
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Demand-based Asset Pricing: Theory, Estimation and 
Applications

Philippe VAN DER BECK

Thèse n° 10 116

2023

Présentée le 29 juin 2023

Prof. E. Morellec, président du jury
Prof. P. Collin Dufresne, directeur de thèse
Prof. M. Yogo, rapporteur
Prof. L. Bretscher, rapporteur
Prof. S. Malamud, rapporteur

Collège du management de la technologie
Chaire du Prof. ordinaire Collin-Dufresne
Programme doctoral en finance 





Acknowledgements

I would like to begin by expressing my deepest gratitude to my advisor, Pierre Collin-Dufresne,

who has been an incredible source of guidance, encouragement, and support throughout my

PhD. Your invaluable advice and expertise have been instrumental in shaping my research and

I am truly fortunate to have had you as my mentor. I would also like to thank Motohiro Yogo

for making my visiting semester at Princeton University possible, for generously devoting his

time and attention to me during this amazing semester, and for his invaluable feedback on my

research. I am also indebted to Lorenzo Bretscher for his incredible support during the job

market.

Most importantly, I would like to express my heartfelt thanks to my mom, dad, and sister for

their unwavering love and support. I would also like to thank my aunt Sibille. I am forever

grateful for your contribution to my academic and personal growth. Finally, I would like to

sincerely thank Sebastian & Achmed Hasslinger, Max Sauer, Maxwell Dean, Romain Gratis,

Ole Gwakam, Pierre Cailloux, Jonathan Abruzzi, Eric Gunshof, Bula, Yercomo Melegati, Birgit

Siefert, Fred Sandig, Mölle, Kendrick Depay, Olivier Krek, Sam Wagner, and all the members of

the Club der Dichteren for their insightful feedback on my research.

Lausanne, April 21, 2023 P. vdB.

i





Abstract

This thesis investigates the relationship between investors’ demand shocks and asset prices

through the use of data on portfolio holdings. In three chapters, I study the theory, estimation,

and application of demand-based asset pricing models, which incorporate data on investors’

portfolio holdings and equilibrium asset prices. I first present a generalized framework and

propose a new estimator of investor-specific demand curves that is based on time-series

changes in investors’ portfolios. I then use and extend the proposed estimator to quantify the

equilibrium price impact of the growing institutional demand for sustainable investments. I

show that the returns from sustainable investing are strongly driven by price pressure from

flows towards sustainable funds, causing high realized returns that do not reflect high expected

returns. The last chapter quantifies the price impact of the retail investment boom during

the Covid-19 pandemic via a structural model that uses data on portfolio holdings of US

households.
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Zusammenfassung

Diese Arbeit untersucht den Zusammenhang zwischen Vermögenspreisen und der Nachfra-

gefunktion von Investoren mittels Daten zu Portfolio-positionen. In drei Kapiteln werden

Theorie, Schätzung und Anwendung von nachfragebasierten Vermögenspreismodellen un-

tersucht. Diese Modelle schätzen die Nachfragefunktion institutioneller Investoren und ver-

knüpfen diese mit Vermögenspreisen. Zunächst wird ein generalisiertes Modell vorgestellt

und ein neuer Schätzer für investorenspezifische Nachfragekurven vorgeschlagen, der auf

zeitlichen Veränderungen in den Portfolio-positionen der Investoren basiert. Anschließend

wird der vorgeschlagene Schätzer verwendet und erweitert, um den Einfluss der wachsen-

den institutionellen Nachfrage nach nachhaltigen Investitionen zu quantifizieren. Es wird

gezeigt, dass die Renditen von nachhaltigen Investitionen stark von Nachfrageschocks ge-

trieben sind, was zu hohen realisierten Renditen führt, die keine hohen erwarteten Renditen

widerspiegeln. Das letzte Kapitel quantifiziert den Einfluss von Robinhood-Tradern auf die

Aktienkurse während der Covid-19-Pandemie anhand eines strukturellen Modells, das Daten

zu den Portfolio-positionen von US Haushalten verwendet.
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Introduction

This thesis investigates the relationship between investors’ demand shocks and equilibrium

asset prices through the use of data on the asset holdings of different investors. If the aggregate

demand for financial securities is downward sloping, then data on investors’ portfolio choice

potentially contains valuable information on what drives equilibrium asset prices. Following

the influential work of Koijen and Yogo (2019), a rapidly growing literature links holdings data

and equilibrium asset prices via structural models of investor demand. These models have

since been commonly referred to as "demand-based asset pricing models". In three chapters,

I study the theory, estimation and application of such demand-based asset pricing models.

The first chapter sets the stage with a generalized theoretical framework that links investor

demand and asset prices and nests many workhorse asset pricing models. The key parameter

in relating demand and equilibrium prices is investors’ elasticity of demand with respect to the

price. Unlike previous studies, which rely on cross-sectional estimates in levels, this chapter

proposes estimating elasticities from investors’ trades, that is changes in their portfolios. I

use demand shocks from mutual fund flows as an instrument to address the endogeneity of

trades and prices. Using the estimation in changes along with the flow-based instrument I

find that elasticities are 4 times larger than what previous estimates suggest. Estimation over

different trading horizons furthermore shows that investors become more elastic in the long

run. The results suggest that the impact of demand shocks on equilibrium prices is smaller

than previously estimated and partly reverts over time.

The second chapter employs the estimation technique proposed in the first chapter to quantify

the equilibrium price impact of the growing institutional demand for sustainable investments.

I show that the returns from sustainable investing are strongly driven by price pressure from

flows towards sustainable funds, causing high realized returns that do not reflect high expected

returns. Using a structural model, I estimate investors’ ability to accommodate the demand

from sustainable funds, which is given by their elasticity of substitution between stocks. I show

that every dollar flowing from the market portfolio into sustainable mutual funds increases

the aggregate value of green stocks by $0.4. The price pressure from flows supports the

effectiveness of impact investing by lowering green firms’ cost of capital. In the absence

of flow-driven price pressure, sustainable funds would have underperformed the market

from 2016 to 2021. To this end, I develop a new measure of total capital flows into managed
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portfolios. The price pressure from total ESG flows is highly correlated with empirically

observed returns, both in the time-series and in the cross-section. I support the structural

estimates with reduced-form evidence, showing that index inclusions and mandate-driven

portfolio additions by sustainable mutual funds significantly boost the prices of green stocks.

The last chapter is dedicated to the retail investment boom during the Covid-19 pandemic. In a

joint paper with Coralie Jaunin, we quantify the impact of Robinhood traders on the US equity

market. We estimate retail and institutional demand curves using a structural model and

derive aggregate pricing implications via market clearing. The inelastic nature of institutional

demand allows Robinhood traders to have a substantial effect on stock prices. Despite their

negligible market share of 0.2%, Robinhood traders account for 10% of the cross-sectional

variation in stock returns during the second quarter of 2020. Furthermore, without the surge

in retail trading activity the aggregate market capitalization of the smallest size quintile of

stocks would have been 25% lower.

2



Chapter 1

On the Estimation of Demand-based
Asset Pricing Models

1.1 Introduction

A wealth of detailed data on investor’s portfolio holdings has breathed new life into the

question of whether changes in investor demand drive changes in prices. If the aggregate

demand for a financial security is downward sloping, investors’ non-fundamental demand

shocks can have a meaningful impact on equilibrium prices. The Demand System Approach

to Asset Pricing developed by Koijen and Yogo (henceforth KY, 2019) allows incorporating

holdings data into equilibrium asset pricing by estimating investor-specific demand curves.

Investors’ elasticity of demand with respect to the price (henceforth elasticity of demand) lies

at the heart of the demand system approach. It determines the equilibrium price impact of

counterfactual experiments within the demand system. If investors’ elasticity of demand is

high, then equilibrium prices do not have to move a lot in order to accommodate demand

shocks. Importantly, the notion of the elasticity of demand refers to how strongly investors

trade in response to changes in prices.

