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Metal3D: a general deep learning framework
for accurate metal ion location prediction in
proteins

Simon L. Dürr 1, Andrea Levy 1 & Ursula Rothlisberger 1

Metal ions are essential cofactors for many proteins and play a crucial role in
many applications such as enzyme design or design of protein-protein inter-
actions because they are biologically abundant, tether to the protein using
strong interactions, and have favorable catalytic properties. Computational
design of metalloproteins is however hampered by the complex electronic
structure of many biologically relevant metals such as zinc . In this work, we
develop two tools - Metal3D (based on 3D convolutional neural networks) and
Metal1D (solely based on geometric criteria) to improve the location predic-
tion of zinc ions in protein structures. Comparison with other currently
available tools shows that Metal3D is the most accurate zinc ion location
predictor to date with predictions within 0.70 ± 0.64Å of experimental loca-
tions. Metal3D outputs a confidence metric for each predicted site and works
on proteins with few homologes in the protein data bank. Metal3D predicts a
global zinc density that can be used for annotation of computationally pre-
dicted structures and a per residue zinc density that can be used in protein
design workflows. Currently trained on zinc, the framework of Metal3D is
readily extensible to other metals by modifying the training data.

Metalloproteins are ubiquitous in nature and are present in all major
enzyme families1,2.The metals predominantly found in biological sys-
tems are the first and second row alkali and earth alkali metals and the
first row transition metals such as zinc and copper. Zinc is the most
common transition metal (present in ~10% of deposited structures)
and can fulfill both a structural (e.g. in zinc finger proteins) or a cata-
lytic role in up to trinuclear active sites. Zn2+ is an excellent Lewis acid
and is most often found in tetrahedral, pentavalent, or octahedral
coordination. About 10%of all reactions catalyzed by enzymes use zinc
as cofactor3.

Metalloproteins are well studied because metal cofactors are
essential for the function of many proteins and loss of this function is
an important cause of diseases4. Industrial applications for metallo-
proteins capitalize on the favorable catalytic properties of the metal
ion where the protein environment dictates (stereo)-selectivity5–7. To
crystallize proteins, metal salts are also often added to the

crystallization buffer as they can help in the formation of protein
crystals overcoming the enthalpic cost of association of protein sur-
faces. Metal ion binding sites can be used to engineer protein-protein
interactions (PPI)8–10 and the hypothesis has been put forward that one
origin of macromolecular complexity is the superficial binding of
metal ions in early single domain proteins10.

While simple metal ion binding sites can be rapidly engineered
because initial coordination on a protein surface can for example be
achieved by creating an i, i+4 di-histidine site on an alpha-helix11 or by
placing cysteines in spatial proximity12, the engineering of complex
metal ion binding sites e.g. in the protein interior is considerably more
difficult2,9 as such sites are often supported by a network of hydrogen
bonds. A complication for computational design of metalloproteins is
the unavailability of good (non-bonded) force fields for zinc and other
transition metals that accurately reproduce (e.g. tetrahedral) coordi-
nation with the correct coordination distances which renders design
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using e.g. Rosetta very difficult2,13. In fact, the latest parametrization of
the Rosetta energy function (ref2015)14 did not refit the parameters for
the metal ions which originally are from CHARMM27 with empirically
derived Lazaridis-Karplus solvation terms. To adequately treat metal
sites in proteins quantum mechanical treatments such as in hybrid
quantummechanics/molecular mechanics (QM/MM) simulations15,16 is
needed whose computational cost is prohibitive for regular protein
design tasks. QM/MM simulations can however be used to verify
coordination chemistry for select candidate proteins17. On the other
hand, neural networkpotentials havebeendeveloped for zinc however
those require the experimental zinc location as input18.

Many tools exist to predict whether a protein containsmetals (e.g.
ZincFinder19), which residues in the protein bind a metal (e.g.
IonCom20, MIB21,22) and where the metal is bound (AlphaFill23,
FindsiteMetal24, BioMetAll25,MIB21,22). The input for these predictors is
based on sequence and/or structure information. Sequence-based
predictors use pattern recognition to identify the amino acids which
might bind a metal26. Structure-based methods use homology to
known structures (MIB, Findsite-metal, AlphaFill) or distance features
(BioMetAll) to infer the location of metals. Some tools like Findsite-
metal or ZincFinder employ machine learning based approaches such
as support vector machines.

Structure based deep learning approaches have been used in the
field of protein research for a variety of applications such as protein
structure prediction27,28, prediction of identity of masked residues29–31,
functional site prediction32,33, for ranking of docking poses34,35, pre-
diction of the location of ligands35–39, and prediction of effects of
mutations for stability and disease4,40. Current state of the art pre-
dictors for metal location areMIB21,22,41, which combines structural and
sequence information in the “Fragment Transformation Method” to
search for homologous sites in its database, and BioMetAll25, a geo-
metrical predictor based on backbone preorganization. Both methods
have significant drawbacks: MIB excludes metal sites with less than 2
coordination partners from its analysis and is limited by the availability
of templates in its database. We assessed both MIB and MIB2, which
significantly extended the database of templates. BioMetAll does not
use templates but provides many possible locations for putative
binding sites on a regular grid. The individual probes in BioMetAll do
not have a confidence metric therefore only allowing to rank sites by
the number of probes found, which results in a large uncertainty in the
position. Both tools suffer from many false positives. In this work, we
present twometal ion locationpredictors that do not suffer from these
drawbacks. For both tools, we train solely on zinc and evaluate per-
formance and selectivity for zinc. The deep learning based Metal3D
predictor operates on a voxelized representation of the protein
environment and predicts a per residue metal density that can be
averaged to get a smooth metal probability density over the whole
protein. The distance based predictorMetal1D predicts the location of
metals using coordination motifs mined from the protein data bank
(PDB) directly predicting coordinates of the putative metal binding
site. Metal3D paves the way to perform in silico design of metal ion
binding sites without relying on predefined geometrical rules or
expensive quantum mechanical calculations.

Results
A dataset of experimental high resolution crystal structures
(2085 structures/252324voxelized environments) containing zinc sites
was used for training of the geometric predictorMetal1D and the deep
learning predictor Metal3D (Fig. 1). For training of Metal3D, we used
the crystal environment including crystal contacts. For predictions, the
biological assembly was used.

Metal3D
Metal3D takes a protein structure and a set of residues as input, vox-
elizes the environment around each of the residues and predicts the

per residuemetal density. The predictedper residuedensities (within a
16 × 16 × 16Å 3 volume) can then be averaged to yield a zinc density for
the whole protein. At high probability cutoffs the predicted metal
densities are spherical (Fig. 2c), at lowprobability cutoffs thepredicted
densities are non-regular (Fig. 2a).

