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Abstract

We study the satisfiability problem of symbolic finite automata and
decompose it into the satisfiability problem of the theory of the input char-
acters and the monadic second-order theory of the indices of accepted
words. We use our decomposition to obtain tight computational com-
plexity bounds on the decision problem for this automata class and an
extension that considers linear arithmetic constraints on the underlying
effective Boolean algebra.

1 Introduction

Symbolic finite automata (SFAs) are an extension of finite automata that allow
transitions to be labelled with monadic predicates over some universe rather
than symbols from a finite alphabet. They were first mentioned in [29], but they
attracted renewed interest starting in [28]. SFAs have been used in a variety of
applications including the analysis of regular expressions [4,28], string encoders,
sanitizers [9,14,16], functional programs [7], code generation, parallelization [21]
and symbolic matching [22].

A series of theoretical investigations has been carried out on this automata
model, including [2, 4, 25]. In particular, the authors of [27] observed that such
an automata model had been studied previously by Bès in [3]. In his paper, Bès
introduced a class of multi-tape synchronous finite automata whose transitions
are labelled by first-order formulas. He then proved various properties of the
languages accepted by such automata including closure under Boolean, rational,
and the projection operations, logical characterizations in terms of MSO logic
and the Eilenberg-Elgot-Shepherdson formalism as well as decidability proper-
ties. Remarkably [27], the paper showed that recognizability for such automata
coincides with definability for certain generalized weak powers, first-studied by
Feferman and Vaught in [11].
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The techniques of Feferman and Vaught allow decomposing the decision
problem for the first-order theory of a product of structures, Th(

∏
iMi) into the

first-order theory of the structures Mi, Th(Mi), and the monadic second-order
theory of the index set I, Thmon(⟨I, . . .⟩), where the structure ⟨I, . . .⟩ may con-
tain further relations such as a finiteness predicate, a cardinality operator, etc.
If the theory of the components Th(Mi) is decidable, then the decision prob-
lem reduces to that of the theory Thmon(⟨I, . . .⟩). To analyse these structures,
Feferman and Vaught extend results that go back to Skolem [24]. Technically,
the decomposition is expressed in terms of so-called reduction sequences.

It is known [8] that many model-theoretic constructions incur in non-
elementary blow-ups in the formula size. This includes the case of the size
of the Feferman-Vaught reduction sequences in the case of disjoint unions. Per-
haps for this reason, no computational complexity results have been obtained
for the theory of symbolic automata and related models. Instead, the results in
the literature [5, 6, 13] refer to the decidability of the satisfiability problem of
the monadic predicates or provide asymptotic run-times rather than a refined
computational complexity classification.

As a main contribution, we show how to reduce the satisfiability prob-
lem for finite symbolic automata to the satisfiability problem of the existential
first-order theory of the theory of the elements and the existential monadic
second-order theory of the indices. This decomposition allows us to derive tight
complexity bounds for the decision problem of the automaton in the precise
sense of Corollary 1. We then study an extension of the formalism of sym-
bolic finite automata which also imposes linear arithmetic constraints on the
cardinalities of the Venn regions of the underlying effective Boolean algebra. In
particular, this extension allows expressing the number of occurrences of a par-
ticular kind of letter in a word. We show in Corollary 2 that the computational
complexity of the corresponding satisfiability problem is the same as the one for
the simpler model without cardinalities. Similar extensions for related models
of automata are considered in the literature [12].

Organisation of the paper. Section 2 introduces symbolic finite au-
tomata. Section 3 gives the Feferman-Vaught decomposition of symbolic finite
automata in terms of the theory of the elements and the theory of the indices.
Section 4 describes the decision procedure with which, in Section 5, after pre-
senting the quantifier-free theory of Boolean algebra with Presburger arithmetic,
we obtain the tight complexity bounds announced. Section 6 describes the ex-
tension of symbolic finite automata that uses linear arithmetic constraints over
the cardinalities of the automaton’s underlying effective Boolean algebra and
proves the corresponding upper bounds for the associated satisfiability prob-
lem. Section 7 concludes the paper.

2 Symbolic Finite Automata (SFA)

Symbolic automata are run over Boolean algebras of interpreted sets. The
family of monadic predicates used for these interpretations needs to be closed
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under Boolean operations and contain formulae denoting the empty set and the
universe. Furthermore, in the original formulation, checking non-emptiness of
these interpreted sets needs to be decidable. In Section 4, we will refine this
assumption with a complexity-theoretic bound.

