). Online batch selection for faster training of neural networks.

arXiv preprint arXiv:1511.06343.

Lu, Y. and He, W. (2022). Selc: Self-ensemble label correction improves learning with noisy

labels. arXiv preprint arXiv:2205.01156.

Lyle, C., Schut, L., Ru, B., Gal, Y., and van der Wilk, M. (2020). A bayesian perspective on

training speed and model selection. arXiv preprint arXiv:2010.14499.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet v2: Practical guidelines for

efficient cnn architecture design. In Proceedings of the European conference on computer

vision (ECCV), pages 116–131.

Ma, X., Huang, H., Wang, Y., Romano, S., Erfani, S., and Bailey, J. (2020). Normalized loss

functions for deep learning with noisy labels. In ICML.

Maennel, H., Alabdulmohsin, I., Tolstikhin, I., Baldock, R. J., Bousquet, O., Gelly, S., and

Keysers, D. (2020). What do neural networks learn when trained with random labels?

arXiv preprint arXiv:2006.10455.

Mahsereci, M., Balles, L., Lassner, C., and Hennig, P. (2017). Early stopping without a validation

set. arXiv preprint arXiv:1703.09580.

206

Bibliography

Malach, E. and Shalev-Shwartz, S. (2017). Decoupling" when to update" from" how to update".

Advances in neural information processing systems, 30.

McAllester, D. (2003). Simplified pac-bayesian margin bounds. In Learning theory and Kernel

machines, pages 203–215. Springer.

McAllester, D. A. (1999a). Pac-bayesian model averaging. In Proceedings of the twelfth annual

conference on Computational learning theory, pages 164–170.

McAllester, D. A. (1999b). Some pac-bayesian theorems. Machine Learning, 37(3):355–363.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5:115–133.

Mehta, H., Cutkosky, A., and Neyshabur, B. (2020). Extreme memorization via scale of initial-

ization. arXiv preprint arXiv:2008.13363.

Mehta, P., Bukov, M., Wang, C.-H., Day, A. G., Richardson, C., Fisher, C. K., and Schwab, D. J.

(2019). A high-bias, low-variance introduction to machine learning for physicists. Physics

reports.

Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. (2021). Neural architecture search without

training. In International Conference on Machine Learning, pages 7588–7598. PMLR.

Mhaskar, H., Liao, Q., and Poggio, T. (2017). When and why are deep networks better than

shallow ones? In Thirty-First AAAI Conference on Artificial Intelligence.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learning. MIT

press.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear regions

of deep neural networks. In Advances in neural information processing systems, pages

2924–2932.

Nagarajan, V. and Kolter, J. Z. (2019). Uniform convergence may be unable to explain general-

ization in deep learning. In Advances in Neural Information Processing Systems, pages

11615–11626.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2021). Deep double

descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:

Theory and Experiment, 2021(12):124003.

Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S., and Mitliagkas, I.

(2018). A modern take on the bias-variance tradeoff in neural networks. arXiv preprint

arXiv:1810.08591.

Negrea, J., Haghifam, M., Dziugaite, G. K., Khisti, A., and Roy, D. M. (2019). Information-

theoretic generalization bounds for sgld via data-dependent estimates. In Advances in

Neural Information Processing Systems, pages 11013–11023.

207

Bibliography

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in

natural images with unsupervised feature learning.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017a). Exploring generalization

in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. (2017b). A pac-bayesian approach to spectrally-

normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564.

Neyshabur, B., Sedghi, H., and Zhang, C. (2020). What is being transferred in transfer learning?

Advances in neural information processing systems, 33:512–523.

Ng, A. (2012). Learning Thoery Lecture Notes. http://cs229.stanford.edu/notes/cs229-notes4.

pdf.

Nguyen, D. T., Mummadi, C. K., Ngo, T. P. N., Nguyen, T. H. P., Beggel, L., and Brox, T. (2019).

Self: Learning to filter noisy labels with self-ensembling. arXiv preprint arXiv:1910.01842.

Nigam, N., Dutta, T., and Gupta, H. P. (2020). Impact of noisy labels in learning techniques: a

survey. In Advances in data and information sciences, pages 403–411. Springer.

