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Optimal enzyme utilization suggests that
concentrations and thermodynamics
determine binding mechanisms and enzyme
saturations

Asli Sahin 1, Daniel R. Weilandt1,2 & Vassily Hatzimanikatis 1

Deciphering themetabolic functions of organisms requires understanding the
dynamic responses of living cells upon genetic and environmental perturba-
tions, which in turn can be inferred from enzymatic activity. In this work, we
investigate the optimal modes of operation for enzymes in terms of the evo-
lutionary pressure driving them toward increased catalytic efficiency. We
develop a framework using a mixed-integer formulation to assess the dis-
tribution of thermodynamic forces and enzyme states, providing detailed
insights into the enzymatic mode of operation. We use this framework to
explore Michaelis-Menten and random-ordered multi-substrate mechanisms.
We show that optimal enzyme utilization is achieved by unique or alternative
operating modes dependent on reactant concentrations. We find that in a
bimolecular enzyme reaction, the random mechanism is optimal over any
other orderedmechanism under physiological conditions. Our framework can
investigate the optimal catalytic properties of complex enzymemechanisms. It
can further guide the directed evolution of enzymes and fill in the knowledge
gaps in enzyme kinetics.

Living organisms constantly adapt to genetic or environmental per-
turbations. Describing these dynamic responses requires a deep
understanding of the underlying network of biochemical and bio-
physical processes that comprise cellular metabolism. As cellular
enzymes catalyze most metabolic processes, describing how pertur-
bations propagate in large reaction networks requires knowledge and
characterization of these enzymes’ reaction mechanisms and kinetic
properties. To this end, for over half a century, kinetic models of
biochemical systems have been used to study a wide range of systems,
from simple enzymatic reactions1,2 and small pathways3–6 to large-scale
metabolic networks7,8 with diverse applications in health, biotechnol-
ogy, systems, and synthetic biology9. Over the last years, more efforts
have been made toward building genome-scale kinetic models10,11,

addressing and quantifying the uncertainty in the structure and para-
meters of kinetic models12–15, and identifying metabolic engineering
design strategies using kinetic models16–18.

Kinetic models employ a mathematical description of the enzy-
matic reaction rates, defined precisely as a function of the metabolite
concentrations and kinetic parameters. However, experimental data
detailing the parameters of an enzyme are scarse9,19. Even large data-
bases listing kinetic information, such as BRENDA20 and SABIO-RK21 do
not comprise complete sets of parameters for the central metabolism
of a single organism19. To address missing data, kinetic models use
parameter estimation methods11,22–25 or Monte Carlo sampling
methods8,13,15–17,26,27 that have proven useful. However, a complete
understanding of the estimated parameters with biological and
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mechanistic details is generally not provided28,29. Nonetheless, unlike
chemical systems, the parameters of biological systems are not ran-
dom or unknowable but are, in fact, an outcome of natural selection,
and they have evolved to fulfill their biological functions
optimally2,30–32. The crucial point in the investigation of biological
systems in the light of evolution is to formulate appropriate fitness
functions whosemaximumorminimumvalue potentially corresponds
to an evolutionary outcome of the metabolism28,33.

Various studies previously addressed the application of evolu-
tionary principles to biological systems based on specific selective
pressures. These studies range from characterizing isolated enzymes’
kinetic responses30,31,34 to analyzing the structure and function of
metabolic networks33, such asminimizing steady-state fluxes, transient
times, and metabolic concentrations of intermediates, or maximizing
the network thermodynamic efficiency29. These studies showed that
exploring these parameters while accounting for the fact that they are
an outcome of the evolutionary process can help us decipher the
underlying design principles that govern enzyme catalytic rates.

One of the targets of natural selection on cellularmetabolism is to
make efficient use of its resources to grow, reproduce and respond to
changes in their environments28,35. As cellular enzymes catalyze meta-
bolic reactions, this selection will translate to evolutionary pressure
toward optimal enzyme utilization. Therefore, the ratio of specific flux
to enzyme concentration (vnet/Etot) is an important determinant for the
evolutionary optimization of cellular enzymes. This ratio depends on
metabolite concentrations but also on the kinetic parameters of the
enzyme. Over the last decades, with the advances in the genome-scale
metabolic model reconstruction, more mathematical models have
been developed to understand how evolution has shaped the system
variables such as enzyme and metabolite concentrations36–39 and
kinetic parameters30,34,40–42 and how these variables affect the network
topology and the optimal utilization of enzyme. These modeling
approaches differ in assumptions made, mechanistic details included,
and evolutionary objectives studied. Furthermore, these studies
employ different mathematical optimization methods ranging from
deterministic methods, including convex36,38 and non-convex30,34,37

problems, to stochastic methods with population-based
algorithms40–42. (see Supplementary Note for further details).

It hasoftenbeen stated that evolutionarypressuredrives enzymes
toward maximal catalytic efficiency such that enzyme utilization is
optimized. The hypothesis is strongly supported by the high reaction
rates observed for the enzyme-catalyzed reactions compared to their
corresponding uncatalyzed reactions29. One of the early examples of a
catalytically efficient enzyme is the triosephosphate isomerase (TIM/
TPI) shown by Knowles and Albery32. Although recent meta-studies
analyzing a large dataset of available enzyme kinetic parameters sug-
gest that the evolution drives most enzymes toward “good enough”
rather than perfect41,43, we still have limited information on the driving
forces and the constraints that have shaped natural enzymes. Under-
standing the fitness landscape of enzymes toward catalytic optimality
can improve our understanding of the parameters that govern the
design of enzymes and potentially overcome the scarcity of kinetic
parameters.

Previous studies have addressed the hypothesis of catalytic
optimality either by employing a population-based optimization
method40–42 or by solving a nonlinear optimization problem30,34. The
existing population-based approaches do not account for the reaction
kinetics in detail. Instead, they focus on maximal catalytic rates40

without detailed modeling of the enzyme kinetics and thermo-
dynamics terms40,41 or on simplified reaction mechanisms42. These
population-based approaches, furthermore, rely on extensive hyper-
parameters optimization to perform adequately and cannot ensure
global optimality or convergence. Unlike the existing population-
based approaches, Heinrich and coworkers investigated the catalytic
optimality of unbranched enzymatic mechanisms with detailed

reaction rate equations by solving a nonlinear optimization
problem30,34. These studies investigated the kinetic parameters of
ordered enzymemechanisms at enzymeconstrainedmaximal catalytic
activity. Their results indicated that reactant concentrations sig-
nificantly impacted the optimal rate constants, dividing the con-
centration space into different sub-regions, with distinct binding
characteristics28,30,34. They also have shown that the reactant con-
centrations andMichaelis constants change in the same direction in an
evolutionary time-scale30,34. Their findings are corroborated by
experimental observations44,45. Although these studies were useful for
understanding enzyme evolution, their approach is limited to ordered
enzyme mechanisms and cannot account for alternative enzyme
mechanisms such as Ping-Pong or random mechanisms46. Further-
more, their approach relied on an initial step where they first derived
all possible types of optimal solutions and then solved the nonlinear
problem locally for each optimal solution with the Lagrange multi-
pliers method30,34. As cells contain hundreds to thousands of enzy-
matic reactions with different mechanisms, deriving exact solutions
for numerous mechanisms can be cumbersome and, in some cases,
not possible with the existing formulation. Hence it is necessary to
develop efficient computational frameworks to explore the space of
catalytic efficiencies for arbitrarily complex reaction mechanisms.