We evaluated the quality of the metal densities generated by the
model with the discretized Jaccard similarity (Fig. S1) for all environ-
ments in the test set. We noticed that at the edges of the residue-
centered output densities often spurious density is predicted where-
fore we evaluated the similarity of the test set metal density and the
predicted metal probability density taking into account a smaller box
with zeroed outer edges. Figure S1 shows that the similarity of the
boxes does not depend much on the probability cutoff chosen with
higher cutoffs yielding slightly higher discretized Jaccard similarity
values (0.02–0.04 difference between p =0.5 and p = 0.9). Reducing
the size of the analyzedboxes (i.e. trimmingof the edges) increases the
Jaccard similarity from≈0.64 to 0.88 showing that themetal density in
the center of the box is more accurate than the density at the edges.

Metal3D is available as self-contained notebook on Google Colab
and on Huggingface Spaces.

Metal1D
The statistical analysis for the geometric predictor uses the LINK
records present in deposited PDB structures. A probability map for all
zinc coordination motifs was extracted from all training structures
(Fig. 1 A). Themean coordination distance in the training setwas found
to be 2.2 ± 0.2Å, and the default search radius for the predictions was
therefore set to 5.5Å (Table S1). In total 208 different environments
with more than 5 different proteins (at 30% sequence identity) were
identified. Metal1D is available as self-contained notebook on
Google Colab.

Comparison of Metal1D, Metal3D, MIB and BioMetAll
Existing metal ion predictors can be subdivided into two categories:
binding site predictors and binding location predictors. The former
identify only the residues binding the ion, the latter predict the coor-
dinates of the metal ion itself. Both Metal1D and Metal3D can predict
the coordinates of putative binding sites. We therefore assessed their
performance by comparing to recent binding location predictors with
available code/webserver: BioMetAll25,MIB21 (no longer available as of
July 2022) and MIB222. The main tuning parameter (see Table S5) of
MIB/MIB2 is the template similarity t, with higher values requiring
higher similarity of the templates available for the search in structu-
rally homologous metalloproteins. BioMetAll on the other hand was
calibrated on available protein structures and places probes on a
regular grid at all sites where the criteria formetal binding are fulfilled.
The main adjustable parameter for BioMetAll is the cluster cutoff c,
which indicates how many probes in reference to the largest cluster a
specific cluster has. We used the recommended cutoff of 0.5 requiring
all chosen clusters to have at least 50% of the probes of the most
populous cluster and used the cluster center to compute distances.

We first investigated the potential of all tools to detect the loca-
tion of a zinc ion binding site in a binary fashion (zinc site or no zinc
site). We defined a correctly identified binding site (true positive, TP)
as a prediction within 5Å of an experimental zinc site. In case a tool
predicted no metal within the 5Å radius, we counted this site as false
negative (FN). False positive (FP) predictions, i.e. sites where a metal
was placed spuriously, were clustered in a 5Å radius and counted once
per cluster. All tools were assessed against the held out test biological
assemblies for Metal3D and Metal1D. When the performance of MIB
(t = 1.25) and BioMetAll is compared against Metal3D with probability
cutoff p =0.75 we find that Metal3D identifiesmore sites (85) thanMIB
(78) or BioMetAll (75) with a much lower number of false positives
(Fig. 3). MIB predicts 180 false positive sites, MIB2 162 sites, BioMetAll
134 sites whereas Metal3D only predicts 9 false positive sites at the
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p =0.75 cutoff. Metal1D (t =0.5) offers similar detection capabilities
(78 sites detected) with a lower number of false positives (47) com-
pared toMIB,MIB2 andBioMetAll. BetweenMIB andMIB2 the addition
of more templates changed the template similarity (Fig. S6). MIB2 has
higher recall for low t-scores but reduced precision (Fig. 3B). We
removed 70 sites from the list of zinc sites in the test set (189 total) that

had less than 2 unique protein ligands within 2.8Å of the experimental
zinc location and occupancy < =0.5. The amount of correct predic-
tions in this reduced set is almost unchanged for all tools (Fig. 3)
indicating thatmost tools correctly predict sites if they have 2 ormore
protein ligands. The number of false negatives is reduced for all tools
by about 60 sites indicating that most tools do not predict these

Fig. 1 | Workflow of Metal3D and Metal1D. a Training of Metal3D and Metal1D is
based on experimental Zn2+ sites. Metal1D extracts coordination environments
from LINK records, Metal3D is a fully convolutional 3DCNN trained to predict the
metal density from voxelized protein environments. b In inference mode Metal3D
predicts the location of a metal ion by computing per residue metal densities and
then averaging them to obtain a global metal density for the input proteins. The

ions can then be placed using the weighted average of voxels above a cutoff. For
Metal1D all residues in the protein are scanned for compatibility with the prob-
ability map. Metals are placed at the geometric center of residues with high scores
according to the probability map. A final ranking of sites is obtained using the
probability map.

Fig. 2 | Metal3D probability density. Probability evolution in HCA2 (PDB 2CBA) for different probability cutoffs. Isosurfaces highlighted at different cutoffs (a) p =0.1 (b)
p =0.2 (c) p =0.9 (d) inset on active site of HCA2 p =0.9 Predicted positions in darkpurple, experimental position in green, crystal water in red.
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crystallographic artifacts that might depend on additional coordinat-
ing residues from an adjacentmolecule in the crystal. We also assessed
performance on some examples of wrongly modelled metal ions
(wrong identity, missing support in electron density) and crystal
artefacts contained in the training set showing that Metal3D only
predicts ions that have proper support in the structure with high
confidence p >0.75 (Fig. S7) and ignores wronglymodelled ions. Of all
tools, Metal3D has the least false positives (1 FP at p =0.9) and the
highest number of detected sites (110 at p = 0.25). The single false
positive at p =0.9 does not contain a zinc ion but is a calcium binding
site with three aspartates and one backbone carbonyl ligand (Fig. S5).
For physiological sites with 3+ unique protein ligands Metal3D prob-
abilities are all above 50% (Fig. 3B).

After assessment of how many sites the tools predict, another
crucial metric is the spatial precision of the predictions. For the cor-
rectly identified sites (TP) we measured the mean absolute deviation
(MAD) between experimental and predicted position (Fig. 4a). The
MAD for Metal3D at p = 0.9 is 0.70 ±0.64 Å and 0.74 ±0.66Å at
p =0.25 indicating that low confidence predictions are still accurately
placed inside the protein. ThemedianMAD of predictions forMetal3D
at p =0.9 is 0.52Å indicating that for half of the predictions the model
predicts at or better than the grid resolution of 0.5Å .

