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“Il fatto che l’attività svolta in modo così imperfetto sia

stata e sia tuttora per me fonte inesauribile di gioia

mi fa ritenere che l’imperfezione nell’eseguire il compito

che ci siamo prefissi, o ci è stato assegnato, sia più consona

alla natura umana così imperfetta che non la perfezione.”

"The fact that the activity carried out in such an imperfect way

has been and still is an inexhaustible source of joy for me

leads me to believe that imperfection in performing the task

we have set ourselves, or have been assigned, is more suitable

for human nature, which is so imperfect, than perfection."

— Rita Levi-Montalcini, Elogio dell’Imperfezione.

Ai miei genitori.

To my parents.
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Abstract

This thesis focuses on two selected learning problems: 1) statistical inference on graphs

models, and, 2) gradient descent on neural networks, with the common objective of defining

and analysing the measures that characterize the fundamental limits.

In the first part of the thesis, we consider spin synchronization problems on graphs, which

consist of reconstructing a vector of n independent spins living on the vertices of a graph,

based on noisy observations of their interactions on the edges of the graph. In particular,

we consider synchronization models with erasure (BEC) side-information, where the spins

of a small fraction of nodes are revealed, and investigate how the addition of such side-

information influences the correlations between spins at distant sites. We show that on trees,

whenever spins at distant sites are nearly independent given the edge observations, then

they are still nearly independent given the edge observations and the side-information. We

conjecture this to hold for any graph. On the other hand, (Kanade et al., 2014) conjectured

that, on regular trees and on Galton-Watson trees, whenever any small fraction of node labels

are revealed, the boundary at infinite depth becomes ineffective for detecting the root bit,

even in the reconstruction regime. We explain how this can be used for computing the limit-

ing entropy of the sparse Stochastic Block Model (SBM) with two symmetric communities.

Finally, we show that the latter conjecture does not hold for every tree.

In the second part of the thesis, we consider the problem of learning Boolean target functions

with gradient descent (GD) on fully connected neural networks. We introduce the notion of

“Initial Alignment” (INAL) between a neural network at initialization and a target function

and prove that if a network and target do not have a noticeable INAL, then noisy gradient

descent on a fully connected network with i.i.d. Gaussian initialization cannot learn the

target in polynomial time. We show that for finite depth networks trained with the correlation

loss, the result can be extended beyond Boolean inputs. Moreover, we prove that in a similar

setting, the generalization error can be lower-bounded in terms of the noise-stability of the

target function, supporting a conjecture made in (Zhang et al., 2021).

We then show that in the distribution shift setting, when the data withholding corresponds to

freezing a single feature, the generalisation error admits a tight characterisation in terms of

the Boolean influence for several relevant architectures. This is shown on linear models and

supported experimentally on other models such as MLPs and Transformers. In particular,
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Chapter 0 Abstract

this puts forward the hypothesis that for such architectures and for learning logical functions,

GD tends to have an implicit bias towards low-degree representations.

Finally, we consider a ‘curriculum learning’ (CL) strategy for learning k -parities on d bits

of a binary string. We show that a wise choice of training examples, involving two or more

product distributions, allows to learn k -parities in d O (1) time with a fully connected neural

network trained with GD. We further show that for another class of functions - namely the

‘Hamming mixtures’ - CL strategies involving a bounded number of product distributions

are not beneficial.

Key words: statistical learning, fundamental limits, complexity measures, stochastic block

models, synchronization on graphs, neural networks.
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Résumé

Cette thèse se concentre sur deux problèmes d’apprentissage : 1) l’inférence statistique de

modèles sur graphes et 2) la descente de gradient sur les réseaux de neurones, avec l’objectif

commun de définir et d’analyser les mesures qui caractérisent les limites fondamentales.

Dans la première partie de la thèse, nous examinons les problèmes de synchronisation de

spins sur les graphes, qui consistent à reconstruire un vecteur de n spins indépendants vivant

sur les sommets d’un graphe, en fonction des observations bruyantes de leurs interactions

sur les arêtes du graphe. En particulier, nous considérons des modèles de synchronisation

avec une information latérale d’effacement (BEC), où les spins d’une petite fraction de

nœuds sont révélés, et étudions comment l’ajout de cette information latérale influence

les corrélations entre les spins sur des sites éloignés. Nous montrons que sur les arbres,

chaque fois que les spins sur des sites éloignés sont presque indépendants étant donné

les observations des arêtes, ils restent presque indépendants étant donné les observations

des arêtes et de l’information latérale. Nous émettons l’hypothèse que cela est vrai pour

chaque graphe. D’autre part, nous montrons que la conjecture de (KANADE et al., 2014) -

selon laquelle sur les arbres réguliers et les arbres Galton-Watson, lorsqu’une petite fraction

d’étiquettes de nœuds est révélée, la frontière à profondeur infinie devient inefficace pour

détecter le bit à la racine de l’arbre, même dans le régime de reconstruction - ne tient pas

pour chaque arbre.

Dans la deuxième partie de la thèse, nous considérons le problème de l’apprentissage de

fonctions objectifs booléennes avec la descente de gradient sur des réseaux de neurones

entièrement connectés. Nous introduisons la notion d’“alignement initial” (INAL) entre un

réseau neuronal à l’initialisation et une fonction objectif et nous prouvons que si un réseau

et une objectif n’ont pas d’INAL perceptible, alors la descente de gradient sur un réseau

entièrement connecté avec initialisation gaussienne i.i.d. ne peut pas apprendre l’objectif

en temps polynomial. Nous montrons que pour les réseaux de profondeur finie entraînés

avec la ‘correlation loss’, le résultat peut être étendu au-delà des entrées booléennes. De plus,

nous prouvons que dans un cadre semblable, l’erreur de généralisation peut être bornée

inférieurement en termes de stabilité au bruit de la fonction objectif, soutenant ainsi une

conjecture qui apparaît dans (ZHANG et al., 2021).

Nous montrons ensuite que dans le cadre de changements de distribution, lorsque la réten-
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Chapter 0 Résumé

tion de données correspond à la fixation d’une seule caractéristique, l’erreur de généralisa-

tion peut être caractérisée en termes d’influence booléenne pour plusieurs architectures.

Cela est démontré sur des modèles linéaires et est soutenu expérimentalement sur d’autres

modèles tels que le Multi Layer Perceptron et Transformers. En particulier, cela avance l’hy-

pothèse que pour de telles architectures et pour l’apprentissage de fonctions logiques, la

descente de gradient tend à avoir un biais implicite vers des représentations de faible degré.

Enfin, nous considérons une stratégie d’apprentissage par curriculum (CL) pour apprendre

la classe des k -parités sur d bits d’une chaîne binaire avec un réseau de neurones entière-

ment connecté entraîné avec la descente de gradient stochastique. Nous montrons qu’un

choix judicieux d’exemples d’entraînement, impliquant deux ou plusieurs distributions de

produits, permet l’apprentissage de cette classe de fonctions en temps d O (1) donnée une

distribution uniforme. Nous montrons également que pour une autre classe de fonctions -

les ‘Hamming mixtures’ - les stratégies de CL impliquant un nombre borné de distributions

de produits ne sont pas bénéfiques.

Mots cléfs : apprentissage statistique, limites fondamentales, mesures de complexité, mo-

dèles de blocs stochastiques, synchronisation sur les graphes, réseaux de neurones.
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Sommario

Questa tesi si concentra su due problemi di apprendimento: 1) inferenza statistica sui modelli

su grafi e 2) discesa del gradiente sulle reti neurali, con l’obiettivo comune di definire ed

analizzare le misure che caratterizzano i limiti fondamentali.

Nella prima parte della tesi, consideriamo problemi di sincronizzazione di spin su grafi, che

consistono nella ricostruzione di un vettore di n spin indipendenti situati sui vertici di un

grafo, basandosi su osservazioni con rumore delle loro interazioni sugli archi del grafo. In

particolare, consideriamo modelli di sincronizzazione con informazione laterale di tipo BEC,

in cui gli spin di una piccola frazione di nodi vengono rivelati, e indaghiamo come l’aggiunta

di tale informazione laterale influisca sulle correlazioni tra gli spin in siti lontani. Dimo-

striamo che sui grafi ad albero, quando gli spin in siti lontani sono approssimativamente

indipendenti rivelate le osservazioni sugli archi, allora sono ancora approssimativamente

indipendenti date le osservazioni sugli archi e l’informazione laterale. Ipotizziamo che ciò

sia vero per qualsiasi grafo. D’altra parte, (Kanade et al., 2014) ipotizzano che, sui grafi

ad albero regolari e ad albero Galton-Watson, quando viene rivelata una frazione arbitra-

riamente piccola di nodi, i nodi a profondità infinita diventano irrilevanti per rilevare lo

spin alla radice, anche nel regime di ricostruzione. Spieghiamo come questo possa essere

utilizzato per calcolare l’entropia nello stochastic block model (SBM) nel regime sparso con

due comunità simmetriche. Infine, dimostriamo che quest’ultima congettura non vale per

ogni grafo ad albero.

Nella seconda parte della tesi, consideriamo il problema di apprendere funzioni obiettivo

Booleane con il metodo della discesa del gradiente (GD) su reti neurali completamente

connesse. Introduciamo la nozione di "Allineamento Iniziale" (INAL) tra una rete neurale

all’inizializzazione e una funzione obiettivo e dimostriamo che se una rete e la funzione

obiettivo non presentano un INAL evidente, allora la discesa del gradiente su una rete

completamente connessa con inizializzazione i.i.d Gaussiana non può imparare l’obiettivo

in tempo polinomiale. Mostriamo che per reti a profondità finita addestrate con funzione

costo data dalla correlazione, il risultato può essere esteso oltre gli input Booleani. Inoltre,

dimostriamo che in un contesto simile, l’errore di generalizzazione può essere inferiormente

limitato dalla stabilità al rumore della funzione obiettivo, supportando una congettura

formulata in (Zhang et al., 2021).
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Successivamente mostriamo che in un contesto di shift di distribuzione, quando una singola

coordinata é fissata durante l’addestramento, l’errore di generalizzazione ammette una

caratterizzazione precisa in termini dell’influenza Booleana per diverse architetture rilevanti.

Questo é dimostrato per modelli lineari, e supportato sperimentalmente su altre architetture,

come Multi Layer Perceptron e Transformers. In particolare, ne consegue l’ipotesi che per

tali architetture e per funzioni obiettivo Booleane, il metodo della discesa del gradiente ha

un bias implicito verso rappresentazioni di grado basso.

Infine, consideriamo una strategia di addestramento con curriculum (CL) per imparare

parità di grado k su d bits di una stringa binaria. Dimostriamo che una scelta saggia di

esempi durante il training, che può comportare due o più distribuzioni prodotto, consente di

imparare le funzioni parità di grado k in tempo d O (1) con una rete completamente connessa

allenata con la discesa del gradiente stocastica. Mostriamo, inoltre, che per un’altra classe

di funzioni, le ‘Hamming mixtures’, le strategie con curriculum con un numero limitato di

distribuzioni prodotto non portano benefici.

Parole chiave: apprendimento statistico, limiti fondamentali, misure di complessità, modelli

a blocchi stocastici, sincronizzazione su grafi, reti neurali.
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1 Introduction

Data science is a rapidly evolving field concerned with extracting valuable information

from large and complex datasets. This challenge affects several areas of today’s data-driven

world. For instance, product recommendation systems detect user preferences by analyzing

past purchases, browsing behaviors, and demographic information to provide personalized

recommendations; similarly, financial pricing entails analyzing historical trends, supply and

demand data, and macroeconomic factors to predict commodity price changes.

Statistical inference is a fundamental concept in statistics that involves drawing conclusions

about the characteristics of an underlying probability distribution based on observations of

data. This process involves applying mathematical and statistical techniques to the observed

data to estimate the unknown parameters of the underlying distribution. Formally, one

considers a set of unknown variables {ξi }i=1,...,N and a set of observations (or data) {s j } j=1,..,M .

Data can consist of noisy observations of the variables themselves, or interactions of subsets

of variables, or they may contain indirect information about the variables. As examples, we

introduce two inference settings that will be relevant in this thesis.

Graphs Models. Graphs models are a powerful tool for modeling complex systems, such

as social networks or biological systems. The underlying structure is given by a graph

G , with n vertices and m edges. The vertices represent the different components of the

system, while the edges capture the relationships between them. In inference problems

on graphs, it is assumed that vertices are assigned unknown variables {ξi }i=1,...,n , that the

learner has to retrieve based on observations {s j } j=1,..,m on the edges. For example, in social

networks, the ξi variables can model the community cluster that each agent belongs to,

while the s j observations serve as indicators of whether two agents are friends or share

a common opinion. Overall, graphs models provide a framework for modeling complex

systems and performing inference on them. By leveraging the relationships between different

components of the system, one can gain insights into their behavior and predict future

outcomes with greater accuracy.

Supervised Learning. Supervised learning is a central approach in machine learning. It is

1



Chapter 1 Introduction

widely used in various applications, such as image classification, speech recognition, and

natural language processing. The goal is to learn a mapping between input and output

by observing pairs of examples (x , y ), where x is the input (or feature) vector and y is

the corresponding output (or label). The underlying assumption is that the relationship

between input and output can be modeled by a function belonging to a parametric family of

models { fθ }θ∈Θ. The key objective, thus, reduces to find the optimal parameters θ ∗ ∈Θ that

capture the relationship between the pairs of examples observed. In the statistical inference

framework, the optimal parameters θ ∗ represent the unknown variables that the learner

has to retrieve, based on the pairs of examples (x , y ), which represent the observations.

The optimal values θ ∗ are typically obtained by minimizing a loss function that quantifies

the difference between the model’s predictions and the actual output values observed. In

the machine learning community, the process of finding the θ ∗ is commonly referred to

training or learning. The training set is the set of observations used to train the model, and

the performance of the learned model is typically evaluated on a separate set of labeled

examples, called the test set. The performance of the model on the test set provides a measure

of how well the model generalizes to new, unseen data.

There are two main aspects about inference problems that are relevant for us:

1. Information-theoretic aspect. Do the available observations provide sufficient infor-

mation to recover the underlying variables?

2. Computational aspect. Can the recovery be carried out in an algorithmically efficient

way?

Although these two aspects are connected in certain ways (for instance, if recovery is information-

theoretically impossible, it is also impossible to do efficiently), they are fundamentally dif-

ferent in nature. From an information-theoretic point of view, the first question seeks to

understand whether a given task can be solved regardless of complexity or algorithmic

considerations. It is a question that lies at the intersection of statistics and information

theory. On the other hand, the second question concerns the feasibility of implementing the

algorithms used for inference in a reasonable amount of time, and, therefore, it falls in the

scopes of computer science and complexity theory. In the past decades, these two questions

were typically considered separately, as the number of variables to be estimated was usually

small and inference problems were not typically concerned with computational tractability.

However, with the recent increase in computational power and memory, it is now possible

to perform inference on problems with billions of parameters. As a result, it has become

increasingly important to consider both statistical and computational efficiency together.

This requires the development of algorithms that can scale to large data sets and complex

models while also being efficient in terms of computation time and memory usage.

This thesis aims to explore the information-theoretic and computational limits of modern

inference problems. We consider two selected types of problems:

2
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1. Block Models. These models belong to the set of graphs models introduced above and

they can model inference problems on social or biological populations, where one

tries to detect information about individuals based on their interactions;

2. Neural Networks. This family of models have gained immense popularity in recent

years due to their ability to model complex, nonlinear relationships between inputs

and outputs. We explore the effectiveness of neural networks at performing some

specific supervised learning tasks.

We will present and discuss these two classes separately in the next sections. Our goal is to

analyse the statistical and computational complexity of these problems from a mathematical

point of view. For this reason, we restrict our attention to stylized settings that make the

analysis tractable.

1.1 Block Models

Many datasets in modern applications can be represented as a graph of interacting agents.

For instance, this is the case in sociology (Goldenberg et al., 2010; Mitchell, 1974; Newman

and Park, 2003; Scott, 2002), epidemiology (Eames and Read, 2008; Morris, 1993), product

recommendation systems (Chen et al., 2013; Sahebi and Cohen, 2011; Zanin et al., 2008),

protein folding (Dokholyan et al., 2002; Rao and Caflisch, 2004), webpage sorting (Kim et al.,

2010; Kumar et al., 1999), and many others. A natural task of interest with such graphs is

understanding which agents are ‘similar’. Community detection refers to the problem of

finding similarities among vertices in a graph, based on measurements of local interactions,

and, as such, it is a central problem in the data science community. A popular stylized model

for studying community detection on random graphs is the Stochastic Block Model (SBM).

1.1.1 The Stochastic Block Model (SBM)

The history of the SBM goes back to the 80’s, when it appeared independently in differ-

ent scientific communities, with different names. The SBM terminology appeared in the

machine learning and statistics community (Holland et al., 1983), while in the theoreti-

cal computer science literature the model appeared under the name of ‘planted partition

model’ (Boppana, 1987; Bui et al., 1984) and in the mathematics literature it is typically

called the ‘inhomogeneous random graphs’ model (Bollobás et al., 2007).

In the SBM, a vector of community assignments X and a random graph G are drawn ac-

cording to a joint distribution. Firstly, each vertex is assigned to a group or "community"

based on a pre-determined probability distribution. Then, between each pair of vertices,

an edge is drawn with probability depending on the communities of its two end points,

independently of other edges. Community detection in the SBM consists of retrieving the

ground truth community assignment X , based on observation of the graph structure G

3
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Figure 1.1: Community detection in an SBM with 2 symmetric communities. The two
pictures represent the same graph, with random layout (left) and ForceAtlas layoutI(right).
We seek for an estimator that upon observation of the graph structure (left) retrieves the
planted clustering of the vertices (right).

(Figure 1.1). Because of its planted community structure and its simple definition, the SBM

represents a good benchmark to study community detection in a formal frame. On the other

hand, its fit to realistic data is not necessarily adequate, and several variations of the standard

SBM (e.g. edge labelled, overlapping communities) has been proposed to fill this gap.

Few natural questions arise: Which algorithms can recover the community assignments?

Do they recover the label of all vertices? What is the optimal fraction of vertices that can be

recovered? The answers depend on the parameters of the model. In the literature, exact

recovery refers to the problem of recovering the full vector of communities. Partial recovery

refers to the problem of recovering the assignments of a fraction of the vertices. Weak recovery

refers to the problem of detecting the community of a non-trival fraction of the vertices (i.e.

with accuracy better than guessing).

1.1.2 The SBM Entropy

In this thesis, we make progress on the study of the fundamental limits of weak recovery

in the simplest case of SBM with two symmetric communities in the sparse regime. In this

simplified SBM, the vector of communities X is drawn uniformly at random in {±1}n and an

n-vertex graph is drawn by connecting vertices having the same values in X with probability

a/n and vertices having different values in X with probability b /n , for some a , b ∈R+. We

focus on the information-theoretic limits: we are interested in understanding the optimal

error achievable by any algorithm, irrespective of its computational cost.

The question of whether it is possible (or not) to recover the communities with accuracy

IThe ForceAtlas layout algorithm used in Gephi works by simulating physical forces, where nodes repel each
other and edges attract nodes together.
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better than guessing, has been fully closed in the two-community symmetric SBM (Massoulié,

2014; Mossel et al., 2018). In particular, it has been shown that weak recovery is solvable if

and only if

(a − b )2

2(a + b )
> 1, (1.1)

establishing, thus, a sharp threshold phenomena. The quantity on the left hand side of (1.1)

is the signal-to-noise ratio (SNR), which quantify the “signal” of the community structure to

the “noise” of the random connections in the graph.

Rather than understanding whether weak recovery is possible (or not), we focus here on

a more detailed question. We want to characterize the optimal fraction of labels that can

be recovered by any algorithm, for given a , b in the limit of n →∞. In other words, we

want to quantify the amount of information that can be recovered about the communities at

any value of the SNR. Several measures of community signal in the graph can be used: the

optimal mean squared error, the optimal agreement, or the conditional entropy. All these

measures can be related to one another, and we focused on the conditional entropy (called

simply the SBM entropy), as it allows to use tools from information theory. The SBM entropy

is defined by the limit (if it exists):

H (a , b ) := lim
n→∞

1

n
H (X |G ), (1.2)

where H (X |G ) denotes the conditional entropy of X given G (see Appendix A.1 the definition

of conditional entropy). Informally, it measures how much uncertainty is left about the

communities after observing the graph.

In Chapter 2 we explain how the characterization of the SBM entropy can be reduced to

the computation of entropies on a tree-like graph (i.e. a graph without loops). These tree-

entropies can then be efficiently evaluated through belief propagation (BP) (see e.g. Zde-

borová and Krzakala, 2016). As a first step, we introduce a “survey” (or side information)ωε

that for each node reveals the correct label with probability 1−ε, and an erasure symbol

otherwise. Then, using an interpolation trick, we write the global entropy in (1.2) as an

integral of local entropies in the SBM model with survey. Few technical steps (see Chapter 2,

Section 2.4) allow to write (1.2) in terms of tree-entropies if the following holds:

lim
k→∞

H (σρ |σLk
,ωεTk

) = lim
k→∞

H (σρ |ωεTk
), (1.3)

where σρ ,σLk
are the communities of respectively the root and of the leaves at depth k

generated by a broadcasting process on a Poisson tree (see Section 2.4) andωεTk
is a survey

that reveals the label of each node with probability 1− ε. The property in (1.3) implies

that conditioned on the survey, the leaves at large depth are irrelevant for retrieving the

community of the root node. Thus, we name it boundary irrelevance (BI) property. We refer

to Chapter 2 for details, formal definitions and results.
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1.1.3 Synchronization Models with Survey and Boundary Irrelevance

Motivated by the relevance of the boundary irrelevance property in the characterization of

the SBM entropy, we further analyze it on other graphs models. In particular, on a graph with

n vertices, we assign a spin (i.e. a value in {±1}) to each vertex of the graph independently

at random. Then, for each edge of the graph we define the edge spin as the product of

the spins of its two endpoints, flipped with some probability δ. We assume that a survey

reveals the spins of a random fraction of the nodes. We denote X the vertex spins, Y the

edge spins andωε the survey (with ε being the fraction of non-revealed nodes). This model

is called synchronization on graphs with side-information; we refer to Section 2.1 for the

formal definition. This definition, or slight generalizations, can capture popular models,

such as broadcasting on trees (Evans et al., 2000), censored block models (Heimlicher et al.,

2012), stochastic block models.

Previous works (e.g. Abbe and Boix-Adserà, 2018; Abbe et al., 2018; Polyanskiy and Wu, 2018)

focused on understanding whether it is information-theoretically possible (or impossible) to

have a non-trivial reconstruction of the spins X based on the edge observations Y , depending

on the noise of the edge observations and on the graph topology. We consider a similar

problem, but with the addition of the survey. Specifically, we analyse whether the revelation

of some nodes variables, in addition to the edges observations, makes a difference in the

reconstructability of the X , compared to the setting where only the Y are observed. This

connects to analysing a boundary irrelevance property, similar to (1.3). We refer to Section 2.1

for definitions and results.

1.2 Neural Networks

The current growth of Machine Learning (ML) research is mainly driven by the success

of modern deep neural networks (DNNs). The history of artificial neural networks (ANNs)

is believed to have begun in the 40’s, when (McCulloch and Pitts, 1943) created the first

computational model for neural networks. In the subsequent years, several models inspired

by biological learning were introduced (Hebb, 1949; Ivakhnenko and Lapa, 1965; Rosenblatt,

1958). The raise of two major issues (the impossibility to describe the XOR function with

the perceptron and the lack of sufficient processing power of the computers of that time)

(Minsky and Papert, 1969) lead to a certain skepticism towards ANNs and a subsequent

stagnation of research. Interest in ANNs was recovered thanks to the formalization of the

backpropagation algorithm (Werbos, 1994), that allowed for the training of multi-layer

networks in practice, and to the increase in the availability of computing power, through the

use of GPUs and distributed computing. In (Fukushima, 1988), the first networks with weight-

sharing appeared. This led to the modern Convolutional Neural Networks (CNNs) (Ciresan

et al., 2011), that were shown to beat state-of-the-art performance in image classification

tasks. Between 2009 and 2011, new architectures such as Recurrent Neural Networks (RNNs)

and Long Short-Term Memory (LSTM) won several competitions in pattern recognition,
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Figure 1.2: Sum modulus-10 of MNIST digits. The inputs are images of 28× (28 ·5) pixels,
consisting of arrays of five MNIST digits. The label is given by the sum mod-10 of the values
of the digits, which is equal to 6 in this example.

handwriting recognition, traffic sign recognition, beating human performance. The rise of

DNNs marked the beginning of a new era in machine learning, revolutionizing everyday

technologies and transforming several fields such as computer vision, natural language

processing, product recommendation systems, and financial pricing.

While DNNs have achieved unprecedented accuracy and performance in various tasks, their

construction is largely based on trial-and-error heuristics and lacks of a theoretical frame-

work. In the absence of a proper theoretical framework, DNNs are often treated as black-box

algorithms, which can lead to a lack of reliability and efficiency in their application.This

motivated a vast research effort devoted to the theoretical understanding of the inner mech-

anisms that make neural networks work. Despite significant progresses, our understanding

is limited to fairly restricted settings and in most scenarios used in practice there are several

unanswered questions.

1.2.1 Boolean Tasks

While it has been known for a decade that neural networks perform well at image recognition

on standard datasets (e.g. on MNIST or CIFAR datasets), their performance on tasks that go

beyond classical image recognition is not completely understood. As an example, consider

the task pictured in Figure 1.2. The inputs are images of 28× (28 · 5) pixels, consisting of

arrays of five MNIST digits. The label is given by the sum modulus-10 of the values given by

the digits. The task for the learner is thus two-fold. Firstly, it has to recognize the MNIST

digits, and secondly, it has to learn the logical operation that combines the digits to produce

the label, i.e. the sum modulus 10. Another similar example is the Pointer Value Retrieval

(PVR), introduced in (Zhang et al., 2021) (Figure 1.3). In the PVR task, the inputs are arrays

of MNIST images. The labels are defined by the following procedure. The first digit on the

left defines the pointer, and its value indicates the position of a window of a given length,

say 2 in the example in Figure 1.3. The label is produced by applying some fixed function

(the ‘aggregation’ function) on this window. In order to learn the PVR task, the learner has to

first identify the MNIST digits, and secondly, it needs to recognize the logical component,

which consists of both the pointer rule and the aggregation function. The PVR benchmark is

introduced to investigate the trade-off between memorization and reasoning, by acting with

a distribution shift at testing (see Chapter 4 for further analysis of this task). Other examples
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Pointer Window Output

Aggregation function

Figure 1.3: Pointer-Value-Retrieval (PVR) task. The inputs are arrays of MNIST images.
To define the label: the first digit acts as a pointer, and its value indicates the position of
a window of a given length, say 2 in this example; The label is produced by applying an
‘aggregation’ function on this window.

of tasks with a logical or combinatorial component include, among others, algorithmic

datasets (Power et al., 2022) and visual reasoning (Johnson et al., 2017).

These tasks can be modeled by Boolean functions that operate on a symbolic representation

of the data. The class of Boolean functions includes any function that maps binary bit

vectors to real numbers. In the examples mentioned above, we can assign a bit vector to

each array of digits by replacing the MNIST images with the values of the corresponding

digits in binary alphabet. For instance, the digit ‘5’ can be replaced by ‘(0,1,0,1)’, and the

digit ‘9’ can be replaced by ‘(1,0,0,1)’. The logical components of the tasks can then be

defined by Boolean functions that act on these symbolic representations. To simplify the

connection to Boolean analysis, we use binary representations with elements in {±1} instead

of {0, 1}, as used in e.g. (O’Donnell, 2014). We refer to this mapping of images to binary bit

vectors as the "perception" task, and the logical map from binary bit vectors to labels as

the "reasoning" task. In this thesis, we assume that the perception is given (i.e. we assume

that the network has access to a symbolic representation of the data), and we focus on the

reasoning mapping. However, exploring the interplay between perception and reasoning is

an interesting direction for future work. We describe our stylized setting in the next Section.

1.2.2 Setting

We assume that the network observes samples of the form (x , f (x )), where x ∈ {±1}d is a

d -dimensional binary array and f : {±1}d →R is an unknown Boolean target function. We

assume that the x are drawn i.i.d. from a distributionDtrain. Our goal is to learn the target

function with a neural network trained by gradient descent methods.

Fully Connected Networks. Most of this thesis focuses on fully connected neural networks

(Figure 1.4). The standard feed-forward fully connected architecture is composed by L

layers of neurons, where layer 0 is named input layer, layer L is named output layer and
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Figure 1.4: Illustration of a fully connected architecture.

layers 1, ..., L − 1 are called hidden layers. Each layer l ∈ {0, ..., L} has Nl neurons, where

in our case N0 = d (the input dimension) and NL = 1 (the output dimension). A network

is defined by L weight matrices, denoted by W (l ) ∈ RNl×Nl−1 , for l = 1, ..., L , and L bias

vectors, denoted by b (l ) ∈RNl , for l = 1, ..., L . We denote the parameters of the network by

θ = (W (1), b (1), ..., W (L ), b (L )). For an input x , we denote by x (l ) = x (l )(θ ) the vector containing

the outputs of all neurons at layer l . x (l ) is defined from the outputs of neurons at previous

layers, in the following way:

x (0) = x (1.4)

x (l ) = σ⃗
�

W (l )x (l−1)+ b (l )
�

, l = 1, ..., L −1, (1.5)

x (L ) =W (L )x (L−1)+ b (L ), (1.6)

where by σ⃗ we denote the function that applies a fixed real functionσ :R→R component-

wise to the input. σ is called the activation function. Common choices of activation functions

include the Rectified Linear Unit (ReLU(x ) =max{0, x }), the sigmoid (σ(x ) = 1/(1+ e −x )) or

the squared function (σ(x ) = x 2). We denote by P the number of parameters in the network.

One well-known result is that neural networks are universal approximators, meaning that

given any target function f there exists a neural network with parameters θ ∗ that can approx-

imate f with high accuracy. Moreover, θ ∗ can be estimated from data, if enough samples are

available. The process of finding the parameters θ ∗ that can approximate the target function

accurately based on data is usually referred to as training. The dataset used for training is

called training set. The goal is to find parameters that minimize the training loss, which

measure the performance of the network on the training data:

θ ∗ ∈ argminθ
1

m

m
∑

s=1

L ( f ,θ , xs ), (1.7)

where m is the size of the training set and L is a loss function, which is assumed to be

differentiable almost everywhere. In this thesis, we will consider the following loss functions:

• Squared loss: L ( f ,θ , x ) = ( f (x )−NN(x ;θ ))2;

9
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• Hinge loss: L ( f ,θ , x ) =max{0, 1− f (x )NN(x ;θ )};

• Correlation loss: L ( f ,θ , x ) =− f (x )NN(x ;θ );

The problem defined in (1.7) is called Empirical Risk Minimization (ERM). Implementing

ERM is difficult for two main reasons: i) high dimensionality: the number of possible models

increases exponentially with the number of features, making it computationally hard to

search for the optimal model; ii) non-convex optimization: (1.7) is often non-convex and

there can be multiple local minima and saddles in the loss function, making it hard to find.

Gradient Descent Algorithms. The most popular algorithm used for training deep neural

networks is called Stochastic Gradient Descent (SGD). SGD is an iterative algorithm, that

starts from a random assignment of the network parameters, and at each step it computes

the gradients of the loss function, using a random subset of the training data (the mini-batch

or batch). It then updates the parameters following the direction of the negative gradient,

scaled by a learning rate. The learning rate controls the size of the step taken in each iteration,

and can be adjusted during training. The updates of SGD are thus defined as follows:

�

θ 0 ∼ P0

θ t+1 = θ t −γt
1
B

∑B
s=1∇θ t L ( f ,θ t , xs ), t ≤ T ,

(1.8)

where P0 is an initial distribution (usually assumed to be iid Gaussian, or uniform) from

which the initial parameters are sampled; γt is the learning rate; B is the batch size. When

the batch size corresponds to the size of the total training set, (5.1) is called Gradient Descent

(GD). In other words, the stochasticity of SGD is given by the random choice of the mini-batch

used to compute the gradients. We consider SGD with fresh batches, i.e. at each step, the

samples xs are drawn i.i.d. fromDtrain.

Furthermore, we consider a slight variation of SGD, called Noisy-SGD, where at each step

some random noise is injected in the gradients. This variation is commonly considered in

statistical query algorithms (Blum et al., 1994; Kearns, 1998) and GD learning (Abbe, Kamath,

et al., 2021; Abbe and Sandon, 2020b; Malach et al., 2021). The Noisy-SGD algorithm is

defined by the following iterations:

(

θ 0 ∼ P0

θ t+1 = θ t −γt

�
�

1
B

∑B
s=1∇θ t L ( f ,θ t , xs )

�

A
+Z t

�

, t ≤ T ,
(1.9)

where Z t are iidN (0,τ2I), for some noise level τ, and are independent from other variables,

A is the gradient range and by [.]A we mean that whenever the argument is exceeding A (resp.

−A), it is rounded to A (resp. −A), and the other variables are as defined before. We call A/τ

the gradient precision. We will assume the gradient precision to be polynomially bounded in

the input dimension. When the batch size corresponds to the size of the training set, (1.9) is

called Noisy-GD.
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Generalization Error. While the performance on the training set is used to select the model

θ ∗, the goal in deep learning is to build a model that can make accurate predictions on new

data, and not just the data it was trained on. The ability of the model to generalize to new,

unseen data is measured by the generalization error. This is defined as:

gen( f ,θ T ) :=Ex∼Dtest

�

L ( f ,θ T , x )
�

, (1.10)

whereDtest is the test distribution and θ T are the network parameters obtained after training.

In words, the generalization error is the expected error of a new data point sampled from a

distribution, the test distribution, that is assumed to approximate well reality.

We will consider two settings:

1. Matched setting: Dtrain =Dtest. This is the classical learning setting, where it is asked

whether the network can generalize well on a new data point that is similar to the data

used for training. We will consider this setting in Chapter 3.

2. Mismatched setting: Dtrain ̸= Dtest. In this setting, it is asked whether the network

can generalize on data points that are not necessarily similar to the ones observed

during training. In Chapter 4, we will consider a setting where the support of the train

distribution is a subset of the support of the test distribution, i.e. some samples are

withhold during training (holdout setting). This can be used to access the trade-off

between memorization and reasoning in neural networks.

1.2.3 Complexity Measures

In this thesis, we will narrow our focus to a specific question:

Can we characterize the complexity measures that come into play when learning

with (S)GD on neural networks?

To analyze the complexity of tasks in this specific algorithmic framework, we seek to identify

measures that resemble the VC-dimension (Vapnik, 1999) in the PAC learning framework

or the statistical dimension (Blum et al., 2003) in the statistical query (SQ) framework. In

particular, we aim to have measures that control the following quantities:

• Statistical complexity: the total number of samples used during training. In our setting

of SGD with fresh batches, this is given by B ·T , i.e. the product between the number

of samples used at each step (the batch size) and total number of steps.

• Computational complexity: the total number of computations performed during

training. For SGD, this is controlled by the total number of gradients that are computed

during training, which is given by P ·B ·T , i.e. the product of the number of parameters

11
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in the network, the batch size, and the total number of steps. On the other hand, Noisy-

GD can be seen as a statistical query (SQ) algorithmII, and its complexity depends on

the number of queries made (P ·T ) and the desired accuracy of each query (1/τ).

• Generalization performance: the generalization error achieved after training, as de-

fined in (1.10).

In this thesis, we primarily concentrate on the measures for the computational complexity

and generalization performance of neural networks. Below, we provide a list of the measures

that we have considered.

1.2.4 Complexity Measures in the Matched Setting

In the following, we denoteD :=Dtrain =Dtest.

Initial Alignment (INAL). In Chapter 3, we pose the following question:

Is it necessary for a neural network to have some initial alignment with a target

function in order for Gradient Descent to be effective over a reasonable time

frame? Or could a sufficiently large neural network discover its own correlations

with the target even if it is not well-designed from the outset?

To answer this question, and to quantify the answer, we introduce the notion of Initial

Alignment (INAL) between a neural network and a target function f . The INAL is defined as

the maximum average correlation between f and any neuron in the network:

INAL( f , NN) := max
v∈VNN

Eθ 0∼P0

�

Ex∼D [ f (x )NN(v )(x ;θ 0)]2
�

, (1.11)

where VNN denotes the set of neurons in the network, and NN(v )(x ;θ 0) denotes the post-

activation output of neuron v at initialization. While (1.11) is applicable to arbitrary input

distributions and settings, in the theoretical results in Section 3.1 we focus on the restricted

setting of Boolean target functions with inputs uniformly distributed on the hypercube (i.e.

D =Unif{±1}d , with d being the input dimension). We prove that if INAL( f , NN) is small,

which means that at initialization no neuron in the network has sufficient correlation with

the target task, then the noisy-GD algorithm (as defined in (1.9)) will not be able to learn f

efficiently (Theorem 4). This result concerns the weakest form of learning: we show that if

the INAL is small, the network will not be able to achieve accuracy better than guessing with

f . This implies that even when the gradients are non-negligible and all weights undergo

IIStatistical query (SQ) algorithms are algorithms that access data through statistical queries rather than raw
data access Kearns, 1998
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movement during training, the GD trajectory will remain within regions of the parameter

space that do not exhibit correlation with the target function.

Our proof technique holds for any fully connected networks with i.i.d. Gaussian initialization,

although our experiments suggest that the INAL may be meaningful for more general archi-

tectures and datasets. The Boolean setting allows to make extensive use of the Fourier-Walsh

transform (see Section 3.1), which simplifies the analysis, while still capturing meaningful

phenomena. We nonetheless expect that the footprints of the proofs derived in Section 3.1

will apply to inputs that are i.i.d. Gaussians or spherical, using different basis than the

Fourier-Walsh one. The proof consists of showing that learning a target with low INAL im-

plies learning a function class (the orbit of f ) with large statistical dimension (Blum et al.,

1994), which is hard for any statistical query (SQ) algorithm (Blum et al., 1994; Kearns, 1998),

and in particular for GD. the proof strategy described above holds for any fully connected

architectures of any width/depth, and does not require tracking the dynamics of GD, as it

relies on SQ arguments. We refer to Section 3.1 for formal definitions and results.

Initial Gradient Alignment. The proof strategy described above presents three main lim-

itations. 1) The argument is only applicable to uniform Boolean inputs. 2) The bound is

independent of the network’s initialization scale and architecture, and depends solely on the

complexity of the target task’s orbit and the network’s number of parameters (rather than its

initialization scale, depth, or width). 3) The argument does not hold for certain ‘extreme’

functions, such as the parity function on all bits, also known as the full parity, defined as

χ[d ](x ) :=
∏d

i=1 xi , with x ∼ {±1}d . In Section 3.2, we address these points by narrowing our

analysis to ReLU networks of finite depth trained by noisy-GD on the correlation loss. We

consider the alignment between the target and the initial gradients, instead of the network’s

neurons, defined by:

G f (θ
0) :=Ex∼D

�

f (x )∇θ 0 NN(x ;θ 0)
�

. (1.12)

For i.i.d. Gaussian initialization, we provide a lower bound to the generalization error based

on the ℓ2 norm of G f (θ 0), without relying on SQ arguments (Theorem 6). The proof holds

for many input distributions, including Gaussian, spherical, non-uniform Boolean distribu-

tions. Moreover, the bound depends on the depth of the network and on the initialization

scale. As an application, we show that all high degree Boolean functions (including the full

parities) are not learnable by a 2-layers fully-connected ReLU network with i.i.d Gaussian

initialization trained with noisy-GD on the correlation loss (Theorem 5). Furthermore, for

non-Gaussian initializations, we prove a lower bound that depends on the ℓ4 norm of G f (θ 0)
(Proposition 7). This is valid for all initial distributions that satisfy a technical assumption,

including multivariate Gaussian, uniform. We refer to Section 3.2 for further details.
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Noise Stability (Stab). We further consider a classical Boolean measure: namely the noise-

stability of the target function (O’Donnell, 2014). For a Boolean function f , for a parameter

δ ∈ [0, 1], the Stabδ( f ) is defined as (see Def. 14):

Stabδ( f ) :=Ex ,y

�

f (x ) · f (y )
�

, (1.13)

where x ∼Unif{±1}d and y is obtained from x by flipping each coordinate independently

with probability δ. Stabδ( f ) is a measure of how stable f is to a uniform perturbation of

the input coordinates. In Section 3.3, we show that noisy-GD cannot learn tasks that are

very sensitive to perturbations of the input coordinates, proving thus a lower bound on the

generalization error depending on Stabδ( f ) (Theorem 8). This supports a conjecture made

in (Zhang et al., 2021). Our proof holds for any fully connected networks with initialization

that is invariant to permutation of the input neurons.

