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Computational models of episodic-like
memory in food-caching birds

Johanni Brea 1,2 , Nicola S. Clayton3 & Wulfram Gerstner1,2

Birds of the crow family adapt food-caching strategies to anticipated needs at
the timeof cache recovery and rely onmemory of thewhat, where andwhenof
previous caching events to recover their hidden food. It is unclear if this
behavior canbe explainedby simple associative learningor if it relies onhigher
cognitive processes like mental time-travel. We present a computational
model and propose a neural implementation of food-caching behavior. The
model has hunger variables for motivational control, reward-modulated
update of retrieval and caching policies and an associative neural network for
remembering caching events with a memory consolidation mechanism for
flexible decoding of the age of a memory. Our methodology of formalizing
experimental protocols is transferable to other domains and facilitates model
evaluation and experiment design. Here, we show that memory-augmented,
associative reinforcement learning without mental time-travel is sufficient to
explain the results of 28 behavioral experiments with food-caching birds.

Food-caching birds of the crow family (Corvidae) have been proposed
as animal models for cognitive neuroscience, because of their
remarkably complex cognition1. In thewild, nutcrackers and jays cache
food items like nuts or insects in thousands of small cracks or in loose
soil, for hours, days or months. Recovery of their own caches is highly
probable (50–99%), dependent on visual cues, independent of olfac-
tory cues and inconsistent with random search at preferred locations2.
In laboratory experiments (Fig. 1A), jays rely on episodic-likememories
of what they cached where and when (henceforth called ‘memory
experiments’3–7) and adapt their caching strategy to anticipated future
needs (‘planning experiments’8–12), among other behavior1.

The interpretation of the planning experiments is controversial.
Are they evidence for ‘mental time-travel’10–12, a characteristic feature
of humanbehavior13? Or are they explained by amnemonic-associative
recall of previous actions at the time of cache recovery8,9,14? A resolu-
tion of this controversy would determine those aspects of cognition
for which corvids are representative animal models.

To formalize different interpretations, we turn to reinforcement
learning15,16, a computational framework to describe behavioral
experiments.Reinforcement learningmodels are distinguishedbyhow
action selection depends on past experiences. First, in a model-free

approach, action selection depends on a policy, whose parameters
(e.g. synaptic weights) are directly changed by experience. Memory
about past events is stored implicitly in these policy parameters. Sec-
ond, in a model-based approach, past experiences are used to build a
model of the world in the form of causal information like “doing A in
state B has consequencesCwith probability P”. Thismodel canbe used
for ‘planning at decision time’ or to update a model-free policy17.
Memory aboutpast events is stored in aggregated form in themodel of
the world. Third, in a buffer-based approach, the sequence of past
experiences is explicitly stored in a memory buffer. Using ‘experience-
replay’, this buffer can be used to repeat actions with successful out-
come or to update a world-model or a model-free policy.

Model-free reinforcement learning is usually associated with
learning of habits. Often this simple form of learning is sufficient to
explain behavior: tool-use experiments with corvids and apes can be
explained by model-free reinforcement learning18 and the mnemonic-
associative account14 of the planning experiments resembles model-
free reinforcement learning19. On the other hand, there is evidence for
simple versions of model-based reinforcement learning in different
species20,21 and processes like planning or mental time-travel require a
model- or buffer-based approach16,22.
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Model-free, model-based or buffer-based approaches allow
reinforcement learning agents to adapt their policies to the spe-
cificities of the environment. In addition to this kind of memory,
agents need dedicated memory if they act in a partially observable
domain, where perceptions inform only partially about the full
state of the environment23. Because cached food is hidden, food-
caching animals need this additional kind of memory to remember
their food caches. Finally, the birds’ behavior is affected by inter-
nal motivational states, like the level of hunger for each type of
food11,12,24. Hence, in a reinforcement learning model of food-
caching animals, policy and reward are functions of external sti-
muli (e.g. visual cues), internal motivational states (e.g. hunger)
and memory of food caches.

Here, we ask whether the birds’ food-caching behavior can or
cannot be explained by established concepts like reward-modulated
synaptic plasticity and associative memory networks25. To answer this
question, we translated different explanations of food-caching beha-
vior into computational models of neural circuits of memory and
decision making, formalized experimental protocols in a domain-
specific language (Figs. 1B and Fig. S5) and compared simulated to
measured results extracted from 28 published experiments (1568 data
points).

Results
Each computational model specifies a population of simulated birds,
with mean behavior and inter-individual differences characterized by
some hyperparameters ϑ (Fig. 1B). To obtain simulated results we
sample groups of simulated birds from these populations and let them
participate in simulated experiments. For example, in one experiment9

the caching behavior of Nexperiment = 8 birds was studied for two
experimental conditions. We created 105 groups, each containing
N =Nexperiment = 8 simulated birds and analyzed their behavior with the
same criteria as in the experiment (Figs. 1D and 2A and “Methods”).
Like real birds, simulated birds perceive items of different kinds of
food and potential cache sites and they perform different actions, like
eating food items, caching food items or inspecting a cache site for
available food. For eachmodel and experiment, the hyperparameters ϑ
are adjusted by likelihood-free inference (Fig. 1B, “Methods”). We also
fitted each model to all experiments jointly, such that the model-
specific hyperparameters ϑ are the same for all experiments, but the
simple models we considered fail to capture the strong inter-
experimental variability, which is potentially due to seasonal or other
unobserved effects (Appendix). To investigate reproducibility, we also
ran simulations with 10 times more subjects than in the real experi-
ments (Fig. 2B). We do not discretize time but respect in all

Fig. 1 | Computational modeling approach. A In the experiments, jays can eat
different items of food, cache them in visuospatially distinct sites (ice cube trays
with different arrangements of LEGODuplo blocks) or inspect their own caches for
available food. With different feeding schedules and manipulations of the cached
food items the experimenter can change the birds' motivational states and caching
experiences. Adapted from Clayton, N., Bussey, T. & Dickinson, A. Can animals
recall the past and plan for the future?. Nat Rev Neurosci 4, 685-691 (2003). https://
doi.org/10.1038/nrn1180, Springer Nature Limited.B For 28 published experiments
we formalized the experimental protocol in a domain-specific language and
extracted all measured quantities from text and figures. Our models (top right)
describe populations of simulated birds as distributions over dynamical systems.
Simulated birds are sampled from these populations to participate in simulated
runs of the experimental protocols andproduce simulated results.We compute the
approximate log-likelihood log p̂ by comparing simulated with actual results
(Methods). Thehyperparametersϑ thatdetermine themeanbehavior and the inter-

individual differences are adjusted to maximize log p̂. C In the Plastic Caching
Model the preferences of eating ϕeat, caching ϕcache, and inspecting ϕinspect depend
on the neural activities and synaptic strengths in a structured neural network fea-
turingmotivational control (green), plastic cachingweights (red) and an associative
memorywith systems consolidation (blue).Only some connections are fully drawn;
short outgoing lines indicate connections that are suppressed in this figure. The
hyperparameters ϑ set initial values of the weights and the speed of learning.
D Example experiment 'deKort07 exp4a' (see Figs. S9–S168 for other experiments
and all 78 comparison figures permodel). Birds that experienced pilfered caches in
tray A (blue) stopped caching food in their previously preferred tray A, whereas
birds that successfully retrieved their caches in A continued to cache preferentially
in A (center, error bars = SEM,n = 4birds per group). These experimental results are
reproduced in simulations with the Plastic Caching Model (left: best out of 105

simulations, error bars = SEM). Also on average (right), the simulated results match
qualitatively the experimental data (error bars = average SEM).
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Fig. 2 | Fitting results and model comparison. A On average, 48–55% of experi-
ments simulated with the Plastic CachingModel reproduce the significance level of
the most relevant statistical tests, if the same number of subjects is used in the
simulations as in the experiments (Methods). Without plasticity (No-Plasticity
Model) performance decreases only for the planning experiments, lesioning
additionally the associative memory (No-Plasticity-No-Memory Model) and moti-
vational control (No-Plasticity-No-Memory-No-Motivational-Control Model) addi-
tionally decreases performance in memory and satiety experiments. The control
model Planning-By-Replay is not better than the Plastic CachingModel.B If 10 times
more subjects are used in the simulations than in the experiments, 85-90% of the

