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Abstract

Being able to reliably assess not only the accuracy but also the uncertainty of models’ predictions is
an important endeavor in modern machine learning. Even if the model generating the data and
labels is known, computing the intrinsic uncertainty after learning the model from a limited
number of samples amounts to sampling the corresponding posterior probability measure. Such
sampling is computationally challenging in high-dimensional problems and theoretical results on
heuristic uncertainty estimators in high-dimensions are thus scarce. In this manuscript, we
characterize uncertainty for learning from a limited number of samples of high-dimensional
Gaussian input data and labels generated by the probit model. In this setting, the Bayesian
uncertainty (i.e. the posterior marginals) can be asymptotically obtained by the approximate
message passing algorithm, bypassing the canonical but costly Monte Carlo sampling of the
posterior. We then provide a closed-form formula for the joint statistics between the logistic
classifier, the uncertainty of the statistically optimal Bayesian classifier and the ground-truth probit
uncertainty. The formula allows us to investigate the calibration of the logistic classifier learning
from a limited amount of samples. We discuss how over-confidence can be mitigated by
appropriately regularizing.

1. Introduction

An important part of statistics is concerned with assessing the uncertainty associated with a prediction based
on data. Indeed, in many sensitive fields where statistical methods are widely used, trustworthiness can be as
important as accuracy. The same holds true for modern applications of machine learning where liability is
important, e.g. self-driving cars and facial recognition. Yet, assessing the uncertainty of machine learning
methods comes with many questions. Measuring uncertainty in complex architectures such as deep neural
networks is a challenging problem, with a rich literature proposing different strategies, e.g. [1, 21, 27, 28, 34,
35, 57, 65].

On the side of theoretical control of the uncertainty estimators there is an extended work in the context
of Gaussian processes [29, 40, 59] that offer Bayesian estimates of uncertainties based on a Gaussian
approximation over the predictor class [18, 41, 57]. Essentially when the posterior measure is a
high-dimensional Gaussian then computation of the marginals is possible and well controlled. Beyond the
setting of Gaussian posterior measures, well-established mathematical guarantees fall short in the
high-dimensional regime where the number of data samples is of the same order as the number of
dimensions even for the simplest models [61]. Sharp theoretical results on uncertainty quantification in
high-dimensional models where posterior distributions are not Gaussian are consequently scarce.

In this manuscript we provide an exact characterization of uncertainty for high-dimensional
classification of data with Gaussian covariates and probit labels. There are two main sources of uncertainty in
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this model—the more explicit is the noise level parameterizing the probit function, then there is the
uncertainty coming from the fact that learning is done from a limited number of samples. Uncertainty
estimation in classification problems aims to compute the probability that a given new sample has one of the
labels. The most likely label is then typically chosen for the prediction of the new labels, but the probability
itself is of our interest here. We stress that we are interested in the uncertainty sample-wise, i.e. for every
given sample, not on average. We address questions such as: (a) How does the uncertainty of the logistic
classifier compare with the actual Bayesian uncertainty when learning with a limited amount of data? (b)
How do these two uncertainty measures compare with the intrinsic model uncertainty due to the noise in the
data-generating process?

The key player in our analysis will be the Bayesian estimator of uncertainty corresponding to the
probabilities of labels for new samples computed by averaging over the posterior distribution. Although in
general computing the Bayesian estimator from posterior sampling can be prohibitively computationally
costly in high dimensions, we show that in the present model, it can be efficiently done using a tailored
generalized approximate message passing (GAMP) algorithm [13, 56]. Leveraging tools from the GAMP
literature and its state evolution, we provide an asymptotic characterization of the joint statistics between the
minimizer of the logistic loss, the optimal Bayesian estimator over the data and the oracle estimator. This
allows us to provide quantitative answers to questions a) & b) above, and to study how uncertainty estimation
depends on the parameters of the model, such as the regularization, size of the training set and noise.

1.1. Main contributions
The main contributions in this manuscript are:

o It is well known that the optimal Bayesian classifier for a data model with Gaussian i.i.d. covariates and
probit labels is well approximated by the GAMP algorithm [11, 31]. We extend these results by showing that
GAMP also provides an exact sample-wise estimation of the Bayesian uncertainty when d — oo.

e We provide an exact asymptotic description of the joint statistics between the uncertainty of the oracle, and
the one estimated by the Bayes-optimal (BO) and logistic classifiers for the aforementioned data model. This
allows us to compare these uncertainties to each other. Comparing the oracle and Bayes optimal we quantify
the uncertainty coming from the limited size of the dataset. Comparing Bayesian and logistic classifiers
allows us to quantify the under- or overconfidence of the latter.

o We derive an asymptotic expression of the calibration for the Bayesian and logistic classifiers. In particular,
we show that the Bayesian estimator is calibrated. For the logistic classifier, our expression allows us to
characterize the influence of various parameters on under- or overconfidence of the logistic classifier.

e We quantify the role played by the ¢,-regularization on uncertainty estimation. In particular, we compare
cross-validation with respect to the optimization loss (logistic) with cross-validation with respect to the 0/1
error.

1.2. Related work

1.2.1. Measures of uncertainty

Measuring uncertainty in neural networks is a challenging problem with a vast literature proposing both
frequentist and Bayesian approaches [1]. On the frequentist side, various algorithms have been introduced to
evaluate and improve the calibration of machine learning models. Some of them, such as isotonic regression
[67], histogram binning [66], Platt scaling [54] or temperature scaling [27] are applied to previously trained
models. Other approaches aim to calibrate models during training, using well-chosen metrics [37, 53],
through data augmentation [64] or using the iterates of the optimizer [42]. Alternatively, different authors
have proposed uncertainty measures based on Bayesian estimates [47, 65]. This includes popular methods
such as Bayesian dropout [21, 33], deep ensembles [35, 37, 44] and variational inference [55], Laplace
approximation [18, 34] and tempered posteriors [2, 3, 32] to cite a few. Finally, some works based on
conformal inference [60] are concerned with providing non-asymptotic and distribution-free guarantees for
the uncertainty [4, 28].

1.2.2. Exact asymptotics

Our theoretical analysis builds on series of developments on the study of exact asymptotics in
high-dimensions. The GAMP algorithm and the corresponding state evolution equations appeared in

[31, 56]. Exact asymptotics for Bayesian estimation in generalized linear models was rigorously established in
[11]. On the empirical risk minimization side, exact asymptotics based on different techniques, such as
Convex Gaussian min-max theorem [5, 16, 19, 36, 38, 51, 52, 62], Random Matrix Theory [43], GAMP

[23, 39] and first order expansions [14] have been used to study high-dimensional logistic regression and
max-margin estimation.
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1.2.3. Uncertainty & exact asymptotics

An early discussion on the variance of high-dimensional Bayesian linear regression has been appeared in

[15, 45, 46]. Calibration has been studied in the context of high-dimensional unregularized logistic
regression in [9], where it was shown that the logistic classifier is systematically overconfident in the regime
where number of samples is proportional to the dimension. An equivalent result for regression was discussed
in [10], where it was shown that quantile regression suffers from an under-coverage bias in high-dimensions.
While [9] is the closest to the present paper, we differ from their setting in three major ways. First, they
consider the behavior of unpenalized logistic regression, while we study the effect of ¢, regularization on
uncertainty. Second, we compute the full joint distribution of the prediction for the oracle, the empirical risk
minimizer and the Bayes optimal estimator, while [9] focus the discussion on the calibration of the empirical
risk minimizer with respect to the oracle only. Lastly (and less importantly), [9] considers logit data, while
we consider a probit data model.

1.3. Notation

Vectors are denoted in bold. NV (x|, X) denotes the Gaussian density. © denotes the (component-wise)
Hadamard product. 1(A) denotes the indicator on the set A. For any differentiable function f : R — R, f* will
denote its first derivative.

2. Setting

2.1. The data model
Consider a binary classification problem where n samples (x,y") € R x {—1,1}, u=1,...,n are
independently drawn from the following probit model:

) = B = 1) = o (22, (1)

x ~ N(0,1/d1y), we ~N(0,1,) (2)

where o, (x) = 1/2 erfc(—x/+/2) and 7 > 0 parameterizes the noise level. Note that the probit model is
equivalent to generating the labels via y* = fy(w, x* + 7&") with €% ~ N(0,1) and f(x) := sign(x). In the
following we will be referring to the function f, (x) or to its parameters w, as the teacher, having in mind the
teacher-student setting from neural networks. We will refer to f; (x) as the oracle uncertainty as it takes into
account only the noise in the label-generating process, but it does not take into account uncertainty coming
from the limited size of the training dataset.