In this study, we have developed a computationally efficient
mixed-integer linear program (MILP) formulation. Our framework,
which we named OpEn (OPtimal ENzyme) estimates optimal kinetic
parameters of complex enzymemechanismsand assesses the coupling
between thermodynamic displacements, saturation, and elementary
rate constants at the optimal state. The presented framework provides
insights into the selective pressures that shape the catalytic efficiency
of enzymes. Furthermore, it can be used to estimate parameters for
kinetic models, filling in the knowledge gaps in enzyme kinetics from
an evolutionary perspective and providing amethod for improving the
accuracy of metabolic models.

Results
A generalized framework to study optimal enzyme utilization
for arbitrary elementary mechanisms
In the presented work, we study how enzymatic reactions operate if
the total amount of enzyme is utilized optimally under the biophysical
constraints posed by nature. We, therefore, use an optimization for-
mulation tomaximize the net steady-state flux given a fixed amount of
enzyme level, as has been done in previous studies30,34,47. Wewanted to
ensure that the OpEn framework applied to all enzymatic mechanisms
with known elementary reaction schemes and could directly assess the
distribution of thermodynamic forces and enzyme states, providing
detailed insight into the mode of operation. Therefore, we formulated
our optimization problem using as inputs: (i) the elementary enzyme
mechanism, (ii) the intracellular concentrations of the substrates and
products, and (iii) their thermodynamic properties in terms of the
standard Gibbs free energy of the reactions (Fig. 1 panel Inputs). The
operating conditions that our framework examines and provides as
outputs comprise (i) a set of elementary rate constants, (ii) elementary
thermodynamic displacements (i.e., equivalent to the thermodynamic
driving forces), and (iii) the distribution of the enzyme states (i.e., the
relative allocation of the total amount of enzyme to substrate-bound,
product-bound, or free states) (Fig. 1 panel 4).

To achieve this goal, we formulated four sets of biophysical con-
straints within our framework. First, we assumed that the enzyme
operates at a quasi-steady state. Thus, the concentrations of sub-
strates, product, and enzyme states are time-invariant, resulting in a
set of equality constraints. Secondly, we set the total amount of
enzyme as constant by assuming that its transcription and translation
dynamics are sufficiently slow compared to its metabolic dynamics.
Furthermore, we linked the ratio of the elementary forward and
reverse fluxes to their respective thermodynamic force γi

48. Finally, we
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Fig. 1 | TheOpEnworkflow to formulate optimal enzyme utilization as amixed-
integer linear program (MILP) for arbitrary elementary mechanisms. The
inputs include the (i) elementary reaction mechanism, (ii) metabolite concentra-
tions, and (iii) standard Gibbs free energy. The biophysical constraints are for-
mulated based on (i) quasi-steady-state operation, (ii) total enzyme conservation,
(iii) thermodynamics, and (iv) upper limits of the rate constants. The parameters
and variables are normalized to yield dimensionless quantities using (i) kmax

∓i , where
± refers to the forward and backward rate constants, respectively, (ii) [C]ch, the

characteristic concentration, and (iii) [ET], total enzyme concentration. The con-
straints are then linearized to overcome the non-linearity of the problem by
applying a (i) change of variables and (ii) piecewise-constant approximation of the
independent displacement variables. The enzyme utilization is then optimized
using the MILP formulation by maximizing the net steady-state flux of the enzy-
matic reaction. Here, analyses can be performed on the mode of operation at
optimality.
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considered biophysical limits33, 49 for the elementary rate constants by
limiting bimolecular rate constants by their diffusion limit, varying
within the range 108�1010M�1s�133,41. The monomolecular rate con-
stants are limited by the frequency of molecular vibrations, which was
found to vary in the interval 104–106s−1 for enzymatic reactions34,47

(Fig. 1 panel 1).
Designed to mimic considerations that would apply in cells, the

formulation of the biophysical constraints encompasses four sets of
variables and two sets of parameters for a given enzyme mechanism.
The variables consist of the elementary rate constants k∓iðki,f ,ki,bÞ,
thermodynamic displacements γi, and enzyme states ei, and the para-
meters consist of the metabolite concentrations and the overall equi-
librium constant Keq (or the overall thermodynamic displacement Γ).

To obtain dimensionless quantities, we normalize certain vari-
ables and parameters, namely rate constants ki,f and ki,b, enzyme states
ei, metabolite concentrations [P] [S], and the overall equilibrium con-
stant Keq. We normalize the elementary rate constants by their
respective biophysical limits as done previously by Wilhelm et al.34. To
normalize metabolite concentrations and the overall equilibrium
constant, we also used the aforementioned limits and introduced a
characteristic concentration [C]ch. Lastly, we normalized the enzyme
states using the total enzyme concentration. This yields eS,eP,eKeq as
parameters and eki,f ,

eki,b,eei and γi as variables (see Methods and Fig. 1
panel 2).

To overcome the nonlinear nature of the problem, we next line-
arized the bilinear terms and the nonlinear constraints. As the nor-
malized elementary rate constants ek∓iðeki,f ,

eki,bÞ are well-bounded
between 0 and 1, we replaced the bilinear terms ek∓ieei for each ele-
mentary step by one new variable and one new constraint. To replace
the nonlinear constraint posed by the thermodynamics, we eliminated
one of the displacements using the overall thermodynamic displace-
ment from equilibrium. We estimate the remaining elementary dis-
placements or mechanistically meaningful independent combinations
of them by a piecewise-constant function. The resulting problem is
piecewise-linear and can be solved efficiently with a MILP formulation
using the Peterson linearization scheme50,51 (See Methods). The refor-
mulation of the problem as a MILP ensures global optimality and
enumeration of alternative solutions (Fig. 1 panel 3).

