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DeepBreath—automated detection of respiratory pathology
from lung auscultation in 572 pediatric outpatients across 5
countries
Julien Heitmann1,13, Alban Glangetas2,13, Jonathan Doenz 1, Juliane Dervaux1, Deeksha M. Shama1, Daniel Hinjos Garcia1,
Mohamed Rida Benissa2, Aymeric Cantais 3, Alexandre Perez 2, Daniel Müller 1, Tatjana Chavdarova1,
Isabelle Ruchonnet-Metrailler 2, Johan N. Siebert 2, Laurence Lacroix2, Martin Jaggi1, Alain Gervaix2, Mary-Anne Hartley 1,4,5✉ and
with the Pneumoscope Study Group*

The interpretation of lung auscultation is highly subjective and relies on non-specific nomenclature. Computer-aided analysis has
the potential to better standardize and automate evaluation. We used 35.9 hours of auscultation audio from 572 pediatric
outpatients to develop DeepBreath : a deep learning model identifying the audible signatures of acute respiratory illness in children.
It comprises a convolutional neural network followed by a logistic regression classifier, aggregating estimates on recordings from
eight thoracic sites into a single prediction at the patient-level. Patients were either healthy controls (29%) or had one of three
acute respiratory illnesses (71%) including pneumonia, wheezing disorders (bronchitis/asthma), and bronchiolitis). To ensure
objective estimates on model generalisability, DeepBreath is trained on patients from two countries (Switzerland, Brazil), and results
are reported on an internal 5-fold cross-validation as well as externally validated (extval) on three other countries (Senegal,
Cameroon, Morocco). DeepBreath differentiated healthy and pathological breathing with an Area Under the Receiver-Operator
Characteristic (AUROC) of 0.93 (standard deviation [SD] ± 0.01 on internal validation). Similarly promising results were obtained for
pneumonia (AUROC 0.75 ± 0.10), wheezing disorders (AUROC 0.91 ± 0.03), and bronchiolitis (AUROC 0.94 ± 0.02). Extval AUROCs
were 0.89, 0.74, 0.74 and 0.87 respectively. All either matched or were significant improvements on a clinical baseline model using
age and respiratory rate. Temporal attention showed clear alignment between model prediction and independently annotated
respiratory cycles, providing evidence that DeepBreath extracts physiologically meaningful representations. DeepBreath provides a
framework for interpretable deep learning to identify the objective audio signatures of respiratory pathology.
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INTRODUCTION
Respiratory diseases are a diverse range of pathologies affecting
the upper and lower airways (pharynx, trachea, bronchi, bronch-
ioles), lung parenchyma (alveoli) and its covering (pleura). The
restriction of air flow in the variously sized passageways creates
distinct patterns of sound that are detectable with stethoscopes as
abnormal, “adventitious” sounds such as wheezing, rhonchi and
crackles that indicate airflow resistance or the audible movement
of pathological secretions. While there are some etiological
associations with these sounds, the causal nuances are difficult
to interpret by humans, due to the diversity of differential
diagnoses and the non-specific, unstandardized nomenclature
used to describe auscultation1.
Indeed, despite two centuries of experience with conventional

stethoscopes, during which time it has inarguably become one of
the most ubiquitously used clinical tools, several studies have
shown that the clinical interpretation of lung sounds is highly
subjective and varies widely depending on the level of experience
and specialty of the caregiver1,2. Deep learning has the potential
to discriminate audio patterns more objectively, and recent
advances in audio signal processing have shown its potential to

out-perform human perception. Many of these new advances
were ported from the field of computer vision. In particular,
convolutional neural networks (CNNs) adapted for audio signals
have achieved state-of-the-art performance in speech recogni-
tion3, sound event detection4, and audio classification5. Audio is
often transformed into a 2D image format during standard
processing. The most common choice being a spectrogram, which
is a visual representation of the audio frequency over time.
Several studies have sought to automate the interpretation of

digital lung auscultations (DLA)6–8, with several more recent ones
using deep learning models such as CNNs9,10. However, most studies
aim to automate the detection of the adventitious sounds that were
annotated by humans11–13. Thus, integrating the limitations of
human perception into the prediction. Further, as these pathological
sounds do not have specific diagnostic/prognostic associations, the
clinical relevance of these approaches is limited14.
Instead of trying to reproduce a flawed human interpretation of

adventitious sounds, directly predicting the diagnosis of a patient
from DLA audio would likely learn more objective patterns, and
also produce outputs that would be able to guide clinical decision
making. Our study takes this approach of diagnostic prediction,
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and goes a step further to consider the patterns at a patient-level.
This means aggregating recordings acquired at several anatomic
locations on a single patient. Patient-level predictions have the
potential to identify more complex diagnostic signatures of
respiratory disease, such as etiology-specific patterns in anatomic
and temporal distribution (for example expiratory wheezing or
lobular vs diffuse pneumonia).
Most prior studies building deep learning models for diagnostic

classification from DLA audio are difficult to assess or compare due to
important inconsistencies in patient inclusion criteria. Many of these
studies use the International Conference on Biomedical Health
Informatics (ICBHI) public data set15, which exhibits multiple
fundamental acquisition flaws that create systematic biases between
the predicted labels. For instance, different diagnoses are collected in
different locations, systematically different age groups or even using
different stethoscopes (the identified biases in this data set are listed
in Supplementary Fig. 1 and Supplementary Table 1).
Such systematic biases and limitations can allow the model to