Note that our discussion could be straightforwardly generalized to a generic prior distribution w, ~ P,,, .
However, our goal in this work is to provide a fair comparison between Bayesian estimation and empirical
risk minimization (ERM). Indeed, ERM does not assume any information on the components of w,, and a
fair comparison is to consider the maximum entropy Gaussian prior.

Given the training data D = {(x*,y")}/,_, and a test sample x ~ N'(0,1/dl,), the goal is to find a
(probabilistic) classifier x — »(x) minimizing the 0/1 test error

Eg :E(x,y)P(j/(x) 7£)/) . (3)
When different estimators are compared, we will note 6; the error of the estimator t to remove ambiguity.

2.2. Considered classifiers

We will focus on comparing two probabilistic classifiers f (x) = P(y = 1|x). The first is the widely used
logistic classifier: fom (x) = o (W_,,X) where o (x) = (1+ e )" is the logistic function and the weights
w € R? are obtained by minimizing the following (regularized) empirical risk:

- 1 - —yHa T xH )\
R(w) = 3 log (147" ) + 2w, @)

p=1

Using }’erm(x) as a measure of uncertainty is not considered very principled. Nevertheless, it is arguably the
most commonly used measure to give a rough idea of how confident is the neural network prediction for a
given sample.
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The second estimator we investigate is the statistically optimal Bayesian estimator for the problem, which
is given by:

o) = Proty = 11%) = | dw Ply= 1157 w)P(wID)

.
:/ dw o, <W x) P(w|D), (5)
R4 T

where the posterior distribution P(w|D) given the training data D = {(x*,y*)}},_, is explicitly given by:

. wixt
pwiD) = 5 o (22 W iwlo) ©

pn=1

for a normalization constant Z(7) € R. The BO estimator fi,(x) provides the perfect measure of uncertainty
that takes into account both the noise in the data generation and the finite number of samples in the training
set. The traditional drawback of course is that it assumes the knowledge of the value 7 and other details of
the data-generating model.

2.3. Uncertainty and calibration

The main purpose of this manuscript is to characterize how the intrinsic uncertainty of the probit model
compares to both the Bayesian and logistic confidences/uncertainties in the high-dimensional setting where
the number of samples n is comparable to the dimension d. In this case, the limited number of samples is a
source of uncertainty comparable in magnitude to the noise level 7. To define what is uncertainty in our
context, note that the confidence functions f(x) = P(y = 1|x) defined above give the probability that the label
is y =1 (with the label prediction commonly given by thresholding this function). In mathematical terms, we
aim at characterizing the correlation between the oracle, Bayesian and logistic confidences, as parameterized
by the joint probability density:

p(a,b, C):]PD,x( *(x):a,ﬁ,o(x):b,ﬂrm(x):c) : (7)

Similarly, we will note py e;m(a,¢) = P(f, = a,ferm = €)> Po,erm (8, ¢) = P(foo = b, ferm = ¢) and

Pxbo(a,b) =P(fi = aJ‘bO = b). These densities correspond to p summed over ﬁo, f« and]A‘erm respectively.
Here the sample x is understood as any sample from the test set, on which the confidence/uncertainty is
evaluated. It is important that equation (7) is defined for the same sample x in all the 3 arguments. Note that
Px,erm allows to compare the ERM uncertainty with the oracle uncertainty (the best we could do if we had
infinite data), while pp, rm quantifies the ERM uncertainty with respect to the best statistical estimate under
a finite amount of data.

In the next section, we provide a characterization of this joint density in the high-dimensional limit
where n,d — oo with fixed sample complexity o« = 1n/d, as a function of the noise level 7 and regularization
A. To obtain this result we leverage recent works on approximate message passing (AMP) algorithms and
their state evolution.

Some of our results will be conveniently formulated in terms of so-called calibration of a probabilistic
classifier f: R? — [0, 1] defined as:

Ap(f) = p = Exy- (o (%)|fix) = p) 8)

where f can be the logistic classifier or the BO one. Intuitively, the calibration quantifies how well the
predictor assigns probabilities to events. If A, = 0 the predictor is said to be calibrated at level p. Instead, if
forp>1/2,A, > 0 (respectively A, < 0), then the predictor is said to be overconfident (respectively
underconfident) Note, however, that the calibration is an average notion, while the above joint probability
distribution (7) captures more detailed information about the point-wise confidence and its reliability. In
this work, we will also consider the calibration of ERM with respect to Bayes

AP i=p—Exye (]Atbo (x) |}erm(x) =p). %)

Finally, while our discussion focuses in the calibration for concreteness, note that many other uncertainty
metrics could be studied from the joint density equation (7).

4
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Algorithm 1. GAMP.

Input: Data X € R™%, y € {—1,1}"
Define X? = X ® X € R"*? and Initialize =" = N(0,021,), &=° = 14, §~° = 0,..
for t < tmax do

Vi=X%w =X -V og; /* Update channel mean and variance
g = fou(y, W', V") ;08 = Oufour(y, W', V') ; /* Update channel
A= —XzTagt b =X"g+A oW ; /* Update prior mean and variance

/* Update marginals */

wt+1 wa(bt,At) — (Id+At)7lbt; et+l — 8bfw(bt7At) .= (Id+At)71
end for
Return: Estimators Wamp, €amp € R4

3. Technical theorems

Our first technical result is the existence of an efficient algorithm (Algorithm 1), called GAMP) [31, 56] that
is able to accurately estimate fp, (x) in high-dimensions. The asymptotic accuracy of GAMP for the BO
average (over the samples) test error is know from [11]. In order to formulate our results we also need to
prove that the probabilities estimated by GAMP are also accurate sample-wise, this relatively straightforward
extension of the results of [11] is covered by the following lemma:

Lemma 3.1 (Sample-wise GAMP-Optimality). For a sequence of problems given by equation (2), and given
the estimator Wamyp, from algorithm 1, the predictor

~ T

WompX

J}amp(x) =P(y=1[x) =0, (10)

T2+ 6 (X O X)

is such that, with high probability over a new sample x the classifier above is asymptotically equal to the Bayesian
estimator fo(x) = P(y = 1|x) = famp(x) in equation (5). More precisely:

Ve >0, lim Py p (\famp(x) —ﬂo(x)|2<€> — 1. (11)
d—o0

In particular, the predictorﬁmp asymptotically achieves the best possible test performance (the one achieved by
the BO estimator)

The proof of lemma 3.1 is provided in appendix B. As mentioned above, the lemma does not require the
prior on w, to be Gaussian. Changing the prior of w, amount to changing the denoising functions (f, , Oyfw)
in Algorithm 1. Similarly, the probit likelihood defined in equation (2) is not required for our analysis. In
fact, the equations hold for any probabilistic generalized linear model, and in particular for the logit data
model studied in [9], reproduced in appendix D. This choice of likelihood function only changes the
denoising channel functions (f,,, O fout). The motivation behind the use of the GAMP Algorithm is twofold.
First, it allows us to characterize the posterior mean needed to express the probability}‘amp (x) for a given new
sample x in polynomial time in d. Indeed, each iteration of the loop in Algorithm 1 is O(d?). Second, the
asymptotic performance of GAMP is conveniently tracked by low-dimensional state evolution equations
which can be easily solved in a computer.

Our second technical result is a formula for the joint distribution of the teacher label, its Bayes estimate,
and the estimate from empirical risk minimization defined in equation (7), described in the following
theorem:

Theorem 3.2. Consider training data D = {(x*,y")}/,_, sampled from the model defined in equation (2). Let
Werm € RY be the solution of the empirical risk minimization (4) and Wy, denote the estimator returned by
running algorithm 1 on the data D. Then in the high-dimensional limit where n,d — oo with o« = n/d fixed, the
asymptotic joint density (7) is given by:

7o' (a)
N | |7/ -0.1(b)] |05,
o= (0)

ol (o @)l (o (B))]le’ (0= (o))

5

pla,bc)=71'r (12)
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where we noted

/

72=72+1—qu, Y=o oo M (13)
m M Germ

and the so-called overlaps:

1. 1, .
= s = g 04
1. 1.
m= HWeTrmW*7 Germ = 3||werm||g (15)

solve the following set of self-consistent equations:

1
qT =l+a E(Zm),é [ out(fo(z"’_Tg)vm 1— qbo)z} ) (16)
and
) A »
V= 41 ) Jerm = e +Aq ) m= mA' (17)
A+V A+ V)2 A+V
Vo = —aE(w) ¢ [Oufom(fo(2 4+ 76),w, V)]
q =B )¢ [fom(fo(z+7E),w, V)?] (18)
M =aE() ¢ fom(fo(z+78),w, V)]

where (z,n,w) ~ N (03,%), £ ~ N(0,1) and the thresholding functions are defined as

2y N(wyl0,V+72)

fOut(vaa v )
yw
erfc <—2(7_2 V))

ferm (7w, V) = V1 (proxyz, ) (w) = w) (19)

with prox, ((x) = argmin, (1/27|1z—x|3 4+ f(z)) being the proximal operator.