Definition 1 ( [6]). An effective Boolean algebra A is a tuple

(D,Ψ, J·K,⊥,⊤,∨,∧,¬)

where D is a set of domain elements, Ψ is a set of unary predicates over D that
are closed under the Boolean connectives, with ⊥,⊤ ∈ Ψ and J·K : Ψ → 2D is a
function such that 1. J⊥K = ∅, 2. J⊤K = D, and 3. For all ψ,ψ1, ψ2 ∈ Ψ, we have
that (a) Jψ1 ∨ψ2K = Jψ1K∪ Jψ2K (b) Jψ1 ∧ψ2K = Jψ1K∩ Jψ2K (c) J¬ψK = D\JψK.
4. Checking JψK ̸= ∅ is decidable. A predicate ψ ∈ Ψ is atomic if it is not a
Boolean combination of predicates in Ψ.

Our initial motivation was to generalise the complexity results obtained for
array theories in [1, 20]. The notion of SMT algebra [6, Example 2.3] precisely
corresponds to the language introduced in [20, Definition 5] without cardinality
constraints. We take this as a first example of effective Boolean algebra.

Example 1. The SMT algebra for a type τ is the tuple (D,Ψ, J·K,⊥,⊤,∨,∧,¬)
where D is the domain of τ , Ψ is the set of all quantifier-free formulas with
one fixed free variable of type τ , J·K maps each monadic predicate to the set of
its satisfying assignments, ⊥ denotes the empty set, ⊤ denotes the universe D
and ∨,∧,¬ denote the Boolean algebra operations of union, intersection, and
complement respectively.

This example should be contrasted with other representations of the predi-
cates that take into account implementation details. An example of the latter
is the k-bit bitvector effective Boolean algebra described in [26].

Example 2. The powerset algebra 2bv(k) is the tuple (D,Ψ, J·K,⊥,⊤,∨,∧,¬)
where D is the set bv(k) of all non-negative integers less than 2k or equivalently,
all k-bit bit-vectors for some k > 0, Ψ is the set of BDDs of depth k, J·K maps
each BDD β to the set of all integers n such that the binary representation of
n is a solution of β, ⊥ denotes the BDD representing the empty set, ⊤ denotes
the BDD representing the universal set and ∨,∧,¬ denote the Boolean algebra
operation of union, intersection, and complement as they are implemented for
BDDs.

We now introduce the automata model we will investigate in the paper.

Definition 2 ( [6]). A symbolic finite automaton (s-FA) is a tuple

M = (A, Q, q0, F,∆)

where 1. A is an effective Boolean algebra. 2. Q is a finite set of states. 3. q0 ∈ Q
is the initial state. 4. F ⊆ Q is the set of final states. 5. ∆ ⊆ Q×ΨA ×Q is a
finite set of transitions.
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A symbolic transition ρ = (q1, ψ, q2) ∈ ∆, also denoted q1
ψ→ q2, has source

state q1, target state q2, and guard ψ. For d ∈ D, the concrete transition q1
d→ q2

denotes that q1
ψ→ q2 and d ∈ JψK for some ψ.

A string w = d1d2 . . . dk is accepted at state q if and only if for 1 ≤ i ≤ k,

there exist transitions qi−1
di→ qi such that q0 = q and qk ∈ F . The set of strings

accepted at q is denoted by Lq(M) and the language of M is L(M) = Lq0(M).

We now give examples of automata running over the algebras of Examples 1
and 2. We use the traditional graphical representation used in automata theory
textbooks [15].

Example 3 ( [6]). We consider the language of linear arithmetic over the inte-
gers. We set two formulae ψ>0(x) ≡ x > 0 satisfied by all positive integers and
ψodd(x) ≡ x mod 2 = 1 satisfied by all odd integers. The following symbolic
finite automaton accepts all strings of even length consisting only of positive
odd numbers.

q0 q1

ψodd ∧ ψ>0(x)

ψodd ∧ ψ>0(x)

Example 4 ( [26]). We consider the language of BDDs over bit-vectors of length
six. The following symbolic finite automaton accepts all strings that start by a
bit-vector representing either of the numbers 6, 14, 22, 38 or 54 followed by an
arbitrary number of bit-vectors.

q0 q1

b6

b5

b4

b3

b2

b1

⊤⊥

⊤

3 Feferman-Vaught Decomposition for SFAs

Let M = (A, Q, q0, F,∆) be a symbolic finite automaton and let ψ1, . . . , ψk, . . .
be the atomic predicates in A. The definition of symbolic finite automaton
allows assuming that the set of these predicates is finite.
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Lemma 1. There exists a symbolic finite automaton M ′ = (A′, Q, q0, F,∆)
such that L(M) = L(M ′) and the cardinality of ΨA′ is finite.

Proof. The automaton has a finite number of transitions. We take ΨA′ to be
the Boolean closure of the predicates occurring in these transitions. It follows
that ΨA′ is a finite set. Otherwise, we define the components of A′ as those in
A. Since the automaton is unchanged, L(M) = L(M ′).