NNGC (2008). Nn5 time series forecasting competition for neural networks. http://www.

neural-forecasting-competition.com/NN5.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018). Sensitivity

and generalization in neural networks: an empirical study. In International Conference

on Learning Representations.

Papernot, N., McDaniel, P., and Goodfellow, I. (2016a). Transferability in machine learn-

ing: from phenomena to black-box attacks using adversarial samples. arXiv preprint

arXiv:1605.07277.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A. (2016b). The

limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on

security and privacy (EuroS&P), pages 372–387. IEEE.

Patel, D. and Sastry, P. (2021). Memorization in deep neural networks: Does the loss function

matter? In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages

131–142. Springer.

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and Qu, L. (2017). Making deep neural

networks robust to label noise: A loss correction approach. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1944–1952.

Pedraza, A., Deniz, O., and Bueno, G. (2021). On the relationship between generalization and

robustness to adversarial examples. Symmetry, 13(5):817.

208

http://cs229.stanford.edu/notes/cs229-notes4.pdf
http://cs229.stanford.edu/notes/cs229-notes4.pdf
http://www.neural-forecasting-competition.com/NN5
http://www.neural-forecasting-competition.com/NN5

Bibliography

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., and Hinton, G. (2017). Regularizing neural

networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548.

Philipp, G. and Carbonell, J. G. (2018). The nonlinearity coefficient-predicting overfitting in

deep neural networks. arXiv preprint arXiv:1806.00179.

Piche, S. W. (1995). The selection of weight accuracies for madalines. IEEE Transactions on

Neural Networks, 6(2):432–445.

Piotrowski, A. P. and Napiorkowski, J. J. (2013). A comparison of methods to avoid overfitting in

neural networks training in the case of catchment runoff modelling. Journal of Hydrology,

476:97–111.

Pleiss, G., Zhang, T., Elenberg, E., and Weinberger, K. Q. (2020a). Identifying mislabeled data

using the area under the margin ranking. Advances in Neural Information Processing

Systems, 33:17044–17056.

Pleiss, G., Zhang, T., Elenberg, E. R., and Weinberger, K. Q. (2020b). Detecting noisy training

data with loss curves.

Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade, pages

55–69. Springer.

Pulastya, V., Nuti, G., Atri, Y. K., and Chakraborty, T. (2021). Assessing the quality of the datasets

by identifying mislabeled samples. In Proceedings of the 2021 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining, pages 18–22.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1):145–151.

Qian, X. and Klabjan, D. (2020). The impact of the mini-batch size on the variance of gradients

in stochastic gradient descent. arXiv preprint arXiv:2004.13146.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and Dollár, P. (2020). Designing network

design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10428–10436.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and Courville,

A. (2019). On the spectral bias of neural networks. In International Conference on Machine

Learning, pages 5301–5310. PMLR.

Rawat, W. and Wang, Z. (2017). Deep convolutional neural networks for image classification: A

comprehensive review. Neural computation, 29(9):2352–2449.

Razzak, M. I., Naz, S., and Zaib, A. (2018). Deep learning for medical image processing:

Overview, challenges and the future. Classification in BioApps: Automation of Decision

Making, pages 323–350.

209

Bibliography

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and Tesauro, G. (2018). Learning

to learn without forgetting by maximizing transfer and minimizing interference. arXiv

preprint arXiv:1810.11910.

Roh, Y., Heo, G., and Whang, S. E. (2019). A survey on data collection for machine learning: a big

data-ai integration perspective. IEEE Transactions on Knowledge and Data Engineering.

Rolnick, D., Veit, A., Belongie, S., and Shavit, N. (2017). Deep learning is robust to massive

label noise. arXiv preprint arXiv:1705.10694.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386.

Ru, R., Lyle, C., Schut, L., Fil, M., van der Wilk, M., and Gal, Y. (2021). Speedy performance

estimation for neural architecture search. Advances in Neural Information Processing

Systems, 34.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-

propagating errors. nature, 323(6088):533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge.

International journal of computer vision, 115:211–252.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4510–4520.