Finally, the resulting MILP allows us to optimize the net enzyme
flux for the respective operating conditions, i.e., substrate, product

concentrations, and standard Gibbs free energy. The optimization
results will yield a set of elementary rate constants, displacements, and
an enzyme distribution that allow for this optimal flux. With this
constraint-based formulation of the problem, we can then assess
potential alternativemodes of operation by constraining the flux to its
maximum and applying variability analysis on the operational vari-
ables. With this same principle, we can study the fitness landscape of
optimal enzyme utilization for specific operating conditions by
exploring the suboptimal space (Fig. 1 panel 4).

Optimally used Michaelis–Menten enzymes require condition-
specific saturation regimes
We first applied our framework to study themodes of operation of the
prototypical three-step reversible Michaelis–Menten Eq. (1) mechan-
ism. Our results from our herein presented elementary MILP for-
mulation capture those previously obtained by Wilhelm et al, we
showed the division of the concentration space into distinct regions,
with matching elementary rate constants and Michaelis constants at
optimal state34 (Supplementary Figs. 1 and 2). We further calculated
forward and backward turnover numbers at optimal state and showed
their sensitivity over the concentration space (Supplementary Fig. 3).

E + S"
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k1,b
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Additionally, our formulation allowed us to assess optimal
enzyme state distributions and thermodynamic forces directly. Our
results show that the operating conditions govern the enzyme state
and thermodynamic force distribution at a catalytically optimal state.

A comprehensive analysis of enzyme-state distributions showed
that optimal enzyme utilization requires the enzyme to operate at a
low enzyme saturation if the substrate and product concentrations are
small compared to the characteristic concentration of the system.
With increasing substrate and product concentrations, the optimal
enzymeutilization requires increasing enzyme saturation. The optimal
saturation increases rapidly with substrate and product concentration
when both reactant concentrations are below the characteristic con-
centration [C]ch, whereas for larger substrate or product concentra-
tions, this increase is significantly smaller (Fig. 2a). To our surprise, this

Fig. 2 | Modes of operations of the optimally used Michaelis-Menten enzyme.
a Enzyme saturation (σ) of the reversible Michaelis–Menten mechan-
ism (see Eq. (1)) at a catalytically optimal state. Scattered isolines indicate the
displacements from thermodynamic equilibrium (Γ’s). Dashed line indicates the
equilibrium (Γ = 1.0). b Three different operating points along the Γ =0.6 isoline

with low (blue), medium (nude), and high (red) saturations and their respective
operating conditions for optimal enzyme utilization, net-flux, elementary fluxes,
enzyme state, and free energy distribution, for eKeq = 2 (data for different eKeq ’s can
be found in Supplementary Fig. 4). Subscripts in the pie chart refer to the ele-
mentary steps denoted in Eq. (1). Source data are provided as a Source Data file.
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phenomenon appears to be independent of the thermodynamic dis-
placement Γ (Fig. 2a).

To better understand the precisemechanismbywhich this strong
dependence of the optimal saturations emerges, we analyzed the
characteristic operating conditions for the low, intermediate and high
saturation regimes (Fig. 2b). The data revealed three optimal proto-
typical mechanisms by which the optimal enzyme utilization is
achieved:

At low saturations, the thermodynamic driving force (ΔG′) of the
reaction was mainly used for substrate association, which required
about 60% of the potential. Most of the remaining thermodynamic
potential is used to drive the product dissociation, and only a minimal
amount is allocated to displace the biotransformation step from
equilibrium. This distribution of the thermodynamic forces manifests
itself in a fast turnover between the enzyme-bound substrate and
product and a comparatively slow turnover for substrate and product
association and dissociation. As indicated by the low saturation, most
enzymes are free enzymes, providing the necessary driving force to
capture the substrate molecules present in low quantities.

At intermediate saturations, the thermodynamic driving force
(ΔG′) of the biotransformation step increased to the same order of
magnitude as the product dissociation. This shift in thermodynamic
forces came mainly at the expense of the driving force for the sub-
strate association reaction, with some contribution from reducing the
driving force of the product dissociation reaction. This redistribution
resulted in an overall reduced contribution of the substrate associa-
tion and product binding steps compared to the low saturation case,
with the substrate association being the slowest step. Most enzymes
remain free indicating that capturing the substrate molecules is still a
limiting factor.

At high saturations, the thermodynamic driving forces are equally
distributed, resulting in a similar turnover between the three steps.
Comparing the actual elementary fluxes shows that the product dis-
sociation association has become the slowest step after the bio-
transformation and the substrate association dissociation exhibited
the fastest turnover. Furthermore, free enzyme became the least
abundant species, showing that with increasing substrate concentra-
tions, the capture of substrate molecules becomes less of a limiting
factor. Nevertheless, the decreasing dependency of the enzyme
saturation on product and substrate concentration also indicates the
minimum amount of free enzyme is required for the enzyme to
operate optimally.

Optimality principles of multi-substrate enzymes indicate con-
centrations dependent binding preferences
To next examine more complex mechanisms, we applied our frame-
work to investigate the optimal modes of operation of multi-substrate
enzymes. To this end, we first studied the Bi-Uni mechanism (2) with a
compulsory order for substrate binding. Our MILP formulation can
capture subdivision of the concentration space into different regions
classified basedon the rate-constants, whichwaspreviouslyderivedby
Wilhelm et al.34. (Supplementary Fig. 5)
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In addition to the elementary rate constants, we again captured
enzyme saturation at different operating conditions for the optimally
utilized enzyme. The analysis of the enzyme-state distributions
revealed that similar to the reversible three-step Michaelis-Menten
mechanism, saturation at optimal state increases with product con-
centration (see Supplementary Fig. 6). Interestingly, we observed that
the order in which the substrates bind to the enzyme plays a role in
saturation at a catalytically optimal state, with saturation increasing
with an increased concentration of the substrate that binds first. Our

results show that saturation increases with the increasing substrate
concentration that binds first to the enzyme. In contrast, the con-
centration of the second substrate does not significantly change the
saturation.

Since our generalized MILP formulation allows us to study any
kind of elementary mechanisms in an unbiased fashion, we extended
the scope to investigate a generalized Bi-Uni mechanism, where any
substrate can bind first to the enzyme, resulting in the following
branched mechanism (see Eq. (3)).

ð3Þ

Our results suggest that optimal enzyme have a preferential
binding mechanism dependent on their operating conditions. To
quantify this preference, we introduced the splitting ratio,
α =evnet,up=evnet , which is defined as the fraction of the flux that goes
through the upper branch, where substrate A binds first to the enzyme
(see Eq. (3)).

