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Human-machine interfaces (HMIs) can be used to decode a user’s motor intention
to control an external device. People that su�er from motor disabilities, such
as spinal cord injury, can benefit from the uses of these interfaces. While many
solutions can be found in this direction, there is still room for improvement
both from a decoding, hardware, and subject-motor learning perspective. Here
we show, in a series of experiments with non-disabled participants, a novel
decoding and training paradigm allowing naïve participants to use their auricular
muscles (AM) to control two degrees of freedom with a virtual cursor. AMs
are particularly interesting because they are vestigial muscles and are often
preserved after neurological diseases. Our method relies on the use of surface
electromyographic records and the use of contraction levels of both AMs to
modulate the velocity and direction of a cursor in a two-dimensional paradigm.
We used a locking mechanism to fix the current position of each axis separately
to enable the user to stop the cursor at a certain location. A five-session training
procedure (20–30min per session) with a 2D center-out task was performed by
five volunteers. All participants increased their success rate (Initial: 52.78 ± 5.56%;
Final: 72.22 ± 6.67%; median ± median absolute deviation) and their trajectory
performances throughout the training. We implemented a dual task with visual
distractors to assess the mental challenge of controlling while executing another
task; our results suggest that the participants could perform the task in cognitively
demanding conditions (success rate of 66.67 ± 5.56%). Finally, using the Nasa
Task Load Index questionnaire, we found that participants reported lower mental
demand and e�ort in the last two sessions. To summarize, all subjects could learn
to control the movement of a cursor with two degrees of freedom using their AM,
with a low impact on the cognitive load. Our study is a first step in developing
AM-based decoders for HMIs for people with motor disabilities, such as spinal
cord injury.
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1. Introduction

In recent years, various motor Neuroprosthetics (NP) have

been proposed to reduce the burden caused by spinal cord injury

(Shokur et al., 2021). For example, surface functional electrical

stimulation of the muscles (Ho et al., 2014), exoskeletons (Tucker

et al., 2015; Baud et al., 2018; Benabid et al., 2019), electrical

stimulation of the spinal cord (Greiner et al., 2021), the peripheral

nerves (Badi et al., 2021) allows to re-mobilize the paralyzed body

part (Losanno et al., 2023), silent speech recognition (Cai et al.,

2021; Wu et al., 2021, 2022). But, while these assistive devices allow

significant improvement in motor functions, efficient technologies

still need to permit their voluntary control.

Brain-machine interfaces (BMIs) have sometimes been

proposed as the ultimate solution for voluntary motor decoding

(Lebedev and Nicolelis, 2017; Salahuddin and Gao, 2021). Despite

their great potential, BMIs should first overcome many non-trivial

challenges before their wider adoption, including the improvement

of surgery safety (Loeb and Richmond, 2021), the long-term

stability of the electrodes (Chestek et al., 2011), decoding (Hill

et al., 2012; Tankus et al., 2014; Jin et al., 2019), among others

(Freire et al., 2011; Rapeaux and Constandinou, 2021). This

technique has also been explored in a non-invasive manner and,

although good results can be found, in general, it does not respond

that well in a daily environment due to the quality of the record

and the need for constant calibration (Douibi et al., 2021; Värbu

et al., 2022).

Instead, a different approach can target patients’ preserved

muscular functions, typically in the face and the head, to decode

their intentions and use them as input controllers. Various

input mechanisms have been studied to this end, including head

orientation (Evans et al., 2000; LoPresti et al., 2002), tongue

movement (Andreasen Struijk, 2006; Mohammadi et al., 2021),

neck (Williams and Kirsch, 2008, 2016), and facial muscles

and kinematics (Huang et al., 2006; Cler and Stepp, 2015;