1.2.5 Complexity Measures in the Mis-Matched Setting

Boolean Influence (Inf ). The Boolean influence comes into play in the mismatched setting,

i.e. when train and test distribution are not equal. Our motivating question is the following:

If we conceal certain samples during the training process, how does this affect the

generalization ability of GD? Can GD effectively generalize to unseen domains?

Is there a way to quantify its performance in doing so?

We consider a specific distribution-shift setting, named canonical holdout, defined as follows.

During training one coordinate of the input (say xk ) is frozen to+1 and the other coordinates

are sampled uniformly and independently in {±1}. In order words, at training the algorithm

observes only half of the hypercube, and it never observes samples where xk = −1. The

network is then tested on the full uniform distribution on the hypercube. Thus, Dtrain is

the uniform distribution on half of the hypercube (with xk = 1) andDtest =Unif{±1}d . We

consider training a neural network with SGD on the squared loss. We observe that the

generalisation error admits a tight characterisation in terms of another classical Boolean

measure: the Boolean influence of coordinate k on f (Infk ( f )). Intuitively, Infk ( f )measures

the importance of coordinate k in f . For binary classification tasks f : {±1}d →{±1}, Infk ( f )
is defined as the probability that flipping xk changes the output of f . For real-valued f , Infk

is defined in terms of the Fourier-Walsh transform of f (see Def. 20). We prove the Boolean

influence characterisation for linear models (Theorem 9) and we support it experimentally

on other architectures, such as MLPs and Transformers (Section 4.5.2). In particular, this

puts forward the hypothesis that for such architectures and for learning logical functions,

GD tends to have an implicit bias towards low-degree representations. Indeed, we show that

the Boolean influence arises when the network learns the lowest degree interpolator of the

training data (Lemma 2). The answer to the question above seems to be thus negative: at

least in the setting and for the architectures considered, GD seems to not be able to learn
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the correct task, but instead it favors the low degree representation. An interesting future

direction is the following: can we promote other forms of implicit bias (e.g., bias towards

symmetrical solutions or minimum description length (MDL) interpolator) that enables to

achieve lower generalization error than the Boolean influence?

1.2.6 Curriculum Learning for Parities

The measures mentioned in Section 1.2.4 enable a good understanding of the target functions

that are hard to learn through GD on fully connected networks, in the standard matched

setting with uniform inputs.

In Chapter 5 we focus on a subset of functions that are known to pose computational barriers,

namely the k -parities over d bits of a binary string. This class includes all functions

χS (x ) :=
∏

i∈S
xi , x ∈ {±1}d , (1.14)

such that S ⊆ [d ], |S |= k . (Abbe and Sandon, 2020a) showed that with uniform inputs the

Noisy-SGD algorithm (as defined in (1.9)) with large batch size and low gradient precision

cannot learn k -parities in less than dΩ(k ) time. However, if we look at different product

distributions (that are not the uniform distribution), learning parities is actually easy, as

shown in (Daniely and Malach, 2020; Malach et al., 2021). For instance, if the inputs are

generated such that xi
iid∼ Rad(p ) III for i = 1, ..., d , with p = 1−1/k , computing correlations

with each bit will recover the parity in time linear in d and polynomial in k . However, it

turns out (see experiments in Section 5.3.2) that training on examples sampled from a biased

measure alone is not sufficient to learn the parity under the unbiased measure, with SGD

on fully connected networks. This is because the training set sampled under Rad(p )⊗d has

essentially no examples with Hamming weight IV close to d /2, due to concentration of

Hamming weight. Therefore, it is not reasonable to expect a general algorithm like gradient

descent on a fully connected network (which does not know that the target function is a

parity) to learn the value of the function on such inputs. However, training on the biased

measure can help us identify the support of the parity faster than if we trained under the

uniform distribution.

We consider a training strategy that consists of generating and presenting samples in a

meaningful order: We initially train on inputs sampled from Rad(p )⊗d , with p close to 1,

then we move (either gradually or by sharp steps) towards the unbiased distribution. We

call this a Curriculum Learning (CL) strategy for learning k -parities. We show that with this

training strategy, we can learn a target k -parity with a computational cost of of d O (1) with a

fully connected network trained with SGD on the hinge loss or on the covariance loss (see

Def. 25). Our results are valid for any (even) k and d , thus for large k and d our bound is

III xi ∼Rad(p ) if P(xi = 1) = 1−P(xi =−1) = p .
IVThe Hamming weight of x ∈ {±1}d is H (x ) =

∑d
i=11(xi = 1).
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below the dΩ(k ) lower bound for bounded gradient precision models under the uniform

distribution.

Furthermore, we show that for another class of functions - namely the ‘Hamming mixtures’ -

CL strategies involving a bounded number of product distributions are not beneficial, while

we conjecture that CL with unbounded many product distributions can learn this class

efficiently.

1.3 Outline of the Thesis

This thesis is divided into two parts.

Part I concerns the block models. In Chapter 2 we introduce the property of boundary

irrelevance in spin synchronization models, we present our results on tree- graphs and we

show how such property can be used to characterize the SBM entropy. Part of Chapter 2 is

based on (Abbe, Cornacchia, et al., 2021).

Part II concerns neural networks. In Chapter 3, we introduce and analyse the complexity

measures that come into play in the matched setting (i.e. when Dtrain = Dtest): the Initial

Alignment, the Initial Gradient Alignment, and the Noise Stability. We show how the general-

ization error achieved after training with noisy-GD on neural networks can be lower bounded

in terms of these measures. This Chapter is based on (Abbe, Cornacchia, et al., 2022), part

of (Abbe, Bengio, et al., 2022), and on a work in preparation (Abbe and Cornacchia, 2023). In

Chapter 4, we analyse the interplay between the Boolean influence and the generalization

error in a specific mis-matched setting (i.e. when Dtrain ≠Dtest). This Chapter is based on

part of (Abbe, Bengio, et al., 2022). In Chapter 5 we analyse a ‘curriculum learning’ strategy

for learning k -parities. This Chapter is based on (Cornacchia and Mossel, 2023).
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2 Block Models with Side Information

2.1 Spin Synchronization on Graphs with Side-Information

Spin synchronization models have been considered in several works, such as (Abbe and

Boix-Adserà, 2018; Abbe et al., 2018; Polyanskiy and Wu, 2018). Their attractiveness is in part

motivated by their ability to capture crucial models such as broadcasting on trees (Evans

et al., 2000), stochastic block models (Abbe, 2017), censored block models (Heimlicher et al.,

2012). Here, we consider a slight variant of the classical spin synchronization models where

some side-information about the vertex variables is available.

Definition 1 (Spin Synchronization on Graphs with Side-Information). Let G = ([n ], E ) be a

graph with n vertices. Let X1, ..., Xn
i i d∼ Rad(1/2)I be n independent spins, laying on the vertices

of the graph. For every edge u v ∈ E , we observe Yu v = Xu Xv Zu v , where Zu v
i i d∼ Rad(δ), for

someδ positive. In addition to the edge observations YE , we consider independent observations

on the vertices. For every vertex v ∈ [n ], letωεv = Xv , with probability 1−ε, andωεv = ∗with

probability ε.

We callωε BEC side-information, where BEC stands for binary erasure channel (notice that

ωεv = BECε(Xv ), with ε being the erasure probabilityII). This is to distinguish our setting

from settings with BSC side-information, considered for instance in (Mossel and Xu, 2015;

Rebeschini and van Handel, 2015), where for every vertex v , a noisy version of Xv is observed.

In the following we will consider BEC side-information, which we will call side-information

or survey, for brevity. We call (X ,ωε, Y ) a synchronization instance with survey on G .

Previous works (e.g. Abbe and Boix-Adserà, 2018; Abbe et al., 2018; Polyanskiy and Wu, 2018)

focused on understanding whether it is information-theoretically possible (or impossible)

to have a non-trivial reconstruction of the spins X based on the edge observations YE ,

depending e.g. on the noise of the edge observations and on the graph topology. Specifically,

Iz ∼Rad(p ) if P(z = 1) = 1−P(z =−1) = p .
IIWe refer to Appendix A.1 for the definition of such channel and for background on information theory.
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a non-trivial reconstruction of the spins is possible when the mutual informationIII between

the spins of two vertices u , v ∈ [n ] at distant sites, conditioned on YE , i.e.

I (Xu ; Xv |YE ), (2.1)

is non-vanishing as their distance and n grow. In this case, we say that we are in the reconstruc-

tion regime. On the other hand, if (2.1) is vanishing with n , i.e. if the YE are asymptotically

uninformative of X , we say that we are in the non-reconstruction regime.

We consider a similar problem to the above, but with the addition of the side-information

ωε. Specifically, we analyse whether the revelation of some nodes variables, in addition to

the edges observations, makes a difference in the reconstructability of the X , compared to

the setting where only the YE are observed. In other words, we consider the quantity

I (Xu ; Xv |ωε, YE ) (2.2)

and we compare it with (2.1). We analyse (2.2) in specific settings. Equivalently to 2.1 and 2.2,

one can consider the mutual-information between the spin of an arbitrary vertex o and the

spins of all vertices at large distance from o , as we do in Section 2.2.

As mentioned, several inference problems on graphs can be viewed as special cases of spin

synchronization models. As examples, we define two models that are of particular interest

for us: the stochastic block model (SBM) and the broadcasting on trees (BOT) model.

Example 1 (Stochastic Block Model (SBM)). We define the SBM with two symmetric com-

munities. Let n be a positive integer (the number of vertices). The pair (X ,G ) is drawn under

SBM(n , qin, qout) if X is an n-dimensional random vector with i.i.d. components distributed

under Rad(1/2), and G is an n-vertex simple graph where vertices i and j are connected

with probability qin if X i = X j and with probability qout if X i ̸= X j , independently of other

pairs of vertices. Community recovery refers to the problem of detecting the vertex assign-

ments X based on observation of the graph structure G . This can be related to the model

in Definition 1 by replacing the edge observations YE by indicators of the edges in G (e.g.

Yu v = (−1)1−1(u v∈G ))IV. One can also add a survey that reveals the communities of a fraction

of the vertices, as done in e.g. (Kanade et al., 2014).

Example 2 (Broadcasting on Trees (BOT)). Let T be a rooted tree. Letσ0 ∼Rad(1/2) be the

root bit and assume that it is broadcast through each edge independently with flip probability

η. Let σt be the leaves bits at depth t , and σ≤t be the set of vertex bits at depth ≤ t from

the root. Letωε≤t be the output of a “survey” or a “side-information” that reveals each vertex

of the tree until depth t (excluding the root) independently with prob 1− ε. This model is

equivalent to the one in Definition 1, in the sense that for appropriate δ and η, and for any

t , I (X0; X t |YE ,ωε) = I (σ0;σt |ωε) (see for instance Proposition 2.1 in Abbe and Boix-Adserà,

IIISee Appendix A.1 for the definition of mutual information.
IVIn this case the channelP(Yu v |Xu ·Xv ) is not simply of the type Xu Xv Zu v , but one can extend Def. 1 to include

more general edges interactions.
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2019).

The presence of side-information in graph inference problems is not novel and has several

motivations. For example, (Kanade et al., 2014) considers the so-called labeled stochastic

block model, where the true cluster assignments of some nodes variables are available. There,

the presence of side information breaks the symmetry of the unlabeled SBM and, in some

regimes, it can affect the detectability thresholds and the fraction of nodes that are correctly

clustered. Also, (Mossel and Xu, 2015) introduces a local belief propagation algorithm

for the binary symmetric SBM with BSC side-information and proves that it has optimal

performance in some regimes (specifically for either very small or very large SNR, or for

very accurate side-information). Moreover, (Alaoui and Montanari, 2019) used the BEC side-

information for proving the non-existence of an information-computational gap in amenable

graphs, and the existence of such a gap in regular trees. From a slightly different perspective,

(Rebeschini and van Handel, 2015) analyses the spatial mixing property (i.e. whether the

correlation between spins at distant sites is vanishing or not) and the spatial conditionally

mixing property (that is the mixing property conditioned on some side-information) of

Markov random fields on two dimensional lattices.

2.2 Boundary Irrelevance

We focus on two properties of spin synchronization models with side-information. To

illustrate them, let us fix some notation. For a vertex o ∈ [n ], we denote by Bn (o ) = {u ∈
[n ] : dG (o , u )≤ n}, the set of vertices at distance at most n from o in G (where the distance

between two vertices is the length of the shortest paths between them), and by ∂Bn (o ) the

set of vertices at distance exactly n from o . For (X ,ωε, Y ) a synchronization instance with

survey, we consider the following two properties:

1. Boundary Irrelevance in the Non-Reconstruction Regime (BIN):

If lim
n→∞

I (Xo ; X∂Bn (o )
|YBn (o )) = 0 =⇒ lim

n→∞
I (Xo ; X∂Bn (o )

|YBn (o ),ω
ε
Bn (o )
) = 0, ∀ε ∈ [0, 1],

namely a synchronization instance has the (BIN) property if in the standard non-

reconstruction regime, the boundary of Bn (o ) gives no information about the label of

o also in our setting with BEC survey.

2. Boundary Irrelevance in General Regime (BI):

lim
n→∞

I (Xo ; X∂Bn (o )
|YBn (o ),ω

ε
Bn (o )
) = 0, ∀ε ∈ [0, 1),

i.e. H (Xo |X∂Bn (o )
, YBn (o ),ω

ε
Bn (o )
) ∼ H (Xo |YBn (o ),ω

ε
Bn (o )
) in every regime (regardless of

the value of the edges noise δ).
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Note that the (BI) is a much stronger property that the (BIN). In particular, taking the limit

ε→ 1−, the (BI) implies that revealing an (arbitrarily) small fraction of vertex labels gives the

same information about the bit of vertex o , as revealing the whole boundary labels at large

distance, even in the reconstruction regime.

The rest of this Chapter is structured as follows:

1. In Section 2.3, we show that the (BIN) holds for any tree-like graph.

2. In Section 2.3.1 we show that the (BI) does not hold for a particular type of trees, i.e.

the “stringy trees”.

3. In Section 2.4 we explain how the (BI) can be applied to characterize the entropy of

the stochastic block model (SBM) (see below for definition and context).

We Conjecture that the (BIN) holds for any graph. Some related thoughts will be discussed

in Section 2.5.

Conjecture 1. For every binary synchronization instance with side-information on a general

graph G , the (BIN) holds.

Furthermore, the (BI) has been shown to hold on regular and Poisson trees V (Yu and Polyan-

skiy, 2022). In particular, it has been shown that the fixed points of the belief propagation (BP)

recursion in the setting with survey only and in the setting with survey and leaves coincide.

In particular, the two settings with survey only and with survey and leaves satisfy the same

BP recursion equation, but they have different initialization (corresponding to different

information at depth exactly t ). In Section 2.4 we explain connection to this property and

the SBM entropy.

2.3 Trees

Firstly, we show that the (BIN) holds for every trees. The result is a direct consequence of the

following proposition.

Proposition 1. Let (X ,ωε, Y ) be a synchronization instance with survey on a tree T, rooted

at 0. Let X t denote the spins of all vertices at depth t . Then, for every ε ∈ [0,1] and for every

t ∈N, I (X0; X t |Y ,ωε)≤ I (X0; X t |Y ).

The proof of Proposition 1 is in Appendix A.2.

Corollary 1. For every binary synchronization instance with side-information on a tree, the

(BIN) holds.
VA Poisson tree, or Galton-Watson tree with Poisson offspring, is a random tree where the offspring of each

node is distributed as Poisson(d ), for some d .
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Figure 2.1: Illustration of a ‘stringy tree’.

2.3.1 Stringy Trees.

On the other hand, the (BI) is in general not true for every trees. We show that it does not

hold for a specific type of trees: the “stringy-trees”. A stringy tree consists of a root with d t

independent paths from it, each of length t (see Figure 2.1). Consider a broadcasting process

on a stringy-tree from the root bit to the leaves at depth t . The (BI) would hold if the condi-

tional distribution of the root bit given the leaves at depth t and the side-information was

asymptotically equal to the conditional distribution of the root given the side-information

only. In this setting, computing these marginal distributions is feasible since it requires only

one step of Bayes rule (or belief propagation). In fact, each branch i gives an independent

belief that is the output of a BSC channel VI of flip probability 1
2 −

1
2 (1−2η)Ti , where Ti is a

random variable defined as follows: In the survey-only setting, Ti denotes the depth of the

first surveyed node in branch i if above depth t , and Ti =∞ if the first surveyed node is

below depth t ; In the survey and leaves setting, Ti denotes the minimum between t and the

depth of the first surveyed node. Recalling Example 2, we denote by η the probability that

two adjacent vertices have different spins. We get the following Theorem, which implies that

if d (1−2η)2 > 1, then there exists some ε ∈ [0, 1) for which boundary nodes conditioned on

surveyed nodes bring non-negligible information for reconstructing the root bit, hence the

(BI) does not hold.

Proposition 2. Let (X ,ωε, Y ) be a synchronization instance on a stringy tree with d t branches

and flip probability η. Then,

lim
t→∞

I (X0; X t |Y ,ωε)

(

= 0 if εd (1−2η)2 < 1,

> 0 if εd (1−2η)2 ≥ 1.
(2.3)

The proof of Proposition 2 is in Appendix A.3.

VIFor X ∈ {±1}, BSCδ(X ) := X · Zδ, where Zδ ∼ Rad(1−δ) and Zδ is independent of X . We call δ the “flip
probability”.
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Corollary 2. For some synchronization instances with survey on stringy trees, the (BI) does

not hold.

2.4 Stochastic Block Model Entropy

Background. Over the last decade, several works have established a precise picture for the

statistical and algorithmic behavior of the stochastic block model (see an account in Abbe,

2017). In particular, the questions of weak and exact recovery, i.e., whether it is possible

(or not) to recover the communities in the extremal cases of weak and exact accuracy, have

been fully closed in the two-community symmetric SBM by establishing sharp threshold

phenomena in terms of appropriate signal-to-noise (SNR) ratios (Abbe et al., 2016; Massoulié,

2014; Mossel et al., 2015, 2018). Yet, the more nuanced question of proving how much

information or agreement can be recovered about the communities at any given value of the

SNR has remained open for several years even in this simplest case.

More specifically, for two symmetric communities and in the sparse regime, the expression

of the limiting entropy of the SBM has been characterizedVII at all SNR for the special case

of disassortative communities (i.e., communities that connect more outside than inside)

in (Coja-Oghlan et al., 2017). The problem for assortative communities but in the denser

regime, where the vertex degrees diverge while maintaining a finite SNR, has been closed

in (Deshpande et al., 2016). For the classical case of assortative communities and in the

sparse regime, significant progress has been made in (Kanade et al., 2014; Mossel et al., 2016;

Mossel and Xu, 2015). The expression of the optimal agreement (rather than the entropy)

has been settled in these works for SNR large enough, and is related to the problem of robust

reconstruction on a tree (Mossel et al., 2016). The reduction to the problem of boundary

irrelevance on trees, discussed below, has been used to characterize the SBM entropy for

all SNR outside the interval (1,3.513) in (Abbe, Cornacchia, et al., 2021), and to close the

problem for all SNR in (Yu and Polyanskiy, 2022).

The SBM Entropy. Recall, the SBM model defined in Example 1. In particular, in the

symmetric SBM with two communities in the sparse regime, a random variable X is drawn

uniformly at random in {±1}n and an n-vertex graph G is drawn by connecting vertices

having same (resp. different) values in X with probability a/n (resp. b /n).

The SBM mutual information is defined by the limit (if it exists)

I (a , b ) := lim
n→∞

1

n
I (X ;G ), (2.4)

where I denotes the mutual information (see Appendix A.1). Note that establishing the

VIICharacterizing the limit does not mean obtaining an explicit expression; it refers to an implicit n-independent
expression relying on integrals and fixed point equations for the quantities of interest in all of the references
discussed here.
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existence of this limit is nontrivial. This was proved in (“Conditional Random Fields, Planted

Constraint Satisfaction, and Entropy Concentration”, 2015) for the case of a < b , the same

case for which the value of the limit has more recently been established (Coja-Oghlan et

al., 2017). Note also that due to the chain rule I (X ;G ) =H (X )−H (X |G ), the SBM mutual

information is the complement of the SBM conditional entropy (called simply the SBM

entropy):

H (a , b ) := lim
n→∞

1

n
H (X |G ). (2.5)

Informally, the SBM mutual information measures how much information can be recovered

about the communities after observing the graph, and equivalently, the SBM entropy mea-

sures how much uncertainty is left about the communities after observing the graph. More

formally, it quantifies the average number of bits needed to represent the communities after

observing the graph.

Note that one may use other measures on the communities signal given the graph, such

as the optimal (normalized) mean square error of reconstructing the n ×n rank-2 block

matrix (with a/n in the n/2 × n/2 diagonal blocks and b /n in the off diagonal blocks),

or the optimal (normalized) agreement (Hamming distance) of reconstructing X up to a

community relabelling. These can be explicitly related to each other in the tree models

discussed next, and require bounds in the SBM context; see for instance (Deshpande et al.,

2016). The conditional entropy allows however for a direct reduction from the SBM to the

tree model with side information, as discussed below.

The BOTS Entropy. Consider the problem of broadcasting on a tree with side information

(BOTS), defined in Example 2. This can be defined on general trees and with general side

information, but consider for simplicity the case of regular trees (where each vertex has

exactly d descendants) and erasure side information. In this model, a random bit is attached

to the root of the tree and broadcasted down the tree by flipping its value independently

with probability δ on each edge (for convenience we call θ = 1−2δ). We denote byσρ the

root bit, byσLk
the d k -dimensional vector of the leaf bits at generation k , and byωεTk

the

side information up to depth k : these are the vertices labelled that are revealed in the tree

(besides the root) independently with probability 1−ε. We call this side information the

“survey”. Note that this is the type of side information used in our connection between BOTS

and SBM entropies, but other types of side information are of independent interest.

We are now interested in two quantities:

1. the limiting entropy of the root bit after observing the leaf bits and the survey, i.e.VIII,

h̄ (d ,θ ,ε) := lim
k→∞

H (σρ |σLk
,ωεTk

),

VIIIIn these tree models, the limits can be proved to always exist.
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2. the same quantity without the leaf bits being observed, i.e.,

h (d ,θ ,ε) := lim
k→∞

H (σρ |ωεTk
).

We now give a rather direct method to express the SBM entropy in terms of BOTS entropies.

SBM to BOTS Entropy Reduction. The relation obtained between the SBM and BOTS

conditional entropy is as follows: if for some range of parameters d ,θ , we can establish that

h = h̄ , ∀ε ∈ (0, 1),

i.e., if the (BI) holds, then we can characterizeH as an integral of h̄ using the parameter

correspondence d = (a + b )/2 and θ = a−b
a+b (see Theorem 1).

Our starting point to such a reduction is an area-theorem or interpolation trick that is

commonly used in coding theory (T. Richardson and R. Urbanke, 2001) and related statistical

physics literature (Mézard and Montanari, 2009).

The idea is to express the entropy in the SBM H (X |G ) as the integral

1

n
H (X |G ) =

∫ 1

0

1

n

∂

∂ε
H (X |G ,ωε)dε, (2.6)

where, similarly as before,ωε is an erasure survey that reveals the community of each vertex

in X independently with probability 1− ε. We then use the fact that 1
n
∂
∂ε

H (X |G ,ωε) =
H (X1|G ,ωε∼1), where 1 is an arbitrary vertex in the graph andωε∼1 denotes the erasure survey

on all vertices excluding vertex 1. Since conditioning reduces entropy, one can upper bound

H (X1|G ,ωε∼1) by considering only the information in the vertex 1 neighborhood, and due to

the local tree-like topology of SBMs, this gives an upper bound with the BOTS entropy without

leaf information. Moreover, one can add the leaf information in the conditioning to cut-off

the graph beyond a local neighborhood, using the MarkovianityIX of the model, obtaining as

well a lower bound from the BOTS entropy but this time with the leaf information, cf. (A.32)

in Appendix A.4.

Different kind of reductions from SBMs to tree models have long been known and leveraged

in the SBM e.g. in (Alaoui and Montanari, 2019; Coja-Oghlan et al., 2017; Mossel et al., 2016).

For our characterization to hold, we need to establish h = h̄ .

IXStrict Markovanity does not hold in the SBM due to the weak effect of non-edges, and this requires a technical
lemma; see proof of Theorem 1. This technicality can also be avoided by considering the related Censored Block
Model (CBM), rather than the SBM, for which strict Markovianity holds.
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Uniqueness of BP Fixed Point for BOTS. Establishing h = h̄ is equivalent to establishing

that the BOTS associated distributional fixed point equation (known as BP fixed point) has a

unique solution. This automatically has several implications.

First, this establishes the desired “Boundary Irrelevance” (BI) property for BEC survey, i.e.,

h = h̄ :

lim
k→∞

H (σρ |σLk
,ωεTk

) = lim
k→∞

H (σρ |ωεTk
). (2.7)

This implies

lim
ε→1

lim
k→∞

H (σρ |ωεTk
) = lim

k→∞
H (σρ |σLk

) . (2.8)

Indeed, one only needs to notice that limε→1 limk→∞H (σρ |σLk
,ωεTk

) = supε,k H (σρ |σLk
,ωεTk

)
and that for every k the latter quantity is continuous in ε ∈ [0, 1] including at the boundary.

Further, the presence of the survey allows to convert the absence of leaf information into the

presence of noisy leaf information, thereby obtaining the robust reconstruction property in

the presence and in the absence of the survey (Mossel et al., 2016).

Property (2.8) is also known in the SBM literature as the condition for “optimality of local

algorithms”, and was investigated in (Kanade et al., 2014; Mossel and Xu, 2015). These works

build on the crucial contribution of (Mossel et al., 2016), which shows uniqueness of BP

fixed point for BOT without survey and dθ 2 >C , where C is “large enough”. Note that since

the conditional entropy in (2.8) can be sandwiched between H (σρ |σLk
) and H (σρ |ωεLk

), the

result of (Mossel et al., 2016) implies (2.8), as indeed observed in (Kanade et al., 2014, Prop.

3).

2.4.1 Formal Results: Boundary Irrelevance and SBM Entropy

In this Section, we present the formal characterization of the SBM entropy that appeared

in (Abbe, Cornacchia, et al., 2021) for all SNR ̸∈ (1,3.513). Let us first redefine formally the

broadcasting on trees model with survey, introduced in Example 2.

Definition 2 (Broadcasting on Trees with Survey (BOTS)). We start with the standard broad-

casting on trees (BOT) setting. Let T be an infinite tree rooted at ρ. Letσρ ∼Unif({±1}) be the

root bit and assume that it is broadcast through each edge independently with flip probability

δ ∈ (0, 1
2 ]. For simplicity we use notation θ = 1− 2δ. Let Lk denote the set of nodes at level

k , and Tk denote the set of nodes at level ≤ k (where the root is at level 0). Reconstruction on

such models consists of recovering the root bit after observing the leaves bits at large depth

(Evans et al., 2000). We consider a slightly different problem, where we have access to some

node side-information, or “survey”. Specifically, letωε be a survey that for each node reveals

the correct label with probability 1−ε and an erasure symbol otherwise. We call (T ,ρ,θ ) a

broadcasting instance with survey.

We call the specific survey above the “erasure” survey, which appears in (Kanade et al., 2014).
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One can replace the erasure survey by other channels, and obtain for instance the setting

considered in (Mossel and Xu, 2015), where for each node u , P[ωu = σu ] = 1− P[ωu =
−σu ] = 1−α. The erasure survey is of particular interest to us because of its application to

the computation of the SBM entropy (Theorem 1).

Theorem 1. Let (X ,G )∼ S B M (n , 2, a/n , b /n ). Let T be a Galton-Watson tree with Pois(a+b
2 )

offspring distribution and let (T ,ρ, a−b
a+b ) be a broadcasting instance with erasure survey, and

edge flip probability b
a+b . Let α∗ ≈ 3.513 be the unique solution in R>1 to the equation

exp(−α−1
2 )α= 1. The following hold. For a , b such that (a−b )2

2(a+b ) ≤ 1 or (a−b )2
2(a+b ) ≥α

∗ ≈ 3.513

H (a , b ) = lim
n→∞

1

n
H (X |G ) =

∫ 1

0

lim
k→∞

H (σρ |T ,σLk
,ωεTk

)dε. (2.9)

A crucial ingredient to establish Theorem 1 is the Boundary Irrelevance (BI) property for

BOTS. We focus on regular and Galton-Watson trees with Poisson offspring.

Theorem 2. Let T be a d -regular tree or a Galton-Watson tree with Poisson(d ) offspring

distribution, with root vertex ρ. The (BI) holds for any (T ,ρ,θ ), with ε ∈ [0,1), with dθ 2 < 1

or dθ 2 >α∗, where α∗ ≈ 3.513 is the unique solution in R>1 to the equation exp(−α−1
2 )α= 1.

We remark that Theorem 2 is a relaxation of a stronger Theorem valid for all surveys that are

BMS channels. We refer to (Abbe, Cornacchia, et al., 2021) for such stronger result and proof.

We refer to (Yu and Polyanskiy, 2022) for extension of Theorem 2 to all values of dθ 2, which

closes the characterization of the SBM entropy in the case of two symmetric communities.

We refer to Section A.4 for the proof of Theorem 1 from Theorem 2.

2.5 Conclusion and Future Works

We have shown that the (BIN) holds for any trees. The next step would be to prove it for

some loopy graphs, and ideally to close Conjecture 1 for any graph. For instance, one can try

to generalize the approach that we used for trees to loopy graphs. In particular, if one could

show that for any graph G and for any sets U , V ∈V (G ), it holds that

I (Xo ; XS , XU |YG )≤ I (Xo ; XS |YG ) + I (Xo ; XU |YG ), (2.10)

then the (BIN) would follow. We haven’t found a counter-example to (2.10). On the other

hand, in the case of 2D-grids, (Rebeschini and van Handel, 2015, Conj. 5.10) Conjectured

the (BIN) property for BSC side-information, instead of BEC side-information. However, we

do not believe that this extension is trivial. Specifically, the BEC survey allows to know the

locations where erasure happened, whereas when using the BSC side-information we have

no information about the locations of the flipped bits.

Regarding the (BI), we have shown that it does not hold for stringy trees. Moreover, it has
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been shown that the (BI) holds for regular and Poisson trees (Abbe, Cornacchia, et al., 2021;

Yu and Polyanskiy, 2022). It would be interesting to characterize the set of graphs for which

the (BI) holds. One observation is that the stringy trees are a very specific class of graphs,

in the sense that the neighborhood of the root changes as t increases (where t is the depth

of the leaves that we look at), i.e. the sequence of trees Tt is not locally convergent (cfr.

Alaoui and Montanari, 2019, Def. 1). One could then argue that the (BI) hold for every binary

synchronization instance with survey on a locally convergent sequence of graphs.

Additionally, it would be interesting to examine more general settings. For instance, one

could think of more general definitions of side-information, e.g. revealing interactions of sets

of node variables. (Rebeschini and van Handel, 2015) hypothesize that the (BIN) holds in any

setting with the absence of observations symmetries. An observation is symmetric if it stays

unchanged under a global flip of all labels. For instance, in our setting the edge observations

only are symmetric, whereas they are no longer symmetric if we add the side-information. It

would be interesting to analyze this problem.

Finally, one could ask whether our results could hold in settings with non-binary labels. The

subadditivity property that we used for trees is specific to binary synchronization instances.

As for the SBM entropy, while our reduction to boundary irrelevance on trees hold beyond the

binary case, proving (or disproving) the (BI) for general alphabet is still open, even in the case

of regular and Poisson trees. For ternary alphabets, we are not aware of any counter-example

to the (BI). The analysis of the fixed points of the BP recursions for ternary alphabets requires

different techniques than the ones used in the binary case, and as such it is not an easy

extension. Recently, (Gu and Polyanskiy, 2023) proved the (BI) for large alphabets in some

regimes, and they showed that in the case of 4 communities, the (BI) does not hold in all

regimes. For regular trees and large alphabets, (Alaoui and Montanari, 2019) showed that

below KS, the survey gives no information about the root label, which is in contrast with the

(BI), since for non binary alphabets, weak recovery is possible below KS.
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3 Matched Setting

3.1 Initial Alignment

Does one need an educated guess on the type of architecture needed in order for gradient

descent to learn certain target functions? Convolutional neural networks (CNNs) have

an architecture that is natural for learning functions having to do with image features: at

initialization, a CNN is already well posed to pick up correlations with the image content

due to its convolutional and pooling layers, and gradient descent (GD) allows to locate and

amplify such correlations. However, a CNN may not be the right architecture for non-image

based target functions, or even certain image-based functions that are non-classical (Liu

et al., 2018). More generally, we raise the following question:

Is a certain amount of ‘initial alignment’ needed between a neural network at

initialization and a target function in order for GD to learn on a reasonable

horizon? Or could a neural net that is not properly designed but large enough

find its own path to correlate with the target?

In order to formalize the above question, one needs to define the notion of ‘alignment’ as

well as to quantify the ‘certain amount’ and ‘reasonable horizon’ notions. We focus on the

‘polynomial-scaling’ regime and on fully connected architectures, but we conjecture that a

more general quantitative picture can be derived. Before defining the question formally, we

stress a few connections to related problems.

A different type of ‘gradual’ question has recently been investigated for neural networks,

namely, the ‘depth gradual correlation’ hypothesis. This postulates that if a neural network of

low depth (e.g., depth 2) cannot learn to a non-trivial accuracy after GD has converged, then

an augmentation of the depth to a larger constant will not help in learning (Allen-Zhu and

Li, 2020; Malach and Shalev-Shwartz, 2019). In contrast, the question studied here is more

of a ‘time gradual correlation’ hypothesis, saying that if at time zero GD cannot correlate

non-trivially with a target function (i.e., if the neural net at time zero does not have an initial
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alignment), then a polynomial number of GD steps will not help.

From a lower-bound point of view, the question we ask is also slightly different than the

traditional lower-bound questions posed in the learning literature that have to do with the

difficulties of learning a class of functions irrespective of a specific architecture. For instance,

it is known from (Blum et al., 1994; Kearns, 1998) that the larger the statistical dimension of a

function class is, the more challenging it is for a statistical query (SQ) algorithm to learn, and

similarly for GD-like algorithms (Abbe, Kamath, et al., 2021); these bounds hold irrespective

of the type of neural network architectures used.

A more architecture-dependent lower-bound is derived in (Abbe and Sandon, 2020b), where

the junk-flow is essentially used as replacement of the number of queries, and which depends

on the type of architecture and initialization albeit being implicit. In (Shalev-Shwartz and

Malach, 2021), a separation between fully connected and CNN architectures is obtained,

showing that certain target functions have a locality property and are better learned by the

latter architecture. In a different setting, (Tan et al., 2021) gives a generalization lower bound

for decision trees on additive generative models, proving that decision trees are statistically

inefficient at estimating additive regression functions. However, none of the bounds in

these works give an explicit figure of merit to measure the suitability of a neural network

architecture for a target.

One can interpret such bounds, especially the one in (Abbe and Sandon, 2020b), as follows.

If the function class is such that for two functions F, F ′ sampled randomly from the class,

the typical correlation is not noticeable, i.e., if the cross-predictability (CP) is given by

CP(F, F ′) :=EF,F ′〈F, F ′〉2 = d−ωd (1), (3.1)

(where we denoted by 〈.〉 the L 2-scalar product, namely, for some input distribution PX ,

〈 f , g 〉=Ex∼PX [ f (x )g (x )] and byωd (1) any sequence that is diverging to∞ as d →∞), then

GD with polynomial precision and on a polynomial horizon will not be able to identify the

target function with an inverse polynomial accuracy (weak learning), because at no time the

algorithm will approach a good approximation of the target function; i.e. the gradients stay

essentially agnostic to the target.

Instead, here we focus on a specific function — rather than a function class — and on a

specific architecture and initialization. One can engineer a function class from a specific

function if the initial architecture has some distribution symmetry. In such case, if the

original function is learnable, then its orbit under the group of symmetry must also be

learnable, and thus lower bounds based on the cross-predictability or statistical dimension

of the orbit can be used. Such lower bounds are no longer applying to any architecture but

exploit the symmetry of the architecture, however they still require knowledge of the target

function in order to define the orbit.

Our goal is to depart from the setting where we know the target function and thus can analyze
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the orbit directly. Instead, we would like to have a ‘proxy’ that depends on the underlying

target function and the initialized neural net NN(x ;θ 0) at hand, where the set of weights

at time zero θ 0 are drawn according to some distribution. In (Abbe and Sandon, 2020a),

the following proposal is made (the precise statement will appear below): can we replace

the correlation among a function class by the correlation between a target function and an

initialized net in order to have a necessary requirement for learning, i.e., if

Eθ 0〈 f , NN(.;θ 0)〉2 = d−ωd (1), (3.2)

or in other words, if at initialization the neural net correlates negligibly with the target

function, is it still possible for GD to learnI the function f if the number of epochs of GD is

polynomial? We next formalize the question further and provide an answer to it.

Note the difference between (3.1) and (3.2): in (3.1) it is the class of functions that is too

poorly correlated for any SQ algorithm to efficiently learn; in (3.2) it is the specific network

initialization that is too poorly correlated with the specific target in order for GD to efficiently

learn.

While previous works and the proof presented in this Chapter rely on creating the orbit of a

target function using the network symmetries and then arguing from the complexity of the

orbit (using cross-predictability Abbe and Sandon, 2020a), we believe that the INAL approach

can be fruitful in additional contexts. In fact, the orbit approaches have two drawbacks: (1)

they cannot give lower-bounds on functions like the full parityII that have no complex orbit

(in fact the orbit of the full parity is itself under permutation symmetries), (2) to estimate

the complexity measure of the orbit class (e.g., the cross-predictability) from a sample set

without full access to the target function, one needs labels of data points under the group

action that defines the orbit (e.g., permutations), and these may not always be available

from an arbitrary sample set. In contrast, (i) the INAL can still be small for the full parity

function on certain symmetric neural networks, suggesting that in such cases the full parity

is not learnableIII, (ii) the INAL can always be estimated from a random i.i.d. sample set,

using basic Monte Carlo simulations (as used in our experiments, see Section 3.1.4).

While the notion of INAL makes sense for any input distribution, our theoretical results are

proved in a more limited setting of Boolean functions with uniform inputs. This follows

the approach that has been taken in (Abbe and Sandon, 2020b) and we made that choice

for similar reasons. Furthermore, any computer-encoded function is eventually Boolean

and major part of the PAC learning theory has indeed focused on Boolean functions (we

refer to (Shalev-Shwartz and Ben-David, 2014) for more on this subject). We nonetheless

expect that the footprints of the proofs derived in this Section will apply to inputs that are

iid Gaussians or spherical, using different basis than the Fourier-Walsh one.

IEven with just an inverse polynomial accuracy, a.k.a., weak learning.
IIwe call full parity the function f : {±1}d →{±1} s.t. f (x ) =

∏d
i=1 xi .