Interestingly, the values of optimal splitting ratios are found to
vary between 0.3 and 0.7 under physiological conditions
ðeP = 1≈0:1mMÞ, indicating that the random-ordered mechanism is
optimal over ordered mechanism (Fig. 3a). A detailed analysis of the
optimal splitting ratio across various input scenarios revealed three
phenomenological features for the substrate binding preference. First,
if the substrate concentrations are interchanged symmetrically
ðeA,eB ! eB,eAÞ, the optimal splitting ratio α switches, leaving αB,A = 1�
αA,B (Fig. 3a–c). This demonstrates that the splitting ratio shows an
antisymmetric behavior with symmetric changes in the substrate
concentrations.

Secondly, we observed that for distinct concentrations of the
substrates (eA≠ eB), the splitting ratio and the optimal modes of
operation were unique, though when both substrates were
equally available (eA= eB), the splitting ratio behaved flexibly. A
variability analysis revealed that this flexibility had a range
around α = 0.5. This led to alternative values for the elementary
rate constants and, consequently to alternative modes of net
fluxes through the upper and lower branches. More interestingly,
when the substrate concentrations are equal and less than pro-
duct concentrations, there exists a unique configuration of ele-
mentary constants for the optimally utilized enzymes; instead,
when they are comparable or slightly higher than product con-
centrations, there can exist alternative values for the elementary
constants that can result in optimal enzyme utilization. This
suggests that the product concentration relative to the con-
centration of the substrates affects the uniqueness of the optimal
solution and therefore, the preferential binding for the unbiased
Bi-Uni mechanism.

Lastly, our findings revealed a relationship between the pre-
ferential binding mechanism and the reactant concentrations. As
mentioned above, the preferential binding mechanism shows an
antisymmetric behavior over the substrate concentration space.
However, when one substrate concentration is greater than the other
(eB> eA or eA> eB), such as at the upper or lower concentration spaces, the
data reveals two characteristic behaviors for the preference of binding
to either the lower or higher abundant substrate, as demonstrated by
the net flux through the upper or lower pathway. (i) When the con-
centration of the least abundant substrate (e.g. eB for the lower and eA
for the upper concentration space) is lower than the product
concentration eP, the most abundant substrate binds first to the
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enzyme. (ii) On the contrary, when the concentration of the least
abundant substrate is comparable to or higher than the concentration
of the product, the least abundant substrate binds first to the enzyme.

It was surprising that the substrate concentrations were not the
sole determinants for these behaviors (Fig. 3a), and that the product
concentration played such a determining role. Looking into this fur-
ther, the shift between the two behaviors can be seen clearly when the
product concentration is equal to 1 (eP = 1) (Fig. 3a). At low product

concentrations, such as eP =0:1, the lowest substrate concentration
defines the preference for the binding (Fig. 3b). Likewise, at high
product concentrations (eP = 5), the most abundant substrate con-
centration defines the preferential binding mechanism (Fig. 3c). Our
results suggest that contrary to common belief, the preferential
binding mechanism is not only determined by the substrate con-
centrations but also by their magnitudes in relation to the product
concentration.
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To decipher themechanistic details behind these phenomena, we
analyzed the modes of operation at an optimal state. Similar to the
reversible Michaelis-Menten mechanism, we analyzed three proto-
typical operating conditions: two symmetric operating conditions for
distinct substrate concentrations (red and blue triangles in Fig. 3a) and
one with identical concentrations for the substrates (white dashed
square in Fig. 3a). Here, the symmetric substrate concentrations
resulted in symmetric modes of operation. In other words, there was a
symmetrical interchange between the upper and lower branches for
the thermodynamic forces, net fluxes, and enzyme-state distributions.
Otherwise, the modes of operation for the biotransformation and the
product association-dissociation steps remain identical (Fig. 3d, e).

For the selected symmetrical operating conditions, preferential
binding went to the most abundant substrate. Therefore, when the
concentration of B was high, 68% of the net flux went through the
lower branch, resulting in α =0.32 (Fig. 3d). Here, around 40% of the
thermodynamic potential drove the association-dissociation steps for
substrate A (steps 1 or 6), which can be attributed to the low con-
centration of A at this condition.Mostof the remainingpotential drove
the biotransformation and the product association-dissociation steps,
whereas aminimal amount of potential was allocated to the binding of
substrate B (steps 2 or 5). The highest turnover was observed for the
association-dissociation step of substrate B to the free enzyme, which
was then followed by the biotransformation and product association-
dissociation steps. The slowest turnover was observed for the asso-
ciation and dissociation steps for substrate A (steps 1 or 6).

A similar analysis also applies for the symmetric operating con-
dition in which the concentration of A is high. In this case, 68% of the
net flux goes through the upper branch, resulting in α = 0.68 (Fig. 3e).
Nearly 40% of the thermodynamic potential drove the association-
dissociation reactions for substrate B, followed by the bio-
transformation and the product association-dissociation steps. The
lowest amount of potential was used to drive the association-
dissociation of substrate A.

As a result of the symmetric modes of operations, identical opti-
mal saturation is observed for symmetric operating conditions. Fur-
ther analysis of the enzyme-state distributions revealed that the total
concentration allocated to the substrate-bound and product-bound
enzyme states stays the same, leaving the saturation unchanged
between symmetric operating conditions. The only difference arises
for the specific substrate-bound enzyme states, namely EA and EB,
which interchange for symmetric operating conditions. If most of the
flux goes through the branch where the substrate B binds first to
the enzyme, B- boundenzyme state, EB,will bemoreoccupied than the
A-bound enzyme state, EA (Fig. 3d). Likewise, for the symmetric
operating condition, EA concentration will increase at the expense of
reducing the amount attributed to the EB concentration (Fig. 3d).

A detailed analysis of themodes of operation at flexible operating
points shows that the saturation and the thermodynamic force dis-
placement remain the same across the alternative solutions (Fig. 3e).
Nevertheless, the flexibility in splitting ratio expresses itself as alter-
nating flux distributions for the branched pathway and on the dis-
tribution of the substrate-bound enzyme states, EA and EB. The

occupancy of the remaining enzyme states and the flux distributions
through the biocatalysis and product dissociation steps remain the
same for all alternative solutions, indicating that the saturation at
optimal state remains unique across alternative solutions.

Discussion
In this study, we presented a computational method to explore the
catalytically optimal modes of operations of enzymatic reactions as a
framework to eventually help fill in missing enzyme kinetic informa-
tion in metabolic models. We formulated a MILP problemmaximizing
the net-steady state reaction rate at a given total enzyme concentra-
tion, and estimated the optimal kinetic parameters, saturation and
thermodynamic force displacements for the three-step reversible
Michaelis–Menten mechanism and, for the first time, a random-
ordered multi-substrate mechanism. The results from our framework
matched with optimized rate constants from previous studies34,47 and
further expanded the field to provide details about the condition-
specific saturations and binding mechanisms that are required for
optimal enzyme utilization.