Sankararaman, K. A., De, S., Xu, Z., Huang, W. R., and Goldstein, T. (2019). The impact of neural

network overparameterization on gradient confusion and stochastic gradient descent.

arXiv preprint arXiv:1904.06963.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization help

optimization? In Advances in Neural Information Processing Systems, pages 2483–2493.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat:

Integrated recognition, localization and detection using convolutional networks. arXiv

preprint arXiv:1312.6229.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to

algorithms. Cambridge university press.

Shifat-E-Rabbi, M., Yin, X., Fitzgerald, C. E., and Rohde, G. K. (2020). Cell image classification:

a comparative overview. Cytometry Part A, 97(4):347–362.

210

Bibliography

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep

learning. Journal of Big Data, 6(1):60.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Vi-

sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Sokolić, J., Giryes, R., Sapiro, G., and Rodrigues, M. R. (2017). Robust large margin deep neural

networks. IEEE Transactions on Signal Processing, 65(16):4265–4280.

Song, H., Kim, M., and Lee, J.-G. (2019). SELFIE: Refurbishing unclean samples for robust

deep learning. In ICML.

Song, H., Kim, M., Park, D., and Lee, J.-G. (2020a). Prestopping: How does early stopping help

generalization against label noise?

Song, H., Kim, M., Park, D., Shin, Y., and Lee, J.-G. (2022). Learning from noisy labels with deep

neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems.

Song, J., Dauphin, Y., Auli, M., and Ma, T. (2020b). Robust and on-the-fly dataset denoising

for image classification. In European Conference on Computer Vision, pages 556–572.

Springer.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit

bias of gradient descent on separable data. The Journal of Machine Learning Research,

19(1):2822–2878.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958.

Štěpnička, M. and Burda, M. (2016). Computational intelligence in forecasting (cif). https:

//irafm.osu.cz/cif.

Stone, J. V. (2019). Artificial intelligence engines: a tutorial introduction to the mathematics of

deep learning. Sebtel Press.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of

the Royal Statistical Society: Series B (Methodological), 36(2):111–133.

Stutz, D., Hein, M., and Schiele, B. (2019). Disentangling adversarial robustness and gener-

alization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6976–6987.

Sun, Z., Hua, X.-S., Yao, Y., Wei, X.-S., Hu, G., and Zhang, J. (2020). Crssc: salvage reusable

samples from noisy data for robust learning. In Proceedings of the 28th ACM International

Conference on Multimedia, pages 92–101.

211

https://irafm.osu.cz/cif
https://irafm.osu.cz/cif

Bibliography

Swayamdipta, S., Schwartz, R., Lourie, N., Wang, Y., Hajishirzi, H., Smith, N. A., and Choi, Y.

(2020). Dataset cartography: Mapping and diagnosing datasets with training dynamics.

arXiv preprint arXiv:2009.10795.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,

and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1–9.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.

(2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR.

Tartaglione, E., Lepsøy, S., Fiandrotti, A., and Francini, G. (2018). Learning sparse neural net-

works via sensitivity-driven regularization. In Advances in Neural Information Processing

Systems, pages 3878–3888.

Telgarsky, M. (2016). Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485.

Thulasidasan, S., Bhattacharya, T., Bilmes, J., Chennupati, G., and Mohd-Yusof, J. (2019).

Combating label noise in deep learning using abstention. arXiv preprint arXiv:1905.10964.

Tibshirani, R. (1996). Bias, variance and prediction error for classification rules. Citeseer.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. (2021). Training

data-efficient image transformers & distillation through attention. In International

conference on machine learning, pages 10347–10357. PMLR.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. (2018). Robustness may be at

odds with accuracy. arXiv preprint arXiv:1805.12152.

Van Horn, G. and Perona, P. (2017). The devil is in the tails: Fine-grained classification in the

wild. arXiv preprint arXiv:1709.01450.

Wang, T. E., Gu, J., Mehta, D., Zhao, X., and Bernal, E. A. (2018). Towards robust deep neural

networks. arXiv preprint arXiv:1810.11726.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J. (2019). Symmetric cross entropy for

robust learning with noisy labels. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 322–330.

Wang, Y., Peng, T., Duan, J., Zhu, C., Liu, J., Ye, J., and Jin, M. (2020). Pathological image

classification based on hard example guided cnn. IEEE Access, 8:114249–114258.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y. (2021). Learning with noisy labels

revisited: A study using real-world human annotations. arXiv preprint arXiv:2110.12088.