Under valid identification, the estimated elasticities should not depend on the estimation

specification. In contrast, this paper highlights, that estimates from changes in of portfolio

holdings (i.e., how investors trade) are substantially different to estimates from levels (i.e.,

what investors hold). KY (2019), and all subsequent papers using their approach, infer price

elasticities of demand from the cross-section of holdings thereby muting the time series di-

mension. In particular, they run cross-sectional regressions of portfolio weights onto prices

using an instrument to control for their joint endogeneity. The underlying intuition is that

investors holding a larger weight in cheaper securities (controlling for fundamental value) are

more price-elastic than passive investors simply holding the market portfolio. Importantly, the

estimation does not take into account how investors trade, i.e., how their holdings change over

3
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time. This constitutes an important deviation from the event-study evidence that identifies

the slope of the aggregate demand curve by assessing the price change caused by changes

in non-fundamental demand due to e.g. index inclusions or mutual fire sales. In this spirit,

I propose estimating price elasticities of demand from quarterly changes in holdings (i.e.,

trades) as a response to non-fundamental price changes. The estimation using trades has

several advantages. First, it removes the omitted variable bias from unobservable static portfo-

lio tilts (such as investment mandates) that are correlated with the price. Second, it allows

directly estimating investors’ change in demand as a response to changing prices, as opposed

to inferring it from the cross-section of holdings in levels. The identification in KY (2019)

requires investor-level holdings across multiple securities. The identification proposed in this

paper is not restricted to a multiple asset setting. In fact, estimating elasticities using investors’

trades allows estimating demand systems for individual securities such as the aggregate stock

market, single stocks, or factor portfolios. Third, the estimated elasticities are non-negative

for all investors, which makes intuitive sense as (controlling for fundamental value) a higher

price should lower demand. In contrast, the unconstrained cross-sectional identification from

holdings leads to many negative elasticities, particularly for large investors. Thus KY (2019)

have to impose a coefficient constraint in order to ensure unique equilibrium prices in their

counterfactuals. Fourth, changes in holdings (i.e. trades) can be computed over an arbitrary

time horizon. This allows estimating elasticities at different frequencies. The estimation in

KY (2019) essentially ignores the frequency at which holdings data is available. In its current

form, the demand system therefore implies that demand shocks have a permanent impact

on prices because the price elasticities of demand do not have a time-series component. The

time series nature of trades as opposed to holdings allows linking demand-based asset pricing

to the return dynamics (e.g. long run reversal) of non-fundamental demand shocks. Fifth, by

including time-series information, the estimation in changes allows identifying stock-specific

elasticities as well as cross-elasticities. Sixth, one can directly apply existing instruments

from the event-study literature such as mutual fund flows or index reconstitutions. The event

studies can furthermore be used to verify counterfactual equilibrium prices obtained from the

demand system approach. This lends additional flexibility to the demand-based approach. It

is important to note, that any asset pricing model is demand-based and implies elasticity of

demand with respect to the price that can in general be estimated from observable data on

portfolio choice. Neoclassical models typically imply high price elasticities of demand such

that demand shocks have minor equilibrium price effects (see the calibrations in Petajisto

(2009) and Gabaix and Koijen (2021)). The negligible role of demand shocks in standard

models is at odds with extensive empirical evidence from index inclusions (Wurgler and Zhu-

ravskaya (2002)), mutual fund flows (Lou (2012)), index reconstitutions (Chang et al. (2015)),

benchmarking (Pavlova and Sikorskaya (2022)) and dividend reinvestments (Hartzmark and

Solomon (2021)) suggesting that investors have downward-sloping (or inelastic) demand

curves. The notion of inelastic demand for financial securities is not new and has been around

since at least Shleifer (1986). However, the increased availability of investor-level holdings

data has revived the interest in estimating the slope of investors’ demand curves and linking

the holdings to equilibrium prices.

4



1.1 Introduction

I start by framing the demand-based approach in a generalized form that nests many workhorse

asset pricing frameworks. I show that the equilibrium price effects of counterfactual exper-

iments within the demand system can be approximated as the product of a dollar demand

shock and a multiplier matrix that is the inverse of the aggregate elasticity of demand. Correctly

estimating elasticities (in particular their magnitude) therefore critically determines whether

the demand-based approach produces realistic counterfactuals. Price elasticities of demand

are defined as the percentage change in holdings as a response to a one percent increase in the

price. The most natural estimation specification that directly emerges from the definition is to

estimate investors’ percentage changes in holdings as a response to non-fundamental price

changes. This essentially corresponds to first-difference estimator of the demand curve in KY

(2019). Using the same data, estimating their specification in first differences produces higher

elasticities that are uncorrelated to the estimates in KY (2019). This points towards an omitted

variable bias (due to e.g. unobservable investment mandates that are correlated with prices) in

the cross-sectional identification using holdings. Identification via trades mitigates endogene-

ity concerns due to unobservable portfolio tilts. I confirm this bias in a simple simulation by

estimating the demand of a mandated investor that is perfectly inelastic. Regardless of using

holdings or changes in holdings (i.e., trades) in the estimation, a causal identification requires

instruments to control for the joint endogeneity of prices and demand. Identifying the elastic-

ity of demand to the price using holdings as in KY (2019) requires exogenous variation in prices,

which is difficult to find. However, the literature provides a variety of different approaches to

construct exogenous variation in returns (i.e., price changes), which can be used to identify

elasticities via trades. Hypothetical trades based on mutual fund flows (see e.g. Edmans et al.

(2012)) are ideally suited as an instrument as they are available for all stocks at all quarters.

However, mutual fund flows contain fundamental information if they are driven by the funds’

underlying portfolio tilts. I therefore construct flow-induced demand shocks unrelated to

fundamental news by orthogonalizing flows with respect to fund-specific characteristics. The

instrument is highly relevant, i.e., it is strongly related to contemporaneous returns controlling

for known return predictors. The price pressure furthermore reverts after approximately 1.5

years. This is suggestive evidence that the demand shocks are non-fundamental (i.e., that the

instrument is exogenous). I then proceed by estimating investor-specific elasticities using

flow-induced mutual fund demand as an instrument. The resulting elasticities of demand

to the price are 4 times larger than the original estimates by KY (2019). This has important

consequences for the equilibrium prices obtained from counterfactual experiments, because

the price impact of demand shocks is exclusively driven by the magnitude of the estimated

elasticities. I then outline how the estimation using trades as opposed to holdings can i) be

incorporated in existing demand-based frameworks, ii) produce stock-specific and cross-

elasticites, iii) reveal high frequency estimates using alternative holdings data, iv) be used to

obtain causal demand responses to other variables such as ESG scores.

Related Literature. This paper relates to two strands of literature. Most importantly, it directly

relates to the recent and growing literature on demand-based asset pricing initiated by KY

(2019). This literature uses data on investors’ portfolio holdings for different asset classes to

5
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estimate demand curves and, via the price elasticities of demand, link them to equilibrium

prices (e.g. Koijen et al. (2022), Koijen and Yogo (2020), Haddad et al. (2021), Han et al.

(2021), Noh and Oh (2020), Benetton and Compiani (2020), Bretscher et al. (2020), Jiang et al.

(2020), van der Beck and Jaunin (2021), Jansen (2021)). All of the above-mentioned papers use

the demand system approach to conduct counterfactual experiments, the impact of which

critically hinges on the elasticity estimates. The impact of the counterfactual experiments

would be much smaller under the higher elasticity estimates identified via trades instead

of holdings. Identifying elasticities via trades requires exogenous variation in price changes

(i.e returns) as opposed to exogenous variation in price levels as in KY (2019). Thus this

paper relates to the large literature on identifying non-fundamental price pressure from index

reconstitutions (see e.g. Shleifer (1986), Wurgler and Zhuravskaya (2002), Chang et al. (2015),

Pavlova and Sikorskaya (2022), Greenwood (2005)), mutual fund flows (see e.g. Edmans et al.

(2012), Coval and Stafford (2007), Lou (2012), Wardlaw (2020), Schmickler (2020)) or dividend

reinvestments (see e.g. Hartzmark and Solomon (2021)). All of the measures introduced in

these papers can essentially be used as instruments to estimate elasticities from trades. This

lends additional flexibility to the demand-based approach as the estimates can be verified in a

host of different settings.

The remainder of this paper is structured as follows. Section 3.2 describes the role of price

elasticities in asset pricing in a generalized setting. Section 3.3 shows how to identify price

elasticities from holdings data. Section 3.4 is dedicated to identification. I describe how to

construct a flow-based instrument that can be used to causally identify elasticities and com-

pare my estimates to the estimates in KY (2019). In Section 3.5, I outline potential applications

and extensions of the demand estimation using trades as opposed to holdings. Section 3.6

concludes.

1.2 The Role of Price Elasticities in Asset Pricing

The demand-based approach to asset pricing allows to jointly match data on portfolio holdings

and equilibrium asset prices by estimating investor-specific demand curves. The key obstacle

in estimating investors’ demand curves is the identification of the elasticity of demand (i.e.

the how elastically demand responds to a change in the price). Below I provide a generalized

version of the demand system in KY (2019) and show that it nests many workhorse frameworks

in asset pricing.