Our formulation has three clear advantages over the existing
methods focusing on the catalytic optimality of enzymes. First, the
formulation allows us to address any complex enzyme mechanism,
such as random-ordered multi-substrate mechanisms. Second, by
combining our formulation with the traditional sampling methods, we
can explore the suboptimal solutions and study the fitness landscape
of optimal enzyme utilization. Lastly, the MILP formulation ensures
global optimality and convergence, which can be solved by commer-
cial solvers, thus we do not need to derive solutions for all possible
types of kinetic designs, as was done in previous studies34,47. Instead,
we showed the emergence of diverse optimal kinetic designs by sol-
ving the optimization problem at given reactant concentrations and
thermodynamic constraints. We expect future work to be extended to
account for different concentrations and constraints as needed, such
as for studying the influence of biochemical reactions occurringwithin
densely packed cells, where enzymes operate in highly crowded
environments which dramatically alters the Michaelis–Menten para-
meters from dilute solutions52.

An added value of our framework is the limited necessary inputs
which are the reaction mechanism, thermodynamic properties of the
reaction, and the metabolite concentrations. The reaction mechanism
can be assigned based on the molecularity of the reaction or on pre-
vious knowledge and literature9. The standard Gibbs free energies of
the reactions can be estimated by group-contribution53 or component-
contribution54 methods. Lastly, the metabolite concentrations can be
obtained partially from the literature forwell-studied organisms44,45, or
can be estimated for an entire metabolic pathway using constraint-
based optimization methods such as Thermodynamics-based Flux
Analysis (TFA)55,56. Using TFA55,56, we can integrate quantitative meta-
bolomics and fluxomics data and estimate thermodynamically feasible
concentration and flux profiles as well as how far each reaction oper-
ates from thermodynamic equilibrium by sampling the thermo-
dynamically feasible concentration and flux profile space, as it is done
in the construction of population of kineticsmodels13. After having the

Fig. 3 | Optimal splitting ratio α =evnet,upevnet andmodes of operations for the general
bi-uni mechanism on the concentration space of the substrates eA and eB.
Optimal splitting ratio for the general bi-uni mechanism for eKeq = 2: a for eP = 1 b foreP =0.1 and c for eP = 5, colors indicate themagnitudeof α, if α >0.5 (red)most of the
flux atoptimal state goes through thebranchwhereAbindsfirst to the enzyme, and
similarly if α <0.5 (blue) most of the flux goes through the branch where B binds
first. A splitting ratio of 0.5 (white) indicates that the flux is equally distributed
between both branches. Dashed line style for the scatters indicates the flexibility of
the splitting ratio at optimal state. Solid line indicates the equilibrium, dashed
isolines indicate the displacements from equilibrium. Prototypical operating

conditions for optimal enzyme utilization, net-flux, elementary fluxes, enzyme
state, and free energy distribution, for the selected data points indicated in part a,
for eP = 1 (triangles and a square)d for distinct (eA≠eB), and symmetric concentrations
of subtrates with unique modes of operations (triangles), e when both substrates
are equally available ðeA = eBÞ (square). Subscripts in the pie chart refer to the ele-
mentary steps denoted in Eq. (3). Free energy pie charts have an alternate segment
representing the upper and lower branches of the reaction mechanism. Dashed
lines in the enzyme state pie charts indicate the substrate boundenzyme states, and
its conservation across symmetric and alternative solutions. Source data are pro-
vided as a Source Data file.
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necessary inputs, our framework can be easily applied to study a net-
work of enzymatic reactions or an entire metabolic pathway under the
assumption that each reaction operates at a catalytically optimal state.
This procedure scales linearly with the number of reactions in the
network. Thus, by combining experimental measurements with
genome-scale metabolic models and constraint-based modeling
approaches, our framework can estimate a context-specific theoretical
upper bound for the catalytic efficiency of metabolic enzymes with
detailed kinetic and thermodynamic considerations as they operate
in vivo.

In this study, our analysis was focused on and limited to the
kinetic design and modes of operations of enzymes at maximal
reaction rates, though our computational framework would also
allow the exploration of alternative and suboptimal solutions.
Therefore, although we are still far from completely under-
standing the complex interplay between the physicochemical
constraints and evolutionary pressures that shape enzyme cata-
lysis, our framework can help us map the parametric domain for a
broad range of operating conditions and shed light on the driving
forces and constraints that have shaped natural enzymes in three
ways. First of all, using our framework, we can estimate a
condition-specific theoretical upper bound for the catalytic effi-
ciency of any enzyme mechanism, which will provide a more
accurate comparison with the natural enzymes to assess how far
they operate from their theoretical optimum. Secondly, as we
formulate the problem as a MILP, we can explore the suboptimal
solutions and explore the fitness landscape of enzymes toward
catalytic perfection, which was not possible with previous meth-
odologies. This way, we can understand the independent con-
tribution of each variable to the fitness landscape of the
moderately efficient enzymes and have a detailed understanding
of how diminishing returns and trade-offs affect the evolutionary
trajectory of enzymes toward optimal catalytic efficiency. Lastly,
we can integrate alternative objectives by including them in the
objective function to study different evolutionary pressures and
trade-offs between them.

Overall, we expect the presented framework to be used in the
future to estimate the missing kinetic parameters for steady-state
flux profiles in metabolic models, thereby overcoming the scar-
city of kinetic parameters and advancing the development of
kinetic models. The use of our presented framework will allow
some of the first studies into complex enzyme mechanisms in the
light of evolution, which will directly fill knowledge gaps in
enzyme kinetics. Additionally, the provided estimated modes of
operation at a catalytically optimal state can be translated into
enzyme bioengineering strategies, guiding the design of enzymes
for maximal catalytic activity for direct application to common
engineering problems, such as large-scale product syntheses and
therapeutic development.

Methods
Normalization of parameters
For our formulation, we used the normalized parameters and
variables as was done in previous studies34,47. Additionally, we also
normalized the concentrations of the enzyme states in terms of
the total enzyme concentration (see (Fig. 1) panel 2). We con-
sidered two limits for the elementary rate-constants, one for the
bimolecular (second-order) rate constants,kmax ,2

± i and one for the
monomolecular (first-order) rate constants, kmax ,1

± i . We did not
distinguish between the isomerization and dissociation steps and
constrained both rate constants with the same upper limit.
Nevertheless, the presented methodology can be generalized by
introducing different upper limits for different types of mono-
molecular rate constants, as was done previously by Klipp and
Heinrich30,47.

Describing the rate of reaction
We describe the reaction rate at the elementary reaction level using
mass-action kinetics. Considering that all the elementary steps are
reversible, at steady state, the reaction rates are written by decom-
posing each reversible flux into two separate irreversible fluxes. To do
this, we introduced displacements from thermodynamic equilibrium γi
for each elementary step, for i= 1, . . . ,Ne where Ne is the number of
elementary reactions.