Galán et al., 2016). Others have based their decoding on the

auricular muscles (AMs) (Perez-Maldonado et al., 2010; O’Meara

et al., 2019). The latter has the advantage that the AMs is a

vestigial muscle that is normally not used and is, therefore,

an excellent candidate to enhance remaining functions without

hindering the preserved ones. Perez-Maldonado et al. (2010)

tested a two-dimensional cursor control using the AM decoding

through a linear combination of surface electromyography (sEMG)

signal’s frequency band activation. While this approach showed

encouraging results, it lacked a simple strategy to stop at the

desired point and needed 15 sessions to train the subjects to master

the control. The same group introduced, in 2019, a more robust

approach based on a 1D translation control with the AM decoder

plus an automatic rotation. To stop moving, the subject needed

to relax the muscle contraction. While the approach improved the

stopping strategy, the control is slower, and changes in movement

orientation are rather complex. Schmalfuß et al. (2016) used

minimally invasive EMG electrodes implanted in the posterior

auricular muscles of healthy and SCI individuals to learn to control

a wheelchair.

Here, we propose a novel decoding and training strategy

leveraging standard non-invasive surface EMG electrodes

bilaterally placed on the superior auricular muscle. The central

aspect of our work is a control strategy that facilitates the moving

and the stopping of the cursor and the crafting of a training

protocol that reinforces the orthogonalization between AM

contraction and facial expression.

Following 5 sessions of 30min training we found that all

participants (5 healthy subjects) could master the tasks with the

virtual cursor, with a higher success rate and more reliable control.

The results presented here open the way for implementing AM

for steering control, either in virtual or non-virtual solutions, for

people with motor disabilities.

2. Methods

2.1. sEMG recording and decoding strategy

sEMG signal was recorded from both superior auricular

muscles (Figure 1A) using surface Ag/AgCl cup electrodes with

a conductive paste to improve the conductance and help

the electrode stick to a region that generally has hair. The

reference and ground electrodes were placed on the mastoid

bones. The electrodes were connected to the Gravepine Ripple

processor for bio-signal amplifications, real-time acquisition, and

communication, with a sample rate of 2 kHz, a band-pass filter

between 15–375Hz, and a 50/100/150 notch filter. The control

strategy was based on the contraction level of the two AMs. We

measure the root mean square of the rectified sEMG signal using a

sliding window of 500ms, updated every 200 ms.

In our implementation, the X-axis was controlled by the right

AM, whilst the Y-axis was controlled by the left one (Figure 1B).

Specifically, a contraction below 35% of the Maximum Voluntary

Contraction (MVC) of the right AM triggered movement toward

the left, and a contraction in the 35–70% MVC range moved the

cursor toward the right (same for the up/down control with the

left AM). The cursor step in a given direction variated between 1

and 1.5 points, in a squared field of 100 × 100 points. The small

step was obtained with MVC close to 35%. The steps were linearly

increased to 1.5 when the contraction level (CL) went to 0% MVC

or, respectively, to 70%.

We used the high contraction range (70–100%) to toggle a

locking mechanism on the corresponding dimension (Figure 1C):

to transition between the movement and locked states, the users

should maintain a strong contraction for 500 ms.

2.2. Face expression detection

To force participants to contract their AM while avoiding open

facial movements, we tracked their facial expressions during the

sessions. Given the proximity and overlap with facial muscles,

such as the temporalis, frontalis, and muscles in the infra and

supraorbital region of the month (von Arx et al., 2018), we target

to detect movements that involve the use of smiles and eyes in the

expressions (Figure 1D).

The subjects were sitting in a chair in front of a computer

screen and a webcam (Aukey, 1080P, 30 FPS). To quantify the
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FIGURE 1

Experimental steps for the use of the Auricular muscle to control a cursor in a 2D paradigm. (A) sEMG activity was recorded on the superior AM using
cup electrodes associated with a conductive paste to improve signal quality and electrode stability. (B) Whenever the user was in the movement
state, each ear would control one of the cartesian axes, and the AM contraction level would give the movement direction. (C) The AM contraction
level was used to feed a state machine to determine whether the end-e�ector should be in a movement or locked state, allowing the user to
independently stop in a specific position with one/both axis-direction, undetermined block the cursor position, or assume the control back without
the aid of an external command. (D) The level of facial expressions was tracked with the use of a network trained to recognize 68 face landmarks. To
train the model used to distinguish the neutral and non-neutral face, at the beginning of each session the subjects had to do specific expressions. (E)
Both the single and dual tasks performed during the training consisted of center-out reaching tasks where one of the circular targets (red) was
presented and the subject would have the 20s to move the cursor (green circle) toward the target and stop inside. (F) The experimental design was
divided into 5 training sessions where the subject would be requested to use the AM to perform specific tasks with progressive negative feedback
according to the level of facial.
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FIGURE 2