In appendix A we show how this result can be deduced directly from the heuristic cavity method, and the
analysis of the GAMP state evolution to compute the overlaps of ERM and BO estimators. To compute the
correlation between the ERM and BO estimators, we use the Nishimori identity [30, 68]. More details, as well
as the formal proof, are given in appendix B.

Our third theorem is an asymptotic expression for the calibration error.

Theorem 3.3. The analytical expression of the joint density p yields the following expression for the calibration

Ap:
Ap(Jerm) =p = o (\7%) (20)
Moreover, the Bayesian classifier is always well calibrated with respect to the teacher, meaning:
Y E0,1], Ap(fro) =0. (21)
Additionally, the calibration of ERM with respect to the Bayesian classifier and the oracle are equal:
Ve (0,1], Ay(fum) =A4,. (22)

The proof of theorem 3.3 is provided in appendix B.3. Equation (20) shows the different factors that
influence A: the aleatoric uncertainty represented by the noise 72, the finiteness of data that appears
through 7/ qerm and m? /Germ, and the mismatch in the model with the activations o, o. Moreover,
equation (22) provides a recipe to compute the calibration A, in the high-dimensional limit from the
knowledge of the data model (2) only, but without knowing the specific realization of the weights w,.. This is
because the quantities gyo, germ and m self-average as n,d — oo, we then obtain the calibration A, without
knowing the realization of w,.
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Figure 1. Theoretical prediction (left panel) and numerical estimation (right panel) of the joint density py,, + at & = 10 and noise
level 7 = 0.5. Numerical plot was done by running GAMP at dimension d = 1000, computing ( f, ,j}bo) on flgest = 107 test samples.
The blue curve is the mean of f; given fp,. For these parameters, the test error of Bayes is s'g’" = 0.173, the oracle test error
ey =0.148.
g

4. Results for uncertainty estimation

4.1. Bayes versus oracle uncertainty

We now discuss the consequences of the theorems from section 3. Figure 1 left panel depicts the theoretical
prediction of the joint density py,, ., between the Bayes posterior conﬁdence/uncertainty)Acb0 (x-axes) and the
oracle confidence/uncertainty f, (y-axes). The theoretically derived density (figure 1 left panel) is compared
to its numerical estimation in figure 1 right panel, computed numerically using the GAMP algorithm. To
estimate the numerical density in the right panel, we proceed as follows: after fixing the dimension d and the
number of training samples # = ad, GAMP is run on the training set. Once GAMP estimators have been
obtained, 7 test samples are drawn and for each of them, we compute the confidence of the oracle/teacher
f,.(x) from equation (2), and the Bayesian confidence fyo (x) :}amp (x) from theorem 3.1. Finally, we plot the
histogram of the thus obtained joint density py,, . over the test samples. As the figure shows, there is a good
agreement between theory and finite instance simulations.

WEe see that the density is positive on the whole support, it peaks around (0,0) and (1,1), but has a
notable weight around the diagonal as well. The relatively large spread of the joint density is a consequence of
the fact that on top of the intrinsic uncertainty of the teacher, the learning is only done with n = ad samples
which brings an additional source of uncertainty captured in the Bayes estimator. Figure 1 thus quantifies
this additional uncertainty due to finite .. We are not aware of something like this being done analytically in
previous literature.

The blue curve is the mean of f, conditioned on the values of fy,. The difference between this and the
diagonal is the calibration A, defined in equation (8). We see that the figure illustrates Ap(fbo) =0, i.e. the
Bayesian prediction is well calibrated, as predicted by theorem 3.3.

Figure 2 then depicts the same densities as figure 1 for several different values of the sample complexity «
and noise 7. The corresponding test error is given for information. We see, for instance, that at small « the
BO confidence is low, close to 0.5, because not much can be learned from very few samples. The oracle
confidence does not depend on «, and is low for growing 7. At large v, on the other hand, the BO confidence
is getting well correlated with the oracle one. At larger @ and small noise the BO test error is getting smaller
and the corresponding confidence is close to 1 or 0 (depending on the label). The trends seen in this figure
are expected, but again here we quantify them in an analytic form of equation (12) which as far as we know
has not been done previously.

4.2. Logistic regression uncertainty and calibration
Having explicit access to the Bayesian confidence/uncertainty in a high-dimensional setting is a unique
occasion to quantify the quality of the logistic classifier, which has its own natural measure of confidence
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Figure 2. Density between Bayes confidence fy, (x-axis) and the oracle confidence f, (y-axis) for multiple values of e, 7: the rows
correspond respectively to & = 0.1, 1, 10, 100 from top to bottom, and the columns correspond respectively to 7 = 0.1,0.5, 2.
The blue curve is the mean of f, given f;,,. Generalization errors of the Bayes estimator are in written on top of the corresponding
plot. The best possible generalization errors, achieved if the teacher weights are known, for 7 = 0.1,0.5, 2 are respectively

e} =0.032,0.148,0.352.

induced by the logit. How accurate is this measure? We start with the logistic classifier at zero regularization
and then move to the regularized case in the next section.

Figure 3 compares the joint density of (farm, f) (left panel), and (ferm, foo) (right panel) with the same
noise and number of samples as used in figure 1. The blue curves are the means of f, (respectively fp,)
conditioned on }’erm, their shape is demonstrating that the (non-regularized) logistic classifier is on average
overconfident, as is well known in practice.

The equality between these two blue curves illustrates theorem 3.3, equation (22): A, (ﬂrm) = Ap. Note,
however, that while the calibrations of the ERM with respect to the oracle or the BO are equal, the
conditional variances of f, and ﬁo are very different. This shows how the calibration is only a very partial fix
of the confidence estimation for ERM: when };rm = p, both Bayes and the oracle’s predictions will be p — A,
on average, but for the considered parameters the predictions of the oracle are much more spread around this
value than those of Bayes estimator. This means that the ERM still captures rather well some part of the
uncertainty coming from the limited number of samples. Figure 7 in the appendix C complements figure 3
by showing other values of o and 7.
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Figure 3. The probability density perm,« (left panel) and perm bo (right panel), at =10, 7=0.5and A = 0%, The blue curves are

the mean of the marginal distribution of fy and fy, respectively under fixed furm, which are equal to p — Ayandp — Ap. We
observe overconfidence of the logistic classifier for these parameters. Test error of ERM is here g™ = 0.174, very close to the one

of BO gl* = 0.173.
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Figure 4. (a) Calibration of the logistic regression with A = 0,7 = 2, p = 0.75. Orange (respectively green) crosses are the
numerical estimations of A, (respectively A, ). Numerical values are obtained by averaging the calibration over 10 test sets of size
fest = 10°, at d = 300. Inset depicts the larger o behavior. (b) Variance of fi and fi,, conditioned on fgrp = p = 0.75. Crosses are

numerical values with the same parameters as figure (a). Though both f; and fso have the same mean, their variance is
significantly different.

We now investigate the calibration as a function of the sample complexity a.. The plot (a) of figure 4
shows the curve A, at A = 0" computed using the analytical expression (20). The curve is compared to the
numerical estimation of A, (green crosses) and A, (orange crosses). For a small dp, If we define

Lap={1<i< et farm (%) € [p,p + dp]}, A, and A, are estimated experimentally with the formulas

Zielpydpf*(xi) X _Zigp’dp}bo@i)

A,~p— JA, ~
=P |Ip7dp| ?

(23)
Ip,ap|

The calibrations A, and AP are both equal to the theoretical curve, further confirming the results of
equation (22). Note the transition at a, ~ 2.4: for o < a, the training data is linearly separable. Since

A =07, the empirical risk has no minimum and the estimator we,,,, diverges in norm. As a consequence,
A, — p— 0.5, as we observe on the plot. In the inset of figure 4 (left) we depict the theoretical curve

9
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evaluated up to larger values of o. We see a saturation at about A, ~ 0.0011 # 0. We note that in the work of
[9] (partly reproduced in appendix D) the calibration was observed to go to 0 as 1/« This difference is due
to the mismatch between the function producing the data (probit) and the estimator (logit) in our case
(whereas [9] used logit for both) which will generically be present in real data and thus the decay to zero
observed in [9] is not expected to be seen generically.