Since ΨA can be assumed to be finite, it follows that the set of atomic pred-
icates is finite too. In the remaining of the paper, we let ϕ1, . . . , ϕk be the
generators of the effective Boolean algebra used by the symbolic finite automa-
ton M . Similarly, we let ψ1, . . . , ψm denote the actual predicates used in the
transitions of M . We will decompose the study of L(M) into the study of the
properties of the elements in D and the ordering properties induced by the tran-
sition structure of the automaton. Both kinds of properties will refer to sets of
indices to stay in sync with each other [30].

To specify the properties of the elements in D, we use set interpretations of
the form

S = {n ∈ N | ψ(d(n)) } = JψK (1)

where d(n) is the n-th element occurring in d ∈ D∗. These sets can be pictured
via a Venn diagram of interpreted sets, such as the one in Figure 1. Each
formula in ΨA corresponds to a particular Venn region in this diagram and can
be referred to using a Boolean algebra expression on the variables S1, . . . , Sk,
thanks to the set interpretation (1).

A concrete transition q1
d→ q2 requires a value d ∈ D. This value will lie in

some elementary Venn region of the diagram in Figure 1, i.e. in a set of the form
Sβ1

1 ∩ . . .∩Sβk

k where β = (β1, . . . , βk) ∈ {0, 1}k, S0 := Sc and S1 := S. We will
denote such Venn region with the bit-string β. To specify the transition struc-
ture of the automaton, what is relevant to us is the region of the Venn diagram,
not the specific value that it takes there. It follows that a run of the automaton
can be encoded as a sequence of bit-strings t = (t1, . . . , tk) ∈ ({0, 1}|t|)k and that
these bit-strings only need to satisfy the propositional formulae corresponding
to the predicates labelling the transitions of the automaton. Figure 2 represents
one such run over an uninterpreted Venn diagram.

Example 5. If in Example 3 we take as atomic formulae the predicates ψodd

and ψ>0 then the formula ψodd∧ψ>0(x), which labels the automaton transitions,
corresponds to the propositional formula S1 ∧ S2.

We denote by L1, . . . , Lm such propositional formulae and byM(L1, . . . , Lm)
the set of bit-string runs accepted by M , which we call tables [17].

Lemma 2.

L(M) =
{
d ∈ D∗

∣∣∣∃t ∈M(L1, . . . , Lm).

k∧
i=1

Si = {n ∈ N;ϕi(d(n)) } = {n ∈ N; ti(n) }
}
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ϕ1 ϕ2

ϕ3

Figure 1: A Venn diagram representing a finitely generated effective Boolean
algebra with atomic predicates ψ1, ψ2 and ψ3.

Figure 2: A table accepted by a symbolic automaton represented over an unin-
terpreted Venn diagram.

Proof. The proof uses the definition of L(M) and M(L1, . . . , Lm). In one direc-
tion, one defines t from the membership of the values d(i) in elementary Venn
regions βi. In the other direction, the definition of M(L1, . . . , Lm) ensures that
there is an accepting run corresponding to these values and any witness of the
formula in the associated elementary Venn regions can be taken to conform the
word d.

In the next sections, we make use of this decomposition to devise a decision
procedure for symbolic finite automata, which, will refine the existing compu-
tational complexity results for the corresponding satisfiability problem.

4 Decision Procedure for Satisfiability of SFAs

Definition 3. The satisfiability problem for a symbolic finite automaton M is
the problem of determining whether L(M) ̸= ∅.

By Lemma 2, checking non-emptiness of the language of a symbolic finite
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automaton reduces to checking whether the following formula is true:

∃S1, . . . , Sk.∃d.
k∧
i=1

Si = {n ∈ N;ϕi(d(n)) }∧

∃t ∈M(L1, . . . , Lm).

k∧
i=1

Si = {n ∈ N; ti(n) }

(2)

To establish the complexity of deciding formulae of the form (2), we will have
to analyse further the set M(L1, . . . , Lm). Each table t in M(L1, . . . , Lm) cor-
responds to a symbolic table s whose entries are the propositional formulae that
the bit-strings of t satisfy. More generally, these symbolic tables are generated
by the symbolic automaton obtained by replacing the predicates of the symbolic
automaton by propositional formulae. The set of symbolic tables accepted by
the automaton M is a regular set and will be denoted by MS(L1, . . . , Lm).

Example 6. The automaton in Example 3 corresponds, according to Exam-
ple 5, to the symbolic automaton shown.

q0 q1

S1 ∧ S2

S1 ∧ S2

The symbolic tables generated by this automaton are of the form ((S1 ∧
S2)(S1 ∧ S2))

∗. The corresponding tables would be of the form ((1, 1)(1, 1))∗.