212

Bibliography

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y. (2022). Learning with noisy labels

revisited: A study using real-world human annotations. In International Conference on

Learning Representations.

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S., Grauman, K., and Feris, R. (2018).

Blockdrop: Dynamic inference paths in residual networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 8817–8826.

Wu, Z., Shen, C., and Van Den Hengel, A. (2019). Wider or deeper: Revisiting the resnet model

for visual recognition. Pattern Recognition, 90:119–133.

Xia, X., Liu, T., Han, B., Gong, C., Wang, N., Ge, Z., and Chang, Y. (2021). Robust early-learning:

Hindering the memorization of noisy labels. In International Conference on Learning

Representations.

Xia, X., Liu, T., Han, B., Wang, N., Gong, M., Liu, H., Niu, G., Tao, D., and Sugiyama, M. (2020).

Part-dependent label noise: Towards instance-dependent label noise. Advances in Neural

Information Processing Systems, 33:7597–7610.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. (2015). Learning from massive noisy labeled

data for image classification. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2691–2699.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations

for deep neural networks. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1492–1500.

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z. (2019a). Frequency principle: Fourier

analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523.

Xu, Z.-Q. J., Zhang, Y., and Xiao, Y. (2019b). Training behavior of deep neural network in

frequency domain. In International Conference on Neural Information Processing, pages

264–274. Springer.

Yang, J., Zeng, X., Zhong, S., and Wu, S. (2013). Effective neural network ensemble approach

for improving generalization performance. IEEE transactions on neural networks and

learning systems, 24(6):878–887.

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R., and Chaudhuri, K. (2020). A closer

look at accuracy vs. robustness. arXiv preprint arXiv:2003.02460.

Yao, Y., Rosasco, L., and Caponnetto, A. (2007). On early stopping in gradient descent learning.

Constructive Approximation, 26(2):289–315.

213

Bibliography

Yin, D., Kannan, R., and Bartlett, P. (2019). Rademacher complexity for adversarially robust

generalization. In International conference on machine learning, pages 7085–7094. PMLR.

Yin, D., Pananjady, A., Lam, M., Papailiopoulos, D., Ramchandran, K., and Bartlett, P. (2017).

Gradient diversity: a key ingredient for scalable distributed learning. arXiv preprint

arXiv:1706.05699.

Yu, F., Wang, D., Shelhamer, E., and Darrell, T. (2018). Deep layer aggregation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2403–2412.

Yu, X., Han, B., Yao, J., Niu, G., Tsang, I., and Sugiyama, M. (2019). How does disagreement

help generalization against label corruption? In International Conference on Machine

Learning, pages 7164–7173. PMLR.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Zeng, X. and Yeung, D. S. (2001). Sensitivity analysis of multilayer perceptron to input and

weight perturbations. IEEE Transactions on Neural Networks, 12(6):1358–1366.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016a). Understanding deep

learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021a). Understanding deep

learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–

115.

Zhang, C., Bengio, S., and Singer, Y. (2019a). Are all layers created equal? arXiv preprint

arXiv:1902.01996.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond empirical risk

minimization. arXiv preprint arXiv:1710.09412.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. (2019b). Theoretically principled

trade-off between robustness and accuracy. In International Conference on Machine

Learning, pages 7472–7482. PMLR.

Zhang, J., Barr, E., Guedj, B., Harman, M., and Shawe-Taylor, J. (2019c). Perturbed model

validation: A new framework to validate model relevance.

Zhang, J., Wu, X., and Sheng, V. S. (2016b). Learning from crowdsourced labeled data: a survey.

Artificial Intelligence Review, 46(4):543–576.

Zhang, X., Hou, P., Zhang, X., and Sun, J. (2021b). Neural architecture search with random labels.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 10907–10916.

214

Bibliography

Zhang, X., Wu, D., Xiong, H., and Dai, B. (2021c). Optimization variance: Exploring generaliza-

tion properties of {dnn}s.

Zhang, X., Xiong, H., and Wu, D. (2020a). Rethink the connections among generalization,

memorization and the spectral bias of dnns. arXiv preprint arXiv:2004.13954.

