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Thermal conductivity of glasses: first-principles theory and
applications
Michele Simoncelli 1✉, Francesco Mauri 2 and Nicola Marzari 3

Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established
Allen-Feldman and Green-Kubo approaches employ approximations with limited validity—the former neglects anharmonicity, the
latter misses the quantum Bose-Einstein statistics of vibrations—and require atomistic models that are very challenging for first-
principles methods. Here, we present a protocol to determine from first principles the thermal conductivity κ(T) of glasses above the
plateau (i.e., above the temperature-independent region appearing almost without exceptions in the κ(T) of all glasses at cryogenic
temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and
accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this
approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce κ(T) in the macroscopic
limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of κ(T) at high temperature, reproducing
experiments at temperatures where radiative effects remain negligible.
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INTRODUCTION
The thermal conductivity of glasses is a key property for many
and diverse technological applications, including, e.g., the
microelectronics1, pharmaceutical2, aerospace3,4, optics5, and
construction6 industries. To a large degree of universality, for
glasses there are three characteristic intervals in the temperature
dependence of the thermal conductivity κ(T)7–10: (i) the low
temperature region (T≲ 1 K) where κ(T) ~ T2; (ii) the intermediate
temperature region (5 ≲ T≲ 25 K) where the conductivity displays
a plateau (κðTÞ � constant); (iii) the above-the-plateau region
(T≳ 30 K) where the thermal conductivity increases with
temperature. The trend observed in region (i) is usually explained
relying on the phenomenological7,11–13 ‘tunneling two-level
system’ (TLS) model14,15. The plateau found in the region (ii)
has motivated several studies, which explored its possible
connection with the boson peak16–19. The above-the-plateau
region (iii)—which is the most relevant one for the aforemen-
tioned technological sectors—has up to now been investigated
using the Allen-Feldman (AF) formulation8,9,20 or various
molecular-dynamics (MD) methods. Specifically, the various MD-
based methods employed in past works are: (i) the Green-Kubo
formulation in combination with classical21–24, first-principles25,26,
or machine learning27–30 MD simulations (GKMD); (ii) the
approach-to-equilibrium MD (AEMD) in combination with classi-
cal potentials31 or first-principles molecular dynamics32–34; (iii)
non-equilibrium MD simulations (NEMD) in combination with
classical21,35,36 or machine-learned37 potentials. Past works
relying on these formulations have highlighted two major
challenges. First, achieving computational convergence with
respect to supercell sizes and simulations times is onerous and
problematic20,21,38, leading to the conclusion that accurate
calculations require models containing thousands of atoms, and
simulation times of the order of tens to hundreds of picoseconds;
this yields a computational cost that is prohibitively high for

direct first-principles calculations. Second, neither Allen-Feldman
nor MD formulations can immediately ensure a comprehensive
description of thermal transport, since the former neglects
anharmonicity (thus it is in principle accurate only in the low-
temperature regime where anharmonicity phases out9), and the
latter, while accounting for anharmonicity exactly, misses the
quantum Bose-Einstein statistics of atomic vibrations39, relevant
at low temperatures.
The recently developed Wigner formulation40,41 has shown that

the two established microscopic heat-conduction mechanisms for
crystals and glasses—i.e., the particle-like propagation of phonon
wavepackets described by the Peierls-Boltzmann equation42,43,
and the wave-like tunneling mechanisms described by the AF
equation8,9, respectively—both emerge as limiting cases from a
unified transport equation. We note, in passing, that here the
‘diffuson’ mechanisms described by Allen-Feldman theory is
denoted with ‘wave-like tunneling’ because it bears some
analogies to the electronic Zener interband tunneling44, more
details about the terminology can be found in refs. 40,41. The
Wigner formulation offers a comprehensive approach to describe
heat transport in solids, encompassing: (i) ‘simple crystals’,
characterized by phonon interband spacings much larger than
the linewidths, where particle-like propagation dominates and the
Peierls-Boltzmann limit is accurate; (ii) glasses, where wave-like
tunneling is relevant and the Wigner formulation extends AF
theory accounting for anharmonicity; (iii) the intermediate regime
of ‘complex crystals’, where particle-like propagation and wave-
like tunneling are simultaneously present and neither Peierls-
Boltzmann or Allen-Feldman are valid. This intermediate regime is
common and prevalent in crystals characterized by phonon
interband spacings smaller than the linewidths and featuring
ultralow thermal conductivity (e.g., those used in thermoelectrics45

or thermal barrier coatings41). The Wigner formulation for
transport has paved the way, as we will see, to tackle the
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aforementioned challenges of comprehensively describing trans-
port in glasses accounting for the interplay between Bose-Einstein
statistics, anharmonicity, and disorder. It is worth mentioning that
recent works38,46 employed a comprehensive ‘quasi-harmonic
Green-Kubo’ transport framework—formally equivalent to the
Wigner formulation47,48—in combination with classical potentials
to describe heat transport in amorphous materials. Still, the
challenge of combining the Wigner formulation with first-
principles methods remains, due to a structural complexity larger
than simple crystals49, disordered crystals50,51, and complex
crystals, for which several advances have recently been
made40,41,45,52–58.
Here, we present a protocol that addresses simultaneously both

the aforementioned challenges, enabling accurate first-principles
predictions for the thermal conductivity of glasses, and combining
the Wigner transport equation40,41 (WTE) with convergence-
acceleration techniques; it is first discussed in the limiting case
of vanishing anharmonicity, where the WTE conductivity reduces
to the harmonic AF8,9 conductivity, and then extended to account
for the effects of anharmonicity and evaluate from finite-size
models of glasses the bulk limit of the anharmonic WTE
conductivity. We showcase the protocol in vitreous silica (v-SiO2)
—a paradigmatic glass that is employed in many and diverse
technologies1–6—extending the simulations to very large cell sizes
thanks to the use of machine-learned potentials (the recently
developed Gaussian Approximation Potential59 (GAP) for silica
polymorphs60). The GAP potential we employ has been generated
from first-principles calculations performed using the SCAN
functional61, and yields quantum-accurate predictions for the
vibrational properties of various silica polymorphs60. Here, we
employ GAP to describe the vibrational properties and evaluate
the thermal conductivity—both in the harmonic Allen-Feldman or
in the anharmonic Wigner framework—of models of v-SiO2 having
very different sizes, showing how our protocol allows to accurately
evaluate the bulk limit of the harmonic or anharmonic con-
ductivity using models containing less than 200 atoms, that are in
very good agreement with the macroscopic cell limit of 5184
atoms60.
After having validated the protocol, we employ it to study the

conductivity of v-SiO2 fully from first principles using models of v-
SiO2 containing 10862, 14463,64, and 192 atoms65. We discuss how
the AF or WTE conductivities change if the widely used semi-
empirical van Beest-Kramer-van Santen66,67 (BKS) potential, or the
state-of-the-art GAP potential for silica polymorphs60, are used in
place of first-principles calculations to compute the vibrational
properties of v-SiO2. We elucidate analogies and differences
between the harmonic and the anharmonic conductivity, relying
on the latter to show how the high-temperature trend of κ(T) is
determined by how the velocity-operator elements (whose values
regulate the amount of heat transferred by wave-like tunneling
between vibrational eigenstates) vary when the energy difference
between coupled eigenstates increases. Finally, we rationalize
these results at the microscopic level, relying on Allen-Feldman’s
harmonic diffusivity and extending such quantity to account for
anharmonicity, but also showing that anharmonicity has negli-
gible effects on the conductivity and diffusivity of v-SiO2.

Wigner formulation of thermal transport
As anticipated, the WTE formalism is general and can be used to
describe solids with variable degrees of disorder, ranging from
ordered crystals with small primitive cells to disordered glasses
with diverging primitive cell (in this latter case, for sufficiently
large primitive cells periodic-boundary conditions become irrele-
vant and the Brillouin zone (BZ) reduces to the point q= 0 only).
In practice, in numerical simulations non-periodic glasses can be
approximately described as crystals with large but finite primitive
cells, thus having a small but finite BZ that includes wavevectors

different from q= 0. We will discuss in the next section the
conditions under which non-periodic glasses can be simulated in
periodic-boundary conditions, after having introduced here the
salient features of the WTE formulation in the general case where
vibrations can have a wavevector different from q= 0.
For systems with low conductivity, which are the focus of this

work, the WTE can be solved accurately within the so-called
single-mode relaxation-time approximation (SMA, see Methods for
details), which allows to write the conductivity in the following
compact form:

κ ¼ 1
VNc

P
q;s;s0

ωðqÞsþωðqÞs0
4

CðqÞs
ωðqÞs þ

CðqÞs0
ωðqÞs0

� � kvðqÞs;s0 k2
3

´ πF½ΓðqÞsþΓðqÞs0 �ðωðqÞs � ωðqÞs0 Þ;
(1)

where the wavevector q and the mode index s label a vibrational
eigenstate having energy ℏω(q)s, anharmonic linewidth ℏΓ(q)s,
and specific heat

CðqÞs ¼ C½ωðqÞs� ¼
_2ω2ðqÞs
kBT2 NðqÞs NðqÞs þ 1

� �
(2)

(NðqÞs ¼ ½expð_ωðqÞs=kBTÞ � 1��1 is the Bose-Einstein distribution
at temperature T); the quantity

kvðqÞs;s0 k2 ¼
X3
α¼1

vαðqÞs;s0vαðqÞs0;s (3)

denotes the square modulus of the velocity operator41 between
eigenstates s and s0 at the same wavevector q (α in these
expressions denotes a Cartesian direction, and since vitreous
solids are in general isotropic, the scalar conductivity (1) is
computed as the average trace of the tensor καβ given by Eq. (47)
of ref. 41; Nc is the number of q-points entering in such a
summation and V is the primitive-cell volume). Finally, F is a
Lorentzian distribution having a full width at half maximum
(FWHM) equal to ΓðqÞs þ ΓðqÞs0 :

F½ΓðqÞsþΓðqÞs0 � ωðqÞs � ωðqÞs0
� � ¼ 1

π

1
2 ΓðqÞs þ ΓðqÞs0
� �

ωðqÞs � ωðqÞs0
� �2 þ 1

4 ΓðqÞs þ ΓðqÞs0
� �2 :

(4)

In a crystal the primitive cell and the BZ have a finite volume and
can be univocally chosen relying on crystallographic conditions68;
wavevectors are good quantum numbers and phonon group
velocities are well defined. Under these circumstances, it is useful
to rewrite the WTE conductivity (1) as sum of two terms,
κ= κP+ κC; specifically, the term κP (referred to as ‘populations
conductivity’) is determined by the diagonal (s ¼ s0) or perfectly
degenerate (s≠ s0 with ωðqÞs ¼ ωðqÞs0 ) terms41 in the summation
in the conductivity (1); in crystals such a term describes the
Peierls-Boltzmann particle-like heat conduction (averaged over
the spatial directions), since the average trace of the Peierls-
Boltzmann conductivity tensor can be written as κP ¼ 1

3

P
ακ

αα
P

with κααP ¼ 1
VNC

P
qsC½ωðqÞs�vαðqÞs;sΛαðqÞs, i.e., as particle-like

vibrations having absolute energy ℏω(q)s (thus specific heat
C[ω(q)s]) and propagating between collisions over a length
ΛαðqÞs ¼ vαðqÞs;s½ΓðqÞs��1. We note, in passing, that here we have
exploited the possibility to diagonalize the velocity operator in the
degenerate subspace41,69. Conversely, non-degenerate off-diag-
onal elements (‘coherences’40,41) account for a different ‘Wigner’
conduction mechanisms: they do not have an absolute energy
akin to that of a particle-like excitation, but are characterized by an
energy difference _ωðqÞs � _ωðqÞs0 and describe a wave-like
tunneling conduction mechanisms akin to the electronic Zener
interband tunnelling44. It has been shown in refs. 40,41,70 that in
simple crystals particle-like mechanisms dominate and thus
κP≫ κC, while in complex crystals both these mechanisms are
relevant, and κP and κC are of the same order. Finally, refs. 40,41

have shown that in the ordered limit describing a harmonic
glass8,9, Eq. (1) reduces to the AF formula for the conductivity of
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glasses. Specifically, such an ordered limit requires first to describe
a (structurally stable71–78) glass as the limiting case of a disordered
but periodic crystal with an increasingly larger primitive cell (i.e.,
V ! 1 and thus with the BZ reducing to the point q= 0 only8,9),
and then letting each linewidth go to the same infinitesimal
broadening ℏη8,9, ℏΓ(q)s→ℏη→ 0, ∀ s and q= 0. Under these
ideal circumstances only q= 0 is considered in the sum in Eq. (1),
and the Lorentzian distribution (4) becomes a Dirac δ,

lim
η!0

lim
V!1

F½2η�ðωðqÞs � ωðqÞs0 Þ
� �

¼ δ ωðqÞs � ωðqÞs0
� �

; (5)

implying that the WTE conductivity (1) reduces exactly to the AF
formula for the conductivity of glasses (Eq. (3) of ref. 8). In practice,
this ideal bulk-glass limit cannot be reached in numerical
calculations, and anharmonic linewidths strongly vary with
temperature. In the next sections we first discuss a protocol that
allows to accurately describe glasses at the AF harmonic level
using finite-size models, and then we rely on the WTE to extend
such a protocol accounting for anharmonicity.