most significant statistical tests can be reproduced. Assuming a 10% false discovery
rate in the experiments, this means that the Plastic Caching Model can reproduce
almost all experimentally observed effects. C Models with lesions perform worse
than the Plastic Caching Model and the Planning-By-Replay Model as shown by the
approximate log-likelihood Δ log p̂ summed across all experiments and measured
relative to the Planning-By-Replay Model (hatched: planning experiments, lines:
memory experiments, dotted: satiety experiments).D Performance Δ log p̂ relative
to Planning-By-Replay Model for all 28 individual experiments. The 6 experiments
of Clayton01&Clayton03build upon eachother and are therefore shownas a single
point. DeKort07 exp1 is a control experiment.
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experimental protocols the actual durations. We do not explicitly
simulate movements of birds within their cage or the actual visual
input; instead we assume that sensory processing in a bird’s brain
enables its memory and decision system to access a neuronal repre-
sentation of all relevant objects.

Our main model, the Plastic Caching Model, contains modules of
motivational control (green in Fig. 1C), associative memory (blue in
Fig. 1C) and a caching module that relies on known synaptic plasticity
rules (red in Fig. 1C, “Methods”). To study the relative importance of
these modules, one or several modules can be lesioned. We also
compare the Plastic Caching Model to a Planning-By-Replay Model
(“Methods”), where the caching module is replaced by an explicit
planning module.

Actions depend on the available objects and the birds’ motiva-
tional state
Wemodel action selection as a randomprocess with probabilities that
dependon experiences of the simulated birds.We assumean attention
mechanism that allows a bird to attend to a randomly selected object
in the cage. The bird performs an action on that object if the pre-
ference is higher than a random threshold; otherwise it attends to
another object until some action is selected (“Methods”).

The motivational control module makes the eating and caching
probabilities depend on hunger variables that are influenced by the
recent eating history. We model hunger with several variables hf to
capture specific satiety. Eating one type of food with a high fat
concentration may decrease the first hunger variable more than the
second one, whereas another type of food with a high protein con-
centration decreases the second variable more than the first one. If
we focus only on the five experiments thatmeasure effects of specific
satiety, the motivational control module is necessary and sufficient
to assure good performance; lesioning the plastic caching module
(No-Plasticity Model, i.e. fixed caching probabilities) or the associa-
tive memory module (No-Plasticity-No-Memory Model, i.e. fixed
caching and inspection probabilities) does not impair performance,
whereas lesioning also the motivational control leads to a strong
drop in performance (No-Plasticity-No-Memory-No-Motivational-
Control Model, i.e. fixed caching, inspection and eating probabilities.
See Fig. 2).

Whereas themotivation for eating depends undeniably on satiety,
the caching behaviormaybe independent of hunger, as jays are known
to cache predominantly in seasons when food is abundant2. Therefore,
we compared the motivational control module to alternative motiva-
tional control models where caching is independent of the recent
caching and eating history (unmodulated caching) or where caching
depends only on the recent caching history (caching-modulated
caching; “Methods”). We found that models without any motivational
control reproduce the five specific satiety experiments clearly worse
than models with hunger-modulated caching, whereas models with
caching-modulated caching perform better than hunger-modulated
caching models on one experiment (Clayton99C exp1) and worse on
two experiments (Clayton99C exp3 and Cheke11 specsat; see Fig. S8).

Remembering the what-where-when of caching events with an
associative memory
If we extend the tests to also include the 11 memory experiments, we
cannot lesion the associative memory module without a large loss in
performance (Fig. 2). The module of associative memory stores cach-
ing events in a hetero-associative neural network26 with memory con-
solidation at the systems level27. In the Plastic Caching Model
(Methods), the features of the cache site (‘where’) get associated with
the cached food (‘what’) by growing synaptic weights wð1Þ

f x (blue in
Fig. 1C) between cache-site-feature neurons ϕx and first-layer food-
type memory neurons ϕð1Þ

f . Synaptic growth is governed by a neo-
Hebbian three-factor learning rule28. In these rules the co-activation of

a pre- and postsynaptic neuron tags a synapse as eligible for change,
but strength and sign of the actual synaptic change depends on a
modulatory signal which arrives at the synapse up to a few seconds
later. The simultaneous focus of a simulated bird on a caching tray A
and a food item f activates pre- and postsynaptic neurons of memory
synapses, leading to Hebbian eligibility traces. These traces are turned
into actual synaptic growth, if a subsequent modulatory signal com-
municates that the simulated bird has indeed cached food item f in
caching tray A. Some consolidation mechanism (e.g. ref. 27) moves
memories over time from synapses targeting one layer of memory
neurons ϕðlÞ

f to synapses targeting the next layer of memory neurons
ϕðl + 1Þ

f , which allows a flexible readout of how long ago a caching event
happened (‘when’). At retrieval time, the perception of a cache site
triggers recall of the associated food type by activating memory neu-
rons in the layer that corresponds to the time passed since caching
(Fig. 1C). Synaptic readout weights are adaptive and allow the simu-
lated birds to adjust the preferences for inspecting different cache
sites. When the simulated birds experience, for example, degraded
worms that were cached for a certain duration T, these readout
weights decrease via a neoHebbian reinforcement learning rule28,
where the modulatory third factor signals the unpleasant encounter
with the degraded worm. This lowers the future preference for
inspecting cache sites containing worms of age T (“Methods”).

The second experiment reported in ref. 6 (included in Clay-
ton01&Clayton03 in Fig. 2D) is one of the most demanding memory
retrieval experiment with birds. In this experiment the birds cached on
days 1, 2 and 3 in caching trays 1, 2 and 3, respectively. They were
allowed to cache peanuts in one half of each caching tray and crickets
in the other half of each caching tray. On day four, three days after
caching in tray 1, the birds recovered their caches from tray 1. On day
five they recovered their caches from tray 2. Birds in the group with
manipulated trays found fresh peanuts and decayed crickets. These
two recovery trials informed them that crickets decayed after 3 days,
which was contrary to earlier experiences where they found fresh
crickets after 3 days. On day six, they were allowed to inspect tray 3. As
onewould expect frombirds that can generalize their experience from
days four and five, they searched less for crickets than for peanuts.

In allmodels with associativememory (Plastic CachingModel, No-
Plasticity Model, Planning-By-Replay Model), the caching events lead
to the formation of synaptic contacts between caching-tray neuronsϕx

and memory neurons ϕð1Þ
f (blue in Fig. 3A). Because different trays are

used, different caching tray neurons ϕx are active on each of the first
three days (c.f. Fig. 3A, B). However, the samememory neuronsϕð1Þ

f for
f = Peanut and f = Cricket get actived on all three days. Over several
nights, memory consolidation moves the newly formed synaptic con-
tacts to post-synaptic neurons ϕð2Þ

f , ϕð3Þ
f and ϕð4Þ

f . On day four, the
perception of caching tray 1 activates the corresponding caching-tray
neurons, which activatesϕð4Þ

f through the synaptic contacts formed by
memory consolidation. The food type f of the activated memory
neuron depends onwhichhalf of the caching tray the bird is looking at.
The feedback after observing a decayed cricket f = Cricket lowers the
synaptic retrieval weight vð4ÞCricket (Fig. 3C; Eq. (5), “Methods”). This
synaptic weight is further lowered on day five, where again decayed
crickets are experienced. Consequently, on day six, when ϕð4Þ

Cricket is
again activatedwhile focusing on onehalf of tray 3, the retrieval weight
is so low that there is only a small probability of inspecting the part of
the caching tray containing crickets.