Performance metrics for the single task of all training sessions. It is noticeable that the subjects managed to improve their control in terms of (A)
success rate and (B) precision with the final distance from the target. From the perspective of trajectories, (C) the path was getting straighter with the
training, even without being more (D) e�cient. (E) The execution time was reduced over the days, with crescent modulation of the speed (F). We also
observe a significant reduction in the level of facial expressions (G) with the sessions. Kruskal-Wallis test with Tukey-Kramer post-hoc correction was
used to test the success rate. For trial-level analysis (B–G), repeated measures of Friedman’s test were used, with the same post hoc correction.
Statistical significance among the sessions was considered for p < 0.05 (*).
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FIGURE 3

Performance metrics for the dual task of all training sessions. Similarly, as the single task, there is a noticeable improvement in the success rate (A),
followed by a reduction in the final distance from the target (B), path straight deviation (C), execution time (E), level with facial expressions (G). The
path e�ciency (D) does not show a significant di�erence throughout the sessions. (H) The error between the perceived and real visual distractors
shows no di�erences among the sessions but is always in a very low percentual. Kruskal-Wallis test with Tukey-Kramer post-hoc correction was used
to test the success rate. For trial-level analysis (B–H), repeated measures of Friedman’s test were used, with the same post hoc correction. Statistical
significance among the sessions was considered for p < 0.05 (*).
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FIGURE 4

Comparison between the first and last training sessions of single and dual tasks. The presented results are results from Friedman’s test analysis with
Tukey-Kramer correction, as post-hoc (statistical significance *p < 0.05), of a given task among the training sessions. (A) Success rate. (B) Final
distance from the target. (C) Path straight deviation. (D) Path e�ciency. (E) Execution time. (F) Speed. (G) Level of facial expression.
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FIGURE 5

NASA task load index assessment for both the single and dual tasks. (A) Mental demand. (B) Physical demand. (C) Temporal demand. (D)
Performance. (E) E�ort. (F) Frustration. It is possible to notice that for most of the assessed domains, the response goes toward the lower levels, with
the exception of the performance. This finding indicates that the training seems to be enough to reduce the workload associated with the task.

level of facial expression, we used a neural network proposed by

Sagonas et al. (2016) able to identify 68 face landmarks. With these

landmarks, we train a model to classify when the subject was doing

a neutral or non-neutral face. To train the model, we started each

session with a training phase where the subjects were requested to

do five types of facial expressions: (1) resting face, (2) Closedmouth

smile, (3) Open mouth smile, (4) Large smile, and (5) Surprised

face. Each expression was maintained for 10 seconds.

We extracted the width and length of face structures

(eyebrows, eyes, nose, mouth, and face contour) from the

landmarks identified on the frames and performed a principal

component analysis to select the components that represent at

least 95% of the explained variance. These components were

used to train a linear discriminant analysis (LDA) to discriminate

between neutral and non-neutral facial expressions; we describe

as FE the level of facial expression ranging between 0 (neutral

face) to 1 (full detection of a given facial expression) as

given by the LDA classifier (subject’s model performance in

Supplementary Figure S1). This value was used as a penalty score

for the cursor speed.
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2.3. Experimental design

Five healthy young adults (mean ± std: 26.20 ± 3.70 years),

naive to the training protocol, were included in the study. The

study was approved by the Commission Cantonale d’éthique de

la recherche Genève (BASEC-ID: 2019-02176). All participants

provided written consent to participate in the study. Participant 5

is one of the co-authors of the current study; he was not trained

to perform AM contraction before the protocol described here.

All pilot tests were done with different participants excluded from

this study.

Each session started with a baseline recording to estimate

the Maximum Voluntary Contraction (MVC) for each AM.

Participants were instructed to relax and contract for 5 seconds, 3

times.We next calculated the root mean square to set the minimum

and maximum AM contraction.