RESULTS
Protocol to evaluate the harmonic Allen-Feldman conductivity
with finite-size models
From a microscopic viewpoint, AF conductivity (Eq. (1) and (5) with
q= 0 only) describes heat transport in an ideal bulk glass as being
mediated by a transfer of energy between vibrations that are
degenerate in energy (see Eq. (5)) and not localized in the
Anderson sense79 (this requirement is needed to have non-zero
velocity operator elements in Eq. (1)). In actual calculations a glass
is approximately described as a crystal having a primitive cell
containing a large but finite number of atoms Nat. Such an
approximation has two important implications. First, the BZ
corresponding to the (large) finite-size model does not reduce
to q= 0 only but has a (small) finite volume. Second, in a realistic
finite-size model of a glass perfectly degenerate vibrational modes
are supposed to be absent (this because exact degeneracies are
due to point-group symmetries80, which are not present in
amorphous systems); thus, the vibrational spectrum is character-
ized by an average spacing between vibrational energy levels
equal to

_Δωavg ¼ _ωmax

3Nat
; (6)

where _ωmax is the maximum vibrational energy of the solid
(which strongly depends on the chemical composition and
negligibly depends on disorder, see Fig. 10 in Methods) and
3Nat is the number of vibrational modes at a fixed q point. Eq. (6)
underlines how degenerate vibrational modes determining the
harmonic conductivity emerge as a consequence of disorder, since
increasing the accuracy in the description of disorder (i.e.,
increasing Nat) yields a decrease of the average energy-level
spacing, implying that in the ideal limit of a bulk glass (Nat→∞)
adjacent vibrational eigenstates become degenerate (hereafter we
will use the term ‘quasi-degenerate’ to refer to these adjacent
vibrational eigenstates that become degenerate in the ideal limit
of a bulk glass).
These two properties offer important insights on how to

evaluate the strength of finite-size effects in glasses and
consequently extrapolate from the finite-size ‘reference cell’ of
the model the behavior of the ideal (infinite) glass. Specifically, the
presence of a BZ with a small but finite volume implies that
Fourier interpolations can be used to sample vibrations in a
n × n × n supercell of the finite periodic model. This procedure
simulates a system where vibrations are commensurate to a
system that is n × n × n times larger than the reference cell used,
but where the disorder length scale remains limited by the size of

the reference cell. Within this scheme one can obtain information
about finite-size effects in multiple ways: (i) for a given finite
model, one can study the differences between a calculation
performed at q= 0 only, and a calculation on a n × n × n q mesh;
(ii) one can repeat the analysis at the previous point employing
models having larger and larger reference cells—for sufficiently
large models one expects to achieve computational convergence,
with the calculation at q= 0 only and that on the q mesh yielding
indistinguishable results. Moreover, in order to retain the key
physical property that couplings between quasi-degenerate
eigenstates can occur and contribute to heat transport, the Dirac
δ (Eq. (5)) needs to be replaced with a smooth distribution having
a broadening η of the order of the average energy-level
spacing8,9,20 ℏΔωavg; otherwise, no couplings would take place
in any system represented by a finite-size periodic supercell.
Within such a numerical scheme η is just a computational
parameter, and as such one expects to find a range of values for η
(the domain of convergence) for which the conductivity is
independent from η. The considerations above show that the
calculation of the harmonic AF conductivity in finite-size models
bears some procedural analogies to electronic-structure calcula-
tions in metals, where the BZ is integrated using a discrete mesh
and the Dirac δ identifying the Fermi level is broadened with an
aptly chosen smearing function81–83, and one needs to identify a
range of ‘converged values’ for the smearing and for the size of
the BZ-integration mesh for which quantities such as the total
energy are practically independent from the smearing.
Pioneering work8–10,20 evaluated the AF conductivity broad-

ening the Dirac δ (Eq. (5)) with a fat-tailed Lorentzian distribution
having FWHM of the order of ℏΔωavg, limited calculations to q= 0
to reduce the computational cost, and relied on smoothness
arguments9 to extrapolate the bulk limit from finite-size models.
Nevertheless, recent work21,38,84 have highlighted challenges in
achieving computational convergence following such computa-
tional protocol. Therefore, here we take inspiration from the
computational techniques alluded to above for electronic-
structure calculations to tackle the problem of achieving
convergence in the calculation of the AF conductivity, using
vitreous silica as a paradigmatic test case. We first show in Fig. 1
that state-of-the-art models of vitreous silica60 (v-SiO2) containing
192, 1536, or 5184 atoms (all studied using a recently developed
GAP potential60, see Methods for details) yield bulk AF
conductivities that are perfectly compatible, provided these are
computed using a light-tailed Gaussian broadening having a
FWHM larger than the average energy-level spacing (more details
on the convergence domain for the broadening parameter are
discussed later), and a Fourier interpolation is used to extrapolate
the bulk limit from the small 192-atom model (we note that the
Fourier interpolation has a negligible effect on the 1536-atom
and 5184-atom models, confirming the aforementioned expecta-
tions). The details on the domain of convergence for the
broadening parameter η and mesh used for the BZ sampling
are reported in Fig. 2, where we show that computational
convergence can be achieved for atomistic models containing
192, 1536, and 5184 atoms (i.e., there exists a range of values for η
—the ‘convergence plateau’—over which the conductivity is not
sensitive to the value of η). As the size of the reference cell of the
atomistic model increases, the convergence plateau extends to
smaller values of η; this in agreement with the expectation, based
on Eq. (6), that larger models allow for more accurate
approximations of the Dirac δ. Importantly, we also show that
the Gaussian broadening yields a wider convergence plateau
compared to the Lorentzian broadening, especially at low
temperatures where anharmonicity phases out and thus the
harmonic AF theory is accurate. We note in passing that the
improved computational performance found here for the
Gaussian broadening compared to the Lorentzian broadening
bears analogies to density-functional-theory calculations for
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metals, where refined representations of the Dirac delta81–83,83,85

are used in place of the Fermi-Dirac thermal broadening86 to
improve convergence with respect to Brillouin-zone sampling.

The analysis of Fig. 2 demonstrates that the evaluation of the AF
conductivity at q= 0 only does not show clear convergence with
respect to the broadening for the 192-atom model; a conver-
gence plateau emerges instead if the Fourier interpolation is
employed to extrapolate to the bulk limit. In contrast, in the 1536-
and 5184-atom models computing the AF conductivity at q= 0
only or using an interpolation mesh does not produce significant
differences, provided a value of η belonging to the convergence
plateau is used. This shows that the protocol of using the q mesh
interpolation and (ideally) Gaussian broadening to compute the
AF conductivity allows to achieve computational convergence in
three small models (containing≲ 200 atoms) typically affordable
in first-principles studies; in v-SiO2 models containing more than
1500 atoms are accurate already at q= 0, and allow to determine
a convergence plateau for the broadening η.

Extension of the protocol to evaluate the anharmonic Wigner
conductivity
We start by recalling that the WTE also generalizes the AF model
accounting for anharmonicity; in particular, the Lorentzian
distribution (4) appearing in the WTE conductivity (1) has a FWHM
determined by the anharmonic linewidths. From a computational
perspective, and recalling that the size of the model determines
the average energy-level spacing (6), one expects that evaluating
the WTE using a finite-size model should lead to results negligibly
affected by finite-size effects whenever all the anharmonic
linewidths of the finite-size model are larger than its average
energy-level spacing. To proceed, we first show in Fig. 3a) the
frequency-linewidth distributions for the 192-, 1536-, and 5184-
atom v− SiO2 models, and compare these with the average
energy-level spacing. Each cloud of points represents the
frequency-linewidth distribution at a given temperature for the
192-atom model, evaluated explicitly at q= 0 only and

Fig. 1 Convergence of the Allen-Feldman theory in finite-size v-
SiO2 models. The AF conductivities for a 192-, 1536-, and 5184-atom
model are in blue, green, and red, respectively; calculations at q= 0
only are solid lines, calculations using the q interpolation on a
3 × 3 × 3 (5 × 5 × 5) mesh are empty symbols (crosses). All calcula-
tions employ a Gaussian broadening η= 4 cm−1 for the Dirac δ (Eq.
(5), corresponding to a FWHM larger than the average energy-level
spacing of these models, see text and Fig. 2). The discrepancy
between the solid blue line and all the other data shows that the
q interpolation is necessary to achieve convergence using a 192-
atom model; the green and red lines show that convergence is
achieved already with a calculation at q= 0 in both the 1536- and
5184-atom models.

Fig. 2 Convergence of the AF conductivity for v− SiO2 with respect to the broadening η for the Dirac δ, for a 192-atom model (left), for a
1536-atom model (center), and for a 5184-atom model (right). Every dashed-red line is a Lorentzian having FWHM 2η, every solid-black line
is a Gaussian with variance η2π/2 (both distributions have the same maximum (πη)−1). Top row: evaluating the AF conductivity using the
q interpolation and the Gaussian broadening yields a `convergence plateau', i.e., range of value for η for which the conductivity is not sensitive
to the value of η (orange and blue lines show the converged `bulk' value for the AF conductivity at 100 and 300 K, respectively). The Gaussian
yields a wider and more clear convergence plateau compared to the Lorentzian. Bottom row, calculations of the AF conductivity at q= 0: the
small 192-atom model underestimates the bulk limit; in contrast, the medium 1536-atom model and the large 5184-atom model yield a
convergence plateau also at q= 0, with the largest model featuring the widest convergence plateau. We note that the plateaus at q= 0 for
the 1536- and the 5184-atom models are narrower than the corresponding ones obtained using the q interpolation. The vertical dotted lines
are indicative of the minimum broadening for which computational convergence is achieved. The opposite trend of the broadening-
conductivity curve obtained using the q mesh or q= 0 is discussed in Sec. Extension of the protocol to evaluate the anharmonic Wigner
conductivity.
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accounting both for third-order anharmonicity87–91 and for
scattering due to isotopic mass disorder at natural abundance92

(see Methods for details). Each solid line is a coarse-grained
interpolation of the frequency-linewidth distribution into a single-
valued function Γa[ω]; such a coarse graining is inspired by past
work51,93 and validated in Fig. 11 in the Methods, where we show
that evaluating the WTE conductivity using the exact frequency-
linewidth distribution or linewidths determined using the coarse
grained function Γ(q)s= Γa[ω(q)s] yields practically indistinguish-
able results. Clearly, in the 192-atom model a significant portion of
the vibrational modes have linewidths smaller than the average
energy-level spacing at room temperature and below (this
happens both when vibrations are sampled at q= 0 only, as well
as when they are more densely sampled on a 3 × 3 × 3 q mesh).
Increasing the size of the model yields a reduction of the average
energy-level spacing, and in the largest 5184-atom model most of
the linewidths are larger than the average energy-level spacing
already at 50 K.
To better understand the combined effect of anharmonicity and

of the finite size of the model on conductivity, we recall once
again that when the WTE conductivity (1) and (4) is evaluated
repeating periodically a finite-size reference cell, the conductivity
can be decomposed in the sum of a populations and a coherences
contribution (κP and κC, respectively, see Sec. Wigner formulation
of thermal transport). We stress that the populations (coherences)
conductivity can be rationalized in terms of a particle-like (wave-
like) conduction mechanisms exclusively in actual crystals, where
the periodicity and symmetries of the atomic structure imply that
the BZ and the vibrational spectrum can be defined unambigu-
ously68; consequently, the group velocities with which the
particle-like phonon wavepackets propagate, and the interband
spacings that characterize the wave-like tunneling of phonons, are
well defined. In finite-size glass models, instead, the decomposi-
tion in populations and coherences conductivities is useful to
understand finite-size effect (more on this later), but cannot be
further interpreted in terms of particle-like and wave-like
conduction mechanisms. In fact, such an interpretation is well
defined only in crystals where the BZ and vibrational spectrum can
be unambiguously defined, while in finite-size models of glasses

the BZ volume decreases as the size of the model increases.
Finally, we also note that the distinction between populations and
coherences conductivities in finite-size models of glasses is
different from the distinction between ‘propagons’ and ‘diffusons’
conductivities discussed by Allen et al.10 for an ideal (infinitely
large) glass. The propagons and diffusons conductivities differ-
entiate the contributions to heat transport originating from
vibrational modes that propagate ballistically (akin to phonon
wavepackets) from those that do not in an ideal glass; future work
will aim at decomposing the total Wigner conductivity into those
contributions.
In finite-size models of glasses the populations conductivity κP is

given by the terms diagonal in the mode index (s ¼ s0 in the sum
appearing in Eq. (1)), since perfectly degenerate vibrational modes
are absent (or a negligible fraction of the total number of modes,
this because degeneracies are due to point-group symmetries80

and these are supposed to be absent in a realistic finite-size model
of a glass). For an ideal, infinitely large model of a glass, which can
be described accurately by a calculation at q= 0 only, one would
obtain κP= 0, since at q= 0 acoustic vibrations have zero specific
heat and the time-reversal symmetry of the dynamical matrix80

implies that the group velocities for optical vibrations are zero; the
only non-zero contribution to the total conductivity would be the
coherences conductivity κC, provided some non-zero off-diagonal
velocity-operator elements exists (a condition that is verified when
vibrations are not Anderson-localized9,10).
As discussed in the previous section, a technique to extrapolate

the bulk limit from finite-size models consists in relying on Fourier
interpolation to sample vibrations in a n × n × n Born von-Karman
supercell of the finite periodic reference cell, while remaining
aware of the limitations stemming from having a disorder length
scale limited by the size of the reference cell. Figure 3b shows that
such Fourier interpolation allows to greatly improve the accuracy
of the thermodynamic predictions for the 192-atom model;
specifically, the vibrational density of states (vDOS) of the 192-
atom model computed using a 3 × 3 × 3 q mesh is in very good
agreement with the vDOS of both the 1536- and 5184-atom
models computed at q= 0 only. For reference cells larger than a
certain size, one expects the conductivities computed at q= 0

a)

b)