Because the weight update involves only the inputs and outputs
of associative memory (blue in Fig. 3C), but not the plasticity of the
caching weights (red in Fig. 3C), no differences are expected between
the Plastic Caching Model, Planning-By-Replay Model and No-
Plasticity Model whereas a lower performance is expected and
observed for No-Plasticity-No-Memory Model and No-Plasticity-No-
Memory-No-Motivational-Control Model (c.f. Fig. 2D, entry
Clayton01&Clayton03).
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Model-free reinforcement learning is sufficient to explain the
adaptation to anticipated future needs
The 11 planning experiments require additionally to motivational
control and associative memory a mechanism to adapt the caching
strategy. This adaptation is implemented in the Plastic Caching Model
with synaptic strengths wcache (red in Fig. 4A) that undergo plasticity
following two simple principles. First, the weights associated with
available caching sites slowly increase for all food types a simulated
bird feels hungry for, which explains findings in experiments without
retrieval trials during training10. Second, the retrieval attempts of
caches cause synapses wcache (Fig. 4B) to decrease for birds that found
degraded food or were unsuccessful in finding cached food and to
increase for successful birds via a neoHebbian plasticity rule28. Because
associative recall of memories reactivates the relevant pre- and post-
synaptic neurons, such a rule enables delayed reinforcement learning
of those weights that determined caching decisions potentially long
ago (Fig. 4A).We compare the Plastic CachingModel to a formalization
of the mental-time-travel hypothesis: the Planning-By-Replay Model.
This model adapts the caching strategy with an explicit planning

module that records the sequence of available caching trays, suc-
cessful and unsuccessful retrieval attempts and the hunger levels that
were perceived when these trays were available (Fig. 4C). Before
caching a food item in a certain tray, those positions in memory are
searched that match best the current context. Starting at these posi-
tions, the sequence of events is replayed for a few steps and the pre-
ference of caching is influenced by the outcome of the replayed
retrieval attempts (“Methods”). Despite similarities with hippocampal
replay17,29, which would be consistent with the replay-and-plan module
and models of mental-time-travel in general, we have not yet found a
simple implementation of the replay-and-plan module (orange box in
Fig. 4C) in terms of neural network dynamics and plasticity rules. In
fact, a precise hypothesis of neural implementations of mental-time
travel requires much more than hippocampal replay, as it would have
to specify which aspects of the detailed multi-sensory processing
stream are stored in the hippocampal replay memory, how the mem-
ory systemcanefficientlybe queried, andhow theoutcomeofmultiple
replayed episodes are combined to reach a decision for the next action
(“Methods”).

Fig. 3 | Flexible cache memories. In the second experiment of Clayton03, birds
cached crickets onday 1 in caching tray 1. In the Plastic CachingModel, an available
food item activates a food-type neuron ϕf and the food indicator neuron ϕ* and a
caching tray activates cache-site neuronsϕx that code for the tray’s appearance and
position in the cage. The caching preference ϕcache depends on the current moti-
vational statehfweighted by vcachef and the cachingweightswcache

f x . Memoryweights
wð1Þ

f x (blue arrows) are tagged when the bird evaluates the caching preference and
grown after successful caching. Caching onday 2 in tray 2 (not shown) and onday 3
in caching tray 3 (same position, different appearance than tray 1) leads to the
formation of newmemoryweights (blue arrows).Memory consolidation over night
(wiggly gray arrows) transferred the memory of the caching event on day 1 to
weights that target the third layer of the associativememory (dashed blue arrows).

The caching event onday 2 is stored inmemoryweights that target the second layer
(not shown). Perceiving caching tray 1 on day 4 activates the memory of the food
type cached in this tray. This activates the foodtype neuron ϕf, the foodtype-
specific caching neuron ϕcache

f and the readout of the motivational state. The food
indicator neuron ϕ* is inactive, because the food item is not actually perceived but
only remembered. The inspection preference ϕinspect depends on the current
motivational state hfweighted by vinspectf and thememory readout weights vð4Þf . The
unpleasant feedback of the degraded recovered cricket (thick gray arrows)
decreases the caching weights wcache

f x and the memory readout weights vð4Þf . These
weights are further lowered on day 5 (not shown). Consequently, on day 6 the bird
has a lower preference of inspecting the tray where it cached a cricket three
days ago.
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In the fourth experiment in ref. 9, birds were allowed to cache
worms in tray A, whereas they could not cache in Perspex-covered
tray B. One day later the Perspex covers were removed and the
birds were allowed to inspect all trays. For birds in the pilfered
group (blue in Fig. 1D) the experimenter removed the caches from
tray A and placed them in tray B, whereas the caches of the control
group were not manipulated. After two such training trials, when
birds had on a later day the choice to cache either in tray A or B
(not covered), birds in the pilfered group preferentially cached in

tray B, whereas birds in the control group cached preferentially
in tray A.

In the Plastic Caching Model, the unsuccessful retrieval attempts
of the caches in tray A cause a decrease of the caching weight (Fig. 4B)
of tray A for the birds in the pilfered group, whereas for the control
group the successful retrievals from tray A lead to a strengthening of
this caching weight (Eqs. (11)–(14), “Methods”).

In the Planning-By-Replay Model, the retrieval trials are stored in
the replay memory together with the information of whether the trial
was successful or not. When the birds decide where to cache, previous
caching events with context similar to the current one are accessed in
the replay memory. From these accessed caching events, the replay
memory is played forward until retrieval events from the same caching
tray are encountered in memory. For birds that encounter unsuc-
cessful retrieval events in memory the probability of caching is lower
than for birds with successful retrieval events.

Because the above explanations of the experiments require plas-
ticity of the caching weights or explicit planning, a model with lesions
performs worse than the Plastic Caching Model or the Planning-By-
Replay Model (cf. Fig. 2D, entry deKort07 exp4).

Discussion
The Plastic Caching Model is sufficient to reproduce the experimental
findings in 28 behavioral experiments with food-caching corvids. It is a
memory-augmented reinforcement learning model in continuous
time, where action selection and reward signals in simulated birds
depend on external stimuli, motivational states and associative mem-
ories of past caching events. Plastic retrieval and caching weights
enable adaptation to anticipated future needs.

The individual modules of the Plastic Caching Model are delib-
erately kept simple; the available data does not sufficiently constrain
more sophisticated models. For example, little is known about how
hunger sensitive neuronsmodulate behavior30. Interestingly, however,
the mere visual perception of a food item transiently reduces the
activity of hunger sensitive neurons in the hypothalamus of mice31,
which could potentially influence the action preferences similarly to
how the motivational state modulates the preferences in our models.
Further experiments onhowmotivational states influencebehavior are
needed before more refined models can be formulated.

The associative memory module with systems memory con-
solidation represents the time since a caching event with ‘chron-
ological organization’32: the identity of thememory layer that contains
an active neuron at the moment of retrieval indicates the age of a
memory. The specific implementation with moving synaptic connec-
tions illustrates the essential idea of how the age of memories can be
retrieved in an associative memory with systems memory consolida-
tion, but other implementations are possible (ref. 33, Methods).
Alternative associative learningmodels like ‘associative chaining’, ‘time
tagging’ or ‘strength coding’ would require a sophisticated neural
mechanism to determine the age ofmemories33 and to account for the

Fig. 4 | Adaptation to anticipated future needs. A The preference of caching
worms in a given tray depends on the red caching weights wcache

f x . B One day later,
when the bird inspects the caching tray, the memory of the cached food is reacti-
vated and, in particular, the pre- and postsynaptic neurons of the caching weights.
After discovering that the cached food itemhas disappeared, a feedback signal acts
as a third factor in a neoHebbian plasticity rule, thereby decreasing the caching
weight. C The Planning-By-Replay Model memorizes the sequence of events
(indicated with film strip). The caching preference is determined by searching for
positions in memory that match best the current context (indicated with black
triangle) and evaluating the preference of a caching action under the assumption
that the sequence of future events resembles the sequence of events following the
matched positions. All other components of the Planning-By-Replay Model are the
same as in the Plastic Caching Model.
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generalization observed in Clayton03 exp26. Although there is evi-
dence for sharp-wave ripples during sleep in the hippocampus of the
food-caching bird species tufted titmice34 and sharp-wave ripples are
believed to be important for systems memory consolidation35, future
experiments are needed to determine if the time information is
memorized with systems memory consolidation and an associative
learning mechanism and, if so, which one of several possible associa-
tive learning mechanisms33 is actually implemented in the brains of
food-caching birds.