A Generalized Demand-Based Asset Pricing

There are N stocks indexed by n = 1, ..., N and 2 time periods t = 0,1. Shares outstanding of

each stock are given by Q∗, normalized to 1 so that the endogenous total market equity of each

stock is given by its price P (n). Each stock pays an cashflow D(n) in period 1 with a covariance

6
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matrix Σ ∈RN×N . There are I investors indexed by i = 1, ..., I whose assets under management

Ai are exogenously determined e.g. by the money that households allocate to them. This can

be easily endogenized. The funds may invest in the N stock, as well as a riskless asset whose

exogenous interest rate is normalized to 0. Let Q i (n) denote the number of shares held by i

in stock n and w i (n) = Q i (n)P (n)
Ai the corresponding portfolio weight. For now, I am assuming

that the optimal portfolio Q i ∈RN is some unknown fund-specific function f i (·) of the vector

of stock prices P ∈RN and a collection of other exogenous observable and unobservable

variables X (such as the assets under management, interest rate, fundamentals or investment

constraints):

Q i = f i (P, X
)

(1.1)

For example, under CARA preferences with risk aversion equal to γi , the institution maximizes

E[e−γ
i Ai

1 ] subject to the budget constraint Ai
1 = Ai

0+Q i ′(E[D(n)]−P ) by choosing the optimal

portfolio

Q i = (γiΣ)−1(E[D(n)]−P ). (1.2)

The general specification (1.1) allows plugging in a demand curve which matches observable

data on portfolio choice. For example KY (2019) use an exponential function for f i (·) whereas

Balasubramaniam et al. (2021) and Betermier et al. (2022) opt for a linear specification. Micro-

founding a demand curve that matches observable data is beyond the scope of this paper and

left for future research.1 Importantly, f i (P, X ) pins down an investor’s elasticity of demand,

which is given by

ζi
n =−∂Q i (n)

∂P (n)

P (n)

Q i (n)
. (1.3)

It measures how much of her holdings in stock n the investor sells (in %) when the price of

n goes up by 1 %. Similarly, cross-elasticities are defined as ζi
n,m = −∂Q i (n)

∂P (m)
P (m)
Q i (n)

measuring

how much of stock n the investor sells when the price of an different stock m goes up by 1 %.

For example, assume that Apple’s share price goes up by 1% due to some non-fundamental

shock (such as an index reconstitution), causing Blackrock to sell 2% of its shares in Apple

and substituting towards Google by increasing its shares in Google by 0.5%. This implies that

the elasticity of Blackrock’s demand for Apple with respect to the price of Apple is ζBlackrock
Apple = 2,

and that the elasticity of Blackrock’s demand for Apple with respect to the price of Google

is ζBlackrock
Google,Apple = −0.5. Let ζi denote the N × N elasticity matrix that has price elasticities on

the diagonal and the cross-price elasticities on the off-diagonal elements. In the CARA case

above, the investor-specific elasticity matrix ζi is proportional to (γiΣ)−1.2 More risk averse

investors require a larger price concession to move away from the mean-variance efficient

portfolio and are hence more inelastic with respect to the price. Similarly, all investors are

more inelastic with respect to riskier stocks as these stocks contribute more to the risk of

1KY (2019) provide a suggestive micro-foundation of log-linear portfolio weights by using the fact that w(n) =
1+X (n)+ 1

2! X (n)2... ≈ e X (n).
2Formally, the elasticity in the CARA case is given by diag(Qi

t )−1(γiΣ)−1diag(Pt ). Note, that in the CARA case it

is more convenient to define elasticities in absolute terms (as opposed to percentages), i.e. ζi = ∂Q i (n)
∂P (n) . In this case

the elasticity matrix is given by (γiΣ)−1
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Chapter 1. On the Estimation of Demand-based Asset Pricing Models

the arbitrage portfolio (see e.g. Greenwood (2005)). Note, that the frictionless CARA setting

produces price elasticities of demand that are too large to be reconciled with the observed

price impact of index inclusions (see the calibration in Petajisto (2009)). However, it serves as

a useful benchmark on how to think about price elasticities in a classical framework.

Market clearing implies that all funds must jointly hold the market portfolio Q∗. Summing

(1.1) across investors yields:
I∑

i=1
f i (P, X ) =Q∗ (1.4)

In the CARA example above, equilibrium prices are available in closed form and given by the

CAPM

P =E[D]−γΣQ∗ (1.5)

where γ ≡ 1/
(∑I

i=1 1/γi
)

is the market’s effective risk aversion. The exponential demand

specification in KY (2019) does not allow closed-form equilibrium prices. The price effects

of counterfactual experiments have to be computed numerically. The next section shows,

however, shows that they can be approximated as the product of a dollar demand shock and

the market’s aggregate elasticity of demand.

B Demand Shocks and Equilibrium Prices

Now, assume that at time t = 0, there is shock ∆X that changes the demand of an investor

resulting in a dollar trade of ∆D . The shock could be due to flows altering an investor’s assets

under management or portfolio rebalancing due to a change in stock-specific characteristics.

PROPOSITION 1 A first order approximation of the equilibrium change in prices ∆P due to the

demand shock ∆D is given by

∆P =M∆D (1.6)

where M ∈RN×N is given by

M =
(

I∑
i=1

diag(Q)iζi

)−1

(1.7)

See Appendix A for a proof. Proposition 1 states that the impact of demand shocks on the

cross-section of realized returns is given by M , which is the inverse of the aggregate elasticity

of demand (weighted by ownership Q i ). M is the cross-sectional pendant to the scalar multi-

plier in Gabaix and Koijen (2021) and will henceforth be referred to as the multiplier matrix.

It measures the market’s willingness to substitute between stocks. The more price-elastic

investors are (i.e., the larger the diagonal elements in ζi ), the less prices have to move to

accommodate the exogenous demand shock. Cross-price elasticities drive the off-diagonal el-

ements in M and are responsible for spill-over effects to other stocks. For example, if investors

accommodate an exogenous demand shock for green stocks primarily by substituting towards

8



1.2 The Role of Price Elasticities in Asset Pricing

brown industries, the relative price impact of ESG investing may be negligible. Ultimately,

elasticities ζi and therefore the multiplier matrix M are pinned down by the specific choice

of f i (P, X ). In the CARA case the most intuitive way to model exogenous demand ∆D is via

a change in supply Q∗, such as the inclusion of some stocks in an index. The resulting price

change is given by ∆P = γΣ∆Q∗. Thus the CARA setting implies that the multiplier matrix is

proportional to γΣ. It is driven by the covariance of cashflows and the market’s effective risk

aversion. Riskier stocks have a larger multiplier because they contribute more to the arbitrage

portfolio (see e.g. Greenwood (2005)). Note, that the channel through which demand shocks

affect equilibrium prices in the CAPM is entirely risk-driven: If investors are risk neutral, or

future cashflows are risk-free then P =E[D] and exogenous demand shocks do not affect

prices.

C Reevaluating Counterfactual Experiments

KY (2019) show how to compute M by estimating investor-specific elasticities ζi from holdings

data. In their model, portfolio weights are exponential linear in prices and stock-specific

characteristics.3 Because of the non-linear demand specification, equilibrium prices are not

available in closed form. However, there exists a close mapping between the equilibrium

impact of counterfactual experiments in KY (2019) and equation (1.6).

COROLLARY 1 Let logP = g(A,X,β,ϵ) denote the equilibrium vector of log prices as in the de-

mand system by KY(2019, equation 22). Any counterfactual experiment involves a change in

assets under management ∆A, characteristics ∆X, demand coefficients ∆β or latent demand

∆ϵ, and can be represented as a change in aggregate dollar demand ∆D ∈RN . A first order ap-

proximation of the equilibrium price impact of counterfactual experiments is given by equation

(1.6).

See Appendix A for a proof. The demand-based approach by KY (2019) has been used in

various settings to assess the impact of counterfactual experiments on equilibrium prices.

Corollary 1 states, that the counterfactual experiments can in general be restated in the form of

an aggregate demand shock∆D : Koijen et al. (2022) assess the impact of a shift towards passive

management by redistributing assets from active to passive funds. They also compute the

equilibrium price effects of a stronger demand for green stocks. Han et al. (2021) evaluate the

impact of mutual fund risk shifting on the beta anomaly. They redistribute underperforming

funds’ assets towards all other investors and compute the equilibrium price change of high

beta stocks. Bretscher et al. (2020) conduct a battery of counterfactuals for the corporate

bond market by changing the wealth distribution across investors Ai and bond characteristics

3Specifically, they derive w i (n) = Q i (n)P (n)
Ai = eβ

i
0P (n)+X (n)βi+ϵi

from mean-variance portfolio choice under
the assumption of a factor structure in the covariance matrix in returns and that both expected returns and factor
loadings are linear in X .

9
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X . Jiang et al. (2020) decompose the US net foreign asset position by iteratively changing its

underlying determinants and computing the counterfactual equilibrium.

The counterfactual price change is - at least to a first order - driven by M . The quantitative

implications of all of the above-mentioned counterfactuals almost entirely depend on how

elastically investors respond to exogenous price changes. If investors are price inelastic (small

ζi ) then M is large and prices have to move a lot to accommodate the exogenous demand

shock ∆D . KY (2019) estimate, that the diagonal elements of M range between 2 and 4, while

the off-diagonal elements are close to 0. Thus, a counterfactual experiment that entails a $1

demand shock for stock n raises the price of n by approximately $2-4.

Lastly, note that in this simple framework the multiplier M is exogenous and not affected by

the demand shock ∆D. Haddad et al. (2021), suggest that M is potentially endogenous as

investors’ choose their elasticity of demand in response to the trading behaviour of others. It

is however likely, that changing an institution’s overall trading aggressiveness is inhibited by

e.g. agency frictions and does not occur instantaneously. In this light, equation 1.6 should be

viewed as a short-term approximation of the price impact of counterfactual experiments.