The training consisted of single and dual tasks and lasted 20–

30min. The main protocol was a center-out reaching task with 36

possible circular targets, all with the same index of difficulty (ID =

2) as defined by Fitt’s Law (Fitts, 1954) (Figure 1E).

ID = Log2(2D/W)

where D is the target’s distance from the starting point and W

its radius.

For a trial to be considered successful, the subject had to stop

inside of the target and stay there for at least 2 seconds. The timeout

was set at 20 seconds. An auditory cue informed the participant of

the outcome of the trial.

During the dual task, random visual distractors with

the twice the size of the cursor appeared for 100–150

milliseconds every 1.28 ± 0.08 seconds (mean ± standard

error) (Supplementary Video S1). The participants had to perform

the same center-out reaching as to the single task and count the

number of visual distractors presented during the trial and report

the number of observed distractors orally at the end of each trial.

Each Training block lasted 18 trials. On the first experimental

day, the subject performed two single-task blocks (2 blocks of 18

trials); from sessions 2 to 5, they performed one single task and one

dual-task every day (Figure 1F).

The Cursor Speed was defined by both the contraction level

(CL, measured as a percentage of the MVC) and the level of facial

expression FE (added as a penalty):

Cursor Speed = S ∗(1− PC∗FE)

where S = CL ∗(−50/35) + 1.5, if CL ≤ 0.35

S = CL∗(50/35)+ 0.5, if CL > 0.35 and CL

≤ 0.7

and PC is a penalty coefficient for facial expressions. PC was

set to 0 on the first day (participants were allowed to use facial

expressions) and increased to 0.33 on the next day and to 0.66 on

day 3. We set PC to 1 for the last 2 days. This incremental negative

feedback allowed the subjects to experiment with different control

strategies that avoided facial expressions.

2.4. Performance evaluation

To assess participants’ performance, we report the

following measurements:

(i) Success rate per session.

(ii) The final distance to the target. For each trial, the distance

between the center of the target and the cursor.

(iii) The path straight deviation, defined as

PathStrDev =
1

n

∑n

i=1
d(Pi, ā)

where in n is the number of steps contained in the trajectory, ā is

the vector that represents the shortest trajectory to the target and

Pi a given point on the trajectory, and d is the euclidean distance

between the point and the trajectory ā.

(iv) The path efficiency, defined as

PathEff =

∑n
i=1 d(Pi, Pi−1)

||ā||

(v) Trial execution time. In trial failure, the execution time is set to

the timeout (=20s).

(vi) Cursor speed is measured in pts/s for each trial. In the case

of a successful trial, we removed the samples from the last 2 seconds

of the trial (where the participants had to stop inside the target).

For the facial expressions, we calculate the mean level of facial

expression throughout the trials and the percentage of each trial

where we detected some facial expressions.

For the cognitive load assessment, we applied the NASA Task

Load Index (TLX) (Stanton et al., 2017), aiming to evaluate six

different domains related to the task execution with a 9-Likert scale.

We also evaluated the participants’ mean error in detecting the

visual distractors during the dual task as follows:

errordistractors =
1

n

n
∑

i

(

|(reali − detectedi)|

reali

)

where n represents the number of trials, real is the correct number

of distractors in a given trial and detected is the number reported by

the participant.