The multi-step consolidation mechanism in the associative
memorymodule leads to sparse and non-overlapping activity patterns
of recalled memories, which enables flexible learning of food-specific
degradation4–6 and ripening intervals7. This model is also consistent
with experiments where magpies were trained to retrieve objects of
one color for one retention interval and objects of another color for
another retention interval36. The current model is flexible enough to
learn, for example, that food of a certain type is palatable after
retention intervals of 2 and 4 days and degraded after 1 and 3 days. A
modified multi-step memory consolidation process may lead to more
distributed and less flexible neuronal representations of retention
intervals. To discriminate between different consolidation processes
andneural representations of the ageof amemory, future experiments
should probe the limits of learnability and generalization to untrained
retention intervals.

The associative memory module in the Plastic Caching Model
encodes what kind of food was cached where and how long ago. It can
thus be seen as a model of episodic-like memory37, also called what-
where-when memory38. It is, however, not a model of an episodic
memory systems that enables autonoetic consciousness or mental
time travel39. In the simulated birds, the associative memory module
serves the sole purpose of copingwith partial observability; it does not
participate in constructive planning processes17,22.

What looks like planning in the experiments is achieved in the
Plastic Caching Model with model-free reinforcement learning,
implemented with synaptic changes at the moment of retrieval. These
synaptic changes follow neoHebbian three-factor learning rules which
are supported by experiments in several brain areas28,40,41. In the birds’
brains the plastic caching module (red in Fig. 1C) could be imple-
mented by the same anatomical structure as the associative memory
module (blue in Fig. 1C), becausebothmodules receive inputs from the
same neurons, they influence the action preferences and their synap-
ses undergo neoHebbian plasticity. There is, however, a key difference
between these two modules: the associative memory module keeps
track of time whereas the plastic caching module does not. Our
implementation of a what-where-when memory in the associative
memory module allows simulated birds to learn, for example, that
unripe berries cached at a warmplace are palatable after a few days, or
that little pieces of meat are better preserved at cold and dry places
than at warm and humid places, if the warmth and humidity of a cache
site are part of the perceived cache-site features. For the plastic
caching module, time is irrelevant, because the birds only need to
learn, for example, that little pieces of meat should preferably be
cached at cold and dry places or pilfered sites should be avoided.

Computational modeling is increasingly recognized as a com-
plementary tool to statistical hypothesis testing in experimental neu-
roscienceandpsychology42. Althoughweused the reportedp-values in
our likelihood-free model fitting procedure (“Methods”), we treated
them as summaries of the raw data without special meaning, similarly
to other summaries of the data like means and standard deviations.
Fitting computational models would be simplified with more detailed
raw data than usually collected in these behavioral experiments:
knowing for each bird the point in time when each action was taken
would enable likelihood-based model fitting (“Methods”).

Our approach of formalizing experimental protocols in a domain-
specific and model-independent language is an example of how

experimentalists and modelers could communicate to foster compu-
tational modeling. Experimentalists who publish raw data together
with experimental protocols in a formal domain-specific language
enable modelers to test existing models on new evidence. Existing
models help to design new experiments and estimate the number of
subjects needed to reach a desired statistical power, because the
models allow to scrutinizenovel experimental protocols in simulations
prior to actually performing the experiment. As an example we pro-
pose a behavioral experiment, wherewe expect amoderate number of
subjects to be sufficient to discriminate between the Plastic Caching
Model and the Planning-By-Replay Model (Figs. S6 and S7). With an
extension of the domain-specific language to formalize future
experiments that measure physiological quantities and behavior
simultaneously, the Plastic CachingModel could also be probed at the
neuronal level.

Although the Plastic Caching Model has all the features to
reproduce the experimentally observed behavior, some simulated
repetitions of the experiments fail to reach significance on the key
statistical tests with the low number of subjects typically used in the
experiments (Fig. 2A, B). This suggests an alternative explanation for
the recent failure of reproducing the breakfast planning experiments
with Canada jays43: the sample number Nexperiment = 6 in this experi-
ment may have simply been too small.

With the available 28 experiments, the Plastic Caching Model
reaches at least the same performance as the Planning-By-Replay
Model, indicating that planning in the formofmental time-travel is not
necessary to explain the experiments. Even though the Planning-By-
ReplayModel is just onemodel ofmental time-travel and othermental
time-travel models are conceivable, the important point is that the
Plastic Caching Model can reproduce the outcomes of the planning
experiments without an explicit mental time-travel strategy. The
simulated birds in the Plastic Caching Model are memory-augmented
stimulus-response machines that do not perform any off-line
planning17 or imagination of what it would feel like to be in an alter-
native situation to the currently perceived one. We conclude that
memory-augmented model-free reinforcement learning methods
implemented with traditional concepts of computational neu-
roscience such asneoHebbian learning rules28,40,41 augmentedbymulti-
stepmemory consolidation27 are sufficient to explain the existing large
body of experiments on food-caching behavior in birds.

Methods
All considered experiments study the caching and cache recovery
behavior of jays. A typical experiment repeats the following steps forN
individual birds, where N is between 4 and 24. (1) A few hours of food

Table 1 | Properties of the three types of objects Food, Tray
and InspectionObserver

Food Tray InspectionObserver

freshness∈ [0, 1] appearance 2 N tray_appearances∈
lists(N)

eatable∈ {true,
false}

position 2 N

cacheable∈ {true,
false}

open∈ {true, false}

amount 2 N eatable_items∈ lists(Food)

type∈ {mealworm,
waxworm, peanut,
suet_pellet, pinenut,
kibble, cricket, pine-
apple, salami, stone,
maintenance_diet}

The set lists(X) denotes all possible lists of arbitrary length with elements in X. In the actual
experiments, caching trays are usuallymade visually distinct by attaching them to aunique structure
of Lego Duplo. We model this feature with different appearance values. Sometimes the caching
trays where made inaccessible by covering them with Perplex. In this case we set open = false.
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deprivation raise themotivation of the bird. (2) The experimenter adds
some food items and visually distinct caching trays at specific posi-
tions in the bird’s cage andwaits for some time, e.g. 15minutes. (3) The
caching trays and remaining food items are removed and counted. (4)
While trays are outside the cage, the experimenter may or may not
remove (pilfer) or degrade the food items cached in some of the trays.
(5) After some waiting interval, the caching trays are returned to the
cage and the number of times the bird inspects the returned trays are
counted during a recovery interval. (6) After another waiting period,
steps 2–5 are repeated with some variations.

Domain specific language for experimental protocols
The domain specific language to describe all experimental protocols
consists of three types of objects, Food, Tray and Inspectio-
nObserver with different properties (see Table 1) and eleven actions
(see Table 2). With this language and some standard control com-
mands of programming languages, like assignments, loops and if-else-
clauses, all experimental protocols can be written formally as a func-
tion that takes models as input and returns result tables (see Fig. S5).