IIIThis is not proven in this Section, due to a specific proof technique, but in Section 3.2.4 we prove that, under
appropriate hypothesis, this result holds.
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Our general strategy in obtaining such a result is as follows: we first show that for the type

of architecture considered, a low initial alignment (INAL) implies that the implicit target

function is essentially high-degree in its Fourier basis; this part is specific to the architecture

and the low INAL property. We next use the symmetry of the initialization to conclude that

learning under such high-degree Fourier requirement implies learning a low CP class, and

thus conclude by leveraging the results from (Abbe and Sandon, 2020b). Finally, we do

some experiments with the types of architecture used in our formal results, but also with

convolutional neural nets to test the robustness of the original conjecture. We observe that

generally the INAL gives a decent proxy for the difficulty to learn (lower INAL gives lower

learning accuracy). While this goes beyond the scope of this Section — which is to obtain a

first rigorous validation of the INAL conjecture for standard fully connected neural nets —

we believe that the numerical simulations give some motivations to pursue the study of the

INAL in a more general setting.

3.1.1 Definitions and Theoretical Contributions

For the purposes of our definition, a neural network NN consists of a set of neurons VNN, a

random variable θ 0 ∈Rk which corresponds to the initialization and a collection of functions

NN(v )(.;θ 0) : Rd → R indexed with v ∈ VNN, representing the outputs of neurons in the

network. The Initial Alignment (INAL) is defined as the average squared correlation between

the target function and any of the neurons at initialization:

Definition 3 (Initial Alignment (INAL)). Let f :Rd →R be a function and PX a distribution

on Rd . Let NN be a neural network with neuron set VNN and random initialization θ 0. Then,

the INAL is defined as

INAL( f , NN) := max
v∈VNN

Eθ 0〈 f , NN(v )(.;θ 0)〉2, (3.3)

where we denoted by 〈.〉 the L 2-scalar product, namely 〈 f , g 〉=Ex∼PX [ f (x )g (x )].

While the above definition makes sense for any neural network architecture, here we focus

on fully connected networks. Thus, in the following NN will denote a fully connected neural

network. Our main thesis is that in many settings a small INAL is bad news: If at initialization

there is no noticeable correlation between any of the neurons and the target function, the

GD-trained neural network will not be able to recover such correlation during training in

polynomial time.

Of particular interest to us is the notion of INAL for a single neuron with activationσ and

normalized Gaussian initialization.

Definition 4. Let f :Rd →R,σ :R→R and let PX be a distribution on Rd . Then, we abuse
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the notation and write

INAL( f ,σ) :=Ew d ,b d

�

�

Ex∼PX f (x )σ((w d )T x + b d )
�2�

, (3.4)

where w d is a vector of iidN (0,1/d ) Gaussians and b d is another independentN (0,1/d )
Gaussian. In the following, for readability, we will write w =w d and b = b d , omitting the

dependence on the input dimension d .

In the following, we say that a function g :N→R≥0 is noticeable if there exists c ∈N such

that g (d ) =Ω(d−c ). On the other hand, we say that g is negligible if limd→∞d c g (d ) = 0 for

every c ∈N (which we also write g (d ) = d−ωd (1)).

Definition 5 (Weak learning). Let ( fd )d∈N be a sequence of functions such that fd :Rd →R
and (Pd ) a sequence of probability distributions on Rd . Let (Ad ) be a family of randomized

algorithms such that Ad outputs a function NNd : Rd → R. Then, we say that Ad weakly

learns fd if the function

g (d ) :=
�

�Ex∼Pd ,Ad
[ fd (x ) ·NNd (x )]

�

� (3.5)

is noticeable.

In this Chapter, we follow the example of (Abbe and Sandon, 2020b) and focus on Boolean

functions with inputs and outputs in {±1}. We consider sequences of Boolean functions

fd : {±1}d → {±1}, with the uniform input distributionU d , meaning that if x ∼U d , then

for all i ∈ [d ], xi
i i d∼ Rad(1/2). We focus on fully connected neural networks with activation

function σ, and trained by noisy GD — this means GD where the gradient’s magnitude

per precision noise is polynomially bounded, as commonly considered in statistical query

algorithms (Blum et al., 1994; Kearns, 1998) and GD learning (Abbe, Kamath, et al., 2021;

Abbe and Sandon, 2020b; Malach et al., 2021); see (1.9) or Remark 4 for a remainder the

definition. We consider activation functions that satisfy the following conditions.

Definition 6 (Expressive activation). We say that a function σ : R → R is expressive if it

satisfies the following conditions:

a) σ is measurable and polynomially bounded i.e. there exists C , c > 0 such that |σ(x )| ≤
C x c +C for all x ∈R.

b) Let the Gaussian smoothing of σ be defined as Σ(t ) := EY ∼N (0,1)[σ(Y + t )]. For each

m ∈N either Σ(m )(0) ̸= 0 or Σ(m+1)(0) ̸= 0 (where Σ(m ) denotes the m-th derivative of Σ).

Remark 1. i) Note that we have the identities dm =
Σ(m )

(0)
m ! , andσ=

∑∞
m=0 dm Hm , where

Hm are the probabilist’s Hermite polynomials (see Appendix C.3 for background on

Hermite polynomials). Therefore, an equivalent statement of the second condition in
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Definition 6 is that there are no two or more consecutive zeros in the Hermite expansion

ofσ.

ii) Many functions are expressive, including ReLU and sign (see Appendix B.2 for the proofs

of those two cases).

iii) On the other hand, it turns out that polynomials are not expressive, as they do not

satisfy point b ). This is necessary for our hardness results to hold, since for an activation

function P which is a polynomial of degree k and M a monomial of degree k +1 it can

be checked that INAL(M , P ) = 0, but constant-degree monomials are learnable by GD.

Let us give one more definition before stating our main theorem.

Definition 7 (D-Extension). For a function f : Rd → R and for D > d , we define its D-

extension f :RD →R as

f (x1, x2, ..., xd , xd+1, xd+2, ..., xD ) = f (x1, x2, ..., xd ). (3.6)

In words, f is a D -dimensional function whose first d input coordinates correspond to the

d input coordinates of f , and the other coordinates are dummy variables. We can now state

our main result which connects INAL and weak learning.

Theorem 3 (Main theorem, informal). Letσ be an expressive activation function and ( fd ) a

sequence of Boolean functions with uniform distribution on {±1}d . If INAL( fd ,σ) is negligible,

then, for every ε > 0, the d 1+ε-extension of fd is not weakly learnable by any poly(d )-sized

fully-connected neural networks with i.i.d. initialization and poly(d )-number of steps of noisy

gradient descent.

Remark 2. Theorem 3 says that Boolean functions that have negligible correlation for some

expressive activation and Gaussian i.i.d. initialization, cannot be learned by neural networks

utilizing any activation on a fully-connected architecture and any i.i.d. initialization.

Remark 3. Consider a sequence of neural networks (NNd ) utilizing an expressive activation

σ. We believe that the notion of INAL( fd , NNd ) is relevant to characterizing if a family of

Boolean functions ( fd ) is weakly learnable by noisy GD on those neural networks. On the one

hand, if INAL( fd , NNd ) is noticeable, then at initialization there exists a neuron from which a

weak correlation with fd can be extracted. Therefore, in a sense weak learning is achieved at

initialization.

On the other hand, assume additionally that the architecture is such that there exists a neuron

computing σ(w T x + b ), where x is the input and (w , b ) are initialized as i.i.d. N (0,1/d )
Gaussians. (In other words, there exists a fully-connected neuron in the first hidden layer.)

Then, by definition of INAL, if INAL( fd , NNd ) is negligible, then also INAL( fd ,σ) is negligible.

Accordingly, by Theorem 3, an extension of ( fd ) is not weakly learnable.
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While we do not have a proof, we suspect that a similar property might hold also for some

other architectures and initializations.

Note that we obtain hardness only for an extension of fd , rather than for the original function.

Interestingly, in some settings GD can learn the function, while the 2d -extension of the same

function is hard to learnIV. However, in Section 3.2 we show that such examples cannot be

constructed for fully connected networks with Gaussian initialization, trained with the hinge

loss. Thus, in the cases covered by Section 3.2 the input extension can be removed.

3.1.2 Formal Results

In this section, we write precise statements of our theorems. For this, we need a couple of

more definitions.

Definition 8 (Cross-Predictability, Abbe and Sandon, 2020a). Let PF be a distribution over

functions from Rd to R and PX a distribution over Rd . Then,

CP(PF , PX ) =EF,F ′∼PF [EX∼PX [F (X )F
′(X )]2] . (3.7)

Definition 9 (Orbit). For f :Rd →Rand a permutationπ ∈ Sd , we let ( f ◦π)(x ) = f (xπ(1), . . . , xπ(d )).
Then, we define the orbit of f as

orb( f ) := { f ◦π :π ∈ Sd } . (3.8)

Let us now give the full statement of our main theorem.

Theorem 4. Let ( fd ) be a sequence of Boolean functions with fd : {±1}d →{±1} and x ∼U d

and letσ be an expressive activation. If INAL( fd ,σ) is negligible, then, for every ε> 0, the cross

predictability CP(orb( fd ),U D ) is negligible, where D = d 1+ε and orb( fd ) denotes (uniform

distribution on) the orbit of the D -extension of fd .

More precisely, if INAL( fd ,σ) =O (d−c ), then CP(orb( fd ),U D ) =O (d−
ε

1+ε (c−1)).

Applying (Abbe and Sandon, 2020b,[Theorem 3]) to Theorem 4 implies the following corollary.

We refer to Appendix B.7 for additional clarifications on the notion of a fully connected neural

net.

Corollary 3. Let fd andσ be as in Theorem 4 with negligible INAL( fd ,σ) and let ε> 0 with

D = d 1+ε and fd denote the D -extension of fd . Let NN = (NNd ) be any sequence of fully

connected neural nets of polynomial size. Then, for any iid initializaton, and any polynomial

bounds on the learning rate, learning time T = (Td ), noise level and overflow range, the noisy

IVFor example, for the Boolean parity function χ[d ](x ) =
∏d

i=1 xi with both the input distribution and the
weight initialization iid uniform in {±1} (Abbe and Boix-Adserà, 2022).
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GD algorithm after T steps of training outputs a neural net NN(.;θ T ) such that the correlation

g (d ) :=
�

�ENN(.;θ T )〈NN(.;θ T ), fd 〉
�

� (3.9)

is negligible.

More precisely, if INAL( fd ,σ) =O (d−c ), then for a noisy GD run for T steps on a fully connected

neural network with P edges, with learning rate γ, overflow range A and noise level τ it holds

that

g (d ) =O

�

γT
p

P A

τ
·d−

ε
4(1+ε) (c−1)

�

. (3.10)

Remark 4. In the result above, the neural net can have any feed-forward architecture with

layers of fully-connected neurons and any activation such that the gradients are almost surely

well-defined. The initialization can be i.i.d. from any distribution (which can depend on d ).

We remark that the result of Corollary 3 can be strengthen to apply to any initialization such

that the distribution of the weights in the first layer is invariant under permutations of input

neurons. We refer to Appendix B.7 for more details.

The algorithm considered is noisy gradient descentV using any differentiable loss function,

meaning that at every step an i.i.d. N (0,τ2) noise vector is added to all components of the

gradient, where τ is called the noise level. Furthermore, every component of the gradient

during the execution of the algorithm whose evaluation exceeds the gradient range A in

absolute value is clipped to A or −A, respectively. This covers in particular the bounded

‘precision model’ of (Abbe, Kamath, et al., 2021).

For the purposes of function g (d ), it is assumed that the neural network outputs a guess in

{±1} using any form of thresholding (e.g., the sign function) on the value of the output neuron.

See (Abbe and Sandon, 2020b[Section 2.3.1]).

3.1.3 Proof of Main Theorem

In this section we sketch the proof of Theorem 4. We first state basic definitions from

Boolean function analysis, then we give a short outline of the proof, and then we state main

propositions used in the proof. Finally, we show how the propositions are combined to prove

Theorem 4 and Corollary 3. Further proofs and details are in the appendices.

We recall some notions of Boolean analysis, mainly taken from Chapters 1,2 of (O’Donnell,

2014). For every f : {±1}n →Rwe denote its Fourier expansion as

f (x ) =
∑

S⊆[n ]
f̂ (S )χS (x ), (3.11)

VIn fact, it can be SGD with batch size B for large enough B .
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where χS (x ) =
∏

i∈S xi are the standard Fourier basis elements and f̂ (S ) are the Fourier

coefficients of f , defined as f̂ (S ) = 〈 f ,χS 〉. We denote by

W k ( f ) =
∑

S :|S |=k

f̂ (S )2 (3.12)

W ≤k ( f ) =
∑

S :|S |≤k

f̂ (S )2 , (3.13)

the total weight of the Fourier coefficients of f at degree k (respectively up to degree k ).

Definition 10 (High-Degree). We say that a family of functions fd : {±1}d →R is “high-degree”

if for any fixed k , W ≤k ( fd ) is negligible.

Proof Outline of Theorem 4.

1. We initially restrict our attention to the basis Fourier elements, i.e. the monomials

χS (x ) :=
∏

i∈S xi for S ∈ [d ]. We consider the single-neuron alignments INAL(χS ,σ) for

expressive activations. We prove that these INALs are noticeable for constant degree

monomials (Proposition 3).

2. For a general f : {±1}d →Rwe show that the initial alignment between f and a single-

neuron architecture can be computed from its Fourier expansion (Proposition 4). As a

consequence, for any expressiveσ, if INAL( f ,σ) is negligible, then f is high-degree

(Corollary 4).

3. We construct the extension of f and take its orbit orb( f ). Since the extension has a

sparse structure of its Fourier coefficients, that guarantees that the cross-predictability

of orb( f ) is negligible (Proposition 5).

4. In order to prove Corollary 3, we invoke the lower bound of Abbe and Sandon, 2020b

(Theorem 5) applied to the class orb( f ) .

A crucial property of the expressive activations is that they correlate with constant-degree

monomials. To emphasize this, we introduce another definition.

Definition 11. An activationσ is correlating if for every k , the sequence INAL(χk ,σ) is no-

ticeable, where we think of χk (x ) =
∏k

i=1 xi as a sequence of Boolean functions for every input

dimension d ≥ k .

Furthermore, if there exists c such that for every k it holds INAL(χk ,σ) =Ω(d−(k+c )), then we

say thatσ is c -strongly correlating.

Proposition 3. Ifσ is expressive (according to Definition 6), then it is 1-strongly correlating.
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The proof of Proposition 3 is our main technical contribution. Since the magnitude of the

correlations is quite small (in general, of the order d−k for monomials of degree k ), careful

calculations are required to establish our lower bounds.

In fact, we conjecture that any polynomially bounded function that is not a polynomial

(almost everywhere) is correlating.

Then, we show that INAL( f ,σ) decomposes into monomial INALs according to its Fourier

coefficients:

Proposition 4. For any f : {±1}d →R and any activationσ,

INAL( f ,σ) :=
∑

T ∈[d ]
f̂ (T )2 INAL(χT ,σ) . (3.14)

As a corollary, functions with negligible INAL on correlating activations are high-degree:

Corollary 4. Let σ be an activation with INAL(χk ′ ,σ) = Ω(d−k0 ) for k ′ = 0,1, . . . , k . Then,

W ≤k ( fd )≤ INAL( fd ,σ)O (d k0 ).

In particular, ifσ is correlating and INAL( fd ,σ) is negligible, then ( fd ) is high degree.

Finally, the cross-predictability of orb( fd ) is negligible for high degree functions.

Proposition 5. Let ε> 0 and ( fd ) a family of Boolean functions. Let ( fd ) denote the family of

D -extensions of fd for D = d 1+ε, and consider the uniform distribution on its orbit.

If ( fd ) is high degree, then CP(orb( fd ),U D ) is negligible. Furthermore, if for some universal c

and every fixed k it holds W ≤k ( fd ) =O (d k−c ), then CP(orb( fd ),U D ) =O (d−
ε

1+ε ·c ).

Theorem 5 (Abbe and Sandon, 2020b, informal). If the cross-predictability of a class of

functions is negligible, then noisy GD cannot learn it in poly-time.

We refer to Appendix B for the proofs of the results presented in this Section.

3.1.4 Experiments

In this section we present a few experiments to show how the INAL can be estimated in

practice. Our theoretical results connect the performance of GD to the Fourier spectrum

of the target function. However, in applications we are usually given a dataset with data

points and labels, rather than an explicit target function, and it may not be trivial to infer

the Fourier properties of the function associated to the data. Conveniently, the INAL can be

estimated with sufficient datapoints and labels, and do not need an explicit target.
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Figure 3.1: Comparison between INAL and time needed to “escape the initialization” (e.g.
achieve non-trivial learning) for several Boolean tasks. We estimate the INAL between each
target function and a 2-layers ReLU fully connected neural network with input size input
size d = 1000 and normalized gaussian initialization. We then the network with SGD batch
size 64.
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Experiments on Boolean functions. In our first experiment, we consider several Boolean

functions, such as the majority-vote over the whole input space (Majd (x ) := sgn(
∑d

i=1 xi )),

monomials of different degree and sums of monomials, on an input space of dimension 1000.

We take a 2-layer fully connected neural network with ReLU activations and normalised

Gaussian iid initialization (according to the setting of our theoretical results), and we train it

with SGD with batch-size 64, until the network achieves non-trivial correlation (i.e. accuracy

1/10) with the target function. We call the number of time-steps needed to achieve such

non-trivial correlation the time to escape the initialization. On the other hand, we estimate

the INAL between each of the targets and the neural network, through Monte-Carlo. Our

observations confirm our theoretical claim, i.e. that INAL is a good proxy of the time needed

to achieve weak learning (Figure 3.1).

Experiments on CIFAR. Given a dataset D = (xs , ys )s∈[m ], where xs ∈Rd , and ys ∈R, and

given a randomly initialized neural network NN(.;θ 0)with θ 0 drawn from some distribution,

we can estimate the initial alignment between the network and the target function associated

to the dataset as

max
v∈VN N

Eθ 0





�

1

m

m
∑

s=1

ys ·NN(v )(xs ;θ 0)

�2


 , (3.15)

where the outer expectation can be performed through Monte-Carlo approximation.

We ran experiments on the CIFAR100 dataset. We split the dataset into different pairs of

classes, corresponding to different binary classification tasks. We choose pairs of classes that

are intuitively hard to distinguish. We take a CNN with 1 VGG block and ReLU activation,

and for each task, we train the network with SGD with batch-size 64, and we estimate the

INAL according to (3.15). We notice that also in this setting (not covered by our theoretical

results), the INAL and the generalization accuracy present some correlation, and a significant

difference in the INAL corresponds to a significant difference in the accuracy achieved after

training. This may give some motivation to study the INAL beyond the fully connected

setting.

3.2 Initial Gradient Alignment

The result of Section 3.1 presents few limitations. Firstly, Theorem 4 is only applicable to

uniform Boolean inputs. Secondly, the bound is independent of the network’s initialization

scale and architecture, and depends solely on the complexity of the target task’s orbit and

the network’s number of parameters. Finally, it provides hardness of learning only for an

extension of the target function f , preventing any application to functions whose orbits are

SQ learnable.
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In this Section, we address these limitations, by narrowing our focus to fully connected

ReLU networks of finite depth trained with the noisy-GD algorithm (defined in (1.9)) on the

correlation lossVI.

For ease of notation, we denote by

G f (θ ) :=Ex∼D
�

f (x ) ·∇θ NN(x ;θ )
�

(3.16)

the alignment between f and the gradients of the neural network at θ , whereD is an arbitrary

input distribution. We focus on functions f : Rd → {±1} (binary classification tasks). We

prove the following results:

1. If:

Eθ 0∥G f (θ
0)∥22 = d−ω(1), (3.17)

then noisy-GD on a fully connected ReLUVII network of finite depth with Gaussian

i.i.d. initialization cannot efficiently learn f (Theorem 6).

2. If:

Kµ ·Eθ 0∥G f (θ
0)∥42 = d−ω(1), (3.18)

where Kµ is given in (3.25), then noisy-GD on any network with parameters initialized

from a distribution µ that satisfies Assumption 2, cannot efficiently learn f (Theo-

rem 7).

3. Noisy-GD on a 2-layer ReLU network with Gaussian i.i.d. initialization, cannot learn

high-degree Boolean functions (as defined in Def. 10) with uniform inputs (Corollary 5).

Let us make few remarks, before defining our results formally.

Remark 5. Similar quantities to the ones in (3.17)-(3.18) are proposed in (Mok et al., 2022;

Ortiz-Jiménez et al., 2021) as measures to predict the generalization performance of neural

networks after training. In particular, one can rewrite

∥G f (θ
0)∥22 =Ex ,x ′

iid∼D

�

f (x ) f (x ′)Θθ 0 (x , x ′)
�

, (3.19)

where Θθ 0 (x , x ′) denotes the Neural Tangent Kernel (NTK) (see Jacot et al., 2018) at initial-

ization, and observe that the left-hand-side of (3.17) is the expectation over θ 0 of the Label

Gradient Alignment (LGA) introduced in (Mok et al., 2022). In this Section, we thus give some

theoretical insights related to the empirical observations of the aforementioned papers.

VIOur results hold for noisy-GD on the hinge-loss, with an additional assumption on the initialization.
VIIOur proof works for all activations that satisfy a homogeneity assumption, see Def. 12.

45



Chapter 3 Matched Setting

Remark 6. Point 3 gives a separation between SQ algorithms and noisy-GD on the specific

setting considered, in the following sense. Let us assume that the target f is the parity function

on all bits f (x ) =
∏d

i=1 xi . For SQ algorithms, the class of parities of degree d is trivially

learnable, as it contains only f . We prove that in the setting considered (2-layer ReLU nets with

Gaussian init. and correlation loss) this is not the case, and f cannot be learned in polynomial

time. It has been proven (Abbe and Boix-Adserà, 2022) that f can be learned in O (1) steps by a

2-layer ReLU network with weights initialized i.i.d Rad(1/2). The characterization of the set of

initializations that allow (and do not allow) GD to learn the full parity and the understanding

of whether the Rademacher initialization is ‘robust’, are left to future work.

3.2.1 Definitions and Formal Results

I.i.d. Gaussian Initialization. For our first Theorem, we focus on fully-connected networks

of finite depth. For a network of depth L , we denote by P the total number of parameters in

the network and by θ ∈RP the vector containing all parameters of the network. We use the

following notation:

x (1)(θ ) =W (1)x + b (1) (3.20)

x (l )(θ ) =W (l )σ(x (l−1)(θ )), l = 2, ..., L , (3.21)

For simplicity, we consider fully connected networks with one bias vector in the first layer,

but we believe that, with a more involved argument, one could extend the proof and include

bias vectors in all layers. We denote the network function as NN(x ;θ ) = x (L )(θ ). We assume

that each parameter of the network is independently initialized as

θ 0
p ∼N (0, v 2

lp
), (3.22)

where lp denotes the layer of parameter θp , for p ∈ [P ].

We assume that the activationσ satisfies the following homogeneity property.

Definition 12 (H -Strongly Homogeneous.). Letσ :R→R be an activation function. We say

thatσ is H -strongly homogeneous if for all x ∈R:

σ(C x ) =C Hσ(x ). (3.23)

Example 3. ReLU(x ) =max{0, x } is 1-strongly homogeneous. x k is k -strongly homogeneous,

for all k ∈N.

Furthermore, we need the following assumption on the neural network output at initial-

ization. We are now ready to state our main Theorem on networks with i.i.d. Gaussian

initialization.

Theorem 6 (Gaussian init.). Let NN(x ;θ ) be a fully connected network of depth L, with
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H -strongly homogeneous activation and with weights initialized according to (3.22). Let

f :Rd → {±1} be a target function. Let NN(x ;θ T ) be the output of the noisy-GD algorithm

after T steps of training with the correlation loss. Then,

P(NN(x ;θ T ) = f (x ))≤
1

2
+

T

2τ

L
∏

l=1

�

1+
T γ2τ2

v 2
l

�H

·Eθ 0∥G f (θ
0)∥22. (3.24)

For the purposes of Theorem 6, we assume that NN(x ;θ ) is the network’s guess in {±1},
obtained using any form of thresholding (e.g. the sgn function) on the output neuron. We

remark that the result extend to noisy-GD with the hinge loss, instead of the correlation loss,

if the initialization satisfy the following assumption with K =
∏L

l=1

�

1+ T γ2τ2

v 2
l

�H
.

Assumption 1 (K-bounded initialization). We say that a network is initialized with K -

bounded initialization if for all x , with probability at least 1− exp(−dδ) over θ 0, for some

δ > 0, |NN(x ;θ 0)|< K .

Beyond i.i.d Gaussian Initialization. We prove a second result that holds for a different set

of initial distributions, and for general architectures (beyond fully connected). Let NN(x ;θ )
be a neural network of any architecture, with P parameters initialized according to a distri-

bution µ supported in RP . We assume that µ satisfies the following assumption.

Assumption 2. Let µ be a probability measure on RP . We assume that µ is such that

Kµ :=

∫

RP

1

φµ(ξ)

�∫

RP

φN (ξ−ψ)φµ(ψ)dψ
�2

dξ<∞, (3.25)

where φµ denotes the density function of µ and φN denotes the density of a N (0,γ2T τ2I)
random vector.

Theorem 7 (µ init.). Let µ be a distribution inRP that satisfies Assumption 2. Let NN(x ;θ ) be

a neural network of any architecture with weights initialized according toµ. Let f :Rd →{±1}
be a target function. Let NN(x ;θ T ) be the output of the noisy-GD algorithm after T steps of

training with the correlation loss. Then,

P(NN(x ;θ T ) = f (x ))≤
1

2
+

T

2τ
K 1/2
µ ·

�

Eθ 0∥G f (θ
0)∥42

�1/2
, (3.26)

where Kµ is given by Assumption 2.

Theorem 7 extends to noisy-GD with the hinge loss on networks with 1-bounded initializa-

tion.

Remark 7 (Gaussian Initialization). In Appendix C.1.5 we show that if θ 0 is initialized ac-

cording to (3.22), Assumption 2 holds if and only if v 2
l ≥ γ

2tτ2 for all l ∈ [L ] and in such
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case K 2
µ =

∏L
l=1

v 2
l

q

v 4
l −γ4t 2τ4

. Thus, the bound in Theorem 7 depends exponentially on the

number of parameters (as opposed to the one in Theorem 6 that depends exponentially on

the networks’ depth) and on the 4-th moment of G f (θ 0) (as opposed to the 2-th moment

obtained in Theorem 6). On the other hand, Theorem 7 holds for all networks architectures

and activations, while Theorem 6 is specific to fully connected and strongly homogeneous

activations. Furthermore, Theorem 6 holds for non-iid Gaussian initialization.

Remark 8 (Uniform Initialization). In Appendix C.1.5 we further show that the proof can

be extended to cover some distributions µwith compact support, including in particular the

Unif[−1, 1]⊗P distribution.

3.2.2 Proof Outline

For brevity, we denote the population gradient at θ for a target function f by

Γ f (θ ) :=Ex

�

∇θ L ( f ,θ , x )
�

. (3.27)

To prove our results we couple the dynamics of the network’s weights θ t with the dynamics

of the ‘Junk-Flow’. The junk-flow is the dynamics of the parameters of a network trained on

random labels.

Definition 13 (Junk-Flow). Let us define the junk-flow as the sequenceψt ∈RP that satisfies

the following iterations:

ψ0 = θ 0, (3.28)

ψt+1 =ψt −γ
�

Γr (ψ
t ) +ξt

�

, (3.29)

where ξt i i d∼ N (0,1τ2), Γr (ψt ) is the population gradient for the target function r (x ) =
Rad(1/2) for all x (i.e. random labels) and γ,τ are respectively the learning rate and the

noise-level of the noisy-GD algorithm used to train the network NN(x ;θ ).

We couple θ T and ψT in terms of the total variation distance. Let us look at the total

variation distance between the law of θ T andψT , which, by abuse of notation, we denote by

TV(θ T ;ψT ).

Lemma 1. Let TV(θ T ;ψT ) be the total variation distance between the law of θ T and ψT .

Then,

TV(θ T ;ψT )≤
1

2τ

T−1
∑

t=0

q

Eψt ∥Γ f (ψt )−Γr (ψt )∥22. (3.30)

The proof of Lemma 1 can be found in Appendix C.1. Our goal is to bound the right-hand-side

of (3.30) in terms of moments of ∥G f (θ 0)∥2. We show these bounds in Section 3.2.3.
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Recalling that f :RP →{±1}, we have

P(NN(x ;θ T ) = f (x ))≤P(NN(x ;ψT ) = f (x ))+Eθ 0

�

TV(θ T ;ψT )
�

(3.31)

=
1

2
+Eθ 0

�

TV(θ T ;ψT )
�

, (3.32)

where in (3.31), we denote by NN(x ;θ T ) the guess in {±1} of the network.

3.2.3 Alignment along the Junk-Flow

We are now left with bounding the right-hand-side of (3.30) in terms of the moments of

∥G f (θ 0)∥2. In other words, we want to show that the junk-flow dynamics does not pick

correlation with f along its trajectory.

I.i.d. Gaussian Initialization. Let θ 0 be initialized according to (3.22). Then,

ψt
p ∼N (0, v 2

lp
+ t γ2τ2), (3.33)

where lp denotes the layer of parameter p . Moreover, for all t ,ψt
p is independent ofψt

q , for

all p ̸= q .

Proposition 6 (Gaussian init.). Let NN(x ;θ ) be a network that satisfies the assumptions of

Theorem 6. Then, for all t ∈ [T −1]

Eψt ∥Γ f (ψ
t )−Γr (ψ

t )∥22 ≤
L
∏

l=1

�

1+
t γ2τ2

v 2
l

�H

·Eθ 0∥G f (θ
0)∥22. (3.34)

The proof of Proposition 6 is deferred to Appendix C.1.2.

Beyond i.i.d. Gaussian Initialization. Let us now assume that θ 0 ∼µ, for some probability

measure µ supported onRP . We assume that the support of µ is the whole spaceRP . In this

case, the parameters of the junk-flow at time t are given by,

ψt = θ 0+N (0,γ2tτ2I)∼µ ∗N (0,γ2tτ2I), (3.35)

where by µ ∗ ν we denoted the convolution in RP , i.e. the probability measure that has

densityφµ∗ν given by

φµ∗ν(θ ) =

∫

RP

φµ(ψ)φν(θ −ψ)dψ, (3.36)

whereφµ,φν are the densities of µ and ν respectively. In this case, we prove the following

bound.
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Proposition 7. Let NN(x ;θ ) be a network that satisfies the assumptions of Theorem 7. Then,

Eψt ∥Γ f (ψ
t )−Γr (ψ

t )∥22 ≤ K 1/2
µ ·Eθ 0 [∥G f (θ

0)∥42]
1/2, (3.37)

where Kµ is given by (3.25).

The proof of Proposition 7 is deferred to Appendix C.1.4.

3.2.4 Application to High-Degree Boolean Functions

Let us focus on the specific case of Boolean target functions with inputs sampled uniformly

from the hypercube. Let NN(x ;θ ) be a 2-layers fully connected neural network with Gaussian

initialization, according to (3.22). We assume the following condition on the activation

function.

Assumption 3. Let σ : R→ R be an activation function in L 2(N (0,1)) and let σ̂(k ), k ∈ N,

denote the coefficients of its expansion in Hermite series (see C.3 for definition of Hermite

coefficients). Let σ′ be a sub-derivative of σ, and let σ̂′(k ) be its Hermite coefficients. We

assume that:

∀k : σ̂(k ) ̸= 0, σ̂(k )2k 2 ≥ σ̂(k ′)2k ′2 ∀k ′ ≥ k , (3.38)

∀k : σ̂′(k ) ̸= 0, σ̂′(k )2k 2 ≥ σ̂′(k ′)2k ′2 ∀k ′ ≥ k . (3.39)

Example 4. ReLU(x ) satisfies Assumption 3 (see Lemmas 16 and 17) in Appendix.

The following Proposition gives an upper bound on the second moment of G f (θ 0), depending

on the Fourier spectrum of f .

Proposition 8. Let f : {±1}d →{±1}. Let W ≤k [ f ] be the Fourier weight of f up to degree k

(as defined in 3.13). Let NN(x ;θ ) be a 2-layer neural network with activation that satisfies

Assumption 3 and that is H -strongly homogeneous. Then, for all k ∈N,

Eθ 0∥G f (θ
0)∥22 ≤W ≤k [ f ] ·C +P V H−1π

2

6
σ̂′(m ′)m ′2+N V H π

2

6
σ̂(m )m 2, (3.40)

where m :=min{k ′ ≥ k : σ̂(k ′) ̸= 0}, m ′ :=min{k ′ ≥ k : σ̂′(k ′) ̸= 0}, V = v1
p

d +1, v1 is the

variance of the initialization of the first layer’s weights, N is the number of hidden neurons.

The proof of Proposition 8 can be found in Appendix C.2.

Theorem 6 and Proposition 8 gives the following Corollary, which states that high-degree

Boolean functions are not efficiently learnable by a 2-layer network with Gaussian initializa-

tion.
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Corollary 5. Let NN(x ;θ ) be a 2-layer neural network with activation that satisfies Assump-

tion 3 and that is H -strongly homogeneous. Let θ 0 be initialized from a Gaussian distribution

(according to (3.22)). Let f be a Boolean high-degree function (as defined in Def. 10), and let

the input distribution beD =Unif{±1}d . Then, the noisy-GD algorithm with the correlation

loss after T steps of training outputs a network such that

P
�

NN(x ;θ T ) = f (x )
�

≤
1

2
+d−ω(1). (3.41)

3.3 Noise Stability

Similar techniques to the ones presented in the previous Sections allow to prove a lower

bound on the generalization error achieved by GD, or SGD with large batch-size, to a measure

of the complexity of the task, namely the Noise Stability (Stabδ[ f ]). This provides theoretical

support to a conjecture made in (Zhang et al., 2021), based on empirical observations. The

latter work used the noise sensitivity as a dual measure of the target function complexity,

whereas we use here the noise stability, but the two measures can be easily related, as we

explain below. Let us formally define the Noise Stability.

Definition 14 (Noise stability). Let f : {±1}d → R and δ ∈ [0,1/2]. Let x be uniformly

distributed on the Boolean d -dimensional hypercube, and let y be formed from x by flipping

each bit independently with probability δ. We define the δ-noise stability of f by

Stabδ[ f ] :=E(x ,y )[ f (x ) · f (y )]. (3.42)

Intuitively, Stabδ[ f ]measures how stable the output of f is to a perturbation that flips each

input bit with probability δ, independently. The noise stability can be easily related to the

noise sensitivity NSδ[ f ]VIII, used in (Zhang et al., 2021).

Example 5. • (Parities): For χS (x ) :=
∏

i∈S xi , with |S |= k , we have:

Stabδ(χS ) = (1−2δ)k . (3.43)

• (Majority): For Majd (x ) := sgn
�

∑d
i=1 xi

�

, we have for d →∞:

Stabδ(Majd )∼
2

π
arcsin(1−2δ) (3.44)

For parities, the noise stability decreases exponentially fast with the degree of the parity,

thus high-degree parities are highly noise unstable functions. On the other hand, majority

is a fairly noise stable function, as for all δ < 1/2 the noise stability converges to a positive

constant for large d .

VIIISpecifically, for binary-valued functions, NSδ[ f ] =
1
2 −

1
2 Stabδ[ f ].
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The generalization error depends as well on the complexity of the network, which is quanti-

fied in terms of the number of edges in the network, the number of time steps, and gradients

precision in the gradient descent algorithm. Our first result connects to the SQ-like lower

bound presented for the INAL in Section 3.1. Recall the definition of D -extension of a target

function f (Definition 7), which we denoted by f .

Theorem 8. Consider a fully connected neural network of size P with initialization that is

invariant under permutations of the input neurons. Let f : {±1}d →{±1} be a balanced target

function. Let f be the 2d -extension of f as defined in Definition 7. Let NN(.;θ T ) be the output

of noisy-SGD with gradient range A, noise level τ and batch-size B after T time steps. Then,

for δ < 1/4 and for B large enoughIX, the generalization error satisfies

|ENN(.;θ T )〈NN(.;θ T ), f 〉| ≤
T
p

P A

τ
·Stabδ[ f ]

1/4. (3.45)

Remark 9. • One could consider other groups of invariances than the full permutation

group. The analysis of lower bounds for networks invariant to general group actions,

depending on the complexity of the target task is left for future work.

• Generally, Theorem 8 holds for any δ such that CP(orb( f )) ≤ Stabδ[ f ]; in particular,

this holds for δ < 1/4 under input doubling. Increasing the magnitude of the input

extension allows to increase the upper bound on δ. In Appendix D.2 we discuss how

under non-extremal and non-dense assumptions one can remove the input doubling

and have Theorem 8 hold for the original d , for some δ > 0.

Theorem 8 states a lower bound for learning in the extended input space. This is because the

proof of Theorem 8 uses Abbe and Sandon, 2020a which obtains a lower-bound in terms of

the cross-predictability (CP) (instead of the noise stability), which is a complexity measure of

a class of functions, rather than a single function (see Definition 8). Similarly to Theorem 4,

we use the input doubling to guarantee that the hypothesis class F resulting from the

orbit of f , i.e., orb( f ) = { f ◦π :π ∈ S2d }, has large enough cardinality (i.e. not degenerate).

Degenerate orbits could indeed be learned using a proper choice of the initialization (e.g. for

orbits containing a unique function, one can simply set the weights of the neural network

at initialization to represent the unique function, if the network has enough expressivity).

Instead, the input doubling prohibits such representation shortcut and ensures that the

structural properties of the function is what creates the difficulty of learning, irrespective of

the choice of the initialization.

One can remove this input doubling requirement by assuming that f is non-extremal (i.e.,

no terms of degree θ (d ) in the Fourier basis) and non-dense (i.e., poly(d )-sized Fourier

spectrum), see Appendix D.2.

IXThis holds for B ≥ 1/CP(orb( f )).
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Theorem 8 states that if the target function is highly noise unstable, specifically if there exists

δ < 1/4 such that Stabδ[ f ] decreases faster than any inverse polynomial in d , then GD will

not learn the 2d -extension of f (or f itself if it is non-extremal/dense) in polynomial time

and with a polynomially sized neural network initialized at random. So in that sense, the

noise-stability gives a proxy to generalization error, as observed in (Zhang et al., 2021). More

specifically, this result is about failure of the weakest form of learning no matter what the

architecture is. One could also consider ‘regular’ architectures (such as with isotropic layers)

and stronger learning requirements, but this is left to future work.

More details of the proof of Theorem 8 are in Appendix D.1. In Appendix D.3, we consider

Pointer-Value-Retrieval (PVR) tasks, that were mentioned in the Introduction and that will

be considered in Chapter 4. We explain how the noise stability of such functions can be

computed, and the implications of Theorem 8.

Remark 10. We remark that with a similar proof technique as the one in Proposition 8 and

Theorem 6 and 7 one can remove the input extension trick, by constraining the loss to be the

correlation-loss and the architecture to be 2-layer fully connected with ReLU activation.

3.3.1 Noise Stability and Initial Alignment

In this Section, we relate the Noise Stability to the Initial Alignment, introduced in Definition 3.

We remark that both noise sensitivity and INAL are related by the cross-predictability (CP).

Let us first give two definitions. Recall that for f : {±1}d →{±1}, NSδ[ f ] =
1
2 −

1
2 Stabδ[ f ]. Let

us recall the definition of “high-degree” functions.

Definition 15 (High-Degree, restatement of Definition 10). We say that a family of functions

fd : {±1}d →R is high-degree if for any fixed k , W ≤k ( fd ) = d−ω(1), i.e. W ≤k ( fd ) is negligible.