2.5. Statistical analysis

We tested the normality of the data with the Shapiro-Wilk test,

and given the rejection of the null hypothesis, we proceeded with

the non-parametric test for further analysis. We used Friedman’s

test to evaluate the statistical significance of the performance

metrics calculated in all trials over the training sessions and

between tasks. To test if there were significant effects on the success

rate and questionnaires, we used the Kruskal-Wallis, with Tukey-

Kramer correction as a post-doc. The significance level for all the

analyzes was a = 0.05. The results are represented by median and

median absolute deviation. All the comparisons between single and

dual tasks were made with a two-sided paired Wilcoxon signed

rank test.
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3. Results

3.1. Control performance

On the single task, we observed a significant improvement from

the first training session to the fifth one, associated with a higher

success rate (Figure 2A, Success rate 5th session = 72.22 ± 6.67%,

1st session = 52.78 ± 5.56%, p < 0.05, χ2 = 9.93) and higher

precision (Figure 2B, distance to the target at the end of the trial

= 19.61 ± 11.30 pts for the first session and 6.96 ± 2.05 pts for

the fifth, p < 0.001, χ2 = 34.73). While the path efficiency did

not significantly improve throughout the training (Figure 2C, p =

0.59, χ2 = 2.80), we found a significant improvement in the path

straight deviation (Figure 2D, p < 0.001, χ2= 15.86). We can note

that the trials’ duration in the last session was also shorter than the

first three training sessions (Figure 2E); similarly, participants were

significantly faster in performing the task on the final experimental

day (Figure 2F). This effect is, most probably, related to the lack of

incremental penalty due to facial expression in the last session. We

believe that from the 2nd to the 4th training session the subjects

always have to adapt a bit their control strategy in order to control

the cursor and improve their performance. This adaptation is not

needed in the last training session since there is no new penalty

score due to facial expressions.

This is particularly interesting, considering that a negative

penalty was given throughout the sessions when the participants

had open facial expressions. The measurement of the level of facial

expressions showed a decrease between the first and third day

(1st session: 16.22 ± 12.71%, 3rd session: 0.50 ± 0.50%, p <

0.001, χ2 = 100.08) and maintained low for the following days.

The results mentioned above show that from different aspects, the

cursor control was improved toward a straighter trajectory, a faster

control, and closer to the target position.

Similarly, we observed an improvement in the success rate in

the dual task (Figure 3A, 5th session= 66.67± 5.56%, 2nd= 33.33

± 16.67, p < 0.05, χ2 = 8.57), from the second experimental day

to the last one, which is also reinforced by a reduction in the final

distance from the target (Figure 3B, 5th session = 8.37 ± 1.59 pts,

2nd = 25.85 ± 3.44%, p < 0.001, χ2 = 41.59). Unlike the single

task, the effect on the final distance can already be observed on the

fourth experimental day.

Analyzing the path efficiency in Figure 3C, we do not observe

significant changes in the cursor-controlled trajectory (p = 0.09,

χ2 = 6.41). A significant reduction in the path straight deviation

was already observed for the last training sessions (Figure 3D, p

< 0.001, χ2 = 12.92). We also observed that the time needed to

finish the task was reduced on the last day compared to the first

two sessions (Figure 2E, p < 0.001, χ2 = 18.87), and the control

speed was improved from the third experimental day to the last one

(Figure 3F, p < 0.001, χ2= 31.81).

In accordance with the single task, here we can see that the facial

expression during the control improved from the first to the last

day in the evaluated metric (Figure 3G, p < 0.001, χ2 = 56.12).

Particularly, the better performance on this aspect happened on

the fourth day of the experiment, which can represent a bit of

the need for more training and regularity to properly evaluate this

independence of the AM contraction from the other facial muscles.

In summary, the results showed that all participants were

able to successfully control the cursor in both single and dual-

task scenarios over the course of five training sessions. In the

final session of the single task, all participants achieved a correct

target hit rate of over 66.67% (Supplementary Table S1) with

an average final distance from the target of 6.45+/−1.21 pts

(Supplementary Table S2). Similarly, in the final session of the dual

task, all participants achieved a correct target hit rate of over 61.11%

(Supplementary Table S3) with an average final distance from the

target of 8.85+/−1.56 pts (Supplementary Table S4). In all these

cases the effect size was estimated through the Cohen’s d index and

the results show a high effect of the statistics. These findings suggest

that even with a small sample size, the participants consistently

improved their performance and achieved a good level of control

over the human-machine interface.

3.2. Cognitive load assessment

To study the ability of dual tasking, we used the Friedman test

to compare the performances of the two tasks for the second and

last session, aiming to see if there is any significant difference in

the task given a training session, Figures 4A–G. We could observe

that the performances were significantly different (Figure 4B, p <

0.01, χ2 = 8.76) for the final distance from the target only for

the 2nd session, with no effects on the last one. On the other

hand, when checking the speed modulation, we note that for both

sessions the speed was higher in the single (Figure 4F, p < 0.01,

χ2 = 14.43). These comparisons show that with the training, no

significant differences were found for the assessed measure, except

for the speed, which could work as a trade-off to balance the

performance. In other words, the subjects were able to control

the cursor at a slower speed to not impair their performance on

the task.