γi =
vi,b
vi,f

ð4Þ

For convenience throughout this section, instead of + ,-. the sub-
scripts f and b are used to denote forward and backward variables,
where vi,f and vi,b denotes the forward and backward reaction rates,
respectively for the ith elementary step. We assume that the net reac-
tion rate is positive, that is the reaction operates in the forward
direction. This implies that γi ≤ 1 for i 2 f1, . . . ,Neg.

The displacement of a reaction from its thermodynamic
equilibrium Γ, is defined as the ratio between the backward
reaction rate evb to the forward reaction rate, evf for the overall
reaction and is defined as follows for a reaction with n substrates
and m products:48,57

Γ=
evbevf =

1
eKeq

Qm
k = 1

ePk

Qn
j = 1

eSj
: ð5Þ

evf � evb =evnet : ð6Þ

Here, eKeq stands for the reaction equilibrium constant and is

defined as
Qm

k = 1
~P
eq
kQn

j = 1
~S
eq
j

= e�4rG
0� =RT , where 4rG

0� is the standard Gibbs free

energy of the reaction; R is the ideal gas constant and T is the tem-
perature. evnet is the net steady-state flux for the overall reaction and is
defined as the difference between the forward and backward reaction
rates. The Gibbs free energy of the reaction can be written as:

4rG
0 =4rG

0� +RT ln

Qm
k = 1

ePk

Qn
j = 1

eSj
: ð7Þ

Using Eqs. (4) and (7), Γ can also be expressed as:

Γ= e4rG’=RT : ð8Þ

Consequently, for reactions operating in the direction of product
production, the Gibbs free energy of the reaction is negative and
Γ 2 ½0,1�. Similarly, if the reaction operates in the reverse direction,ΔrG
′ is positive and Γ ∈[1, +∞]. Note that Γ close to 1 indicates a reaction
operating close to equilibrium.

Γ is linked to the elementary displacements according to the fol-
lowing equation:

Γ=
Y
k2C

γk : ð9Þ

The multiplication is over a set C, and its content depends on the
kinetic mechanism of the reaction. For unbranched enzymatic reac-
tions (e.g., ordered mechanisms), set C contains all elementary reac-
tions. For a random-ordered mechanism, Eq. (9) needs to be satisfied
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for each fundamental cycle58, 8C 2 Cf , where set C is a subset of Cf,
which contains all fundamental cycles.

As we assume that the reaction proceeds toward the production
of products, Eq. (9) constraints the thermodynamic displacements of
elementary reactions as follows: Γ≤ γi ≤ 1. Without loss-of-generality
the presented framework can also be applied for the reactions oper-
ating in the reverse direction (toward substrate production) by

applying: Γ ! 1
Γ, γi ! 1

γI
, eKeq ! 1eKeq

and evnet ! �evnet
Thenet steady-state reaction rate canbewritten from2Ne equality

constraints, where Ne is the number of elementary steps.

evi,f = eki,feei�1eci = evi,net
ð1� γiÞ

: ð10Þ

evi,b = eki,beeieci = evi,netγi
ð1� γiÞ

: ð11Þ

evi,net � eki,feei�1ecið1� γiÞ=0: ð12Þ

evi,netγi � eki,beeiecið1� γiÞ=0: ð13Þ

Here, evnet,i denotes the net steady-state flux for the elementary

reaction i, eki,f and
eki,b stand for the forward and backward elementary

rate constants of the ith elementary step (i 2 f1, . . . ,Neg), eei is the
corresponding abundance of the enzyme state for the ith elementary
step, and ee0 =een. The cyclic notation holds for ordered enzyme
mechanisms, whereas for random-ordered mechanisms the corre-
sponding enzyme state can be generated using the King-Altman
method59. Furthermore, eci is the concentration of the reactants, which
is a parameter in our formulation, and is equal to 1 for all dissociation
steps and interconversion steps or is equal to the concentration of the
substrates or the products for the ith association step, for substrate or
product binding steps.

Note that the net steady-state fluxes for elementary reactions
are the same as the net flux for the overall reaction, for unbranched
mechanisms evi,net =evnet . For random-ordered mechanisms
(see Eq. (3)), the following relation must be added:evj,net =evnet j 2 M,

P
r2Bk

evr,net =evnet . The set M contains all the ele-
mentary steps in the unbranched pathway and the set B contains all
combinations for the elementary steps (Bk) from each branch in the
mechanism (for Eq. (3) B 2 ½ 1,5f g, 2,5f g, 1,6f g,f2,6g�). Using the ratioevr,net=evnet we also define the splitting ratio α for the random-ordered
mechanisms.

Considering the conservation of total enzyme adds an additional
constraint:

XN
n= 1

een = 1: ð14Þ

The sum is over all enzyme mechanistic states for a given
mechanism, where N is the total number of enzyme states. N =Ne for
ordered mechanisms, and N =Ne � nb for random-ordered mechan-
isms, where nb is the number of branching points in a mechanism. As
enzymestates arenormalizedwith the total enzymeconcentration, the
right side of Eq. (14) is equal to 1.

With all the constraints described our optimization problem can
be stated as follows:

max ~vnet
s:t

~vi,net � ~ki,f ~ei�1~cið1� γiÞ=0,
8i= 1, � � � ,Ne

~vi,netγi � ~ki,b~ei~cið1� γiÞ=0, 8i= 1, � � � ,Ne

~vj,net � ~vnet =0, 8j 2 MP
r 2Bk

~vr,net � ~vnet =0, 8Bk 2 B

Q
k 2C

γk = Γ, 8C 2 Cf

PN
n = 1

~en = 1,

~ki,f ≤ 1,
~ki,b ≤ 1, 8i= 1, � � � ,Ne

Γ ≤ γi ≤ 1, 8i= 1, � � � ,Ne

~vi,net ,
~ki,f ,

~ki,b, ~ei,γi 2 R+ : 8i= 1, � � � ,Ne

ð15Þ

Change of variables
Due to the non-linearity of the rate equation given by Eqs. (12) and
(13), we first apply the change of variables. We replaced each of the
bilinear terms denoting the multiplication of elementary rate con-
stants and the corresponding enzyme state variables by a new vari-
able (ezi,f and ezi,b) and a constraint. As described above, elementary
rate constants are normalized with their corresponding biophysical
limit; hence they can take values in the interval [0,1]. Thus, replacing
thebilinear termswithnewvariables implies that they (ezi,f andezi,b) are
bounded above by their corresponding enzyme states. Reformulating
of Eqs. (12) and (13) with the change of variables results in the fol-
lowing constraints:

evi,net � ezi,fecið1� γiÞ=0: ð16Þ

evi,netγi � ezi,becið1� γiÞ=0: ð17Þ

ezi,f � eei�1 ≤0: ð18Þ

ezi,b � eei ≤0: ð19Þ

Introducing new variables removes elementary rate constants
from the rate equation, leaving the ez, ee γ’s and evnet as variables of the
optimization problem.