Right panel of figure 4 displays the variance of f, and ﬁo at fixed ﬁrm as a function of . This plot
illustrates that the conditional variance of f, is significantly higher than that ofﬁo, as was previously noted in
figure 3. This shows that the (non-regularized) logistic uncertainty captures rather decently the uncertainty
due to the limited number of samples.

4.3. Effect of regularization on uncertainty and calibration
Logistic regression is rarely used in practice without regularization. In figures 8 and 10 in appendix C we
depict the role of regularization on the density permpo- As one would anticipate as the regularization strength
grows the overconfidence of the logistic classifier at small A becomes under-confidence at large \.

One usually optimizes the strength A of the ¢, penalty through cross-validation. Ideally, we would choose
A that gives a low validation error but also that yields a well-calibrated estimator. The two main ways to
choose A is to minimize the validation 0/1 classification error or the validation logistic loss. In our
teacher-student setting, the classification error and logistic loss on test data can be computed exactly in the
high-dimensional limit, using our state-evolution equations. We will thus define Aerror (respectively Ajogs) as
the minimizer of the expected 0/1 classification error (respectively the logistic loss) for a new test sample.
More precisely :

—

Aerror = argminy Pg, [y =+ sign(ﬁ/'()\)Tx)]

Aloss = argminy Eg, |:—l()g0' ()/ X {T,()\)T;C*)} (24)

where v:v’(A) minimizes the empirical risk with regularization strength A. Note that cross-validating A on a
validation set would induce fluctuations due to the finiteness of validation data. These fluctuations are not
present when defining )\ with equation (24). In the setting of the present paper, these two values of
regularization lead to a very close test error/loss. In other words, choosing one or another of these A seems to
have little effect on the test performance of logistic regression.

Figure 5 plots the calibration A, in the noiseless (left panel) and noisy (right panel) settings. We observe
that for most parameters ERM with Ay is significantly less overconfident than with Aeror. However, for
larger values of o and T we observe the opposite.

We also note that for small « the logistic regression at o5, even gets mildly underconfident, A, < 0. The
bottom panels of the figure depict the corresponding variance. Interestingly we see that in both cases, despite
a better calibration, Ajs yields a higher variance than Ao hence its point-wise estimates of uncertainty are
not necessarily better.

Figure 6 shows ppo erm evaluated at Aerror and Ajoss. Comparing the upper panels to figure 3 (at A =0), it is
clear that choosing A to optimize the error (and the loss) improves calibration. In the lower panels of figure 6
we can also see that the calibration at A\ (right panel) is better, i.e. the blue line is closer to y = x, than the
one at Ao (left panel). We conclude that using optimal regularization is clearly advantageous to obtain
better-calibrated classification. However, we also note that the interplay between the mean of the distribution
(the calibration) and its variance is subtle and more investigation is needed into designing a model-agnostic
method where both are optimal simultaneously.

5. Discussion

This paper leverages the properties of the GAMP algorithm and associated closed-form control of the
posterior marginals to provide a detailed theoretical analysis of uncertainty in a simple probit model. We
investigate the relations between the respective uncertainties of the oracle, Bayes and regularized logistic
regression. We see this as a grounding step for a line of future work that will leverage recent extensions of the
GAMP algorithm and its associated analysis to multi-layer neural networks [7, 24], learning with random
features and kernels [20, 22, 48], estimation under generative priors [6, 8], classification on more realistic
models of data [25, 26, 58], etc. The present methodology is not restricted to classification and can be used
for a more thorough study of confidence intervals in high-dimensional regression, extending [10]. This is left
for further studies. The code of this project is available on Github [69].
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Figure 5. (Top) The calibration Ag.75 (ﬁrm) as a function of a with A = Aerror (v, 7) (blue curve) and A = Ajoes (v, 7) (red curve)s.
(Bottom) Variance of fi,, conditioned on ferm (x) = 0.75 with Aerror and Ajoss. In (a) and (c), 7=0; in (b) and (d), 7 =0.5.
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Appendix A. Cavity derivation of the analytical results

In this appendix, we sketch how the self-consistent equations (16) and (18) characterizing the sufficient
statistics (gbo, M, derm) can actually be derived via the heuristic cavity method [49, 50] from statistical physics.
We shall use the notation of Rangan’s GAMP algorithm [56] and present our results as a derivation of

GAMP algorithm from cavity, or belief propagation, as in [68]. This allows to connect all our results as well

as the state evolution equations of the GAMP 1 algorithm in a single framework. Note that in its most
general form, GAMP can be used both as an algorithm for estimating the marginals of the posterior
distribution Wy, = E[w|D] or to minimize the empirical risk in (4)—the only difference between the two
being the choice of denoising functions (f, ,fv).

11
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Figure 6. Density perm bo for different o, 7. Top row: a = 10, 7 = 0.5. Bayes test error is sfg"’ =0.1731. Plot (a) (respectively (b))

is done at A = Aeror (respectively A = Ajos). Bottom row: o = 5,7 =0, a;° = 0.0839. Plot (c) (respectively (d)) is done at
A = Aerror (respectively A = Ajo5s). On the bottom row, we can clearly see that the calibration is better for Aj,s. Generalization
errors of ERM as well as the values of the regularizations are indicated below the plots.

The novelty of our approach consists of running two GAMP algorithms in parallel on the same instance of
data D = {(x*,y")}},—, drawn from the probit model introduced in equation (2). Although we run the two
versions of GAMP independently, they are correlated through the data D—and our goal is to characterize
exactly their joint distribution.

A.1. Joint state evolution

Consider we are running two AMPs in parallel, one for BO estimation and one for ERM. To distinguish both
messages, we will denote ERM messages with a tilde: &, V*, etc. To derive the asymptotic distribution of the
estimators (Wamp, Werm ), it is more convenient to start from a close cousin of AMP: the reduced Belief
Propagation equations (rBP). Note that in the high-dimensional limit that we are interested in this
manuscript, rBP is equivalent to AMP, see for instance [7] or [8] for a detailed derivation. Written in
coordinates, the rBP equations are given by:

wh o=
i = 7 IR gfﬂﬁi :fout()’#,u);ﬁi, Vﬂﬁi)
~ )
V/Z—)i = %:(x]“)zcjt—nj, ag;,b—)l = awf;)ut(yu7wz_>iv VL—M)
JF1

(25)
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i~ in/gi/ i ~
— oz — { t+1 (bt

i—/ 1— ) 1%;1,)
t v 28 ’ ~t+1 b t (26)
AH—H - zgé:u(xi ) glt/—>i 1%;1 bfW( u—n’Au—n)

where (f, ,.fw) denote the denoising functions that could be associated either to BO or ERM estimation, and
that can be generically written in terms of an estimation likelihood Py, and prior P,, as:

(27)

f;;ut(}/awa V) = aw logzout(yawv V) fw(b,A) = 8blogZW(b,A)
Zow(y,w,V) = [ \/g%ve, ) Poulylx)’ Z,(b,A) :fRdWPW(W)f%AWuer.