To assess the workload of the tasks, we used the NASA task

load questionnaire, in the single and dual-task paradigms. The

questionnaire uses 9 levels Likert scale of 1–9 and ranges from 1 =

low, 5= neutral, and 9= high. For the single task, the participants

rated all modalities between neutral and low: the mental demand

(Figure 5A, Initial: 5± 0; Final: 2± 1), physical demand (Figure 5B,

Initial: 4 ± 1; Final: 2 ± 1), temporal demand (Figure 5C, Initial:

5 ± 2; Final: 2 ± 1), effort (Figure 5E, Initial: 3 ± 1; Final: 3

± 1), and frustration (Figure 5F, Initial: 1 ± 0; Final: 1 ± 0).

The exception goes to the self-evaluated performance (Figure 5D,

Initial: 4 ± 2; Final: 6 ± 1) that started at a low level and went

toward higher levels.

For the dual task, the main differences were for the mental

demand (Figure 5A, Initial: 7 ± 0; Final: 3 ± 1), temporal demand

(Figure 5C, Initial: 6 ± 2; Final: 3 ± 1), and the needed effort

(Figure 5A, Initial: 6 ± 1; Final: 3 ± 0), which reduced from a high

to a low level with the training. These findings are associated with

the improvement in performance (Figure 5D, Initial: 2 ± 1; Final:

6 ± 0). The physical demand (Figure 5B, Initial: 3 ± 1; Final: 2 ±

0), and frustration (Figure 5F, Initial: 3± 2; Final: 2± 1), from the

beginning, was either considered low or neutral.

Another aspect of assessing the dual task is the percentage

of error with the visual distractors. The level of error between
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the real and observed value was always low (Figure 3H), whilst

the cursor control performance was improving (Figure 3A). This

could indicate a preferred choice of paying attention more to

the distractors and over the training, adapting to simultaneously

controlling the cursor. Therefore, at the end of the training, subjects

were able to do the dual task without significant impairments in

terms of performance, except for a different regulation of speed.

4. Discussion

We have explored the use of vestigial muscles, which lost

their primary function during the evolutionary process (Liugan

et al., 2018). Furthermore, we have explicitly controlled the level

of facial expression. This aspect represents an advantage over most

of the HMI solutions that involve the decoding of head kinematics

(LoPresti et al., 2002), tongue movements (Mohammadi et al.,

2021), face muscle (Vojtech et al., 2018), or eye tracking (Bissoli

et al., 2019), as it does not hinder any of the existing functions but

rather provides the users with a new function.

We have shown that with 5 training sessions of <30min each,

all the subjects significantly improved their abilities. We observed

similar results between the single-task and dual-task in terms of

task workload; in the last training session, all the domains were

qualitatively at a low level with the exception of the performance.

In terms of the evaluated performance, we found similar results

on the last day for the single and dual tasks for the success rate,

path straight deviation, path efficiency, execution time, and final

distance to the target.

Compared to the available options in the literature using the

AM, our method provides the user the possibility to stop and

control in an easy manner, modulate the speed of the end-effector,

and independently control each one of the axes. In relation to

Schmalfuß et al. (2016), our solution differs from using a non-

invasive recording approach for acquiring the EMG signals. This

feature can enhance the usability and reduce the risks associated

with invasive procedures. Additionally, each axis of our system can

be individually controlled, providing an extra degree of freedom

in movements that can improve the accuracy and precision of the

control. When comparing to solutions that use only one AM to

control both DoF, we have observed that in such cases, the user is

required to either modulate the spectral features of the recorded

sEMG (Perez-Maldonado et al., 2010), which can be challenging

and demanding more training, or the 2 DoF problem is simplified

by 1 DoF, which may be limiting in non-virtual applications

(O’Meara et al., 2019). In contrast, our proposed solution shows an

advantage in terms of control performance and usability. The user

can control each axis separately and with high accuracy, without

being burdened by complex modulation tasks or restricted by a

reduced DoF. We believe that these aspects, together with the

short training needed to achieve a good level of control, are the

highlights of this approach and what make viable solutions for

HMI applications.