Consider first the case where the propositional formulae L1, . . . , Lm for the
automaton M denote disjoint Venn regions. In this case, all we need to do to
check the satisfiability of formula (2) is whether there exists a symbolic table
s such that whenever the number of times a certain propositional letter occurs
is non-zero, then the corresponding Venn region interpreted according to (1)
has a satisfiable defining formula. From this, it follows that our decision pro-
cedure will need to compute the so-called Parikh image of the regular language
MS(L1, . . . , Lm).

Definition 4 (Parikh Image).
The Parikh image of MS(L1, . . . , Lm) is the set

Parikh(MS(L1, . . . , Lm)) = {(|s|L1
, . . . , |s|Lm

)|s ∈MS(L1, . . . , Lm)}

where |s|Li denotes the number of occurrences of the propositional formula Li
in the symbolic table s.

We will use a description of the Parikh image in terms of linear-size existen-
tial Presburger arithmetic formulae first obtained by Seidl, Schwentick, Muscholl
and Habermehl.
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Lemma 3 ( [23]). The set Parikh(MS(L1, . . . , Ln)) is definable by an existential
Presburger formula ρ of size O(|M |) where |M | is the number of symbols used
to describe the automaton M .

When propositional letters denote overlapping Venn regions, a partitioning
argument is required. This is formalised in Theorem 1. First, we fix some
notation. We set pβ :=

⋂k
i=1 S

βi

i where β ∈ {0, 1}k, pL :=
⋃
β|=L

pβ where L

is a propositional formula and φβ(d) :=
∧k
i=1 φ

β(i)
i (d). We write S1∪̇S2 to

denote the set S1 ∪ S2 where it is known that S1 ∩ S2 = ∅. Finally, we write
[n] := { 1, . . . , n }.

Theorem 1. Formula (2) is equivalent to the formula

∃s ∈[m].σ : [s] ↪→ [m].∃β1, . . . , βs ∈ {0, 1}k.
s∧
j=1

∃d.ϕβj (d)∧

∃k1, . . . , km.∃S1, . . . , Sk, P1, . . . , Ps.

ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧
s∧
i=1

pβi ∩ Pi ̸= ∅

(3)

where σ is an injection from { 1, . . . , s } to { 1, . . . ,m } and ρ is the arithmetic
expression in Lemma 3.

Formula (3) has two parts. The first part corresponds to the subterm∧s
j=1 ∃d.φβj (d) and falls within the theory of the elements in D, Th∃∗(D).

The second part corresponds to the remaining subterm and falls within the
quantifier-free first-order theory of Boolean Algebra with Presburger arith-
metic (QFBAPA) [19], which can be viewed as the monadic second order theory
Thmon∃∗ (⟨N,⊆,∼⟩) where ∼ is the equicardinality relation between two sets.

Formula (2) is distilled from a non-deterministic decision procedure for the
formulae of the shape (2). The existentially quantified variables s, σ, β1, . . . , βs
are guessed by the procedure. These guessed values are then used by spe-
cialised procedures for Th∃∗(D) and Thmon∃∗ (⟨N,⊆,∼⟩). For the convenience of
the reader, we describe here what these values mean. The value of s represents
the number of Venn regions associated to the formulae L1, . . . , Lm that will be
non-empty. σ indexes these non-empty regions. β1, . . . , βs are elementary Venn
regions contained in the non-empty ones.

The reason to introduce the partition variables P1, . . . , Ps is that the Venn
regions may overlap.

Example 7. Consider the situation where S1 ∧ S2 and S2 ∧ S3 are two propo-
sitional formulae labelling the transitions of the symbolic automaton. These
formulae correspond to the Venn regions S1 ∩ S2 and S2 ∩ S3, which share the
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region S1 ∩ S2 ∩ S3. Given a model of S1, S2 and S3, how do we guarantee
that the indices in the region S1 ∩ S2 ∩ S3 are consistent with a run of the
automaton? For instance, the automaton may require one element in S1 ∩ S2

and another in S2 ∩S3. Placing a single index in S1 ∩S2 ∩S3 would satisfy the
overall cardinality constraints, but not the fact that overall we need to have two
elements. Trying to specify this in the general case would reduce to specifying
an exponential number of cardinalities.

We proceed next to the proof of the theorem.