discriminate classes based on differences in background noise,
which are likely much easier patterns to exploit and would thus
result in seemingly excellent predictive performances. Indeed,
studies on this data set report extremely high performances of
99% sensitivity when discriminating healthy from pathological
breathing16 and 92% for the detection of Chronic Obstructive
Pulmonary Disease (COPD)17. Other studies not using the ICBHI
dataset tend to be limited to specific diseases, or single
geographic locations, which risks poor generalizabilty.
These examples highlight the crucial importance of external

validation and model interpretability to assess predictive robust-
ness and rule out the possibility of confounding factors being
exploited for classification. To our knowledge, no prior studies
proposing diagnostic deep learning models on DLA recordings
have been externally validated on independently collected data,
nor has there been an effort to verify that their predictions align to
physiological signals. The concept of dataset shift is becoming
increasingly recognized as a practical concern with dramatic
effects in performance18. Such as in an analogous example of

diagnostic models for automated X-ray interpretation, where the
performance on external test data proved to be significantly lower
than that originally reported19.
In this study, we have made a specific effort to generate a

pathologically diverse data set of auscultation recordings, that are
acquired from a systematically recruited patient cohort, with
standardized inclusion criteria and diagnostic protocols as well as
broad geographic representation. We take several steps to detect
and correct for bias and over fitting, reporting performance on
independently collected external test data, computing confidence
intervals and showing how the model’s predictions align with the
cyclical nature of breath sounds to better interpret the clinical validity
of outputs.
Lung auscultation is a ubiquitous clinical exam in the diagnosis

of lung disease and its interpretation can influence care.
Diagnostic uncertainty can thus contribute to why respiratory
diseases are among the most widely misdiagnosed20,21. Improve-
ments in predictive performance of this exam would not only
improve patient care, but could have a major impact on antibiotic
stewardship.

RESULTS
DeepBreath—binary predictions
The four binary submodels of DeepBreath and the Baseline models
were evaluated on both internal test folds and external validation
data. The results are reported in Table 1 and 2, and Fig. 1. The
DeepBreath model that discriminates healthy from pathological
patients achieved an internal test AUROC of 0.931. This is 5%
better than the corresponding Baseline model. On the external
validation, it performed similarly well with an AUROC of 0.887,
which is 18% better than the Baseline model. Note that the
performance on the internal validation is not directly comparable
to the external because the evaluation is made on individual
models trained on a subset of the internal set in the former, and
on an ensemble of these models in the latter. Significant
differences in performance were seen among disease classes.

Table 1. Performance breakdown of binary models: Internal CV results.

Target Model Sensitivity (SD) Specificity (SD) AUROC (SD)

Control Baseline 0.501 (0.033) 0.938 (0.017) 0.879 (0.032)

DeepBreath 0.856 (0.053) 0.847 (0.039) 0.931 (0.014)

Pneumonia Baseline 0.000 (0.000) 0.996 (0.011) 0.637 (0.044)

DeepBreath 0.508 (0.197) 0.858 (0.046) 0.749 (0.097)

Wheezing Disorder Baseline 0.426 (0.065) 0.938 (0.015) 0.889 (0.038)

DeepBreath 0.792 (0.088) 0.880 (0.036) 0.912 (0.033)

Bronchiolitis Baseline 0.761 (0.102) 0.900 (0.018) 0.949 (0.018)

DeepBreath 0.830 (0.077) 0.880 (0.044) 0.939 (0.021)

Table 2. Performance breakdown of binary models: External validation.

Target Model Sensitivity (CI95) Specificity (CI95) AUROC (CI95)

Control Baseline 0.241 (0.139–0.372) 0.830 (0.742–0.898) 0.703 (0.622–0.785)

DeepBreath 0.770 (0.645–0.868) 0.840 (0.756–0.904) 0.887 (0.839–0.936)

Pneumonia Baseline 0.000 (0.000–0.079) 1.000 (0.968–1.000) 0.315 (0.226–0.405)

DeepBreath 0.469 (0.325–0.617) 0.839 (0.760–0.900) 0.739 (0.656–0.821)

Wheezing Disorder Baseline 0.419 (0.245–0.609) 0.693 (0.605–0.772) 0.614 (0.513–0.715)

DeepBreath 0.636 (0.451–0.796) 0.701 (0.616–0.777) 0.743 (0.651–0.836)

Bronchiolitis Baseline 0.542 (0.328–0.744) 0.933 (0.876–0.969) 0.896 (0.843–0.949)

DeepBreath 0.500 (0.291–0.709) 0.923 (0.867–0.961) 0.870 (0.796–0.943)
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Pneumonia showed the lowest performance, with an internal test
AUROC of 0.749, 11% larger than the corresponding Baseline
model. A similar AUROC was observed in external validation, but
was 42% larger than the Baseline’s. The model designed for
wheezing disorders was much more performant with an AUROC of
0.912, 2% larger than the Baseline’s. However, this model was
much less performant in external validation, with an AUROC of
0.743, 13% larger than the Baseline’s. Finally, the bronchiolitis
submodel had an internal test AUROC of 0.939, 1% lower than the
Baseline’s. On external validation, the model had a similar AUROC
of 0.870, 3% lower than the Baseline’s, with a redistribution of
sensitivity and specificity compared to internal validation. The
specificity vs sensitivity trade-off could be specified a priori, but
was not performed in this work.
Again, each binary model classifies itself vs all other classes. In

Supplementary Table 4, we stratify these performance metrics by
class to show the sensitivity of that model for correctly classifying
each ‘other’ class as ‘other’. The results show that all binary models
tend to misclassify Pneumonia the most of all sub-classes.