We further introduce the notion of ‘noise sensitive’ and ‘strongly noise sensitive’ functions.

Definition 16 (Noise sensitive function). We say that a family of functions fd : {±1}d →{±1}
is noise sensitive if for any δ ∈ (0, 1/2], NSδ[ fd ] = 1/2−od (1).

Definition 17 (Strongly noise sensitive function). We say that a family on functions fn :

{±1}d →{±1} is strongly noise sensitive if for any δ ∈ (0, 1/2], NSδ[ fd ] = 1/2−d−ω(1).

We then prove the following.

Proposition 9. Let NNd :Rd →R be a fully connected neural network with Gaussian i.i.d.

initialization and expressive activation (as in Theorem 4). If INAL(NNd , fd ) = d−ω(1), then fd

is noise sensitive.

Proof. It is enough to show that for any δ ∈ [0,1/2],
∑d

k=0(1−2δ)k W k ( fd ) = od (1), or anal-

ogously that for any ε > 0 and for d large enough
∑d

k=0(1− 2δ)k W k ( fd ) < ε. Fix δ and let
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ε> 0. Let k0 be such that (1−2δ)k0 <ε/2. Then,

d
∑

k=0

(1−2δ)k W k ( fd ) =
k0
∑

k=0

(1−2δ)k W k ( fd ) +
d
∑

k=k0+1

(1−2δ)k W k ( fd ) (3.46)

≤W ≤k0 ( fd ) + (1−2δ)k0+1
d
∑

k=k0+1

W k ( fd ). (3.47)

By Proposition 3 and Corollary 4, if INAL( fd ,σ) = d−ω(1) then fd is high-degree. Thus,

W ≤k0 ( fd ) = d−ω(1), and clearly for d large enough W ≤k0 ( fd ) < ε/2. On the other hand,
∑d

k=k0+1 W k ( fd ) < 1, since f is Boolean-valued. Thus,
∑d

k=0(1− 2δ)k W k ( fd ) < ε, and the

Proposition is proven.

Proposition 10. If fd is strongly noise sensitive, then fd is high-degree.

Proof. It is enough to show that if
∑d

k=0(1− 2δ)k W k ( fd ) = d−ω(1) then for any constant k ,

W ≤k ( fd ) = d−ω(1). Take k0 ∈N, then

d−ω(1) =
d
∑

k=0

(1−2δ)k W k ( fd )≥
k0
∑

k=0

(1−2δ)k W k ( fd )≥ (1−2δ)k0 W ≤k0 ( fd ). (3.48)

Clearly this implies that W ≤k0 ( fd ) = d−ω(1), and the proof is concluded.

3.4 Conclusion and Future Work

In this Chapter, we showed lower bounds on the generalization error achieved after training

with the noisy-GD algorithm in specific settings, depending on three complexity measures:

the initial alignment, the initial gradient alignment and the noise stability.

Regarding the results of Section 3.1, a relevant future work would be to extend the result

beyond fully connected architectures. As mentioned in that Section, we suspect that our

result can be generalized to all architectures that contain a fully connected layer anywhere in

the network. Another direction would be to extend the work to other continuous distributions

of initial weights (beyond Gaussian). As a matter of fact, in the setting of iid Gaussian inputs

(instead of Boolean inputs), Theorem 4 extends to all weight initialization distributions with

zero mean and variance O (d−1). However, in the case of Boolean inputs that we consider,

this may not be a trivial extension. Another extension, on which we do not touch, are

non-uniform input distributions.

In Section 3.2, we address some of the limitations of the result of Section 3.1 (Boolean

inputs, necessity of input extension). In particular, we present two lower bounds on the

generalization error in term of the 2nd and 4th moment of the ℓ2 norm of the alignment

between the initial gradient and the target function. We choose the initial gradient alignment
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(instead of the initial alignment), as this is the quantity that arises in our proof technique.

However, we believe that for standard activations (e.g. ReLU), the two alignments can be

related, and one could express both results in terms of the same measure. There are several

future directions to pursue. Our results hold for noisy-GD on the correlation loss (and on

the hinge loss, with additional assumption on the initialization). It would be interesting to

extend the argument to the square loss, and eventually to general losses. Extending the result

to the square loss implies controlling the gradient alignment achieved along the trajectory

of the Junk-Flow, which for the square loss reads as:

ψ0 = θ 0 (3.49)

ψt+1 =ψt −γ
�

Ex [∇ψt NN(x ;ψt ) ·NN(x ;ψt )]+ξt
�

, (3.50)

where ξt denotes some Gaussian noise. We believe that a coupling between high degree

parities might allow to show that the gradient alignment with the target function stays

negligible along (3.50). Moreover, as discussed in Remark 6, it would be interesting to

characterize the family of initializations that allow (and do not allow) to learn high degree

Boolean functions.

In Section 3.3 we first establish a formal result that supports a conjecture made in (Zhang

et al., 2021), relating the noise sensitivity of a target function to the generalization error.

This gives a first connection between a central measure in Boolean analysis, the noise-

sensitivity, and the generalization error when learning Boolean functions with GD. It would

be interesting to generalize the result to a more general setting of architectures, and to show

a positive result that relates the generalization error to the noise stability.
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4.1 The Pointer-Value-Retrieval (PVR) benchmark

Recently, (Zhang et al., 2021) introduced the pointer value retrieval (PVR) benchmark. This

benchmark consists of a supervised learning task on MNIST (LeCun et al., 2010) digits with

a ‘logical’ or ‘reasoning’ component in the label generation. More specifically, the functions

to be learned are defined on MNIST digits organized either sequentially or on a grid, and the

label is generated by applying some ‘reasoning’ on these digits, with a specific digit acting as

a pointer on a subset of other digits from which a logical/Boolean function is computed to

generate the label.

For instance, consider the PVR setting for binary digits in the string format, where a string of

MNIST digits is used as input. Consider in particular the case where only 0 and 1 digits are

used, such as in the example of Figure 4.1. The label of this string is defined as follows: the

first 3 bits 101 define the pointer in binary expansion, and the pointer points to a window

of a given length, say 2 in this example. Specifically, the pointer points at the first bit of the

window. To generate the label, one has to thus look the 6th windowI of length 2 given by

11, and there the label is produced by applying some fixed function, such as the parity (so

the label would be 0 in this example). In (Zhang et al., 2021), the PVR benchmark is also

defined for matrices of digits rather than strings; we focus here on the string version that

captures all the purposes of the PVR study. This benchmark is introduced to understand the

limits of deep learning on tasks that go beyond classical image recognition, investigating in

particular the trade-off between memorization and reasoning by acting with a particular

distribution shift at testing (see further details below).

In order to learn such PVR functions, one has to first learn the digit identification and then

the logical component on these digits. Handling both tasks successfully at once is naturally

more demanding than succeeding at the latter assuming the first is successful. One can thus

Ipointer 000 points at the first window, pointer 001 at the second window, and so on. Thus pointer 101, that
is equal to 5 in binary expansion, points at the 6th window.
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1 0 1 0 0 1 0 1 1 1 0

WindowPointer Aggregation
function Output

Figure 4.1: An example of a PVR function with a window size of 2. The first 3 bits are the
pointer, which points to a window in the subsequent bits. Specifically, the number indicated
by the pointer bits in binary expansion gives the position of the first bit of the window. The
label is then produced by applying some fixed aggregation function to the window bits (e.g.,
parity, majority-vote, etc.).

focus on the ‘logical component’ as a necessary component to learn, and this corresponds to

learning a Boolean function. The overall function that maps the pixels of an image to its label

in the PVR is of course also a Boolean function (like any computer-encoded function), but the

structural properties of such meta-functions are more challenging to describe. In any case,

to understand the limits of deep learning on such benchmarks, we focus on investigating

first the limits of deep learning on the logical/Boolean component.

We next re-state formally one of the PVR benchmarks from (Zhang et al., 2021), focusing

on binary digits for simplicity. We will use the alphabet {0, 1} to describe the benchmark to

connect to the MNIST dataset, but will later switch to the alphabet {+1,−1} for the problem

of learning Boolean functions with neural networks. Recall for d ∈N, Fd
2 = {0, 1}d .

Definition 18 (Boolean PVR with sliding windows). The input x consists of d bits and the

label is generated as

f (x1, . . . , xd ) = g (xP (x p ), . . . , xP (x p )+w−1). (4.1)

where p is the number of bits in the pointer, w is the window size, g :Fw
2 →R is the aggregation

function, P : Fp
2 → [p + 1 : d ] is the pointer map, x j denotes the bit in position j and x p =

(x1, ..., xp ) denotes the pointer bits. We often set d = p +2p , and hence the last window starts

at the last digit.

In words, the first p bits give a pointer to the beginning of a window of w consecutive bits,

and the label is produced by applying a Boolean function g on these w bits.

Remark 11. If w > 1, for some values of the pointer, P (x p )+w −1 would exceed the dimension

of input n. This issue can be solved by using cyclic indices or by using non-overlapping windows

as defined in Appendix D.3. However, in the experiments in Section 4.5, we mainly truncate

windows (if necessary) in order to capture the underlying asymmetries (e.g., the last windows

have smaller sizes).
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4.2 Canonical Holdout

In this Chapter, we consider the problem of learning in the holdout setting, i.e. when some

data are withheld (or ‘unseen’) during training. We focus on a specific type of holdout setting,

that we call ‘canonical holdout’, which we define here.

Definition 19 (Canonical holdout). LetF be the class of Boolean functions on d bits and let

f be a specific function in that class. For k ∈ [d ], consider the problem of learningF from

samples (x−k , f (x−k )), where the x−k ’s are independently drawn from the distribution that

freezes component k to 1 and that draws the other components i.i.d. Bernoulli(1/2). Let f̃−k be

the function learned under this training distribution. We are interested in the generalization

error with square loss when the k -th bit is not frozen at testing, i.e.,

gen(F , f̃−k ) =
1

2
Ex∼U Fd

2 , f ∼UF
�

( f (x )− f̃−k (x ))
2
�

, (4.2)

where by x ∼U Fd
2 we mean that x is chosen uniformly at random from Fd

2 , and similarly for

f ∼U F .

Finally, we will consider neural network architectures that are invariant to some transforma-

tions on the inputs, such as permutation invariance. In the PVR setting, this means that we

do not assume that the learner has knowledge of which bits are in the window. In such cases,

instead of learning a class of functionF , one can equivalently talk about learning a single

function f (with the implicitF defined as the orbit of f through the invariance group), and

define

gen( f , f̃−k ) =
1

2
Ex∼U Fd

2

�

( f (x )− f̃−k (x ))
2
�

.

4.3 Boolean Influence and Low-Degree Bias Hypothesis

In this Chapter we put forward the following hypothesis:

(S)GD on the square lossII and on certain network architectures such as MLPs

and Transformers has an implicit bias towards low-degree representations when

learning logical functions such as Boolean PVR functions.

Let us give an illustration of this hypothesis. Before starting, recall that any Boolean function

f : {±1}d →R can be written in terms of its Fourier-Walsh transform:

f (x ) =
∑

T⊆[d ]
f̂ (T )χT (x ), (4.3)

IIWe do not expect the square loss to be critical, but it makes the connection to the Boolean influence more
explicit.
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where χT (x ) =
∏

i∈T xi and f̂ (T ) =Ex [ f (x )χT (x )] are respectively the basis elements and

the coefficients of the Fourier-Walsh transform of f . The Boolean influence is defined as

follows.

Definition 20 (Boolean influence (O’Donnell, 2014)). Let f : {±1}d →R be a Boolean function

and let f̂ be its Fourier-Walsh transform. The Boolean influence of variable k ∈ [d ] on f is

defined by

Infk ( f ) :=
∑

T⊆[d ]:k∈T

f̂ (T )2. (4.4)

In particular, if f : {±1}d →{±1},

Infk ( f ) =P( f (x ) ̸= f (x + ek )), (4.5)

where x + ek corresponds to the vector obtained by flipping the k -th component of x .

Example 6. Assume x ∼Unif{±1}d .

• (Parities): For χS (x ) :=
∏

i∈S xi , for S ⊆ [d ]:

Infk (χS ) =1(k ∈ S ). (4.6)

Indeed, flipping any coordinates in S flips the output of χS with probability 1, whereas

the output of χS is not affected by changes in coordinates outside its support.

• (Majority): If Majd (x ) = sgn(
∑d

i=1 xi ), with d odd:

Infk

�

Majd

�

= 2−(d−1)
�

d −1
d−1

2

�

∀k ∈ [d ]. (4.7)

Indeed, flipping coordinate k matters if and only if exactly d−1
2 other bits have the same

sign as the k -th bit.

Consider the following example of a PVR function with a 1-bit pointer, 2 overlapping windows

of length 2, and parity for the aggregation function. We consider f : {±1}d →{±1} (i.e., with

±1 variables instead of 0, 1, to simplify the expressions), with f given by

f (x1, x2, x3, x4) =
1+ x1

2
x2 x3+

1− x1

2
x3 x4. (4.8)

We can rewrite f in terms of its Fourier-Walsh expansion (i.e., pulling out all the multivariate

monomials appearing in the function, see Section 4.5 for more details), which gives

f (x1, x2, x3, x4) =
1

2
x2 x3+

1

2
x3 x4+

1

2
x1 x2 x3−

1

2
x1 x3 x4. (4.9)
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Consider now training a neural network such as a Transformer as in Section 4.5 on this

function, with quadratic loss, and a canonical holdout corresponding to freezing x2 = 1

at training. Under this holdout, and under the ‘low-degree implicit bias’ hypothesis, the

low-degree monomials are learned first (see experiments in Section 4.5), resulting in the

following function being learned at training:

f−2(x1, x2, x3, x4) =
1

2
x3+

1

2
x3 x4+

1

2
x1 x3−

1

2
x1 x3 x4 =

1+ x1

2
x3+

1− x1

2
x3 x4. (4.10)

Thus, according to Lemma 2 proved in Appendix E, the generalization error is given by

1

2
E( f (x )− f−2(x ))

2 =P( f (x ) ̸= f (x + e2)) =
1

2
, (4.11)

which is the probability that flipping the frozen coordinate changes the value of the target

function, i.e., the Boolean influence (where we denoted by X + e2 the vector obtained by

flipping the second entry in X ). As shown in this Chapter, neural networks tend to follow this

trend quite closely, and we can prove this hypothesis on simple linear models. Notice that an

ERM-minimizing function could have taken a more general form than a degree minimizing

function, i.e.,

f ERM
−2 (x ) :=

1+ x2

2
f−2(x ) +

1− x2

2
r (x ) (4.12)

for any choice of r : {±1}4→{±1}. In the special case of r = 0, f ERM
−2 corresponds to f−2 (the

low-degree representation).

For instance, among such ERM-minimizers, one can check that the minimum ℓ2-norm

interpolating solution would be given by

f ℓ2
−2 (x ) :=

1

4
(x3+ x2 x3)+

1

4
(x3 x4+ x2 x3 x4)+

1

4
(x1 x3+ x1 x2 x3)−

1

4
(x1 x3 x4+ x1 x2 x3 x4). (4.13)

This gives a generalization error of 1
2E( f (x )− f ℓ2

−2 (x ))
2 = 4( 14 )

2 = 1
4 , i.e., half the error of f−2,

yet still bounded away from 0.

In order to improve on this, under the same canonical holdout with x2 = 1, one would like to

rely on a type of minimum description length bias, since describing f may be more efficient

than f−2 due to the stronger symmetries of f . Namely, f corresponds to taking the parity

on the middle two bits if x1 = 1, and on the last two bits otherwise. On the other hand, f−2

requires changing the function depending on x1 = 1 or x1 =−1, since it is once the function

x3 and once the function x3 x4. So an implicit bias that would exploit such symmetries,

featuring in PVR tasks, would give a different solution than the low-degree implicit bias,

and could result in lower generalization error. We leave to future work to investigate this

‘symmetry compensation’ procedure.
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4.4 Related Literature

Implicit bias. The implicit bias of neural networks trained with gradient descent has been

extensively studied in recent years (Gunasekar et al., 2018a; Ji and Telgarsky, 2019; Moroshko

et al., 2020; Neyshabur et al., 2017; Neyshabur et al., 2014). In particular, (Soudry et al.,

2017) proved that gradient descent on linearly-separable binary classification problems

converges to the maximum ℓ2-margin direction. Several subsequent works studied the

implicit bias in classification tasks on various networks architectures, e.g., homogeneous

networks (Lyu and Li, 2019), two layers networks in the mean field regime (Chizat and Bach,

2020), linear and ReLU fully connected networks (Vardi et al., 2021), and convolutional linear

networks (Gunasekar et al., 2018b). Among regression tasks, the problem of implicit bias has

been analysed for matrix factorization tasks (Arora et al., 2019; Gunasekar et al., 2017; Razin

and Cohen, 2020), and also gradient flow (Berthier, 2022; Pesme et al., 2021) and (S)GD (Even

et al., 2023) on diagonal linear networks. However, all these works consider functions with

real inputs, instead of logical functions which are the focus of this work. On the other hand,

as discussed in Section 4.3, the Boolean influence generalization characterization reflects the

implicit bias of GD on neural networks to learn low-degree representations. Similar types of

phenomena can implicitly be found in (Rahaman et al., 2019; Xu et al., 2019; Xu et al., 2018),

in particular as the “spectral bias” in the context of real valued functions decomposed in

the classical Fourier basis (where the notion of lower degree is replaced by low frequencies).

In (Abbe, Boix-Adsera, et al., 2023; Abbe, Boix-Adserà, et al., 2021; Abbe, Boix-Adserà, and

Misiakiewicz, 2022), the case of Boolean functions is considered as in this Thesis, and it is

established that for various ‘regular’ architectures (having some symmetry in their layers),

gradient descent can learn target functions that satisfy a certain ‘staircase’ property.

Distribution shift. Many works were aimed at characterizing when a classifier trained on

a training distribution (also called the “source” distribution) performs well on a different

test domain (also called the “target” distribution) (Quionero-Candela et al., 2009). On the

theoretical side, (Ben-David et al., 2010) obtains a bound of the target error of a general

empirical risk minimization algorithm in terms of the source error and the divergence

between the source and target distribution, in a setting where the algorithm has access to a

large dataset from the source distribution and few samples from the target distribution. We

refer to (Shen et al., 2017) for a further result in a similar setting. Instead, in this work we

focus on gradient descent on neural networks in the setting where no data from the target

distribution is accessible. On the empirical level, several benchmarks have been proposed to

evaluate performance for a wide range of models and distribution shifts (Miller et al., 2021;

Sagawa et al., 2021; Wiles et al., 2022). Despite this significant body of works on distribution

shift, we did not find works that related the generalization error under holdout shift in terms

of the Boolean influence.
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4.5 Results

Recall, the canonical holdout setting defined in Definition 19: component k is frozen to

1 during training, and it is released to Unif{±1} at testing. Our experiments show that in

this setting, for some relevant architectures, the generalization error is close to the Boolean

influence of variable k on f (Definition 20).

4.5.1 Boolean influence and generalization

To explain the connection between generalization error and Boolean influence, we start with

a simple lemma relating the Boolean influence to the ℓ2-distance between the true target

function and the function obtained by freezing component k (which we call the “frozen

function”).

Lemma 2. Let f : {±1}d →R be a Boolean function and let f−k be defined as f−k (x ) := f (x−k )
where x−k (i ) = 1 if i = k and x−k (i ) = x (i ) otherwise. Then,

1

2
Ex∼Unif{±1}d

�

( f (x )− f−k (x ))
2
�

= Infk ( f ). (4.14)

The proof of Lemma 2 can be found in Appendix E. In Section 4.5.2, we present experiments

that demonstrate the relation between the Boolean influence and the generalization error

for different architectures. In Section 4.5.3, we focus on linear models.

4.5.2 Experiments

We consider three architectures for our experiments: multi-layer perceptron (MLP) with 4

hidden layers, the Transformer (Vaswani et al., 2017), and MLP-Mixer (Tolstikhin et al., 2021).

For each architecture, we train the model while freezing coordinate 1, then coordinate 2 and

so on, until coordinate d , and compare the generalization error with the Boolean influence

of the corresponding coordinates of the target function. We train our models using ℓ2 loss

and mini-batch SGD with momentum and batch-size of 64 as the optimizer. Moreover,

we have repeated each experiment 40 times and averaged the results. Furthermore, note

that for the MLP model, we pass the Boolean vector directly to the model. However, for the

Transformer and MLP-Mixer, we first encode +1 and −1 tokens into 256 dimensional vectors

and then we pass the embedded input to the models. More details on training procedure as

well as further experiments can be found in (Abbe, Bengio, et al., 2022, Appendix F).

Influence v.s. canonical holdout generalization. In this section, we consider a Boolean

PVR function (as in Def. 18) with 3 pointer bits to be learned by the neural networks. For this

function we set window size to 3 and use majority-vote (defined as g (x1, . . . , xr ) = sign(x1+· · ·+
xr ), outputting −1, 0, or 1) as the aggregation function on the windows. The generalization
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Figure 4.2: Comparison between the generalization loss in the canonical distribution shift
setting and the Boolean influence for a PVR function with 3 pointer bits, window size 3, and
majority-vote aggregation function.

error of the models on this PVR function and its comparison with the Boolean influence are

presented in Figure 4.2. The x -axis corresponds to the index of the frozen coordinate, that is

from 4 to 11 (we do not freeze the pointer bits). On the y -axis, for each frozen coordinate

we report the generalization error obtained in the corresponding holdout setting for MLP,

the Transformer, and MLP-Mixer, together with the value of the Boolean influence of the

frozen coordinate on the target function. It can be seen that the generalization error of

MLP and the Transformer can be well approximated by the Boolean influence. Whereas, the

generalization error of MLP-Mixer follows the trend of the Boolean influence with an offset.

We remark that in Figure 4.2, the value of the Boolean influence (and gen. error) in the PVR

task varies across different indices due to boundary effects and the use of truncated windows

(see Def. 18). We refer to (Abbe, Bengio, et al., 2022, Appendix F) for further experiments on

other target functions.

Implicit bias towards low-degree representation. Consider the problem of learning a

function f in the canonical holdout setting freezing xk = 1. Denote the Fourier coefficients

of the frozen function f−k (as defined in Lemma 2), by f̂−k (S ), for all S ⊆ [d ] := {1, ..., d }
(recall, f̂−k (S ) = Ex [ f−k (x )χS (x )]). For S such that k ̸∈ S , the neural network can learn

coefficient f̂−k (S )using eitherχS (x )or xk ·χS (x ) =χS∪{k}(x ) (since these are indistinguishable

at training). The low-degree implicit bias states that neural networks have a preference for

the lower degree monomial, i.e., χS . According to Lemma 2, the generalization error will be

close to the Boolean influence ifχS is learned faster thanχS∪{k} and thus the term f̂−k (S )χS (x )
in the Fourier expansion of f−k , is mostly learned by the lower degree monomial. Figure 4.3

shows this bias empirically for the above mentioned PVR function and for frozen coordinate

k = 6. Figure 4.3 (top-left) shows that the MLP model has a strong preference for low-degree
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Figure 4.3: The coefficients of a selected group of monomials learned by the MLP (top-left),
MLP-Mixer (top-right) and the Transformer (bottom) when learning the aforementioned
PVR function, with x6 = 1 frozen during the training. The coefficient of these monomials
in the original function are f̂ ({6}) = 0.1875, f̂ ({3,6,7,8}) = 0.0625, f̂ ({6,7,8}) = −0.0625,
and f̂ ({1,6}) = −0.1875. One can observe that the monomials of the lowest degree are
indeed picked up first during the training of the MLP and Transformer, which explains the
tight approximation of the Boolean influence for the generalization error in these cases. In
contrast, the MLP-Mixer also picks up some contribution from the higher degree monomials
including the frozen bit x6.

monomials (continuous lines), i.e., it captures the monomials in the original function using

monomials that exclude the frozen index. Therefore the generalization error of MLP is very

close to the Boolean influence as seen in Figure 4.2. Whereas, Figure 4.3 (top-right) shows

that the MLP-Mixer model has a weaker preference for lower degree monomials and hence,

its generalization error follows the trend of Boolean influence with an offset, which is also

present in Figure 4.2.
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4.5.3 Linear Regression Models

In this section, we will focus on linear functions and we state a theorem for linear regression

models.

Theorem 9. Let f : {±1}d →R be a linear function, i.e., f (x1, · · · , xd ) = f̂ (;)+
∑d

i=1 f̂ ({i })xi .

Consider the canonical holdout where the k -th component is frozen at training for a linear

regression model where weights and biases are initialized independently with the same mean

and varianceσ2. Also assume the frozen function is unbiased, i.e., Ex−k
[ f (x )] = 0. In this case,

the expected generalization error (over different initializations) of the function learned by GD

after t time steps is given by

Eθ 0 [gen( f , f̃ (t )−k )] = Infk ( f ) +oσ2 (1) +O (e −c t ), (4.15)

where c is a constant dependent on the learning rate. Moreover, if the frozen function is biased,

the expected generalization error is equal to

Eθ 0 [gen( f , f̃ (t )−k )] =
( f̂ (;)− f̂ ({k}))2

4
+oσ2 (1) +O (e −c t ). (4.16)

The proof of Theorem 9 is presented in Appendix E.

4.6 Conclusion

In this Chapter we investigate the generalization error under the canonical holdout. The

‘low-degree implicit bias hypothesis’ is put forward and supported both experimentally and

theoretically for certain architectures. This gives a new insight on the implicit bias of GD

when training neural networks, that is specific to Boolean functions such as the Boolean

PVR, and that relates to the fact that certain networks tend to greedily learn monomials

by incrementing their degree. In particular, this allows to characterize the generalization

error in terms of the Boolean influence, a second central notion in Boolean Fourier analysis.

Boolean measures thus seem to have a role to play in understanding generalization when

learning of ‘reasoning’ or ‘logical’ functions. There are many directions to pursue such as:

1. Extending the realm of architectures/models for which we can prove formally the

Boolean influence tightness.

2. Considering more general holdout or distribution shift models. In (Abbe, Bengio,

et al., 2023) the authors consider a stronger case of out-of distribution generalization

and show convergence to a min-degree-interpolator for several models, including

Transformers, random features models and diagonal linear networks.

3. Investigating how the picture changes when the bits/digits are given by MNIST images.
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4. Better understanding when the low-degree implicit bias is taking place or not, within

and beyond PVR, since the Boolean influence is not always tight in our experiments

(e.g., MLP-Mixers seem to have a worse performance than the Boolean influence on

PVR).

5. Investigating how to ‘revert’ the implicit bias towards low-degree when it is taking

place, to compensate for the unseen data; this will require justifying and engineering

why certain symmetries are favorable in the learned function.
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5 Curriculum Learning for Parities

5.1 Introduction

Several experimental studies have shown that humans and animals learn considerably better

if the learning materials are presented in a curated, rather than random, order (Avrahami

et al., 1997; Elio and Anderson, 1984; Ross and Kennedy, 1990; Shafto et al., 2014). This is

broadly reflected in the educational system of our society, where learning is guided by an

highly organized curriculum. This may involve several learning steps: with easy concepts

introduced at first and harder concepts built from previous stages.

Inspired by this, (Bengio et al., 2009) formalized a curriculum learning (CL) paradigm in

the context of machine learning and showed that for various learning tasks it provided

improvements in both the training speed and the performance obtained at convergence.

This seminal paper inspired many subsequent works, that studied curriculum learning

strategies in various application domains, e.g. computer vision (Dong et al., 2017; Sarafianos

et al., 2017), computational biology (Xiong et al., 2021), auto-ML (Graves et al., 2017), natural

language modelling (Campos, 2021; Shi et al., 2013, 2015; Zaremba and Sutskever, 2014).

While extensive empirical analysis of CL strategies have been carried out, there is a lack of

theoretical analysis. In this Chapter, we make progress in this direction.

A stylized family of functions that is known to pose computational barriers is the class of

k -parities over d bits of a binary string. In this Chapter we focus on this class. To define

this class: for each subset S of coordinates, the parity over S is defined as +1 if the number

of negative bits in S is even, and −1 otherwise, i.e. χS (x ) :=
∏

i∈S xi , xi ∈ {±1}. The class

of k -parities contains all χS such that |S |= k and it has cardinality
�d

k

�

. Learning k -parities

requires learning the support of χS by observing samples (x ,χS (x )), x ∈ {±1}d , with the

knowledge of the cardinality of S being k . This requires finding the right target function

among the
�d

k

�

functions belonging to the class.

Learning parities is always possible, and efficiently so, by specialized methods (e.g. Gaussian

elimination over the field of two elements). Moreover, (Abbe and Sandon, 2020a) shows that
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there exists a neural net that learns parities of any degree if trained by SGD with small batch

size. However, this is a rather unconventional net. In fact, under the uniform distribution,

parities are not efficiently learnable by population queries with any polynomially small noise.

The latter can be explained as follows. Assume we sample our binary string uniformly at

random, i.e. for each i ∈ {1, ..., d }, xi ∼Rad(1/2)I. Then, the covariance between two parities

χS ,χS ′ is given by:

Ex∼Rad(1/2)⊗d

�

χS (x )χS ′ (x )
�

=

(

1 if S = S ′,

0 if S ̸= S ′,

where x ∼ Rad(1/2)⊗d denotes the product measure such that xi
i i d∼ Rad(1/2), i ∈ {1, ..., d }.

More abstractly, a parity function of k bits is uncorrelated with any function of k − 1 or

less bits. This property makes parities hard to learn for any progressive algorithm, such as

gradient descent. Indeed, when trying to learn the set of relevant features, a learner cannot

know how close its progressive guesses are to the true set. In other words, all wrong guesses

are indistinguishable, which suggests that the learner might have to perform exhaustive

search among all the
�d

k

�

sets.

The hardness of learning unbiased parities - and more in general any classes of functions with

low cross-correlations - with gradient descent has been analysed e.g. in (Abbe and Sandon,

2020a), where the authors show a lower bound on the computational complexity of learning

low cross-correlated classes with gradient-based algorithms with bounded gradient precision.

For k -parities, this gives a computational lower bound of dΩ(k ) for any architecture and

initialization.

However, if we look at different product distributions, then the inner product of a monomial

and a component xi that is inside and outside the support becomes distinguishable. Suppose

the inputs are generated as x ∼Rad(p )⊗d , for some p ∈ (0, 1). Then the covariance between

χS and χS ′ is:

Ex∼Rad(p )⊗d

h

(χS (x )−E[χS (x )]) · (χS ′ (x )−E[χS ′ (x )])
i

=µ2k−|S∩S ′|
p −µ2k

p ,

where we denoted byµp :=Ez∼Rad(p )[z ] = 2p−1. This implies that if for instance |p−0.5|> 0.1,

just computing correlations with each bit, will recover the parity with complexity linear in d

and exponential in k . If we choose p = 1−1/k , say, we can get a complexity that is linear in

d and polynomial in k . Moreover, the statements above hold even for parities with random

noise.

This may lead one to believe that learning biased parities is easy for gradient descent based

methods for deep nets. Indeed, (Malach et al., 2021) showed that biased parities are learnable

Iz ∼Rad(p ) if P(z = 1) = 1−P(z =−1) = p .
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by SGD on a differentiable model consisting of a linear predictor and a fixed module imple-

menting the parity. However, if we consider fully connected networks, as our experiments

show (Figure 5.1), while gradient descent for a p far from a half converges efficiently to zero

training loss, the learned function actually has non-negligible error when computed with

respect to the uniform measure. This is intuitively related to the fact that, by concentration

of measure, there are essentially no examples with Hamming weightII close to d /2 in the

training set sampled under Rad(p )⊗d , and therefore it is not reasonable to expect for a general

algorithm like gradient descent on fully connected networks (that does not know that the

target function is a parity) to learn the value of the function on such inputs.

We thus propose a more subtle question: Is it possible to generate examples from different

product distributions and present them in a specific order, in such a way that the error with

respect to the unbiased measure becomes negligible?

As we mentioned, training on examples sampled from a biased measure is not sufficient

to learn the parity under the unbiased measure. However, it does identify the support of

the parity. Our curriculum learning strategy is the following: We initially train on inputs

sampled from Rad(p )⊗d with p close to 1, then we move (either gradually or by sharp steps)

towards the unbiased distribution Rad(1/2)⊗d . We show that this strategy allows to learn

the k -parity problem with a computational cost of d O (1) with SGD on the hinge loss or on

the covariance loss (see Def. 25). In our proof, we consider layer-wise training (similarly to

e.g. (Barak et al., 2022)) and the result is valid for any (even) k and d .

As we mentioned earlier, the failure of learning parities under the uniform distribution from

samples coming from a different product measure is due to concentration of Hamming

weight. This leads us to consider a family of functions that we call Hamming mixtures. Given

an input x , the output of a Hamming mixture is a parity of a subset S of the coordinates,

where the subset S depends on the Hamming weight of x (see Def. 23). Our intuition is

based on the fact that given a polynomial number of samples from, say, the p = 1/4 biased

measure, it is impossible to distinguish between a certain parity χS and a function that is χS ,

for x ’s whose Hamming weight is at most 3/8d , and a different function χT , for x ’s whose

Hamming weight is more than 3/8d , for some T that is disjoint from S . In other words, a

general algorithm does not know whether there is consistency between x ’s with different

Hamming weight. We show a lower bound for learning Hamming mixtures with curriculum

strategies that do not allow to get enough samples with relevant Hamming weight.

Of course, curriculum learning strategies with enough learning steps allow to obtain samples

from several product distributions, and thus with all relevant Hamming weights. Therefore,

we expect that CL strategies with unboundedly many learning steps will be able to learn the

Hamming mixtures.

While our results are restricted to a limited and stylized setting, we believe they may open

IIThe Hamming weight of x ∈ {±1}d is: H (x ) =
∑d

i=11(xi = 1).

71



Chapter 5 Curriculum Learning for Parities

new research directions. Indeed, we believe that our general idea of introducing correlation

among subsets of the input coordinates to facilitate learning, may apply to more general

settings. We discuss some of these future directions in the conclusion section of the Chapter.

5.1.1 Related Work

Learning Parities on Uniform Inputs. Learning k -parities over d bits requires determining

the set of relevant features among
�d

k

�

possible sets. The statistical complexity of this problem

is thus θ (k log(d )). The computational complexity is harder to determine. k -parities can be

solved in d O (1) time by specialized algorithms (e.g. Gaussian elimination) that have access

to at least d samples. In the statistical query (SQ) framework (Kearns, 1998) - i.e. when

the learner has access only to noisy queries over the input distribution - k -parities cannot

be learned in less then Ω(d k ) computations. (Abbe and Sandon, 2020a; Shalev-Shwartz

et al., 2017) showed that gradient-based methods suffer from the same SQ computational

lower bound if the gradient precision is not good enough. On the other hand, (Abbe and

Sandon, 2020a) showed that one can construct a very specific network architecture and

initialization that can learn parities beyond this limit. This architecture is however far from

the architectures used in practice. (Barak et al., 2022) showed that SGD can learn sparse

k -parities with SGD with batch size d θ (k ) on a small network. Moreover, they empirically

provide evidence of ‘hidden progress’ during training, ruling out the hypothesis of SGD

doing random search. (Andoni et al., 2014) showed that parities are learnable by a d θ (k )

network. The problem of learning noisy parities (even with small noise) is conjectured to be

intrinsically computationally hard, even beyond SQ models (Alekhnovich, 2003).

Learning Parities on Non-Uniform Inputs. Several works showed that when the input

distribution is not the Unif{±1}d , then neural networks trained by gradient-based methods

can efficiently learn parities. (Malach et al., 2021) showed that biased parities are learnable

by SGD on a differentiable model consisting of a linear predictor and fixed module imple-

menting the parity. (Daniely and Malach, 2020) showed that sparse parities are learnable on

a two layers network if the input coordinates outside the support of the parity are uniformly

sampled and the coordinates inside the support are correlated. To the best of our knowledge,

none of these works propose a curriculum learning model to learn parities under the uniform

distribution.

Curriculum Learning. Curriculum Learning (CL) in the context of machine learning has

been extensively analysed from the empirical point of view (Bengio et al., 2009; Soviany et al.,

2022; Wang et al., 2021). However, theoretical works on CL seem to be more scarce. In (Sagli-

etti et al., 2022) the authors propose an analytical model for CL for functions depending

on a sparse set of relevant features. In their model, easy samples have low variance on the

irrelevant features, while hard samples have large variance on the irrelevant features. In
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contrast, our model does not require knowledge of the target task to select easy examples.

In (Weinshall and Amir, 2020; Weinshall et al., 2018) the authors analyse curriculum learning

strategies in convex models and show an improvement on the speed of convergence of

SGD. In contrast, our work covers an intrinsically non-convex problem. Some works also

analysed variants of CL: e.g. self-paced CL (SPCL), i.e. curriculum is determined by both

prior knowledge and the training process (Jiang et al., 2015), implicit curriculum, i.e. neural

networks tend to consistently learn the samples in a certain order (Toneva et al., 2018). An-

other form of guided learning appears in (Abbe, Boix-Adsera, et al., 2023; Abbe, Boix-Adserà,

et al., 2021; Abbe, Boix-Adserà, and Misiakiewicz, 2022), where the authors analyse staircase

functions - sum of nested monomials of increasing degree - and show that the hierarchical

structure of such tasks guides SGD to learn high degree monomials. Furthermore, (Kalimeris

et al., 2019; Refinetti et al., 2022) show that SGD learns functions of increasing complexity

during training. In a concurrent work (Abbe, Bengio, et al., 2023), the authors propose a

curriculum learning algorithm (named ‘Degree Curriculum’) that consists of training on

Boolean inputs of increasing Hamming weight, and they empirically show that it reduces

the sample complexity of learning parities on small input dimension.

5.2 Definitions and Main Results

We define a curriculum strategy for learning a general Boolean target function. We will

subsequently restrict our attention to the problem of learning parities or mixtures of parities.

For brevity, we denote [d ] = {1, ..., d }. Assume that the network is presented with samples

(x , f (x )), where x ∈ {±1}d is a Boolean vector and f : {±1}d →R is a target function that gen-

erates the labels. We consider a neural network NN(x ;θ ), whose parameters are initialized

at random from an initial distribution P0, and trained by stochastic gradient descent (SGD)

algorithm, defined by:

θ t+1 = θ t −γt
1

B

B
∑

i=1

∇θ t L (θ t , f , x t
i ), (5.1)

for all t ∈ {0, ..., T − 1}, where L is an almost surely differentiable loss-function, γt is the

learning rate, B is the batch size and T is the total number of training steps. For brevity, we

write L (θ t , f , x ) := L (NN(.;θ t ), f , x ). We assume that for all i ∈ [B ], x t
i

i i d∼ D t , whereD t is a

step-dependent input distribution supported on {±1}d . We define our curriculum learning

strategy as follows. Recall that z ∼Rad(p ) if P(z = 1) = 1−P(z =−1) = p .

Definition 21 (r-steps curriculum learning (r-CL)). For a fixed r ∈ N, let T1, ...Tr ∈ N and

p1, ..., pr ∈ [0, 1]. Denote by p̄ := (p1, ..., pr ) and T̄ := (T1, ..., Tr−1). We say that a neural network
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NN(x ;θ t ) is trained by SGD with a r-CL(T̄ , p̄ ) if θ t follows the iterations in (5.1) with:

D t =Rad(p1), 0< t ≤ T1,

D t =Rad(p2), T1 < t ≤ T2,

· · ·

D t =Rad(pr ), Tr−1 < t ≤ T .

We say that r is the number of curriculum steps.

We assume r to be independent on T , in order to distinguish the r -CL from the continuous-CL

(see Def. 24 below). We hypothesize that r -CL may help to learn several Boolean functions,

if one chooses appropriate r and p̄ . However, in this Chapter we focus on the problem

of learning unbiased k -parities. For such class, we obtained that choosing r = 2, a wise

p1 ∈ (0,1/2) and p2 = 1/2 is enough to learn the target parity in d O (1) steps. An interesting

future direction would be studying the optimal r and p̄ . Before stating our Theorem, let

us clarify the generalization error that we are interested in. As mentioned before, we are

interested in learning the target over the uniform input distribution.