Fig. 3 Vibrational frequencies and anharmonic linewidths of v-SiO2. a The scatter points are the linewidths as a function of frequency and
temperature for the 192-atom model; these are computed at q= 0 only accounting for third-order anharmonicity87–91 and natural-abundance
isotopic mass disorder92. The solid lines represent a coarse graining of the frequency-linewidth distribution into a single-valued function51,93

Γa[ω] (see Methods). The horizontal lines show the average energy-level spacing for the 192-atom (black), 1536-atom (dark gray), and 5184-
atom (light gray) models; for each model all the vibrations with linewidth around and below the corresponding average energy-level spacing
line are not accurately accounted for by the bare WTE (Eq. (1) and (4)), and need to be regularized (see text). b The solid red line is the
vibrational density of state (vDOS) of the 5184-atom model computed at q= 0. The dashed yellow (orange) line is the vDOS of the 192-atom
model computed using a 3 × 3 × 3 q mesh (1536-atom model computed at q= 0). The vertical lines show how the vibrations of v− SiO2 are
sampled using the 192-atom model at q= 0 only (first row, corresponding to the abscissas of the scatter points in a)), using the 192-atom
model and relying on q interpolation on a 3 × 3 × 3 mesh (second row), using the 1536-atom model at q= 0 only (third row), and using the
5184-atom model at q= 0 only (last row).
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only or using a n × n × n Fourier interpolation to be practically
indistinguishable. To support this expectation, we note that the
sum over the modes appearing in Eq. (1) contains ð3NatÞ2 term, for
a disordered system without degeneracies 3Nat diagonal (s ¼ s0)
terms are ‘populations’ that vanish at q= 0 due to time-reversal
symmetry, the remaining ð3NatÞ2 � 3Nat terms are ‘coherences’.
The difference between a conductivity calculation at q= 0 only
and one on the n × n × n mesh is expected to go to zero with a
speed directly correlated with the ratio between the number of
diagonal elements and total number of elements, i.e., 3Nat

ð3NatÞ2 ¼
1

3Nat
.

In order to test the accuracy of the bulk-limit extrapolations
performed using the q interpolation, and to verify the aforemen-
tioned expectations, one has to perform calculations in models
having different sizes (ideally in one large model that already
describes the bulk limit and for which the q interpolation is
therefore not needed, and in one small model where using or not
the interpolation technique is expected to yield appreciable
effects). In Fig. 4 (upper panel) we compare the ‘bare’ WTE
conductivity (Eq. (1) and (4)) obtained using the 192-atom model
(blue), the 1536-atom model (green), or the 5184-atom model
(orange). For each model two conductivity calculations are
performed: sampling q= 0 only (solid lines) or sampling a
3 × 3 × 3 q mesh (dashed lines); the most dramatic difference
between these two calculations occurs in the low-temperature
limit, where they yield conductivities having opposite trends. The
divergence of the WTE conductivity computed using the Fourier
interpolation is a finite-size effect arising from the periodic-
boundary conditions (a reminiscence of the divergence at low
temperatures of the conductivity of bulk crystals that is cutoff in
real crystals by the scattering with grains’ or samples’ boundaries);
such an effect occurs at lower temperatures for larger modes;
thus, it is expected to vanish in the ideal glass limit, i.e., for
Nat→∞ κ(T) in the above-the-plateau regime is expected to
follow the same trend observed in the calculation at q= 0 and in
experiments (more on this later). We note, in passing, that this
reasoning also explains the opposite trend of the broadening
versus AF conductivity curve computed at q= 0 only or using the
Fourier interpolation shown in Fig. 2. In fact, in the limit of
vanishing broadening η→ 0 only the term s ¼ s0 determines the
value of the sum in Eq. (1), yielding κ� 1

VNC
P

qs
C½ωðqÞs �

jjvðqÞs;s jj2
η . Such a

limiting expression for the conductivity diverges when the Fourier
interpolation is adopted, since at q ≠ 0 the diagonal velocity-
operator elements are non-zero; in contrast, in a calculation at
q= 0 only the time-reversal symmetry implies that the diagonal
velocity-operator elements are zero; thus, in this case the
conductivity approaches zero when the broadening goes to zero.
We note that for the 1536- and 5184-atom models at

temperatures higher than ~ 100 K the WTE conductivity obtained
relying on the Fourier interpolation is practically equal to the
conductivity obtained evaluating the WTE conductivity at q= 0
only. In contrast, for the 192-atom model the conductivity
obtained from a calculation at q= 0 only is always significantly
different from that obtained using a computationally converged
3 × 3 × 3 q mesh (we have verified that using a denser 5 × 5 × 5 q
mesh yields results practically equivalent to the 3 × 3 × 3 q mesh).
Most importantly, for temperatures higher than 250 K the WTE
conductivity obtained from the 192-atom model using the Fourier
interpolation is practically indistinguishable from the conductiv-
ities obtained from the 1536- and 5184-atom models, confirming
that the interpolation allows to accelerate convergence in the
calculation of the bulk limit.
The considerations above show that in finite-size models the

WTE conductivity with Fourier interpolation is accurate up to a
lower-bound temperature TL (roughly defined as the temperature
at which the temperature-conductivity curve changes concavity).
Below TL finite-size effects lead to a crystal-like divergence, which

emerges as a consequence of having a significant number of
vibrational modes with anharmonic linewidths ℏΓ(q)s smaller than
ℏΔωavg (see Fig. 3); from a microscopic viewpoint, this implies that
couplings in the distribution (4) between quasi-degenerate
eigenstates—which are present in an ideal glass, see Sec. Protocol
to evaluate the harmonic Allen-Feldman conductivity with finite-size
models—are not correctly accounted for. Thus, the finite-size
model fails to represent the harmonic conduction described by
the distribution (5) and accurate for an ideal glass at low
temperature (here ‘low temperature’ must be interpreted keeping
into account that this work is focused on the above-the-plateau
temperature regime, i.e., T > 30K). This limitation can be overcome
relying on the fact that in the low-temperature limit anharmonicity
progressively phases out; thus, the AF model becomes increas-
ingly more accurate and can be evaluated using the protocol

Fig. 4 Convergence of the anharmonic Wigner conductivity in
finite-size v-SiO2 models. Top, bare WTE conductivity (Eqs. (1), (4))
from the 192-atom (blue), 1536-atom (green), or 5184-atom (orange)
model, and evaluated at q= 0 (solid lines) or on a 3 × 3 × 3 q mesh
to extrapolate to the bulk limit (dashed lines). The crystal-like
divergence of the WTE conductivity computed using the q mesh is a
finite-size effect, occurring at lower temperatures for larger models.
For T > 250 K, in the 1536-atom and 5184-atom models the
conductivities computed at q= 0 are indistinguishable from those
computed using the q mesh; for the 192-atom model, instead,
employing the q interpolation is crucial to obtain the correct bulk
limit. Bottom, regularized WTE conductivity (rWTE) for the 192- (solid
black) or 5184-atom (empty diamonds) model, both computed
using a 3 × 3 × 3 q mesh. The rWTE smoothly connects the correct
low- and high-temperature limits, i.e., the fully q-sampled AF
conductivity (as in Fig. 1, the dashed-dotted red line is the 192-
atom model, empty red circles are the 5184-atom model) and the
bare WTE (dashed blue), respectively. Inset: the bare WTE
conductivity computed at q= 0 for the 1536- and 5184-atom
models are practically equal to the q-sampled rWTE conductivity of
the 192-atom model; for the 1536- and 5184-atom models the bare
WTE conductivity at q= 0 is practically equivalent to the rWTE
conductivity computed on a 3 × 3 × 3 q mesh.
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discussed in the previous section. Therefore, we introduce a
regularization protocol for the WTE that allows to determine its
bulk limit using Fourier interpolation, and accounts for the
prescriptions needed to correctly evaluate the low-temperature
harmonic limit discussed before. Specifically, we choose for our
protocol a Voigt profile94—a two-parameter distribution
F½ΓðqÞsþΓðqÞs0 ;η� obtained as a convolution between a Lorentzian
with FWHM ΓðqÞs þ ΓðqÞs0 and a Gaussian with variance η2π/2 (see
Methods for details)—in place of the one-parameter distribution
F½ΓðqÞsþΓðqÞs0 � appearing in Eq. (1). By doing so Eq. (1) reduces to the
AF harmonic limit at low temperatures (where
Δωavg � η � 1

2 ðΓðqÞs þ ΓðqÞs0 Þ), and to the anharmonic WTE at
intermediate and high temperatures (where
Δωavg � η � 1

2 ðΓðqÞs þ ΓðqÞs0 Þ). Hereafter the conductivity com-
puted using the Fourier interpolation (to determine the bulk limit)
and the Voigt distribution (to correctly describe the low-
temperature harmonic limit) will be referred to as ‘regularized
WTE’ (rWTE), to distinguish it from the ‘bare’ WTE (Eq. (1) with the
Lorentzian distribution (4)). As shown in the bottom panel of Fig.
4, the rWTE conductivity reduces to the AF harmonic conductivity
for temperatures lower than TL, and to the bare anharmonic WTE
conductivity for temperature higher than TL, smoothly connecting
these two limits. The parameter η entering in the Voigt profile has
to be chosen equal to the value determining the beginning of the
convergence plateau (see vertical dotted lines in Fig. 2). Using a
smaller value of η would not allow to recover in the harmonic limit
(Γ(q)s→ 0 ∀ q, s) the bulk AF conductivity discussed in Sec. Protocol
to evaluate the harmonic Allen-Feldman conductivity with finite-size
models, since in this limit the Voigt profile would reduce to a
Gaussian too narrow to capture the couplings between neighbor-
ing eigenstates. Conversely, choosing a larger value of η would
artificially alter the effects of anharmonicity, since the Voigt profile
reduces to the anharmonic Lorentzian distribution when η �
1
2 ðΓðqÞs þ ΓðqÞs0 Þ and a too large value of η (e.g., orders of
magnitude larger than Δωavg) would cause an unnecessary,
artificial renormalization of anharmonic effects. In fact, when
Δωavg≪ Γ(q)s ∀ q, s the linewidths are large enough to describe
couplings between different vibrational eigenstates, and thus do
not need to be renormalized to enforce the harmonic AF limit (we
recall that in the WTE framework at finite temperature the
couplings and related wave-like tunneling events are not limited
to quasi-degenerate eigenstates). In practice, using the rWTE
protocol with this prescription for η ensures that the low-
temperature harmonic AF limit is accurately described, and the
effects of anharmonicity are considered only when they are not
altered by finite-size effects. The inset of Fig. 4 highlights that the
rWTE conductivities evaluated on a 3 × 3 × 3 q-mesh for the 192-,
1536-, and 5184-atom models are practically indistinguishable. We
note in passing that for the 1536- and 5184-atom models the WTE
conductivity evaluated at q= 0 only is equal to the rWTE
conductivity evaluated on a 3 × 3 × 3 q mesh, showing that
models containing more than 1500 atoms are large enough to
describe the bulk limit without relying on the q interpolation and
on the regularization; these considerations are further discussed in
Fig. 12 in the Methods. In summary, we have shown that the rWTE
regularization protocol greatly accelerates the convergence of the
conductivity calculation, allowing to determine the conductivity of
v− SiO2 at non-cryogenic temperatures using models containing
less than 200 atoms and having linear size of about 1.5
nanometre. Our findings are supported by past work: refs. 63,95

showed that models of vitreous silica containing 72 or 144 atoms
can be used to rationalize experimental measurements of
vibrational properties relevant for heat conduction at non-
cryogenic temperatures; the experiments of refs. 96,97 showed
that the typical propagation lengthscale of vibrations in silica are
in the sub-nanometre region at non-cryogenic temperatures.
More generally, our approach is expected to apply equally well to
other ‘strongly disordered’ amorphous solids, in which structural

disorder is significant already at the sub-nanometre length scale
(e.g., amorphous Al2O3, as discussed in ref. 98). It is also worth
mentioning that amorphous solids with weaker or more complex
disorder, e.g., involving phase separation99,100, or structural motifs
with a characteristic lengthscale of few nanometres101, are
expected to require primitive cells including these motifs and
thus containing thousands of atoms.