By assumption, the rBP messages are independent from each other, and since we are running both BO and
ERM independently, they are only coupled to each other through the data, which has been generated by the
same data model:

g~ Po(-|w] x1), x ~ N(0,1/d1,), wi ~ [ [ Po(ws)- (28)

Note that here we work in a more general setting than the one in the main manuscript (2). Indeed, the
derivation presented here work for any factorized distribution of teacher weights w, and any likelihood Py
(of which the probit is a particular case). For convenience, define the so-called teacher local field:

d
— i
z, = ij Wi (29)
—
Step 1: Asymptotic joint distribution of (z,,,w;, ,;, @}, ,;)
Note that (z,,,w), ,;,@,, ;) are given by a sum of independent random variables with variance d='/2,and

therefore by the Central Limit Theorem in the limit d — oo they are asymptotically Gaussian. Therefore we
only need to compute their means, variances and cross correlation. The means are straightforward, since x!'
have mean zero and therefore they will also have mean zero. The variances are given by:

d d d d d d
E [z,i] =FE Zfox]”W*iw*j = ZZE {xf‘xﬂ WaiWsj = ézz&jwﬂwﬂ-

i=1 j=1 i=1 j=1 i=1 j=1

(w13
= 30
d d— o0 ( )
B[] =B SOt | = S0 [t] s
JAi ki JAi ki
d d d 12
1 N 1 o N w1 e
=7 ZZ‘SJ"‘WJ;MWQ—W = Z (W;ﬁu) = - (Wfap) - q (31)
JFt ! i
d d d d
B i) =B |33 | = 300 B[] v
j#i k=1 jAi k=1
1 At t'w* 1 ~t
ZQZZ(Sjij_WW*k dz ]_ww*] F —dwl_mw*l —> m' (32)
J#i k=1 J#i
d d R
B ] =B | S
JEL ki
fZZE[x | = dZZf%k W
J#i k#l JE ki
wew 1 =, .
dz = ]—w, = T - dwz—>uwi—>u djoo Q (33)
i#i
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where we have used that w!_,

n
p m
(Zﬂ7w;t~>i7a):1,~>i) ~N |05, |m' g
},’ht QI
with:
1, 1
p=llwil 4 = 2 llWholl
t — 1 - ~ft 1 A
m =1 BO * Wi, m :gWERM‘W*a
Step 2: Concentration of variances Vi VL i
Since the variances V;_,;, V},_,; depend on (]

their means:

L Clarté et al

= O(d~'/?) to simplify the sums at large d. Summarizing our findings:

Q (34)

q= gHwERMHZ

WBO - WERM. (35)

Ul —

Q=

/)2, in the asymptotic limit d — oo they concentrate around

d
1
t — ~t
Viosi] ZE[ i } Gon = dz = = dz o T Cl—);t o V= HZCJ- (36)
J#i J#i j=1
where we have defined the variance overlap V'. The same argument can be used for \7,2 - Summarizing,
asymptotically we have:
Vii—= Vi, VL—H — V. (37)
Step 3: Distribution of b, _H,bL i

By definition, we have
[L—H Z Xi gtu—n Z X ﬁJUt u—>17 u—>1
vEL vFEp vEL

d

ZX fOUt ﬁ) 2y +T£V) u—>17 V—)l) (38)

Note that in the sum z, = > x w,;j there is a term i = j, and therefore z, is correlated with x}'. To make

j=1
this explicit, we split the teacher local field:

zy fo Wyj = Zx W*J+x Wi (39)

J#i
N—_——

Zy—i

and note that z,,_,; = O(1) is independent from x!. Since x!'w,; = O(d~

order, we can expand the denoising function:

fout(fo (Zu + Tfu)v Wy—is V;—n)

1/2), to take the average at leading

ﬂ)ut(fo(zv—w‘ +7E),w 1/—>17 VL—n)

+ Ofou(fo(zvmsi + TE ), wh i, Vi )X Wi + O(d ™). (40)
Inserting in the expression for b’ s>
,u,~>z Z'x ﬁ)m f;) ZV*>1+T§V) V~>17 V—H)
v
+ Z zfout fO ZV—>1+T£V) V—)l’VV—H)W*l—’_O(d 3/2)' (41)
VR
Therefore:
Wi _
E b, i) = = D Ocfoufy(wmsi+760). 0} Vi) + O(d712)
1z
Wy _
= Zazfom fo(@usi+ 7€), Vi) + O(d™). (42)
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Note that as d — oo, for fixed ¢ and for all v, the fields (z,_;,w
average in equation (34). Therefore,

!, ;) are identically distributed according to

dzal out fO Zy—i +T€V) V—)I’Vlt/—)l) _> aE(wz [ Zfout(ﬁ)(Z_FTg) w Vt)] =m ' (43)

SO:

E[b ] 5wt (44)

pn—>i
Similarly, the variance is given by:

Var [, ] (43)

- Z Z E x x féut(ﬁ)(zl/—ﬂ + TgV) 1/—)1’ l/—>l) Out(ﬁ)(zﬁ—” + Tf,@) K—H’ Vfta—n) + O(diz)
V#u RFE

Zﬁ)ut _ﬁ) ZV~>1+T£V> V—H? uﬁz) +O<d )
V;éu

dz.fout fo ZV—>1+T§V) y—m V—n) +O(d )

d:}oo « IE(z,o.)),f [ 0ut(f0(z+ T§)7wa Vv )2} = qt' (46)
The same discussion holds for the ERM. We now just need to compute the correlation between both fields:

Cov [b b } (47)

n—irYpu—i

= Z Z E ﬁ)Ut ﬁ)(zl/—ﬂ + Tgl/) u—)la y—n) Ollf(ﬁ)(zli—ﬂ + TEH) K—H? V)Z—)l) + O(diz)
VELKRFEN

1 -
= a Z fout(fo (Zl/%i + TgV)ﬂ‘df/*}ﬂ l/*)l) Out(ﬁ)(zvﬁl + T&,) U*}l? Vli*)l) + O(d 2)

= QB [foullyz+76)w, Vol (a+7€).8,7)| = Q. (48)

d—o0

To summarize, we have:

Wit~ (w5 [E 9]) ()

At
p—i tp—i
The only missing piece is to determine the distribution of the prior variances A, . A’ .. Similar to the

P10 it
previous variance, they concentrate:

Step 4: Concentration of A’

A;L—)l = Z(x;j)za‘dﬁmt( y—n? Vl[/—ﬂ) (50)
vEp

= = > () P Oufou oz 7€) 0, Vi) + O(d )
V#u

Zaw vty (Zsi +TE) iy Vi) +O(d )

= B¢ [Oufoufy(z+7E),0, V)] = V', (51)

d— o0
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A.1.1. Summary
We now have all the ingredients we need to characterize the asymptotic distribution of the estimators:

50 ~ four (Wit + /€, V') (52)
WERM ~ fout (W*”:?t+ \/%77, Vt) (53)

where 1, & ~ N(0,1,;) are independent Gaussian variables. From that, we can recover the usual GAMP state
evolution equations for the overlaps:

VI =Ew, ¢ [%fw(ﬁfw* +VTE, Vf)} V' = —aF (0 ¢ [Dufou(fy (24 7€), w, V)]
4 =B [folitwe + VTETR] L G = 0B e [onlfola+ )0, V)] (54)
m T =B, ¢ {fw(ﬁitw* +VE, Vt)w*z} ' = aB (0 ¢ fou(fo (24 7€), w, V')

which is also valid for the tilde variables. But we can also get a set of equations for the correlations:

Q=E, v { w(0, V) (2’7 {}t)}

A i i (55)
Q' = O )¢ [fou o2+ 7€) 0,V ou o2+ 7€), 2, V')

A.2. Simplifications
A.2.1. Simplifying BO state evolution
State evolution of BO can be reduced to two equations. First, note that asymptotically

I 1 N
m:= awbo Wi = E]Ew*,D [Wbo : W*]
with high probability. By Nishimori identity, the vector w, in the expectation can be replaced by an
independent copy of the Bayesian posterior. This yields:

1

. 1 .
a]Ew*,’D [(Who - Wi] = EED [Who| = g

Hence m = q. Similarly, noting (-) the average over the posterior distribution:

V= Ll ol = T [(w o)) = B [(I)] ~ FEp [t - o).
Like before, we used the fact that in asymptotically, (||w — Wy,||?) concentrates around its mean. Using
Nishimori, the first term is equal to E,,, [[|w.||?] = 1. By definition, the second term is equal to g, thus
V=1-—g.

Using similar arguments, 1 = § = V. Thus, the state evolution can be reduced to two equations on
g and g.