Model description
Input and output. The simulated birds can perceive food items,
caching trays and immediate outcomes of their actions. We do not
simulate explicit visual scenes. Instead, we use a one-hot encoding of
food items, i.e. the activity ϕf of food-type neuron f is equal to one, if a
food item of type f is perceived or remembered; otherwise, ϕf =0 (see
Table 1 for possible food types f). To distinguish perception from
memory retrieval, there is a food indicator neuronwith activityϕ* = 1, if
a food itemof any type is actually perceived. For caching trays xweuse
a two-hot encoding: neurons xa and xp have activity levelsϕxa

=ϕxp
= 1,

if the caching tray with appearance xa is placed at position xp. When
there is no ambiguity, wewill use the symbol x to denote caching trays
and indices of caching-tray-feature neurons, e.g. the activity of
caching-tray-feature neurons is ϕx = δx,xp

+ δx,xa
when caching tray x is

present.
Simulated birds take actions. The action set

Abird = featf , cachef x , retrievex , otherg ð1Þ

consists of eating an itemof food-type f (eatf), caching an itemof food-
type f in caching tray x (cachefx), inspecting and trying to retrieve food
from caching tray x (retrievex) or doing something unrelated to the
experiment (other).

There is no immediate outcome for all actions except retrievex. If a
simulated bird tries to retrieve a food item from a caching tray, the
food indicator neuron is active (ϕ* = 1) only if a food item could be
retrieved from the caching tray. Furthermore, a freshness neuron
signals the palatability of a retrieved food item, i.e.ϕfresh = 1, if the food

item is fresh and ϕfresh = 0, otherwise. The immediate outcome signals
are used to modulate synaptic plasticity (c.f. Associative memory with
systems consolidation and Plasticity of the caching policy in the Plastic
Caching Model).

Variables and parameters. The state of each simulated bird is
charaterized by some variables that change over time (Table 3) and
some constant parameters (Table 4). Variable are the neural activities
ϕ(t), the motivational control states sf(t) (stomach) and hf(t) (hun-
ger), synaptic weights of an associative memory systemM(t), and the
caching weights wcache

f x ðtÞ, that connect caching-tray-feature neurons
x to food-type neurons f (Table 3). Constant parameters (Table 4)
affect the dynamics of the variables as described in Motivational
control, Associativememory with systems consolidation, Plasticity of
the caching policy in the Plastic CachingModel and Decisionmaking.
For each individual simulated bird the fixed parameters are sampled
from a distribution adjusted to the data (c.f. Model Comparison and
Fitting).

Event-based integration. We perform event-based integration of the
variables. At each event, the variables of the system can jump to new
values, whereas they change smoothly between events. Events
ek = (tk, ak, ok) are given by the event time tk 2 R, the event type
ak 2 Abird ∪Aexperimenter, and the immediate outcome ok 2 O, where
the birds’ action set is given in Eq. (1) and the experimenters’ action set

Aexperimenter = faddf , addx , removef , removexg,

consists of addition and removal of food items and caching trays. Note
that the domain specific language to describe the experiments con-
tains more actions, like degrade, pilfer, count_items, that are per-
formed out of sight of the birds and do not affect their state variables
directly. There is a small set of immediate outcomes
O= fpilfered, fresh food item,degraded food item g that influence
synaptic plasticity through the food indicator neuron and the fresh-
ness neuron, i.e.ϕ*ðt +k Þ= 1 if and only if ok ≠pilfered andϕfreshðt +k Þ= 1 if
andonly ifok = fresh_food_item,where t +k indicates the time point after
tk atwhich the outcome is known.We do not simulate any events when

Table 2 | Actions for formalizing the experimental protocols

Action Object Description

add Food, Tray, InspectionObserver Adds an object to the simulated bird cage.

remove Food, Tray, InspectionObserver Removes an object to the simulated bird cage.

cover Tray Covers a tray, prohibiting caching and inspection from this tray.

uncover Tray Uncovers a tray.

degrade Tray Degrades all food items in a caching tray.

pilfer Tray Removes all food items from a caching tray.

count_cached_items Tray Count food items in a caching tray.

count_food_items Count food items in a simulated bird cage.

count_inspections InspectionObserver Count the numbers of inspections to the different trays as registered by the inspection observer.

first_inspections InspectionObserver Determine which tray was inspected first as registered by the inspection observer.

wait Wait for a specified number of minutes.

Table 3 | Variables

Symbol Description Minimum Maximum

sf(t) stomach 0 ∞

hf(t) hunger or hunger 0 1

M(t) associative memory

wcache
fx ðtÞ caching weights 0 1

f∈ FoodTypes, x∈CachingTrays.
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a bird has no food items and caching trays available that are relevant to
the experiment.

Motivational control. We model motivational control with two
variables per food-type: sf(t) indicates how much food of type f is
in the stomach and hf(t) indicates how hungry the bird is for food
of type f (Fig. 5). Instead of one stomach and hunger variable per
food type one could assign one variable per nutrient class, e.g.
carbohydrates, fats, fiber, minerals, proteins, vitamins, and water.
However, the mapping between food types and nutrient classes is
non-trivial and in the experiments the food types and quantities
were chosen such that the birds satiated on one food clearly

continued desiring and eating another food. Therefore we work
directly with food types.

The stomach variables evolve according to

dsf
dt

= � 1
τs

sf >0
h i

+
X
k

nf δðt � tkÞ ak = eatf
h i

, ð2Þ

where τs is a stomach time constant, the Iverson bracket [P] is 1 if the
statementP is true and0otherwise,nf is the nutritional valueof foodof
type f, δ(. ) is the Dirac delta distribution, and tk, ak are event times and
event types, respectively. The hunger variables are coupled to the
stomach variables through

dhf

dt
= � hf

τd
sf >0
h i

+
1� hf

τh
sf =0
h i

ð3Þ

where the digestion time constant τd determines how fast hunger
decrease while there is some food in the stomach and τh determines
how fast it increases otherwise. Whereas the stomach variable increa-
ses immediately with every eaten food item and decreases linearly as
food is digested, hunger decreases slowly during digestion, because
food absorption is not immediate and major hunger satiation signals
arise from the gut30. The value ‘zero’ of the stomach variable should
not literally be understood as indicating a completely empty stomach;
rather it is the emptiness level of the stomach at which a bird’s hunger
feeling starts to increase again. If maintenance diet is available to the
birds, we do not explicitly simulate eating events, but integrate Eq. (3)
under the assumption sf > 0 for all f. The hunger variables hf(t) critically
influence decision making (see Decision making).

In the caching-modulated caching model of motivational control
we use additionally the caching motivation variables cf that evolve
according to

τd
dcf
dt

= 1� cf ðtÞ � cf ðtÞc0
X
k

δðt � tkÞ ak = cachef
h i

ð4Þ

where c0∈ [0, 1] is a fitted parameter that controls how strongly the
caching motivation variables cf decreases when caching an item of
type f. In other words, whenever a simulated bird caches an item of
type f, the caching motivation cf for food f decreases by the amount
cf(t) ⋅ c0/τd towards zero and in the absence of caching events it
increases exponentially to one with time-constant τd. If the fitted
parameter c0 is large, few caching events suffice to bring the caching
motivation close to zero.

Associative memory with systems consolidation. Memory about
previous caching events is implemented in a simple associative (con-
tent-addressable) memory system M(t). The memory system M(t)
consists of 7memory sub-networks and readout weights vðlÞf . Each sub-
network l = 1,…, 7 contains neurons ϕðlÞ

f that are activated by actually
perceived or remembered food of type f. Initially, all synaptic weights
wðlÞ

f x from caching-tray-feature neurons ϕx to food-type neurons ϕðlÞ
f in

layer l are zero. Each caching event increases a synaptic consolidation
variable ~wð1Þ

f x ðtÞ by 1. The effective synaptic strength of connections
onto memory neurons ϕð1Þ

f on layer l = 1 is wð1Þ
f x ðtÞ=Hð~wð1Þ

f x ðt � 1 hourÞÞ,
with Heaviside function H(x) = 1 if x >0 and H(x) = 0 otherwise.
Implementing a simple systems consolidation process, active weights
wðlÞ

f x = 1 and variables ~wðlÞ
f x innetworks l = 1, 2, 3, 4 are copied to networks

l + 1 and erased (set to zero) in network l, every day, i.e.
wl + 1

f x ðt + 1 dayÞ=wðlÞ
f xðtÞ andwð1Þ

f x ðt + 1dayÞ=0 unless there was a caching
event during t and t + 1 day − 1 hour. Active weights stay in network 5
for 3 days before moving to network 6, where they stay for 8 days
before moving to the last layer of the memory network. In the
experiments the birds never cached on different days in the same
caching tray. Also in the wild, caching new items at a site where some