First-principles calculations and comparison with experiments
Hitherto, no theoretical work has managed to evaluate the
thermal conductivity of v-SiO2 (and more generally of any
amorphous solid) from first principles and accounting for the
interplay between anharmonicity, disorder, and the Bose-
Einstein statistics of atomic vibrations. More precisely, past
works studied the thermal conductivity of v-SiO2 using a variety
of approaches, including: (i) the AF model in combination with
empirical102 or semi-empirical21 potentials; (ii) classical mole-
cular dynamics21,24,35,36; (iii) first-principles molecular
dynamics26. It is worth highlighting that the determination of
the thermal conductivity of amorphous solids from first-
principles molecular dynamics is a recent advance in the
field26,32,33. These pioneering works focused on the high-
temperature regime, where the difference between the actual
quantum Bose-Einstein occupation numbers of vibrations and
the classical (equipartition-determined) occupation numbers
implicit in the molecular-dynamics simulations39 is minimal. We
have seen the aforementioned rWTE protocol allows to
accurately determine the bulk thermal conductivity of glasses
also at temperatures where quantum effects are relevant and
using models with a size ( ≲ 200 atoms) that is within the reach
of first-principles techniques; so we now employ these to
compute the conductivity of v-SiO2.
We show in Fig. 5a the bulk rWTE conductivity (solid lines) of a

‘192(D)’ model of v-SiO2, which contains 192 atoms and was
generated relying on density-functional theory (DFT)62,65 (this
model is different from the 192-atom model generated with GAP
and discussed in the previous sections; to avoid confusion we will
henceforth denote the 192-atom model discussed in the previous
sections with ‘192(G)’). To assess the effects of anharmonicity on
the conductivity, also the harmonic AF conductivity is shown
(dotted lines). All the parameters entering in the rWTE or AF
expressions have been evaluated either from first-principles (red,
see Methods for details), or using a state-of-the-art GAP
potential60 (green), or using the well known semi-empirical BKS
potential66,67 (purple). In all these cases we used a broadening
η= 4 cm−1 for the Voigt distribution, this value was determined
from a convergence test analogous to that reported in the upper-
left panel of Fig. 2. Orange and purple scatter points are results
from first-principles GKMD (using the PBE functional) and classical
GKMD using the BKS potential, respectively, by Ercole et al.26;
these are meant to be accurate at high temperature where the
quantum Bose-Einstein occupations approach the classical (equi-
partition) occupations underlying the GKMD simulations39. Impor-
tantly, Fig. 5a shows that the conductivity of v-SiO2 is negligibly
affected by anharmonicity. In fact, the rWTE perturbatively
accounts for anharmonicity at the lowest cubic order, and yields
a thermal conductivity that is (i) practically indistinguishable from
that obtained employing the harmonic Allen-Feldman theory over
the entire temperature range analyzed (30–1300 K); (ii) in good
agreement at high temperature (T≳ 500 K) with the conductivity
obtained by Ercole and Baroni using GKMD26, which accounts for
anharmonicity exactly (in the high-temperature limit our rWTE
calculations, either from first-principles or based on the BKS
potential, are in very good agreement with the corresponding
GKMD predictions. We also note that the first-principles GKMD
results of ref. 26 were obtained from a 52-ps-long simulation and
using a 432-atom model, while the computationally cheaper BKS-
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based GKMD calculations of ref. 26 were obtained from a 1 ns-long
calculation and using 432-atom and 10800-atom models (compa-
tible results were obtained for these different sizes). Clearly,
shorter first-principles GKMD calculations have a larger uncer-
tainty; we highlight how for T>500 K Ercole’s first-principles GKMD
calculations oscillate above and below the classical limit of our AF
(DFT) calculations. Figure 5a reinforces the notion that the
quantum Bose-Einstein statistics of vibrations plays a crucial role
in determining the thermal conductivity39 at low temperatures,
since the conductivities computed accounting for the quantum
statistics (and for the correct bulk limit) increase up to saturation
with temperature, while the GKMD conductivities are governed by
classical equipartition and are roughly independent from tem-
perature. In addition, we highlight how studying the same 192(D)
structure using first-principles techniques (red) or the GAP
potential (green) yields very similar results, further endorsing the
notion that machine-learned GAP potentials can have an accuracy
comparable to that of first-principles techniques103,104. In contrast,
using the semi-empirical BKS potential yields results that are
significantly different from those obtained from first-principles.
Importantly, Fig. 5b shows that the first-principles rWTE con-
ductivity is in good agreement with experiments in the
temperature range from 50 to ~450 K; at higher temperatures
the rWTE predicts a saturating trend for the conductivity (which
mirrors the saturating trend of the specific heat, see Fig. 13 in the
Methods), while experiments display an increasing drift. Past
experimental work (e.g., ref. 105 and references therein) hinted that
radiative energy transfer causes an increase of the thermal
conductivity in vitreous silica at high temperature, and highlighted
how accurately distinguishing the conduction and radiation
contributions to heat transfer is particularly challenging106 (among
the various sources of difficulty, refs. 107,108 mentioned how the
interplay between conduction and radiation depends from the
size and shape of the sample used in the experiment). Thus, in Fig.
5 the discrepancy between theory and experiments at high
temperature might be due to having non-negligible radiative
contributions in the experiments106,107, and to not accounting for
these radiative contributions in our calculations.
In Fig. 5, the bulk limit has been computed using a 3 × 3 × 3

Fourier-interpolation mesh (thus corresponding to vibrations in a
system containing 192 ⋅ 33= 5184 atoms); Fig. 6 demonstrates

that using this sampling achieves computational convergence,
since increasing the mesh to 5 × 5 × 5 yields practically indis-
tinguishable results (empty red diamonds refer to a 5 × 5 × 5
mesh, solid red line refers to a 3 × 3 × 3 mesh). Figure 6 also shows
that studying both the 192(D) and the 192(G) models with GAP
gives high-temperature limits for their rWTE conductivities
differing by about 9%. Such a small difference is particularly
reassuring, given the two different methods employed to produce
these models (bond switching in the first case62,65 and melt-

Fig. 6 rWTE conductivity of various v-SiO2 models. Solid red is the
first-principles rWTE conductivity of the 192-atom model generated
relying on first-principles calculations65, computed using a
3 × 3 × 3 q mesh; using a denser 5 × 5 × 5 q mesh does not yield
significant changes. The solid-gray and dashed-blue lines show the
first-principles rWTE conductivity computed using a 5 × 5 × 5 qmesh
for a 108-62 and 144-atom63 model, respectively; both models have
been generated relying on first-principles calculations. The con-
ductivities of the 192- (black line), 1536- (empty green squares), and
5184-atom (dashed orange) models discussed in Fig. 4 are also
reported (these are labeled with the suffix `(G)' to distinguish them
from the structures generated relying on first-principles techniques,
which are labeled with `(D)'); the horizontal lines highlight the 9%
difference between the rWTE conductivities of the 192(D) and
192(G) models, both described with GAP.

a) b)

Fig. 5 Thermal conductivity of v-SiO2: theory vs experiments. a Solid (dotted) lines are the rWTE (AF) conductivities for a 192-atom (`192(D)')
model of v-SiO2 generated using first-principles techniques65, repeated periodically 3 × 3 × 3 times and studied using first-principles DFT
calculations (red), a GAP potential (green), or the BKS potential (purple). The dashed lines are the classical AF conductivities (same color code),
corresponding to vibrational modes having specific heat always equal to kB39. Cyan and purple scatter points are predictions from first-
principles and classical (BKS-based) molecular dynamics simulations, respectively, from Ercole et al.26. These MD calculations are governed by
classical equipartition39 and generally agree with the corresponding classical AF conductivities (the increasingly larger differences between
MD and classical AF observed lowering temperature may be due to the decrease of the accuracy with which atomic vibrations are sampled in
MD simulations when temperature is lowered). Importantly, in the high-temperature limit, when the correct quantum Bose-Einstein statistics
of vibrations yields a specific heat approaching the classical limit, the MD calculations are in good agreement with the corresponding (first-
principles- or BKS-based) rWTE predictions. b Scatter points are experiments from Wray et al.143, Kanamori et al.107, Touloukian et al.144,
Sergeev et al.145, Cahill146, Lee and Cahill (190 nm sample)147, Abdulagatov et al.148, Yang et al.106, and Heraeus139. The red line is the (most
accurate) first-principles rWTE conductivity, which is in agreement with experiments at temperatures where radiative effects are negligible
(T≲ 450 K).
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quench in the second case60). Moreover, Fig. 6 shows that the
rWTE conductivity computed from first principles using the 192(D)
model (solid red) is very similar to the conductivity computed
from first-principles density-functional theory using models
containing 10862 (solid gray) or 144 atoms63,64 (dashed blue),
both generated relying on first-principles calculations (therefore,
we henceforth refer to these models to as ‘108(D)’ and ‘144(D)’,
respectively).

Velocity operator, anharmonicity, trend of κ(T)
Now we want to rely on the results obtained for v-SiO2 to gain
general insights on how anharmonicity affects the high-
temperature trend for the κ(T) curve in glasses. We start by
recalling that, according to the expression for the rWTE
conductivity (Eq. (1) with the Voigt distribution discussed in Sec.
Extension of the protocol to evaluate the anharmonic Wigner
conductivity), heat conduction in strongly disordered glasses is
mainly determined by couplings between vibrational eigenstates.
At low temperature anharmonicity phases out and the rWTE
conductivity reduces to the AF limit, where only couplings
between quasi-degenerate vibrational eigenstates contribute to
heat transport (we recall that representing the Dirac delta
appearing in the AF expression with a light-tailed Gaussian
ensures that this analytical property is satisfied in numerical
calculations). The strengths of these AF couplings is determined
exclusively by the square modulus of the corresponding
quasi-degenerate velocity-operator elements (13 kvðqÞs;s0 k2 with
jωðqÞs � ωðqÞ0sjtΔωavg), and consequently all the temperature
dependence of the AF conductivity is inherited by the quantum
specific heat (in this work the frequencies and velocity operators
are considered independent from temperature, since we employ
the standard approximation of considering the force constants to
be independent from temperature, details on the accuracy of this
approximation in vitreous silica are discussed in the Methods). In
contrast, when the linewidths are larger than the average energy-
level spacing (e.g., at high temperature, see Fig. 3) the rWTE
conductivity is determined by velocity-operator elements cou-
pling eigenstates having energy difference spanning the entire
energy range. More precisely, as temperature and anharmonic
linewidths increase, the Voigt profile reduces to a fat-tailed
Lorentzian distribution (4) with FWHM determined by the
linewidths. Such a fat-tailed distribution becomes broader as
temperature increases (Fig. 3); when determining the conductivity,
this gives more weight to velocity-operator elements with
increasingly larger frequency difference. Therefore, at high
temperature (when the specific heat reduces to the constant

classical limit kB), the variation of the elements of the velocity
operator with respect to the energy differences _ωd ¼ _ðωðqÞs �
ωðqÞs0 Þ determines the scaling of the rWTE conductivity: matrix
elements increasing or decreasing with ωd imply a conductivity
increasing or decreasing with temperature. From this reasoning
and from the saturating trend of the temperature-conductivity
curve for vitreous silica shown in Fig. 5, we expect the velocity-
operator elements for v-SiO2 to be approximately constant with
respect to ωd. To verify this prediction, we plot in Fig. 7a the
velocity-operator elements for v-SiO2 (we show the velocity
operator for the 192(D) model and computed from first principles;
the other models yield practically indistinguishable results when
analyzed from first principles or using GAP) as a function of the
energy difference ℏωd and of the energy average
_ωa ¼ _ðωðqÞs þ ωðqÞs0 Þ=2:

jvavgωaωd j2
D E

¼ ½Gðωa;ωdÞ��1 1
VNc

P
q;s;s0

kvðqÞs;s0 k2
3

´ δ ωd � ðωðqÞs � ωðqÞs0 Þ
� �

δ ωa � ωðqÞsþωðqÞs0
2

� �
;

(7)

Gðωa;ωdÞ is a density of states that serves as normalization (see
Methods for details). The one-dimensional projections in Fig. 7b
show that these velocity-operator elements are almost constant at
varying ℏωd for all values of ℏωa. These findings validate the
reasoning above: the variation of the velocity-operator elements
1
3 kvðqÞs;s0 k2 with respect to the energy differences ℏωd determines
how the conductivity varies with increasing temperature, implying
that a saturating temperature-conductivity curve is obtained when
most of the velocity-operator elements do not vary with ℏωd. The
reasoning above also explains the small or negligible effects of
anharmonicity on the conductivity of v-SiO2 discussed before,
since having a velocity operator displaying a negligible depen-
dence on ℏωd implies that the rWTE conductivity does not vary
appreciably when the linewidths (broadening of the Lorentzian
distribution) vary, and therefore it does not significantly differ
from the AF conductivity (computed using a constant broadening
η and determined only by velocity-operator elements in the limit
ℏωd→ 0, see Methods for details).