Definition 22 (Generalization error). We say that SGD on a neural network NN(x ;θ ) learns a

target function f : {±1}d →Rwith r -CL(T̄ , p̄ ) up to error ε, if it outputs a network NN(x ;θ T )
such that:

Ex∼Rad(1/2)⊗d

�

L (θ T , f , x )
�

≤ ε, (5.2)

where L is any loss function such that Ex∼Rad(1/2)⊗d [L ( f , f , x )] = 0.

We state here our main theoretical result informally. We refer to Section 5.3.1 for the formal

statement with exact exponents and remarks.

Theorem 10 (Main positive result, informal). There exists a 2-CL strategy such that a 2-layer

fully connected network of d O (1) size trained by SGD with batch size d O (1) can learn any

k -parities (for k even) up to error ε in at most d O (1)/ε2 iterations.

Let us analyse the computational complexity of the above. At each step, the number of

computations performed by a 2-layer fully connected network is given by:

(d N +N ) ·B , (5.3)

where d is the input size, N is the number of hidden neurons and B is the batch size.

Multiplying by the total number of steps and substituting the bounds from the Theorem

we get that we can learn the k -parity problem with a 2-CL strategy in at most d O (1) total

computations. Specifically, O (1) denotes quantities that do not grow with k or d , and the

statement holds also for large k , d . We prove the Theorem in two slightly different settings,

see Section 5.3.1.
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One may ask whether the r -CL strategy is beneficial for learning general target tasks (i.e.

beyond parities). While we do not have a complete picture to answer this question, we

propose a class of functions for which some r -CL strategies are not beneficial. We call those

functions the Hamming mixtures, and we define them as follows.

Definition 23 ((S,T,ε)-Hamming mixture). For ε ∈ [0,1], S , T ∈ [d ], we say that GS ,T ,ε :

{±1}d →R is a (S,T,ε)-Hamming mixture if

GS ,T ,ε(x ) :=χS (x )1(H (x )≤ εd ) +χT (x )1(H (x )>εd ),

where H (x ) :=
∑d

i=11(xi = 1) is the Hamming weight of x , χS (x ) :=
∏

i∈S xi and χT (x ) :=
∏

i∈T xi are the parity functions over set S and T respectively.

We will consider ε ̸= 1/2. The intuition of why such functions are hard for some r -CL

strategies is the following. Assume we train on samples (x ,GS ,T .ε(x )), with S , T disjoint and

ε ∈ (0, 1/2). Assume that we use a 2-CL strategy and we initially train on samples x ∼Rad(p )⊗d

for some p <ε. If the input dimension d is large, then the Hamming weight of x is with high

probability concentrated around p d (e.g. by Hoeffding’s inequality). Thus, in the first part

of training the network will see, with high probability, only samples of the type (x ,χS (x )),
and it will not see the second addend of GS ,T ,ε. When we change our input distribution to

Rad(1/2)⊗d , the network will suddenly observe samples of the type (x ,χT (x )). Thus, the

pre-training on p will not help determining the support of the new parity χT (in some sense

the network will “forget” the first part of training). This intuition holds for all r -CL such that

p1, ..., pr−1 <ε. We state our negative result for Hamming mixtures here informally, and refer

to Section 5.4 for a formal statement and remarks.

Theorem 11 (Main negative result, informal). For each r -CL strategy with r bounded, there

exists a Hamming mixture GS ,T ,ε that is not learnable by any fully connected neural network

of poly(d ) size and permutation-invariant initialization trained by the noisy gradient descent

algorithm (see Def. 26) with poly(d ) gradient precision in poly(d ) steps.

Inspired by the hardness of Hamming mixtures, we define another curriculum learning

strategy, where, instead of having finitely many discrete curriculum steps, we gradually move

the bias of the input distribution during training from a starting point p0 to a final point pT .

We call this strategy a continuous-CL strategy.

Definition 24 (Continuous curriculum learning (C-CL)). Let p0, pT ∈ [0,1]. We say that a

neural network NN(x ;θ t ) is trained by SGD with a C-CL(p0, pT , T ) if θ t follows the iterations

in (5.1) with:

D t =Rad
�

p0+ t ·
pT −p0

T

�

, t ∈ [T ]. (5.4)

We conjecture that a well chosen C-CL might be beneficial for learning any Hamming mixture.

A positive result for C-CL and comparison between r -CL and C-CL are left for future work.
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5.3 Learning Parities

5.3.1 Theoretical Results

Our goal is to show that the curriculum strategy that we propose allows to learn k -parities

with a computational complexity of d O (1). We prove two different results. In the first one, we

consider SGD on the hinge loss and prove that a network with θ (d 2) hidden units can learn

the k -parity problem in d O (1) computations, if trained with a well chosen 2-CL strategy. Let

us state our first Theorem.

Theorem 12 (Hinge Loss). Let k , d be both even integers, such that k ≤ d /2. Let NN(x ;θ ) =
∑N

i=1 aiσ(wi x +bi ) be a 2-layers fully connected network with activationσ(y ) :=Ramp(y ) (as

defined in (F.2)) and N = θ̃ (d 2 log(1/δ))III. Consider training NN(x ;θ )with SGD on the hinge

loss with batch size B = θ̃ (d 10/ε2 log(1/δ)). Then, there exists an initialization, a learning

rate schedule, and a 2-CL strategy such that after T = θ̃ (d 6/ε2) iterations, with probability

1−3δ, SGD outputs a network with generalization error at most ε.

For our second Theorem, we consider another loss function, that is convenient for the

analysis, namely the covariance loss, for which we give a definition here.

Definition 25 (Covariance loss). Let f :X →R be a target function and let f̂ :X →R be an

estimator. Let

cov( f , f̂ , x , PX ) :=
�

f (x )−Ex ′∼PX [ f (x
′)]
�

·
�

f̂ (x )−Ex ′∼PX [ f̂ (x
′)]
�

,

where PX is an input distribution supported inX . We define the covariance loss as

Lcov( f , f̂ , x , PX ) :=max{0, 1− cov( f , f̂ , x , PX )}.

We show that SGD on the covariance loss can learn the k -parity problem in d O (1) computa-

tions using a network with only O (k ) hidden units. The reduction of the size of the network,

compared to the hinge loss case, allows to get a tighter bound on the computational cost

(see Remark 12).

Theorem 13 (Covariance Loss). Let k , d be integers such that k ≤ d and k even. Let NN(x ;θ ) =
∑N

i=1 aiσ(wi x+bi ) be a 2-layers fully connected network with activationσ(y ) :=ReLU(y ) and

N = θ̃ (k log(1/δ)). Consider training NN(x ;θ )with SGD on the covariance loss with batch size

B = θ̃ (d 2k 3/ε2 log(1/δ)). Then, there exists an initialization, a learning rate schedule, and a

2-CL strategy such that after T = θ̃ (k 4/ε2) iterations, with probability 1−3δ, SGD outputs a

network with generalization error at most ε.

The proofs of Theorem 12 and Theorem 13 follow a similar outline. Firstly, we prove that

training the first layer of the network for one step on one batch of size d O (1), sampled from a

IIIθ̃ (d c ) = θ (d c ·poly(log(d ))), for all c ∈R.
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biased input distribution (with appropriate bias), allows to recover the support of the parity.

We then show that training the second layer on the uniform distribution allows to achieve

the desired generalization error under the uniform distribution. We remark that similar

‘one-step’ proofs appear e.g. in (Barak et al., 2022). We refer to Appendices F.1 and F.2 for

restatements of the Theorems and their full proofs.

Remark 12. Let us look at the computational complexity given by the two Theorems. The-

orem 12 tells that we can learn k -parities in d N B + (T − 1)N = θ̃ (d 19) computations. We

remark that our result holds also for large k (we however need to assume k , d even and k ≤ d /2,

for technical reasons). On the other hand, Theorem 13 tells that we can learn k -parities in

θ̃ (d 3k 8), which is lower than the bound given by Theorem 12. Furthermore, the proof holds

for all k ≤ d . The price for getting this tighter bound is the use of a loss that (to the best of

our knowledge) is not common in the machine learning literature, and that is particularly

convenient for our analysis.

Remark 13. We remark that our proofs extend to the gradient descent model with bounded

gradient precision, used in (Abbe and Sandon, 2020a), with gradient precision bounded by

d O (1) (see Remark 20 in Appendix F.1).

Remark 14. Let us comment on the p1 (i.e. the bias of the initial distribution) that we used. In

both Theorems we take p1 close to 1. In Theorem 12 we take p1 ≈ 1−θ (1/d ), and the proof is

constructed specifically for this value of p1. In Theorem 13, the proof holds for any p1 ∈ (1/2, 1)
and the asymptotic complexity in d does not depend on the specific choice of p1. However, to

get poly(k ) complexity we need to take p1 = 1−θ (1/k ), while we get exp(k ) complexity for all

p1 = θd ,k (1).

Our theoretical analysis captures a fairly restricted setting: in our proofs we use initializations

and learning schedules that are convenient for the analysis. We conduct experiments to verify

the usefulness of our CL strategy in more standard settings of fully connected architectures.

5.3.2 Empirical Results

In all our experiments we use fully connected ReLU networks and we train them by SGD on

the square loss.

In Figure 5.1, we compare different curriculum strategies for learning 20-parities over 100

bits, with a fixed architecture, i.e. a 2-layer ReLU network with 100 hidden units. We run a

2-steps curriculum strategy for 3 values of p1, namely p1 = 39/40, 19/20, 1/20. In all the 2-CL

experiments we train on the biased distribution until convergence, and then we move to the

uniform distribution. We observe that training with an initial bias of p1 = 39/40 allows to

learn the 20-parity in 16, 000 epochs. One can see that during the first part of training (on the

biased distribution), the test error under the uniform distribution stays at 1/2 (orange line),

and then drops quickly to zero when we start training on the uniform distribution. This

trend of hidden progress followed by a sharp drop has been already observed in the context
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Figure 5.1: Learning 20-parities with 2-steps curriculum, with initial bias p1 = 39/40 (top-left),
p1 = 19/20 (top-center), p1 = 1/20 (top-right), with continuous curriculum (bottom-left) and
with no curriculum (bottom-right). In all plots, we use a 2-layers ReLU MLP with batch size
1024, input dimension 100, and 100 hidden units.

of learning parities with SGD in the standard setting with no-curriculum (Barak et al., 2022).

Here, the length of the ‘hidden progress’ phase is controlled by the length of the first phase

of training. Interestingly, when training with continuous curriculum, we do not have such

hidden progress and the test error under the uniform distribution decreases slowly to zero.

With no curriculum, the network does not achieve non-trivial correlation with the target

in 25,000 epochs. We refer to the Appendix of (Cornacchia and Mossel, 2023) for further

experiments with smaller batch size and 3-layers networks.

In Figure 5.2 we study the convergence time of a 2-CL strategy on a 2-layers ReLU network

for different values of the input dimension (d ) and size of the parity (k ). We take two slightly

different settings. In the plot on the left, we take a fixed initial bias p1 = 1/16 and N = 2k

hidden units. On the right we take p1 = 1− 1
2k initial bias and an architecture with N = d
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Figure 5.2: Convergence time for different values of d , k . Left: we take p1 = 1/16 and a
2-layers ReLU architecture with with N = 2k hidden units. Right: we take p1 = 1− 1

2k and a
2-layers ReLU architecture with N = d hidden units.
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Figure 5.3: Convergence time with respect to the initial bias p1. We compute the convergence
time for learning a 10-parity over 100 bits with a 2-layer ReLU network. We omitted all points
with convergence time above 100, 000.

hidden units. The convergence time is computed as T1+T2, where T1 and T2 are the number

of steps needed to achieve training error below 0.01 in the first and second part of training,

respectively. We compute the convergence time for k = 5, 6, 7, 8, 9, 10 and d = 25, 50, 75, 100,

and for each k we plot the convergence time with respect to d in log-log scale. Each point is

obtained by averaging over 10 runs. We observe that for each k , the convergence time scales

(roughly) polynomially as d ck , with ck varying mildly with k .

In Figure 5.3, we study the convergence time of a 2-CL strategy for different values of

the initial bias p1. We consider the problem of learning a 10-parity over 100 bits with a

2-layers ReLU network with N = 100 hidden units. As before, we computed the conver-

gence time as T1+T2, where T1 and T2 are the number of steps needed to achieve training

error below 0.01 in the first and second part of training, respectively. We ran experiments

for p1 = 0.001,0.05,0.1,0.15, ...,0.95,0.999. We omitted from the plot any point for which

the convergence time exceeded 100,000 iterations: these correspond to p1 near 1/2 and

p1 = 0.001,0.999. Each point is obtained by averaging over 10 runs. We observe that the

convergence time is smaller for p1 close to 0 or to 1. Moreover, T2 has modest variations

across different p1’s.
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5.4 Learning Hamming Mixtures

In this section we consider the class of functions defined in Def. 23 and named Hamming

mixtures. We consider a specific descent algorithm, namely the noisy GD algorithm with

batches (used also in (Abbe, Kamath, et al., 2021; Abbe and Sandon, 2020a)). We give a

formal definition here of noisy GD with curriculum.

Definition 26 (Noisy GD with CL). Consider a neural network NN(.;θ ), with initialization of

the weights θ 0. Given an almost surely differentiable loss function, the updates of the noisy

GD algorithm with learning rate γt and gradient range A are defined by

θ t+1 = θ t −γt

�

Ex t [∇θ t L (θ t , f , x t )]A +Z t
�

, (5.5)

where for all t ∈ {0, ..., T − 1}, Z t are i.i.d. N (0,τ2), for some τ, and they are independent

from other variables, x t ∼D t , for some time-dependent input distributionD t , f is the target

function, from which the labels are generated, and by [.]A we mean that whenever the argument

is exceeding A (resp. −A) it is rounded to A (resp. −A). We call A/τ the gradient precision. In

the noisy-GD algorithm with r -CL, we chooseD t according to Def. 21.

Let us state our hardness result for learning Hamming mixtures with r -CL strategies with r

bounded.

Theorem 14. Assume the network observes samples generated by GS ,V ,ε(x ) (see Def. 23), where

|S |= kS , |V |= kV such that kS , kV = o (
p

d ), and |S ∩V |= 0. Then, for any r -CL(T̄ , p̄ )with r

bounded and pr = 1/2, there exists an ε such that the noisy GD algorithm with r -CL(T̄ , p̄ )
(as in (5.5)) on a fully connected neural network with P weights and permutation-invariant

initialization, after T training steps, outputs a network NN(x ,θ T ) such that

�

�

�Ex∼Rad(1/2)⊗d

�

GS ,V ,ε(x ) ·NN(x ;θ T )
�

�

�

�≤
2AT
p

P

τ

�

�

d

kV

�−1/2

+ e −dδ2

�

+
2kS kV

d
+O (d−2),

where A,τ are the gradient range and the noise level in the noisy-GD algorithm and δ is a

constant.

The proof uses an SQ-like lower bound argument for noisy GD, in a similar flavour of (Abbe

and Boix-Adserà, 2022; Abbe, Cornacchia, et al., 2022). We refer to Appendix F.3 for the full

proof.

Remark 15. In Theorem 14, the neural network can have any fully connected architecture and

any activation such that the gradients are well defined almost everywhere. The initialization

can be from any distribution that is invariant to permutations of the input neurons.

For the purposes of E
�

GS ,V ,ε(x ) ·NN(x ;θ T )
�

, it is assumed that the neural network outputs a

guess in {±1}. This can be done with any form of thresholding, e.g. taking the sign of the

value of the output neuron.
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Remark 16. One can remove the 2kS kV
d term in the right hand side by further assuming e.g.

that set S is supported on the first d /2 coordinates and set V on the last d /2 coordinates. This

also allows to weaken the assumption on the cardinality of S and V . We formalize this in the

following Corollary.

Corollary 6. Assume the network observes samples generated by GS ,V ,ε(x ), where S ⊆ {1, ..., d /2},
and V ⊆ {d /2+ 1, ..., d } (where we assumed d to be even for simplicity). Denote kV = |V |.
Then, for any r -CL(T̄ , p̄ )with r bounded and pr = 1/2, there exists an ε such that the noisy GD

algorithm with r -CL(T̄ , p̄ ) (as in (5.5)) on a fully connected neural network with P weights

and permutation-invariant initialization, after T training steps, outputs a network NN(x ,θ T )
such that

�

�

�Ex∼Rad(1/2)⊗d

�

GS ,V ,ε(x ) ·NN(x ;θ T )
�

�

�

�≤
2AT
p

P

τ

�

�

d /2

kV

�−1/2

+ e −dδ2

�

,

for some δ > 0.

The proof of Corollary 6 is deferred to Appendix F.4.

Theorem 14 and Corollary 6 state failure at the weakest form of learning, i.e. achieving

correlation better than guessing in the asymptotic of large d . More specifically, it tells that if

the network size, the number of training steps and the gradient precision (i.e. A/τ) are such

that AT
p

P
τ = o (d−kV /2), then the network achieves correlation with the target of od (1) under

the uniform distribution. Corollary 7 follows immediately from the Theorem.

Corollary 7. Under the assumptions of Theorem 14, if kV = ωd (1) (i.e. kV grows with d ),

P, A/τ, T are all polynomially bounded in d , then

�

�

�Ex∼Rad(1/2)⊗d

�

GS ,V ,ε(x ) ·NN(x ;θ T )
�

�

�

�= od (1), (5.6)

i.e. in poly(d ) computations the network will fail at weak-learning GS ,V ,ε.

We conjecture that if we take instead a C-CL strategy with an unbounded number of curricu-

lum steps, we can learn efficiently (i.e. in poly(d ) time) any GS ,V ,ε (even with kV =ωd (1) and

for any ε). Furthermore, we believe this conjecture to hold for any bounded mixture, i.e. any

function of the type:

M
∑

m=1

χSm
(x )1(εm−1d ≤H (x )<εm d ), (5.7)

with S1, ...,SM being distinct sets of coordinates, 0= ε0 <ε1...<εM ≤ 1, and M bounded.
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5.5 Conclusion and Future Work

In this work, we mainly focused on learning parities and Hamming mixtures with r -CL

strategies with bounded r . Some natural questions arise, for instance: does the depth of

the network help? What it the optimal number of curriculum steps for learning parities? We

leave to future work the analysis of C-CL with unboundedly many curriculum steps and the

comparison between r -CL and C-CL. In the previous Section, we also raised a conjecture

concerning the specific case of Hamming mixtures.

Furthermore, we believe that our results can be extended to more general families of func-

tions. First, consider the set of k -Juntas, i.e., the set of functions that depend on k out of

d coordinates. This set of functions contains the set of k -parities so it is at least as hard to

learn. Moreover, as in the case of parities, Juntas are correlated with each of their inputs

for generic p , see e.g. (Mossel et al., 2004). So it is natural to expect that curriculum learn-

ing can learn such functions in time d O (1)2O (k ) (the second term is needed since there is a

doubly exponential number of Juntas on k bits). We further believe that our general idea of

introducing correlation among subsets of the input coordinates to facilitate learning may

apply to more general non-Boolean settings.

In this work we propose to learn parities using a mixture of product distributions, but there

are other ways to correlate samples that may be of interest. For example, some works in

PAC learning showed that, even for the uniform measure, samples that are generated by

a random walk often lead to better learning algorithms (Arpe and Mossel, 2008; Bshouty

et al., 2005). Do such random walk based algorithms provide better convergence for gradient

based methods?

An important limitation of the curriculum strategy presented in this Chapter is that it requires

an oracle that provides labeled samples from arbitrary product measures. However, in

applications one usually has a fixed dataset and would like to select samples in a suitable

order, to facilitate learning. In a work in preparation (Abbe, Cornacchia, and Lotfi, 2023), we

consider learning parities on inputs generated from the following mixed distribution:

D =λRad(p )⊗d + (1−λ)Rad(1/2)⊗d , (5.8)

with λ ∈ (0, 1) and p close to 1. We consider a curriculum strategy that consists of restricting

the training set to samples with large Hamming weight (i.e.those coming from the Rad(p )⊗d

part of the distribution) for the first part of training, and subsequently training on the whole

dataset. We compare this strategy to the standard setting with no-curriculum, where we

train on the whole dataset at every step. We show that for small λ (λ = O (d−2)) a similar

proof strategy as the one of this Chapter allows to prove separation between the two settings

(with and without curriculum).
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6 Conclusion

In this thesis, we have explored two different learning problems, namely statistical inference

on graph models and gradient descent on neural networks. Despite their differences, these

problems share a common goal of analyzing the measures that characterize the fundamental

limits of learning.

In the first part of the thesis, we have investigated the problem of spin synchronization on

graphs and how the erasure side-information affects the correlations between spins at distant

sites. We have showed that the boundary irrelevance (BI) property does not hold for every

tree, while a weaker property, the boundary irrelevance in the non-reconstruction regime

(BIN), holds for every tree. We conjectured that the (BIN) holds for all graphs. Furthermore,

we have used the (BI) to characterize the limiting entropy of the sparse SBM with two

symmetric communities. As mentioned in the conclusion section of Chapter 2, future

research directions include 1) closing Conjecture 1, 2) investigating the (BI) property for a

wider range of graphs beyond regular and Poisson trees, as well as exploring the possibility

of characterizing the set of graphs for which the (BI) holds, 3) examining more general

settings with non-binary labels, and determining whether the (BI) property holds for large

alphabets in all regimes, 4) exploring more general definitions of side-information that reveal

interactions of sets of node variables, and analyzing the role of observation symmetries in

these settings.

While the investigation of spin synchronization on graphs and the study of the erasure

side-information are interesting, it would be valuable to consider more realistic models that

incorporate additional complexities, such as time-varying graphs or dynamic interactions

between nodes (Kim et al., 2014). These models could help us gain a deeper understanding of

the complex behavior of synchronization and correlation on graphs, and may have important

implications for applications in fields such as neuroscience and social network analysis.

Moreover, while it is essential to understand the information-theoretic limits of learning, it

is also important to take into account the computational complexity of the learning process.

Developing efficient algorithms for learning on graphs is particularly important in this

context, given the large-scale and complex nature of many real-world networks.
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Chapter 6 Conclusion

In the second part of the thesis, we have studied the problem of learning Boolean target

functions with gradient descent on fully connected neural networks. We have introduced

the notion of Initial Alignment (INAL) and shown that noisy gradient descent cannot learn a

target function in polynomial time if there is no noticeable INAL between the network and

the target. We have shown that the result can be extended beyond Boolean inputs for finite

depth networks trained with the correlation loss. For this latter extension, we considered a

slightly different measure than the INAL, namely the initial gradient alignment.

The Initial Alignment and the Initial Gradient Alignment can be easily estimated by Monte-

Carlo simulations, which makes them suitable for applications. It would be interesting to

analyse how these or related measures (e.g. alignment after few steps of training) can predict

the performance of an architecture on a given dataset before training. Indeed, having a

measure that can provide insights into the training dynamics of a neural network before

actually training it could save a lot of time and computational resources. Furthermore,

such measures could aid in the design of new neural architectures (as it is done in Neural

Architecture Search (NAS) (Elsken et al., 2019)), allowing for more efficient and effective

models to be created.

Additionally, we investigated the generalization error under the canonical holdout (a specific

case of distribution shift) and propose the "low-degree implicit bias hypothesis" for certain

architectures, such as MLPs and Transformers. In particular, in the case of PVR under

canonical holdout (Figure 4.2), we observed that the performance of Transformers is similar

to the performance of MLPs. In other words, Transformers do not seem to leverage their self-

attention mechanisms to compare effectively different parts of the input strings. However,

a thorough investigation of the power of self-attention mechanisms in this and in more

general settings is still missing. It would be thus interesting to find and analyze a task where

a Transformer architecture outperform a simpler architecture (e.g. MLP) under distribution

shift.
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A Appendix on Block Models

A.1 Background on Information Theory

Let us recall the definitions of entropy and mutual information of discrete random variables.

Definition 27 (Entropy). The entropy of a discrete random variable U , that takes value in the

alphabetU , is defined as:

H (U ) :=
∑

u∈U
p (u ) log

1

p (u )
, (A.1)

where p (u ) =P(U = u ).

The entropy of a random variable U is the average level of uncertainty associated to the

possible outcomes of U .

Definition 28 (Conditional Entropy). Suppose U , V are discrete random variables taking

values in U and V , respectively, with joint distribution p (u , v ) = P(U = u , V = v ) and

conditional distribution p (u |v ) =P(U = u |V = v ). The conditional entropy of U given V is

defined as

H (U |V ) :=
∑

u∈U ,v∈V
p (u , v ) log

1

p (u |v )
. (A.2)

Definition 29 (Mutual Information). The mutual information between random variables U

and V is defined as

I (U ; V ) :=H (U )−H (U |V ), (A.3)

where H (U ) and H (U |V ) are the entropy of U and the conditional entropy of U |V , respectively.

The mutual information measures the amount of information that can be obtained about

one random variable by observing another one.
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A.2 Proof of Proposition 1

Let us considerσ0 = X0,σt be the leaves at depth t generated according to the broadcasting

model described in the Introduction andσε be the side-information. We prove the equivalent

statement: I (σ0;σt |σε)≤ I (σ0;σt ) for every ε ∈ [0, 1]. Let us condition on one realization of

the surveyσS and consider: I (σ0;σt |σε =σS ). Note that I (σ0;σt |σε =σS ) = I (σ0;σt \S |σε =
σS ), where by t \S we mean the set of leaves at depth t with no ancestor in S . For brevity,

denote U = t \S .

Following the “stringification” idea of (Evans et al., 2000) (Theorem 1.3), we build a tree T̂

such that all the leaves in U are ‘separated’ from all the nodes in S , but the original tree

structure for the vertices S and the tree structure of U are maintained. To do this, one can

color red all descendants of all nodes in S , and color blue all leaves in U . Then, starting

from the uncolored nodes at depth t −1, we color red the nodes that have all red children,

and blue the nodes with all blue children. If a node has mixed offspring, we split it into two

nodes and we attach the blue descendants to the first one and the red descendants to the

other, and we color the two nodes consequently. We proceed this way up to the root of the

tree, that we leave uncolored.

By Theorem 1.3 in (Evans et al., 2000) (DPI) we have IT (σ0;σS ,σU ) ≤ IT̂ (σ0;σS ,σU ), and

by construction, IT (σ0;σU ) = IT̂ (σ0;σU ) and IT (σ0;σS ) = IT̂ (σ0;σS ). Moreover, on T̂ σS is

independent of σU given σ0, thus IT̂ (σ0;σS ,σU ) ≤ IT̂ (σ0;σU ) + IT̂ (σ0;σS ). Putting these

together and applying chain rule gives the result.

A.3 Stringy Tree Computations

In this Section, we use the following notation:

• L t : leaves at depth t ;

• R : root;

• St : survey at depth ≤ t ;

• N : number of surveyed branches;

• T t
i : depth of first surveyed node in branch i , conditioned on branch i being surveyed

before depth t .

Notice that

N ∼Bin(1−εt , d t ), (A.4)

P(T t
i = k ) =

1−ε
1−εt

εk−1, k ∈ [t ]. (A.5)
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Also, let X t be the label of a node at depth t , then

P(X t =+|R =+) =
1

2
+

1

2
(1−2η)t ; (A.6)

P(X t =−|R =+) =
1

2
−

1

2
(1−2η)t . (A.7)

We will show that iff dε(1−2η)2 < 1

lim
t→∞
E+St

�P(R =+|St )
P(R =−|St )

�

= lim
t→∞
E+St ,L t

�P(R =+|St , L t )
P(R =−|St , L t )

�

(A.8)

where E+ denotes the expectation conditioned on the true root label being +.

A.3.1 Survey Only

Notice that P(R=+|St )
P(R=−|St )

= P(St |R=+)
P(St |R=−) .

E+St

�P(St |R =+)
P(St |R =−)

�

=E+XS ,N ,T1,...,TN

�P(St |R =+)
P(St |R =−)

�

(A.9)

=EN





∏

i∈[N ]
E+XTi

,Ti

�

P(XTi
|R =+)

P(XTi
|R =−)

�



 (A.10)

=EN





∏

i∈[N ]
E+XTi

,Ti

� 1
2 +

1
2 XTi

(1−2η)Ti

1
2 −

1
2 XTi

(1−2η)Ti

�



 (A.11)

=EN

�

E N
S

�

(A.12)

= (εt + (1−ε)t ES )
d t

. (A.13)

where we denoted ES :=E+XTi
,Ti

�

1
2+

1
2 XTi

(1−2η)Ti

1
2−

1
2 XTi

(1−2η)Ti

�

and where we used the moment generating

function of binomial to deduce the last equality.

E+XTi

� 1
2 +

1
2 XTi

(1−2η)Ti

1
2 −

1
2 XTi

(1−2η)Ti

�

=

�

1
2 +

1
2 (1−2η)Ti

�2

1
2 −

1
2 (1−2η)Ti

+

�

1
2 −

1
2 (1−2η)Ti

�2

1
2 +

1
2 (1−2η)Ti

(A.14)

= 1+4
(1−2η)2Ti

1− (1−2η)2Ti
. (A.15)

Thus,

ES =ETi

�

1+4
(1−2η)2Ti

1− (1−2η)2Ti

�

(A.16)

= 1+4
1−ε

1−εt

t
∑

k=1

(1−2η)2k

1− (1−2η)2k
εk−1. (A.17)
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Notice that (1−2η)2

1−(1−2η)2 ≤
∑t

k=1
(1−2η)2k

1−(1−2η)2k ε
k−1 ≤ (1−2η)2

(1−(1−2η)2)
1

(1−(1−2η)2ε) , thus ES = θ (1).

A.3.2 Survey and Leaves

Again, we have that P(R=+|St ,L t )
P(R=−|St ,L t )

= P(St ,L t |R=+)
P(St ,L t |R=−) , thus

E+St ,L t

�P(St , L t |R =+)
P(St , L t |R =−)

�

=EN





∏

i∈[N ]
E+XTi

,Ti

� 1
2 +

1
2 XTi

(1−2η)Ti

1
2 −

1
2 XTi

(1−2η)Ti

� d t
∏

j=N

E+X t

� 1
2 +

1
2 X t (1−2η)t

1
2 −

1
2 X t (1−2η)t

�





(A.18)

=EN

�

E N
S E d t−N

L

�

= E d t

L EN

�

�

ES

EL

�N
�

(A.19)

= (εt EL + (1−εt )ES )
d t

, (A.20)

where we denoted EL :=E+X t

h 1
2+

1
2 X t (1−2η)t

1
2−

1
2 X t (1−2η)t

i

and where again we used the moment generating

function of binomial to find the last equality.

Note that from previous calculations

EL = 1+4
(1−2η)2t

1− (1−2η)2t
(A.21)

A.3.3 Conclusion

Let us look at the ratio

E+St ,L t

�

P(R=+|St ,L t )
P(R=−|St ,L t )

�

E+St

�

P(R=+|St )
P(R=−|St )

� =

�

εt EL + (1−εt )ES

εt + (1−ε)t ES

�d t

(A.22)

=

�

1+
4εt (1−2η)2t

(εt + (1−ε)t ES )(1− (1−2η)2t )

�d t

(A.23)

∼
�

1+Ct ε
t (1−2η)2t

�d t

(A.24)

∼ e Ct (dε(1−2η)2)t , (A.25)

where Ct = θ (1) (in particular Ct := 4
ES

).

We observe that e Ct (dε(1−2η)2)t → 1 iff dε(1−2η)2 < 1.

A.4 Proof of Theorem 1

Let us denote f (ε) =H (X |G ,ωε), where similarly as beforeωε is a BECε-survey that reveals

the true label of each node independently with probability 1−ε. Note that f (1) =H (X |G ).
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Let us replace the single parameter ε by a set of parameters ε⃗= (εu )u∈V (G ) (for each vertex u ,

Xu is revealed with probability 1−εu ), and let us denoteωε∼u = {ω
ε
v : v ∈V (G ), v ̸= u} and

X∼u = {Xv : v ∈V (G ), v ̸= u}. Then

f (ε⃗) = (1−εu )H (X |G , Xu ,ωε∼u ) +εu H (X |G ,ωε∼u ) (A.26)

and by chain rule

∂

∂εu
f (ε⃗) =H (X |G ,ωε∼u )−H (X |G , Xu ,ωε∼u ) (A.27)

=H (Xu , X∼u |G ,ωε∼u )−H (X∼u |G , Xu ,ωε∼u ) (A.28)

=H (Xu |G ,ωε∼u ). (A.29)

Then, setting εu = ε for all u ∈V (G ), we get by symmetry

f ′(ε) =
∑

u∈V (G )

H (Xu |G ,ωε∼u ) = nH (X1|G ,ωε∼1). (A.30)

Thus, by bounded convergence

lim
n→∞

1

n
H (X |G ) =

∫ 1

0

lim
n→∞

H (X1|G ,ωε∼1)dε. (A.31)

Take k = log n
10 log 2(a+b ) small enough compared to n , such that the neighborhood of vertex 1 at

depth k is a tree with high probability (this is for instance proved as Proposition 2 in (Mossel

et al., 2015)), and denote such neighborhood by Tk . Specifically, w.h.p. Tk is a Galton-Watson

tree with Poisson
�

a+b
2

�

offspring distribution, rooted at 1, and the labels in XTk
are distributed

as BOT with flip probability b
a+b . Moreover, let XLk

be the vertices at distance exactly k from

1, and letωε∼1,Tk
denote the survey on nodes at distance at most k from 1 (excluding 1). We

bound the integrand by the following:

H (X1|Tk ,ωε∼1,Tk
, XLk

) +ok (1)≤H (X1|G ,ωε∼1)≤H (X1|Tk ,ωε∼1,Tk
). (A.32)

For the inequality on the right, we simply removed conditioning terms and thus increased

the conditional entropy, specifically we ignored any information from the graph or from the

survey on nodes at distance≥ k to 1. The inequality on the left requires the following lemma,

that is a direct consequence of Proposition 2 and Lemma 4.7 in (Mossel et al., 2015).

Lemma 3. H (X1|G ,ωε∼1, XLk
) =H (X1|Tk ,ωε∼1,Tk

, XLk
) +ok (1).

In words, Lemma 3 states that after conditioning on the leaves, the information coming

from the graph outside Tk (including non-edges) becomes negligible, i.e. the model is

asymptotically a Markov field. By Theorem 2, if (a−b )2
2(a+b ) ≤ 1 or (a−b )2

2(a+b ) ≥ α
∗, then (BI) holds

for (Tk ,1, a−b
a+b , BECε), for all ε < 1, thus the leftmost and the rightmost terms in (A.32) are

asymptotically equal. This means that the limit in the integrand in (A.31) exists for allε ∈ (0, 1),
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thus (i) holds.
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B Appendix on Initial Alignment

B.1 Proof of Proposition 3

B.1.1 Outline of the Proof

The main goal of the proof is to estimate the dominant term (as d approaches infinity) of

INAL(χk ,σ), and show that it is indeed noticeable, for any fixed k . We initially use Jensen’s

inequality to lower bound the INAL with the following

INAL(χk ,σ)≥E
�

E|θ |,x
�

χk (x )σ(w
T x + b ) | sgn(θ )

�2�

, (B.1)

where for brevity we denoted θ = (w , b ), |θ | and sgn(θ ) are (d +1)-dimensional vectors such

that |θ |i = |θi | and sgn(θ )i = sgn(θi ), for all i ≤ d +1. By denoting |w |>k , x>k the coordinates

of |w | and x respectively that do not appear in χk , and by G :=
∑k

i=1 wi xi + b we observe

that

E|w |>k ,x>k
[σ(w T x + b )] =EY ∼N (0,1− k

d )
[σ(G +Y )] , (B.2)

since
∑d

i=k+1 wi xi is indeed distributed asN (0,1− k
d ). We call the RHS the “d -Gaussian

smoothing” ofσ and we denote it by Σd (z ) :=EY ∼N (0,1− k
d )
[σ(z +Y )]. We will compare it to

the “ideal” Gaussian smoothing denoted by Σ(z ) :=EY ∼N (0,1)[σ(z +Y )].

For polynomially boundedσ, we can prove that Σd has some nice properties (see Lemma 4),

specifically it is C∞ and polynomially bounded and it uniformly converges to Σ as d →∞.

These properties crucially allow to write Σd in terms of its Taylor expansion around 0, and

bound the coefficients of the series for large d . In fact, we show that there exists a constant

P > k , such that if we split the Taylor series of Σd at P as

Σd (G ) =
P
∑

ν=0

aν,d G ν+RP,d (G ), (B.3)
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(where aν,d are the Taylor coefficients and RP,d is the remainder in Lagrange form), and take

the expectation over |θ |≤k as:

E|θ |≤k ,x≤k

�

χk (x )Σd (G )
�

=
P
∑

ν=0

aν,dE|θ |≤k ,x≤k

�

χk (x )G
ν
�

+E|θ |≤k ,x≤k

�

RP,d (G )
�

(B.4)

=: A+B , (B.5)

then A is Ω(d−P /2) (Proposition 11), and B is O (d−P /2−1/2) (Proposition 12), uniformly for

all values of sgn(θ ). For A we use the observation that E|θ |≤k ,x≤k

�

χk (x )G ν
�

= 0 for all ν < k

(Lemma 6), and the fact that |aP,d |> 0 for d large enough (due to hypothesis b in Definition 6

and the continuity of Σd in the limit of d →∞, given by Lemma 4). For B , we combine the

concentration of Gaussian moments and the polynomial boundness of all derivatives of

Σd . Taking the square of (B.5) and going back to (B.1), one can immediately conclude that

INAL(χk ,σ) is indeed noticeable.

B.1.2 Useful Lemmas

For an activationσ :R→R, we denote its v -Gaussian smoothing as

Σv (t ) :=EY ∼N (0,v )[σ(Y + t )]. (B.6)

We also write Σ :=Σ1 for brevity. We work with functions that are polynomially bounded, ie.,

such that there exists a polynomial P with |σ(x )| < P (x ) holding for all x ∈R. We will use

the fact that such polynomial can be assumed wlog to be of the form |σ(x )|<C x ℓ+C for

some C > 0 and ℓ ∈N≥0 (since any polynomial can be upper bounded by a polynomial of

such form). Note that ifσ is a measurable, polynomially bounded function, then Σv is well

defined for every v > 0.

We now state the intermediate step in the proof of Proposition 3:

Lemma 4 (Conditions on Σ and Σv ). Ifσ is a measurable, polynomially bounded function,

then it satisfies the following conditions:

i) Σv ∈C∞(R) for every v > 0;

ii) For every k ∈N≥0 and v > 0, Σ(k )v (t ) :=
∂k

∂t k
Σv (t ) is polynomially bounded. Furthermore,

this bound is uniform, that is, |Σ(k )v (t )| < C t ℓ + C holds for every t ∈ R and every

1/2≤ v ≤ 1, for some C ,ℓ that do not depend on v .

iii) For all k ∈N≥0, it holds |Σ(k )1−ε(0)−Σ
(k )(0)|=O (ε).

Lemma 4 is then used in the proof of the following Lemma.

Lemma 5. Let σ be expressive (according to Definition 6). Then, for every k ≥ 0 and P ≥ k

such that Σ(P )(0) ̸= 0, it holds that INAL(χk ,σ) =Ω(d−P ).
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In particular, from Lemma 5 it follows that ifσ is expressive, then it is correlating. Further-

more, since by condition b) in Definition 6 for every k we have Σ(k )(0) ̸= 0 or Σ(k+1)(0) ̸= 0, by

Lemma 5 it holds INAL(χk ,σ) =Ω(d−(k+1)) andσ is 1-strongly correlating.

In the following subsections we prove Lemma 4 and Lemma 5.