DeepBreath—combining binary classifiers
We combine the DeepBreath submodels for multi-class classifica-
tion using the intermediate outputs of the models, which are
concatenated and normalized, before given as input to a
multinomial logistic regression. The confusion matrices for the

internal test folds and the external validation data are depicted in
Fig. 2. On the internal test folds, the classification performance of
the joint model shows only a minimal reduction in class-recalls
(sensitivity). For instance the combined model reports an internal
sensitivity of 0.819, 0.422, 0.767 and 0.785 for control, pneumonia,
wheezing disorders, and bronchiolitis respectively. This represents
a decrease in performance of less than 5% for all but pneumonia
that decreases by 8.6%. On external validation, pneumonia and
bronchiolitis improve by about 4%, wheezing disorders stays the
same, and control drops significantly. However, as the discrimina-
tion of healthy vs pathological patients is not as clinically relevant
(patients with no respiratory symptoms do not have an indication
for lung auscultation) it can be argued that low sensitivity in this
class is not a significant issue.

Attention values: interpretation
Supplementary Fig. 3 shows the distribution of MAD values of the
Geneva recordings, w.r.t. the patient diagnoses. For control
patients, the distribution seems to be symmetric about the origin,
showing that the model doesn’t pay more attention to either of
the respiration phases. Interestingly, the distribution is right-
skewed for most of the respiratory diseases. This would indicate
that the CNN model focuses more on expiration than inspiration.
This could be explained by the fact that adventitious sounds more
commonly appear during the expiration phase.

(c) Wheezing Disorder (d) Bronchiolitis

(a) Control (b) Pneumonia

Fig. 1 DeepBreath ROC curve for binary classifiers on internal and external validation data. Each panel shows the ROC curves of one binary
classifier: a Control, b Pneumonia, cWheezing Disorder, d Bronchiolitis. Every iteration of nested CV yields a different model, which produces a
receiver-operating characteristic (ROC) curve for the internal test fold. The mean was computed over the obtained ROC curves. For the
external validation data, predictions are averaged across the nested CV models, and a single ROC curve is computed. Internal validation is
performed on various test folds from the Geneva and Porto Alegre data (blue). External validation (green) is performed on independently
collected unseen data from Dakar, Marrakesh, Rabat and Yaoundé.
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Figure 3 illustrates examples of segment-attention curves,
overlaid on the corresponding spectrograms that were given as
input to the CNN classifier. Depending on the MAD value,
inspiration or expiration signals are also shown, which can be

extracted from the recording annotations. By definition, a
recording has a lowMAD if the model focuses more on inspiration
than expiration segments (as labelled by the annotators). The
lower the MAD value, the more peaks of the attention curve

(a) Internal (b) External

Fig. 2 DeepBreath confusion matrices for multi-class predictions. A confusion matrix was computed for every CV model on the
corresponding test fold. a The internal confusion matrix was then obtained by taking the average of these intermediate confusion
matrices. b The external confusion matrix is computed on the aggregated patient predictions (ensemble output). The rows are normalized
to add up to 1.

(a) Inspiratory Focus (MAD=-0.68)

(b) Expiratory Focus (MAD=0.76)

Fig. 3 Example attention curves, returned by the CNN classifier that discriminates healthy recordings from pathological ones. The
attention curves are overlaid on the recording spectrograms, which are given as inputs to the CNN classifier. Depending on the MAD value,
either inspiration or expiration phases are provided as a reference. The respiration phases were extracted from the recording annotations.
a The recording has a negative MAD, and its attention curve is shown with the inspiration phases. b The recording has a positive MAD, and its
attention curve is shown with the expiration phases.
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should align with the extracted inspiration phases. Conversely, for
a highMAD, the model focuses more on expiration segments, and
the attention curve peaks should align with the extracted
expiration phases. Two examples with high magnitude MAD
values are shown. The first recording comes from an asthma
patient and has a negative MAD, the alignment with the
inspiration segments indicates that the model focuses on the
inspiration phases of the patient. Asthma wheezing is known to
have biphasic wheezing (especially with increasing severity), and
while expiratory wheezing may be more obvious to the human
ear, the singularity of inspiratory wheezing may thus serve as a
distinguishing characteristic identified by the model22.
The second example is from a patient with obstructive

bronchitis. The recording’s MAD is positive, focusing its attention
on the expiration phases, exclusively at the beginning of the
expiration. This expiratory wheezing also aligns with clinical
expectation of the disease.

Inference optimization
As DeepBreath can make inference on a variable duration and
combination of audio recordings, we seek to determine the
minimum length and smallest combination of recordings that the
trained DeepBreath model requires to ensure its reported
performance. Figure 4 shows the performance of the binary
DeepBreath models on variable lengths and anatomical combina-
tions of auscultation audio recordings. Only samples with at least
30 seconds and 8 positions available are used, resulting in a slight
deviation from the above reported results. For each binary model,
we explore the minimal number of anatomical positions (all 8, a
combination of 4, 2 or a single recording). Each sample is then
cropped to various durations (from 2.5 seconds to 30 seconds)
and the AUROC of each combination and duration is plotted.