Thermal diffusivity
In order to gain further insight on the microscopic mechanisms
underlying conduction, it is useful to resolve how each vibrational
mode contributes to transport; i.e., the quantity of heat that it
carries and the rate at which it diffuses. It is possible to extract the

b)a)

Fig. 7 Velocity operator of vitreous silica and conductivity saturation with temperature. a Average square modulus of the velocity-
operator elements hjvavgωaωd j2i for the 192(D) model of v-SiO2, computed from first principles and represented as a function of the energy

differences (_ωd ¼ _ðωðqÞs � ωðqÞs0 Þ) and averages (_ωa ¼ _ ωðqÞsþωðqÞs0
2 ) of the two coupled eigenstates (having wavevector q and modes s; s0;

see text for details). The one-dimensional projections in (b) show that the elements hjvavgωaωd j2i are almost unchanged at a given average
frequency for increasingly large energy differences. For increasingly larger temperatures, these almost-constant elements drive the saturation
the rWTE conductivity (Eq. (1) with the Voigt distribution), yielding results very close to the Allen-Feldman conductivity curve (Fig. 5), which is
determined exclusively by velocity-operator elements with ℏωd→ 0.
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contribution of a single vibration to thermal transport by
factorizing the single-vibration specific heat C(q)s in the regular-
ized rWTE conductivity (1) recasting it as κ ¼ 1

VNc

P
qsCðqÞsDðqÞs,

with D(q)s being the ‘anharmonic thermal diffusivity’. The
expression for D(q)s is determined by such factorization and by
the requirement that in the coherences’ coupling between two
vibrations (q)s and ðqÞs0 each contributes to the coupling with a
weight equal to the relative specific heat41 (e.g., for vibration (q)s
the weight is CðqÞs

CðqÞsþCðqÞs0 , and correspondingly for vibration ðqÞs0 the
weight is CðqÞs0

CðqÞsþCðqÞs0 ):

DðqÞs ¼ P
s0

ωðqÞsþωðqÞs0
2½CðqÞsþCðqÞs0 �

CðqÞs
ωðqÞs þ

CðqÞs0
ωðqÞs0

h i kvðqÞs;s0 k2
3

´ πF½ΓðqÞsþΓðqÞs0 ;η�ðωðqÞs � ωðqÞs0 Þ:
(8)

The goal of this decomposition is to resolve the rate at which the
heat carried by a vibration with wavevector q and mode s diffuses.
We note that Eq. (8) accounts for the effects of anharmonicity on
vibrations’ diffusion by means of the linewidths, depends on
temperature through both the specific heat and the linewidths, and
applies to both glasses and crystals—in the former case the
wavevector q is just a label without direct physical meaning (we will
discuss later that for glasses the diffusivity has to be represented as
a function of frequency to be well defined), while in the latter case
such an expression is accurate if and only if the SMA is accurate and
η= 0 is used (this last condition implies that the Voigt distribution
analytically reduces to the Lorentzian distribution (4)). It is worth
mentioning that in the case of simple crystals, characterized by
κP≫ κC, the term s0 ¼ s in Eq. (8) yields the well known expression
obtained from Peierls’s theory, which interprets the diffusivity
(averaged over the three Cartesian directions) as
DðqÞs ¼ 1

3 jjvðqÞs;sjj2τðqÞs, where v(q)s,s is the free propagation
velocity of the particle-like heat carrier with wavevector q and
mode s, and τ(q)s is the inter-collision time. In finite-size models of
glasses it is most informative to represent the diffusivity as a
function of frequency, first because the specific heat of a vibration
depends on its frequency ω (C(q)s= C[ω(q)s], see Eq. (2)), and
second because the vibrational frequencies determine measurable
quantities such as the vibrational density of states (in contrast, as
mentioned before, in finite-size models of glasses quantities such as
the wavevectors q span a BZ that depends on the model and are
used only as a mathematical tool in the determination of the bulk
limit). Thus, we represent the thermal diffusivity as a function of
frequency with Dðω; TÞ ¼ ½gðωÞVNc��1P

q;sDðqÞsδðω� ωðqÞsÞ
(here gðωÞ ¼ ðVNcÞ�1P

q;sδðω� ωðqÞsÞ is the vibrational density
of states (vDOS), which can be considered independent from
temperature, as also shown in Fig. 13 in the Methods; the Dirac δ is
broadened with a Gaussian distribution having a broadening
determined from the convergence test discussed in Sec. Protocol to
evaluate the harmonic Allen-Feldman conductivity with finite-size
models). In the low-temperature and infinite-reference-cell limit,
Eq. (8) reduces to the temperature-independent harmonic diffusiv-
ity introduced by Allen and Feldman8. This follows from the
properties of the Voigt distribution F½ΓðqÞsþΓðqÞs0 ;η� discussed in Sec.
Extension of the protocol to evaluate the anharmonic Wigner
conductivity; in the following the dependence from temperature
will be shown explicitly for the sake of clarity. In this frequency-
dependent representation the conductivity reads

κðTÞ ¼
Z 1

0
gðωÞCðω; TÞDðω; TÞdω; (9)

and intuitively allows to resolve the contribution of vibrations with
frequency ω to heat transport through their density of states g(ω),
the heat carried C(ω, T), and the diffusion rate D(ω, T). We report in
Fig. 8 all these quantities. In panel a) we show the vDOS for the
192(D) v-SiO2 model computed using first principles calculations
(red) or the GAP potential (green). The main difference between

these calculations is that the GAP potential slightly stretches the
high-frequency part of the spectrum toward higher values; the
effects on the thermal conductivity of such a slight stretch of
vibrational energies is barely appreciable, as shown in Fig. 5. The
dashed-blue line and the gray area are the vDOS for the 192(G)
and 5184(G) models, respectively; both these vDOS are obtained
using GAP, the former is computed using a 3 × 3 × 3 q interpola-
tion mesh, while the latter is computed at q= 0 only. The
similarity between these two curves further supports the usage of

a)

b)

c)

Fig. 8 Vibrational DOS, specific heat, and diffusivity of vitreous
silica. a Red and green are the vDOS for the 192(D)65 model (192-
atom model generated from first-principles DFT simulations),
obtained evaluating the frequencies of such model either from first
principles or from the GAP potential, and using a 3 × 3 × 3 q mesh.
The dashed blue line and gray area are the vDOS of the GAP-
generated60 192- and 5184-atom models, computed using GAP as in
Fig. 4 (i.e., relying on a 3 × 3 × 3 q mesh in the former case, and at
q= 0 only in the latter case). b Solid lines are the quantum harmonic
specific heat as a function of frequency and temperature from Eq. (2).
The dashed line are the classical specific heat. c Harmonic Allen-
Feldman thermal diffusivity computed from Eq. (8) using
Γ(q)s= 0 ∀ q, s and with the models discusses in a (same parameters
and color code); the inset shows that in v-SiO2 (5184(G) model) the
AF diffusivity is very similar to the anharmonic diffusivity (full Eq. (8)).
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the q interpolation technique to sample more accurately the
vibrations in a glass. Figure 8a shows that the vDOS is slightly
affected by the method used to generated the v-SiO2 model, with
the 192(G) and 5184(G) models generated using the melt-quench
method60 leading to vDOS slightly different from the 192(D)
model, which was generated using the bond-switching techni-
que62,65. In panel b of Fig. 8 we report the quantum harmonic
specific heat as a function of frequency, showing how increasing
temperature populates vibrational modes of increasingly larger
frequency that consequently contribute to transport. We highlight
how, for all the temperatures considered, the quantum specific
heat differs from the constant classical (equipartition) limit
(obtained letting T→∞ in Eq. (2)); this reiterates the important
role of quantum statistics of vibrations in thermal transport39.
Panel c shows the harmonic AF diffusivity (Eq. (8) using
Γ(q)s= 0 ∀ q, s) for the models of v-SiO2 discussed in panel a)
(same parameters and color code are used). Considerations
analogous to those for the vDOS in panel a) hold: the method
used to generated the v-SiO2 model has a small but appreciable
effect on the diffusivity, with the 192(D) model generated using
the bond-switching method having a larger diffusivity at low
frequency. Overall, the combined variations of vDOS and
diffusivity due to the technique used to generate the model, or
the approach (first-principles calculations or GAP) used to evaluate
frequencies and velocity operators, yield differences on the
thermal conductivity within 9%, as shown before in Fig. 6. The
inset of panel c) shows that the anharmonic diffusivity (colored
lines, computed from Eq. (8)) changes very little with temperature,
and is practically very similar to the temperature-independent AF
diffusivity (gray area, obtained using Eq. (8) with Γ(q)s= 0 ∀ q, s
and η determined from the convergence test detailed in Fig. 2);
the inset shows calculations with GAP on the 5184(G) model,
analogous considerations hold for the other models studied from
first-principles or using GAP.

DISCUSSION
We have discussed a computational protocol that allows to
determine from finite-size models of glasses containing less than
200 atoms—thus within the reach of standard first-principles
approaches—the bulk limit of the harmonic Allen-Feldman
conductivity8,9, as well as of the anharmonic Wigner conductiv-
ity40,41. To determine the bulk limit of the harmonic AF
conductivity the following techniques are employed: (i) Fourier
interpolation is used to improve the sampling of the vibrational
spectrum of the glass model; (ii) the Dirac δ appearing in the AF
conductivity is represented with a Gaussian broadening larger
than the average vibrational energy-level spacing. The light-tailed
Gaussian broadening is used in place of the originally proposed
fat-tailed Lorentzian broadening8,9, to ensure that only quasi-
degenerate velocity operator elements determine the thermal
conductivity in the low-temperature harmonic limit, where
anharmonicity phases out. To evaluate the bulk limit of the
Wigner conductivity, the protocol uses a Voigt profile—a two-
parameter distribution obtained as a convolution between the
Gaussian used in the AF calculation, and the Lorentzian with
FWHM determined by the linewidths appearing in the Wigner
conductivity. The Voigt profile ensures that the effects of
anharmonicity are considered only when they are not altered by
finite-size effects (i.e., the linewidths are larger than the average
energy-level spacings, and of the smallest broadening yielding
computational convergence in an Allen-Feldman conductivity
calculation). This allows to retain in finite-size models of glasses
the physical property that heat transfer via a wave-like tunneling
between neighboring (quasi-degenerate) vibrational eigenstates
can occur even in the limit of vanishing anharmonicity, provided
these eigenstates are not Anderson-localized, i.e., that they are
coupled by non-zero velocity-operator elements.

The protocol has been validated on the paradigmatic glass v-
SiO2, using a state-of-the-art GAP potential and atomistic models
containing 192, 1536, or 5184 atoms60 to compute vibrational
states; we have shown that employing the protocol on a 192-atom
model allows to obtain harmonic (AF) and anharmonic (rWTE)
conductivities in perfect agreement with those of the medium
(1536-atom) and large (5184-atom) models generated using the
same technique.
After validation, we have used the protocol to predict the AF

and rWTE conductivities of v-SiO2 fully from first-principles. We
have shown that anharmonicity does not significantly affect the
conductivity of v-SiO2, even at high temperatures, since the AF
conductivity is very similar to the rWTE conductivity over the
entire temperature range analyzed (30 < T < 1300 K). We have
supported this finding by showing that the rWTE conductivity,
which accounts for anharmonicity at the lowest (third) perturba-
tive order41, is compatible at high temperatures with the
conductivity obtained from first-principles GKMD from Ercole et
al.26 (we recall that GKMD simulations are accurate at high
temperature, where the quantum specific heat approaches the
classical limit and anharmonic effects are maximized). Our
calculations are in agreement with experiments in the tempera-
ture range 50≲ T≲ 450 K, but do not describe the surge of the
conductivity observed at higher temperatures. Future work will
aim at understanding if such a discrepancy can be related, as it
seems likely, to radiative effects105.
The results obtained for v-SiO2 have allowed us to gain general

insights on how anharmonicity affects the thermal conductivity of
glasses at high temperature. Specifically, we have shown that the
high-temperature trend of the conductivity is determined by how
off-diagonal velocity-operator elements—which couple pairs of
vibrational eigenstates (q)s and ðqÞs0 , allowing tunnelling between
them—vary as a function of the energy difference
_ωd ¼ ωðqÞs � ωðqÞs0 . Velocity-operator elements increasing
(decreasing) with ℏωd drive a conductivity increase (decrease)
with temperature. In the specific case of v-SiO2, the saturating
trend of the conductivity derives from velocity-operator elements
that are constant with respect to the energy difference between
the eigenstates coupled.
Finally, we have interpreted heat conduction in terms of

frequency-resolved thermal diffusivities for vibrations, showing
that the harmonic Allen-Feldman diffusivity characterizes accu-
rately thermal transport in vitreous silica at the microscopic level.
This work paves the way to study the thermal conductivity of
glasses from first principles (see e.g., ref. 98 for a recent application
of this protocol to amorphous Al2O3 at various densities), and will
be particularly relevant to investigate the thermal properties of
amorphous materials for which developing quantum-accurate
interatomic potentials is particularly challenging or unpractical.

METHODS
Accuracy of the SMA approximation in glasses
Glasses feature a low thermal conductivity, originating from
strong scattering of vibrations due to anharmonicity or disorder.
Past works41,69,89,109 have shown that as scattering becomes
stronger, the relaxation to equilibrium of the vibrational excita-
tions becomes faster, and therefore the SMA—which approx-
imates the collision operator as in Eq. (4) (see ref. 41)—becomes
more accurate. These considerations already suggest that the
SMA approximation is accurate in vitreous silica. To further
support these expectations, we investigated numerically the
accuracy of the SMA approximation in the crystalline silica
polymorphs α-cristobalite and α-quartz. These crystals have a
conductivity much larger than vitreous silica, implying a weaker
scattering from disorder or anharmonicity; consequently in α-
cristobalite and α-quartz the SMA is expected69,89,109 to be less
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accurate than in vitreous silica. Figure 9 shows that for α-
cristobalite and α-quartz solving the WTE in full or employing the
SMA approximation yields conductivities practically indistinguish-
able; this demonstrates that the SMA is accurate in α-cristobalite
and α-quartz, and also suggests that the SMA is even more
accurate in vitreous silica.

Effects of disorder and temperature on the linewidths
In Fig. 10 (left panel) we highlight how the frequency-linewidth
distributions for models of vitreous silica having different size (192
or 108 atoms) are overlapping, suggesting that the linewidths of
these models are not significantly affected by finite-size effects. In
the central and right panels we show the linewidths of the
crystalline polymorphs α-cristobalite (containing 12 atoms per
primitive cell) α-quartz (9 atoms per primitive cell). Clearly, the
variation of the anharmonic linewidths is mainly due to
temperature, since at fixed temperature the frequency-linewidth
distributions of amorphous and crystalline silica polymorphs have
a similar magnitude. We also note that the anharmonic linewidths
computed with GAP for the 192(G) model (Fig. 3) are very similar
to the anharmonic linewidths computed from first-principles for
the 192(D) and 108(D) models (Fig. 10 left panel).