Zhang, Y., Lu, Y., Han, B., Cheung, Y.-m., and Wang, H. (2022). Combating noisy-labeled

and imbalanced data by two stage bi-dimensional sample selection. arXiv preprint

arXiv:2208.09833.

Zhang, Z., Zhang, H., Arik, S. O., Lee, H., and Pfister, T. (2020b). Distilling effective supervision

from severe label noise. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 9294–9303.

Zhu, C., Chen, W., Peng, T., Wang, Y., and Jin, M. (2021a). Hard sample aware noise robust

learning for histopathology image classification. IEEE Transactions on Medical Imaging,

41(4):881–894.

Zhu, Z., Dong, Z., Cheng, H., and Liu, Y. (2021b). A good representation detects noisy labels.

arXiv preprint arXiv:2110.06283.

Ziyin, L., Chen, B., Wang, R., Liang, P. P., Salakhutdinov, R., Morency, L.-P., and Ueda, M. (2020).

Learning not to learn in the presence of noisy labels. arXiv preprint arXiv:2002.06541.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv

preprint arXiv:1611.01578.

215

Mahsa Forouzesh
Departement of Computer and Communication Sciences
Ecole Polytechnique Federale De Lausanne (EPFL)
Mobile: +41787181640
Email: mahsa.forouzesh93@gmail.com
Personal Website

Research Interests

• Deep Learning

• Generalization in Neural Networks

• Supervised Learning with Limited and Noisy Data

Education

Sept.2017-
present

PhD in Computer and Communication sciences, EPFL, Lausanne, Switzer-
land
Information and Network Dynamics Group, Advisor: Prof. Patrick Thiran
Thesis Title: Deep-Learning Generalization with Limited and Noisy La-
bels

Selected Courses:

• Machine Learning (Fall 2017)

• Optimization for Machine Learning (Spring 2018)

• Deep Learning for Natural Language Processing (Fall 2019)

• Distributed Information Systems (Fall 2020)

2012-2016 B.Sc. in Electrical Enginnering
Telecommunication Engineering Minor, School of Electrical and Computer Engi-
neering, University of Tehran, Tehran, Iran

• GPA: 18.22/20 (3.82/4) — GPA of last 2 years: 18.87/20 (3.96/4)

Experiences/Services

2022 Software engineering internship at Google, Zurich, Switzerland;
Building offensive image classifiers using image embeddings and OCRs resulting in
a headroom reduction of 38.8%.

2020-2022 Supervised the semester projects "Implementing Variants of MeProp", "NAS with-
out Training using Sensitivity", and "Early Stopping for Time-series Applications"

2021-23 Served as a reviewer at NeurIPS 2022, ICLR 2022 (selected as a highlighted re-
viewer), ICML 2022, and ICML 2023

1

217

2018-22 Teaching assistant for the courses Machine learning with over 500 students, Dy-
namical system theory for engineers, Probability and statistics, Stochastic models
in communication, and Mise à niveau (MAN)

2022-present Served as a volunteer counsellor at EPFL Peer2Peer counselling center
2020 Volunteered at ICLR 2020, ICML 2020 and NeurIPS 2020 conferences

Publications

Leveraging Unlabeled Data to Track Memorization (ICLR 2023)
Mahsa Forouzesh, Hanie Sedghi, Patrick Thiran

Disparity Between Batches as a Signal for Early Stopping (ECML/PKDD
2021)
Mahsa Forouzesh, Patrick Thiran

Generalization Comparison of Deep Neural Networks via Output Sensi-
tivity (Oral Presentation at ICPR 2020)
Mahsa Forouzesh, Farnood Salehi, Patrick Thiran

Honors and Awards

Sept. 2017 Fellowship Program in Computer and Communication Sciences, EPFL, Switzerland
2016 M.Sc. Admission from ECE Department without entrance exam, University of

Tehran, Tehran, Iran
2016 Ranked 11th among 150 EE students in B.Sc., University of Tehran, Tehran, Iran
2014-2015 FOE (Faculty of Engineering) Award as the 3rd ranked student, awarded by Depart-

ment of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
2012 Ranked 42nd among more than 300,000 participants in the nationwide university

entrance exam (Konkor) and membership to INEF-Iran National Elites Foundation

Selected Projects

Fall 2019 Proposed an extension of the CMOW (continuous multiplication of words)
model for Sentence embedding
Modified the optimization procedure of the CBOW-CMOW hybrid model by apply-
ing an explore-exploit algorithm using Pytorch