Table 4 | Parameters

Symbol Description Minimum Maximum

τs stomach time constant 0.5 min 10.0 min

τd digestion time constant 0.0 min 20.0 min

τh appetite increase time
constant

50.0 min 300.0 min

nf nutritional value 0.1 1.0

veatf eating preferences 0.1 1.0

vcachef caching preferences 0.0 1.0

ηeat eating bias -1.0 1.0

ηinspect inspection bias -2.0 0.5

sinspect inspection pre-
ference slope

0.0 5.0

ηcache caching bias -1.0 1.0

αfresh freshness learning rate 0.0 1.0

αreward retrieval reward learn-
ing rate

0.0 0.9

αpilfer pilfer learning rate 0.0 0.2

αdegrade degradation learning rate 0.0 0.2

τhungry hunger–caching time
constant

100.0 min 500.0 min

wcache
0 initial caching weights 0.0 1.0

δeat eating time-out 10.0 s 200.0 s

δinspect inspection time-out 10.0 s 200.0 s

δcache caching time-out 10.0 s 200.0 s

δother other action time-out 10.0 s 200.0 s

pother other action preference 0.0 1.0

The ranges [minimum, maximum] are manually set. The nutritional values, eating preferences
and caching preferences are estimated for each food type f∈ {mealworm, waxworm, peanut,
suet_pellet, pinenut, kibble, cricket, pineapple, salami}; for stones only thecachingpreference is
estimated.

Fig. 5 | Example trace of stomach sf and hunger hf variables. At minutes 4, 100
and 110 the simulated bird eats an item of food type f, thereby increasing the
stomach variable and shortly thereafter decreasing hunger.
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food items are already cached is unlikely, given that these birds are
scatter hoarders. In our model, repeated caching at the same site on
multiple days would lead to replacement of the old memory trace, e.g.
caching peanuts at x on day 1 and caching again peanuts at x on day 3
would lead to the deletion of the weights targeting layer 3 and the
growth of new weights to layer 1. Again, we choose a simple ‘one-hot
code’ in time, where eachmemory about a caching event is encoded in
exactly one neuron of the memory network at a time, but more dis-
tributed representations with gradual shifts would be possible.

Recall occurs when a caching tray is perceived at time t. Percep-
tion of caching tray x activates a cache-position and a cache-
appearance neuron ϕxp

ðtÞ=ϕxa
ðtÞ= 1, which in turn activates those

food neurons ϕðlÞ
f that have an active weight wðlÞ

f x = 1, i.e.

ϕðlÞ
f ðtÞ= σ

X
x

wðlÞ
f xϕxðtÞ

 !
, ð5Þ

where σðxÞ= minð1,maxð0, xÞÞ is the activation function. Each actual
inspectionof a cache site x reduces the variable ~wðlÞ

f x by 1, such that after
sufficientlymany inspection events theweightwðlÞ

f x becomes zero.With
this recall mechanism, the identity l of the layer of the memory net-
work that contains an active food neuron codes for the age of the
memory: if the only caching event of food of type f at site x occurred
three days ago, only ϕð3Þ

f becomes active. With the systems con-
solidation process described above, the corresponding age intervals of
thememory networks are: layer 1: [0, 1) day, 2: [1, 2) days, 3: [2, 3) days,
4: [3, 4) days, 5: [4, 7) days, 6: [7, 15) days and 7: [15,∞) days. Each
neuron in thememory network signals its activity through synapses of
strength vðlÞf to a retrieval preference neuron ϕretrieval. These weights vðlÞf
encode the expected freshness of food of type f that was cached at a
time that lies in the corresponding age interval of network l. These
weights are subject to experience-dependent plasticity: if the
experienced freshness during a successful retrieval event differs from
the expected value, the weight changes according to

ΔvðlÞf =αfreshðϕfresh � vðlÞf Þ, ð6Þ

where ϕfresh = 1 indicates that the retrieved food was palatable and
ϕfresh = 0 indicates the opposite.

To summarize, the state of the memory network at time t is given
by the variables

MðtÞ= ϕðlÞ
f ðtÞ, ~wðlÞ

f xðtÞ,w
ðlÞ
f xðtÞ, v

ðlÞ
f ðtÞ

n o
l = 1,...,7

: ð7Þ

This associativememory systemwith systemsconsolidation is just
one hypothesis of automatic processes that keep track of when an
event was memorized33. One alternative is to grow connections to all
layers of the memory network at the moment of storage, while main-
taining a time-dependant activity pattern at retrieval through synaptic
connections that disappear at different rates, e.g. the connections to
the first layer could disappear after one day, whereas those to other
layers disappear later. In this case, a young memory would be char-
acterized by many neurons being active during recall and an old
memory by few neurons being active during recall. Another alter-
native, without multiple layers and systems consolidation, is to store
the ‘what-where’ information together with a ‘when’ tag, like a time
stamp, or a ‘context’ tag that allows to reconstruct the ‘when’ infor-
mation. Implementing the ‘when’ information with a time tag or the
number of active neurons during recall has computational dis-
advantages to the sparse code of the memory network M(t), because
quickly learning flexible rules based on the what-where-when of
recalled events is easiest with linear readout, when the input to the
linear readout is sparse, ideally, one-hot coded33. But further

experiments are needed to discover the actual implementation of the
what-where-when memory in food caching birds.

Decision making. At any given moment in time the simulated birds
have 1 + nf + nf × nx + nx actions available (1 other, nf eat, nf × nx cache,
nx inspect), wherenf andnx are the currently available numbersof food
types and cache sites, respectively. Actions are selected by weighted
sampling from the available actions with the weights given by the
preferences of the available actions. This is implemented iteratively as
follows:
1. Compute the preference pa of a randomly selected available

action a.
2. Sample z from a uniform distribution over the interval [0, 1].
3. Choose action a if pa > z, otherwise repeat steps 1. – 3.

After every action the simulated birds wait for a random duration
sampled from a uniform distribution over ½1, δak � seconds before tak-
ing the next action.

The preference pother is a bird-specific preference for doing
something unrelated to the experiment. The computation of all other
preference pa could be implemented by a visual attention mechanism
that focuses randomly on an available food item or caching tray. For
example, focusing on a food item of type f would activate the food-
indicator neuron and one food-type neuron ϕ* =ϕf = 1; all other input
neurons would be inactive. The output neuron with activity

ϕeat = σ
X
f 0

veatf 0 hf 0ϕf 0 +η
eat +ϕ* � 1

0@ 1A= σ veatf hf ðtÞ+ ηeat
� �

=peatf ð8Þ

would than compute the preference peatf of eating this item (see
Fig. 1C). In Eq. (8), σðxÞ= minð1,maxðx, 0ÞÞ is an activation function, hf
are the current values of the hunger variables (c.f. Motivational con-
trol) and veatf are fitted eating preference parameters. The preferences
for caching a food item of type f in caching tray x are computed as

ϕcache =pcachef atx = σ wcache
f xp

+wcache
f xa

+ vcachef hf ðtÞ+ηcache
� �

, ð9Þ

where xp and xa are the position and appearance of the caching tray,
respectively, and wcache

f xp
, wcache

f xa
are corresponding weights that

undergo plasticity in the Plastic Caching Model (c.f. Plasticity of the
caching policy in the Plastic Caching Model). In the unmodulated
caching model we drop the term vcachef hf ðtÞ in the equation above and
in the caching-modulated caching model we replace it by vcachef cf ðtÞ
(see also Fig. S8).

The preferences for inspection of caching tray x are given by

ϕinspect =pinspectx = max
f ,l

σ ϕðlÞ
f vðlÞf + vinspectf hf + η

inspect
� �

, ð10Þ

where vinspectf = sinspectveatf to reduce the number of free parameters.