Comparing results to the baseline using all 8 positions with the full
30 second duration (i.e. the red line at the 30-second mark on
each graph). We see that the performance is matched when using
recordings from a combination of just 4 positions. An exception is
pneumonia which requires all 8 positions to avoid the 0.04 loss in
AUROC. All position combinations also maintain their performance
until their durations are shortened to around 10-seconds.
Thus, DeepBreath maintains performance when given just 10

seconds of auscultation recordings from 4 positions.

DISCUSSION
In this study, we evaluate the potential of deep learning to detect the
diagnostic signatures of several pediatric respiratory conditions from
lung auscultation audio. Particular attention was dedicated to the
identification and correction of hidden biases in the data. We
standardise acquisition practices and perform robust model evalua-
tion as well as explicitly report external validation on independently
collected cohorts with a broad geographic representation.
Despite these strict constraints, DeepBreath returned promising

results, discriminating several disease classes with over 90% area
under the receiver operating characteristic (AUROC) curve, and
often significantly outperforming a corresponding Baseline model
based on age and respiratory rate (RR). The results on the external
validation were, on average, less than 8% lower, compared to 21%
lower for the Baseline models. Even the binary classifier for
pneumonia achieved 75 and 74% AUROC in internal and external
validation respectively. This value is considered surprisingly good
in light of the notorious lack of international gold standard for the
diagnosis of the disease and the international context of our
cohort. DeepBreath also showed potential to maintain stable
performance under sparse data conditions. Indeed, using just

(c) Wheezing Disorder (d) Bronchiolitis

(a) Control (b) Pneumonia

Fig. 4 Optimal duration and combination of inference audio. Each graph represents a trained binary model for a Control, b Pneumonia,
c Wheezing Disorders and d Bronchiolitis. Each solid line is the AUROC performance resulting from the external validation data comprising
one of four combinations of anatomical positions (1, 2, 4 and 8). The AUROC is plotted over the duration of the test set samples in seconds
ranging from 2.5 to 30. The dashed lines show the performances of the clinical baseline models that only use age and respiratory rate.
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5-10-second recordings from 4 anatomic positions on the thorax
was equivalent to using 30 second clips from all 8 positions.
The interpretable-by-design approach of attention-spectogram

mapping further validates the clinical relevance of our results,
offering unique insights into the model’s decision-making process.
These tangible visualizations map the predictive attention on the
audio spectrogram allowing it to be aligned with human
annotations of the respiration cycle. We found intuitive con-
cordance with inspirations and expirations, which better ensures
that discrimination is based on respiratory signals rather than
spurious noise. Thus, DeepBreath can be interrogated by medical
experts, allowing them to make an informed assessment of the
plausibility of the model’s output. This interpretation technique
could possibly be used as a more objective way to identify
adventitious sounds, requiring no (laborious) time-stamped
labeling of audio segments, but using only clip-level annotations.
Extrapolating the possible applications of this approach, it could
even provide a method for standardising the unique acoustic
characteristics of respiratory disease into a visually interpretable
set of patterns that could find a use in medical training.
As it is preferable (albeit more challenging) to have a single model

able to discriminate a range of differential diagnoses, we combined
all the binary classifiers into a single multi-class diagnostic classifier.
While this showed very promising results on our internal test folds, its
performance was significantly reduced in external validation. This is a
strong indication that more data is needed before such an
architecture would be ready for a real-world deployment. The
performance was likely particularly limited by the important data
imbalance regarding diagnosis and recording centre. Another
limitation of this work, is that DeepBreath was trained and evaluated
on a data set generated with a single stethoscope brand. Future
work to render the models device-agnostic would be valuable to
expanding their potential scope of deployment.
Taken together, the DeepBreath model shows the robust,

promising and realistic predictive potential of deep learning on
lung auscultation audio; and offers a framework to provide
interpretable insights of the objective audio signatures for one of
the most frequently misinterpreted clinical exams.

METHODS
Participants and cohort description
A detailed breakdown of participants stratified by geographic site
and diagnostic label is provided in Table 3. A total of 572 patients
were recruited in the context of a multi-site observational cohort

study using a standardised acquisition protocol. Selection criteria
aimed to recruit patients below the age of 16 presenting at
paediatric outpatient facilities who had suspected lower respiratory
tract infection, acute asthma or obstructive bronchitis. Patients with
known chronic underlying respiratory disease (e.g. fibrosis) or heart
failure were excluded. In total, 71% (n= 407/572) were clinically
diagnosed cases with one of three diagnostic labels: (i) pneumonia,
(ii) wheezing disorders, or (iii) bronchiolitis. The remaining 29%
(n= 165/572) were age- and sex-balanced controls with no
respiratory symptoms, consulting at the same emergency unit for
other complaints. Distributions of age and respiratory rates between
cases and controls are provided in Supplementary Fig. 2.
All participants were recruited between 2016 and 2020 at the

outpatient departments of six hospitals across five countries (120
in Geneva, Switzerland; 283 in Porto Alegre, Brazil; 31 in Dakar,
Senegal; 79 in Yaoundé, Cameroon; and finally 59 from Rabat and
Marrakesh in Morocco). Detailed summary statistics are provided
in Supplementary Table 2. All diagnoses are validated by two
medical doctors. Pneumonia is diagnosed radiologically where
possible or by the presence of audible crackles and/or febrile
respiratory distress. 90% of the pneumonia cases were reported as
bacterial, and the rest as viral. These are grouped into a single
category of pneumonia due to the notorious difficulty of
distinguishing between them objectively. Bronchiolitis and
wheezing disorders (comprising asthma and obstructive bron-
chitis) are diagnosed clinically.