Proof of Theorem 1. ⇒) If formula (2) is satisfiable, then there are sets
S1, . . . , Sk, a word d and a table t satisfying

k∧
i=1

Si = { n ∈ N;ϕi(d) } ∧ t ∈M(L1, . . . , Ls) ∧
k∧
i=1

Si = { n ∈ N; ti(n) }

Let s ∈ M(L1, . . . , Ls) be the symbolic table corresponding to t. We define
ki := |s|Li , s = | { i | ki ̸= 0 } |, σ mapping the indices in [s] to the indices of
the terms for which ki is non-zero and Pi = {n ∈ N; s(n) = Lσ(i) }. It will be
convenient to work out the following equalities:

pLi
=

⋃
β|=Li

k⋂
j=1

S
βj

j =
⋃
β|=Li

 n ∈ N

∣∣∣∣∣∣
k∧
j=1

t
βj

j (n)

 =
{
n ∈ N

∣∣ t(n) |= Li
}

pLi
=

⋃
β|=Li

k⋂
j=1

S
βj

j =
⋃
β|=Li

 n ∈ N

∣∣∣∣∣∣
k∧
j=1

ϕ
βj

j (d)

 =
{
d ∈ D

∣∣ Li(ϕ(d)) }
(4)

where Li(ϕ(d(n))) is the propositional formula obtained by substituting set
variables by the formulae ϕi(d(n)). We now deduce formula (3):

- ρ(k1, . . . , km): from s ∈ P (L1, . . . , Lm), we have that

(k1, . . . , km) ∈ Parikh(MS(L1, . . . , Lm))

and therefore ρ(k1, . . . , km).

- Pi ⊆ pLσ(i)
: since s corresponds to t, for all n ∈ N we have t(n) |= s(n)

and the inclusion follows from the definition of Pi and equation 4.

- |Pi| = kσ(i): since |Pi| =
∣∣∣ { n ∈ N

∣∣ s(n) = Lσ(i)
} ∣∣∣ = |s|Lσ(i)

= kσ(i).

- Each pair of sets Pi, Pj with i < j is disjoint:

Pi ∩ Pj =
{
n ∈ N

∣∣ s(n) = Lσ(i)
}
∩
{
n ∈ N

∣∣ s(n) = Lσ(j)
}
=

=
{
n ∈ N

∣∣ s(n) = Lσ(i) = Lσ(j)
}
= ∅

using that the letters L are chosen to be distinct and that σ is an injection
(so σ(i) ̸= σ(j)).
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- pL1 ∪ . . . ∪ pLm = P1∪̇ . . . ∪̇Ps: since by definition Pi ={
n ∈ N

∣∣ s(n) = Lσ(i)
}
, pLi =

{
n ∈ N

∣∣ t(n) |= Li
}
and by definition of

σ it follows that the only letters that can appear in s are Lσ(1), . . . , Lσ(s).
Thus, we have pL1

∪ . . . ∪ pLm
= [1, |t|] = [1, |s|] = P1∪̇ . . . ∪̇Ps.

- There exists β1, . . . , βs ∈ {0, 1}k, such that
∧s
i=1 Pβi

∩ Pi ̸= ∅: note that
Pi ̸= ∅ by definition of σ. Thus, there must exist some βi such that
pβi

∩ Pi ̸= ∅. We pick any such βi.

-
∧s
j=1 ∃d.φβj (d): follows from pβj

∩ Pj ̸= ∅ and formula (4).

⇐) Conversely, if formula (3) is satisfiable, then there is an integer s ∈ [n],
an injection σ : [s] ↪→ [n], bit-strings β1, . . . , βs ∈ {0, 1}k, integers k1, . . . , km
and sets S1, . . . , Sk, P1, . . . , Ps satisfying

s∧
j=1

∃d.φβj (d) ∧ ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧
s∧
i=1

pβi
∩ Pi ̸= ∅

(5)

From ψ(k1, . . . , kn) follows that there is a symbolic table s ∈ MS(L1, . . . , Lm)
such that |s|Li = ki for each Li ∈ {L1, . . . , Lm }. From formula (4) and

pL1
∪ . . . ∪ pLm

= P1∪̇ . . . ∪̇Ps ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧

s∧
i=1

|Pi| = kσ(i)

follows that we can replace the formulae Li occurring in the symbolic table s by
the bit-strings representing the elementary Venn regions to which the indices of
the sets Pi belong. Moreover, thanks to the condition

∧s
i=1 pβi

∩Pi ̸= ∅ follows
that we can replace the letters Li by the bit-strings βi, defining t as t(n) ={
βi if n ∈ Pi . In this way, we obtain a table t ∈ M(L1, . . . , Ls). We then

define the corresponding word over D, thanks to the property
∧s
i=1 ∃d.ϕβi(d).

Naming the witnesses of these formulae as di, we define d(n) =
{
di if n ∈ Pi .