One of the limitations of our study is that we did not evaluate

different approaches that could be used to control the cursor with

the activation of the auricular muscle to assess the most intuitive

one. The comparison with the existing literature is also complicated

since different measurements and paradigms are used to assess the

HMI. However, our main goal was to provide independent control

over the axes and enable movement in all four directions without

adding another state to the state machine used for the blocking

mechanism. We believe that this mechanism, together with the

penalty for facial expressions, was a key factor in our development.

Through a few training sessions, we were able to demonstrate

that all subjects could control the HMI and reduce their reliance

on facial expressions. The locking mechanism also introduced a

novelty that allowed for more independence in control, enabling

users to move the cursor freely in both directions, control it in only

one direction, or stop it at the desired position without worrying

about the contraction of the AM.

In an HMI for bidimensional steering control based on

muscle contraction, a blocking mechanism plays a crucial role in

ensuring the safety and accuracy of the system. Without a blocking

mechanism, the system would react to any muscle contraction,

whether intentional or not, potentially causing unintended

movements of the end-effector. The blocking mechanism acts as a

filter, allowing only intended muscle contractions to be translated

into cursor movements.

Is worth emphasizing that some current implementations with

AM use a threshold of minimum contraction as a relax state

that does not interfere with the movement (Perez-Maldonado

et al., 2010; Schmalfuß et al., 2016; O’Meara et al., 2019), and

although these muscle relaxations may not produce any movement

or command in the interface, they can still create noise in the system

and interfere with its accuracy, by oscillating the current position.

To ensure an objective and consistent evaluation of the

performance of our HMI of cursor control, we used only one

difficulty level according to Fitt’s law. We acknowledge the practice

in the literature of using several IDs for a broader exploration of the

HMIs transfer rates considering the different conditions, but here

we wanted to focus more on only one to evaluate the interface’s

effectiveness without any other confounding factors that might

influence the user’s performance. Even though, regarding other

applications for cursor control using different modalities recording

modalities, we can cite Vojtech et al. (2020); for example, that

presented a hybrid HMI that combines head kinematics and EMG

recordings for 2 DoF cursor control. The accuracy of the system

reached 70.5% in one of the tested conditions. Rahmaniar et al.

(2022); on the other hand, proposed a head gesture recognition

interface for cursor control that also achieved high target selection

scores. Chin (2008) showed in a study of with HMIs that compared

the use of EMG, eye tracking, and a combination of both as

solutions for cursor control for users with motor disabilities that,

although the hybrid solution has a slower control than eye-tracking

only, it was more reliable for click operations. Therefore, we believe

that our results show a competitive performance of the HMI of

cursor control, with a success rate of 72.22 ± 6.67%. Moreover,

our solution may provide an alternative to these more established

solutions as an application that uses a biological source that is not

directly involved in other essential functions, due to the AM being

a vestigial muscle.

This study was the first step in developing the HMIs clinical

population with motor disabilities. Our solution could be applied,

for example, with SCI people to control a wheelchair, a cursor
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on computers or smartphones, or with people with amputation

to control a prosthesis. A particularly interesting evolution of this

approach can also be in the field of human augmentation with

a population with no motor impairment. The AM control could

allow for controlling extra limbs or end-effectors (Dominijanni

et al., 2021).

Further studies will be necessary to investigate how much of

the contractions elicited by the AM are independent of the adjacent

muscles, and if it is the case, proper training to reduce that can be

proposed using biofeedback techniques to enhance motor learning

of muscles (Perez-Maldonado et al., 2010; Rodrigues et al., 2022;

Moreira et al., 2023). Also, we made the choice to keep the current

protocol short, but we can notice that by the end of the 5th session,

participants had not reached a plateau, and further improvement

could be possible with longer use of the AM controller. Tests in

a real-world environment/application with subjects of a wider age

range and with and without motor impairments can also help to

understand the extension for applications of this solution since this

variability can have a direct impact on motor learning (Jongbloed-

Pereboom et al., 2019), but also elicit new strategies on how to

facilitate the training phase.
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