1.3 Estimating Elasticities from Changes in Holdings

Investors’ price elasticities are key in order to understand the role of demand shocks in

financial markets. Before diving into the elasticity estimation it is worth noting that there

exists extensive empirical evidence empirical evidence from index inclusions, mutual fund

flows, index reconstitutions and dividend reinvestments suggesting investors have less elastic

demand curves than what is implied by many frictionless neoclassical models.4 Virtually all of

the reduced form evidence for inelastic demand examines the relationship between changes

in the price and changes in demand using suitable instruments to account for their joint

endogeneity. In this spirit, I propose estimating investor-specific elasticities using changes in

their quarterly reported share holdings as a response to non-fundamental changes in prices.

A Data and Variable Construction

In the US, institutional investment managers who have discretion over $100M or more in

designated 13F securities, must report their respective share holdings Si
t (n) via quarterly SEC

13F filings. I obtain institution-level holdings from 2000 to 2021 from Thomson’s Institutional

Holdings Database (s34 file). Monthly data on mutual funds’ net returns and total net assets, as

well as other fund-specific characteristics are obtained from the CRSP survivorship-bias-free

mutual fund database. For over 90% of all mutual funds, CRSP provides holdings at a higher

frequency than Thomson’s Quarterly Mutual Fund Holdings Database (s12 file). I construct

4See the calibrations in Petajisto (2009) and Gabaix and Koijen (2021)
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mutual fund portfolios using the both databases and opt for CRSP holdings when moving

to a higher frequency. The data on quarterly stock holdings are subsequently merged with

price and fundamentals data from CRSP and Compustat.5 Institution-level and mutual fund

portfolio weights w i
t (n) are constructed as the dollar holdings in each stock (price Pt (n) times

shares held Q i
t (n)) divided by their assets under management Ai

t . An institution’s assets under

management are given by the sum of its dollar holdings. The subscripts t indicate the report

date of the 13F filing. In line with the theory, I normalize by shares outstanding such that a

stock’s price and its market capitalization coincide and the number of shares held is equivalent

to the fraction of ownership Q i
t (n) = Si

t (n)
Shares Outstandingt (n) . Thus stock splits do not contaminate

changes in shares held from one quarter to the next. Percentage changes in prices and portfolio

weights are defined as ∆pt (n) = logPt (n)− logPt−1(n) and ∆w i
t (n) = log w i

t (n)− log w i
t−1(n).

Identifying investor’s elasticity of demand requires a measure of demand that captures how

actively the institution is trading. I therefore define investor demand ∆q i
t as the change in

portfolio weight that is not driven by valuation changes. Formally,∆q i
t (n) ≡∆w i

t (n)−∆pt (n).6

B Estimation Specification

The most natural estimation, that directly emerges from the definition of the elasticity ζi
n in

equation (2.5), is evaluating the percentage trade ∆q i
t (n) as a response to a percentage change

in the price ∆pt (n)

∆q i
t (n) = ζi∆pt (n)+ϵi

t (n) (1.8)

where ϵi
t (n) captures demand shocks due to e.g. fundamental news, flows or legal constraints.

A causal identification of elasticities requires exogenous variation in prices orthogonal to ϵi
t (n).

For now, I will ignore the endogeneity problem. The next section shows how to construct valid

instruments for prices. It is important to note that this estimation specification is defined

in changes in order to elicit investors’ trades as a response to changes in the price. The

specification in changes is therefore conceptually in line with the reduced form evidence on

inelastic demand mentioned that examines the price change following exogenous demand

changes (such as index inclusions). In a conceptual deviation from the event-study evidence

for inelastic demand, KY (2019) identify elasticities in a cross-sectional regression in levels as

opposed to changes. Motivated by the fact that investors’ portfolio weights are log-normally

distributed in the cross-section, they estimate

log
w i

t (n)

w i
t (0)

=βi
0,t logPt (n)+ϵi

t (n) (1.9)

5See KY (2019) for details on the construction of the database.
6Investor demand ∆q i

t (n) can also be viewed as the percentage change in shares held Qi
t (n) that is not driven

by growth in assets. Intuitively, a fund that simply scales up its holdings proportional to inflows should not be

interpreted as trading actively. To see this, note that ∆q i
t (n) = log

(Q i
t (n)Pt (n)

Ai
t

)− log
(Q i

t−1(n)Pt−1(n)

Ai
t−1

)−∆pt (n) =

log
Q i

t (n)

Q i
t−1(n)

− log
Ai

t

Ai
t−1

.

11
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using quarterly cross-sectional regressions for each investor. Here ϵi
t (n) =αi

t+
∑K

k=1β
i
k,t Xk,t (n)+

εi
t (n) captures demand for stock-specific characteristics Xk,t (n) and unobservable (latent)

demand shocks εi
t (n). Because shares outstanding are normalized to one, a stock’s market

capitalization and its price Pt (n) coincide. Subtracting logPt (n) from both sides and noting

that the weight in the outside asset w i
t (n) is subsumed by the constant in a cross-sectional

regression, (1.9) can be rewritten as

logQ i
t (n) =−ζi

t logPt (n)+ϵi
t (n) (1.10)

where ζi
t = 1−βi

t ,0. Hence the regression using trades (1.8) is nothing but a first difference

estimator of the level-specification in KY (2019). The specification in levels implies high price

elasticities for investors tilting towards cheaper (controlling for fundamental value) stocks

in the cross-section. The static nature of 13F investors’ holdings in the time-series, which

is often used as a reason for the low elasticity estimates, is not reflected in the estimated

parameters. In fact, the entire demand system could be estimated using only one quarter of

investor holdings and completely disregarding any time-series information. The purely the

cross-sectional identification in levels also implies that elasticities are inferred as opposed

to directly estimated. When conducting counterfactual experiments, the inferred elastici-

ties do not necessarily reflect investors’ true demand response as a result of an exogenous

(time-series) change in the price. Lastly, institutional portfolios are to a large extent driven

by (unobservable) investment mandates, which are captured by the error term ϵi
t (n). Any

unobservable determinant of the cross-sectional portfolio choice that is correlated with prices

leads to biased elasticities. E.g. a hedge fund tilting towards technology stocks will have a low

ζi
t , simply because technology stocks have higher prices (i.e., Cov(ϵi

t (n),Pt (n)) > 0). In order

to better understand the nature of changes in holdings consider the following simple example

based on true numbers. Blackrock’s total number of shares in Apple in the second quarter of

2014 was QBlackrock
2014q2 (Apple) = 320 Million. From the second to the third quarter of 2014 Blackrock

decreased its shares to 300 Million, which implies ∆qBlackrock
2014q2 (Apple) ≈ −6%. KY (2019) use the

holdings of one specific quarter, run a cross-sectional regression onto prices as in (1.10) and

obtain ζBlackrock = 0. The level-estimate thus implies that Blackrock is perfectly inelastic with

respect to Apple and all other stocks. Panel (a) of Figure 1.1 plots Blackrock’s actual quarterly

trades in Apple from 2010 to 2020 and the corresponding quarterly returns. The plot suggests

that Blackrock’s demand for Apple is not perfectly inelastic with respect to Apple’s price. In

fact, there is a significant negative relationship between Blackrock’s demand for Apple and

Apple’s price. Panel (b) of Figure 1.1 compares the estimates of ζi for the specification in

levels (Q i
t ) and changes (∆q i

t (n)) for all investor-quarter pairs. The estimates across the two

specifications are uncorrelated.
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Figure 1.1: Elasticity Estimates: Trades∆q i
t vs Holdings Q i

t .
Panel (a) of the figure plots Blackrock’s quarterly trades∆qBlackrock

t (Apple) and Apple’s quarterly returns∆pt (Apple) from

2010 to 2020. Quarterly trades are defined in excess of asset growth as∆q i
t (n) = log

(
Qi

t (n)/Qi
t−1(n)

)−log
(

Ai
t /Ai

t−1

)
.

The results remain unchanged if asset growth log
(

Ai
t /Ai

t−1

)
is computed without the valuation gain of Apple itself.

Panel (b) compares the elasticity estimates for all investor-quarter pairs for the estimation in levels and changes.
The x-axis plots the estimates in levels using holdings Qi

t as in KY (2019): logQi
t (n) =−ζi logPt (n)+Xt (n)βi +εi

t (n).

The y-axis plots the estimates in changes∆q i
t as proposed in the current paper: ∆q i

t (n) = ζi∆pt (n)+Xt (n)βi+εi
t (n).

The stock-specific controls Xt (n) are book equity, market beta, profitability, investment and dividends-to-book
equity. They do not change substantially over quarters and are hence kept in levels. The results remain unchanged
if lagged controls or Xt−1(n) or changes in the controls ∆Xt (n) are added. Both specifications are estimated
without the use of instruments for endogenous prices logPt (n) and endogenous price changes ∆pt (n).