BioMetAll is not very precise with a MAD for correctly identified
sites of 2.71 ± 1.33Å . BioMetAll predicts many possible locations per
cluster with some of them much closer to the experimental metal
binding site than the cluster center. However, it does not provide any

ranking of the probes within a cluster and therefore the cluster center
was used for the distance calculation. Metal1D t =0.5 (MAD
2.06 ± 1.33Å) which identifies more sites than BioMetAll is also more
precise than BioMetAll. MIB t = 1.9 detects sites with high precision
(MAD 0.77 ± 1.09Å) but it relies on the existence of homologous sites
to align the found sites. MIB2 t = 2.5 is less precise (MAD
0.89 ± 1.00Å) than MIB.

Selectivity for other metals
Both Metal3D and Metal1D were exclusively trained on zinc and we
assessed their performance on sodium (Na+, PDB code NA), potas-
sium (K+, PDB code K), calcium (Ca2+, PDB code CA), magnesium
(Mg2+, PDB code MG), and various transition metals (Fe2+, Fe3+, Co2+,
Ni2+, Cu2+, Mn2+ with corresponding PDB codes FE2, FE, CO, NI, CU,
MN, respectively) from 100 randomly drawn structures from the
clustered PDB at 30% identity not used for training. For NI (93), CU
(68), FE2 (57) and CO (30) less sites were used. Only sites with at least
3+ unique protein ligands and occupancy > 0.5 were used for the
analysis to exclude crystallographic artifacts and use only highly
defined sites which should exhibit most selectivity towards a specific
metal. Figure 4B shows that recall forMetal3D is high for all transition
metals, meaning that the model correctly finds most sites even
though it was only trained on zinc. For the alkali and earth alkali
metals recall is much lower as the model only finds some sites. The
mean probability for found zinc sites (ZN p =0.97 ± 0.05) in the test
set is higher than for the other transition metals (Fig. S3) and

Fig. 3 | Identificationofmetal siteswithin 5Å. aComparisonofMetal1D,Metal3D,
BioMetAll,MIB,MIB2on the test set held out from training ofMetal1D andMetal3D.
Predicted sites are counted as true positives (TP) if they are within 5Å of a true
metal location and as false negatives (FN) otherwise. False positive (FP) probes are
clustered and counted once per cluster. The main parameter for each method (t

Metal1d, p Metal3D, c BioMetAll, t MIB/MIB2) is explained in Table S5 *For MIB/
MIB2 we used 2 structures less because the server did not accept these structures.
b Precision-Recall curve for all tested tools for the binding site task split into all zinc
sites in the test set (dotted lines), sites with 2+ unique coordination partners
(dashed lines) and sites with 3+ unique coordination partners (solid lines).
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significantly higher than the probability for alkali metals (NA
p = 0.82 ± 0.06, K p = 0.88 ± 0.06) while the probability for the earth
alkali metals is slightly higher withMG (p = 0.89 ± 0.06) similar to CA
(p = 0.92 ± 0.07). The MAD for each found metal site is again lowest
for zinc (0.52 ± 0.45Å). The MAD for the earth-alkali and alkali ions
are higher than for the transition metal ions (Fig. 4A).

Structures where a sodium is detected by Metal3D (such as
2OKQ42, 6KFN43) have at least 2 side chain coordinating ligand atoms
and only one backbone (2OKQ) or no backbone ligand atom (6KFN).
Canonical sodium binding sites e.g. such as in PDB 4I0W44 with two
coordinating backbone carbonyl oxygen atoms and one asparagine
side chain have probabilities around 5% and are basically indis-
tinguishable from background noise of themodel. For Metal1D overall
recall is lowerwith a clearer distinction ofmain group versus transition

metals compared to Metal3D. For Metal1D also a larger gap between
zinc and other transition metals exists (Fig. 4).

Multi-nuclear metal centers
We assessed Metal3D for its performance on multi-nuclear metal sites
(Fig. S8) and also collected statistics on their prevalence in training and
test sets (Figs. S9, S10). For the di-nuclear NDM-1 protein (PDB 4EYL)
Metal3D produces a density map that well reproduces bothmetal ions
(coordination motifs His3, HisAspCys) which are separated by 4.0Å .
There is a third spurious prediction in vicinity to the active site with no
experimental support formetal binding in the structure. This site has a
realistic coordination motif (HisGluAsp) and p = 0.74, which is higher
than the probability predicted for the HisAspCys site p = 0.66. The
clustering which places individual probes in the density map works

Fig. 4 | Mean absolute deviation of correctly predicted sites and selectivity for
other ions. a For all sites where predicted and experimental location are available
(true positives in Fig. 3) we compute the mean absolute deviation (MAD) using
Metal1D, Metal3D, BioMetAll, MIB and MIB2 on the test set. Some tools predict
multiple locations (n) per site (TP). *For MIB and MIB2 we used 2 structures less
because the server did not accept these structures. For each tool the whisker plot
indicates the median (white dot) and the first quartiles (black box), kernel density

estimation of all data points shown as violin plot with minima and maxima indi-
cated by whiskers. b Precision and recall for the test set and 100 randomly drawn
structures (except 93 for NI, 68 for CU, 57 for FE2, CO for 30) for other transition
(blue), earth-alkali (pink) and alkali (brown) metals. Metal1D as light squares,
Metal3D as circles. Threshold used for Metal3D p =0.75, threshold used for
Metal1D t =0.75.
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well for the metal that is coordinated by His3 but not for the other
which is coordinated by HisAspCys. At higher isovalues for the prob-
ability density increased support is present for the His3 motif (max
p =0.97) compared to the other motif (max p =0.66). With the default
settings (clustering threshold 0.15, distance threshold 7Å) only one
probe is placed. Two probes can be obtained by setting the clustering
threshold to 0.5 separating the probability densities for each metal
site. Two other examples were extracted from the trainset after lit-
erature review45: Alkaline phosphatase and Phospholipase C. Both
enzymes have tri-nuclear metal centers and were contained in the
training set. For Phospholipase C we analyzed the structure contained
in the training set (1AH7).Metal3Dcorrectly identifies 2of 3metal sites.
The metal site with one backbone coordinating amino acid has some
density extending to the identified metal site close to it (3.5Å) but not
enough to place a separate zinc there after clustering. For Alkaline
phosphatase we analyzed a structure (PDB 1ALK) that was not directly
contained in the training set which contained two Zn2+ and one Mg2+

ion. The structure contained in the training set (PDB 5C66) instead has
three Zn2+ modelled. Metal3D correctly identifies the two Zn2+ mod-
elled in 1ALK but not the magnesium even though it was trained on
5C66 containing a Zn2+ in this position. The site has a threonine
coordinating the ion, which is not common for zinc.