B.1.3 Proof of Lemma 4

In the following let φv denote the density function ofN (0, v ), ie., φv (t ) =
1p

2vπ
exp

�

− t 2

2v

�

.

Note the relation to the standard Gaussian densityφ =φ1 whereφv (t ) =
1p
vφ(t /

p
v ).

We recall some useful facts about the derivatives ofφv . First, it is well known that forφ it

holds φ(k )(t ) = Pk (t )φ(t ) for some polynomial Pk of degree k . This formula extends to φv

according to

φ(k )v (t ) =
1
p

v

dk

dt k
φ(t /
p

v ) = v−k/2−1/2φ(k )(t /
p

v ) = v−k/2−1/2Pk (t /
p

v )φ(t /
p

v ) (B.7)

= v−k/2Pk (t /
p

v )φv (t ) . (B.8)

i) Let us writeφv (t ) = (φv /2 ∗φv /2)(t )where ∗ denotes the convolution in R, i.e. (g ∗h )(y ) =
∫

R g (x )h (y − x )d x . Thus,

Σv =σ ∗φv = (σ ∗φv /2) ∗φv /2. (B.9)

Now,σ ∗φv /2 is in L1(R), sinceσ is measurable and polynomially bounded. Furthermore,

φv /2 is in L1(R) and C∞(R). Therefore, by formulas for derivatives of convolution, Σv ∈
C∞(R).

ii) Let us start with the claim that Σ(k )v is polynomially bounded for every v and k . For

that, we recall some facts. First, it is easy to establish by direct computation that if σ is

polynomially bounded, then Σv =σ ∗φv is also polynomially bounded. Furthermore, if P

is any polynomial, then also σ ∗ (Pφv ) is polynomially bounded (this can be seen, eg., by

observing that for every P and every v ′ > v there exists C such that |Pφv | ≤Cφv ′).

Accordingly, using (B.7) and (B.9) we have that

Σ(k )v = (σ ∗φv /2) ∗φ
(k )
v /2 = (σ ∗φv /2) ∗ (Pk ,vφv /2) (B.10)

is polynomially bounded.

Let us move to the second claim with uniform bound. For that let k ≥ 0 and 1/2 ≤ v ≤ 1.

Let v ′ := v − 1/4 and note that 1/4 ≤ v ′ ≤ 3/4. Then, we have the sequence of bounds on
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functions which hold pointwise:

|Σ(k )v |=
�

�

�(σ ∗φ1/4) ∗φ
(k )
v ′

�

�

�≤C1

�

|σ ∗φ1/4| ∗ |Pk (x/
p

v ′)|φv ′
�

(B.11)

≤C1

�

|σ ∗φ1/4| ∗ (C2+C2(x/
p

v )2ℓ)φv ′

�

(B.12)

≤C3

�

|σ ∗φ1/4| ∗ (C4+C4 x 2ℓ)φ
�

, (B.13)

which is now bounded by a polynomial which does not depend on v .

iii) Recall,

Σ(k )v (0) =

∫ ∞

−∞
(φv /2 ∗σ)(x ) ·

∂k

∂t k
φv /2(x + t )

�

�

�

t=0
d x , (B.14)

where we denoted byφ(k )v /2 the k -th derivative ofφv /2. Firstly, note that

∂k

∂t k
φv /2(x + t )

�

�

�

t=0
=

∂k

∂(x + t )k
φv /2(x + t )

�

�

�

t=0
=φ(k )v /2(x ). (B.15)

Let us give a formula for the k-th derivative of the Gaussian density:

φ(k )v (x ) =φv (x ) · (−1)k v−2k ·
k
∑

l=0

Dl ,k

�

x
p

v

�k−l

, (B.16)

where Dl ,k is a constant that does not depend on v , specifically

Dl ,k := B
(2k+l ) 1−(−1)l

2
·2

l
2 ·

Γ( l+1
2 )

Γ( 12 )
· cos

�

lπ

2

�

(B.17)

where Γ(.) denotes the Gamma function and Bn are the Bernoulli numbers. The exact values

of the Dl ,k will not be relevant for this proof. Thus,

Σ(k )v (0) :=

∫ ∞

−∞
(φv /2 ∗σ)(x )Pv /2,k (x )φv /2(x )d x , (B.18)

where we denoted Pv /2,k (x ) = (−1)k v−2k ·
∑k

l=0 Dl ,k

�

xp
v

�k−l
. On the other hand,

Σ
(k )
1 (0) :=

∫ ∞

−∞
(φv /2 ∗σ)(x )P1−v /2,k (x )φ1−v /2(x )d x , (B.19)

and

|Σ(k )v (0)−Σ
(k )
1 (0)|=

�

�

�

∫ ∞

−∞
(φv /2 ∗σ)(x ) ·

�

Pv /2,k (x )φv /2(x )−P1−v /2,k (x )φ1−v /2(x )
�

�

�

�. (B.20)
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We note that

P1−v /2,k (x ) =
(1− v

2 )
−2k

( v2 )−2k

�v

2

�−2k
(−1)k (B.21)

·

�

k
∑

l=0

Dl ,k

�

x
p

v /2

�k−l

+Dl ,k

�

�

x
p

1− v /2

�k−l

−
�

x
p

v /2

�k−l ��

(B.22)

=
(1− v

2 )
−2k

( v2 )−2k
Pv /2,k (x ) (B.23)

+
�

1−
v

2

�−2k
(−1)k

k
∑

l=0

Dl ,k

�

�

x
p

1− v /2

�k−l

−
�

x
p

v /2

�k−l�

. (B.24)

Recalling ε= 1− v , and expanding for such εwe get

�

1+
2ε

1−ε

�−2k

Pv /2,k (x ) + (1+ε)
−2k (−1)k

2−2k

k
∑

l=0

Dl ,k x k−l (1−ε)k−l − (1+ε)k−l

(1+ε)
k−l

2 (1−ε) k−l
2

(B.25)

=
�

1−4k
ε

1−ε
+o (ε)

�

Pv /2,k (x ) (B.26)

+ (1−2kε+o (ε))
(−1)k

2−2k

k
∑

l=0

Dl ,k x k−l −2(k − l )ε+ (ε)

(1+ k−l
2 ε+o (ε))(1− k−l

2 ε+o (ε))
(B.27)

=
�

1−4k
ε

1−ε

�

Pv /2,k (x ) +O (ε)Pk (x ), (B.28)

wherePk (x ) is a polynomial in x of degree ≤ k . Moreover,

φ1−v /2(x ) =
e −

x 2
v

p

2πv /2
·
√

√ v /2

1− v /2
· e
− x 2

2

�

1
1− v

2
− 2

v

�

(B.29)

=φv /2(x ) ·
�

1−
2ε

1+ε

�1/2

· e x 2 2ε
(1+ε)(1−ε) (B.30)

=φv /2(x ) ·
�

1−
ε

1+ε
+o (ε)

�

·
�

1+ x 2 2ε

(1+ε)(1−ε)
+o (ε)x 4

�

(B.31)

=φv /2(x ) ·
�

1+ (x 2−1)O (ε)
�

. (B.32)
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Plugging these bounds in the previous expression, we get

|Σ(k )v (0)−Σ
(k )
1 (0)| (B.33)

=
�

�

�

∫ ∞

−∞
(φv /2 ∗σ)(x ) ·

�

Pv /2,k (x )φv /2(x )−P1−v /2,k (x )φv /2(x )
�

1+ (x 2−1)O (ε)
��

�

�

�

(B.34)

=
�

�

�

∫ ∞

−∞
(φv /2 ∗σ)(x )φv /2(x ) ·

�

Pv /2,k (x )−P1−v /2,k (x )
�

1+ (x 2−1)O (ε)
��

�

�

� (B.35)

=
�

�

�

∫ ∞

−∞
(φv /2 ∗σ)(x )Pv /2,k (x )φv /2(x ) ·

�

1− (1−O (ε) + (x 2−1)O (ε))+O (ε)Pk (x )
�

�

�

�

(B.36)

=O (ε) .
(B.37)

B.1.4 Proof of Lemma 5

Note that we only need to show that INAL(χk ,σ) =Ω(d−P ) for the first index P such that

P ≥ k and Σ(P )(0) ̸= 0. By Definition 6, we only need with two cases P = k and P = k + 1.

From now on, let us consider a fixed pair of k and P .

We denote by x ∈ {±1}d the vector of all inputs, by w ∈ Rd the vector of all weights and

by b ∈R the bias. Additionally, we denote τi := sgn(wi ), and by τ ∈ {±1}d the vector of all

weight signs. Recall that we consider wi , b
i i d∼ N (0, 1

d ) and that for g , h : {±1}d →{±1} and

U d being the uniform distribution over the hypercube, we denote 〈g , h〉=Ex∼U d [g (x )h (x )].
We have

INAL(χk ,σ) =Ew ,b

�

〈χk ,σ〉2
�

(B.38)

=E|w |,τ,|b |,sgn(b )
�

〈χk ,σ〉2
�

(B.39)

(C .S .)
≥ Eτ,sgn(b )

�

E|w |,|b |
�

〈χk ,σ〉 |τ, sgn(b )
�2�

, (B.40)

where (B.40) follows by Cauchy-Schwartz inequality. We will prove a lower bound on the

inner expectation
�

E|w |,|b |〈χk ,σ〉
�2

which is independent of τ and sgn(b ). Accordingly, from

now on consider τ and sgn(b ) to be fixed at arbitrary values.

Let T := {1, . . . , k} and denote by xT the coordinates of x contained in T , and by x∼T := xT C

the coordinates of x that are not contained in T and hence do not appear in the monomial

χT . Similarly, we denote by |w |T , |w |∼T the coordinates of |w | that appear (respectively do
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not appear) in set T . We proceed,

E|w |,|b |〈χT ,σ〉=Ex ,|w |,|b |



χT (x ) ·σ

 

∑

i∈[d ]
wi xi + b

!



 (B.41)

=E|w |T ,xT ,|b |



χT (x ) ·E|w |∼T ,x∼T
σ

 

∑

i∈[d ]
wi xi + b

!



 (B.42)

Observe that
∑

i ̸∈T wi xi ∼N (0, d−k
d ), and denote Σd (z ) :=Σ1− k

d
(z ) =EY ∼N (0, d−k

d )
[σ(z +Y )].

Moreover, let G :=
∑

i∈T wi xi + b . Then,

E|w |,|b |〈χT ,σ〉=E|w |T ,|b |,xT

�

χT (x )Σd (G )
�

. (B.43)

Since, by condition i) in Lemma 4, function Σd is C∞ and therefore C P , we apply Taylor’s

theorem with Lagrange remainder and write

Σd (z ) =
P
∑

ν=0

aν,d z ν+RP,d (z ), (B.44)

where aν,d =
Σ(ν)

d (0)
ν! and

RP,d (z ) =
Σ
(P+1)
d (ξz )

(P +1)!
z P+1 for some |ξz | ≤ |z |. (B.45)

Plugging this in (B.43), we get

E|w |,|b |〈χT ,σ〉=
P
∑

ν=0

aν,dE|w |T ,|b |,xT

�

χT (x )G
ν
�

+E|w |T ,|b |,xT

�

χT (x )RP,d (G )
�

. (B.46)

The following two propositions give the asymptotic characterization of the first and second

term in (B.46).

Proposition 11.

P
∑

ν=0

aν,dE|w |T ,|b |,xT

�

χT (x )G
ν
�

=C (P )(−1)C
′(τT ,sgn(b ))d−P /2+O (d−P /2−1/2) . (B.47)

where C (P ) ̸= 0 and C ′(τT , sgn(b )) ∈Z are constants that do not depend on d .

Proposition 12.

E|w |T ,|b |,xT

�

χT (x )RP,d (G )
�

=O (d−P /2−1/2). (B.48)
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Before proving Propositions 11 and 12, let us see how Lemma 5 follows from them. But this

is clear: substituting into (B.46), we have

�

E|w |,|b |〈χT ,σ〉
�2
=C (P )2d−P +O (d−P−1/2) =Ω(d−P ) , (B.49)

where the claimed bound does not depend on τ nor on sgn(b ).

Proof of Proposition 11

The main step for proving Proposition 11 is the computation of 〈χT ,G ν〉, for ν≤ P . This is

summarized in the following formula.

Lemma 6. We have:

E|w |T ,|b |,xT
χT (x )G

ν =







0 if ν< k

C (ν)(−1)C
′(τT ,sgn(b ))d−ν/2 if ν≥ k ,

(B.50)

where C (ν)> 0.

Let us first see how to finish the proof once Lemma 6 is established. Recall that aν,d =
Σ(ν)

1−k/d (0)
ν! and let aν := Σ(ν)

(0)
ν! . We are considering a sum with P + 1 terms, so let sν :=

aν,dE|w |T ,|b |,xT

�

χT (x )G ν
�

. Accordingly, our objective is to show that

P
∑

ν=0

sν =C (P )(−1)C
′(τT ,sgn(b ))d−P /2+O (d−P /2−1/2) . (B.51)

We do that by considering the terms sν one by one. For ν< k , from (B.50) we immediately

have sν = 0.

For k ≤ ν< P , by Definition 6 recall that the only possible case is P = k +1 and Σ(k )(0) = 0.

Then, applying condition iii) from Lemma 4,

|aν,d |=

�

�

�

�

�

Σ
(ν)
1−k/d (0)−Σ

(ν)(0)

ν!

�

�

�

�

�

=O (d−1) , (B.52)

which together with (B.50) gives |sv |=O (d−P /2−1/2).

Finally, forν= P , by assumption we have aP ̸= 0. Then, by condition iii), we have |aP,d −aP |=
O (1/d ) and (B.50) gives us the correct form for sP and the whole expression.

All that is left is the proof of Lemma 6.

Proof of Lemma 6. The proof proceeds by using the linearity of expectation and indepen-
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dence and expanding the formula for G ν. Recall that we assumed wlog that T = {1, . . . , k}
and let zi :=wi xi for i ≤ k and zk+1 := b :

E|w |T ,|b |,xT
χT (x )G

ν =E|w |T ,|b |,xT

�

k
∏

i=1

xi

��

k
∑

i=1

wi xi + b

�ν

(B.53)

=
∑

I=(i1,...,iν)∈[k+1]ν
E|w |T ,|b |,xT

�

k
∏

i=1

xi

��

∏

i∈I

zi

�

. (B.54)

Let us focus on a single term of the sum in (C.66) for I = (i1, . . . , iν) ∈ [k+1]ν. For j = 1, . . . , k+1,

let α j =α j (I ) := |{m : im = j }|. Accordingly, we can rewrite a term from (C.66) as

E|w |T ,|b |,xT

�

k
∏

i=1

xi

��

∏

i∈I

zi

�

(B.55)

=E|w |T ,|b |,xT

�

k
∏

i=1

w αi
i xαi+1

i

�

b αk+1 (B.56)

=

�

k
∏

i=1

τ
αi
i

�

sgn(b )αk+1

�

k
∏

i=1

E|w |i
�

|w |αi
i

�

·Exi

�

xαi+1
i

�

�

E|b |
�

|b |αk+1
�

. (B.57)

Since E[xαi+1
i ] = 0 if αi is even, for a term in (C.68) to be non-zero it is necessary that αi is

odd for every 1≤ i ≤ k . Consequently, since
∑k+1

i=1 αi = ν, in any non-zero term the parity of

αk+1 is equal to the parity of ν−k . Therefore, every non-zero term is of the form

E|w |T ,|b |,xT

�

k
∏

i=1

xi

��

∏

i∈I

zi

�

=

�

k
∏

i=1

τi

�

sgn(b )1[ν−k odd] ·

�

k
∏

i=1

E|w |i
�

|wi |αi
�

�

E|b |
�

|b |αk+1
�

(B.58)

= (−1)C
′(τT ,sgn(b )) ·

�

k
∏

i=1

E|w |i
�

|wi |αi
�

�

E|b |
�

|b |αk+1
�

. (B.59)

We now establish the first case from (B.50). If ν< k , then since ν=
∑k+1

i=1 αi at least one of αi ,

1≤ i ≤ k must be zero, and therefore even. Consequently, each term in (C.66) is zero and it

follows that E|w |T ,|b |,xT
χT (x )G ν = 0.

On the other hand, forν≥ k , there exists a non-zero term, for example takingα1 = . . .=αk = 1

and αk+1 = ν− k . Take any such term arising from I ∈ [k + 1]ν. Since wi , b ∼ N (0,1/d ),
we have E|w |i

�

|wi | j
�

, E|b |
�

|b | j
�

= C j · d− j /2 for some C j > 0 for every fixed j . Substituting

in (B.59) and using ν=
∑k+1

i=1 αi , we get

E|w |T ,|b |,xT

�

k
∏

i=1

xi

��

∏

i∈I

zi

�

= (−1)C
′(τT ,sgn(b ))CI d−ν/2 (B.60)

for some CI > 0. Therefore, C (ν)(−1)C
′(τT ,sgn(b ))d−ν/2 with C (ν)> 0 follows since it is a sum
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of at most (k +1)ν positive terms.

Proof of Proposition 12

Let D be a positive constant. We apply the decomposition

�

�

�E|w |T ,|b |,xT

�

χT (x )RP,d (G )
�

�

�

�≤E|w |T ,|b |,xT

h

�

�RP,d (G )
�

� ·1(|G | ≤D )
i

(B.61)

+E|w |T ,|b |,xT

h

�

�RP,d (G )
�

� ·1(|G |>D )
i

(B.62)

The proposition follows from Lemmas 7 and 8 applied to an arbitrary value of D , eg., D = 1.

Lemma 7. For any D > 0,

E|w |T ,|b |,xT

h

�

�RP,d (G )
�

� ·1(|G | ≤D )
i

=O
�

d−
P+1

2

�

. (B.63)

Proof. Let us observe that for a fixed b , G ∼N (b , k
d ), thus

E|w |T ,xT

�

|RP,d (G )|1(|G | ≤D )
�

=Ey∼N (b , k
d )

�

|RP,d (y )|1(|y | ≤D )
�

. (B.64)

Recall that RP,d (x ) =
Σ(P+1)

d (ξx )
(P+1)! x P+1 for some |ξx | ≤ |x |. Thus,

Ey∼N (b , k
d )

�

|RP,d (y )|1(|y | ≤D )
�

≤ sup
|y |≤D

|Σ(P+1)
d (y )|
(P +1)!

·Ey∼N (b , k
d )
|y |P+1. (B.65)

On the one hand, assuming that d ≥ 2k , we have Σd =Σv for some 1/2≤ v ≤ 1, and thus

using the common polynomial bound in property ii) sup|y |≤D |Σ
(P+1)
d (y )| ≤MD , where the

constant MD does not depend on d . On the other hand,

Ey∼N (b , k
d )
|y |P+1 = d−

P+1
2 ·Ey

�

�

p

d · y |P+1 (B.66)

≤ d−
P+1

2 ·2P+1 ·
�

|
p

d b |P+1+Ez∼N (0,k )|z |P+1
�

(B.67)

= d−
P+1

2 ·2P+1 ·

�

|
p

d b |P+1+
(2k )

P+1
2 Γ(P+2

2 )p
π

�

, (B.68)

where in the last equation we plugged the (P+1)-th central moment of the Gaussian distribu-

tion (see, eg., Winkelbauer, 2012). Since |
p

d b | is also distributed like an absolute value of

N (0, 1), taking the expectation over |b |, we get that for fixed P, k ,

E|w |T ,|b |,xT

h

�

�RP,d (G )
�

� ·1(|G | ≤D )
i

=O
�

d−
P+1

2

�

. (B.69)
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Lemma 8. For any constant D > 0, there exist C1, C2 > 0 such that

E|w |T ,|b |,xT

h

�

�RP,d (G )
�

� ·1(|G |>D )
i

≤C1 exp(−C2d ). (B.70)

Proof. By Cauchy-Schwartz inequality,

E|w |T ,|b |,xT

�

|RP,d (G )|1(|G |>D )
� (C .S .)
≤ E|w |T ,|b |,xT

[RP,d (G )
2]1/2 ·Pr|w |T ,|b |,xT

[|G |>D ]1/2 . (B.71)

For the first term, we use the universal polynomial bound from property ii):

�

�

�E|w |T ,|b |,xT
[RP,d (G )

2]
�

�

�=E|w |T ,|b |,xT





 

sup|y |≤|G |Σ
(P+1)
d (y )

(P +1)!
|G |P+1

!2


 (B.72)

≤E|w |T ,|b |,xT





 

sup|y |≤|G |C y 2ℓ+C

(P +1)!
|G |P+1

!2


 (B.73)

=E|w |T ,|b |,xT





�

C G 2ℓ+C

(P +1)!
|G |P+1

�2


=Od (1) , (B.74)

using a similar reasoning as in Lemma 7.

On the other hand, writing G =G ′+ |b |, we have

Pr|w |T ,|b |,xT
[|G |>D ]≤ Pr|b |[|b |>D /2] +Pr|w |T ,xT

[|G ′|>D /2] (B.75)

≤ 2 Pry∼N (0,1/d )[|y |>D /2]≤ 4 exp(−D 2d /8) . (B.76)

We get desired bound putting together (B.72) and (B.76).

B.2 Expressivity of Common Activation Functions

In this section we show that ReLU and sign are expressive. It is clear that both of these

functions are polynomially bounded, so we only need to analyze their Hermite expansions

for condition b) in Definition 6. In both cases we do it by writing a closed form for Σ(k )(0).

Proposition 13. ReLU(x ) :=max{0, x } is expressive.

Proof. We will see that in the case σ = ReLU we have Σ(z ) = z
2 +

z
2 erf(z ) + 1

2
p
π

exp(−z 2).
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Indeed,

Σ(z ) =

∫ ∞

−∞
1(z + y ≥ 0)(z + y )φ(y )dy =

∫ ∞

−z

(z + y )φ(y )dy = zΦ(z ) +φ(z ) (B.77)

=
z

2
+

z erf(z/
p

2)
2

+φ(z ) . (B.78)

Using well-known Taylor expansions of erf andφ, this results in

Σ(k )(0) =















1
2 if k = 1 ,

(−1)k/2+1
p

2π2k/2(k−1)(k/2)!
if k is even,

0 otherwise.

(B.79)

In particular, Σ(k )(0) ̸= 0 for every even k and ReLU is expressive.

Proposition 14. The sign function sgn(x ) is expressive.

Proof. In this case, similarly, we have

Σ(z ) =−
∫ −z

−∞
φ(z )dz +

∫ ∞

−z

φ(z )dz = 2Φ(z )−1= erf(z/
p

2) , (B.80)

which can be seen to have the expansion

Σ(k )(0) =







2p
π
· (−1)(k−1)/2

2k/2
�

k−1
2

�

!k
if k is odd,

0 otherwise.
(B.81)

Again, the sign function is expressive since Σ(k ) ̸= 0 for every odd k .

B.3 Proof of Proposition 4

Using the definition of INAL and the Fourier expansion of f , we get

INAL( f ,σ) =Ew ,b

�

〈 f ,σ〉2
�

(B.82)

=Ew ,b





 

∑

T ∈[n ]
f̂ (T )〈χT ,σ〉

!2


 (B.83)

=Ew ,b





∑

T

f̂ (T )2〈χT ,σ〉2+
∑

S ̸=T

f̂ (S ) f̂ (T )〈χT ,σ〉〈χS ,σ〉



 . (B.84)
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We show that the second term of (B.84) is zero. Let S , T be two distinct sets. Without loss

of generality, assume that |S | ≥ |T |, and let i be such that i ∈ S but i ̸∈ T (such i must exist

since S ̸= T ). Fix w and b and decompose w into w∼i , |wi |, sgn(wi )where w∼i denotes the

vector of weights, excluding coordinate i . By applying the change of variable sgn(wi )xi 7→ yi

and noticing that xi has the same distribution of yi , we then get

〈χS ,σ〉=Ex [χS (x ) ·σ(xi sgn(wi )|wi |+
∑

j ̸=i

x j w j + b )] (B.85)

= sgn(wi ) ·Ex∼i ,yi
[χS∼i

(x ) · yi ·σ(yi |wi |+
∑

j ̸=i

x j w j + b )] (B.86)

:= sgn(wi ) ·ES , (B.87)

where ES does not depend on sgn(wi ). On the other hand,

〈χT ,σ〉=Ex [χT (x ) ·σ(xi sgn(wi )|wi |+
∑

j ̸=i

x j w j + b )] (B.88)

=Ex∼i ,yi
[χT (x ) ·σ(yi |wi |+

∑

j ̸=i

x j w j + b )], (B.89)

which means that 〈χT ,σ〉 does not depend on sgn(wi ). Thus, we get

Ew ,b

�

〈χT ,σ〉〈χS ,σ〉
�

=Ew ,b

�

sgn(wi ) · 〈χT ,σ〉 ·ES

�

= 0. (B.90)

Hence,

INAL( f ,σ) =
∑

T

f̂ (T )2Ew ,b

�

〈χT ,σ〉2
�

(B.91)

=
∑

T

f̂ (T )2 INAL(χT ,σ). (B.92)

B.4 Proof of Corollary 4

Indeed, by Proposition 4 for any f : {±1}d →R and k it holds

INAL( f ,σ) =
∑

T

f̂ (T )2 INAL(χT ,σ)≥W k ( f ) INAL(χk ,σ) . (B.93)

Accordingly, if INAL(χk ,σ) =Ω(d−k0 ), we have

W k ( fd )≤ INAL( fd ,σ) ·O (d k0 ) , (B.94)

and then, under our assumptions, also

W ≤k ( fd )≤ INAL( fd ,σ) ·O (d k0 ) . (B.95)
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For the “in particular” statement, let ( fd ) be a function family with negligible INAL( fd ,σ)
for a correlatingσ. Let k ∈N. Sinceσ is correlating, the assumption INAL(χk ′ ,σ) =Ω(d−k0 )
for k ′ = 0, . . . , k holds. Therefore, (B.95) also holds and W ≤k ( f ) is negligible. Since k was

arbitrary, the function family ( fd ) is high-degree.

B.5 Proof of Proposition 5

Let f = fd and let f̂ be the Fourier coefficients of the original function f , and let ĥ be

the coefficients of the augmented function f̄ . Recall that f̄ : {±1}D → {±1} is such that

f̄ (x1, ..., xd , xd+1, ..., xD ) = f (x1, ..., xd ). Thus, the Fourier coefficients of f̄ are

ĥ (T ) =

(

f̂ (T ) if T ⊆ [d ],

0 otherwise.
(B.96)

Let us proceed to bounding the cross-predictability. Below we denote by π a random permu-

tation of N elements:

CP(orb( fd ),U D ) =Eπ
�

Ex

�

f̄ (x ) f̄ (π(x ))
�2�

(B.97)

=Eπ





 

∑

T⊆[D ]
ĥ (T )ĥ (π(T ))

!2


 (B.98)

=Eπ





 

∑

T⊆[d ]
f̂ (T )ĥ (π(T )) ·1 (π(T )⊆ [d ])

!2


 (B.99)

C .S
≤ Eπ





 

∑

S⊆[d ]
ĥ (π(S ))2

!

·

 

∑

T⊆[d ]
f̂ (T )21 (π(T )⊆ [d ])

!



 (B.100)

≤
∑

T⊆[d ]
f̂ (T )2 ·Pπ (π(T )⊆ [d ]) . (B.101)

Now, for any k we have

CP(orb( fd ),U D )≤
∑

T :|T |<k

f̂ (T )2 ·Pπ (π(T )⊆ [d ]) +
∑

T :|T |≥k

f̂ (T )2 ·Pπ (π(T )⊆ [d ]) (B.102)

≤W <k ( f ) +Pπ (π(T )⊆ [d ] | |T |= k ) , (B.103)

where the second term in (B.103) is further bounded by (recall that D = d 1+ε):

Pπ (π(T )⊆ [d ] | |T |= k ) =

�d
k

�

�D
k

� ≤

�

d e
k

�k

�

D
k

�k
= e k d k

D k
= e k d−ε·k . (B.104)
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Accordingly, for any k ∈N>0 it holds that

CP(orb( fd ),U D )≤W <k ( f ) + e k d−εk . (B.105)

Now, if ( fd ) is a high degree sequence of Boolean functions, then W <k ( f ) is negligible for

every k , and therefore the cross-predictability in (B.104) is O (d−k ) for every k , that is the

cross-predictability is negligible as we claimed.

On the other hand, if for some c and every k it holds that W ≤k ( fd ) =O (d k−c ), then we can

choose k0 := c
1+ε and apply (B.105) to get CP(orb( fd ),U D ) =O (d−

ε
1+ε ·c ).

B.6 Proof of Theorem 4

Let σ be an expressive activation and let ( fd ) be a sequence of Boolean functions with

negligible INAL( fd ,σ). By Proposition 3, σ is correlating, and by Corollary 4 ( fd ) is high-

degree. Therefore, by Proposition 5, the cross-predictability CP(orb( fd ),U D ) is negligible.

For the more precise statement, let ( fd )be a sequence of Boolean functions with INAL( fd ,σ) =
O (d−c ). By Proposition 3,σ is 1-strongly correlating. That means that for every k we have

INAL(χk ,σ) =Ω(d−(k+1)). By Corollary 4, for every k it holds W ≤k ( fd ) =O (d k+1−c ). Finally,

applying Proposition 5, we have that CP(orb( fd ),U D ) =O (d−
ε

1+ε (c−1)).

B.7 Details and Proof of Corollary 3

Corollary 3 states a hardness results for learning on fully connected neural networks with iid

initialization. This is a more specific definition than the one we gave for a neural network in

Section 3.1.1. Let us state it precisely, following the treatment in Abbe and Sandon, 2020b.

Definition 30. For the purposes of Corollary 3, a neural network on n inputs consists of a

differentiable activation functionσ :R→R, a threshold function f :R→{±1} and a weighted,

directed graph with a vertex set labeled with {1, x1, . . . , xd , v1, . . . , vm , vout}. The vertices labeled

with x1, . . . , xd are called the input vertices, the vertex labeled with 1 is the constant vertex and

vout is the output vertex.

We assume that the graph does not contain loops, the constant and input vertices do not have

any incoming edges, the output vertex does not have outgoing edges and for the remaining

vertices there are no edges (vi , v j ) for i > j . Each vertex (a neuron) has an associated function

(the output of the neuron) from Rd to Rwhich is defined recursively as follows: The output of

the constant vertex is y1 = 1 and the output of the input vertex is (abusing notation) yxi
= xi .

The output of any other vertex vi is given by yvi
=σ(

∑

v :(v,vi )∈E (G )wv,vi
yv ). Finally, the output

of the whole network is given by f (yvout
).

We say that the neural network is fully connected if every vertex that has an incoming edge
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from an input vertex has incoming edges from all input vertices.

Note that our definition of “fully connected network” covers any feed-forward architecture

that consists of a number of fully connected hidden layers stacked on top of each other.

Let us restate Theorem 3 from Abbe and Sandon, 2020b with the boundI from their Corrolary 1

applied to the junk flow term JFT :

Theorem 15 (Abbe and Sandon, 2020b). Let PF be a distribution on Boolean functions

f : {±1}d → {±1}. Consider any neural network as defined in Definition 30 with E edges.

Assume that a function f is chosen from PF and then T steps of noisy GD with gradient

range A and noise level τ are run on the initial network using function f and uniform input

distributionU d .

Then, in expectation over the initial choice of f , the training noise, and a fresh sample x ∼U d ,

the trained neural network NN(T ) satisfies

Pr
�

NN(x ;θ T ) = f (x )
�

≤
1

2
+

T
p

P A

τ
·CP(PF ,U d )1/4 . (B.106)

Finally, we need to discuss the fact that Corollary 3 applies for any fully connected neural

network with iid initialization. What we mean by this is that the initial neural network has

a fixed activationσ, threshold function f and graph (vertices and edges), but the weights

on edges are not fixed. Instead, they are chosen randomly iid from any fixed probability

distribution. More precisely, we can make a weaker assumption that the weights on all edges

that are outgoing from the input vertices are chosenII iid from a fixed distribution and all the

other weights have arbitrary fixed values.

We can now proceed to prove Corollary 3.

B.7.1 Proof of Corollary 3

Let a randomly initialized, fully connected neural network NN be trained in the following

way. First, a function fd ◦π is chosen uniformly at random from the orbit of fd . Then, a noisy

GD algorithm is run with the parameters stated: T steps, learning rate γ, overflow range A

and noise level τ. Finally, a fresh sample x ∼U D is presented to the trained neural network.

Then, Theorem 15 says that

Pr
�

NN(x ;θ T ) = ( fd ◦π)(x )
�

≤
1

2
+

T
p

P A

τ
·CP(orb( fd ),U D )1/4 . (B.107)

ISince we are discussing GD, we are applying their bound with infinite sample size m =∞.
IIEven more precisely, we can assume only that the distribution of these weights is symmetric under permuta-

tions of input vertices x1, . . . , xd .
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Since we can apply Theorem 15 to the class of all orbits of − fd , which has the same cross-

predictability, the same upper bound also holds for Pr[NN(x ;θ T ) ̸= ( fd ◦π)(x )]. Consequently,

we have the expectation bound

�

�

�E〈NN(.;θ T ), fd ◦π〉
�

�

�≤
2T
p

P A

τ
·CP(orb( fd ),U D )1/4 . (B.108)

Recall that the neural network is fully connected and the weights on the edges outgoing

from the input vertices are iid. The expectation in (B.108) is an average of conditional

expectations for different initial choices of permutation π. Consider the action induced by π

on the weights outgoing from the input vertices. By properties of GD, it follows that each

conditional expectation over π contributes equally to the left-hand side of (B.108). It follows

that the same bound holds also for the single function fd :

�

�Eθ T 〈NN(.;θ T ), fd 〉
�

�≤
2T
p

P A

τ
CP(orb( fd ),U D )1/4 . (B.109)

Accordingly, if INAL( fd ,σ) is negligible, then, by Theorem 4, CP(orb( fd ),U D ) is negligible

and the right-hand side of (B.109) remains negligible for any polynomial bounds on T , P , A

and τ, as claimed.

For the more precise statement, if INAL( fd ,σ) =O (d−c ), then again by Theorem 4 it holds

CP(orb( fd ),U D ) =O (d−
ε

1+ε (c−1)) and we get the bound of O
�

T
p

P A
τ ·d

− ε
4(1+ε) (c−1)

�

on the right-

hand side of (B.109).
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C.1 Proofs of Theorem 6 and Theorem 7

C.1.1 Proof of Lemma 1

This proof follows a similar argument that is used in (Abbe and Boix-Adserà, 2022; Abbe and

Sandon, 2020a). TV(θ T ;ψT ) can be bounded by:

TV(θ T ;ψT ) = TV
�

θ T−1−γ(Γ f (θ
T−1) +Z t );ψT−1−γ(Γr (ψ

T−1) +ξt )
�

(C.1)

a )
≤ TV

�

θ T−1−γ(Γ f (θ
T−1) +Z t );ψT−1−γ(Γ f (ψ

T−1) +Z t )
�

(C.2)

+TV
�

ψT−1−γ(Γ f (ψ
T−1) +Z t );ψT−1−γ(Γr (ψ

T−1) +ξt )
�

(C.3)

b )
≤ TV

�

θ T−1;ψT−1
�

+TV
�

γ(Γ f (ψ
T−1) +Z t );γ(Γr (ψ

T−1) +ξt )
�

(C.4)

c )
≤ TV

�

θ T−1;ψT−1
�

+
1

2τγ
EψT−1∥γΓ f (ψ

T−1)−γΓr (ψ
T−1)∥2 (C.5)

= TV
�

θ T−1;ψT−1
�

+
1

2τ
EψT−1∥Γ f (ψ

T−1)−Γr (ψ
T−1)∥2 (C.6)

where in a )we used the triangular inequality, in b ) the data processing inequality (DPI), and

in c ) Pinsker’s inequality. Thus,

TV(θ T ;ψT )≤
1

2τ

T−1
∑

t=0

Eψt ∥Γ f (ψ
t )−Γr (ψ

t )∥2 (C.7)

(a )
≤

1

2τ

T−1
∑

t=0

q

Eψt ∥Γ f (ψt )−Γr (ψt )∥22, (C.8)

where in (a )we used the Cauchy-Schwarz inequality.
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C.1.2 Proof of Proposition 6

Recall, that θ 0 ∼N (0, V ), where V is a P ×P diagonal matrix such that Vp p = v 2
lp

, where lp is

the layer of parameter p , andψt
p ∼N (0,U ), where U is a P ×P diagonal matrix such that

Up p = v 2
lp
+ t γ2τ2. Thus, U =C V C

T
, where C is a P ×P diagonal matrix such that

C p p =

√

√

√1+
t γ2τ2

v 2
lp

. (C.9)

Definition 31 (C -Rescaling). Let NN(x ;θ ) be an L-layers network, with parameters θ ∈RP .

Let C (1), ..., C (L ) be L positive constants, and let C be a P × P diagonal matrix such that

C p p =C (lp ) where lp is the layer of parameter θp . We say that the vector C ·θ is a C -rescaling

of θ .

Definition 32 (Strong Positive Homogeneity (SPH)). We say that an architecture is H -strongly

homogeneous (H -SPH) if for all C -rescaling such that minp∈[P ]C p p > 1, it holds:

NN(x ; C ·θ ) =Cp ,H ·NN(x ;θ ), (C.10)

∂(C θ )p NN(x ; C ·θ ) =Dp ,H ·∂θp
NN(x ;θ ), (C.11)

where Cp ,H =
∏lp

l=1

�

C (l )
�H

and Dp ,H is such that Dp ,H ≤Cp ,H .

Lemma 9. Let NN(x ;θ ) be a fully connected network as in (3.20)-(3.21). Assume that the

activationσ is H -strongly homogeneous (as defined in Def. 12), with H ≥ 1. Then, NN(x ;θ )
is H -SPH.

The proof of Lemma 9 is in Appendix C.1.3.

If we optimize over the Correlation Loss, i.e. L ( f ,θ , x ) :=− f (x ) ·NN(x ;θ ), then the gradients

of interest are given by:

Γ f (θ ) =−Ex

�

f (x ) ·∇θ NN(x ;θ )
�

; (C.12)

Γr (θ ) = 0. (C.13)

Thus,

Eψt ∥Γ f (ψ
t )−Γr (ψ

t )∥22 =
P
∑

p=1

EψtEx

�

∂ψt
p

NN(x ;ψt ) · f (x )
�2

Let C be a P ×P matrix such that C p p =
s

1+ t γ2τ2

v 2
lp

, where lp is the layer of θ 0
p . One can

verify that the C -rescaling of θ 0 has the same distribution asψt . We can thus rewrite each
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term in the sum above as:

EψtEx

�

∂ψt
p

NN(x ;ψt ) · f (x )
�2
=EC θ 0Ex

�

∂(C θ 0)p
NN(x ; C θ 0) · f (x )

�2

(a )
= D 2

p ,H ·Eθ 0Ex

�

∂θ 0
p

NN(x ;θ 0) · f (x )
�2

where in (a )we used Lemma 9. Thus,

Eψt ∥Γ f (ψ
t )−Γr (ψ

t )∥22 =Eθ 0

P
∑

p=1

D 2
p ,HEx

�

∂θ 0
p

NN(x ;θ 0) · f (x )
�2

(a )
≤ K ·Eθ 0∥G f (θ

0)∥22,

where K =
∏L

l=1

�

1+ t γ2τ2

v 2
l

�H
, and where in (a )we used that |Dp ,H | ≤Cp ,H .

C.1.3 Proof of Lemma 9

We proceed by induction on the network depth. As a base case, we consider a 2-layer network.

Let us write explicitly the gradients of the network.