(a) Blackrock trading Apple (b) Trades vs Holdings

Note, that the primitive estimates in Figure 1.1 do not use instruments to address the joint

endogeneity of demand (changes) and prices (changes). Therefore, the slope coefficients are

not measuring the causal elasticity. Figure 1.1 should hence be viewed as tentative evidence

for potentially omitted variables driving both unobservable portfolio tilts and prices. Thus

the cross-sectional estimation in levels may not adequately capture investors true response

to fluctuations in prices. Even though the original framework by KY (2019) has already been

extended on multiple fronts (see e.g. Koijen et al. (2022), Haddad et al. (2021)), the cross-

sectional identification in levels has been widely adopted and has remained unquestioned.

C Simulation

The different estimates from the specification in changes versus levels point towards an

omitted variable bias due unobservable portfolio tilts (e.g. investment mandates) that are

correlated with prices. In order to better understand the potential bias and how it may be

eliminated using changes in holdings, consider the following simulation: Investor s enters the

market in 2018 with 1 Billion dollars under management and equally distributes her assets

across the 500 largest stocks in the US, i.e. she starts with an equal-weighted portfolio. The

vector of purchased shares (as reported in her 13F filing) is given by θ(n) = 1Billion∗ 1
500∗P2018(n)

where P2018(n) are the market prices as of 2018. She never trades and therefore holds the
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shares purchased in 2018 until the end of the sample. Her portfolio can be described as

logQ s
t (n) = logθ(n)+εt (n). (1.11)

where εt (n) are iid liquidity trades or reporting errors in the holdings data. θ(n) can be

interpreted as an unobservable investment mandate. As she does not trade, her demand is

perfectly inelastic (i.e., ζs
t = 0). I compute θ(n) as of 2018 and then simulate her portfolio path

until 2021.7. Elasticity estimates in levels will be unbiased as long as θ(n) and Pt (n) are cross-

sectionally uncorrelated. Here, θ(n) is negatively correlated to the market prices, which should

lead to an upward bias in the elasticity estimates.8 In other words, the estimation in levels will

produce elasticity estimates that are too high. In first differences however, the unobservable

investment mandate (and hence the omitted variable bias) is removed as ∆q s
t =∆εt (n). Table

1.1 reports the estimated coefficients from the simulation. The first column reports the

investor’s true elasticity, which is 0. The estimation in levels produces a strong and significant

upward bias in the elasticity estimates. Estimating elasticities in first differences (i.e. using

trades) eliminates the bias by removing the influence of the latent investment mandate.

Table 1.1: Elasticity Bias Simulation.
The table reports the estimated elasticities from simulated portfolio data. I simulate the portfolio of an investor
that enters the market in 2018 with an equal weighted portfolio across the largest 500 stocks and (up to iid
liquidity trades εt (n)) never trades thereafter. Thus her portfolio is given by logQs

t (n) = logθ(n)+εt (n) where

θ(n) = 1Billion
500∗P2018(n) and εt (n) ∼ N (µQ ,σ2

logQ2018
) where µQ and σ2

Q are the cross-sectional sample mean and

standard deviation of logQs
2018. I simulate her portfolio from 2018 until 2021 and estimate demand every quarter.

I report the average coefficient over time along with its standard deviation.

Estimates ζi

True ζs Levels
(logQs

t )
Changes

(∆q s
t )

Average 0 0.92*** 0.01

Std. Error - (0.016) (0.024)

The simple simulation emphasizes the importance of accounting for unobservable investment

mandates or portfolio tilts. The direction of the bias is driven by the correlation of the mandate

with market prices. E.g. if the investor cross-sectionally tilts towards tech stocks (which are

more expensive controlling for fundamental value) the elasticity estimates from levels will

be biased downward. Constructing exogenous variation in prices potentially mitigates these

7I use εt (n) ∼Nt (µQ ,σ2
logQ2018

) where µQ and σ2
Q are the cross-sectional sample mean and standard deviation

of logQs
2018.

8More formally, logθ(n) = log( 1Billion
500 ) − logP2018(n) is negatively related to the market prices of 2018.

Because the cross-section of prices in subsequent years is positively correlated to the prices of 2018,
Covt (logθ(n), logPt (n)) < 0. In a univariate regression of logQs

t (n) onto logPt (n) the bias in the estimate is

given by
Covt (logθ(n),logPt (n))

Vart (logPt (n)) . The point estimate is therefore biased downward which implies an overestimation

of the elasticity.
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concerns. The next section addresses this issue in more detail and provides an instrument for

∆pt (n) to cleanly identify ζi using how investors trade as opposed to what they hold.

1.4 Causal Identification of Elasticities

In any economic context, correctly identifying an agent’s causal response to the price requires

exogenous variation in prices that is unrelated to the unobservable (latent) drivers of the action.

E.g. identifying causal responses of managerial decisions as a response to the stock price

requires exogenous variation in prices unrelated to the (in)direct effects of that decision on the

price itself. The most commonly used instruments in the literature are index reconstitutions

and mutual fund flow-induced price pressure. KY (2019) estimate elasticities in levels and

hence construct instruments for the cross-section of prices as opposed to price changes. To

this end they use exogenous cross-sectional variation in holdings via investment mandates

as opposed to exogenous variation in changes in holdings. More specifically, they compute

the counterfactual equilibrium prices if all investors held equal weighted portfolio given their

investment universe. This instrument varies little over time and is purely aimed at cross-

sectional identification in levels. Identifying how investors change their holdings, i.e., trade, as

a response to changes in the prices, requires instruments for the cross-section of price changes,

i.e., returns. A key advantage of estimating elasticities via trades is that essentially all of the

proposed instruments from the event-study literature can be employed. In this paper, I opt for

an instrument based on mutual-fund flows because it provides exogenous demand-shocks

for stocks at all times. I leave the elasticity estimation using alternative instruments to future

research.

A Hypothetical Trades due to Exogenous Flows

Starting with Edmans et al. (2012), flow-induced demand has been a commonly used in-

strument to identify causal effects in corporate finance. Formally, flow-induced demand

pressure on stock n is defined as ft+1(n) =∑I
i=1 Q i

t (n)
F i

t+1

Ai
t

where F i
t+1 are dollar flows to fund

i between t and t +1. Thus ft+1(n) is a measure of all funds’ hypothetical purchases and

sales in n if they simply scaled their lagged holdings Q i
t (n) proportionally to relative flows

f i
t+1 =

F i
t+1

Ai
t

. Under the strong assumption that ft+1(n) is orthogonal to all other (fundamental

or non-fundamental) drivers of returns one could potentially identify M by directly regress-

ing returns onto ft+1(n). Even if one had access to purely exogenous demand shocks from

unique events (as in Ben-David et al. (2020) or Han et al. (2021)), identifying M from a simple

regression of returns onto demand is difficult as M is an N ×N matrix and we only have N T

return observations. Gabaix and Koijen (2021) investigate the single risky asset case, M for

the aggregate stock market. They obtain flows for all sectors from the Flow of Funds data and
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extract idiosyncratic (non-fundamental) flows using granular instrumental variables.9 The

demand system approach takes a different route by estimating investor-specific elasticities

from holdings data and - imposing market clearing - deriving a structural estimate of the

complete N ×N multiplier matrix. Note, that estimating price elasticities of demand is subject

to essentially the same endogeneity concerns that contaminate regressions of prices onto

flows. Under a successful identification, however, the structural approach gives rich insights

on the underlying investor-specific determinants of the flow multiplier.

Wardlaw (2020) rightfully points towards a mechanical correlation of returns and flow-induced

demand if ft+1(n) is scaled by contemporaneous trading volume. However, even without

scaling by volume, ft+1(n) only provides exogenous (non-fundamental) variation in demand

insofar as fund-specific flows are not driven by the fundamentals of the funds’ underlying

assets. If fund flows are correlated with the funds’ respective portfolio tilts then ft+1(n) is

inherently endogenous. For example deteriorating earnings of technology firms may cause

flows out of mutual funds with a technology tilt. Another intuitive example are flows into

ESG funds, which tilt towards or exclude unsustainable stocks. New regulation on carbon

emissions may boost both the fundamental value of sustainable stocks as well as flows from

conventional towards sustainable funds. On top of the potential endogeneity of flows and

fundamentals, it is also possible that investors chase fund returns at a higher frequency than

the observable flows (see e.g. Schmickler (2020)). If poor stock returns, which worsen mutual

fund performance, cause outflows within the same month then this results in a correlation

between flow-induced mutual fund demand and contemporaneous stock returns at a monthly

frequency that is not purely exogenous. To address the above-mentioned concerns, note

that one can decompose fund flows f i
t+1 into an endogenous component driven by portfolio

characteristics, and an exogenous component f ⊥,i
t+1. Exogenous flows are then extracted using

cross-sectional regressions

∀t : f i
t+1 =C i

tβt + f ⊥,i
t+1 (1.12)

where C i
t is a vector of portfolio characteristics. Portfolio characteristics are constructed

using fund-level characteristic scores as in Lettau et al. (2018), which are portfolio-weighted

averages of the stock characteristics within a fund’s portfolio.10 For every fund, I compute

scores for greenness, value, size, momentum, profitability, investment and idiosyncratic

volatility. As an additional portfolio characteristic, I also include fund’s current return to

control for contemporaneous return chasing behaviour. Exogenous flows are given by the

residuals from the above regression. If households would only consider variables unrelated

to funds’ portfolio tilts and contemporaneous performance in their mutual fund allocation,

f ⊥,i
t+1 and f i

t+1 would coincide. Using f i ,⊥
t one can then construct hypothetical mutual fund

trades. Recall that hypothetical trades are the sales and purchases of funds if they scale their

9They construct ft+1(n) by using investors’ equity shares as Qi
t , total fund inflow as F i

t+1, and total assets

(equity and bond holdings) as Ai
t .