Accounting for anharmonicity at a reduced computational
cost
In this section we discuss the details of the computation of the
analytical function Γa[ω], used to approximatively determine the
linewidths as a function of frequency discussed in Fig. 3. The
analytical function Γa[ω] is determined as

Γa½ω� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðΓ1½ω�Þ2 þ
1

ðΓ2½ω�Þ2
q ; (10)

where Γ1[ω] and Γ2[ω] are defined as

Γ1½ω� ¼
P

q¼0;s
1ffiffiffiffiffiffi
2πσ2

p exp �_2ðωðqÞs�ωÞ2
2σ2

	 

P

q¼0;s
1

ΓðqÞs
1ffiffiffiffiffiffi
2πσ2

p exp �_2ðωðqÞs�ωÞ2
2σ2

	 
 ;
Γ2½ω� ¼ p � ω2;

p ¼
P

q¼0;s

R 2ωo

ωo
dωc

ΓðqÞs
ω2 ðqÞs

1ffiffiffiffiffiffi
2πσ2

p exp �_2ðωðqÞs�ωc Þ2
2σ2

	 

P

q¼0;s

R 2ωo

ωo
dωc

1ffiffiffiffiffiffi
2πσ2

p exp �_2ðωðqÞs�ωc Þ2
2σ2

	 
 :

(11)

ωo is the smallest non-zero frequency at q= 0 and σ= 30 cm−1 is
a broadening chosen sufficiently large to ensure that the
linewidths are averaged in a smooth way. The functional form
of the approximated function Γa[ω] is inspired by past work51,93,
and the specific expressions (10), (11) to determine it have been

Fig. 9 Thermal conductivity of crystalline α-cristobalite and α-quartz. For these materials the total bulk conductivity resulting from the full
solution of the WTE (solid lines) is practically indistinguishable from the bulk conductivity computed relying on the SMA approximation
(dashed lines). The α-β transition temperature for cristobalite is around 540 K149, below this temperature both α-cristobalite and α-quartz are
to a good approximation simple crystals, since their total conductivity is predominantly determined by the particle-like contribution (κP,
dotted lines). Scatter points are experiments by Eucken150, Birch et al.151, Knapp152, Zeller et al.96 and Kanamori et al.107.

Fig. 10 Effect of disorder and temperature on the linewidths of silica polymorphs. Increasing temperature yields an increase of the
linewidths that account for third-order anharmonicity88,89 and isotopic-mass disorder92 in both vitreous and crystalline materials: the left
panel shows the 192(D) and 108(D) vitreous-silica model (both computed from first-principles and at q= 0 only), the central panel shows α-
cristobalite, and the right panel shows α-quartz. The temperatures of 50, 300, and 500 K at which the linewidths distributions are reported are
chosen to span the temperature range over which all these materials are stable. The 1300 K distribution shows the behavior at high
temperature, and is reported only for vitreous silica since α-cristobalite and α-quartz are not stable at this temperature. The insets in the
central and right panels show the linewidths at low vibrational energies for α-cristobalite and α-quartz, respectively. The purple area shows the
overdamped regime characterized by ℏΓ > ℏω; the lack of linewidths in the purple region shows that there are no overdamped vibrations and
thus the Wigner formulation can be employed41,47. The gray lines represent the average spacing between the vibrational energy levels Eq. (6)
(in the left panel only the average energy-level spacing for the 192-atom model is reported).
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devised and validated relying on exact calculations performed on
the 108(D) v-SiO2 model. Specifically, we show in Fig. 11a that the
approximated functions Γa[ω] (dashed lines, different colors show
different temperatures) captures the trend of the linewidths
explicitly computed over a dense 5 × 5 × 5 q mesh (dense
distributions). We recall that Γa[ω] is determined from the
linewidth distributions at q= 0 only (coarse clouds of scatter
points). In Fig. 11b we show that computing the bare WTE
conductivity over a dense 5 × 5 × 5 q mesh using the anharmonic
linewidths computed exactly (solid red) or determined approx-
imatively using the function Γa[ω] (dashed blue) are practically
indistinguishable; consequently, also the rWTE conductivity
computed over the same 5 × 5 × 5 q mesh is practically
unchanged when the exact (solid green) or approximated (dotted

black) linewidths are used. The good agreement between the
exact and the approximated calculations shows that the analytical
function Γa[ω] allows to account for anharmonicity at a reduced
computational cost and without appreciably compromising
accuracy, both in the WTE and rWTE calculations.

Finite-size effects
As anticipated in Sec. Extension of the protocol to evaluate the
anharmonic Wigner conductivity, in a finite-size model of a glass
the distinction between populations and coherences conductiv-
ities (see Sec. Wigner formulation of thermal transport) is useful to
understand finite-size effect, but cannot be further interpreted in

a)

b)

Fig. 11 Effect of q interpolation on the linewidths and approx-
imation to reduce the computational cost. a Linewidths of the
108(D) model of v-SiO2 computed explicitly on a 5 × 5 × 5 q mesh
(light blue is at 30 K, light green is at 200 K, and orange is at 1300 K)
or computed at the point q= 0 only (dark blue is at 30 K, dark green
is at 200 K, and red is at 1300 K). The purple region represents the
overdamped regime, where vibrations cannot be accurately
described using the Wigner formulation and spectral-function
approaches have to be employed41,47. The horizontal dotted line
is the broadening ℏη used in the Voigt renormalization for the 108-
atom model, all the linewidths below this line are regularized and
thus have negligible effect on the rWTE conductivity. The dashed
lines are the analytical functions Γa[ω], determined from the
distributions at q= 0 only as detailed in Eqs. (10), (11). b Shows
the bare WTE conductivity of the 108(D) model computed exactly
(i.e., using the linewidths explicitly computed on the
5 × 5 × 5 q mesh, solid red), or using the linewidths approximatively
determined using the function Γa[ω] (dashed blue); the solid green
and dotted black lines show the rWTE conductivities computed
using the exact or approximated linewidths, respectively.

a)

b)

c)

Fig. 12 Decomposition of the total thermal conductivity of finite-
size models of v-SiO2 into populations and coherences terms.
a Results for the small `192(G)' model. The dashed red line is the
bare WTE conductivity computed at q= 0; the lack of perfectly
degenerate vibrational modes in this disordered model and zero
diagonal elements (s ¼ s0) of the velocity operator at q= 0 implies
that the total bare WTE conductivity originates entirely from
coherences. The solid green and blue lines are the populations
and coherences rWTE conductivities computed on a
3 × 3 × 3 q mesh, their sum is the bulk limit of the total rWTE
conductivity (dashed-dotted gray). b and c: results for the medium
1536(G) and large 5184(G) models, styles are the same as before. We
highlight how the populations conductivity (green) decreases as the
size of the model increases, such a decrease is compensated by an
increase of the coherences conductivity; this implies that these
different models have practically indistinguishable total thermal
conductivities. In practice, in the 1536(G) and 5184(G) models the
bare WTE computed at q= 0 reproduces the total rWTE
conductivity.
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terms of particle-like and wave-like conduction mechanisms. In
fact, such an interpretation is well defined only in crystals41 where
the BZ and vibrational spectrum can be unambiguously defined68,
while in finite-size models of glasses the BZ volume decreases as
the size of the model increases. Keeping these considerations in
mind, we show in Fig. 12 how the populations and coherences
rWTE conductivities depend on the size of the atomistic model. It
is evident that increasing the size of the model’s reference cell
yields decrease in the ratio between the populations and
coherences conductivities, leaving their sum approximately
constant. This implies that the bare WTE conductivity evaluated
at q= 0 only—which in disordered systems without perfectly
degenerate vibrational modes entirely originates from coherences
—becomes an increasingly more accurate estimate for the total
conductivity as the size of the model’s reference cell increases. We
highlight how in the small 192-atom model the populations
conductivity computed on the q mesh is non-negligible and has
to be considered to correctly describe the bulk limit (rWTE).
To compute the conductivities in Fig. 12, the anharmonic

linewidths have been determined using the analytical function
Γa[ω] shown in Fig. 3, broadenings η equal to 4.0, 1.0, and 0.3 cm−1

(around the beginning of the conductivity plateaus shown in
Fig. 2) have been used for the Voigt profile for the 192-, 1536-, and
5184-atom models, respectively.

Quantum harmonic specific heat
We show in Fig. 13 that the theoretical quantum harmonic
specific heat at constant volume (CTh

V ðTÞ ¼ 1
ρVNc

P
q;sCðqÞs, where

ρ is the density) is in close agreement with the experimental
specific heat at constant pressure110. This suggests that the
renormalization of vibrational energies due to anharmonicity and
temperature45,53,111,112 are negligibly small for v-SiO2 in the
temperature range considered113, and as such these effects are
not considered in this work. Figure 13 also shows that first-
principles and GAP calculations yield more precise estimates of
the specific heat compared to the BKS and Tersoff potentials (the
latter has been recently employed in ref. 114 to study the thermal
properties of v-SiO2).

Velocity operator as a function of frequency
In this section we provide all the details on the plot reported in
Fig. 7. In order to gain insights into the trend of the conductivity
with temperature (Fig. 5), we recast the conductivity expression (1)
as a function of ωa ¼ ðωðqÞs þ ωðqÞs0 Þ=2 and ωd ¼ ωðqÞs � ωðqÞs0 :

κ ¼ Rωmax

0
dωa

Rωmax

�ωmax

dωd
1

VNc

P
q;s;s0

ωðqÞsþωðqÞs0
4

kvðqÞs;s0 k2
3

"

´ CðqÞs
ωðqÞs þ

CðqÞs0
ωðqÞs0

� �
πF½ΓðqÞsþΓðqÞs0 ;η�ðωðqÞs � ωðqÞs0 Þ

´ δσa
ωðqÞsþωðqÞs0

2 � ωa

� �
δσd ðωðqÞs � ωðqÞs0 Þ � ωd
� �i

(12)

where the distributions δσ are Gaussian broadenings of the Dirac
delta:

δσ Ω� ωð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp � 1

2σ2 Ω� ωð Þ2
� �

: (13)

In order to achieve our goal to recast Eq. (12) in terms of physically
insightful frequency-dependent functions, we approximate the
linewidths using the single-valued function of frequency, i.e.,
Γ(q)s= Γa[ω(q)s] (see Eq. (10)); this approximation allows to recast
Eq. (12) as follows:

κ ¼ Rωmax

0
dωa

Rωmax

�ωmax

dωdGðωa;ωdÞCðωa;ωdÞ jvavgωa ;ωd j2
D E

´ πF½Γa½ωaþωd
2 �þΓa ½ωa�ωd

2 �;η�ðωdÞ;
(14)

where Gðωa;ωdÞ is a density of states

Gðωa;ωdÞ ¼ 1
Nat

1
VNc

P
q;s;s0

δσa
ωðqÞsþωðqÞs0

2 � ωa

� �
´ δσd ðωðqÞs � ωðqÞs0 Þ � ωd

� �
;

(15)

Cðωa;ωdÞ is a specific heat

Cðωa;ωdÞ ¼ ωa

2

Cðωa þ ωd
2 Þ

ωa þ ωd
2

þ Cðωa � ωd
2 Þ

ωa � ωd
2

� �
; (16)

and hjvavgωa ;ωd j2i is the average square modulus of the velocity
operator defined in Eq. (7) (whose Dirac delta must be broadened
with the Gaussian δσ discussed here) and plotted in Fig. 7. Eq. (14),
together with Fig. 7 and Fig. 10, sheds light on the saturating
trend of the conductivity with temperature (Fig. 5a)). In fact,
among the various quantities entering in Eq. (14), the density of
states (15) and the specific heat (16) have a trivial temperature
dependence (the former is temperature-independent, the latter
saturates with increasing temperature). The change of variable
performed in Eq. (12) shows that the temperature-conductivity
trend is determined by how the average square velocity-operator
elements vary with the vibrational frequency difference ωd,
because the increase of the linewidths with temperature
(Fig. 10a)) results in a broader Lorentzian distribution (4) that
encloses velocity-operator elements corresponding to increasingly
larger frequency differences ωd. In particular, for vitreous silica, the
average square velocity-operator elements are almost indepen-
dent from ωd for all values of ωa (Fig. 7). It follows that the
saturating trend of the conductivity at high temperature reported
in Fig. 5a) is inherited from the saturating trend of the specific
heat.
It is also worth noting that in the harmonic AF limit

(ℏη≳Δωavg≫ ℏΓ(q)s→ 0 ∀q, s) the Voigt profile reduces to the
Gaussian representation of the Dirac delta and consequently only the
quasi-degenerate velocity-operator elements (limωd!0hjvavgωa ;ωd j2i)
contribute to the conductivity. To see this, it is sufficient to replace

Fig. 13 Specific heat of vitreous silica. Thick lines are the quantum
harmonic specific heat at constant volume (CV) and as a function of
temperature computed from first principles for the 108(D) (green),
144(D) (blue) and 192(D) (red) vitreous-silica models. The thin
dashed-black (dotted-gray) line is CV for the 192(D) model computed
using the GAP (BKS) potential. The solid orange line is CV of
amorphous silica computed from constant-volume molecular
dynamics simulations using the Tersoff potential, taken from
ref. 24. Circles are experimental measurements110 of the specific
heat at constant pressure.
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the Voigt profile in Eq. (14) with the Dirac delta, obtaining:

κ ¼
Zωmax

0

dωaCðωaÞGðωa; 0Þ
Zωmax

�ωmax

dωd jvavgωa ;ωd
j2

D E
πδðωdÞ; (17)

where C(ωa) is the specific heat defined in Eq. (2) and Gðωa; 0Þ is
obtained from Eq. (15) in the limit ωd→ 0.
In summary, we have shown how the harmonic Allen-Feldman

conductivity is determined exclusively by the quasi-degenerate
velocity operator elements (limωd!0hjvavgωa ;ωd j2i), while the anhar-
monic Wigner conductivity receives contributions from velocity-
operator elements having ωd spanning the entire
frequency range.
Figure 7 is computed relying on the 192(D) model and on first-

principles calculations, using a 3 × 3 × 3 q point mesh, ℏσa= 15
cm−1 and _σd ¼ ffiffi

π
2

p
_η ¼ 5 cm−1 (this latter corresponds to a

Gaussian having height 1
πη, with ℏη= 4 cm−1 equal to the one

used in the computation of the AF conductivity for the 192(D)
model). Increasing the q point mesh to 5 × 5 × 5 or multiplying σa
and σd by a factor of 2 does not produce significant changes. We
have verified that plotting the velocity operator for the other
models studied from first principles or using GAP yields results
that are practically indistinguishable from those reported in Fig. 7.