Ethics
The study is approved by the Research Ethics Committee of Geneva
and local research ethics boards in each participating country. All
patient’s caregivers provided written informed consent.

Dataset acquisition
A series of digital lung auscultation (DLA) audios were acquired
from each of the 572 recruited patients across eight anatomic sites
(one in each quadrant of the anterior and posterior thorax). DLAs
had an average duration of 28.4 seconds (range 1.9-30). Only 2.8%
of patients (n= 16/572) did not have all eight recordings present.
Collectively, 4552 audio recordings covered 35.9 hours of breath
sounds. All recordings were acquired on presentation, prior to any
medical intervention (e.g. bronchodilators or supplemental oxy-
gen). DLAs were recorded in WAVE (.wav) format with a Littmann
3200 electronic stethoscope (3M Health Care, St. Paul, USA) using
the Littmann StethAssist proprietary software v.1.3 and Bell Filter
option. The stethoscope has a sampling rate of 4,000 Hz and a bit
depth of 16 bits.

Dataset description
Recordings have one of four clinical diagnostic categories: control
(healthy), pneumonia, wheezing disorders (asthma and bronchitis
pooled together) and bronchiolitis. The diagnosis was made by an
experienced pediatrician after auscultation and was based on all
available clinical and paraclinical information, such as chest X-ray
when clinically indicated. For the purposes of this study,
obstructive bronchitis and asthma are grouped under the label
“wheezing disorder” due to their similar audible wheezing sound
profile and treatment requirements (bronchodilators).
Rather than having a single model with four output classes (listed

above), we adopted a “one-versus-rest” approach where four
separate binary classification models discriminate between samples
of one class and samples of the remaining three classes. The
combination of the outputs of the resulting ensemble of four models
yields a multi-class output. Such an approach allows for separating
the learned features per class, which in turn improves the
interpretability of the overall model. Moreover, such a composite
model more easily permits a sampling strategy that compensates for

Table 3. Number of patients used to train the models in this study,
stratified by diagnosis and collection site.

Control Pneumonia Wheezea Bronchiolitis Total n

GVA 23 27 66 4 120

POA 80 38 21 91 283b

DKR 17 5 8 1 31

MAR / RBA 32 0 19 8 59

YAO 13 44 6 16 79

Total n 165 114 120 120 572

(%) (29) (20) (21) (21) (100)

GVA Geneva, Switzerland, POA Porto Alegre, Brazil, DKR Dakar, Senegal, MAR
Marrakesh, Morocco, RBA Rabat, Morocco, YAO Yaound, Cameroon, Total n
total number of patients, stratified by diagnosis.
aWheezing Disorder comprises obstructive bronchitis (30%) and asthma
(70%).
bIn POA, 53 cases had no differentiation between bronchiolitis and
wheezing disorder and are not listed in a specific column.
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the imbalanced class distribution in the training set. For a fair
comparison, an identical model architecture was used for all the
diagnoses in this study. For a broader classification of pathological
breath sounds, predictions from the three pathological classes are
grouped into a composite “pathological” label.
Several clinical variables were collected for each patient. Age

and respiratory rate (RR) are used in a clinical baseline model
described below. Age was present for all patients. RR was
recorded by clinical observation at the bedside and is present
for 94% (n= 536/572) of the patients. The baseline is thus
computed on this subset.
Recordings from the Geneva site (cases and controls) were

annotated by medical doctors to provide time-stamped inspira-
tion and expiration phases of the breath cycle. These will serve as
a reference for the interpretation methods described below.

Data partitioning (train:tune:test split and external validation)
Considering potential biases in the data collection process, and a
model’s tendency to overfit in the presence of site-specific
background noise, it is particularly important to ensure balanced
representation in data splits and even more critical to explicitly
report results on an external validation set from an independent
clinical setting. As the Geneva (GVA) and Porto Alegre (POA)
recordings were the most abundant and diverse in terms of label
representation, they were thus used for training, internal
validation (i.e. tuning) and testing.
To ensure that performance was not dependent on fortuitous

data partitioning, nested 5-fold stratified cross validation (CV) was
performed to obtain a distribution of performance estimates
which are then reported as a mean with standard deviation (SD).
The random fold compositions are restricted to maintain class
balance (i.e. preserving the percentage of samples for each class).
The other centres of Dakar (DKR), Marrakesh (MAR), Rabat (RBA)

and Yaoundé (YAO) were used for external validation, i.e. the
trained model has never seen recordings coming from these
centres, and the recordings have not been used for hyper-
parameter selection. For external validation, the models trained on
internal data using nested CV can be seen as an ensemble. Model
predictions were averaged across the ensemble, to get a single
prediction per patient. Performance metrics were then computed
over the external validation set and are reported along with 95%
confidence intervals (CI95%).
The partitioning strategy is illustrated in Fig. 5.