Annotation of AlphaFold 2 structures
AlphaFold2 often predicts side chains inmetal ion binding sites in the
holo conformation27. Tools like AlphaFill23 use structural homology
to transplant metals from similar PDB structures to the predicted
structure. Metal3D does not require explicit homology based on
sequence or structural alignment like AlphaFill so it is potentially
suited to annotate the dark proteome that is now accessible from the
AlphaFold database with zinc binding sites. Metal3D identifies both
the catalytic site (1) and the zinc finger (2) for the example (PDB
3RZV46, Fig. 5 A) used in ref. 23 with high probability (p = 0.99) even
though one of the sites in the AlphaFold model is slightly disordered
with one of the binding residues in the solvent facing conformation
(D309). The distances between predicted and modeled metal loca-
tions for Metal3D are 0.22 Å and 0.37Å, for AlphaFill they are 0.21 Å
and 0.41Å.

AlphaFill uses a 25% sequence identity cutoff which can be
problematic for certain proteins with no structurally characterized
homologues. For human palmitoyltransferase ZDHHC23 (Uniprot
Q8IYP9) a high confidence AlphaFold2 prediction exists but AlphaFill
cannot place the zinc ions because the sequence identity is 24% to the
closest PDB structure (PDB 6BMS47), i.e. below the 25% cutoff. For the
identical site in another human palmitoyltransferase ZDHHC15
(Uniprot Q96MV8) AlphaFill is able to place the metal because of
higher sequence identity to 6BMS (64%) (Fig. 5 B). For ZDHHC23
Metal3D is able to place the metal with high confidence (MAD 0.75Å

for site 1 and 0.48Å for site 2, p > 0.99) based on the single input
structure alone.

Metal3D for metalloprotein engineering
Human carbonic anhydrase II (HCA2) is a well studied metalloenzyme
with a rich amount of mutational data available. For the crystal struc-
ture of thewildtype enzyme (PDB 2CBA48,49), Metal3D recapitulates the
location of the active site metal with a distance deviation to the true
metal location of 0.21Å with a probability of p = 0.99. At lower prob-
ability cutoffs (p <0.4) the probability map indicates further putative
metal ion binding sites with interactions mediated by surface residues
(e.g. H36, D110, p = 0.22) (Fig. 2).

To investigate the capabilities for protein engineering we used
mutational data for first and second shell mutants of the active site
residues in HCA2 with corresponding Kd values from a colorimetric
assay50. For most mutants no crystal structures are available so we
used the structure builder in the EVOLVE package to choose the
most favorable rotamer for each single point mutation based on the
EVOLVE-ddg energy function with explicit zinc present (modeled
using a dummy atom approach51). The analysis was run for every
single mutant and the resulting probability maps from Metal3D
were analyzed. For the analysis we used the maximum predicted
probability as a surrogate to estimate relative changes in Kd. For
mutants that decrease zinc binding drastically we observe a drop in
the maximum probability predicted by Metal3D (Fig. 6). The lowest
probability mutants are H119N and H119Q with p = 0.23 and 0.38.
The mutant with the largest loss in zinc affinity H94A has a zinc
binding probability of p = 0.6. Conservative changes to the
primary coordination motif (e.g. H→C) reduce the predicted
probability by 10–30%. For second shell mutants the influence of
the mutations is less drastic with only minor changes in the pre-
dicted probabilities.

Discussion
Metal3D predicts the probability distribution of zinc ions in protein
crystal structures based on a neuronal network model trained on
natural protein environments. The model performs a segmentation
task to determine if a specific point in the input space contains a zinc
ion or not. Metal3D predicts zinc ion sites with high accuracy making
use of high resolution crystal structures (<2.5Å). The use of high
resolution structures is necessary because at resolutions greater than
the average zinc ligand coordinationdistance (2.2Å) the uncertainty of
the zinc location noticeably increases52 which would likely hamper the
accuracy of the site prediction.

In contrast to currently available tools, for Metal3D, it is not
necessary to filter the training examples for certain coordination
requirements (i.e. only sites with at least 2 protein ligands). Themodel
thus sees thewhole diversity of zinc ion sites present in the PDB. Such a

Fig. 5 | Annotation of AlphaFold2 structures. a Predicted metal binding sites
(a, b) from Metal3D, respectively AlphaFill compared to the experimentally found
zinc positions for Uniprot O95630. Metal3D places the metal with high accuracy
even if sidechains are not perfectly predicted by AlphaFold for site 1.

b Palmitoyltransferase ZDHHC23 (Uniprot Q8IYP9) and ZDHHC15 (Uniprot
Q96MV8). AlphaFill can only place the metal for ZDHHC15 because sequence
identity for ZDHHC23 is only 24%. Probability isosurfaces from Metal3D for both
structures at p =0.6, colored in gray.
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model is advantageous since metalloprotein design workflows require
models to score the full continuum of zinc sites starting from a sub-
optimal binding site only populated at high metal concentration to a
highly organized zinc site in an enzyme with nanomolar metal affinity.
The predicted probability can be used as a confidence metric or as an
optimization target where mutations are made to increase probability
of zinc binding.

Site quality
The fraction of artifactual zinc binding sites in the PDB is estimated to
be about 1/352,53 similar to our test set used with 62% (119) well
coordinated zinc sites with at least 2 distinct protein ligands and
occupancy > 0.5. To reduce the amount of artifactual sites in the
training set we presented the model with as many complete sites as
possible by using crystal symmetry to add adjacent coordinating
protein chains (e.g. 4HTM in Fig. S7). The frequency of artifacts in the
training set is therefore much lower than 30%. The sites which still
remain incomplete or that are wronglymodeled (e.g. 5ZZU in Fig. S7)
and not excluded through the resolution cutoffs and filtering pro-
cedures likely present only a small fraction of the training set and
their signal is drowned out by the numerical superiority of the cor-
rectly modeled sites. Deep learning models have been shown to be
robust to noisy datasets54 and Figure S7 highlights that Metal3D
ignores issues with data quality (i.e. wrongly assigned metals or
crystal artefacts it was trained on). If the model is used on artifactual
sites or partially disordered ones it can still predict themetal location
with high spatial accuracy but often indicates a lower confidence for
the prediction (Figs. 2 and 5). For the identification of physiological
sites a probability cutoff of p > 0.75 and the biological assembly of a
structure should be used. For in crystallo sites the biological
assembly and all symmetry adjacent structures and the same cutoff
should be used.