10Formally,
C i

t =
∑

n=1
w i

t (n)Ct (n) (1.13)

where Ct (n) is a stock-specific characteristic such as market-to-book ratio.
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past holdings Q i
t+1 proportionally to flows. Exogenous flow-induced demand is then simply

given by summing over all hypothetical trades:

f ⊥
t+1(n) =

I∑
i=1

f i ,⊥
t Q i

t (n) (1.14)

These flow-induced demand shocks are potentially orthogonal to the fundamental news

driving returns ∆pt (n) and can be used as instruments to causally identify investors’ elasticity

of demand. The next section investigates, whether the flow-induced demand shocks are

indeed valid instruments, i.e., whether stocks with high flow-induced demand experience

higher contemporaneous returns.

B Validity of the Instrument

If stocks with high flow-induced demand experience significantly higher returns in the same

quarter, they may serve as valid instruments to identify investor-specific elasticities. To this

end, I estimate the following panel regression using quarterly returns ∆pt+1(n) and quarterly

flow-induced demand f ⊥
t+1(n) from 2010 to 2020,

∆pt+1(n) = θ f ⊥
t+1(n)+ϵt (n). (1.15)

where ϵi
t (n) = ∑K

k=1 X t ,k (n)βi
k + εi

t (n). X t ,k (n) are lagged characteristics known to predict

returns including log market equity, book equity, market beta, 12-month momentum, idiosyn-

cratic volatility, investment and profitability. Table 1.2 reports the estimates for θ under several

different regression specifications. Consistent with downward-sloping demand for stocks,

Table 1.2: Price Pressure from exogenous Mutual Fund Flows.
The table reports the results of estimating 1.15 from 2010 to 2020 for different specifications. (1) is estimating the
coefficient without controls or fixed effects. (2) and (3) are estimations with Controls and fixed effects respectively.
(4) uses quarterly returns including dividends instead of percentage price changes ∆pt+1(n). (5) is an estimation
over the largest 500 stocks only. (6) uses as an dependent variable a dummy equal to 1 if f ⊥t+1(n) is in the largest
quintile.

Returns∆pt+1

(1) (2) (3) (4) (5) (6)

f ⊥t+1 6.82*** 2.65*** 2.55*** 2.53*** 5.97*** 0.01***

(0.231) (0.307) (0.369) (0.369) (0.704) (0.002)

Controls No Yes Yes Yes Yes Yes

Fixed Effects No No Yes Yes Yes Yes

Include Dividends No No No Yes No No

Largest 500 Stocks No No No No Yes No

Dummy( f ⊥t+1 Quintile 5) No No No No No Yes
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non-fundamental buying pressure due to exogenous mutual fund flows is strongly correlated

with contemporaneous realized returns. The coefficient is highly statistically significant across

many specifications, i.e., for different transformations of f ⊥
t+1(n) and ∆pt+1(n), using different

controls, including fixed effects and for different subsets of stocks.

Note, that the ultimate goal is to use f ⊥
t+1(n) to identify investor-specific price elasticities of

demand. Thus f ⊥
t+1(n) needs to be relevant for every investor, i.e., it needs to be significantly

related to returns over investor-specific subsets of stocks. For many investors the number of

available observations is small. This is because 13F filings are reported quarterly and because

many institutions hold very few stocks in the cross-section. I therefore pool investors with

fewer than 1000 stock-specific trades ∆q i
t (n) (i.e., cross-section and time-series combined)

into 9 groups based on their assets under management, diversification and trading activity.

Panel (a) of Figure 1.2 reports the t-statistic on θ for the investor-specific estimation of (1.15).

For 95% of all investors, the minimum t-statistic is above the critical value of 4.05 (see Stock

and Watson, 2005). The remaining investors are moved to the pooled estimation.

Figure 1.2: Relevance and Exogeneity Tests.
Panel (a) plots the first stage t-statistic on θ for the investor-specific estimation of (1.15). Panel (b) plots the
cumulative returns to long-short portfolios that go long (short) the decile of stocks with the highest (lowest)
flow-induced demand f ⊥t+1(n). Stocks are sorted into portfolios at quarter 0 (the event date). Value-weights are
computed using the previous quarter’s market capitalization.

(a) 1st Stage Weak Instrument Test (b) Price Pressure Reversion

Lastly, note that the exogeneity of flow-induced demand as an instrument for realized returns

is difficult to test empirically. However, if the price pressure is temporary one can tentatively

conclude that the flow-induced demand shocks were not driven by fundamentals. To this end,

I sort stocks into deciles based on f ⊥
t+1(n) and construct equal and value-weighted long-short

portfolios. Panel (b) of Figure 1.2 plots the cumulative returns to the portfolios. On average,

the price pressure due to flow-induced demand is transitory but nevertheless takes up to 1.5

years to revert. Appendix Section C investigates the return predictability from flow-induced

demand in detail. Stocks with higher flow-driven demand have significantly lower returns over
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the subsequent two years. A long-short portfolio exploiting the predictability loads positively

on long-term reversal and negatively on short-term momentum.

C Estimating investor-specific elasticities

Causally identifying an investor’s elasticity of demand requires variation in prices that is

orthogonal to the investor’s own unobservable demand shocks. As a simple illustration,

consider a world in which there are only two investors, households and institutions. Then

we can use the exogenous demand shocks by institutions as an instrument to identify the

price elasiticity of households’ demand and the exogenous demand shocks by households to

identify the elasticity of institutional demand. Similarly, the flow-induced demand shocks of

all institutions except j can be used as instruments to identify the elasticity of j ’s demand. I

therefore construct f ⊥,− j
t+1 (n) =∑

i∈MF,i ̸= j f i ,⊥
t Q i

t (n) to identify the elasticity of fund j .

Investor-specific elasticities are obtained in a simple two-stage least squares procedure. Let

∆p̂ i
t denote the fitted value from regressing returns onto the investor-specific instrument

f ⊥,−i
t+1 (n). The second stage regression of investor-specific trades∆q i

t onto the investor-specific

instrumented return ∆p̂ i
t allows identifying their price elasticities of demand ζi . Formally, for

every investor the two stages are given by:

1st Stage: ∆p i
t (n) = θ f ⊥,−i

t+1 +ϵi
t ,1(n)

2nd Stage: ∆q i
t (n) =−ζi∆p̂ i

t (n)+ϵi
t ,2(n)

(1.16)

where ϵi
t (n) =∑K

k=1 X t ,k (n)βi
k +εi

t (n) includes the control variables log size, log book equity,

profitability, investment, momentum, idiosyncratic volatility and market beta. Two things

are worth noting. First, while in this specification ζi is a scalar, the estimation can be eas-

ily extended to the entire N ×N elasticity matrix (see Section C). Second, (2.12) is a panel

regression resulting in constant (as opposed to time-varying) elasticities for each investor.

I opt for the pooled specification for several reasons. It captures time series information

and therefore allows estimating stock-specific elasticities and cross-elasticities (section C).

Cross-elasticities are given by investor i ’s trades in stock n as a result of a price change in m

and are difficult to identify in a purely cross-sectional estimation as in KY (2019). The pooled

estimation furthermore increases the number of observations for each investor and thus leads

to more precisely estimated elasticities. I estimate (2.12) using quarterly trades from 2010 to

2020. In order to compare the estimated elasticities to the ones from KY (2019), I compute the

AUM-weighted average coefficient across all 13F institutions. Empirically, the unconstrained

estimation in levels produces negative elasticities (i.e. upward sloping demand curves) for

many institutions. KY (2019) therefore impose a coefficient constraint ζi
t > 0 ∀i , t . This con-

straint ensures unique equilibrium prices and essentially caps many institutions’ elasticities at

0. In the unconstrained estimation in changes (2.12), on the other hand, the number investors

with upward-sloping demand curves is negligible. Thus no coefficient constraint is necessary.

Figure 1.3 plots the average AUM-weighted elasticities from (2.12) and compares them with
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the estimates of KY (2019).