Clinical baseline
To assess the clinical value of using DeepBreath as opposed to a
simpler model based on basic clinical data, we trained a set of
equivalent baseline models using logistic regression on age and

respiration rate. These two features are relatively simple to collect
and are routinely used to assess patients with respiratory illness.
For instance, in our dataset, the age of bronchiolitis patients is
significantly lower than for the other disease groups, and the RR of
all disease groups differ significantly between each other (see
Supplementary Table 2). This suggests that these features are
likely predictive for the diseases, provided that their distributions
are reasonably linearly separable.
The same train:tune:test splits as for the training of DeepBreath

were used for the baseline. In a first step, the train and tune folds
of the nested CV were used to obtain the best hyper-parameters
using grid-search. The best hyper-parameters found for each
disease classifier are reported in Supplementary Table 3. Then, 20
models corresponding to the different combinations of train folds
were trained for each disease using the best hyper-parameters.
The same evaluation procedure as for DeepBreath was used
(described in Statistical methods).

DeepBreath : model design
DeepBreath is a composite binary classifier trained separately for
each diagnostic category (e.g. pneumonia vs not pneumonia etc.).
It consists of a CNN audio classifier that produces predictions for
single recordings, followed by a logistic regression that aggre-
gates the predictions of the recordings corresponding to the eight
anatomical sites. It then outputs a single value per patient.
Intermediate outputs, such as the segment-wise predictions for a
recording, are extracted for later interpretability analysis. Figure 6
depicts the pipeline of the DeepBreath binary classifier.

Preprocessing: generating fixed-size inputs (only during
training)
The training phase requires fixed-size inputs for batch-wise
processing. Here, 5-second audio frames are presented to the
classification architecture. Shorter recordings are zero-padded. For
longer recordings, we extract a 5-second frame from a random
start within the recording. The resting respiratory rhythm for an
adult is around two seconds inhalation and three seconds
exhalation23. For a child, a full respiration cycle is shorter, and
respiratory disease tends to reduce this further. Thus, a 5 second
crop would generally ensure at least one full respiration cycle
irrespective of the random starting position. At inference time, the
model can process the entire recording, no matter the duration.
There is thus no need for zero-padding.

Preprocessing: spectral transformation
DLAs are first converted to log-mel spectrograms using torchau-
dio. The spectrograms are generated by computing discrete
Fourier transforms (DFT) over short overlapping windows. A Hann

Train, Tune, Test External Validation

GVA

97 Cases
23 Controls

DKR

14 Cases
17 Controls

RBA

18 Cases
30 Controls

MAR

9 Cases
2 Controls

YAO

66 Cases
13 Controls

1 2 3 4 51 2 3 4 5

CV

POA

203 Cases
80 Controls

Fig. 5 Dataset partitioning strategy. Geneva (GVA) and Porto Alegre (POA) are used for training, internal validation (tuning), model selection
and testing. External validation is performed on independently collected recordings from Dakar (DKR), Marrakesh (MAR), Rabat (RBA) and
Yaoundé (YAO). CV Cross Validation.
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Fig. 6 Overview of the DeepBreath binary classification model. This binary classification architecture is trained for each of the four
diagnostic classes. Top to bottom: a Data collection. Every patient has 8 lung audio recordings acquired at the indicated anatomical sites.
b Pre-processing. A band-pass filter is applied to clips before transformation to log-mel spectograms which are batch-normalized and
augmented and then fed into an (c) Audio classifier. Here, a CNN outputs both a segment-level prediction and attention values which are
aggregated into a single clip-wise output for each site. These are then (d) Aggregated by concatenation to obtain a feature vector of size 8 for
every patient, which is evaluated by a logistic regression. Finally (e) Patient-level classification is performed by thresholding to get a binary
output. The segment-wise outputs of the audio classifier are extracted for further analysis. Note that the way the 5-second frames are created
during training is not shown here (zero padding or random start).
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window length of 256 samples and a hop length of 64 samples
were used. At a 4000 Hz sampling rate, this corresponds to a
window duration of 64 ms, and a hop duration of 16 ms. This
process is known as the Short Time Fourier Transform (STFT). With
a hop duration of 16 ms, we get 62.5 frames per second (rounded
up in practice). To get log-mel spectrograms, the obtained
magnitude spectra for frequencies between 250 and 750 Hz are
projected onto 32 mel-bands, and converted to logarithmic
magnitudes. Again, a narrow frequency range was chosen to
reduce the interference of background noises. The log-mel
spectrogram of a 5-second clip has a shape of 32 × 313. Before
being processed by the CNN model, the log-mel spectrograms are
normalized with Batch Normalization24. Because for spectrograms,
the vertical translational invariance property does not hold (unlike
standard images, spectrograms are structured and contain
different information in the different frequency bands), each
frequency band is normalized independently of the others. During
training, SpecAugment25 is performed. This augmentation techni-
que, that was initially developed for speech processing, masks out
randomly selected frequency and time bands.