Metal ion locators that rely on homology such as MIB perform
worse on partial binding sites because reducing the quality of the
available templates by including 1- or 2-coordinate sites would yield
many false positives (similar to including less homologous structures
for the template search). The deep learning based Metal3D can likely
circumvent this because it does not require any engineered features to
predict the location of the metal and learns directly from a full
representation of the environment surrounding the binding site. This
allows looking at low confidence sites in the context of a given
environment.

Influence of non-protein ligands
Exogenous ligands play an important role for metals in biology as all
empty coordination sites of metals are filled with water molecules in
case there is no other exogenous ligand with higher affinity present
(e.g. a thiol). Like other predictors, both Metal1D and Metal3D do not
consider watermolecules or other ligands in the input as the quality of
ligand molecules in the PDB varies39,55. In addition, other potential
sources of input such as AlphaFold do not provide explicit waters
whereforemodels should not rely onwater as an input source. It is also
not possible to use in silico water predictions because common water
placement algorithms to place deep waters39,56,57 either rely on metal
ions being present in the input or ignore them completely. Moreover,
in protein design algorithms, water is usually only implicitly modeled
(e.g. in Rosetta).

For Metal3D, the input channel that encodes the total heavy atom
density also encodes an implicit water density where all empty space
can be interpreted as the solvent. For Metal1D, the contribution of
water molecules is considered in an implicit way when the score is
assigned to a site by considering coordinations including water com-
patiblewith the one observed (e.g. aHIS3Wat site is equivalent to aHis3
site for the scoring).

Choice of architecture
This work is the first to report a modern deep learning based model
destined for identification of metal ligands in proteins. Similar
approaches have been used in the more general field of protein-ligand
docking where a variety of architectures and representations have
been used. 3D CNN based approaches such as LigVoxel37 and
DeepSite36 commonly use a resolution of 1Å and similar input features
as our model to predict the ligand density. However, predicting the
density of a multi-atomic ligand is more complex than predicting the
density of mononuclear metal ions. We therefore did not deem it
necessary to include a conditioning on howmany zinc ions are present
in the box and rather chose to reflect this in the training datawhere the
model needs to learn that only about half of the environments it sees
contain one or more zincs. This choice is validated by the fact that the
output probability densities at sufficiently high probability cutoffs are
spherical with their radius approximately matching the van der Waals
radius of zinc. For multi-nuclear sites the densities are also well
reproduced but the clustering step requires higher probability cutoffs
to separate the densities for individual ions (Fig. S8).

Mesh convolutional neural networks trained on a protein surface
representation35 also have been used to predict the location and
identity of protein ligands but this approach can only label the regions
of the surface that bind the metal ion and is conceptually not able to
return the exact location of themetal. Somemetal ion binding sites are
also heavily buried inside proteins as they mediate structural stability
rendering them inaccessible to a surface based approach. The most
recent approaches such as EquiBind38 use equivariant neural networks
such as En-Transformer58 to predict binding keypoints (defined as 1/2
distance between the Cα of the binding residue and a ligand atom).
Explicit side chains are still too expensive for such models and these
models assume a fixed known stoichiometry of the protein and ligand.
Metal3D can also deal with proteins that do not bind a zinc and does
not assume that the amount of ions is known. The lack of explicit side
chain information renders equivariant models unsuitable for the
design of complex metal ion binding sites supported by an intricate
network of hydrogen bonds that need to be positioned with sub-
angstrom accuracy. The framework of our model in contrast is less
data- and compute-efficient than approaches representing the protein
as graph due to the need to voxelize the input and provide different
rotations of the input environment in training but the overall proces-
sing time for ourmodel is still low taking typically 25 seconds for a 250
residue protein on a multicore GPU workstation (20 CPUs, GTX2070).
Sequence based models59,60 can only use coevolution signals to infer

Fig. 6 | Protein design application. Experimentallymeasured Kd values
65 --69 for 1st

and 2nd shell active site mutants of HCA2 and predicted max probability for zinc
using Metal3D.
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residues in spatial proximity that can bind a metal. This might be dif-
ficult when it comes to ranking similar amino acids such as aspartate
and glutamate or even ranking different rotamerswhere sub-angstrom
level precision is needed to identify themutantwith thehighest affinity
for zinc.

Selectivity
In terms of selectivity, Metal3D has a clear preference for transition
metals over main group metals after having been trained exclusively
on zinc binding sites with recall and precision highest for zinc (Fig. 4B).
For Metal3D environments that do not bind zinc but other metals are
sampled as non-zinc binding and themethod theoretically can learn to
distinguish zinc fromnon-zincmetal sites.However, this is not the case
and the method also predicts other metals (Fig. 4B) with high recall
and precision. We attribute this to the general promiscuity of transi-
tionmetal ionbinding61 in thatmostproteins select themetal they bind
according to the Irving-Williams series in competitive binding condi-
tions with metal selectivity in general not enforced by the binding site
itself but rather by external factors such as compartmentalization or
metallochaperones61. The only sites that Metal3D identifies for non-
transition metals are the ones that have at least partial side chain
coordination. Many sodium and potassium sites are using backbone
carbonyl coordination exclusively, which is not common for zinc and
those sites are therefore not detected even if they were included in the
training data due to wrong labeling in the PDB (e.g. 5ZZU Fig. S7). The
high recall for most other transition metals is therefore related to
the fact that those binding sites have sidechains in similar conforma-
tion compared to zinc sites. Metal3D could be rapidly adapted to
predict not only location but also the identity of the metal similar to
recent work by Mohamadi et al.62. In the framework of Metal3D a
semantic metal prediction would be possible where the same model
predicts different output channels for eachmetal it was trained on. To
achieve perfect selectivity using such a model will be difficult because
sometimes non-native metals are used for crystallization experiments
and most other transition metals have less structures available. For
Metal1D selectivity will be harder to include in the method without
modification as coordination environment (the only trainable para-
meter ofMetal1D) is only somewhat selective toward zinc. In this work,
we chose to work exclusively with zinc because it is the most redox
stable transition metal and because many training examples are
available and establish a conceptual framework how selectivity could
be included showing that the implicit way of training on zinc and non-
zinc environments is not enough to enforce strict zinc selectivity.