Figure 1.3: Average Institutional Price Elasticities of Demand.
The figure compares the AUM-weighted average elasticity over time for the estimation in changes with and without
instruments to the elasticities in KY (2019). Elasticities are averaged over 13F institutions only, i.e., the household
sector is excluded. KY (2019) add the coefficient constraint ζi

t > 0 for all investor-quarter pairs. The dotted line at
the bottom of the figure reports the average elasticities obtained from their specification without the coefficient
constraint.

The top line shows that the average elasticity of demand across all institutions is around

0.7, which is in line with the event-study evidence from index inclusions. Importantly, it

is over 4 times larger than the constrained elasticity of demand in KY (2019) despite using

the same data. This suggests, that institutional demand is considerably more price elastic

than what one would obtain using cross-sectional regressions in levels. However, demand

is still far more inelastic than implied by neoclassical frameworks. The line at the bottom of

Figure 1.3 reports the unconstrained average institutional elasticity in KY (2019). The fact that

unconstrained institutional demand in the level-specification is upward sloping is worrying as

downward-sloping aggregate demand is a necessary condition for positive equilibrium prices.

All in all, Figure 1.3 and 1.1 suggest that identifying elasticities using investors’ actual trades

∆q i
t as opposed to their cross-sectional holdings leads to substantially different results.

1.5 Applications and Extensions

A Integrating Alternative Elasticities in KY (2019)

The estimated elasticities using investors’ trades∆q i
t (n) can be easily integrated in the existing

demand system in levels. Restating the original demand specification by KY (2019) in terms of
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elasticities ζi yields:

log
w i

t (n)

w i
t (0)

= (1−ζi ) logPt (n)+
K∑

k=1
βi

k,t Xk,t (n)+ϵi
t (n) (1.17)

One can simply plug in the investor-specific elasticities ζi estimated from trades (or any

alternative data source) as given and estimate the remaining coefficients including latent

demand via

log
w i

t (n)

w i
t (0)

− (1−ζi ) logPt (n) =
K∑

k=1
βi

k,t Xk,t (n)+ϵi
t (n) (1.18)

Having estimated the coefficients on characteristics and latent demand the demand system

can then be solved as prescribed in KY (2019). In this sense, the demand system approach

can be flexibly combined with parameter estimates other (reduced-form) studies: One could

take different elasticity estimates from event-studies and use them instead of "in-house"

elasticities obtained from the original demand system. Using index reconstitutions, Pavlova

and Sikorskaya (2022) estimate the elasticity for the household sector to be 2.26. One could

hence re-estimate the demand system taking ζHouseholds = 2.26 as given. This line of thought can

also be applied to the other exogenous characteristics Xk,t (n). For example one can separately

identify mutual funds’ demand for sustainability using changes in ESG-scores induced by

changes in the providers’ ratings methodology.

B Estimates at a monthly frequency with alternative data

A known issue of using 13F filings to estimate investor-specific demand parameters is the

aggregated nature of the reported holdings. Holdings are reported at the institution-level

(e.g. Vanguard) as opposed to the fund level (e.g. Vanguard Selected Value Fund). Estimating

elasticities at an aggregated level is problematic, as the sum of all funds holds the market which

is perfectly inelastic by construction.11 Another common criticism of identifying elasticities

from 13F filings is the availability of holdings at an extremely low frequency (i.e., quarterly). It

is important to note, however, that the cross-sectional identification in levels in KY (2019) is

not affected by the frequency of available holdings. By running cross-sectional regressions

at each point in time the estimation essentially ignores the time-series component. Even if

13F holdings for all investors were available at a daily frequency, the estimates would still

represent cross-sectional snapshots of the funds’ holdings as opposed to how they truly trade.

The estimation in changes, on the other hand, allows capturing investors’ price elasticities at a

higher frequency by defining ∆q i
t (n) over the horizon at which the holdings data is available.

For over 50% of all mutual funds in the CRSP database, holdings are available at a monthly

frequency. This subsample of investors is well-suited to assess whether the elasticity estimates

depend on i) the level of aggregation and ii) the estimation horizon. I first estimate the

11The market portfolio is simply given by the shares outstanding of each stock. Abstracting from issuances and
buybacks, the market portfolio is hence passive and does not respond to changes in the price.
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elasticities for the level specification of KY (2019) using monthly mutual fund holdings from

CRSP.12 Panel a) of Figure 1.4 benchmarks the estimates using monthly disaggregated mutual

fund holdings against the quarterly estimates from 13F filings. Despite the different data

sources, the elasticity estimates for mutual funds are almost identical and fluctuate around 0.1.

This result however, is a simple artifact of the cross-sectional portfolio of mutual funds, which

is close to the market portfolio. One should hence expect the estimates to remain unaffected by

the estimation horizon and level of aggregation. When looking at portfolio changes, however,

the estimation horizon plays a critical role in the estimation. Panel b) of Figure 1.4 compares

the elasticities estimated using monthly and quarterly changes in demand. The figure shows

that quarterly elasticities are around 30% larger than monthly elasticities. The larger quarterly

estimates suggest that investors are more price elastic in the long run. This is in line with

slow-moving capital (see Duffie (2010)) due to for example agency frictions or trading costs.

Lastly, we can judge whether the estimated elasticities from changes are in line with the

fund labels from CRSP. Panel (c) plots the average elasticity for all active mutual funds in the

CRSP sample. Active funds are substantially more elastic than other mutual funds. While the

level estimation results in a similar ranking, the specification in changes produces elasticity

estimates between 4 and 7, which is an order of magnitude larger than for the estimation in

levels.

C Stock-Specific Elasticities and Cross-Elasticities

The basic specification in changes (2.12) estimates a scalar coefficient for every investor,

which implies that every investor’s elasticities are equal across stocks (ζi
n = ζi ) and that cross-

elasticities are zero (ζi
n,m = 0). However, there are good reasons as to why investor-specific

elasticities may differ across stocks and why cross-elasticities are non-zero. First, the simple

mean-variance portfolio benchmark implies an elasticity matrix that is proportional to the

inverse of the covariance matrix. This implies higher elasticities for less risky stocks and non-

trivial cross-elasticities as covariances across stocks are non-zero. Second, because of both

indexing and benchmarking (via e.g. optimised sampling), tracking error concerns are more

pronounced for larger, less volatile stocks: Deviating from market weights for large stocks

implies potentially large tracking errors. Furthermore, if an investor tilts towards the market

portfolio, then active trading in the largest stocks implies a high portfolio turnover. Investment

constraints can also limit the substitutability (i.e., cross-elasticity) between different stocks.

When an investor with an ESG mandate faces an overpriced green stock, she is more likely

to substitute towards another green stock than towards a brown stock. The specification in

changes allows for a flexible incorporation of stock-specific and cross-elasticities that can be

easily adjusted depending on the nature of the available holdings data. Ideally we would like

12Although the instrument in KY (2019) is constructed at a quarterly frequency, it can be applied directly to
monthly data because it produces exogenous variation in the cross-section. The instrument remains highly relevant
using monthly cross-sections instead of quarterly cross-sections.
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to estimate the following 2nd stage regression:

∆q i
t (n) =

N∑
m=1

ζi
n,m∆p̂t (m)+ϵi

t (n) (1.19)

For quarterly holdings from 13F filings the time series observations for each investor is ex-

tremely small. This makes it difficult to estimate each element of the N ×N elasticities matrix

individually. However, the issue can be circumvented by parameterizing ζi
n,m as a function of

observable stock-specific characteristics. The problem then reduces to estimating interaction

effects as in Kelly et al. (2019). For example, one could model

ζi
n,m =

X t (n)ζi
X n = m

Yt (n,m)ζi
Y n ̸= m

(1.20)

where X t is the set of characteristics (including a constant) that describe stock-specific elas-

ticities, such as size, market risk or idiosyncratic risk. Haddad et al. (2021) propose a similar

parameterization for the level specification in KY (2019). Yt is a set of characteristics (includ-

ing a constant) describing stock-specific cross-elasticities. Importantly Yt must encapsulate

information of both n and m, as it should capture their substitutability. If n and m are very

similar in terms of their characteristics, their substitutability in i ’s portfolio (−ζi
n,m) should be

greater. In essence, the similarity measure Yt is a kernel that requires a feature map between

the characteristics of n and m. In general, any kernel measuring the (dis)similarity of n and m

(e.g. the L 2 distance in the characteristics space) could be used. Here, I propose a dummy

kernel equal to 1 if n and m are in the same industry. This implies that cross-elasticities can

be estimated as coefficients to industry portfolios. To see this let Yt (n,m) = 1
|I (n)|−11I (n)=I (m)

where I (n) encodes the industry of a stock and |I (n)| measures the number of stocks that are

in n’s industry. Plugging the parameterization in (1.19) yields

∆q i
t (n) = ζi

X∆p̂t (n)X t (n)+ζi
Y ∆p̂ I (n)

t +ϵi
t (n) (1.21)

where ∆p I (n)
t = 1

|I (n)|−1

∑
m∈I (n)∆p̂t (m) is the average return across all other stocks in n’s in-

dustry. Figure 1.5 plots the stock-specific and cross-elasticity estimates averaged across

institutions. I am parameterizing stock-specific elasticities as a linear function of lagged

market equity, book equity, idiosyncratic volatility and market beta. For the cross-elasticities