A.2.2. Simplifying the Q, Q equations
In fact, the Nishimori property also allow us to show that the cross-correlation Q, Q are the same as the
overlaps 11, i1, in a similar way to appendix A.2.1. Indeed,
1, N 1 R . 1 R -

Q= HWbO *Werm = Q]ED [Wbo : Werm} = aEw*,D [W* : Werm] = m. (56)
Alternatively, we can also prove that directly showing that the iterations for Q" are a stable orbit of .
Indeed, assume that at time step ¢ we have Q' = ' and Q' = m'". Then, focusing at our specific setting, at
time t + 1 we have:

Qt I*E b ;W(b AL )ﬁm(b, i )] *EW ~ z *EW z
Wi ,b,b ’ * ‘r * ~ 2
E "
Wi 2 )\

Because as we have shown above 71 = g and Q' = m'. This is precisely the equation for 7.
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A.3. Evaluating the equations

A.3.1. BO

In BO estimation, the estimation likelihood Py and prior P,, match exactly that of the generating model for
data, which for the model (2) is:

Pou(ylx) = %erfc (—\}’;LA) : P, (w) =N(0,1). (57)
Therefore, it is easy to show that:
Zout(y,w,V) = lerfc (_W) Zy(b,A) = EITA (58)
M Ay ) A=
and therefore:
2y N(wy|0, V+1%) fo(bA) = H_LA (59)

fOUt ()’7 w, V) = )
erfc ( y“’)
272+ V)
This form of the prior allow us to simplify some of the equations considerably:

1
1+ Gy,

455! =Equ. 0 [ful@w. + VT3] = (60)

which is the equation found in theorem 3.2. The other equation cannot be closed analytically, however it can
be considerably simplified:

qbo = 705]E(z,w),£ [8wf0ut(f()(z+ Tg))“)a Vt)] (61)

2 a qt e*lzz
=2 = [ dzN(zlo bo ) 62
Tl+72—¢qf, /R z (Z "2(1 472 — q{)o)) erfc(z)erfc(—z) (62)
A.4. ERM estimation

For ERM, the estimation likelihood P, and prior P,, are related to the loss and penalty functions:

Pout(y]x) = e*ﬁz(y”‘), P,(w)= e Prw), (63)

where the parameter /3 > 0 is introduced for convenience, and should be taken to infinity. Focusing on the
regularization part and redefining (b,A) — (8b, 5A)

B—o0

2 ¥ —1
zw(b,A):/dwe*B(%w “bwtr(n) o B[E M (47D (64)
R

where we have used Laplace’s method and defined the Moreau envelope:

o | L2
Mofo) =min | 3-(x=27 +112). (65)
Therefore,
fw(b,A) = ﬂlim %8;, logZ,(b,A) = prox,_. (A~'b) (66)

where we have defined the proximal operator:

1

prox, {x) = argmin [ (x—z)*+ f(z)] (67)
z€R 27

and used the well-known property 9, M f(x) = —1 (profo(x) — x) . In particular, for the ¢,-penalty

r(w) = \/2w?, we have:

x b

1+ A\ Ang fw(va) = m (68)

Proxy /5.2 (x) =
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The simple form of the regularization allow us to simplify the state evolution equations considerably:

lA

V=B [0+ 7] -

A+V
1 = Bog [l + /6 W} =L (69)

=B [+ ] = 32

AV

which are the equations found in theorem 3.2. A similar discussion can be carried for the loss term, and
yields in general:

fou(,w, V)=V~ (PTOXTe(y,.)(x) —x) . (70)

Unfortunately, the logistic loss £(y,x) = log(1 4+ e™*) does not admit a closed-form solution for the
proximal, and therefore for a given (y,w, V) we need to compute it numerically.

Appendix B. Proof of theorems

A possible route for proving our result is to give a rigorous proof of the cavity equations. Instead, we shall use
a shortcut, and leverage on recent progress for both the ERM cavity results [5, 16, 38, 52, 61, 63]), the Bayes
performances [11, 12], as well as on the performance of GAMP [24, 31, 56].

B.1. GAMP optimality

The optimally of GAMP is a direct consequence of the generic results concerning its performance (the state
evolution in [31, 56]) and the characterization of the Bayes performance in [11]. G-a works, one considers a
sequence of inference problems indexed by the dimension d, with data D, (which are defined in section 2 for
our purpose). As d increases, both GAMP performances and Bayes errors converge with high probability to
the same deterministic limit given by the so-called ‘replica, or ‘state evolution” equations.

To simplify the notation, all our statements involving the asymptotic limit d — oo are implicitly defined
for such sequences, and the convergence is assumed to be in terms of probability.

Let us prove that, indeed, GAMP estimates for posterior probability are asymptotically exact with high
probability. First, we note that the estimation of the Bayes posterior probability for the signs corresponds to
finding the estimators that minimize the mean square error (MSE). Indeed consider, for fixed data (this
remains true averaging over data), the mean squared error for an estimator Y(X):

MSE(Y(X)) = Eyx [(¥ - V(X))’] = ExEyx [(¥ - V(X))?]. (71)

The mean square error is given by using the posterior mean [17], as can be seen immediately differentiating
with respect to Y (for a given x), so that:

Yiayes(X) = Eyjxex[Y] = 2Pyjx_x (Y =1) — 1. (72)

The Bayes estimator for the posterior probability is thus the minimal mean square error (MMSE) estimator.
We see here that the estimation of the posterior mean of Y is equivalent to the estimation of the probability it
takes value one; both quantities are thus trivially related.

We can now use proposition 2, page 12 in [11], which shows that indeed GAMP efficiently achieves
Bayes-optimality for the MMSE on Y:

Theorem B.1 (GAMP generalization error, [11]). Consider a sequence of problems indexed by d, with data D,
in dimension d, then we have that GAMP estimator asymptotically achieves the Minimal Mean Square Error in
estimating the error on new label Y. That is, with high probability:

dli)ngo Eyxp, [(Y = Yoame (X, Da)?] = MMSE(Y) (73)

T
amp

where Yoanp(x,D) = 2p — 1, and p = P*MP(x) (equation (10)), with ¢
of (16).
The fact that GAMP asymptotically achieves the MMSE, coupled with the uniqueness of the Bayes

estimator, implies the GAMP estimator for p is arbitrarily close to the Bayes estimated for p, with high
probability over new Gaussian samples, as d — co. More precisely, we can use the following lemma:

(x®x) =1 — g, with q a fixed point
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Lemma B.2 (Bounds on differences of estimators for Y). Consider a sequence of estimation problems indexed
by d with data D,. If a (sequence of) estimators f;(x) achieves the MMSE performance of gﬁ“y “(x) as d — oo for
Gaussian distributed x, then

Jim Exfa(X) — ;" (X)* = 0. (74)

Proof. The Bayes estimator ggayes() is the minimum of the MMSE, therefore for any other estimator f;3(X) we
have

E[(Y—fi(X)7] >E[(Y— (%] . (75)

We have, denoting §,4(X) = f3(X) — &2 (X)

E[(Y—fa(X)?] = E[(Y - g(X) +8a(0)?] (76)
— MMSE + E [5d(X)2 +26,(X) (Y — ghes (X))] (77)
= MMSE +E [04(X)?] + Ex pEyx.p [zad(x) (v — oo (x))} (78)
= MMSE + E [6,(X)?] + Ex.p [25,1 (X)Eyx.p[¥ — &£ (X] )} (79)
= MMSE + E [64(X)?] (80)

where we have used ggayes (X) = Eyjx,p[Y]. Using the fact that the f 4 asymptotically achieves MMSE optimality,
we thus obtain:

lim Eyxp [[fa(X) — g (12| = 0. (81)

O

Applying this lemma to the GAMP estimator leads to lemma 3.1: with high probability over new sample
x and learning data D, the GAMP estimate is asymptotically equivalent to the Bayes one.

B.2. Joint density of estimators

While a possible strategy to prove the second theorem would be to use state evolution to follow our joint
GAMP algorithm (thus monitoring the Bayes and the ERM performance), we shall instead again leverage on
recent progress on generic proofs of replica equations, in particular the Bayes one (in [11] and the ERM ones
(that were the subject of many works recently [5, 16, 38, 52, 61, 63]). Again, all our statements involving the
asymptotic limit d — oo are implicitly defined for sequences of problems, and the convergence is assumed to
be in terms of probability. We start with the following lemma:

Lemma (Joint distribution of pre-activation). For a fixed set of data D, consider the joint random variables
(over X) v =X - Wy, Aerm = X - Werms Aamp = X - Wamp. Then we have

Wi W, Wy Wamp Wi Werm
N LA Lood
IP)(I/, >\amp7 >\erm) — N 0’ Wamzl‘w* Wamp{;lwamp Wamp';lwerm . (82)
ﬁ’erm 'w* Werm wﬂmp Werm ‘werm
Proof. This is an immediate consequence of the Gaussianity of the new data x, with covariance I/d. O

We now would like to know the asymptotic limit of the parameters of this distribution, for large d. While
we have *=7*= — p, the other overlap has a deterministic limit given by the replica equations. For empirical
risk minimization, this has been proven in the aforementioned series of works, but we shall here use the
notation of [38] and utilize use the following results:
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Theorem B.4 (ERM overlaps [5, 38, 63]). Consider a sequence of inference problems indexed by the dimension

d, then with high probability:

. ﬁ’erm : werm
— —m, lim ——
d— o0 d d— o0 d

With Germ and m solutions of the self-consistent equations (18) in the main text.