Preprocessing: audio-level predicitons
We adapted an architecture from the PANN paper4 codebase. The
original Cnn14_DecisionLevelAtt model was designed for sound
event detection. Our model consists of 5 convolutional blocks.
Each convolutional block consists of 2 convolutional layers with a
kernel size of 3 × 3. Batch normalization is applied between each
convolutional layer to speed up and stabilize the training. After
each convolutional layer and Batch normalization, we use ReLU
nonlinearity26. We apply average pooling of size 2 × 2 after the
first 4 convolutional blocks for down-sampling, as 2 × 2 average
pooling has been shown to outperform 2 × 2 max pooling27. After
the last convolutional layer, the frequency dimension is reduced
with average pooling. Average and max pooling of size 3 and
stride 1 are applied over the time dimension and summed to get
smoothed feature maps. Then, a fully connected layer (with
in_features = 1024) followed by a ReLU nonlinearity is
applied to each of the time-domain feature vectors (of size 1024,
which corresponds to the number of channels of the last
convolutional layer).
Let x= {x1,…, xT} be the sequence of feature vectors obtained

from the previous step. Here T is the number of segments, which
depends on the duration of the recording and the number of
pooling operations applied after the convolutional blocks. In order
to get segment-level predictions, an attention block is applied to
the feature vectors. This attention block outputs two values per
feature vector, by applying two distinct fully connected layers to
each of the feature vectors (implemented with Conv1d in
PyTorch). The first fully connected layer is followed by a sigmoid
activation function and outputs a value p(xi). The second fully
connected layer is followed by a Tanh nonlinearity and outputs a
weight v(xi). These weights are then normalized over all segments
with a softmax function:

gðxiÞ ¼ expðvðxiÞÞPT
j¼1 expðvðxjÞÞ

; i ¼ 1; ¼ ; T : (1)

The value g(xi) is called the attention value of the ith segment. It
controls how much the prediction p(xi) should be attended in the
clip-level prediction. The clip-level prediction is now obtained as
follows:

pðxÞ ¼
XT
i¼1

gðxiÞpðxiÞ ; thus: pðxÞ 2 ½0; 1� : (2)

Dropout28 is applied after each downsampling operation and
fully connected layers to prevent the model from overfitting.

Preprocessing: patient-level prediction (site aggregation)
To obtain patient-level predictions, we combine the predictions of
each of the 8 anatomic sites of a single patient and concatenate
them to obtain a vector of size 8. In this step, only patients for
which all eight recordings are available were selected. This new
set of features can be used to construct new datasets for the train,
tune and test folds. We chose to fit a logistic regression model to
these new features, because it has properties pertinent to our
setting, such as being interpretable and returning the probability
of an event occurring. With this model, there is no need for a tune
set to save the best model during training. Thus we concatenated
the feature matrices of the train and tune folds, to obtain a new
feature matrix that will be used to fit the logistic regression model.
The test features will be used to evaluate our model. Note that this
is the first time that the test data is used. The CNN model is not
trained during this second phase and never sees the test data.

Combining binary classifiers
For diagnostic classification, we combine the positional feature
vectors (corresponding to the eight anatomical sites) of the four
CNN audio classifiers. The feature vectors are concatenated to
form a prediction array of size 4 × 8, and the columns are then L1-
normalized (for each column, the sum of its values is equal to 1).
The idea behind this normalization is that recordings—which were
identified by multiple CNN models as having a high likelihood of
belonging to their respective class—should matter less in the
aggregated patient prediction. Similar to the aggregation step in
the binary models, we obtain new feature datasets for the training,
tune and test folds. Figure 7 shows how that data is generated. A
multinomial logistic regression is then trained to predict a
patient’s diagnosis. Again, the test features are only used to
evaluate the model.

Extracting attention values
DeepBreath is interpretable by design. At the level of the CNN
model, we can plot the segment-level predictions fpðxiÞgTi¼1, and
the attention values fgðxiÞgTi¼1. These values can identify the parts
of the recording that are most deterministic for the prediction
over the time dimension. Comparing these values to segment-
level annotations made by medical doctors (identifying inspiration
and expiration), we can visualize how the model interprets disease
over the breath cycle and thus allow clinicians to interrogate the
model’s alignment to physiology.
Every CNN audio classifier passes through a recording and

computes segment-level outputs, before aggregating those
intermediate outputs to return a single clip-level prediction. The
duration captured by a single segment is determined by the size
of the receptive field of the CNN architecture. The receptive field
of the final convolutional layer has a width of 78, which
corresponds to a duration of 1296 ms. For every segment, the
CNN model computes an attention value g(xi) and a prediction
p(xi). The attention value g(xi) determines how much the segment
prediction p(xi) is attended in the overall clip-level output p(x).
Plotting fgðxiÞgTi¼1 allows us to identify parts of the recording
(hence the respiration) that have a high contribution to the clip-
level prediction. In order to interpret these singled-out parts, we
made use of annotations of breath sounds, that were provided for
the recordings from Geneva. With those annotations we can
evaluate whether there is a similarity between the way medical
experts label breath sounds, and the way respiration is perceived
by a model (that was trained for diagnosis prediction without any
knowledge of respiration phases or sounds).

Mean-Attention Difference (MAD)
To better quantify how attention correlates to human annotations of
the breath cycle, we take the healthy vs pathological binary classifier
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DeepBreath submodel as an example and define a metric called the
Mean-Attention Difference (MAD). Given a recording, the CNN model
generates the segment-attention values fgðxiÞgTi¼1. Let gðxuk Þf gTink¼1

and gðxvl Þf gToutl¼1 be the sub-sequences of segment-attention values
corresponding to inspiration and expiration phases, respectively.
Those sub-sequences can be identified with the segment-level
annotations that provide timing information. We define

αin ¼ 1
T in

XTin
k¼1

gðxuk Þ
 !