Plasticity of the caching policy in the Plastic Caching Model. The
caching policy is a simple stimulus-responsemechanism that depends
on caching-tray and food-type specific synaptic weights wcache

f x (red
weights in Fig. 1C of the main text). These are the weights from pre-
synaptic caching-tray feature neurons ϕx to post-synaptic caching
preferenceneuronsϕcache

f . Their changes are governedby amodulated
Hebbian plasticity term (first term in Eq. (11)) and a pre-synaptic term
(second term in Eq. (11))

dwcache
f x ðtÞ
dt

= IðtÞ m1w
cache
f x +m2ð1�wcache

f x Þ
� �

ϕxðtÞϕcache
f ðtÞ

+HfxðtÞð1�wcache
f x ðtÞÞϕxðtÞ

ð11Þ
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m1 = � αpilfer 1� ϕ*ðt +k Þ
� �� αdegradeϕ*ðt +k Þ 1� ϕfreshðt +k Þ

� �
ð12Þ

m2 =α
freshpeat

f ϕ*ðt +k Þϕfreshðt +k Þ, ð13Þ

where HfxðtÞ= 1
τhungry

½hf ðtÞ>θhungry� is active when a bird’s hunger for
food of type f exceeds some threshold θhungry = 0.99, I(t) =∑kδ(t − tk)
[ak = retrieve] and peat

f is the current preference for eating food of type
f (see Decision making). The effect of the two modulation factors m1

and m2 is best understood by a case-by-case analysis. Indeed, the
modulated Hebbian part of the plasticity rule in Eq. (13) can be written
as a change of the caching weights after attempting to retrieve a food
item of type f at cache site x

Δwcache
f x =

�αpilfer ×wcache
f x if ok =pilfered

�αdegrade ×wcache
f x if ok = degraded food item

+αfreshpeat
f × ð1�wcache

f x Þ if ok = fresh food item :

8>><>>: :

ð14Þ
The gated presynaptic term in Eq. (13) leads to behavior con-

sistent with the Compensatory Caching Hypothesis44: birds learn to
compensate for a lack of food experienced at a certain place by
caching more at this place, because the caching preference weights
increases at this place.

The caching policy in the Planning-By-Replay Model. The Planning-
By-Replay Model maintains a list T = ðm1, t1Þ, ðm2, t2Þ, . . . , ðmI , tI Þ

� �
of I

memory itemsmi with their time-of-last-change ti. The memory items
are collections of tray-hunger-outcome associations

mi = xð1Þi ,hð1Þ
i ,oð1Þi

� �
, xð2Þi ,hð2Þ

i , oð2Þi

� �
, . . . , xðJiÞ

i ,hðJiÞ
i ,oðJiÞi

� �n o
, ð15Þ

where xðjÞ
i identifies a caching tray, hðjÞ

i is a vector of hunger levels and
oðjÞi is an outcome value in O0 =O∪ fnot inspected g. The outcome
not_inspected is used when a simulated bird perceives the presence of
a caching tray but never inspects its content. If a simulated bird
interacts at time t with a caching tray x and observes outcome ot the
memory gets updated in the following way. If the caching tray x is
identical to xj

I and t − tI < 1 hour,hðjÞ
I becomes 1

2h
ðjÞ
I + 1

2hðtÞ, whereh(t) is
the currently perceived vector of hunger levels, oðjÞI becomes ot and tI
becomes t. If the caching tray x is different from all xj

I and t − tI < 1, a
new tray-hunger-outcome associations (x, h(t), ot) is appended tomI. If
the last change of the memory dates back more than one hour, i.e.
t − tI > 1 hour, a new memory item mI+1 = (x, h(t), ot) is created and
appended to T . This grouping of individual interactions simplifies the
search for replay positions, whichwould be difficult in a naivememory
list ðx1,h1, o1, t1Þ, ðx2,h2,o2, t2Þ, . . .

� �
that keeps track of all individual

interactions with all caching trays.
The set of replay indices I * is determined by comparing the tray

identifiers in the last three memory items to those at different posi-
tions in the memory list T and picking the closest matches, i.e.

I * = argmax
i<I

X2
k =0

xð1Þ
I�k = x

ð1Þ
i�k ^ xð2Þ

I�k = x
ð2Þ
i�k ^ � � � ^ xðJI�k Þ

I�k = xðJI�k Þ
i�k

h i
, ð16Þ

unless the closestmatch is zero, inwhich casewe empty the set of replay
indices I * = ;. Using the last three memory items to query the memory
list allows to search for patterns in memory with similar context. The
similarity of the context is further quantified by a similarity weight

wi* =
1
3

X2
k =0

1
Ji*�k

XJi*�k

j = 1

1� k hðjÞ
I�k � hðjÞ

i*�k
k1 + oðjÞI�k = o

ðjÞ
i*�k

h i� �
=ðdimðhÞ+ 1Þ:

To determine the preference of caching a food item of type f in
caching tray x, the set of replay indices I * is determined and memory
items are replayed. During replay from index i* 2 I *, memory items
mi* + k for k = 1,…, 6 are searched for tray-hunger-outcome associations
that contain the tray identifier x. The result of this searchcanbewritten
as the set Qðx, i*Þ= fði, jÞ∣xðjÞi = x, i*<i≤ i* + 6g of index pairs with match-
ing tray-identifier. For each index pair (i, j) the weightwij(f) for caching
a food item of type f is determined by computing

wijðf Þ=αhungerhðjÞ
if

+αfresh½hðjÞ
if ≤θ�½oðjÞi = fresh food item �

� αdegrade½oðjÞi = degraded food item �
� αpilfer½oðjÞi = pilfered �:

The distributions over parameters αhunger, αfresh, αdegrade and αpilfer are
fitted (see Model Comparison and Fitting). Finally, the weight wfx for
caching is determined by a weighted sum

wfx =
X
i*2I*

wi*
X

ði,jÞ2Qðx,i*Þ
γi�i*wijðf Þ, ð17Þ

where γ∈ [0, 1] is a discount factor. The tangent hyperbolic of this
weight tanhðwfxÞ (instead of wcache

f xp
+wcache

f xa
) is used to determine the

preference of caching in Eq. (9).
The algorithmic description of the Planning-By-Replay Model

illustrates three problems that a neural implementation ofmental-time
travel for planning needs to solve: first, what is stored in memory (Eq.
(15)), second, how is thememory queried (Eq. (16)); and third, how are
replayed episodes used for decision making (Eq. (17)). If food caching
birds use indeedmental-time travel for planning, they probably do not
store in memory every single observation and action, as if everything
was recorded on a videotape. Instead they may store some com-
pressed representation of past experiences, like the available food or
the average hunger level in the afternoon of a given day. Fast hippo-
campal replay of recent experiences may contribute to storing such
compressed representations in long-term memory, but we do not yet
have a detailed hypothesis of the underlying neural processes. Like-
wise, querying the memory system would involve probably non-trivial
neural processing. The sight of a peanut should not trigger the mem-
ory system to retrieve the myriad of past experiences with peanuts.
Instead, thememory systemshouldbequeriedwith information that is
relevant in the given context. Finally, if a query leads to recall of mul-
tiple past episodes, their content should probably be held in some
working memory for further information processing and decision
making, which is likely to involve intricate neural processing.

Models with lesions
No-Plasticity-No-Memory-No-Motivational-Control Model. The
simplest model is obtained by setting to zero at all times all state
variables hf(t), wcache

f x ðtÞ and ϕðlÞ
f ðtÞ in the computation of the action

probabilities Eq. (8), Eq. (9) and Eq. (10). In this case, the fitted para-
meters are the preference pother, the biases ηeat, ηcache, ηinspect and the
time-out constants δother, δeat, δcache, δinspect.