Approximation of the elementary displacements from thermo-
dynamic equilibrium
To remove the remaining non-linearity in Eqs. (16) and (17), we
approximated the elementary displacements from thermodynamic
equilibrium (γi’s) with a piecewise-constant function γ̂i, or in other
words, with a 0th-order approximation. If γ̂i is piecewise-constant, then
the products evi,net γ̂i, ezi,f γ̂i, and ezi,bγ̂i are piecewise-linear and can be
described in MILP form. This approximation converts the continuous
bilinear terms into mixed bilinear terms, which are a product of an
integer and a continuous term. This simplified the problem, as these
mixed bilinear terms can be linearized in an MILP formulation using
the Petersen linearization scheme50,51, which was previously used for
metabolic engineering60,61.

Approximations of the thermodynamic displacements also nee-
ded to satisfy the overall thermodynamic constraint stated in Eq. (9).
As we have an explicit definition of elementary displacements in the
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rate equations, Eq. (9) also accounts for the ratioof the elementary rate
constants that satisfies the overall equilibrium constant. First, we
eliminated one of the elementary displacements using the overall
thermodynamic displacement (Γ). Then we approximated the inde-
pendent elementary displacements or their mechanistically mean-
ingful combinations with a piecewise-constant function.

Aswe are interested in reactions operating toward the production
of products: γi 2 ½Γ,1�. Then we approximated γi using the following
equation:

γk ≈ γ̂k = Γ +p
1� Γð Þ
N

, ð20Þ

where, 1�Γð Þ
N is the resolution of the approximation, N is the number of

bins into which γ̂i has been discretized, and p chooses which bin is
selected for the solution. Here k 2 Ic and set Ic denotes the chosen
elementary displacement variables or their combinations to be
approximated with a 0th order approximation. To linearize the pro-
blem, we expressed p using binary variables. For this, we represent p
with its binary expansion.

p=
Xdlog2Ne

s =0

2sδs , ð21Þ

where, dlog2Ne indicates the smallestmajoring integer to log2N, and δs
is the binary variable δs 2 0,1f g. As we performed binary expansion of
p, the complexity of the model increased with O log2N

� �
instead of

O Nð Þ, whichwas alsopreviously used by Salvy andHatzimanikatis61.We
also needed to ensure that p does not exceed N:

0 ≤
Xdlog2Ne

s =0

2sδs ≤N: ð22Þ

For simplicity in our formulation, we approximated meaningful
combinations of elementary displacements to reduce the number of
linearization to be performed. For example, for the reversible
Michaelis–Menten reaction given in Eq. (1), we chose two independent
displacement variables to linearize as γ̂1 and γ̂1,2, where the latter

represents the product of γ̂1 and γ̂2 γ̂1,2 = γ̂1γ̂2
� �

, which also adds the
constraint γ̂1,2 � γ̂1 ≤0. In this way, we could represent each elemen-

tary displacement as γ1 ≈ γ̂1, γ2 ≈
γ̂1,2
γ̂1

, and γ3 ≈
Γ
γ̂1,2

. Any other combina-

tion of elementary displacements from equilibrium works for this
mechanism. Overall, we performed the piecewise-constant approx-
imation for the chosen independent elementary displacement vari-
ables γk ≈ γ̂k , k 2 Ic.

The approximation became more important for the combination
of elementary displacements when we studied random-ordered
mechanisms. For the random-ordered mechanism given in Eq. (3), by
approximating the combination of elementary displacements for the
cycle e.g γ̂cycle = γ̂1,2 = γ̂5,6, we could directly satisfy Eq. (9) for each
fundamental cycle describing the principle of microscopic
reversibility58. Thus, for the random-ordered Bi-Uni mechanism,
we could express all six elementary displacements ðγiÞ by approx-
imating four independent displacement variables, namely:
γ̂cycle,γ̂1,γ̂5,γ̂3 Ic = cycle,1,5,3

� �
, which yields γ1 ≈ γ̂1, γ5 ≈ γ̂5, γ2 ≈ γ̂cycle=γ̂1,

γ6 ≈ γ̂cycle=γ̂5, γ3 ≈ γ̂3, and γ4 ≈ Γ=ðγ̂cycleγ̂3Þ. Note that the constraints
γ̂cycle � γ̂1 ≤0 and γ̂cycle � γ̂5 ≤0 also need to be considered.

For the results, the resolution of the approximation 1�Γ
N of ele-

mentary displacements was set to 10−4 for the Michaelis–Menten and
10−3 for the random-ordered Bi-Uni mechanisms. If the reaction oper-
ates close-to equilibrium, Γ≥0:9, 1�Γ

N = 10�4 for both mechanisms.

Petersen linearization
After approximating elementary displacements from equilibrium, the
rate equation contained the bilinear terms arising from the productsevi,net γ̂i, ezi,f γ̂i, and ezi,bγ̂i. We could approximate these continuous pro-
ducts using the following derivation, which is only shown for the
product evnet,iγ̂i for simplicity. The same linearization scheme also
applies to the remaining nonlinearities of the form ezi,f wd γ̂i and ezi,bwd γ̂i.

evi,netγi ≈evi,net γ̂i: ð23Þ

evi,net γ̂i =evi,netΓ+ Xdlog2Ne

s =0

1� Γð Þ
N

2sδsevi,net ð24Þ

The product δsevi,net is bilinear, though is a product of a binary and
a continuous variable. Assuming a constant M>evi,net , we could apply
the Petersen linearization scheme50,51 to the bilinearity. Replacing
δsevi,net with another non-negative variable tis , where s stands for the
index of the binary variable and i stands for the elementary step, we
could represent the bilinear product by one new variable and three
new constraints:

tis = δsevi,net: ð25Þ

evnet,i +Mδs � tis ≤M

tis �Mδs ≤0

tis � evi,net ≤0

8><
>: ð26Þ

Note that when Ne > 3, we need an additional linearization to
account for the product of two binary variables. As an example,
consider the random-ordered Bi-Uni mechanism given in Eq. (3).
By approximating 4 elementary displacement variables
ðγ̂cycle,γ̂1,γ̂5,γ̂3Þ we can express all 6 elementary displacements as
explained in the previous section. To describe the reaction rate
from the product dissociation step, we can use the following
equations:

ev4,net � ez4,f ð1� γ4Þ=0 ð27Þ

ev4,netγ4 � ez4,bð1� γ4Þ½eP�=0 ð28Þ

ez4,f � ½EP�≤0 ð29Þ

ez4,b � ½eE�≤0 ð30Þ

Note that the product-dissociation step ev4,net =evnet is not in the
branched pathway of the reaction mechanism. We then needed to
represent γ4 from the approximated elementary displacements
as γ̂4 = Γ=ðγ̂cycleγ̂3Þ.