To conclude, note that:

{ n ∈ N | tj(n) } = ∪{ 1≤i≤k | βi(j)=1 }Pi = { n ∈ N | ϕj(d(n)) }

Thus, we have that formula (2) is satisfied by the set variables

Sj := { n ∈ N | tj(n) } = { n ∈ N | ϕj(d(n)) }

5 Quantifier-free Boolean Algebra with Pres-
burger Arithmetic

The arguments following the statement of Theorem 1 sketch a non-deterministic
procedure for the satisfiability problem of symbolic finite automata, based on
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the existence of decision procedures for Th∃∗(D) and Thmon∃∗ (⟨N,⊆,∼⟩). In
this section, we recall the non-deterministic polynomial time decision procedure
for Thmon∃∗ (⟨N,⊆,∼⟩). As a consequence, we obtain Corollary 1 which situates
the decision problem of symbolic finite automata in the classical complexity
hierarchy. This section should also prepare the reader for the extension of these
results, where the automaton can require linear arithmetic constraints on the
cardinalities of the effective Boolean algebra. This extension is carried out in
Section 6.

Instead of working with Thmon∃∗ (⟨N,⊆,∼⟩) directly, we use the logic QFBAPA
[19] which has the same expressive power [18, Section 2]. The syntax of QFBAPA
is given in Figure 3. The meaning of the syntax is as follows. F presents the
Boolean structure of the formula, A stands for the top-level constraints, B gives
the Boolean restrictions and T the Presburger arithmetic terms. The operator
dvd stands for the divisibility relation and U represents the universal set. The
remaining interpretations are standard.

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 ≤ T2 |K dvd T

B ::= x | ∅ | U |B1 ∪B2 |B1 ∩B2 |Bc

T ::= k |K |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Figure 3: QFBAPA’s syntax

The satisfiability problem of this logic is reducible to propositional sat-
isfiability in polynomial time. Our proofs will rely on the method of [19],
which we sketch briefly here. The basic argument to establish a NP com-
plexity bound on the satisfiability problem of QFBAPA is based on a theo-
rem by Eisenbrand and Shmonin [10], which in our context says that any el-
ement of an integer cone can be expressed in terms of a polynomial number
of generators. Figure 4 gives a verifier for this basic version of the algorithm.
The algorithm uses an auxiliary verifier VPA for the quantifier-free fragment
of Presburger arithmetic. The key step is showing equisatisfiability between
2.(b) and 2.(c). If x1, . . . , xk are the variables occurring in b0, . . . , bp then we

write pβ =
k⋂
i=1

xeii for β = (e1, . . . , ek) ∈ {0, 1}k where we define x1 := x

and x0 := U \ x as before. If we define JbiKβj as the evaluation of bi as a
propositional formula with the assignment given in β and introduce variables

lβ = |pβ |, then |bi| =
2e−1∑
j=0

JbiKβj lβj , so the restriction
p∧
i=0

|bi| = ki in 2.(b) be-

comes
p∧
i=0

2e−1∑
j=0

JbiKβj
lβj

= ki which can be seen as a linear combination in the
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set of vectors {(Jb0Kβj , . . . , JbpKβj ).j ∈ {0, . . . , 2e − 1}}. Eisenbrand-Shmonin’s
result allows then to derive 2.(c) for N polynomial in |x|. In the other direction,
it is sufficient to set lβj

= 0 for j ∈ {0, . . . , 2e−1}\{i1, . . . , iN}. Thus, we have:

On input ⟨x,w⟩:

1. Interpret w as:

(a) a list of indices i1, . . . , iN ∈ {0, . . . , 2e−1} where e is the number
of set variables in x.

(b) a certificate C for VPA on input x′ defined below.

2. Transform x into x′ by:

(a) rewriting boolean expressions according to the rules:

b1 = b2 7→ b1 ⊆ b2 ∧ b2 ⊆ b1

b1 ⊆ b2 7→ |b1 ∩ bc2| = 0

(b) introducing variables ki for cardinality expressions:

G ∧
p∧
i=0

|bi| = ki

where G is the resulting quantifier-free Presburger arithmetic for-
mula.

(c) rewriting into:

G ∧
∧

j=i1,...,iN

lβj
≥ 0 ∧

p∧
i=0

∑
j=i1,...,iN

JbiKβj
· lβj

= ki

3. Run VPA on ⟨x′, C⟩.

4. Accept iff VPA accepts.

Figure 4: Verifier for QFBAPA

Theorem 2 ( [19]). The satisfiability problem of QFBAPA is in NP.

From Theorems 1 and 2, we obtain the following improvement of [6, Theo-
rem 2.8]:

12



Corollary 1. Let Th∃∗(D) be the existential first-order theory of the formulae
used in the transitions of the symbolic finite automaton M .