GAMP is tracked by its state evolution [31], and is known to achieve the Bayes overlap:

— ferm-

(83)

Theorem B.5 (Bayes overlaps [11]). Consider a sequence of inference problems indexed by the dimension d,

then with high probability:

. wam c Wy wam : WaAm
lim e P P
d—o0 d —00

With gy, given by the self-consistent equation (16).

The only overlap left to control is thus Q = Waymp - Werm /d. We shall now prove that it is also
concentrating, with high probability, to m. To do this, we first prove the following lemma for the overlap
between the Bayes estimate wy, = Ey,p[W] and any other vector V, possibly dependent on the data:

Lemma B.6 (Nishimori relation for Bayes overlaps).

Ep [Who - V(D)] =Ep w- [w* - V(D)].

— Gbo, dlim — g — Gbo-

(84)

(85)

Proof. The proof is an application of Bayes’ formula, and an example of what is often called a Nishimori

equality in statistical physics:

Ep,w+ [w* - V(D)] = EpEyy-p [w* - V(D)]

=Ep [(Ew-jpw") - V(D)] = Ep [, - V(D)].

From this lemma, we see immediately that, in expectation

Im E

d—o0

= lim E

|:Werm : W*j|
d—o0

d d

|:Werm : Wb0:|
—_— | = m.

(86)

(87)

O

(88)

Additionally, we already know that the left-hand side concentrates. It is easy to see that the right-hand side

does as well:

Lemma B.5 (Concentration of the overlap Q).

d d

d— o0 d— o0

Proof. The proof again uses the Nishimori identity.

()] - [mem) ()]
“mo| () ()
mosnn | (%5 (5
e | () ()
“roe | () (7))
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Then, from Cauchy-Schwartz we have

E (Wbo'werm 21? Who * Werm \ 2 W*'Werm ?

(=T (= o (=) o9
Who * Werm 2 w* * Werm ?

]E{(d) ] <E (d> 1 (96)

and as d — 0o, we can use the concentration of the right-hand side to m to obtain

s (| o

so that, given the second moment has to be larger or equal to its (squared) mean:

. Who * Werm 2 2
i [ (%)) o
fayl { d ] " %8)
O
We have thus proven that the overlap Q concentrates in quadratic mean to m as d — oo: with high
probability, it is thus asymptotically equal to m. We shall now prove that wy, can be approximated by wamp.
In fact, given the concentration of overlap, it will be enough to prove that:
Wam D 'WermD W D 'WrmD
lim Ep, p(Da) @) _ i Ep, bo(Da) - Werm (D) (99)
d—oo d d— o0 d

This can be done in two steps. First, similarly as in section B.1, we use the fact that GAMP achieves Bayes
optimality for the estimation of W* [11]. This leads to the following lemma

Lemma B.8 (Bounds on differences of estimators for w).

lim Ep [Warmp ool

lim y —0. (100)

Proof. The proof proceeds similarly as in lemma B.2. Denoting 6 W(D) = Wamp (D) — wyo (D) we write

- [Wamp(D) — W5 - [Woo(D) +IW(D) — W*||3

E =E 101
D, p] D, ] (101)
Wio(D) — W*|13 SW(D)|l5 1
SW(D)||3
g WD), 103
d
Using the optimality of GAMP for the MMSE yields the lemma. O
We can now prove the equality of overlaps
Lemma B.9.
Wamp(Da) - V(D) Wio(Dya) - V(D
lim ]EDdM — lim EDdM' (104)
d— o0 d d— o0 d
Proof. The proof is an application of Cauchy—Schwartz inequality:
Wamp — Who)(Da) - V(D VI3 [ Who — Wamp |13
g | Womn = W) D)V || IV W~ W 105)
d d d
taking the limit d — oo yields the lemma. O

Applying the lemma to the ERM estimator, and using the concentration of overlaps, finally leads to
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Lemma B.10 (Asymptotic Joint distribution of pre-activation). Asymptotically, and with high probability
over data, the joint distribution of pre-activation is asymptotically given by

P o M
lim ]P)(Va >\ampa >\erm) = N 0; dbo  qbo m . (106)
d— oo m m Germ

To obtain theorem 3.2, one simply applies the change of variable

(V’ Aamp,)\erm) — (f*(V)aﬂmp()\amp)yﬁrm()\erm) (107)
= (0. (V/7), 0 (Namp/T"), 0 (Aerm)) - (108)

B.3. Proof of theorem 3.3

B.3.1. Proof of equation (20)

Consider the local fields (v, Aerm, Aamp) defined in equation (82). As shown above, these local fields follow a
Gaussian distribution with covariance matrix ¥ given in equation (13). Then, (v, Aerm ) follows a bivariate
Gaussian and the density of v conditioned on fum (x) = 0(Aerm) = p follows the Gaussian distribution with
mean p = -0~(p) and variance v} = p — q’”—: Then,

E, [f*<x)|}grm(x) :p} - /du%erfc <—\/;?> N (W], v?) (109)

1 1 20 (p)
= —erfc S —erfc | — ferm (110)
2 2(12412) 2 2(1— 2 4 72)
erm
m s—1
=0, ‘18""7@) (111)
1— 2 4 2
qerm

which yields equation (20). We used the property that, for any a, b,

(112)

/erf(ax—i—b)./\/(xm,oz)dx:erf( ap+b >

V14 2a02

B.3.2. Proof of equation (21)
We use the same computation as in the previous paragraph: since the conditioned on the Bayes local field

foo(x) = U*(\/Tj\%ip—qbn) = p, the teacher local field is Gaussian with mean p = /72 + 1 — g0 ! (p) and

variance v = 1 — qp,. As before, we have

B[l (o) =] = (=) (13)

2 1—
—0, ( T +2 Abo —p. (114)
\/T —|—1—qu

Hence the result of equation (21).

B.3.3. Proof of equation (22)
The proof follows the same structure as the previous paragraphs: conditioned on o (Aerm ) = p, the law of

Aamp 18 N(ﬁa_l([?)ﬂbo . ) and

m
Germ

Ex []ACbO(x”J}erm(x) :P} = /U* (ﬁ) N <x| q:nJ_I(P),Qbo - q?:) (115)
2071 (p)

—0, e (116)
\/Tz+1—qbo+(t1bo— )

Jerm
L(p) —E, {f*(x)mrm(x) :p} . (117)

1_L2+T2

Germ

|
Q
>*

22



Mach. Learn.: Sci. Technol. 4 (2023) 025029 L Clarté et al

T
0.1 0.5 2
eERM = 0.421 £ERM = 0.437 eERM = 0.484 103
0.1
,102
eEfM = 0.327 g5V = 0.462 10!

100

efRM = 0.391

€ERM = 0,175 107t

eERM = 0.073

10 102

103

ggERM =0.038 ggERM =0.152 ESRM = 0.361

100 107

r

10-°

Figure 7. Joint density of)A‘crm (x-axis) and)}b0 (y-axis), at A\ = 0T Blue curve is the mean of]’b0 at fixed }c,m. The test error of ERM
is indicated above the corresponding plot. The test errors of Bayes for the same parameters are indicated in figure 2.

Appendix C. Additional figures

C.1. Logistic regression uncertainty supplement

Figure 7 complements figure 3 from the main text by showing the same plot as the right panel in figure 3 for
other values of sample complexity oz and noise 7. We observe that at zero regularization the logistic
regression is overconfident in all the depicted cases, in particular so at small o and small noise.

C.2. Choosing optimal regularization supplement
Here we give additional illustration related to the section 4.3 in the Main text.

In figure 8, the calibration A, is shown as a function of X at different levels p and different noise o. First,
observe that as A grows the logistic regression is going from overconfident A, > 0 to underconfident A, < 0.
For A — o0, we have A, — p — 1. Further, we observe that the value of ) at which the calibration is zero (the
best calibration) has only mild dependence on the value of p. Finally, the vertical lines mark the values of
regularization that minimize the validation error Ae;ror, and loss Ajoss. We see that Ao is closer to the
well-calibrated region and that at small « this difference is more pronounced.

The left panel of figure 9 compares A¢;ror and Ajos when 7=0.5.

The right panel of figure 9 then shows that the test error at Ao and Aepror are extremely close, with the
difference being plot in the insert.
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Figure 8. Calibration A, for p=0.9 and p = 0.6 as a function of A, for 7 =0 (red curve) , 7 = 0.5 (blue curve), and 7 =2 (green
curve), at & = 5. Vertical lines correspond to Aerror and Ajqgs defined in 4.3. For 7 =2, Aerror and Ajog differ by only 10~2 and look
indistinguishable on the plot.
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Figure 9. Left: optimal penalization for logistic regression as a function of the sample complexity c, for 7 = 0.5. Right: Test error
at optimal X for 0 = 0.5, as a function of cv. Orange line (respectively black dotted line) corresponds to A-error (respectively
A-loss). The two curves are indistinguishable on the plot. The blue curve in the inset shows E;\]‘)” - 6;‘”“" as a function of o it
appears that the difference is around ~ 107*.