We can rewrite the constraints above using the following equa-
tions:

evnet γ̂cycleγ̂3 � ez4,f ðγ̂cycleγ̂3 � ΓÞ=0 ð31Þ

evnetΓ� ez4,bðγ̂cycleγ̂3 � ΓÞ½eP�=0 ð32Þ

ez4,f � ½EP�≤0 ð33Þ

ez4,b � ½eE�≤0 ð34Þ
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Here γ̂cycle and γ̂3 are the approximations by a piecewise-constant
function as described by Eqs. (20)–(24). As both approximations
contain binary variables, their product needed to be considered. This
product could be linearized by representing it with a new binary
variable and three new constraints as follows:

ζ s,p = δsλp ð35Þ

ζ s,p � δs ≤0

ζ s,p � λp ≤0

ζ s,p � δs � λp + 1≥0

8><
>: ð36Þ

where ζ s,p, δs and λp are binary variables, ζ s,p,δs ,λp 2 0,1f g. δs and λp are
the binary variables in the binary expansion for γ̂cycle and γ̂3, respec-
tively. After this linearization, the remaining bilinearity was of the form
continuous × binary, which could be linearized using Petersen’s
theorem50,51 (Eqs. (25)–(26)).

Using the change of variables and the piecewise-constant
approximation as described above, we translated the nonlinear opti-
mization problemgiven in Eq. (15) to aMILP, which canbe summarized
as follows:

max ~vnet
s:t

~vi,net � ~zi,f ~cið1� γ̂iÞ=0
~vi,net γ̂i � ~zi,b~cið1� γ̂iÞ=0
~zi,f � ~ei�1 ≤ 0
~zi,b � ~ei ≤ 0

8i= 1, � � � ,Ne

8>>><
>>>:

~vj,net � ~vnet =0 8j 2 MP
r 2Bk

~vr,net � ~vnet =0 8Bk 2 B

γ̂k = Γ+
Plog2N

s =0

ð1�ΓÞ
N 2s,kδs,k 8k 2 IC

PN
n= 1

~en = 1

Γ≤ γ̂i ≤ 1 8i= 1, � � � ,Ne

~vi,net , ~zi,f ,~zi,b, ~ei,γ̂i 2 R+ 8i= 1, � � � ,Ne

δs,k � 2 f0, 1g 8k 2 IC

ð37Þ

Note that, the overall thermodynamic constraint was dropped in
the final formulation, as approximations of the independent elemen-
tary displacement variables ðγ̂kÞ were performed accordingly as
explained before.

Variability analysis
The optimality inMILPs ensures that there is a unique global optimum
value for the objective function ðev*netÞ but not a unique optimal value
for the variables. Therefore, there can be multiplicity of solutions. To
account for this multiplicity, variability analysis was performed for the
variables of the problemby finding themaximumandminimumvalues
of each variable at a given state (e.g. optimal state).

Back calculation of elementary rate-constants
OurMILP formulation does not consider the elementary rate constantseki,f and

eki,b as explicit variables of the optimization problem. Instead,
they are embedded in the linearized variables ezi,f and ezi,b, the product
of the elementary rate constants with their corresponding enzyme
states. To back calculate the elementary-rate constants, we performed
a variability analysis for the variables ezi,f , ezi,b, and eei, where i 2
1, . . . ,Ne

� �
at the optimal state (evnet=ev *

net). For the ordered mechan-
isms, we observed that the optimal state is achieved by unique values
for the ez, ee, and γ’s. This implies that the values for the elementary rate

constants are also unique and can be calculated by dividing ezi,f and ezi,b
by eei�1 and eei, respectively. The uniqueness of the solution for the
ordered mechanisms was also previously shown by Wilhelm et al.34 .

For the random-ordered mechanisms, the maximal catalytic
activity was achieved by unique or alternative solutions depending on
the reactant concentrations. First, we performed variability analysis on
the steady-state fluxes of the branched elementary steps and calcu-
lated the flexibility of the splitting ratio (α = vr,net=vnet). For the flexible
operating points, elementary displacements were uniformly sampled
within their allowed range (calculated with variability analysis) and
their values ðγi’sÞ were fixed for each feasible thermodynamic dis-
placement distribution. Then the model became solely linear, and we
sampled the variables with traditional sampling techniques, such as
artificially centered hit and run (ACHR)62 or optGpSampler63. After
sampling, we could back calculate the elementary rate constants and
study alternative modes of operation at the given reactant con-
centrations (Fig. 3).

Sampling suboptimal solutions
In this study, we focused on the modes of operation of enzymes
achieving maximal net steady-state flux (at the optimal state).
Alternatively, as we formulated the problem as aMILP, we could also
study suboptimal solutions that are at or beyond a given cut-off
value with the constraint: evnet ≥ clev*net , where cl denotes the cut-off
limit. Thereby, using a similar procedure as in the previous section,
we could explore the suboptimal space with sampling. In this way,
we can explore the modes of operation of “moderately efficient”
enzymes and study their fitness landscape toward catalytic
perfection.

Calculation of macroscopic kinetic parameters
We described the reaction rates from their elementary reaction
mechanisms and estimated the corresponding microscopic rate
constants for each elementary step. Translating the microscopic
parameters to macroscopic ones (KM ’s and kcat’s) can be
performed using Cleland’s notation64 (see Supplementary Infor-
mation) or equivalently by performing in silico initial rate
experiments52. In this way, the estimated macroscopic parameters
at the optimal state can be directly compared with available
experimental data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data areprovidedwith thispaper for all thefigures generated in
this study in the Supplementary Information/Source Data file. All
datasets generated during this study can also be found in the reposi-
tory https://github.com/EPFL-LCSB/open under the data sub-
folder. Source data are provided with this paper.

Code availability
The implementation of this framework was performed in Python 3.6
using the optlang package65 and using commercial solvers such as
ILOG CPLEX or Gurobi. Code was run in Docker (20.10.6) containers.
OptGP and ACHR samplers are adapted from their implementation in
COBRApy66 version 0.17.1. The code to use the workflow and to
reproduce the results presented herein are available in the repository
https://github.com/EPFL-LCSB/open. The code is also deposited in
Zenodo to provide a reference to the version used in this study67.
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