Application for protein design
Protein design using 3DCNNs trained on residue identity has been
successfully demonstrated and we anticipate that our model could be
seamlessly integrated into such a workflow31 to enable fully deep
learning based design of metalloproteins. We are currently also
investigating the combination of Metal3D combined with a classic
energy-based genetic algorithm-based optimization tomake design of
metalloproteins17 easier without having to explicitly model the metal
to compute the stability of the protein. As the model computes a
probability density per residue it can be readily integrated into
established software like Rosetta relying on rotamer sampling.

The HCA2 application demonstrates the utility of Metal3D for
protein engineering (Fig. 2). The thermodynamics ofmetal ion binding
to proteins are complicated63 and there are currently no high-
throughput based experimental approaches that could generate a
dataset large enough to train a model directly on predicting Kd. The
data we use were obtained from a colorimetric assay with very high
affinity of zinc in the picomolar range64–68. More recent studies using
ITC63 instead of the colorimetric assay indicate lower Kd values in the
nanomolar range for wild type HCA2. We can therefore only use the
colorimetric data to estimate how well the model can recapitulate

relative changes in the Kd for different mutations in the first and sec-
ond shell of a prototypical metalloprotein.

Metal3D allows moving away from using rational approaches
such as the i, i + 4 di His motifs used for the assembly and stabili-
zation of metalloproteins to a fully automated approach where
potential metal binding configurations can be scored
computationally69–71.

Metal3D vs. other methods
Metal1D is inferior toMetal3D for the prediction ofmetal ion binding
sites because it produces more false positives while at the same time
detecting fewermetal sites. Also, the positioning of sites is somewhat
imprecise. This demonstrates the inherent limitation of using solely
distance based features for prediction of metal location. BioMetAll
which is the toolmost similar toMetal1D also suffers frommany false
positive predictions with even worse performance compared to
Metal1D. In contrast,Metal1D ismore data-efficient thanMetal3D and
provides predictions faster. For large structural databases Metal1D
could be run as a prefilter step to then provide high-accuracy pre-
dictions using Metal3D. While the MIB method produced decent
results when a high template cutoff is used, for the updated MIB2
tool, we find no systematic improvement with only slightly higher
recall even if the template database for zinc was extended from 499
to 2446 templates. MIB no longer is available and for MIB2 high-
throughput analysis is not possible since a standalone or source code
is not available and the webserver blocks multiple concurrent jobs.
Metal3D is therefore the only tool that can provide high-quality
interpretable predictions in reasonable time (ca. 25 seconds on aGPU
workstation for a 250 aa protein). Metal1D while not as accurate as
Metal3D is very fast and can be applied to large structural databases.
While Metal3D currently is trained only on zinc it offers detection
capabilities also for other transitionmetals at slightly lower recall and
precision and the framework of the method could be readily exten-
ded to also provide identity of the predicted locations similar to
recent work by Mohamadi et al.62. We therefore anticipate different
applications for Metal3D such as protein-function annotation of
structures predicted using AlphaFold272, integration in protein
design software and detection of cryptic metal binding sites that can
be used to engineer PPIs. Such cryptic metal ion binding sites
in common drug targets could also be used to engineer novel
metallodrugs. Many of these applications will allow us to explore the
still vastly untapped potential of proteins as large multi-dentate
metal ligands with programmable surfaces.

Methods
Dataset
The input PDB files for training were obtained from the RCSB73 protein
databank (downloaded 5th March 2021). We use a clustering of the
structures at 30% sequence identity using mmseqs274 to largely
remove sequence and structural redundancy in the input dataset. For
each cluster, we check whether a zinc is contained in one of the
structures, whether the resolution of these structures is better than
2.5Å, if the experimental method is x-ray crystallography and whether
the structure does not contain nucleic acids. If there are multiple
structures fulfilling these criteria, the highest resolution structure is
used. All structures larger than 3000 residues arediscarded.Wealways
use the first biological assembly to sample the training environments.
The structures were stripped of all exogenous ligands except for zinc.
If there are multiple models with e.g. alternative residue conforma-
tions for a given structure, the first one is used. For each biological
assembly we used the symmetry of the asymmetric unit to generate a
protein structure that contains all neighboring copies of the protein
in the crystal such that metal sites at crystal contacts are fully coor-
dinated. Statistics of the training and test set are provided in
Figures S9-19.
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The train/val/test split was performed based on sequence identity
using easy-search in mmseqs2. All proteins that had no (partial)
sequence overlap with any other protein in the dataset were put into
the test/val set (85 proteins) which we further split into a test set of
59 structures and a validation set of 26 structures. The training set
contained 2085 structures. (Supplemental Data S1).

For the analysis, we always used the biological assembly and not
the symmetry augmented structure. For the selectivity analysis with
respect to othermetals, clusters from the PDBwere randomly sampled
to extract 100 biological assemblies per metal except for FE2 (57), NI
(93), CU (68) and CO (30).

By default all zinc sites in the test and validation set were used for
the analysis. Since some of the sites might be affected by the crystal-
lization conditions, we also created a subset of all sites that contained
at least 2 amino acid ligands to largely exclude crystallization artifacts.
To analyzemetal ion selectivity, we selected sites with at least 3 unique
protein ligands to only use biologically significant sites with a high
degree of metal preorganization as such sites should exhibit more
selectivity for specific metals compared to sites with only 2 unique
protein-ligands. For both categories we excluded metal ions that had
occupancy < = 0.5

Metal 1D
Metal1D uses a probability map derived from LINK records in protein
structures (Fig. 1). The LINK section of a PDB file specifies the con-
nectivity between zinc (or any other ligand) and the amino acids of the
protein, and each LINK record specifies one linkage. This is an exten-
sion of the approach by Barber-Zucker et al.75, in which LINK records
were used to investigate the propensity of transition metals to bind
different amino acids.

Using the training set we generated a probability map for the
propensity of different coordination environments to bind a zinc (e.g.
CCCC, CCHH etc.). For each zinc ion the coordination is extracted
from theLINK records (Fig. 7A) excluding records involvingonly single
amino acids (weak binding sites). Information in the LINK records of
eachPDBfile areconverted into aunique coordinationenvironmentby
associating one letter code to each amino acid with a LINK with a zinc
ion and alphabetically sorting this code. This ensures coordination
environments such as CCH and CHC to be considered as equal. Also,
LINK records containing water molecules are excluded because of the
difficulties in placing water molecules a posteriori in 3D structures
when metal ions are present and because data quality of modelled
water molecules varies. The probability map contains the counts of
coordination environments found and is generated from a list of pdb
files, the training set in this case. A jupyter notebook is made available
tobe able togenerate aprobabilitymap fromadifferent set of pdbfiles
(ProbMapGenerator.ipynb).