∇W (2)
i

NN(x ;θ ) =σ(x (1)i (θ )), (C.14)

∇W (1)
i j

NN(x ;θ ) =W (2)
i σ′(x (1)i (θ ))x j , (C.15)

∇b (1)i
NN(x ;θ ) =W (2)

i σ′(x (1)i (θ )). (C.16)

Notice that the strong homogeneity assumption on the activationσ (Def. 12), we have for

l ∈ {1, 2}:

x (l )i (C ·θ ) =
l
∏

h=1

(C (h ))H · x (l )i (θ ), (C.17)

thus (C.10) holds. Moreover,

∂W (2)
i

NN(x ; C ·θ ) = (C (1))H ∂W (2)
i

NN(x ;θ ), (C.18)

∂W (1)
i j

NN(x ; C ·θ ) = (C (2))H ∂W (1)
i j

NN(x ;θ ), (C.19)

∂b (1)i
NN(x ; C ·θ ) = (C (2))H ∂b (1)i

NN(x ;θ ). (C.20)

Therefore, for any parameter θp , p ∈ [P ],

∂θp
NN(x ; C ·θ ) =Dp ,H ∂θp

NN(x ;θ ), (C.21)

with 1<Dp ,H ≤max{(C (1))H , (C (2))H } ≤
∏2

l=1(C
(l ))H .
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For the induction step, assume that for a network of depth L −1, for all parameters θp ,

∂θp
NN(x ; C (θ )) =Dp ,H ·∂θp

NN(x ;θ ), (C.22)

with 1<Dp ,H ≤
∏L−1

l=1 (C
(l ))H . Let us consider a neural network of depth L , and let us write

the gradients,

∂W (L )
i

NN(x ;θ ) =σ(x (L−1)
i (θ )), (C.23)

∂W (l )
i j

NN(x ;θ ) =
NL−1
∑

k=1

W (L )
k σ′(x (L−1)

k (θ )) ·∂W (l )
i j

x (L−1)
k (θ ), l = 1, ..., L −1, (C.24)

∂b (1)i
NN(x ;θ ) =

NL−1
∑

k=1

W (L )
k σ′(x (L−1)

k (θ )) ·∂b (1)i
x (L−1)

k (θ ), (C.25)

where NL−1 denotes the width of the (L −1)-th hidden layer. One can observe that x (L−1)
k (θ )

corresponds to the output of a fully connected network of depth L −1, and thus we can use

the induction hypothesis for bounding ∂θp
x (L−1)

k (θ ), for all parameters θp in the first L −1

layers. Thus,

∂W (L )
i

NN(x ; C (θ )) = (C (L−1))H ·DW (L )
i ,H ·∂W (L )

i
NN(x ;θ ), (C.26)

∂W (l )
i j

NN(x ; C (θ )) =
NL−1
∑

k=1

C (L )W (L )
k σ′(x (L−1)

k (θ )) ·DW (l )
i j ,H ∂W (l )

i j
x (L−1)

k (θ ), l = 1, ..., L −1,

(C.27)

∂b (1)i
NN(x ; C (θ )) =

NL−1
∑

k=1

C (L )W (L )
k σ′(x (L−1)

k (θ )) ·Db (1)i ,H ∂b (l )i
x (L−1)

k (θ ). (C.28)

Thus, the result follows.
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C.1.4 Proof of Proposition 7

For ease of notation, let us denote A(ψt ) := ∥Γ f (ψt )−Γr (ψt )∥22 and byφN the density of a

N (0,γ2tτ2I) random vector. Let us write:

∫

RP

A(ξ)

∫

RP

φN (ξ−ψ)φµ(ψ)dψdξ (C.29)

=

∫

RP

A(ξ)
q

φµ(ξ)
1

Æ

φµ(ξ)

∫

RP

φN (ξ−ψ)φµ(ψ)dψdξ (C.30)

(a )
≤
�∫

RP

A(ξ)2φµ(ξ)dξ

�1/2

·

�

∫

RP

1

φµ(ξ)

�∫

RP

φN (ξ−ψ)φµ(ψ)dψ
�2

dξ

�1/2

(C.31)

=

�∫

RP

A(ξ)2φµ(ξ)dξ

�1/2

·K 1/2
µ , (C.32)

where in (a )we used Cauchy-Schwartz. The result follows since A(ξ) = ∥G f (ξ)∥22.

C.1.5 Computation of Kµ for Gaussian and Uniform Distributions

Gaussian Initialization. Let us first consider the i.i.d. case. Assume that µ = N (0;V ),
where V ∈RP×P is a diagonal matrix such that Vi i = v 2

i .

Kµ =

∫

RP

1

φµ(ξ)

�∫

RP

φN (ξ−ψ)φµ(ψ)dψdξ

�2

(C.33)

=

∫

RP

1

φµ(ξ)
φµ+N (ξ)

2dξ, (C.34)

where µ+N ∼N (0, V +γ2tτ2I). Thus, if for all i ∈ [P ], v 2
i ≥ γ

2tτ2,

Kµ =
P
∏

i=1

∫

R

φ(µ+N )i (ξi )2

φ(µ)i (ξi )
dξi (C.35)

=
P
∏

i=1

vi
q

2π(v 2
i +γ2tτ2)

∫

R
exp

�

−
ξ2

i

2

�

v 2
i −γ

2tτ2

v 2
i (v

2
i +γ2tτ2)

��

dξi (C.36)

=
P
∏

i=1

vi
q

2π(v 2
i +γ2tτ2)

·
p

2π

√

√

√
v 2

i (v
2
i +γ2tτ2)

v 2
i −γ2tτ2

(C.37)

=
P
∏

i=1

v 2
i

q

(v 2
i +γ2tτ2)(v 2

i −γ2tτ2)
(C.38)

=
P
∏

i=1

v 2
i

q

v 4
i −γ4t 2τ4

. (C.39)
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On the other hand, in the case where V is a generic covariance matrix we have:

Kµ =

∫

RP

1

2πP /2
exp

�

−x T (V +γ2tτ2I)−1 x +
1

2
x T V −1 x

�

d x . (C.40)

Uniform Initialization. Let us assume thatµ=Unif([−1, 1])⊗P . Let C be such that ∥ψt ∥∞ <
C with probability at least 1−exp(−dδ), for some δ > 0. Assume that for all C > 0, A(C ·ξ) =
C ·A(ξ) (this holds e.g. for fully connected networks with ReLU activation). Then,

∫

RP

A(ξ)

∫

RP

φN (ξ−ψ)φµ(ψ)dψdξ=

∫

[−C ,C ]⊗P

A(ξ)

∫

RP

φN (ξ−ψ)φµ(ψ)dψdξ+exp(−dδ),

(C.41)

We apply the change of variable ξi 7→C · yi , for all i ∈ [P ], in the first term of the right hand

side, which gives:

∫

[−C ,C ]⊗P

A(ξ)

∫

RP

φN (ξ−ψ)φµ(ψ)dψdξ (C.42)

=C P

∫

[−1,1]⊗P

A(y )

∫

RP

φN (y −ψ)φµ(ψ)dψd y (C.43)

(a )
≤ C P

�

∫

[−1,1]⊗P

A(y )2d y

�1/2

·

�

∫

[−1,1]⊗P

�∫

RP

φN (y −ψ)φµ(ψ)dψ
�2

d y

�1/2

(C.44)

=Eθ 0∼µ[A(θ
0)2]1/2 ·Kµ, (C.45)

where in (a )we used Cauchy-Schwartz inequality and Kµ is given by

Kµ = 2P /2C P ·

�

∫

[−1,1]⊗P

�∫

RP

φN (y −ψ)φµ(ψ)dψ
�2

d y

�1/2

(C.46)

= 2P /2C P
P
∏

i=1

1

2

 

∫ 1

−1

�

∫ 1

−1

φ(N )i (yi −ψi )dψi

�2

d yi

!1/2

(C.47)

= 2−P /2C P
P
∏

i=1

�

∫ 1

−1

�

P(Ni < yi +1)−P(Ni < yi −1)
�2

d yi

�1/2

(C.48)

(a )
≤ 2−P /2C P

P
∏

i=1

p
2 (P(Ni <+1)−P(Ni <−1)) (C.49)

=C P
P
∏

i=1

(P(Ni <+1)−P(Ni <−1)) , (C.50)
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where in (a )we used that for all i ∈ [P ], the distributionNi is unimodal and symmetric, with

a maximum in zero.

C.2 Proof of Proposition 8

Let us denote NN(x ;θ ) =
∑N

i=1 aiσ(wi x + bi ), where θ = (w , b , a ) and σ := ReLU. Recall-

ing that we denoted by f̂ (S ) = Ex∼Unif{±1}d [ f (x )χS (x )] the Fourier coefficients of f and by

W ≤k ( f ) =
∑

S⊆[d ],|S |≤k f̂ (S )2 the Fourier weight of f up to degree k , we can rewrite:

Eθ 0∥G f (θ
0)∥22 =

P
∑

p=1

Eθ 0Ex [ f (x )∂θ 0
p

NN(x ;θ 0)]2 (C.51)

(a )
=
∑

S⊆[d ]
f̂ (S )2

P
∑

p=1

Eθ 0Ex [χS (x )∂θ 0
p

NN(x ;θ 0)]2 (C.52)

(b )
= W ≤k ( f )P C +

∑

S :|S |>k

f̂ (S )2
P
∑

p=1

Eθ 0Ex [χS (x )∂θ 0
p

NN(x ;θ 0)]2, (C.53)

where (a ) follows by a similar argument as in Proposition 4 and in (b ) C is a constant such

that for all p , Eθ 0,x [(∂θ 0
p

NN(x ;θ 0))2]≤C . We use the following Lemma.

Lemma 10. Let S ⊆ [d ] such that |S |= k . Let g :R→R be a function that satisfies Assump-

tion 3. Assume that w1, ..., wd , b
i i d∼ N (0, 1

d+1 ) and denote by w = (w1, ..., wd ). Then,

Ew ,bEx

�

χS (x ) · g (w x + b )
�2 ≤

π2

6
ĝ (m )2m 2, (C.54)

where m :=min{k ′ ≥ k : ĝ (k ′) ̸= 0}.

For simplicity we denote w =w 0
1 , b = b 0

1 . Thus, for all S such that |S |> k , we can write

P
∑

p=1

Eθ 0Ex [χS (x )∂θ 0
p

NN(x ;θ 0)]2 =
N ,d
∑

i , j=1,1

Eθ 0Ex [χS (x )x jσ
′(wi x + bi )]

2

+NEθ 0Ex [χS (x )σ(wi x + bi )]
2+NEθ 0Ex [χS (x )σ

′(wi x + bi )]
2

(a )
=

N ,d
∑

i , j=1,1

Eθ 0 V H−1Ex

�

χS (x )x jσ
′
�

wi x + bip
V

��2

+N V HEθ 0Ex

�

χS (x )σ
�

wi x + bip
V

��2

+N V H−1Eθ 0Ex

�

χS (x )σ
′
�

wi x + bip
V

��2

(b )
≤ (N d +N )V H−1π

2

6
σ̂′2(m ′)m ′2+N V H π

2

6
σ̂2(m )m 2

where in (a )we used the H-homogeneity of the activationσ and we denoted by V = v1
p

d +1,

where v 2
1 is the variance of the initial distribution of the first layer’s weights, and in (b )we
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used Lemma 10 and denoted m :=min{k ′ ≥ k : σ̂(k ′) ̸= 0} and m ′ :=min{k ′ ≥ k : σ̂′(k ′) ̸= 0}.
The result follows by observing that

∑

S⊆[d ] f̂ (S )2 ≤ 1.

All is left is the proof of Lemma 10.

Proof of Lemma 10. Denoting tx =w x + b , one can observe that for given x , x ′,

�

tx

tx ′

�

∼N
��

0

0

�

,

�

1 cx ,x ′

cx ,x ′ 1

��

. (C.55)

where cx ,x ′ =
〈x ,x ′〉+1

d+1 . Thus, applying Lemma 14, we get

Ew ,bEx [χS (x )g (tx )]
2] (C.56)

=Ex ,x ′
�

χS (x )χS (x
′) ·Ew ,b [g (tx )g (tx ′ )]

�

(C.57)

=Ex ,x ′

�

χS (x )χS (x
′) ·
∞
∑

h=1

ĝ (h )2c h
x ,x ′

�

(C.58)

=Ex ,x ′

h

χS (x )χS (x
′) ·

k−1
∑

h=1

ĝ (h )2c h
x ,x ′

i

+Ex ,x ′

h

χS (x )χS (x
′) ·
∞
∑

h=k

ĝ (h )2c h
x ,x ′

︸ ︷︷ ︸

:=Rg ,k (x ,x ′)

i

(C.59)

(a )
= Ex ,x ′

h

χS (x )χS (x
′) ·Rg ,k (x , x ′)

i

, (C.60)

where (a ) holds by Lemma 11. One the other hand, let m :=min{k ′ ≥ k : ĝ (k ′) ̸= 0}. Then,

Ex ,x ′

h

χS (x )χS (x
′) ·Rg ,k (x , x ′)

i

≤Ex ,x ′

h
�

�

�χS (x )χS (x
′) ·Rg ,k (x , x ′)

�

�

�

i

(C.61)

≤
∞
∑

h=k

ĝ (h )2 (C.62)

(a )
≤ ĝ (m )2m 2

∞
∑

h=k

1

h 2
(C.63)

≤
π2

6
ĝ (m )2m 2, (C.64)

where (a ) holds because by Assumption 3, ĝ (m )2m 2

ĝ (h )2h 2 ≥ 1, for all h ≥m such that ĝ (h ) ̸= 0.

Lemma 11. If f (x ) =
∏P

i=1 xi , for P ∈ {d −1, d }, then for all d

Ex∼U {±1}d



 f (x )

�

d
∑

i=1

xi +1

�k


=







0 if k < P

P ! if k = P.
(C.65)
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Proof. Let us write

�

d
∑

i=1

xi +1

�k

=
∑

I=(i1,...,ik )∈[d ]k

∏

i∈I

xi . (C.66)

Let us focus on a single term of the sum in (C.66) for I = (i1, . . . , ik ) ∈ [d ]k . For j = 1, . . . , d , let

α j =α j (I ) := |{m : im = j }|. Accordingly, we can write

Ex





P
∏

i=1

xi

�

d
∑

i=1

xi +1

�k


=
∑

I=(i1,...,ik )∈[d ]k
Ex

�

P
∏

i=1

xαi (I )+1
i

d
∏

i=P+1

xαi (I )
i

�

(C.67)

=
∑

I=(i1,...,ik )∈[d ]k

P
∏

i=1

Ex

�

xαi (I )+1
i

�

d
∏

i=P+1

Ex

�

xαi (I )
i

�

, (C.68)

where we assume that
∏d

i=P+1Ex

�

xαi (I )
i

�

= 1 if P = d . Since E[xαi+1
i ] = 0 if αi is even, for

a term in (C.68) to be non-zero it is necessary that αi is odd for every 1 ≤ i ≤ P and αi

even for i = P + 1. If k < P , then since k =
∑d

i=1αi at least one of αi , 1 ≤ i ≤ P must

be zero, and therefore even. Consequently, each term in (C.68) is zero and it follows that

Ex

h

∏P
i=1 xi ·

�

∑d
i=1 xi +1

�k i

= 0. If P = k = d −1, the only non-zero terms are the ones with

αi = 1 for all 1≤ i ≤ P and αd = 0. Similarly, if P = k = d , the only non-zero terms have αi = 1

for all 1 ≤ i ≤ P . In both such cases, the number of I corresponding to non-zero terms is

P !, and for each non-zero term we have
∏P

i=1Ex

�

xαi (I )+1
i

�

∏d
i=P+1Ex

�

xαi (I )
i

�

= 1. Thus, the

second line of the claim holds.

C.3 Background on Hermite Polynomials

We present here a brief introduction to Hermite polynomials and their basic properties, and

we refer e.g. to Silverman et al., 1972 for details.

C.3.1 The Hermite polynomials

The n-th (probabilist) Hermite polynomial is defined by

Hn (x ) =
(−1)n

φ(x )
d n

d x n
φ(x ), (C.69)

whereφ(x ) := e −x 2/2
p

2π
. One can show (by integration by parts) that for all n , m ∈N:

∫

R
Hn (x )Hm (x )φ(x )d x = n ! ·δnm , (C.70)
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where δnm is the Kronecker delta. Thus, the Hermite polynomials form an orthogonal basis

of L 2(N (0,1)), and every functionσ :R→R in L 2(N (0,1)), can be expanded in a series of

Hermite polynomials

σ(x ) =
∞
∑

n=0

σ̂(n )Hn (x ), (C.71)

where σ̂(n ) denote the Hermite coefficients. To compute the Hermite coefficients, one can

multiply (C.71) byφ(x )Hm (x ) and integrate term by term, obtaining:

∫

R
σ(x )Hm (x )φ(x )d x =

∞
∑

n=0

σ̂(n )

∫

R
Hn (x )Hm (x )φ(x )d x (C.72)

(a )
= σ̂(m ) ·m !, (C.73)

where in (a )we used (C.70). Thus,

σ̂(n ) =
1

n !

∫

R
σ(x )Hn (x )φ(x )d x . (C.74)

C.3.2 Useful lemmas

Lemma 12. Let Hn (x ) be the n-th (probabilist) Hermite polynomial. Then,

∫

R
Hn (x )exp

�

−
(x − c y )
2(1− c 2)

�

d x =
p

2πc n
p

1− c 2Hn (y ). (C.75)

Note that the above corresponds to E[Hk (x )] for x distributed as a non-centered Gaussian

distribution.

Proof. Recall, Hn (x ) =
(−1)n
φ(x )

d n

d x nφ(x ), whereφ(x ) = e −x 2/2
p

2π
. Observe,

∞
∑

k=0

c k t k

k !
Hk (x ) =

1

φ(x )

∞
∑

k=0

(−c t )k

k !

d k

d x k
φ(x ) (C.76)

(a )
=
φ(x − c t )
φ(x )

= e c t x− (c t )2
2 , (C.77)
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where in (a) we used Taylor’s theorem. Thus,

∫ ∞

−∞
exp

�

−
(x − c y )2

2(1− c 2)

� ∞
∑

k=0

t k

k !
Hk (x )d x (C.78)

=

∫ ∞

−∞
exp

�

−
(x − c y )2

2(1− c 2)

�

exp(t x − t 2/2)d x (C.79)

=

∫ ∞

−∞
exp

�

−
x 2

2(1− c 2)
+

x [t (1− c 2) + c y ]
(1− c 2)

− t 2/2−
c 2 y 2

2(1− c 2)

�

d x (C.80)

=
p

2π(1− c 2)exp

�

c t y −
c 2t 2

2

�

d x . (C.81)

Lemma 13. Let G1,G2 be two jointly Gaussian variables such that Var(G1) =Var(G2) = 1 and

cov(G1,G2) = c . Let Hn (x ) be the n-th (probabilist) Hermite polynomial. Then,

EG1,G2
[Hn (G1)Hm (G2)] = c nδnm , ∀n , m ∈N, (C.82)

where δnm is the Kronecker delta.

Proof.

EG1,G2
[Hn (G1)Hm (G2)] =

∫

R2

Hn (x )Hm (y )
exp

�

− (y−c x )
2(1−s 2)

�

p

2π(1− s 2)
d x d y (C.83)

(a )
=

∫

R
Hn (x )Hm (x )c

m d x = c nδnm , (C.84)

where in (a) we used Lemma 12.

Lemma 14. Let G1,G2 be two jointly Gaussian variables such that Var(G1) = Var(G2) = 1

and cov(G1,G2) = c . Let h : R → R be a real function with Hermite expansion given by

h (x ) =
∑∞

n=0 ĥ (n )Hn (x ), where Hn is the n-th (probabilist) Hermite polynomial. Then,

EG1,G2
[h (G1)h (G2)] =

∞
∑

k=0

ĥ (k )2c k . (C.85)

Proof. Uses Lemma 13

Lemma 15. Let h :R→R be a real differentiable function with Hermite expansion given by

h (x ) =
∑∞

n=0 ĥ (n )Hn (x ), where Hn is the n-th (probabilist) Hermite polynomial. Let h ′(x ) be
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the first derivative of h (x ) and let h ′(x ) =
∑∞

n=0 ĥ ′(n )Hn (x ) be the Hermite expansion of h ′.

Then,

ĥ ′(n ) = ĥ (n +1) (C.86)

Proof. We use the following recurrence relation:

i ) H ′n (x ) = x Hn (x )−Hn+1(x ), (C.87)

Then,

∫

R
h ′(x )Hn (x )φ(x )d x

(a )
= −

∫

R
h (x )

�

H ′n (x )− x Hn (x )
�

φ(x )d x (C.88)

(b )
=

∫

R
h (x )Hn+1(x )φ(x )d x . (C.89)

where in (a) we used integration by part and in (b) we used (C.87).

C.3.3 Hermite coefficients of ReLU and threshold functions

Lemma 16 (Hermite coefficients of ReLU.). Letσ(x ) :=ReLU(x ). Then, the coefficients of the

(probabilist) Hermite expansion ofσ are given by

σ̂(k ) =















1
2 if k = 1 ,

(−1)k/2+1
p

2π2k/2(k−1)(k/2)!
if k is even,

0 otherwise.

(C.90)

Proof. Recall, σ̂(k ) are defined by

σ̂(k ) =
1

k !

∫

R
σ(x )Hk (x )φ(x )d x (C.91)

=
(−1)k

k !

∫

R
σ(x )

d k

d x k
φ(x )d x (C.92)

=
(−1)k

k !

d k

d z k
(σ ∗φ)(z )

�

�

�

z=0
, (C.93)

where ∗ denotes the convolution inR, defined as (σ ∗φ)(z ) =
∫

Rσ(x )φ(z − x )d x . Consider

the Taylor expansions of (σ ∗φ)(z ) around 0, i.e.

(σ ∗φ)(z ) =
∞
∑

k=0

1

k !
·

d k

d z k
(σ ∗φ)(z )

�

�

�

z=0
· z k , (C.94)

and observe that σ̂(k ) corresponds to the k -th coefficient of such expansion, up to a (−1)k
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term. To compute the Taylor coefficients of (σ ∗φ)(z )we write forσ=ReLU,

(σ ∗φ)(z ) =
∫

R
1(z + y ≥ 0)(z + y )φ(y )dy (C.95)

=

∫ ∞

−z

(z + y )φ(y )dy (C.96)

= zΦ(z ) +φ(z ) (C.97)

=
z

2
+

z erf(z/
p

2)
2

+φ(z ), (C.98)

where we denoted by Φ(z ) the CDF of the standard gaussian distribution and by erf(z ) =
2
π

∫ z

0
e −t 2

d t the Gaussian error function. Using well known Taylor expansions of erf andφ

we get the result.

Lemma 17 (Hermite coefficients of threshold function.). Let σ(x ) := 1(x > 0). Then, the

coefficients of the (probabilist) Hermite expansion ofσ are given by

σ̂(k ) =







1p
2π
· (−1)(k+1)/2

2
k−1

2 k
�

k−1
2

�

!
if k is odd,

0 otherwise.
(C.99)

Proof. Using a similar strategy as in the Proof of Lemma 16, we write forσ=1(x > 0)

(σ ∗φ)(z ) =
∫

R
1(z + y ≥ 0)φ(y )dy (C.100)

=

∫ ∞

−z

φ(y )d y (C.101)

=Φ(z ) (C.102)

=
1

2
+erf(z/

p
2). (C.103)

Using the well known Taylor expansion of erf we get the result.
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D Appendix on Noise Stability

D.1 Proof of Theorem 8

The proof of Theorem 8 goes by two steps. Firstly, we connect the noise stability to another

measure of complexity for classes of functions called cross predictability (CP), defined in

Definition 8. Then, similarly to the proof of Theorem 4, we use the negative results from (Abbe

and Sandon, 2020a), that lower bound the generalization error of learning a class of functions

in terms of its cross predictability.

Recall that for a function f : {±1}d → R we defined its 2d -extension as f : {±1}2d → R as

f (x1, ..., xd , xd+1, ..., x2d ) = f (x1, ..., xd ) (see Def. 7), and its orbit as the class containing all

functions formed by composing f with any permutation of the input coordinates (Def. 9).

Recall the Cross-Predictability (CP) defined in Def. 8. For brevity we make use of the following

notation:

CP(orb( f )) :=CP(Uorb( f ),U
2d ), (D.1)

whereUorb( f ),U
2d denote the uniform distribution over orb( f ) and over {±1}2d , respectively.

Furthermore, recall that every Boolean function f can be written in terms of its Fourier-

Walsh expansion f (x ) =
∑

S f̂ (S )χS (x ), where χS (x ) =
∏

i∈S xi are the standard Fourier basis

elements and f̂ (S ) are the Fourier coefficients of f . We further denote by

W k ( f ) =
∑

S :|S |=k

f̂ (S )2 and W ≤k ( f ) =
∑

S :|S |≤k

f̂ (S )2, (D.2)

the total weight of the Fourier coefficients of f at degree k and up to degree k , respectively.

We denote by f̂ the Fourier coefficients of the original function f , and by ĥ the coefficients
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of the augmented function f , that are:

ĥ (T ) = f̂ (T ) if T ⊆ [d ] (D.3)

ĥ (T ) = 0 otherwise. (D.4)

Remark 17 (Noise Stability). We remark the following two properties of Stabδ[ f ]:

1. One can show (see e.g., Theorem 2.49 in O’Donnell, 2014) that

Stabδ( f ) =
d
∑

k=1

(1−2δ)k W k [ f ], (D.5)

where W k [ f ] is the Boolean weight at degree k of f ;

2. For all δ ∈ [0,1/2], Stabδ( f ) = Stabδ( f ). This follows directly from the previous point

and (D.3)-(D.4).

We make use of the following Lemma, that relates the cross-predictability of orb( f ) to the

Stability of f .

Lemma 18. There exists δ such that for any δ′ <δ

CP(orb( f ))≤ Stabδ′ ( f ). (D.6)

Proof. We denote byπ a random permutation of 2d elements. Following a similar technique

as in the proof of Proposition 5, we can bound the CP(orb( f )) by the following:

CP(orb( f )) =Eπ
�

Ex

�

f (x ) f (π(x ))
�2�

(D.7)

=Eπ

 

∑

T⊆[2d ]

ĥ (T )ĥ (π(T ))

!2

(D.8)

=Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T )) ·1 (π(T )⊆ [d ])

!2

(D.9)

C .S
≤ Eπ

 

∑

S⊆[d ]
f̂ (π(S ))2

!

·

 

∑

T⊆[d ]
f̂ (T )21 (π(T )⊆ [d ])

!

(D.10)

=
∑

T⊆[d ]
f̂ (T )2 ·Pπ (π(T )⊆ [d ]) (D.11)

=
d
∑

k=1

W k [ f ] ·Pπ (π(T )⊆ [d ] | |T |= k ) , (D.12)

where (D.8) is the scalar product in the Fourier basis, (D.9) follows by applying the formulas

of the ĥ given in (D.3)-(D.4), (D.10) holds by Cauchy-Schwarz inequality, (D.11) holds since
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f is Boolean-valued and for each π by Parseval identity,
∑

S⊆[d ] f̂ (π(S ))2 = Ex [ f (x )2] = 1,

and (D.12) holds since the second term is invariant for all sets of a given cardinality.

Recalling π is a random permutation over the augmented input space of dimension 2d , for

each k ∈ [d ]we can further bound the second term by

Pπ (π(T )⊆ [d ] | |T |= k ) =

�d
k

�

�2d
k

� ∼
1

2k
≤ (1−2δ′)k , for all δ′ ≤ 1/4. (D.13)

Thus, for all δ′ ≤ 1/4,

CP(orb( f ))≤
d
∑

k=1

(1−2δ′)k W k [ f ] = Stabδ′ [ f ]. (D.14)

Remark 18. Note that the value of δ in Lemma 18 depends on the size of the input extension

that we use. In this paper, we defined an input extension of size 2d (input doubling), which

gives δ= 1/4, however we could have chosen e.g. a 3d -extension and obtain δ= 1/3, and so

on.

For the second step, we make use of Theorem 3 and Corollary 1 in (Abbe and Sandon, 2020a)

(see Thm. 5), that prove a lower bound of learning a class of function in terms of its cross

predictability. The lower bound holds for the noisy GD algorithm, defined in (1.9). Theorem 3

and Corollary 1 in (Abbe and Sandon, 2020a) imply that for any distribution over the Boolean

hypercube PX and Boolean functions PF , it holds that

Px∼PX ,F ∼PF ,θ T (F (x ) ̸=NN(x ;θ T ))≥ 1/2−
T
p

P A

τ
(1/B +CP(PF , PX ))

1/4 , (D.15)

where γ, P, A,τ, B have the same meaning as in Definition (1.9). In our case since the ini-

tialization is invariant under permutations of the input, then learning the orbit of f under

uniform distribution is equivalent to learning f , thus the following bound holds:

Px ,θ T ( f (x ) ̸=NN(x ;θ T ))≥ 1/2−
T
p

P A

τ

�

1/B +CP(orb( f ))
�1/4

. (D.16)

D.2 Removing the input doubling

One can prove a similar result to the one of Theorem 8, without using the input extension

technique. However, we need some additional assumptions on f . To introduce them,

let us first fix some notation. In the following, we say that a sequence an is noticeable if

there exists c ∈ N such that an =Ω(n−c ). On the other hand, we say that f is negligible if

limn→∞n c an = 0 for every c ∈N (which we also write an = n−ω(1)).
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Assumption 4 (Non-dense and non-extremal function). a) We say that f is “non-dense”

if there exists c such that W {T : f̂ (T )2 ≤ d−c } = d−ω(1), i.e. the negligible Fourier

coefficients do not bring a noticeable contribution if taken all together;

b) We say f is “non-extremal” if for any positive constant D , W ≥d−D [ f ] = d−ω(1), i.e. f

does not have noticeable Fourier weight on terms of degree d −O (1).

With such additional assumptions, we can conclude the following.

Proposition 15. Let f : {±1}d →{±1} be a balanced target function, let Stabδ( f ) be its noise

stability and let NN(x ;θ t ) be the output of noisy-G D with gradient range A and noise level

τafter t time steps, trained on a neural network of size P with initialization that is invariant

to permutation of the input neurons. Assume f satisfies Assumption 4. Then, there exist

c , C > 0 and D > 0 such that if δ <D /d

Px ,θ t ( f (x ) ̸=NN(x ;θ t ))≥ 1/2−
C t
p

P

τ
·
�

d c ·Stabδ( f ) +d−ω(1)
�1/4

. (D.17)

The proof of Proposition 15 resembles the proof of Theorem 8. The only modification

required is in Lemma 18, which is replaced by the following Lemma.

Lemma 19. Let f be a Boolean function that satisfies Assumption 4. There exists c , D > 0

such that for δ <D /n,

CP(orb( f ))≤ 2 ·d c ·Stabδ( f ) +d−ω(1). (D.18)

Proof. Let c > 0 be such that W {T : f̂ (T )2 ≤ d−c }= d−ω(1). This c exists because of Assump-

tion 1a.

CP(orb( f )) = (D.19)

=Eπ
�

Ex

�

f (x ) f (π(x ))
�2�

(D.20)

=Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T ))

!2

(D.21)

=Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T )) ·

�

1
�

f̂ (π(T ))2 ≤ d−c
�

+1
�

f̂ (π(T ))2 > d−c
��

!2

(D.22)

≤ 2Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T ))1

�

f̂ (π(T ))2 ≤ d−c
�

!2

+ (D.23)

+2Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T ))1

�

f̂ (π(T ))2 > d−c
�

!2

, (D.24)
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where in the last inequality we used (a + b )2 ≤ 2(a 2+ b 2). Let us first focus on the second

term on the right.

Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T ))1

�

f̂ (π(T ))2 > d−c
�

!2

(D.25)

C .S
≤ Eπ

 

∑

S⊆[d ]
f̂ (π(S ))2

!

·

 

∑

T⊆[d ]
f̂ (T )21

�

f̂ (π(T ))2 > d−c
�

!

(D.26)

≤
∑

T⊆[d ]
f̂ (T )2 ·Pπ

�

f̂ (π(T ))2 > d−c
�

(D.27)

=
n
∑

k=1

W k [ f ] ·Pπ
�

f̂ (π(T ))2 > d−c | |T |= k
�

(D.28)

=
d−D
∑

k=1

W k [ f ] ·Pπ
�

f̂ (π(T ))2 > d−c | |T |= k
�

+ (D.29)

+
d
∑

k=d−D+1

W k [ f ] ·Pπ
�

f̂ (π(T ))2 > d−c | |T |= k
�

≤
d−D
∑

k=1

W k [ f ] ·Pπ
�

f̂ (π(T ))2 > d−c | |T |= k
�

+W ≥d−D+1[ f ]. (D.30)

where D is an arbitrary positive constant. Because of Assumption 1b, W ≥d−D+1[ f ] = d−ω(1).

On the other hand, since f is a Boolean valued function,

∑

T

f̂ (T )2 =Ex [ f (x )
2] = 1, (D.31)

which implies that there are at most d c sets T such that f̂ (T )2 > d−c . Thus, recalling π is a

random permutation over the input space of dimension d , we get

Pπ
�

f̂ (π(T ))2 > d−c | |T |= k
�

≤
d c

�d
k

� (D.32)

≤ d c
�

k

d

�k

(D.33)

≤ d c
�

d −D

d

�k

(D.34)

≤ d c (1−2δ)k if δ≤
D

2d
, (D.35)

where in (D.33) we used that
�d

k

�

≥ (dk )
k for all k ≥ 1. Going back to the first term in (D.24) we
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get

Eπ

 

∑

T⊆[d ]
f̂ (T ) f̂ (π(T ))1

�

f̂ (π(T ))2 ≤ d−c
�

!2

(D.36)

C .S
≤ Eπ

 

∑

S⊆[d ]
f̂ (S )2

!

·

 

∑

T⊆[d ]
f̂ (π(T ))21

�

f̂ (π(T ))2 > d−c
�

!

(D.37)

≤
∑

T⊆[d ]
f̂ (π(T ))21

�

f̂ (π(T ))2 > d−c
�

(D.38)

= d−ω(1), (D.39)

by Assumption 1a. Hence overall,

CP(orb( f ))≤ 2d c
d−D
∑

k=1

W k [ f ](1−2δ)k +d−ω(1) (D.40)

≤ 2d c Stabδ( f ) +d−ω(1). (D.41)

D.3 Noise Stability of PVR functions

As mentioned in Section 1.2.1, a Pointer-Value-Retrieval (PVR) task consists of a pointer (the

first bits of the input) and an aggregation function that acts on a specific window indicated

by the pointer. We denote by p the number of bits that define the pointer, and by w the

size of each window. For simplicity, we consider a slight variation of Boolean PVR task with

non-overlapping windows, defined as follows:

• PVR with non-overlapping windows: the 2p windows pointed by the pointer bits are

non-overlapping, i.e., the first window is formed by bits xp+1, ..., xp+w , the second

window is formed by bits xp+w+1, ..., xp+2w , and so forth.

The input size is thus given by d := p+2p w and p =O (log(d )). We denote by g : {±1}w →{±1}
the aggregation function, which we assume to be balanced (i.e. Ex [g (x )] = 0). One can verify

(see details below) that the noise stability of the PVR function f is given by

Stabδ[ f ] = (1−δ)p+w + (1−δ)p (1− (1−δ)w ) ·Stabδ[g ]. (D.42)

We notice that the Stabδ[ f ] is given by two terms: the first one depends on the window size

and the second one on the stability of the aggregation function. For large enough window

size, the second term in (D.42) is the dominant one, and Stabδ[ f ] depends on the stability of

g . Thus from Theorem 8, f is not learned by GD (in the extended input space) in poly(n) time

if the stability of the aggregation function is d−ω(1). On the other hand, for small window size
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(specifically for w =O (log(d ))), the Stabδ( f ) is ‘noticeable’ (as defined in Appendix D.2) for

every aggregation function, since the function value itself depends on a limited number of

input bits. Thus, noise unstable aggregation functions (e.g. parities) can form a PVR function

with ‘noticeable’ stability, if the window size is O (log(d )).

Computation of (D.42). We compute the expression in (D.42) with the following:

Stabδ[ f ] = 1−2 NSδ[ f ], (D.43)

where NSδ[ f ] :=P( f (x ) ̸= f (y )) is the Noise sensitivity of f , defined as the probability that

perturbing each input bit independently with probability δ changes the output of f and

where we denoted by y the vector obtained from x by flipping each component with prob.

δ independently. To compute NSδ[ f ], we can first distinguish depending on whether the

perturbation affects the pointer bit:

NSδ[ f ] :=P( f (x ) ̸= f (y ))

= (1−δ)p ·P( f (x ) ̸= f (y ) | x p = y p ) + (1− (1−δ)p )P( f (x ) ̸= f (y ) | x p ̸= y p )

= (1−δ)p ·P( f (x ) ̸= f (y ) | x p = y p ) + (1− (1−δ)p )
1

2
,

where the last inequality holds since we are using non-overlapping windows and we assumed

g to be balanced. To compute the first term, we can condition on whether any bit in the

window pointed by x and y is changed:

P( f (x ) ̸= f (y ) | x p = y p )

= (1−δ)w ·P( f (x ) ̸= f (y ) | x p = y p , XP (x p ) = YP (Y p ))+

+ (1− (1−δ)w ) ·P( f (x ) ̸= f (y ) | x p = y p , xP (x p ) ̸= yP (y p ))

= (1− (1−δ)w ) ·P( f (x ) ̸= f (y ) | x p = y p , xP (x p ) ̸= yP (y p ))

= (1− (1−δ)w ) ·NSδ[g ],

where the last inequality holds because g is unbalanced. By replacing NSδ[g ] =
1
2−

1
2 Stabδ[g ]

and rearranging terms one can obtain (D.42).
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In this section, we present proofs for results mentioned in Section ??, namely, Lemma 2 and

Theorem 9.

E.1 Proof of Lemma 2

Proof of Lemma 2. Let f (x ) =
∑

T⊆[n ] f̂ (T )χT (x ) be the Fourier expansion of the function

where χT (x ) =
∏

i∈T xi . Therefore, the Fourier expansion of the frozen function will become

f−k (x ) =
∑

T⊆[n ]\k
( f̂ (T ) + f̂ (T ∪k ))χT (x ). (E.1)

Thus, the difference between functions is equal to

( f − f−k )(x ) =
∑

T⊆[n ]:k∈T

f̂ (T )χT (x )−
∑

T⊆[n ]\k
f̂ (T ∪k )χT (x ). (E.2)

Hence, using Parseval’s Theorem we have the following:

EU n ( f − f−k )
2
2 =

∑

T⊆[n ]:k∈T

f̂ (T )2+
∑

T⊆[n ]\k
f̂ (T ∪k )2 = 2

∑

T⊆[n ]:k∈T

f̂ (T )2. (E.3)

Therefore,

EU n

1

2
( f − f−k )

2
2 =

∑

T⊆[n ]:k∈T

f̂ (T )2 = Infk ( f ), (E.4)

and the lemma is proved.