Effects of anharmonicity using the BKS potential
While our BKS-based rWTE predictions are in agreement with
ref. 84, our BKS-based AF conductivity is significantly different from
that reported in ref. 84, which claimed that anharmonicity
enhances appreciably the conductivity in v-SiO2 (specifically,
ref. 84 concluded that in v-SiO2 in the high-temperature limit,
the anharmonic WTE conductivity is about 30% higher than the AF
conductivity). In Fig. 14 we show that evaluating the AF
conductivity as done in ref. 84, i.e., using the BKS potential, at
q= 0 only and using a Lorentzian broadening ℏη= 1.6 cm−1,
yields a value that significantly underestimates the bulk value for
the AF conductivity. In contrast, determining the bulk limit of the
AF conductivity using the protocol discussed here, i.e., the Fourier
interpolation with a computationally converged broadening

ℏη= 4 cm−1, yields a larger AF conductivity, which differs only
about 4% from the bulk limit of the rWTE conductivity.

Computational details
First-principles calculations. All the density-functional theory
(DFT) calculations have been performed with the Quantum
ESPRESSO distribution115 using the PBE functional with Grimme-
D2 corrections (PBE+D2)116. This choice is motivated by the
benchmarks given in ref. 117 and accounting for the capability of
Quantum ESPRESSO to compute phonons using density-
functional perturbation theory (DFPT)118 with the PBE+D2
exchange-correlation functional. This choice is validated by the
agreement between theoretical and experimental densities
reported in Table 1 and also by the capability of this functional
to accurately describe the thermal properties of α-quartz (Fig. 9).
We have used pseudopotentials from the SSSP efficiency
library119,120 with a cutoff of 50 Ry and a dual of 8. In the
following we report the details for all the three different systems
studied: vitreous silica, α-cristobalite, and α-quartz.
Vitreous silica. The 108(D) structure of vitreous silica is taken

from ref. 62 (‘SiO2.1586’ model). For this structure, cell parameters
and atomic positions are relaxed with DFT using Γ-point (q= 0)
sampling, a threshold of 10−4 Ry/Bohr for the atomic forces (i.e., a
structure is considered relaxed if all the Cartesian components of
the forces acting on atoms are smaller than this threshold), and a
threshold of 0.1 kBar for pressure. The harmonic dynamical
matrices (which yield the vibrational frequencies and velocity
operators) are computed using DFPT on a 2 × 2 × 2 q point mesh
and accounting for the non-analytic term correction due to the
dielectric tensor and Born effective charges. Third-order intera-
tomic force constants (IFC) are computed in the reference cell
using ShengBTE89, and with a cutoff of 0.32 nm (corresponding
to the 6th nearest neighbor (NN)). We show in Fig. 15 that
increasing this cutoff to the 10th and 20th NN does not yield
significant changes to the final results (linewidth distributions and
rWTE conductivities). The third-order IFC are converted from
ShengBTE to Phono3py91 format using hiphive121 (we
adopted this procedure for software compatibility reasons, since
when we started this study the ShengBTE format was the one
interfaced with the largest number of transport codes:
AlmaBTE90, thermal287,88,122, Phoebe123, ALAMODE124, and,
as mentioned before, Phono3py91 through hiphive121).

Table 1. Densities of silica polymorphs.

Structure ρ (kg/m3)

v-SiO2, 192(D) PBE+D2 (SiO2 281865) 2241.2

v-SiO2, 192(D) GAP (SiO2 281865) 2288.6

v-SiO2, 192(D) BKS (SiO2 281865) 2243.8

v-SiO2, 192(G) GAP (#460) 2188.7

v-SiO2, 1536(G) GAP (this work) 2257.1

v-SiO2, 5184(G) GAP
60 2203.6

v-SiO2, 144(D) PBE+D263 2220.6

v-SiO2, 108(D) PBE+D2 (SiO2.158662) 2243.9

v-SiO2, Experiment138 2203 ± 3

v-SiO2, Experiment139 2200 ± 10

α-cristobalite129, PBE+D2 2383.5

α-cristobalite, Experiment140 2326 ± 12

α-quartz130, PBE+D2 2641.9

α-quartz, Experiment141 2650

Comparison between theoretical and experimental densities ρ for the
various silica polymorphs analyzed.

Fig. 14 Negligible effects of anharmonicity in v-SiO2 described
with the BKS potential. Evaluating the conductivity using the
protocol to determine the bulk limit yields an anharmonic rWTE
conductivity (solid purple) that differs only about 4% from the bulk
limit of the AF conductivity (dotted purple, evaluated using a
Gaussian broadening ℏη= 4 cm−1 determined from a convergence
test analogous to that reported in Fig. 2). In contrast, evaluating the
AF and WTE conductivities at q= 0 only (and using a Lorentzian
broadening ℏη= 1.6 cm−1 in the former case) yield values that
strongly underestimates the bulk value for the AF conductivity
(dotted orange) and weakly underestimates the Wigner conductivity
(solid orange), respectively.
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The linewidths are computed using Phono3py91 on a
5 × 5 × 5 q point mesh using the tetrahedron method, we checked
that computing them using Gaussian smearing of ℏσ= 2 cm−1 for
the Dirac delta appearing in the linewidth expression (see e.g., Eq.
(11) of ref. 91) does not produce appreciable changes. Thermal
conductivity calculations are performed using a q interpolation
mesh equal to 5 × 5 × 5. The Voigt profile, used to combine the AF
and the WTE conductivities as detailed before, has been
numerically implemented following the prescriptions reported in
ref. 94 and summarized in Sec. Implementation of the Voigt profile.
We have verified that reducing the q interpolation mesh to
3 × 3 × 3 does not produce appreciable changes.
The 192(D) model is generated using the same techniques of

ref. 62 and is discussed in ref. 65, while the 144(D) model is taken
from ref. 63 and is available in the Materials Cloud Archive64. For
all these structures, the relaxation of the reference cell with DFT,
the calculation of the harmonic dynamical matrices, and the the
calculation of third-order anharmonic force constants are
performed using the same parameters used for the 108-atom
structure. These harmonic and anharmonic force constants are
then used to compute the linewidths at the point q= 0 only
using Phono3py91 and a Gaussian smearing of 2 cm−1, and

then employed within the scheme discussed and validated in
Fig. 11. We also verified that the 192(D) model accurately
reproduces the experimental bulk modulus of v-SiO2 (the
theoretical value we computed is 36.9 GPa, while the experi-
mental value of ref. 125 is 36.8 GPa and the experimental value of
ref. 126 is 36.9 GPa).
An analysis of the coordination numbers using the procedure

based on the minimum of the radial distribution function as
implemented in the R.I.N.G.S. software127 or that based on
the position of the Wannier centers discussed in ref. 128 have
revealed in both cases that the 108(D), 144(D), 192(D) vitreous
structures considered in this work do not have coordination
defects or lone pairs (both before and after the DFT relaxation).
α-cristobalite. The crystal structure of α-cristobalite is taken

from ref. 129 (ICSD collection code 47219). In first-principles
calculations, the Brillouin zone is integrated with a Monkhorst-
Pack mesh of 5 × 5 × 4 points, with a (1, 1, 1) shift. Second-order
force constants are computed using DFPT on a 5 × 5 × 4 q mesh,
accounting also for the non-analytic term correction due to the
dielectric tensor and Born effective charges. To obtain the third-
order IFC the finite-difference method implemented in
ShengBTE89 is used, together with the interconversion soft-
ware from ShengBTE to Quantum ESPRESSO, available in the
thermal2 package69,87. In these third-order force constants
calculations, a 2 × 2 × 2 supercell with a 2 × 2 × 2 k-point
sampling is used, and interactions up to the 6th nearest
neighbor (corresponding to ~ 0.39 nm) are considered. We have
checked that running the same thermal conductivity calculation
in the Phono3py software yielded compatible results. The
linewidths (Fig. 10b) and thermal conductivity (Fig. 9a) are
computed with the thermal2 package69,87 using a
17 × 17 × 13 q-point mesh and a Gaussian smearing
ℏσ= 4 cm−1.
α-quartz The crystal structure of α-quartz is taken from ref. 130

(Crystallographic Open Database id 1526860). In first-principles
calculations, the Brillouin zone is integrated with a Monkhorst-
Pack mesh of 6 × 6 × 5 points, with a (1, 1, 1) shift. Second-order
force constants are computed using DFPT on a 4 × 4 × 4 q mesh,
accounting also for the non-analytic term correction due to the
dielectric tensor and Born effective charges. Third-order force
constants are computed using the finite-difference methods as
implemented in ShengBTE89, using a 3 × 3 × 2 supercell with a
Γ-only k-point sampling, and a cutoff for atomic interactions of
0.9 nm. The linewidths (Fig. 10c) and thermal conductivity (Fig.
9b)) are computed with the thermal2 package69,87 using a
19 × 19 × 15 q-point mesh and a Gaussian smearing
ℏσ= 4 cm−1. We have checked that running the same thermal
conductivity calculation in the Phono3py software yielded
compatible results. Our results are also compatible with those
reported in ref. 131.

Calculations performed using the GAP potential. The GAP poten-
tial for vitreous silica was taken from ref. 60. The 5184(G) and
192(G) models discussed in Figs. 1–4 are taken from ref. 60, we
chose the 192-atom structure number 4 in that reference as the
one having the closest density to the large 5184-atom model.
More details on these structures are reported in ref. 60.
The 1536(G) model was generated starting from a

2 × 2 × 2 supercell of the 192(G) model, thus using the melt-
quench protocol of ref. 60. Specifically, we heated the structure to
6000 K (NVT), equilibrated it for 10 ps (NVT), cooled it to 4000 K in
10 ps (NVT), equilibrated the melt at 4000 K for 100 ps (NPT), thus
quenched the structure to 1 K with a quench rate 1013 K/s (NPT).
The calculation was performed with LAMMPS132, using the
quip133–135 interface to call the GAP potential routines. A
timestep of 0.001 ps was used, and generating this structure
required about 12 kCPUh (1 kCPUh= 1000 CPU core hours) on
the Icelake nodes of the Cambridge Service for Data-Driven

a)

b)

Fig. 15 Convergence of linewidths and rWTE conductivity with
respect to cutoff for third-order IFC. a Linewidth distribution for
the 108(D) model at q= 0 and using different cutoffs: crosses are
3rd nearest neighbor (0.26 nm, 12348 displacements), circles are 6th
nearest neighbor (0.32 nm, 18972 displacements), triangles are 10th
nearest neighbor (0.39 nm, 29592 displacements), squares are 20th
nearest neighbor (0.46 nm, 53352 displacements). b Solid lines are
the rWTE conductivities at different temperatures computed using
the function Γa[ω] determined from the linewidths distributions in
(a) using Eqs. (10), (11); the dashed lines are the Allen-Feldman
conductivities.
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Discovery. The densities of the models analyzed are reported in
Table 1.
Interatomic forces and stress tensor are computed using

LAMMPS132, using the quip133–135 interface to call the GAP
potential routines. Cell parameters and atomic positions are

relaxed using a threshold of 25 eV/Angstrom for the atomic forces
(i.e., a structure is considered relaxed if all the Cartesian
components of the forces acting on atoms are smaller than this
threshold), and a threshold of 0.1 kBar for pressure. The harmonic
dynamical matrices (which yield the vibrational frequencies and
velocity operators) are computed using Phonopy, on a
2 × 2 × 2 supercell for the 192(G) structure, and on the reference
cell (1 × 1 × 1) for the 1536(G) and 5184(G) models. For the 192(G)
model, third-order force constants are computed in the reference
cell using ShengBTE89, using a cutoff equal to the 6th nearest-
neighbor; the resulting force constants are then converted in
Phono3py91 format using hiphive121. The anharmonic line-
widths for the 192(G) model (shown in Fig. 3) are computed using
Phono3py at q= 0 and using Gaussian smearing of
ℏσ= 0.4 cm−1 for the Dirac delta appearing in the expression for
the linewidths (Eq. (11) of ref. 91). We have checked that using a
larger Gaussian broadening ℏσ= 2 cm−1 yields linewidth distribu-
tions that overlaps with those reported in Fig. 3, and yield a rWTE

conductivities with a relative difference (κ
0:4 cm�1
rWTE �κ2 cm

�1
rWTE

κ2 cm
�1

rWTE

� 100) always
smaller than 0.51%. We note in passing that the broad range of
values assumed by the linewidths distributions of Fig. 3 in the low-
energy limit (in practice in the range 30–40 cm−1) is compatible
with that observed in α-cristobalite and α-quartz in the same
frequency range (see Fig. 10). The extrapolation of the linewidths
for the vibrational modes at lower frequencies (which emerge
using the Fourier interpolation or using models containing more
than thousand atoms in the reference cell) is discussed in Sec.
Accounting for anharmonicity at a reduced computational cost.
The anharmonic linewidths for the 1536(G) and 5184(G) models

are determined using the single-valued function Γa[ω] shown in
Fig. 3 (solid lines).