Making a prediction using Metal1D consists of two main steps
(Fig. 7B): Identification of possible metal coordinating residues in the
structure via a residue scoring step, and the scoring of putative sites,
placed between the identified coordinating residues.

The protein structure is analyzed using the BioPandas python
library76. To identify coordinating residues, a per residue score is
assigned by performing a geometrical search from a reference point,
defined as the coordinate of the most probable metal binding atom,
within a search radius considered as roughly twice the typical distance
between themetal ion and the binding atomof amino acids in proteins
(2.2 ± 0.2Å as determined from LINK records). The search radius used
was 5.5Å in order to be able to take into account also deviations from
the ideal coordination. In the case of amino acids which present
more than one putative coordinating atom, such as e.g. histidine, the
mid-point between the donor atoms is used as reference point and
the search radius is enlarged accordingly. The atoms used as reference
points for each amino acid and the increase in the search radius are
reported in Supplemental Table S1. The score is assigned to each

amino acid considering all the other reference points of other amino
acids within the search radius, and summing the probabilities in the
probability map for coordinations compatible with the one observed.
In the ideal case, a score of 1 corresponds to an amino acid surrounded
by all possible coordinating amino acids observed in the probability
map. In practice, scores result between 0 and <1. Once all amino acids
in the chain are scored, the metal location predictions are made
grouping the highest-scored amino acids in clusters (defined as the
ones within the chosen threshold, i.e. the t parameter, with respect to
the highest-scored one) based on distance. This is done using sci-
py.spatial.distance_matrix and grouping together highest-
scored amino acids closer than twice the search radius. For each
cluster, a putative site is located in space as a weighted average
between the coordinates of the reference point of each amino acid,
using as weighting factor the amino acid score. For a given cluster ofN
high scored residues (with xyz locations {r1, …, rN} and scores
{score1, …, scoreN}), the xyz location of the predicted site (rsite) is
computed as

rsite =
PN

i= 1 scorei × ri
PN

i= 1 scorei
ð1Þ

For isolated amino acids with a high score (e.g. a single histidine)
the same score is assigned to the closest reference point from another
amino acid, to be able to compute the position of the metal as before,
i.e. using aweighted average. In this case themetal will be placed at the
midpoint between the highest scored residue (the single element of
the cluster) and the amino acid towhich thefictitious score is assigned.
Possible artifacts resulting from this fictitious score are resolved in the
final step of the prediction.

After the putative site has been placed, a score is assigned by
performing a geometrical search centered on the predicted metal
coordinates (within 60% of the search radius, i.e 3.3Å) and a final
score is now assigned to the site. The final score is assigned in the
sameway as the amino acid scores based on the probabilitymap, and
has the advantage of being able to sort the predicted metal sites
based on their frequency in the training set. A cutoff parameter, by
default equal to the cutoff used for amino acid scoring (i.e. the t
parameter), is used to exclude sites with a probability lower than a
certain threshold with respect to the highest-scored one. This final
scoring also mitigates the errors which can be introduced by calcu-
lating the coordinates of the site simply as a weighted average
excluding or assigning a low probability to the site ending in unfa-
vorable positions in space.

Metal 3D
Voxelization. We used the moleculekit python library37,77 to voxelize
the input structures into 3D grids. 8 different input channels are used:
aromatic, hydrophobic, positive ionizable, negative ionizable, hbond
donor, hbond acceptor, occupancy, and metal ion binding site chain
(Fig. 8, Supplemental Table S2). The channels are assigned using
AutoDockVina atom names and a boolean mask. For each atom
matching one of the categories a pair correlation function centered on
the atom is used to assign the voxel value37. For the target tensor only
the zinc ions were used for the voxelization. The target tensor was
discretized setting any voxel above 0.05 to 1 (true location of zinc), all
other to 0 (no zinc). We used a box size of 16Å centered on the Cα
atom of a residue, rotating each environment randomly for training
before voxelization. The voxel grid used a0.5Å resolution for the input
and target tensors. Any alternative side chain conformations modeled
were discarded keeping only the highest occupancy. For the vox-
elization only heavy atoms were used. For all structures selected for
the respective sets we partitioned the residues of the protein into
residues within 12Å of a zinc ion and those further away (based on the
distance to the Cα atom). A single zinc site will therefore be present
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many times in the dataset but each time translated and rotated in the
box. A balanced set of examples was used sampling equal numbers of
residues that are close to a zinc and residues randomly drawn from the
non-zinc binding residues. The sampling of residues is based on the
biological assembly of the protein, the voxelization is based on the full
3D structure including neighboring asymmetric units in the crystal
structure. The environments are precomputed and stored using lxf
compression in HDF5 files for concurrent access during training. In
total, 252324 environments were voxelized for the training set, 6550
for the test set, 3067 for the validation set. The voxelization was
implemented using ray78.

Model training. We used PyTorch 1.1079 to train the model (Fig. 9). All
layers of the network are convolutional layers with filter size 1.5Å
except for the fifth layer (Conv5 in Fig. 9) where a 8Å filter is used to
capture long range interactions. We use zero padding to keep the size
of the boxes constant. Models were trained on a workstation with
NVIDIAGTX3090GPU and 32 CPU cores. BinaryCross Entropy80 loss is
used to train themodel. The rectified linear unit (ReLU) non-linearity is
used except for the last layer which uses a sigmoid function that yields
the probability for zinc per voxel. A dropout layer (p = 0.1) was used
between the 5th and 6th layers. The network was trained using Ada-
Delta employing a stepped learning rate (lr = 0.5, γ = 0.9), a batch size
of 150, and 12 epochs to train.

Hyperparameter tuning. We used the ray[tune] library78 to perform a
hyperparameter search choosing 20 different combinations between

the following parameters with the best combination of parameters
in bold.

• filtersize: 3,4 (in units of 0.5 Å)
• dropout : 0.1, 0.2, 0.4, 0.5
• learning rate : 0.5, 1.0, 2.0
• gamma: 0.5, 0.7, 0.8, 0.9
• largest dimension 80, 100, 120

GridAveraging. Themodel takes as input a(8,32,32,32) tensor and
outputs a (1,32,32,32) tensor containing the probability density for
zinc centered on the Cα atom of the input residue (last step in Fig. 9).
Predictions for a complete protein were obtained by voxelizing select
residues of the protein (default all cysteines, histidines, aspartates,
glutamates), predicting them individually using the above described
model and averaging the boxes using a global grid (Fig. 10). 98% of the
metal sites in the training data have at least one of those residues
closeby wherefore this significant decrease in computational cost
seems appropriate for most uses. The global grid is obtained by
computing the bounding box of all points and using a regular spaced
(0.5Å) grid. For each grid point in the global grid the predicted
probability maps within 0.25Å of the grid point are averaged. The
search is sped up using the KD-Tree implementation in scipy81.