E.2 Proof of Theorem 9

Proof of Theorem 9. Assume f̃ (t )−k (x ,Θ(t )) := x T W (t )+b (t ) to be our linear model where Θ(t ) =
(W (t ), b (t )) are the model parameters at time t . In the following, the super-script t and T
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denote the time-step and transpose respectively. Also, we useEx−k
to denote the expectation

of x taken uniformly on the Boolean hypercube while xk = 1. Using the square loss, we have

L (Θ(t ), x , f ) = (x T W (t )+ b (t )− f (x ))2, (E.5)

and the gradients will be

∇W L (Θ(t ), x , f ) = 2x
�

x T W (t )+ b (t )− f (x )
�

, (E.6)

∂b L (Θ(t ), x , f ) = 2
�

x T W (t )+ b (t )− f (x )
�

. (E.7)

The GD update rule will then become

W (t+1) =W (t )−2γ
�

Ex−k

�

x x T
�

W (t )+Ex−k
[x ]b (t )−Ex−k

[x f (x )]
�

, (E.8)

b (t+1) = b (t )−2γ
�

Ex−k
[x T ]W (t )+ b (t )−Ex−k

[ f (x )]
�

. (E.9)

Note that Ex−k

�

x x T
�

= In , Ex−k
[x ] = e⃗k . So we have

∀ j ̸= k : W (t+1)
j =W (t )

j (1−2γ) +2γEx−k
[x j · f (x )], (E.10)

W (t+1)
k =W (t )

k −2γ(W (t )
k + b (t )) +2γEx−k

[ f (x )], (E.11)

b (t+1) = b (t )−2γ(W (t )
k + b (t )) +2γEx−k

[ f (x )]. (E.12)

Using above equations, we have

W (t+1)
k − b (t+1) =W (t )

k − b (t ) =W (0)
k − b (0), (E.13)

W (t+1)
k + b (t+1) = (1−4γ)(W (t )

k + b (t )) +4γEx−k
[ f (x )]. (E.14)

Assume γ< 1
4 and define 0< c =− log(1−2γ)<− log(1−4γ), then we have

W (t )
k + b (t ) = (1−4γ)t (W (0)

k + b (0)−Ex−k
[ f (x )])+Ex−k

[ f (x )]

=O ((1−4γ)t ) +Ex−k
[ f (x )] =O (e −c t ) +Ex−k

[ f (x )]

=O (e −c t ) + f̂ (;) + f̂ ({k}), (E.15)

∀ j ̸= k : W (t )
j = (1−2γ)t (W (0)

j −Ex−k
[x j · f (x )])+Ex−k

[x j · f (x )]

=O ((1−2γ)t ) +Ex−k
[x j · f (x )] =O (e −c t ) +Ex−k

[x j · f (x )]

=O (e −c t ) + f̂ ({ j }). (E.16)

So the learned function is

f̃−k (x ;Θ(t )) =
b (0)−W (0)

k + f̂ (;) + f̂ ({k})
2

+
W (0)

k − b (0)+ f̂ (;) + f̂ ({k})
2

xk

+
∑

j ̸=k

f̂ ({ j }) · x j +O (e −c t ) (E.17)
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and the generalization error can be computed using Parseval Theorem:

gen( f , f̃ (t )−k ) =
1

2
Ex∼U n

h
�

f (x )− f̃ (t )−k (x ;Θ∞)
�2i

(E.18)

=
1

2

�

(b (0)−W (0)
k − f̂ (;) + f̂ ({k}))2+ (W (0)

k − b (0)+ f̂ (;)− f̂ ({k}))2

4

�

+O (e −c t ) (E.19)

=
(b (0)−W (0)

k − f̂ (;) + f̂ ({k}))2

4
+O (e −c t ) (E.20)

=
(b (0)−W (0)

k )
2

4
+
( f̂ (;)− f̂ ({k}))2

4
−2
(b (0)−W (0)

k )( f̂ (;)− f̂ ({k})
4

+O (e −c t ). (E.21)

Therefore, the expected generalization loss over different initializations is given by

EΘ0 [gen( f , f̃ (t )−k )] =EΘ0

�

(b (0)−W (0)
k )

2+ ( f̂ (;)− f̂ ({k}))2

4

�

+O (e −c t ) (E.22)

=
( f̂ (;)− f̂ ({k}))2

4
+
σ2

2
+O (e −c t ). (E.23)

Particularly, if the frozen function is unbiased, i.e., f̂ (;) + f̂ ({k}) = 0, we have

EΘ0 [gen( f , f̃ (t )−k )] =
(2 f̂ ({k}))2

4
+
σ2

2
+O (e −c t )

= f̂ ({k})2+
σ2

2
+O (e −c t ) = Infk ( f ) +

σ2

2
+O (e −c t ). (E.24)
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F.1 Proof of Theorem 12

Theorem 16 (Theorem 12, restatement). Let k , d be both even integers, such that k ≤ d /2.

Let NN(x ;θ ) =
∑N

i=1 aiσ(wi x + bi ) be a 2-layers fully connected network with activation

σ(y ) :=Ramp(y ) (as defined in (F.2)) and N ≥ (d+1)(d−k+1) log((d+1)(d−k+1)/δ). Consider

training NN(x ;θ )with SGD on the hinge loss with batch size B ≥ (8ζ2N 2)−1 log(N d+N
δ ), with

ζ ≤ εµk

24(d+1)2(d−k+1)2N and µ =
Ç

1− 1
2(d−k ) . Then, there exists an initialization, a learning

rate schedule, and a 2-CL strategy such that after T ≥ 64
ε2 (d −k +1)3(d +1)N iterations, with

probability 1−3δ SGD outputs a network with generalization error at most ε.

F.1.1 Proof setup

We consider a 2-layers neural network, defined as:

NN(x ;θ ) =
N
∑

i=1

aiσ(wi x + bi ), (F.1)

where N is the number of hidden units, θ = (a , b , w ) andσ :=Ramp denotes the activation

defined as:

Ramp(x ) =











0 x ≤ 0,

x 0< x ≤ 1,

1 x > 1

. (F.2)

Without loss of generality, we assume that the labels are generated by χ[k ](x ) :=
∏k

i=1 xi .

Indeed, SGD on fully connected networks with permutation-invariant initialization is in-

variant to permutation of the input neurons, thus our result will hold for all χS (x ) such that

|S |= k . Our proof scheme is the following:
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1. We train only the first layer of the network for one step on data (xi ,χ[k ](xi ))i∈[B ] with

xi ∼Rad(p )⊗d for i ∈ [B ], with p = 1
2

Ç

1− 1
2(d−k ) +

1
2 ;

2. We show that after one step of training on such biased distribution, the target parity

belongs to the linear span of the hidden units of the network;

3. We subsequently train only the second layer of the network on (xi ,χ[k ](xi ))i∈[B ] with

xi ∼Rad(1/2)⊗d for i ∈ [B ], until convergence;

4. We use established results on convergence of SGD on convex losses to conclude.

We train our network with SGD on the hinge loss. Specifically, we apply the following updates,

for all t ∈ {0, 1, ..., T −1}:

w t+1
i , j =w t

i , j −γt
1

B

B
∑

s=1

∇w t
i , j

L (θ t ,χ[k ], x t
s ),

a t+1
i = a t

i −ξt
1

B

B
∑

s=1

∇a t
i

L (θ t ,χ[k ], x t
s ) + ct , (F.3)

b t+1
i =λt

�

b t
i +ψt

1

B

B
∑

s=1

∇b t
i

L (θ t ,χ[k ], x t
s )

�

+dt ,

where L (θ t ,χ[k ], x ) =max{0, 1−χ[k ](x )NN(x ;θ t )}. Following the 2-steps curriculum strategy

introduced above, we set

x 0
s

i i d∼ Rad
�

p
�⊗d ∀s ∈ [B ], (F.4)

x t
s

i i d∼ Rad (1/2)⊗d ∀t ≥ 1, s ∈ [B ], (F.5)

where p = 1
2

Ç

1− 1
2(d−k ) +

1
2 . For brevity, we denote µ := 2p − 1 =

Ç

1− 1
2(d−k ) . We set the

parameters of SGD to:

γ0 =µ
−(k−1)2N , γt = 0 ∀t ≥ 1, (F.6)

ξ0 = 0, ξt =
ε

2N
∀t ≥ 1, (F.7)

ψ0 =
N

µk
, ψt = 0 ∀t ≥ 1, (F.8)

c0 =−
1

2N
, ct = 0 ∀t ≥ 1, (F.9)

λ0 = (d +1), λt = 1 ∀t ≥ 1, (F.10)

d0 = 0, dt = 0 ∀t ≥ 1, (F.11)
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and we consider the following initialization scheme:

w 0
i , j = 0 ∀i ∈ [N ], j ∈ [d ];

a 0
i =

1

2N
∀i ∈ [N ]; (F.12)

b 0
i ∼Unif

n bl m

d +1
+

1

2
: l ∈ {0, ..., d }, m ∈ {−1, ..., d −k}

o

,

where we define

bl m :=−d +2l −
1

2
+

m +1

d −k
. (F.13)

Note that such initialization is invariant to permutations of the input neurons. We choose

such initialization because it is convenient for our proof technique. We believe that the

argument may generalize to more standard initialization (e.g. uniform, Gaussian), however

this would require more work and it may not be a trivial extension.

F.1.2 First step: Recovering the support

As mentioned above, we train our network for one step on (xi ,χ[k ](xi ))i∈[B ]with xi ∼Rad(p )⊗d .

Population gradient at initialization. Let us compute the population gradient at initializa-

tion. Since we set ξ0 = 0, we do not need to compute the initial gradient for a . Note that at

initialization |NN(x ;θ 0)|< 1. Thus, the initial population gradients are given by

∀ j ∈ [k ], i ∈ [N ] Gwi , j
=−aiEx∼Rad(p )⊗d





∏

l∈[k ]\ j

xl ·1(〈wi , x 〉+ bi ∈ [0, 1])



 (F.14)

∀ j ̸∈ [k ], i ∈ [N ] Gwi , j
=−aiEx∼Rad(p )⊗d





∏

l∈[k ]∪ j

xl ·1(〈wi , x 〉+ bi ∈ [0, 1])



 (F.15)

∀i ∈ [N ] Gbi
=−aiEx∼Rad(p )⊗d





∏

l∈[k ]
xl ·1(〈wi , x 〉+ bi ∈ [0, 1])



 (F.16)

Lemma 20. Initialize a , b , w according to (F.12). Then,

∀ j ∈ [k ], Gwi , j
=−

µk−1

2N
; (F.17)

∀ j ̸∈ [k ], Gwi , j
=−

µk+1

2N
; (F.18)

Gbi
=−

µk

2N
. (F.19)
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Proof. If we initialize according to (F.12), we have 〈wi , x 〉+ bi ∈ [0,1] for all i . The results

holds since Ex∼Rad(p )⊗d [χS (x )] =µ|S |.

Effective gradient at initialization.

Lemma 21. Let

Ĝwi , j
:=

1

B

B
∑

s=1

∇w 0
i , j

L (θ 0,χ[k ], x t
s ) (F.20)

Ĝbi
:=

1

B

B
∑

s=1

∇b 0
i

L (θ 0,χ[k ], x t
s ) (F.21)

be the effective gradients at initialization. If B ≥ (8ζ2N 2)−1 log(N d+N
δ ), then with probability

1−2δ,

∥Ĝwi , j
−Gwi , j

∥∞ ≤ ζ, (F.22)

∥Ĝbi
−Gbi
∥∞ ≤ ζ, (F.23)

where Gwi , j
,Gbi

are the population gradients.

Proof. We note that E[Ĝwi , j
] =Gwi , j

, E[Ĝbi
] =Gbi

, and |Ĝwi , j
|, |Ĝbi
| ≤ 1

2N

Px∼Rad(p )⊗d

�

| Ĝwi , j
−Gwi , j

|≥ ζ
�

≤ 2 exp
�

−8ζ2N 2B
�

≤
2δ

N d +N
, (F.24)

Px∼Rad(p )⊗d

�

| Ĝbi
−Gbi
|≥ ζ

�

≤ 2 exp
�

−8ζ2N 2B
�

≤
2δ

N d +N
. (F.25)

The result follows by union bound.

Lemma 22. Let

w 1
i , j =w 0

i , j −γ0Ĝwi , j
(F.26)

b 1
i =λ0

�

b 0
i −ψ0Ĝbi

�

(F.27)

(F.28)

If B ≥ (8ζ2N 2)−1 log(N d+N
δ ), with probability 1−2δ

i) For all j ∈ [k ], i ∈ [N ], |w 1
i , j −1| ≤ 2N ζ

µk−1 ;

ii) For all j ̸∈ [k ], |w 1
i , j − (1−

1
2(d−k ) )| ≤

2N ζ
µk−1 ;

iii) For all i ∈ [N ], |b 1
i − (d +1)(b 0

i −
1
2 )| ≤

N (d+1)ζ
µk .
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Proof. We apply Lemma 22:

i) For all j ∈ [k ], i ∈ [N ], |ŵ 1
i , j −1|= γ0|Ĝwi , j

−Gwi , j
| ≤ 2N ζ

µk−1 ;

ii) For all j ̸∈ [k ], i ∈ [N ], |ŵ 1
i , j − (1−

1
2(d−k ) )|= γ0|Ĝwi , j

−Gwi , j
| ≤ 2N ζ

µk−1 ;

iii) For all i ∈ [N ],

|b̂ 1
i − (d +1)(b 0

i −
1

2
)|= |λ0(b

0
i +ψ0Ĝbi

)−λ0(b
0
i +ψ0Gbi

)| (F.29)

≤ |λ0| · |ψ0| · |Ĝbi
−Gbi
| (F.30)

≤
N (d +1)ζ
µk

. (F.31)

Lemma 23. If N ≥ (d +1)(d −k +1) log((d +1)(d −k +1)/δ), then with probability 1−δ, for

all l ∈ {0, ..., d }, and for all m ∈ {−1, ..., d −k} there exists i such that b 0
i =

bl m
d+1 +

1
2 .

Proof. The probability that there exist l , m such that the above does not hold is

�

1−
1

(d +1)(d −k +1)

�N

≤ exp
�

−
N

(d +1)(d −k +1)

�

≤
δ

(d +1)(d −k +1)
. (F.32)

The result follows by union bound.

Lemma 24. Letσl m (x ) =Ramp
�

∑d
j=1 x j − 1

2(d−k )

∑

j>k x j + bl m

�

, with bl m given in (F.13). If

B ≥ (8ζ2N 2)−1 log(N d+N
δ ) and N ≥ (d +1)(d −k +1) log((d +1)(d −k +1)/δ), with probability

1−3δ, for all l , m there exists i such that

�

�

�σl m (x )−Ramp

 

d
∑

j=1

ŵ 1
i , j x j + b̂ 1

i

!

�

�

�≤ 3N (d +1)ζµ−k . (F.33)

Proof. By Lemma 23, with probability 1−δ, for all l , m there exists i such that b 0
i =

bl m
d+1 +

1
2 .

For ease of notation, we replace indices i 7→ (l m ), and denote σ̂l m (x ) =Ramp
�

∑d
j=1 w 1

l m , j x j + b 1
l m

�

.

Then, by Lemma 22 with probability 1−2δ,

|σl m (x )− σ̂l m (x )| ≤
�

�

�

k
∑

j=1

(w 1
l m , j −1)x j +

d
∑

j=k+1

�

w 1
l m , j −

�

1−
1

2(d −k )

��

x j + b 1
l m − bl m

�

�

�

(F.34)

≤ k 2N ζµ−(k−1)+ (d −k )2N ζµ−(k−1)+N (d +1)ζµk (F.35)

≤ 3N (d +1)ζµ−k . (F.36)
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Lemma 25. There exists a ∗ with ∥a ∗∥∞ ≤ 4(d −k ) such that

d
∑

l=0

d−k
∑

m=−1

a ∗l mσl m (x ) =χ[k ](x ). (F.37)

Proof. Recall, that we assumed d , k even and recall that

σl m (x ) =Ramp

 

d
∑

j=1

x j −
1

2(d −k )

∑

j>k

x j + bl m

!

, (F.38)

where bl m =−d+2l− 1
2+

m+1
d−k for l ∈ [d ], m ∈ {−1, ..., d−k+1}and Ramp(x ) =











0 x ≤ 0,

x 0< x ≤ 1,

1 x > 1

.

Let
∑d

j=1 x j = d − 2t , where t is the total number of −1, and similarly let −
∑d

j=k+1 x j =
(d −k )−2s , where s is the number of +1 outside the support of the parity χ[k ](x ).We have,

σl m (x ) =Ramp
�

2(l − t ) +
m +1− s

d −k

�

. (F.39)

We take

a ∗l m = (−1)l (−1)m 2(d −k ) ∀l ∈ [d ], m =−1, (F.40)

a ∗l m = (−1)l (−1)m 4(d −k ) ∀l ∈ [d ], m ∈ {0, 1, ..., d −k −2}, (F.41)

a ∗l m = (−1)l (−1)m 3(d −k ) ∀l ∈ [d ], m = d −k −1, (F.42)

a ∗l m = (−1)l (−1)m (d −k ) ∀l ∈ [d ], m = d −k , (F.43)

Note that for all l < t ,

2(l − t ) +
m +1− s

d −k
≤−2+

d −k +1

d −k
≤ 0, (F.44)

thus,σl m (x ) = 0 for all m . Moreover, for all l > t ,

2(l − t ) +
m − s +1

d −k
≥ 2−

d −k

d −k
= 1. (F.45)

Thus,σl m (x ) = 1 for all m and

d−k
∑

m=−1

a ∗l mσl m (x ) =
d−k
∑

m=−1

a ∗l m = 0. (F.46)
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If l = t ,

d−k
∑

m=−1

a ∗t mσt m (x )

= (−1)t (d −k )

�

d−k−2
∑

m=0

4(−1)m Ramp
�

m +1− s

d −k

�

−3 Ramp
�

d −k − s

d −k

�

+Ramp
�

d −k +1− s

d −k

�

�

= (−1)t
�

d−k−2
∑

m=s

4(−1)m (m +1− s )+−3 (d −k − s )++ (d −k +1− s )+

�

= (−1)t (−1)s .

Since we assumed d , k even, (−1)s =
∏d

i=k+1 xi . Moreover, observe that χ[k ](x ) =
∏d

i=k+1 xi ·
∏d

i=1 xi . Thus,

∑

l m

a ∗l mσl m (x ) = (−1)t (−1)s =χ[k ](x ). (F.47)

Lemma 26. Let f ∗(x ) =
∑

l ,m a ∗l mσl m (x ) and let f̂ (x ) =
∑

l ,m a ∗l m σ̂l m (x ), with σl m ,σ̂l m

defined in Lemma 30 and a ∗ defined in Lemma 25. If B ≥ (8ζ2N 2)−1 log(N d+N
δ ) and N ≥

(d +1)(d −k +1) log((d +1)(d −k +1)/δ), with probability 1−3δ for all x ,

L ( f̂ , f ∗, x )≤ (d +1)2(d −k +1)212N ζµ−k . (F.48)

Proof.

| f ∗(x )− f̂ (x )|=
�

�

�

∑

l ,m

a ∗l ,m (σl m (x )− σ̂l m (x )
�

�

� (F.49)

≤ d (d −k +1)∥a ∗∥∞ sup
l m
|σl m (x )− σ̂l m (x )| (F.50)

≤ (d +1)2(d −k +1)212N ζµ−k . (F.51)

Thus,

(1− f (x ) f ∗(x ))+ ≤ |1− f (x ) f ∗(x )| (F.52)

= | f ∗
2
(x )− f (x ) f ∗(x )| (F.53)

= | f ∗(x )| · | f ∗(x )− f (x )| ≤ (d +1)2(d −k +1)212N ζµ−k , (F.54)

which implies the result.
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F.1.3 Second step: Convergence

To conclude, we use an established result on convergence of SGD on convex losses (see

e.g. (Barak et al., 2022; Daniely and Malach, 2020; Malach and Shalev-Shwartz, 2020; Shalev-

Shwartz et al., 2012; Shalev-Shwartz and Ben-David, 2014)).

Theorem 17. LetL be a convex function and let a ∗ ∈ argmin∥a∥2≤BL (a ), for someB > 0.

For all t , let αt be such that E
�

αt | a t
�

=−∇a tL (a t ) and assume ∥αt ∥2 ≤ρ for some ρ > 0. If

a 0 = 0 and for all t ∈ [T ] a t+1 = a t +γαt , with γ= B
ρ
p

T
, then :

1

T

T
∑

t=1

L (a t )≤L (a ∗) +
Bρ
p

T
. (F.55)

LetL (a ) :=Ex∼Rad(1/2)⊗d

�

L ((a , b 1, w 1),χ[k ], x )
�

. Then,L is convex in a and for all t ∈ [T ],

αt =−
1

B

B
∑

s=1

∇a t L ((a t , b 1, w 1),χ[k ], x ) (F.56)

=−
1

B

B
∑

s=1

σ(w 1 x + b 1). (F.57)

Thus, recallingσ=Ramp, we have ∥α(t )∥2 ≤
p

N . Let a ∗ be as in Lemma 25. Clearly, ∥a ∗∥2 ≤
4(d −k +1)3/2(d +1)1/2. Moreover, a 1 = 0. Thus, we can apply Theorem 17 withB = 4(d −
k +1)3/2(d +1)1/2, ρ =

p
N and obtain that if

1. N ≥ (d +1)(d −k +1) log((d +1)(d −k +1)/δ);

2. ζ≤ εµk

24(d+1)2(d−k+1)2N ;

3. B ≥ (8ζ2N 2)−1 log(N d+N
δ );

4. T ≥ 64
ε2 (d −k +1)3(d +1)N .

then, with probability 1−3δ over the initialization

Ex∼Rad(1/2)⊗d

�

min
t ∈[T ]

L
�

θ t ,χ[k ], x
�

�

≤
ε

2
+
ε

2
= ε. (F.58)

Remark 19. We assume k ≤ d /2 to avoid exponential dependence of ζ (and consequently of

the batch size and of the computational complexity) in d . Indeed, if k ≤ d /2, then,

µk =
�

1−
1

2(d −k )

�k/2

≥
�

1−
1

d

�d /4

∼ e −1/4. (F.59)

Remark 20 (Noisy-GD). We remark that the proof extends to the noisy-GD algorithm with
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noise level τ≤ ζp
2
· log

�

N d+n
δ

�−1/2
(see Def. 26). Indeed, one can replace Lemma 21 with the

following Lemma, and keep the rest of the proof unchanged.

Lemma 27 (Noisy-GD). Let

Ĝwi , j
:=Gwi , j

+Zwi , j
, (F.60)

Ĝbi
:=Gbi

+Zbi
, (F.61)

be the effective gradients at initialization, where Gwi , j
,Gbi

are the population gradients at

initialization and Zwi , j
, Zbi

are iidN (0,τ2). If τ≤ ζp
2
· log

�

N d+n
δ

�−1/2
, with probability 1−2δ:

∥Ĝwi , j
−Gwi , j

∥∞ ≤ ζ, (F.62)

∥Ĝbi
−Gbi
∥∞ ≤ ζ. (F.63)

Proof. By concentration of Gaussian random variables:

P
�

|Ĝwi , j
−Gwi , j

| ≥ ζ
�

≤ 2 exp

�

−
ζ2

2τ2

�

≤
2δ

N d +N
, (F.64)

P
�

|Ĝbi
−Gbi
| ≥ ζ

�

≤ 2 exp

�

−
ζ2

2τ2

�

≤
2δ

N d +N
. (F.65)

The result follows by union bound.

F.2 Proof of Theorem 13

Theorem 18 (Theorem 13, restatement). Let k , d be integers, such that d ≥ k and k even.

Let NN(x ;θ ) =
∑N

i=1 aiσ(wi x + bi ) be a 2-layers fully connected network with activation

σ(y ) := ReLU(y ) and N ≥ (k + 1) log(k+1
δ ). Consider training NN(x ;θ ) with SGD on the

covariance loss with batch size B ≥ (2ζ2)−1 log(d N
δ ), with ζ≤ ε(µ

k−1−µk+1)
64k 2N ·

�

1+ d−k
k

�−1
, for some

µ ∈ (0,1). Then, there exists an initialization, a learning rate schedule, and a 2-CL strategy

such that after T ≥ 64k 3N
ε2 iterations, with probability 1− 3δ SGD outputs a network with

generalization error at most ε.

F.2.1 Proof setup

Similarly as before, we consider a 2-layers neural network, defined as NN(x ;θ ) =
∑N

i=1 aiσ(wi x+
bi ), where N is the number of hidden units, θ = (a , b , w ) andσ :=ReLU. Our proof scheme

is similar to the previous Section. Again, we assume without loss of generality that the labels

are generated by χ[k ](x ) :=
∏k

i=1 xi . We assume k to be even. We train our network with SGD
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on the covariance loss, defined in Def. 25. We use the same updates as in (F.3) with:

x 0
s

i i d∼ Rad(p )⊗d ∀s ∈ [B ], (F.66)

x t
s

i i d∼ Rad(p )⊗d ∀t ≥ 1, s ∈ [B ], (F.67)

for some p ∈ (1/2, 1). We denote µ := 2p −1. We set the parameters to:

γ0 = 16N (µk−1−µk+1)−1k−1, γt = 0 ∀t ≥ 1, (F.68)

ξ0 = 0, ξt =
ε

8N
∀t ≥ 1, (F.69)

ψ0 = 0, ψt = 0 ∀t ≥ 1, (F.70)

c0 =−1, ct = 0 ∀t ≥ 1, (F.71)

λ0 = 1, λt = 1 ∀t ≥ 1, (F.72)

d0 =−1, dt = 0 ∀t ≥ 1, (F.73)

and we consider the following initialization scheme:

w 0
i , j = 0 ∀i ∈ [N ], j ∈ [d ];

a 0
i =

1

16N
∀i ∈ [N ]; (F.74)

b 0
i ∼Unif

n2(i +1)
k

: i ∈ {0, 1, ..., k}
o

.

F.2.2 First step: Recovering the support

Population gradient at initialization. At initialization, we have |NN(x ;θ 0)|< 1
4 , thus

�

�

�cov(χ[k ],θ
0, x , Rad(p )⊗d )

�

�

�< 1. (F.75)

The initial gradients are therefore given by:

∀i , j Gwi , j
=−aiEx∼Rad(p )⊗d





�
∏

l∈[k ]
xl −µk

�

·
�

x j1(〈wi , x 〉+ bi > 0)−Ex j1(〈wi , x 〉+ bi > 0)
�





(F.76)

∀i ∈ [N ] Gbi
=−aiEx∼Rad(p )⊗d





�
∏

l∈[k ]
xl −µk

�

·
�

1(〈wi , x 〉+ bi > 0)−E1(〈wi , x 〉+ bi > 0)
�





(F.77)

146



Appendix on Curriculum Learning Chapter F

If we initialize a , b , w according to (F.74). Then,

∀ j ∈ [k ], Gwi , j
=−

µk−1−µk+1

16N
; (F.78)

∀ j ̸∈ [k ], Gwi , j
= 0; (F.79)

Gbi
= 0. (F.80)

Effective gradient at initialization.

Lemma 28. Let

w 1
i , j =w 0

i , j −γ0Ĝwi , j
(F.81)

b 1
i =λ0

�

b 0
i +ψ0Ĝbi

�

+d0, (F.82)

(F.83)

where Ĝwi , j
:= 1

B

∑B
s=1∇w 0

i , j
L (θ 0,χ[k ], x t

s ) and Ĝbi
:= 1

B

∑B
s=1∇b 0

i
L (θ 0,χ[k ], x t

s ) are the gradi-

ents estimated from the initial batch. Then, with probability 1−2δ, if B ≥ (2ζ2)−1 log
�

d N
δ

�

,

i) For all j ∈ [k ], i ∈ [N ], |w (1)
i , j −

1
k | ≤

ζ16N
k (µk−1−µk+1) ;

ii) For all j ̸∈ [k ], |w (1)
i , j | ≤

ζ16N
k (µk−1−µk+1) ;

iii) For all i ∈ [N ], b (1)i = b (0)−1

Proof. By Lemma 22 ,if B ≥ (2ζ2)−1 log
�

d k
δ

�

, then for all j ∈ [k ], i ∈ [N ], |Ĝwi , j
−Gwi , j

| ≤ ζ.

Thus,

i) For all j ∈ [k ], i ∈ [N ], |w (1)
i , j −

1
k |= γ0|Ĝwi , j

−Gwi , j
| ≤ ζ16N

k (µk−1−µk+1) ;

ii) For all j ∈ [k ], i ∈ [N ], |w (1)
i , j |= γ0|Ĝwi , j

−Gwi , j
| ≤ ζ16N

k (µk−1−µk+1) ;

iii) follows trivially.

Lemma 29. If N ≥ (k+1) log
�

k+1
δ

�

, with probability 1−δ for all i ∈ {0, ..., k} there exists l ∈ [N ]
such that b 0

l =
2(i+1)

k .

Proof. The probability that there exists i such that the above does not hold is

�

1−
1

k +1

�N

≤ exp
�

−
N

k +1

�

≤
δ

k +1
. (F.84)

The result follows by union bound.
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Lemma 30. Letσi (x ) :=ReLU
�

1
k

∑k
j=1 x j + bi

�

, with bi =−1+ 2(i+1)
k . Then, with probability

1−3δ, for all i ∈ {0, ..., k} there exists l ∈ [N ] such that

�

�

�σi (x )−ReLU

 

d
∑

j=1

w 1
l , j x j + b 1

l

!

�

�

�≤
ζ16N

µk−1−µk+1
·
�

1+
d −k

k

�

. (F.85)

Proof. By Lemma 29 and Lemma 28, with probability 1−3δ, for all i there exists l such that

b 1
l =−1+ 2(i+1)

k , and

�

�

�σi (x )−ReLU

 

d
∑

j=1

w 1
l , j x j + b 1

l

!

�

�

�≤
�

�

�

k
∑

j=1

�

1

k
−w 1

l , j x j

�
�

�

�+
�

�

�

d
∑

j=k+1

w 1
l , j x j

�

�

� (F.86)

≤
ζ16N

µk−1−µk+1
+
ζ16N (d −k )
(µk−1−µk+1)k

(F.87)

=
ζ16N

µk−1−µk+1
·
�

1+
d −k

k

�

. (F.88)

Lemma 31. There exist a ∗ with ∥a ∗∥∞ ≤ 2k such that

k
∑

i=0

a ∗i σi (x ) =χ[k ](x ). (F.89)

Proof. We assume k to be even. Let
∑k

j=1 x j = k −2t , where t := |{i : xi =−1, i ∈ [k ]}|. Thus,

σi (x ) =ReLU
�

2(i +1− t )
k

�

. (F.90)

We choose

a ∗i = (−1)i 2k ∀i ∈ {0, 1, ..., k −2}, (F.91)

a ∗i = (−1)i
3

2
k i = k −1, (F.92)

a ∗i = (−1)i
1

2
k i = k . (F.93)

One can check that with these a ∗i the statement holds.

Lemma 32. Let f ∗(x ) =
∑k

i=0 a ∗i σi (x ) and let f̂ (x ) =
∑k

i=0 a ∗i σ̂i (x ), withσi (x ) defined above

and σ̂i (x ) :=ReLU(
∑d

j=1 w 1
i , j x j + b 1

i ). Then, with probability 1−3δ for all x ,

(1− f (x ) f ∗(x ))+ ≤
32k 2ζN

µk−1−µk+1
·
�

1+
d −k

k

�

, (F.94)
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where (z )+ :=max{0, z }.

Proof.

| f ∗(x )− f̂ (x )|=
�

�

�

∑

i

a ∗i (σi (x )− σ̂i (x )
�

�

� (F.95)

≤ k∥a ∗∥∞ sup
i
|σi (x )− σ̂i (x )| (F.96)

≤
32k 2ζN

µk−1−µk+1
·
�

1+
d −k

k

�

. (F.97)

Thus,

(1− f (x ) f ∗(x ))+ ≤ |1− f (x ) f ∗(x )| (F.98)

= | f ∗
2
(x )− f (x ) f ∗(x )| (F.99)

= | f ∗(x )| · | f ∗(x )− f (x )| ≤
32k 2ζN

µk−1−µk+1
·
�

1+
d −k

k

�

. (F.100)

F.2.3 Second step: Convergence

We apply Theorem 17 with L (a ) := Ex∼Rad(1/2)⊗d

�

Lcov((a , b 1, w 1),χ[k ], x )
�

, ρ = 2
p

N ,B =
2k
p

k . We get that if

1. N ≥ (k +1) log(k+1
δ );

2. ζ≤ ε(µ
k−1−µk+1)
64k 2N ·

�

1+ d−k
k

�−1
;

3. B ≥ (2ζ2)−1 log(d N
δ );

4. T ≥ 64k 3N
ε2 .

then with probability 1−3δ over the initialization,

Ex∼Rad(1/2)⊗d

�

min
t ∈[T ]

Lcov

�

χ[k ],θ
t , x , Rad(1/2)⊗d

�

�

≤ ε. (F.101)

Remark 21. We remark that if µ= θd ,k (1), then ζ decreases exponentially fast in k , and as a

consequence the batch size and the computational cost grow exponentially in k . If however

we choose µ= 1−1/k , then we get ζ= 1/poly(k ) and, as a consequence, the batch size and

the computational cost grow polynomially in k .
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F.3 Proof of Theorem 14

Let us consider r = 2. The case of general r follows easily. Let us state the following Lemma.

Lemma 33. Let x ∼Rad(p )⊗d and let H (x ) :=
∑d

i=11(xi = 1) be the Hamming weight of H (x ).
Assume ε< p <ε′ for some ε,ε′ ∈ [0, 1/2], then,

Px∼Rad(p )⊗d

�

H (x )≥ ε′d
�

≤ 2 exp
�

−(ε′−p )2d
�

; (F.102)

Px∼Rad(p )⊗d (H (x )≤ εd )≤ 2 exp
�

−(p −ε)2d
�

. (F.103)

Proof of Lemma 33. We apply Hoeffding’s inequality with E[H (x )] = p d and
∑d

i=1 xi = d −
2H (x ):

P(|H (x )−p d | ≥ t d )≤ 2 exp
�

−(t −p )2d
�

. (F.104)

Take ε such that |p1− 1
2 |>ε, and consider the following algorithm:

1. Take a fully connected neural network NN(x ;ψ)with the same architecture as NN(x ;θ )
and with initializationψ0 = θ 0;

2. Train NN(x ;ψ) on data (x ,χS (x )), with x ∼Rad(p1)⊗d , for T1 epochs;

3. Train NN(x ;ψ)with initializationψT1 on data (x ,χV (x )), with x ∼Rad(1/2)⊗d , for T −T1

epochs.

The result holds by the following two Lemmas.

Lemma 34. TV(θ T ;ψT )≤ AT
p

P
τ ·exp(−dδ2), where δ=min{|ε−p1|, |1/2−ε|} and TV denotes

the total variation distance between the law of θ T andψT .

Proof of Lemma 34. Clearly, TV(θ 0;ψ0) = 0. Then, using subadditivity of TV

TV(θ T ;ψT )≤
T
∑

t=1

TV(θ t ;ψt |{Z i }i≤t−2) (F.105)

=
T
∑

t=1

TV(γ(gθ t−1 +Z t−1);γ(gψt−1 +Z t−1)|{Z i }i≤t−1), (F.106)

where gθ t−1 , gψt−1 denote the population gradients in θ t−1 and ψt−1, respectively. Then,
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recalling that the Z t−1 are Gaussians, we get

TV(θ T ;ψT )
(a )
≤

T
∑

t=1

1

2τγ
∥γgθ t−1 −γgψt−1∥2 (F.107)

(b )
≤

Tr−1
∑

t=1

1

2τγ
·2
p

P Aγ ·P(H (x )≥ εd ) +
T
∑

t=Tr−1

1

2τγ
·2
p

P Aγ ·P(H (x )≤ εd ) (F.108)

(c )
≤

AT
p

P

τ
exp(−dδ2). (F.109)

In (a )we applied the formula for the TV between Gaussian variables with same variance. In

(b )we used that each gradient is in [−A, A] and that during the first part of training, for all x

with H (x )<ε, the two gradients are the same, and, similarly, in the second part of training,

for all x with H (x )>εd , the two gradients are the same. In (c )we applied Lemma 33.

We apply Theorem 3 from Abbe and Sandon, 2020a, which we restate here for completeness.

Theorem 19 (Theorem 3 in Abbe and Sandon, 2020a). LetPk be the set of k -parities over

d bits. Noisy-GD on any neural network NN(x ; w ) of size Pw and any initialization, after T

steps of training on samples drawn from the uniform distribution, outputs a network such

that

1

|Pk |

∑

f ∈Pk

�

�

�Ex∼Rad(1/2)⊗d

�

NN(x ; w T ) · f (x )
�

�

�

�≤
T
p

Pw A

τ
·
�

d

k

�−1/2

. (F.110)

In our case, this implies:

EV

�

�

�Ex∼Rad(1/2)⊗d

�

NN(x ;ψT ) ·χV (x )
�

�

�

�≤
(T −Tr−1)

p
P A

τ
·
�

d

kV

�−1/2

, (F.111)

where by EV we denote the expectation over set V sampled uniformly at random from all

subsets of [d ] of cardinality kV . By Lemma 33, this further implies:

EV

�

�

�Ex∼Rad(1/2)⊗d

�

NN(x ;ψT ) ·GS ,V ,ε(x )
�

�

�

�≤
(T −Tr−1)

p
P A

τ
·
�

d

kV

�−1/2

+exp(−dδ2). (F.112)

To conclude our proof, note that:

EV

�

�

�Ex

�

NN(x ,ψT ) ·GS ,V ,ε(x )
�

�

�

� (F.113)

=EV

h
�

�

�Ex

�

NN(x ,ψT ) ·GS ,V ,ε(x )
�

�

�

� |
�

�

�S ∩V
�

�

�= 0
i

·PV (|S ∩V |= 0) (F.114)

+EV

h
�

�

�Ex

�

NN(x ,ψT ) ·GS ,V ,ε(x )
�

�

�

� |
�

�

�S ∩V
�

�

�> 0
i

·PV (|S ∩V |> 0). (F.115)
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One can check that,

PV (|S ∩V |> 0) = 1−
2kS kV

d
+O (d−2). (F.116)

Moreover, since both the initialization and noisy-GD on fully connected networks are in-

variant to permutation of the input neurons, for any V such that |S ∩V |= 0, the algorithm

achieves the same correlation. Thus, applying Lemma 34:

�

�

�Ex

�

NN(x ;θ T ) ·GS ,V ,ε(x )
�

�

�

�

≤
(T −Tr−1)

p
P A

τ
·
�

d

kV

�−1/2

+
2AT
p

P

τ
exp(−dδ2) +

2kS kV

d
+O (d−2).

The argument for general r holds by taking ε such that |pl − 1
2 |> ε for all l ∈ [r −1] and by

replacing step 2 of the algorithm above with the following:

2. Train NN(x ;ψ) on data (x ,χS (x )) using a (r −1)-CL((T1, ..., Tr−1), (p1, ..., pr−1)) strategy.

F.4 Proof of Corollary 6

We use the same proof strategy of Theorem 14: specifically, we use the same algorithm for

training a network NN(x ;ψ)with the same architecture as NN(x ;θ ), so that Lemma 34 still

holds. We import Theorem 3 from Abbe and Sandon, 2020a in the following form.

Theorem 20 (Theorem 3 in Abbe and Sandon, 2020a). LetF be the set of k -parities over set

{d /2+1, ..., d }. Noisy-GD on any neural network NN(x ; w ) of size Pw and any initialization,

after T steps of training on samples drawn from the uniform distribution, outputs a network

such that

1

|F |

∑

f ∈F

�

�

�Ex∼Rad(1/2)⊗d

�

NN(x ; w T ) · f (x )
�

�

�

�≤
T
p

Pw A

τ
·
�

d /2

k

�−1/2

. (F.117)

Similarly as before, Theorem 20 and Lemma 33 imply:

EV

�

�

�Ex∼Rad(1/2)⊗d

�

NN(x ;ψT ) ·GS ,V ,ε(x )
�

�

�

�≤
(T −Tr−1)

p
P A

τ
·
�

d /2

kV

�−1/2

+exp(−dδ2), (F.118)

where by EV we denote the expectation over set V sampled uniformly at random from

all subsets of {d /2+ 1, ..., d } of cardinality kV . Since both the initialization and noisy-GD

on fully connected networks are invariant to permutation of the input neurons, for any
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V ⊆ {d /2+1, ..., d }, the algorithm achieves the same correlation. Thus, applying Lemma 34:

�

�

�Ex

�

NN(x ;θ T ) ·GS ,V ,ε(x )
�

�

�

�≤
(T −Tr−1)

p
P A

τ
·
�

d /2

kV

�−1/2

+
2AT
p

P

τ
exp(−dδ2). (F.119)
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