(3)

αout ¼ 1
Tout

XTout
l¼1

gðxvl Þ
 !

(4)

as the mean attention values of the inspiration and expiration
phases, respectively. The MAD is now defined as follows:

MAD ¼ αout � αin
maxðαout; αinÞ (5)

Note that whenMAD > 0, it means that the model focuses more
on expiration segments than inspiration segments. The opposite is
true when MAD < 0. If our model gives equal importance to both
inspiration and expiration, then a plot of MAD values across all
recordings should show a symmetric distribution around the
origin.

Model training
The CNN classifiers were trained with a Binary Cross Entropy (BCE)
loss with clip-level predictions and labels. A batch-size of 64, and an
AdamW optimizer29, combined with a 1cycle learning rate policy30,
were used. The 1cycle policy increases the learning rate (LR) from an
initial value to some maximum LR and then decreases it from that
maximum to some minimum value, much lower than the initial LR.
The maximum LR was set to 0.001. The default parameters of the
PyTorch implementation were used otherwise. The weight decay
coefficient of the AdamW optimizer was set to 0.005.
A balanced sampling strategy was implemented to address the

class imbalance, w.r.t. the diagnoses and recording centres. First,
when training the model to identify one of the four categories, it is
important that the three other categories are equally represented.
This is because otherwise, the model might learn to distinguish
between two categories, which is easier. Second, sampling
recordings from different locations in a balanced way is also
important. Our experiments have shown that the model can learn
to distinguish recording locations with relatively high accuracy.
Thus, there is a risk that the model may learn spurious features
when training it to distinguish pathologies by focusing on centre-
specific background noise for over-represented categories in one
location. Hence, our sampling strategy aims to enforce that the
CNN learns location-invariant representations, as much as

possible, as some localized features might yet be desired. With a
balanced sampling, an epoch corresponds to a full sweep of the
data. The number of batches per epoch is set such that N
recordings are sampled during an epoch, where N is the total
number of recordings. With over-sampling (or under-sampling),
we are bound to have duplicates over an epoch (or missed
recordings, respectively).
Every model was trained for 100 epochs. After 60 epochs, the

model performance is evaluated on the tune fold, to save the best
model w.r.t. mean positional AUROC, obtained as follows. For every
recording in the tune fold, the CNN classifier predicts a score in [0,1].
Those scores are then split into eight different groups, depending on
the position that was used for the recording. For every position,
AUROC is computed on the positional scores, and then the mean of
these eight AUROC values is returned. The idea behind this metric is
that the model might perform differently depending on the position
(more confident for certain positions than for others), and since we
are feeding the positional scores to another model (logistic
regression), metrics that require us to binarize the scores like
accuracy or F1-score might not be adapted to the task.

Inference optimization
As DeepBreath can perform inference on variable lengths and
anatomical positions of audio, we determine the minimum length
and smallest combination of recordings that the trained
DeepBreath model requires to ensure its reported performance.
These experiments are performed exclusively on the test set.
We compare the performance of using all 8 sites to a

combination of 4 or 2 sites or a single site. The combinations
are selected from the anterior superior (left and right) recordings,
which are known to have less audible interference from the heart
and stomach.
To then explore the minimum duration required for each

combination, we create variable duration crops, ranging between
2.5 and 30 seconds in 2.5 second increments.

Statistical methods
For every CV iteration, a model was trained using the internal train
and tune folds. Sensitivity, specificity and area under the receiver-
operator-characteristic curve (AUROC) values were computed on
the corresponding test fold. With 5-fold nested CV, this procedure
was repeated 20 times. The internal performance metrics are
reported as a mean, together with SD, taken over the CV iterations.
Each of the 20 trained models was also evaluated on the entire
external validation set. For every patient, predictions were then
averaged across this ensemble of models, to obtain a single
aggregated prediction. Sensitivity, specificity and AUROC values
were computed on the aggregated predictions. To assess the
variability of the performance estimates, we provide 95% Clopper-
Pearson confidence intervals31 for sensitivity and specificity, and
95% DeLong confidence intervals for AUROC32.
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Fig. 7 Feature construction for multi-class classification. For every patient, the four binary models produce a feature vector of size 8,
corresponding to the predictions of the recordings from the 8 anatomical sites. Those feature vectors are concatenated to form a prediction
array of size 4 (classes) × 8 (sites). Then, the following operations are applied to the prediction array: (a) Column normalization of the
prediction array (b) Flattening to obtain a feature vector of size 32. The final feature vector is than given as input to the multinomial logistic
regression.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Anonymized data are available upon reasonable request (alain.gervaix@hcuge.ch)
which matches the intention to improve the diagnosis of paediatric respiratory
disease in resource-limited settings. The audio used in the study are not publicly
available to protect participant privacy. Unlimited further use is not permissible from
the informed consent.

CODE AVAILABILITY
The full code and test sets are available at the following GitHub repository: https://
github.com/epfl-iglobalhealth/DeepBreath-NatMed23. The repository also provides
instructions on how to access and train this model on DISCO, our web-based platform
for distributed collaborative learning https://epfml.github.io/disco/#/ to provide
access to privacy-preserving federated and decentralised collaborative training and
inference.
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