Computational cost. The various steps of the workflow to
compute the rWTE conductivity are summarized in Fig. 16, and
their computational cost for the different models and simulation
methods employed is reported in Table 2.
Figure 4 shows that the rWTE protocol allows to reproduce the

Table 2. Computational cost.

Model (2a) 2nd order IFC (3a) velocity operator (2b) 3rd order IFC (3b) linewidths

method (# of displacements) kCPUh kCPUh displacements kCPUh kCPUh

108(D) DFPT 2 × 2 × 2 q mesh 12 0.00005 (5 × 5 × 5 q mesh) 12348 (3 NN) 9 0.2 (q= 0, 2 cm−1)

’ ’ ’ ’ 18972 (6 NN) 13 81 (5 × 5 × 5, thm)

’ ’ ’ ’ 29592 (10 NN) 21 0.2 (q= 0, 2 cm−1)

’ ’ ’ ’ 53352 (20 NN) 37 0.2 (q= 0, 2 cm−1)

144(D) DFPT 2 × 2 × 2 q mesh 44 0.0001 (5 × 5 × 5 q mesh) 26028 (6 NN) 24 0.5 (q= 0, 2 cm−1)

192(D) DFPT 2 × 2 × 2 q mesh 102 0.0005 (3 × 3 × 3 q mesh) 33300 (6 NN) 50 2.1 (q= 0, 2 cm−1)

192(D) BKS supercell 2 × 2 × 2 (1152) 0.003 0.0005 (3 × 3 × 3 q mesh) 32472 (6 NN) 0.1 2.1 (q= 0, 2 cm−1)

192(D) GAP supercell 2 × 2 × 2 (1152) 0.007 0.0005 (3 × 3 × 3 q mesh) 33372 (6 NN) 0.2 2.1 (q= 0, 2 cm−1)

192(G) GAP supercell 2 × 2 × 2 (1152) 0.007 0.0005 (3 × 3 × 3 q mesh) 34272 (6 NN) 0.2 2.1 (q= 0, 2 cm−1)

’ ’ ’ ’ ’ ’ 1.2 (q= 0, 0.4 cm−1)

1536(G) GAP supercell 1 × 1 × 1 (9216) 0.007 0.1 (3 × 3 × 3 q mesh) – – –

5184(G) GAP supercell 1 × 1 × 1 (31104) 1.5 2.1 (3 × 3 × 3 q mesh) – – –

The calculations for the 108(D) and 144(D) models were performed on the Skylake nodes of the SCITAS High Performance Computing facility at the École
Polytechnique Fédérale de Lausanne. The calculations for the 192(D), 192(G), 1536(G) and 5184(G) models were performed on the Icelake nodes of the
Cambridge Service for Data-Driven Discovery. DFT and DFPT calculations were performed using Quantum ESPRESSO115,142, BKS- and GAP-based calculations
were performed using LAMMPS132 (using the quip133–135 interface for GAP). Velocity operator and linewidths were computed using Phono3py91. In column 2b,
the cutoff used for the third-order force constants (in nearest neighbor units) is reported in parentheses. In column 3b, ‘thm’ refers to the tetrahedron
method91, 2 cm−1 or 0.4 cm−1 denote the Gaussian smearing used for the Dirac delta appearing in the linewidth expression. The third-order force constants
for the 1536- and 5184-atom models have not been computed, since the subsequent linewidth calculations would have had a prohibitively large
computational cost (see Fig. 17). ‘kCPUh’ means 1000 CPU (core) hours.

Fig. 16 Workflow to compute the bulk limit of Allen-Feldman and
rWTE conductivities. The amorphous models employed in this work
were generated (step 1) using the melt-quench method (see Sec.
Calculations performed using the GAP potential for the 1536(G) model,
ref. 60 for 192(G) and 5184(G), ref. 63 for 144(D)) or the bond-
switching technique (see ref. 62 for 108(D), and ref. 65 for 192(D)).
After relaxing the atomic position and reference cell to an energy
minimum, we computed the harmonic (step 2a) and anharmonic
third-order (step 2b) force constants. Then, harmonic force
constants were used to compute the vibrational frequencies and
velocity operator over a computationally converged q mesh (step
3a), thus the convergence plateau for the Allen-Feldman conductiv-
ity was determined (see Fig. 2). The broadening η determining the
beginning of the convergence plateau was used to compute the
Allen-Feldman conductivity (step 4). Finally, harmonic and anhar-
monic force constants were used to compute the linewidths (step
3b), and these were used in combination with the aforementioned
broadening η to evaluate the rWTE conductivity (step 5, see Eq. (1).
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thermal conductivity of a large 5184-atom model using a small
192-atom model. As shown in Table 2, atomistic models contain-
ing less than 200 atoms have a computational cost that allows to
study them by means of standard DFT calculations. Figure 17
shows that the first-principles computational cost rapidly grows
with the system size, making it practically impossible to study the
large 5184-atom model using DFT. Figure 4 shows that the rWTE
protocol allows to determine the above-the-plateau thermal
conductivity of v-SiO2 using a 192-atom model, whose first-
principles simulation cost is about 6 orders of magnitude lower
than that estimated for simulating from first principles the 5184-
atom model.
We also note that once the linewidths at q= 0 are used to

determine the function Γa[ω] through Eqs. (10),(11), the computa-
tional cost for evaluating the rWTE conductivity is determined by
the size of the q-mesh employed. Specifically, for a finite-size
model of amorphous material generated in a cubic box, time-
reversal symmetry implies that for a n × n × n Gamma-centered q
mesh the number of independent q points68 is (n3+ 1)/2. Once

Γa[ω] is known, the computationally most expensive part to
evaluate the rWTE conductivity is the calculation of the velocity
operator at each independent q point (as shown by Eqs. (57) and
(58) in ref. 41, this requires diagonalizing seven dynamical matrices,
i.e., at q, q+ δqβ, q− δqβ, with β being an index running over the
three Cartesian directions). The dynamical matrix has linear size
3 ⋅ Nat, and the formal computational cost for diagonalizing a
matrix scales as the third power of its linear size. Table 2 shows
that, for all the models analyzed, the computational cost for
evaluating the velocity operator on q meshes containing less than
100 independent q-points is negligible compared to the other
parts of the rWTE calculation (namely evaluation of the 2nd and
3rd order force constants, and the calculation of the linewidths at
q= 0 only to determine Γa[ω]).

Implementation of the Voigt profile. Given a Gaussian distribution
with height 1

πη (i.e., FWHM ΔG ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
π ln 2

p
η � 2:95η) and a

Lorentzian distribution with height 1
πγ (i.e., FWHM ΔL= 2γ), the

Voigt profile is obtained from their convolution, which can be
reduced to the following analytical expression94:

F½γ;η�ðzÞ ¼ 1
πη

K
z

η
ffiffiffi
π

p ;
γ

η
ffiffiffi
π

p
� �

; (18)

where

Kðx; yÞ ¼ y
π

Z þ1

�1

exp½�t2�
y2 þ ðx � tÞ2 dt: (19)

Here we employ the accurate and efficient numerical approxima-
tion for the Voigt profile discussed in ref. 94. In particular, within
such an approximation the Voigt profile is evaluated as:

F½γ;η�ðzÞ ¼ 1
ΔG þ ΔL

f V
z

ΔG þ ΔL
; ρ

� �
(20)

where ρ ¼ ΔL
ΔGþΔL

, and the numerical function fV can be written as
(in the following we use ~z ¼ z

ΔGþΔL
to ease the notation):

f Vð~z; ρÞ ¼ ð1� ηL � ηI � ηPÞ � f Gð~z; γGÞ
þ ηL � f Lð~z; γLÞ þ ηI � f Ið~z; γIÞ þ ηP � f Pð~z; γPÞ:

(21)

Eq. (21) contains the following functions:

f Gð~z; γGÞ ¼
1ffiffiffi
π

p
γG

expð�~z2=γ2GÞ; (22)

f Lð~z; γLÞ ¼
1
π

γL
~z2 þ γ2L

; (23)

f Ið~z; γIÞ ¼
1
2γI

1

½1þ ð~z=γIÞ2�
3=2

; (24)

f Pð~z; γIÞ ¼
1
2γP

2
expð~z=γPÞ þ expð�~z=γPÞ
� �2

: (25)

The parameters γG, γL, γI, γP appearing in these functions are
polynomials in ρ, and depend on ΔG+ ΔL:

γG ¼ ðΔG þ ΔLÞ
2
ffiffiffiffiffiffiffi
ln 2

p 1� ρ
X6
i¼0

aiρ
i

 !
; (26)

γL ¼
ðΔG þ ΔLÞ

2
1� ð1� ρÞ

X6
i¼0

biρ
i

 !
; (27)

γI ¼
ðΔG þ ΔLÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=3 � 1

p X6
i¼0

ciρ
i ; (28)

γP ¼
ðΔG þ ΔLÞ

2 lnð ffiffiffi
2

p þ 1Þ
X6
i¼0

diρ
i: (29)

Fig. 17 First-principles computational cost as a function of
model’s size. Blue is the computational cost for computing
second-order IFC using DFPT as implemented in Quantum
ESPRESSO115,118,142, green is the computational cost for computing
third-order IFC using the finite-differences as implemented in
ShengBTE89 (interfaced with Quantum ESPRESSO), and red is the
computational cost for computing anharmonic linewidths at q= 0
using Phono3py91 and a Gaussian broadening ℏσ= 2 cm−1 for the
collision operator (with cutoff 3ℏσ). The calculation of the linewidths
requires the second- and third-order IFC as inputs, and its
computational cost is independent from the technique (DFT or
interatomic potential) used to calculate the IFC.

Table 3. Coefficient appearing in the polynomial expansions for the
parameters γG (Eq. (26)), γL (Eq. (27)), γI (Eq. (28)), γP (Eq. (29)).

i {ai} {bi} {ci} {di}

0 0.66000 −0.42179 1.19913 1.10186

1 0.15021 −1.25693 1.43021 −0.47745

2 −1.24984 10.30003 −15.36331 −0.68688

3 4.74052 −23.45651 47.06071 2.76622

4 −9.48291 29.14158 −73.61822 −4.55466

5 8.48252 −16.50453 57.92559 4.05475

6 −2.95553 3.19974 −17.80614 −1.26571
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The coefficients {ai}, {bi}, {ci}, {di} (i= 0,1,...,6) are reported in Table 3.
The parameters ηL, ηI, ηP are determined by a similar polynomial

expansion:

ηL ¼ ρ 1þ ð1� ρÞ
X6
i¼0

f iρ
i

" #
; (30)

ηI ¼ ρð1� ρÞ
X6
i¼0

giρ
i ; (31)

ηP ¼ ρð1� ρÞ
X6
i¼0

hiρ
i: (32)

The coefficients {fi}, {gi}, {hi} (i= 0,1,...,6) are reported in Table 4.
We conclude by noting that, once the linewidths determined

from the function detailed in Eqs. (10), (11) are known, evaluating
the rWTE conductivity using the numerical scheme for the Voigt
profile detailed above does not have a significant impact on the
computational cost. More precisely, once frequencies, velocity
operators, and linewidths appearing in Eq. (1) are known,
evaluating Eq. (1) using the Lorentzian distribution (bare WTE) or
the Voigt profile (rWTE) has a computational cost negligible
compared to the calculations needed to compute frequencies,
velocity operators, and linewidths detailed in Table 2.

DATA AVAILABILITY
Raw data were generated using the SCITAS High Performance Computing facility at
the École Polytechnique Fédérale de Lausanne and the Cambridge Service for Data-
Driven Discovery (CSD3). The atomistic models of vitreous silica, α-quartz, and α-
cristobalite studied in this work are available on the Materials Cloud Archive136,137.

CODE AVAILABILITY
Quantum ESPRESSO115 is available at www.quantum-espresso.org; the scripts
related to the computation of the third order force constants using the finite-
difference method are available at bitbucket.org/sousaw/thirdorder; Phonopy and
Phono3py are available at github.com/phonopy. The GAP potential for silica
polymorphs is available in ref. 60. LAMMPS132 is available at www.lammps.org and the
interface for LAMMPS with the GAP potential133–135 is available at github.com/
libAtoms/QUIP.
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