No-Plasticity-No-Memory Model. In this simplified model the state
variables wcache

f x ðtÞ and ϕðlÞ
f ðtÞ are kept zero at all times, but the hunger

variables evolve according to the dynamicsof the fullmodel. Thefitted
parameters for thismodel include, in addition to the parameters of the
simplest model, all food parameters and the stomach, digestion and
hunger-increase time constants.

No-Plasticity Model. In this simplified model only the state variables
wcache

f x ðtÞ are kept zero at all times, but the hunger dynamics and the
associative memory dynamics with systems consolidation evolve as in
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the full model. The additional parameters are the inspection pre-
ference slope and the freshness learning rate.

Average reproducibility
For each experiment we identify 1 to 3 relevant statistical tests (called
‘most relevant tests’ in the following) to support the major finding
(see Supplementary Results). For each test we compare the simulated
p-values psim to the experimental p-values pexp. If they are both below
0.05 or both above 0.05 we say the simulation reproduces the test. We
say a simulated experiment reproduces the experimental result, if all
‘most relevant tests’ are simultaneously reproduced. The results in
Fig. 2A are obtained by simulating each experiment 1000 times and
computing the fraction of simulated experiments that reproduce the
experimental results. Given the intrinsic variability of the experimental
data (see Supplementary Results) we consider average reproduc-
ibilities above 50% as high values.

To check whether the plotted differences in average reproduci-
bility are significant, we note that the plotted numbers can be inter-
preted as empirical rates of 1000 Bernoulli trials. Therefore,
differences of 3% average reproducibility have aone-sidedp-valueof at
most 0.031.

Model comparison and fitting
For each experiment E, the data DE collected in the experiments
consists of numbers xi, like means, standard errors of the mean or
p-values for some statistical tests, i.e. DE = fxi∣i 2 IE ∪PEg, where IE is
the index set of all quantities except p-values andPE is the index set of
p-values for experiment E. We extracted at least 5 (Raby07 planning)
and at most 212 (Clayton99B exp1) observed quantities from figures
and text of the respective publications (1568 observed quantities
in total).

Models are characterized by their structure, i.e. the probability of
actions given the parameters and past observations, and their dis-
tribution over parameters. This distribution describes a population of
birds, rather than individual birds. Each model has a different number
M of parameters θi that are constrained to be in an interval
[li, ui], i = 1,…,M (see Table 4). We parametrize probability densities
over these intervals with the help of beta distributions

θi = ðui � liÞzi + li pZ ðzi; si,diÞ=
cðsi,diÞzf ðsiÞi ð1� ziÞf ðsi +diÞ di <0

cðsi,diÞzf ðsi�diÞ
i ð1� ziÞf ðsiÞ di ≥0

(
ð18Þ

where c(si, di) is the normalization constant of thebeta distribution and
f ðxÞ= logðexpðxÞ+ 1Þ � 1. We found empirically that this parametriza-
tion led to reasonably fast and robust optimization results. We write

pðθ;d, sÞ=
YM
i= 1

pZ ððθi � liÞ=ðui � liÞ; si,diÞ ð19Þ

for the density of parameter vectors θ given hyperparameters d, s. A
simulated bird is characterized by a sample θ from this probability
distribution. Thehyperparameter vectorsd and s arefitted. In Fig. 1B of
themain textwe display the parametersθwith a blue bird anduse ϑ for
the hyperparameters d, s.

For each simulated experiment E, we sample NE birds indepen-
dently from the population distribution (Eq. (18)), where NE is the
number of birds used in the actual experiment E. Although some birds
participated in multiple experiments, we believe re-sampling is justi-
fied, because we do not explicitly model other effects that may influ-
ence behavior, like aging or the change of seasons. Excluded from re-
sampling is exclusively the series of experiments described in5,6. We
treat this series denoted as Clayton01&Clayton03 in Fig. 2C as one very

long experiment, because some experiments rely on the experience
the birds made in earlier experiments of the same series.

For the given data and themodels described inModel Description
we have an intractable likelihood function

‘ðd, sÞ=
Y
E

pðDE ∣d, sÞ with pðDE ∣d, sÞ

=
Z

p DE ∣θ
ð1Þ, . . . ,θðNE Þ

� �YNE

j = 1

pðθðjÞ;d, sÞdθðjÞ,
ð20Þ

where θ(j) denotes the parameters of bird j and the product runs over all
experiments E under consideration. The source of intractability in Eq.
(20) are the conditional probability densities p D∣θð1Þ, . . . ,θðNE Þ

� �
, which

aremarginal distributions over all possible action sequences giving rise
to the reported summary statistics. Note that the likelihood would be
tractable and a standard likelihood based fitting procedure could be
used, if the action sequences of all birds that participated in the real
experiments were known. For Fig. 2 of themain text the parameters are
fitted to each experiment individually, except for the experiments in
the Clayton01&Clayton03 series that are fitted jointly. See Supplemen-
tary Results for joint fits of all experiments or subsets thereof.

Because the dimensionality of the hyperparameters
(8≤ dimðdÞ= dimðsÞ=M ≤45) and the data is rather high, we resort to
approximate maximum likelihood estimation to find the parameters
that characterize best the population of birds. We use k-nearest-
neighbor density estimates45 to approximate the logarithm of the
likelihood function in Eq. (20). To do so, we repeat each experiment E
with independent groups k = 1,…,K of NE birds, each charaterized by
parameters θðk,1Þ, . . . ,θðk,NE Þ, where NE is the number of birds that par-
ticipate in experiment E. From the simulations with index k, we com-
pute the samemeans, standard errors of the mean and p-values xðkÞ

i as
in the actual experiment. This results in simulated data DðkÞ

E = fxðkÞi ∣i 2
IE ∪PEg for experiment E. For each simulateddata setwe compute the
distance

ΔðkÞ
E =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2IE

xðkÞi � xi
� �2

+
X
j2PE

s xðkÞ
j

� �
� s xj
� �� �2s

, ð21Þ

where xi is the experimentally observed value, IE and PE are the index
sets defined above and s is a quantization of p-values given by

sðpÞ=

1 p<0:001

2 0:001≤p<0:01

3 0:01≤p<0:05

4 0:05≤p<0:1

5 otherwise :

8>>>>>><>>>>>>:
ð22Þ

This corresponds roughly to computing differences of p-values on a
log-scale, but it does not emphasize difference between highly
significant p-values, e.g. s(10−11) = s(10−5) = 1, which reduces the variance
andhelps duringfitting. Let us assume that thesedistances areordered
such that Δð1Þ

E ≤Δð2Þ
E ≤ . . . ≤ΔðKÞ

E . With this we can estimate the log-
likelihood function as45

bllðd,s;n,KÞ= �
X
E

dE log sn DE ;D
ð1Þ
E , . . . ,DðKÞ

E

� �� �
+ cðdEÞ ð23Þ

where cðdEÞ is a constant, dE = ∣IE ∣+ ∣PE ∣ is the dimensionality of data
set DE , and sn DE ;D

ð1Þ
E , . . . ,DðKÞ

E

� �
=ΔðnÞ

E is the distance to the nth
neighbor of DE .

We optimize the approximate likelihood function in Eq. (23) with
the CMA evolutionary strategy (CMA-ES)46. For optimization and eva-
luation we use the n = 5th nearest neighbor. Because the variance of
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the approximate log-likelihood function in Eq. (23) decreases with
increasing K, the noise handling strategy of CMA-ES selects
K∈ {5, 6,…, 500} adaptively, such that K is small in regions where the
direction of improvement in the approximate log-likelihood is
obvious. This adaptivity saves computation time. To compute the
performance Δ log p̂ in Figs. 2 and S2 and S3, we compute log p̂ 10
times with K = 104 and n = 5 and take the average performance; the
standard error of themean is below 1.5 for allmodels and experiments,
which is too small to be seen in the figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for allfigures are provided in the file ‘source_data.zip’with
this paper. The behavioral data extracted from published articles is
available at https://github.com/jbrea/FoodCachingExperiments.jl.

Code availability
The source code is available at https://github.com/jbrea/
FoodCaching47.
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