Figure 10 depicts the joint density of}(erm (x-axis) and fbo (y-axis) for several values of the regularization A
and the noise 7. As A increases, we observe that the logistic regression changes from overconfident to
underconfident, as we could also observe in figure 8.

Next in figure 11 we depict the densities for Aerror and Ajoss for different values of o and 7. We observe an
overall improvement in the calibration for these optimal regularizations.

Appendix D. Comparison to the data generated by logit model

As mentioned before, our state evolution equations can be adapted to data generated by the logit model, as
studied in [9]. The likelihood is defined in equation (120). Since this change only concerns the data
distribution, Algorithm 1 is unchanged. However, state evolution is changed in the update of 7, , V: the
partition function Zj is now

Zy(y,w,V) :/dza(yxz)N(z\w,V). (118)

24



Mach. Learn.: Sci. Technol. 4 (2023) 025029 L Clarté et al

.
0.5 2

sERM =0.086 €ERM = 0211 €ERM = 0.413 102

. .
£5”M = 0.085 £5”M = 0.202 £5°M = 0.414 10t

" .
eERM = 0.098 eERM = 0.197 egRM = 0.411 10°

o .
€ERM = 0.124 €ERM = 0.408 107!

1

-2
€ERM — 0221 €5RM — 0,409 10
. 1073

Figure 10. Joint density ofﬂrm (x-axis) and}’b0 (y-axis) at a=5. The best possible test errors are respectively 5; =0,0.148,0.352
for 7 = 0,0.5, 2. For the Bayes estimator with « = 5, the test errors are 530 =0.083,0.198,0.402.

Note also that the expression of the calibration is now

By=p~ [ dxolNm/ax o7 (p).p /o). (119)

D.1. Behavior at A = 0F
In [9], it has been shown that as the sampling ratio « goes to 0o, the unpenalized logistic classifier is
calibrated when the data is generated by the logit model

P(y, =1) = o(wy - X). (120)

In this section, we numerically recover the results from [9] i.e the unpenalized logistic estimator is
calibrated asymptotically and the calibration decreases as 1/c. Figure 12 plots the calibration at p = 0.75,0.9
and 0.99 for o € [10,10%]. One can observe a decay of A, with a power law, which confirms that with logistic
data, the unpenalized logistic classifier is asymptotically calibrated at all levels. Fitting a linear model on these
curves gives slopes equal to —0.99, —1.00, —1.04 for p = 0.75,0.9,0.99 respectively, which numerically
validates the 1/« rate derived in [9].
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Figure 11. Left: Joint density perm,bo> at A = Aerror. Aerror and the test error of ERM are indicated above the corresponding plot.
Right:Joint density perm,bo» at A = Alggs- Aloss and the test error of ERM are indicated above the corresponding plot.
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Figure 12. Calibration A, at p = 0.75,0.9 and 0.99 of logistic regression with the logit model as a function of a. The plots are
given in log-log scale. On this scale, the curves have respective slopes —0.99, —1.01, —1.04.

We compare here to the calibration with probit data, at 7 = 0.5. In particular, we exhibit that the logistic
classifier cannot be calibrated at all levels p. Indeed, as o« — 00, it can be noted that cos(Weym, Wy ) =

m?/q — oo 1. Moreover, we observe that m/q = m?/q x 1/m — . Ms := limm. Using the expression for
calibration from theorem 3.3, we get that for p > 1/2,

Ap—roep— 0, (Ul(p)> (121)

T X Mo

And deduce that

Ay=0s = (122)

Noting r(p) := :*:Eg , we get the condition

e | 1
p=r (Txmoo) (123)
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Figure 13. Calibration for logistic regression with A = 01, 7 = 0.5, at four different levels: p = 0.75 (Top left), p = 0.9 (Top
right), p=0.99 (Bottom left) and p = po =~ 0.937 (Bottom right). For p=0.99, A, becomes negative around o > 50 so the
absolute value of A, has been plotted instead. C seems to converge to zero for p = pg only.

With 7 = 0.5, we numerically get 7, >~ 3.53 = T X Mo, =~ 1.76 The level py, defined as the only p > 1/2
such that A, = 0, is thus

1
—1 —1
= — |~ 0.57) ~0.937. 124
SR -
For 1/2 < p < po (respectively 1 > p > py), A, > 0 (respectively A, < 0). This can be observed in figure 13
where we have plotted A, for several levels. For p # py, the calibration seems to converge to a finite value. On
the other hand, at p = py, A, converges to 0 as a power-law.

D.2. Behavior a A = 1, Aepror and Ajgss

In this section, we adapt the theoretical results of figure 5 to the logit data model: we compute Aeror and Ajoss
and plot their respective test errors and calibration. Note the definition of the test error and loss in this
setting:

{ Eg= ZyEﬁw\f(O,l) [Zo(yv m/\/af,l - mz/q)é(sign(f) :y)} (125)

Lo=—3Eenon [Zo(y,m/ /a6, 1 —m?[q)loga(y x \/46)]

Moreover, with the logit data model, the empirical risk at A = 1 now has a Bayesian interpretation. The
risk corresponds to the logarithm of the posterior distribution on w, up to a normalization constant, because
w, is sampled from a Gaussian with identity covariance. At A = 1, the empirical risk minimizer Wern, is the

27



10P Publishing

Mach. Learn.: Sci. Technol. 4 (2023) 025029 L Clarté et al

— Aerror

1.200 + Moss
1.1751
1.150 1

1.12514

1.100 ¢

1.0754

1.050 ¢

1.025 4

0 20 40 60 80 100 0 2 4 6 8 10
a a
Figure 14. Left: Values of Aerror and Ajoss as a function of o for the logistic data model. Center: Values of the test error €, for Aerror
(blue curve) . The inset plots the difference of test error deg,joss := €g(Mioss) — E¢(Xerror) (red curve) and deg1 :=g(A =1)—
€¢(Xerror) (orange curve). Right: Calibration at p = 0.75 of logistic regression on logistic data, for A = 1, Aerror and Ajoss. The
curves are given by running state evolution.
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Figure 15. Left: Calibration at p = 0.75 of logistic regression on logistic data, for A = 1, Aerror and Ajoss. The curves are given by
running state evolution. Right: Expected Calibration Error (ECE) for A = 1, Aerror> Aloss- The lower ECE, the better.

maximum a posteriori (MAP). In this section, we compare the performance of logistic regression with the
two different optimal regularizations and with A = 1.

The left panel of figure 14 shows the value of Acrror and Ajoss. As with the probit model, Ajpss > Aerror- Note
also that both optimal values are bigger than 1 for this range of . The right panel shows their respective test
error ;. As with the probit model, Acrror has a lower error than Aj. Not surprisingly, A = 1 has worse test
error than both optimal A. The left panel of figure 15 shows the calibration with the three different
regularizations at p = 0.75. We observe that A = 1 yields an overconfident estimator (consistent with the fact
that Aerror and Ajogs are both bigger than 1), and as before, Ajoss is less confident than Aerror. Remark that an
underconfident estimator is not necessarily better than an overconfident one, and the calibration A, is only a
measure on one level p. To compare the different estimators more fairly, we can thus use a metric called
Expected Calibration Error (ECE) defined as

N 0-71 s verm
(‘A}(X)D :/dP|Ap\ ( p(ip_)lg)q ) (126)

ECE .= ]Ef(x)

The ECE measures the average of |A,| at all levels p weighted by the probability that f(x) = p. In other words,
at a given level p, if P(f(x) = p) = 0, the ECE of the estimator will not be affected by the calibration of the
estimator at p. The right panel of figure 15 plots the ECE as a function of & for A = 1, Aeror and Ajpss. We
again observe that \j,s has a lower ECE than Ae;ror, which confirms that optimizing A for the test loss yields a
more calibrated estimator. Moreover, A =1 yields an estimator with the worst ECE, which is coherent with
the left panel: at p = 0.75, the absolute value of its calibration is higher than Ae;ror and Ajoss. Our numerical
results show that even if we know the prior distribution on the posterior and the likelihood, using only a

point estimate for the parameter (here the MAP) yields an overconfident estimator.
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