Metal ion placement. The global probability density is used to per-
formclustering of voxels abovea certainprobability threshold (default
p =0.15, cutoff 7Å) using AgglomerativeClustering implemented in
scikit-learn82 (Fig. 10). For each cluster the weighted average of the
voxels in the cluster is computed using the probabilities for each point

Fig. 7 | Metal1D method. a Coordination environment extraction from LINK

records of PDB files and probability map generation b Site prediction, showing
examples for a Zn2+ binding site, correctly predicted, and unlikely Zn2+ binding site,

discarded in the putative site scoring step because of low probability of the metal
site, and an amino acid for which Zn2+ binding is impossible, discarded in the
residue scoring step because of low score of the amino acid.

Fig. 8 | Voxelization of an environment. A Cα centered box is voxelized using moleculekit library. For each atom an atom centered pair correlation function is used to
assign voxel values in 8 different channels (see Table S5) for atom types.
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as the weight. This results in one metal placed per cluster. For each
placed ion the maximum probability of a voxel in a cluster is taken as
the probability of the ion.

Visualization. We make available a command line program and inter-
active notebook allowing theuser to visualize the results. The averaged
probability map is stored as a .cube file. The most likely metal coor-
dinates for use in subsequent processing are stored in a .pdb file. The
command line program uses VMD83 to visualize the input protein and
the predicted density, for the jupyter notebook 3Dmol.js/py3Dmol84

is used.

Evaluation and Comparison
MIB & MIB2. We compared against the template based predictors
MIB21 (no longer available) andMIB222 (same asMIB but with extended
template database) using the webserver located at http://combio.life.
nctu.edu.tw/MIB2/. Structures from the testset were manually uploa-
ded, the job ids saved and predictions extracted from the html output
of the job. The t-scores for MIB were chosen based on the description
of the method, for MIB2 no such recommended values were provided
in the description of the method and we compared the distribution of
t-scores choosing a set of t-scores approximately matching the old
distribution of MIB (Fig. S6).

BioMetAll. Predictions were run using the standalone BioMetAll v1.0
programm obtained from https://biometall.readthedocs.io/en/latest/
installation.html.

Evaluation metric
In order to standardize the evaluation between different tools, we
always used the same test set used for the training of Metal1D and
Metal3D. In order to compute standard metrics such as precision and
recall, we chose to assess the performance of all assessed tools
(Metal1D, Metal3D, BioMetAll, MIB) in a binary fashion. Any prediction
within 5Åof an experimentalmetal site is counted as truepositive (TP).
Multiple predictions by the same tool for the same site are counted as 1

TP. Any experimental site that has no predicted metal within 5Å is
counted as false negative (FN). A false positive (FP) prediction is a
prediction that is not within 5Å of a zinc site and also not within 5Å of
any other false positive prediction. If two or more false positive pre-
dictions are within 5Å, they are counted as a single false positive
prediction for the same site. In practice, we first evaluate the true
positive and false negative predictions and remove those from the set
of predictedpositions. The remaining predictions are all false positives
and are clustered using AgglomerativeClustering with a radius of 5Å .
The number of false positives is determined from the number of
clusters. Using the binarymetric we assessed howgood themodels are
at discovering sites and how much these predictions can be trusted.

In order to assess the quality of the predictions, we additionally
compute for all the true positive predictions themean of the Euclidean
distance between the true and predicted site (mean absolute deviation
MAD). For Metal1D, MIB, and BioMetAll, MAD was computed for all
predictions above the threshold within 5Å of a true zinc site where ∑
predictedsites ≥ ∑ TP. This was done as some tools predict the same
site for different residue combinations and we wanted to assess the
general performance for all predicted sites above a certain cutoff and
not just for the best predicted site above the cutoff. For Metal3D the
weighted average of all voxels above the cutoff was used.

Precision was calculated as

Precision=
#correctmetal sites

#correctmetal sites +#falsepositive clustered
=

TP
TP+FP

ð2Þ

Recall was calculated as

Recall =
#correctmetal sites

#correctmetal sites + #not foundmetal sites
=

TP
TP+FN

ð3Þ

Model assessment Metal3D. To evaluate the trained models we
monitored loss and how accurately the model predicts the metal

Fig. 9 | Sketch of model. Residue centered zinc densities are predicted based on
input environment. Number of layers not to scale. Blue tensor sizes indicate
number of channels and size of grid (always 32 × 32 × 32) Convolutional filters (red)

are trained and extract information (3 × 3 × 3 convolutions) or aggregate informa-
tion (16 × 16 × 16 convolution).

Fig. 10 | Grid averaging andmetal ion placement. A bounding box for the global
grid is defined based on all predictions and residue probability maps are aggre-
gated using KD-Tree search. Ions are placed after AgglomerativeClustering and

taking the weighted average of all voxels in a cluster. Probability is the maximum
probability of the cluster.
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density of the test set. We used a discretized version of the Jaccard
index setting each voxel either as 0 (no metal) or 1 (zinc present). We
tested multiple different decision boundaries (0.5, 0.6, 0.75, 0.9) and
also compared a slightly smaller centered box to remove any spurious
density at the box edges, where the model has only incomplete
information to make predictions.

The Jaccard index is computed as

J =
#Vp \ Vexp

#Vp ∪Vexp
ð4Þ

where Vp is the array of voxels with predicted probability above the
decision boundary and Vexp is the array of voxels with the true metal
locations also discretized at the same probability threshold.

HCA2 mutants. The data for human carbonic anhydrase 2 (HCA2)
mutants was extracted from refs. 65–69 and the crystal structure
2CBA48,49 was used. The zinc was modeled using the zinc cationic
dummy model forcefield51 and we verified that energy minimization
produced the correct coordination environment. The Richardson
rotamer library85 was used with the EVOLVE-ddG energy function to
compute the most stable rotamer for a given mutation with the zinc
present. The lowest-energy mutant was used for the prediction of the
location of metals using Metal3D.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The list of PDB identifiers used to train and evaluate the models and
data required to reproduce figures and tables in this manuscript have
been deposited on Zenodo under https://doi.org/10.5281/zenodo.
7015849.

Code availability
Code is available under https://github.com/lcbc-epfl/metal-site-
prediction86 and also on Zenodo under https://doi.org/10.5281/
zenodo.701584987. EVOLVE v0.2 code is available on https://doi.org/
10.5281/zenodo.571380188.
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