Spring 2018 Implemented MeProp, a sparsified back propagation algorithm, using Py-
torch

Fall 2017 Designed and implemented a recommender system using Tensorflow
Fall 2017 Implemented the elastic averaging SGD algorithm using Tensorflow

2

218

Computer and Technical Skills

Python, Pytorch, Tensorflow, Pandas, MATLAB, C++, C, SQL, Flume, Verilog,
Assembly, Qt, SIMULINK, Multisim, HSpice, NS2, Arduino, Wireshark

3

219

	Acknowledgements
	Abstract / Résumé
	Contents
	Introduction
	Background
	Deep Supervised Learning
	Generalization and Overfitting
	Data-Collection Challenges

	Goals and Contributions of the Thesis

	Neural Network Output Sensitivity
	Generalization Comparison of Deep Neural Networks
	Introduction
	Related Work
	Preliminaries
	Sensitivity versus Loss
	Sensitivity as a Proxy for Generalization
	Discussion and Conclusion

	Neural Architecture Search Without Training
	Introduction and Background
	Zero-Cost Metrics
	Experiments
	Conclusion

	Appendices
	Experimental Details
	Computation of eq:ch2prop1: The Relation between Variance and Sensitivity
	The Relation between the Cross Entropy Loss and the Mean Square Error
	Computation of eq:ch2senfc
	CIFAR-10 Experiments
	MNIST and CIFAR-100 Experiments

	Disparity Between Batches
	A Signal for Early Stopping
	Introduction
	Related Work
	Generalization Penalty
	Gradient Disparity
	Early Stopping
	Discussion and Final Remarks

	Time-series Applications
	Introduction
	Early-stopping Methods for Time-series Applications
	Experiments
	Conclusion

	Appendices
	Organization of the Appendix
	Additional Theorem
	Proof of Theorem 1
	A Simple Connection Between Generalization Penalty and Gradient Disparity
	Common Experimental Details
	Re-scaling the Loss
	The Hyper-parameter s
	The Surrogate Loss Function

	k-fold Cross-Validation
	Early Stopping Threshold
	Image-classification Benchmark Datasets
	MRNet Dataset

	Additional Experiments
	MNIST Experiments
	CIFAR-10 Experiments
	CIFAR-100 Experiments

	Beyond SGD
	SGD with Momentum
	Adagrad
	Adadelta and RmsProp
	Adam
	Experiments

	Comparison to Related Work
	Capturing Label Noise Level
	Gradient Disparity versus Variance of Gradients

	Leveraging Unlabeled Data to Track Memorization
	Introduction
	Good Models are Resistant to Memorization
	Evaluating Resistance to Memorization
	Good Models are Resistant and Trainable
	Convergence Analysis
	Experiments on Real-world Datasets with noisy labels
	On the Generality of the Observed Phenomena
	Conclusion

	Appendices
	Additional Related Work
	Experimental Setup
	Comparison with Baselines
	Additional Experiments for sec:ch4observation
	Additional Experiments for sec:ch4main
	Experiments Related to sec:ch4abl
	Theoretical Preliminaries
	Properties of the Gram-matrix
	Corollaries Adapted from du2018gradient, arora2019fine
	Additional Lemmas

	Proof of Lemma 3
	Proof of Lemma 1
	Proof of Theorem 3
	Proof and Numerical Evaluations of Theorem 4

	Differences Between Hard and Noisy-labeled Samples: An Empirical Study
	Introduction
	Background and Related Work
	Dataset Design with Different Hardness Levels
	Hardness via Imbalance
	Hardness via Diversification
	Hardness via Closeness to the Decision Boundary
	Addition of Label Noise; Its Similarities to Hardness

	Easy-Hard-Noisy Data Partitioning and Training
	Partitioning
	Training on the Filtered Subset

	Discussion

	Appendices
	Experimental Setup
	Comparison to Other Metrics

	Conclusion
	Bibliography
	Curriculum Vitae