• If Th∃∗(D) ∈ P then L(M) ̸= ∅ ∈ NP.

• If Th∃∗(D) ∈ C for some C ⊇ NP then L(M) ̸= ∅ ∈ C.

6 Decision Procedure for Satisfiability of SFAs
with Cardinalities

We now consider the following generalisation of the language of a finite symbolic
automaton from Lemma 2.

Definition 5. A symbolic finite automaton with cardinalities accepts a lan-
guage of the form:

L(M) =

{
d ∈ D∗

∣∣∣∣∣ F (S1, . . . , Sk) ∧
∧k
i=1 Si = { n ∈ N | ϕi(d(n)) }∧

∃t ∈ P (L1, . . . , Lm).
∧k
i=1 Si = { n ∈ N | ti(n) }

}

where F is a formula from QFBAPA.
Thus, checking non-emptiness of the language of a symbolic finite automaton

with cardinalities reduces to checking whether the following formula is true:

∃S1, . . . , Sk.F (S1, . . . , Sk)∧

∃d.
k∧
i=1

Si = { n ∈ N | ϕi(d(n)) }∧

∃t ∈M(L1, . . . , Lm) ∧
k∧
i=1

Si = { n ∈ N | ti(n) }

(6)

To show that Theorem 1 and Corollary 1 stay true with linear arithmetic
constraints on the cardinalities, we need to repeat part of the argument in
Theorem 1 since if F denotes the newly introduced QFBAPA formula and G,H
are the formulae shown equivalent in Theorem 1, then from:

∃S1, . . . , Sk.F (S1, . . . , Sk) ∧G(S1, . . . , Sk)

and [
∃S1, . . . , Sk.G(S1, . . . , Sk)

]
⇐⇒

[
∃S1, . . . , Sk.H(S1, . . . , Sk)

]
it does not follow that ∃S1, . . . , Sk.F (S1, . . . , Sk) ∧H(S1, . . . , Sk). Instead, the
algorithm derives the cardinality constraints from each theory and then uses the
sparsity of solutions over the satisfiable regions. In the proof, we set Jβj |= biK to
be one, if the bit-string βj satisfies the Boolean expression bi as a propositional
assignment and zero otherwise. We also write lβ = |pβ | for β ∈ {0, 1}k.
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Theorem 3. Formula (6) is equivalent to:

∃N ≤ p(|F |),∃s ∈ [m].σ : [s] ↪→ [m].∃β1, . . . , βN ∈ {0, 1}k.
N∧
j=1

∃d.ϕβj (d)∧

∃k1, . . . , km.∃S1, . . . , Sk, P1, . . . , Ps.

ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi = ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧ ∪Ni=1pβi = ∪̇si=1Pi

(7)

where p is a polynomial and |F | is the number of symbols used to write F .

Proof. ⇒) If formula (6) is true, then there are sets S1, . . . , Sk, a finite word d
and a table t such that:

F (S1, . . . , Sk) ∧
k∧
i=1

Si = { n ∈ N | ϕi(d(n)) }∧

t ∈M(L1, . . . , Lm) ∧
k∧
i=1

Si = { n ∈ N | ti(n) }

(8)

Thus, there exists a symbolic table s ∈ MS(L1, . . . , Ls) corresponding to t.
We define ki := |s|Li

, s = | { i | ki ̸= 0 } |, σ maps the indices in [s] to the
indices of the terms for which ki is non-zero and Pi =

{
n ∈ N

∣∣ s(n) = Lσ(i)
}
.

As in Theorem 1, we have the equalities pLi
=

{
n ∈ N

∣∣ t(n) |= Li
}
, pLi

={
n ∈ N

∣∣ Li(ϕ(d)) } and we can show that the following formula holds:

ρ(k1, . . . , km) ∧
m∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧ F (S1, . . . , Sk)

(9)

We need to find a sparse model of (9). To achieve this, we follow the method-
ology in Theorem 2. This leads to a system of equations of the form:

∃c1, . . . , cp.G ∧
2e−1∑
j=0

Jβj |= b0K
· · ·

Jβj |= bpK

 · lβj
=

 c1
. . .
cp


We remove those elementary Venn regions where lβ = 0. This includes regions
whose associated formula in the interpreted Boolean algebra is unsatisfiable, and
regions corresponding to table entries not occurring in t. This transformation
gives a reduced set of indices R participating in the sum.

14



Using Eisenbrand-Shmonin’s theorem, we have a polynomial (in the size
of the original formula) family of Venn regions β1, . . . , βN and corresponding
cardinalities l′β1

, . . . , l′βN
, which we can assume to be non-zero, such that

∃c1, . . . , cp.G ∧
∑

β∈{ β1,...,βN }⊆R

Jβj |= b0K
· · ·

Jβj |= bpK

 · l′βj
=

 c1
. . .
cp

 (10)

The satisfiability of formula (10) implies the existence of sets of indices p′β
satisfying the conditions derived in formula (9). However, it does not imply
which explicit indices belong to these sets and which are the contents corre-
sponding to each index. From the condition

ψ(k1, . . . , kn) ∧
n∧
i=1

P ′
i ⊆ p′Lσ(i)

∧ ∪ni=1p
′
Li

= ∪̇si=1P
′
i ∧

s∧
i=1

|P ′
i | = kσ(i)

follows that there is a symbolic table s′ satisfying MS(L1, . . . , Ln) with kσ(i)
letters Lσ(i) and that these letters are made concrete by entries in P ′

i for each
i ∈ {1, . . . , s}. We take the Venn regions β ∈ {β1, . . . , βN} such that P ′

i ⊇ pβ
and label the corresponding entries in s′ with β. In this way, we obtain a
corresponding concrete table t

′
. This makes the indices in each Venn region

concrete. To make the contents of the indices concrete, note that for each
β ∈ R, since lβ ̸= 0, the formula ∃d.ϕβ(d) is true. In particular, this applies to
each β ∈ {β1, . . . , βN}. Thus, we obtain witnesses d1, . . . , dN . We form a word

by replacing each letter β in t
′
by the corresponding value dβ .

⇐) If formula (7) is true, then there is N ≤ p(|F |) where p is a polynomial,
s ∈ [m], β1, . . . , βN ∈ {0, 1}k, k1, . . . , km ∈ N and sets S1, . . . , Sk, P1, . . . , Ps
such that

N∧
j=1

∃d.ϕβj (d)∧ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧ ∪Ni=1pβi
= ∪̇si=1Pi

From ρ(k1, . . . , kn) follows that there is a symbolic table s ∈ R(L1, . . . , Lm)
such that |s|Li

= ki for each Li ∈ {L1, . . . , Lm }. From formula 8 and

pL1
∪ . . . ∪ pLm

= P1∪̇ . . . ∪̇Ps ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧

s∧
i=1

|Pi| = kσ(i)

follows that we can replace the formulae Li occurring in the symbolic table s
by the bit-strings representing the elementary Venn regions to which the indices
of the sets Pi belong. Moreover, thanks to the condition ∪Ni=1pβi = ∪̇si=1Pi, it
follows that we can replace the letters Li by the bit-strings βi. In this way, we
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obtain a table t ∈ R(L1, . . . , Lm). We then define the corresponding word over

D, thanks to the property
∧N
i=1 ∃d.ϕβi(d). To conclude, note that:

{ n ∈ N | tj(n) } = ∪{ i | βi(j)=1 }Pi = { n ∈ N | ϕj(d(n)) }

Thus, we have that formula 2 is satisfied by the set variables

Sj := { n ∈ N | tj(n) } = { n ∈ N | ϕj(d(n)) }

We can thus formulate the analogous to Corollary 1 in the case of finite
symbolic automata with cardinalities.

Corollary 2. Let Th∃∗(D) be the theory of the formulae used in the transitions
of a symbolic finite automaton with cardinality constraints.

• If Th∃∗(D) ∈ P then L(M) ̸= ∅ ∈ NP.

• If Th∃∗(D) ∈ C for some C ⊇ NP then L(M) ̸= ∅ ∈ C.

7 Conclusion

We have revisited the model of symbolic finite automata as it was reintroduced
in [28]. We have obtained tight complexity bounds on their satisfiability prob-
lem. Our methodology follows the Feferman-Vaught decomposition technique
in that it reduces the satisfiability problem of the automaton to the satisfiability
problem of the existential first-order theory of the characters accepted by the
automaton and the satisfiability problem of the existential monadic second-order
theory of the indices.

To combine these two distinct theories we use the ideas from the combi-
nation method through sets and cardinalities of Wies, Piskac and Kunčak [30]
and the computation of an equivalent linear-sized existentially quantified Pres-
burger arithmetic formula from the Parikh image of a regular language by Seidl,
Schwentick, Muscholl and Habermehl [23]. A crucial step in the proofs is a par-
titioning argument for the underlying Venn regions. We profit from the analysis
in [19] to extend our arguments to the satisfiability problem of finite symbolic
automata that consider linear arithmetic restrictions over the cardinalities of
the Boolean algebra associated with the symbolic finite automaton.

In future work, we plan to extend our methods to other variants of symbolic
automata to which we believe similar techniques may be applicable. Another
interesting research direction would be to consider extensions of the language
that allow free variables in set interpretations of the form (1), which seems to
have applications to various satisfiability problems.
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