I choose dummy variables equal to 1 if m is in n’s industry according to Fama French’s 12

and 48 industry definitions. More elaborate parameterizations yield cross-elasticities at more

granular levels. E.g. one could measure the difference in Co2-emissions between m and n in

order to model the substitution between green and brown firms.
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Figure 1.5: Stock-specific and cross-elasticities.
Panel (a) plots the median stock-specific elasticity across 5 size quintiles. Size quintiles are computed using
market equity and the reported elasticity coefficients are ownership-weighted across institutions. Formally, the
aum-weighted average stock-specific elasticities are computed as ¯zet an =∑

i Qi
t (n)ζi

n . Stock-specific elasticities
are parameterized as a function of lagged log market equity, log book equity, market beta and idiosynratic risk.
Panel (b) plots the ownership-weighted cross-elasticities −ζ̄n,m =−∑

i Qi
t (n)ζi

n m. The bottom line reports the
cross-elasticity when n and m are neither in the same Fama French 12 industries nor in the same Fama French 48
industries. The line above reports the cross-elasticity when n and m are in the same Fama French 12 industry, but
not in the same Fama French 48 industry. The top line reports the cross-elasticity when n and m are in the same
Fama French 48 industry.

(a) Stock-Specific Elasticities (b) Cross-Elasticities

Panel (a) plots the median stock-specific elasticity for different size quintiles. In line with

tracking error concerns, trading costs or turnover constraints elasticities are lower for larger

stocks. Institutions are over twice as elastic with respect to the smallest quintile. The estimated

elasticities for small stocks imply an average price impact of about 1/1.2 = 0.83. Panel (b)

plots the median cross-elasticities for stocks in the same Fama French 12 and 48 industry.

Cross-elasticities are higher for stocks that are in the same industry. Common membership in

a more narrrowly defined industry implies a higher cross-elasticity. A potential explanation

is that investors like to avoid concentrated risk exposures in distinct industries. The more

similar two stocks n and m in terms of their industry, the more likely they serve as substitutes

and the greater the purchasing of m when the price of n increases by 1 percent. Depending

on the research question, accounting for stock-specific and cross-elasticities can have strong

equilibrium pricing implications. For example central bank purchases may have a greater

effect on yields for bonds with a low elasticity. Alternatively, the effect of impact investors on

the relative cost of capital between green and brown firms may be small when the purchased

stocks have a high cross-elasticity with brown stocks.

D The Role of Latent Demand in Demand-Based Asset Pricing

The estimation in changes may not only be useful for estimating investors’ elasticity of demand

with respect to the price, but also their elasticity with respect to other characteristics such

as ESG-scores. A potential problem with estimating characteristics-based demand in levels
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is that what investors hold cross-sectionally may not be representative of how they trade. A

technology fund, for example, has an inherently high preference for sustainability simply

because tech stocks tend to have higher ESG-Scores. Increasing a company’s ESG score in

a counterfactual experiment will therefore raise its stock price as a result of the incorrectly

inferred demand increase by technology funds. Estimating demand for characteristics in

changes alleviates many of these concerns. The issue of estimating demand via investors’

holdings as opposed to their trades also extends to the role of latent demand in demand-

based asset pricing. One of the most striking and perhaps disappointing findings of KY (2019)

is that over 80% of the cross-sectional variation in returns is explained by changes in latent

demand.13 KY (2019) conclude that sentiment and disagreement play an important role for the

cross-section of stock returns. What may not seem obvious at first sight is that the importance

of latent demand in explaining the cross-section of returns is not necessarily driven by a

poor cross-sectional fit of individual demand curves to the observed portfolio holdings. This

(surprising) observation is directly rooted in the cross-sectional nature of the demand curves: A

good cross-sectional fit of investor-specific demand curves only implies a good cross-sectional

fit of prices and not of returns. E.g. it is possible that we fit individual demand curves with

an R2 of 99%, while cross-sectional return variation is entirely explained by changes in the

unexplained component. In other words, if the small unexplained component (i.e., latent

demand) of investors’ accounts for all trades between investors, then cross-sectional variation

of quarterly returns remains virtually unexplained. Figure 1.6 illustrates the difficulty in

capturing trades as opposed to holdings. I plot the average AUM-weighted R2 of explaining

changes and levels of holdings with stock-specific characteristics. More specifically, I regress

demand changes (levels) onto fundamentals’ changes (levels). Holdings in levels are explained

by fundamentals in the cross-section with an average R2 of around 20-25%. Changes in

holdings, on the other hand, are much more difficult to explain with an average R2 of around

1%. Quarterly changes in the stock-specific variables used in KY (2019) do not seem to be the

primary characteristics that investors respond to when making their quarterly trades. The

figure hints at the source of KYs (2019) finding that most of the cross-sectional variation in

returns is driven by latent demand. The fact that cross-sectional holdings are well explained by

characteristics-based demand does not imply that returns are well captured by the estimated

demand curves. The crux in explaining cross-sectional variation in returns via institutional

demand lies in finding the drivers of trades as opposed to holdings.

13See KY (2019, Table 3). Because log equilibrium log prices are concave in dollar demand, variables placed first
in the variance decomposition are mechanically more important in driving equilibrium prices changes. Because
changes in latent demand are considered last, the 80% may in fact understate the importance of residual demand
in KY (2019).
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Figure 1.6: Goodness of Fit: Holding vs. Trading.
The figure plots the average aum-weighted R2 of explaining changes (levels) of holdings with changes (levels) of
stock-specific characteristics. Formally, the estimation in changes and levels are given by logQi

t (n) =βi
t Xt (n)+

ϵi
t (n) and ∆q i

t (n) =βi
1,t∆Xt (n)+βi

2,t Xt (n)+ϵi
t (n) respectively. As explanatory characteristics Xt (n), I follow KY

(2019) and choose book equity, dividends to book equity, profitability, investment and market beta. Note, that
the specification in changes also includes the fundamentals in levels as explanatory variables because there is
little time series variation in the quarterly characteristics. I omit prices (market capitalizations) because the focus
lies on the ability of exogenous characteristics in explaining portfolios. Changes ∆ are quarterly and defined as
∆Xt = Xt −Xt−1.

1.6 Conclusion

The recent literature on demand-based asset pricing infers the slope of investors’ demand

curves from their cross-sectional holdings. This paper shows how to estimate the elasticity of

demand from 13F filings using institutions’ trades as opposed to their holdings. The alternative

estimation is essentially a first difference estimator of the demand curve in KY (2019). I propose

using the price pressure from flow-driven mutual fund trades to identify investors’ elasticity of

demand. I show that institutions respond more strongly to prices than what previous estimates

from the demand estimation in levels suggest. This lowers the impact of counterfactual

experiments within the demand system. Furthermore, investors tend to be more elastic in the

long run suggesting that the price pressure from non-fundamental demand shocks does partly

revert. Overall, this paper suggest that in order to build a demand system suited to explaining

returns as opposed to prices it may be worthwhile to explore characteristics that drive trades

as opposed to holdings. Identifying the fundamental determinants of institutional trades is an

important avenue for future research.
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1.7 Proofs and Supplementary Material

A Proof of Equation (1.6)

The market clearing condition implies that
∑I

i=1 Q i =Q∗ where Q i = f i (P, X ). Recall that price

elasticities and cross-elasticities are defined as ζi
n =−∂Q i (n)

∂P (n)
P (n)

Q i (n)
and ζi

n,m =−∂Q i (n)
∂P (m)

P (m)
Q i (n)

re-

spectively. In matrix form, the elasticity matrix is therefore given by ζi =−diag(Q i )−1 ∂Q i

∂P diag(P ).

For simplicity I also define the elasticity in absolute terms (instead of percentages) as ζ̃i =−∂Q
∂P .

Therefore, the elasticity in the CARA normal case with Q i = 1
γi Σ

−1(E[D] − P ) is given by

ζ̃i = 1
γi Σ

−1.

We want to approximate the effects of an exogenous shock ∆X on equilibrium prices P .

Differentiating both sides of the market clearing condition with respect to X yields

∂Q∗

∂P
=

I∑
i=1

∂Q i

∂X
+ ∂Q i

∂P

∂P

∂X
(1.22)

Shares outstanding are normalized to 1. Therefore ∂Q∗
∂P = 0. Rewriting (1.22) in terms of

elasticities yields

0 =
I∑

i=1

∂Q i

∂X
− ζ̃i ∂P

∂X
(1.23)

Now we can solve for ∂P
∂X :

∂P

∂X
=

( I∑
i=1

ζ̃i
)−1 I∑

i=1

∂Q i

∂X
(1.24)

Let ∆Q =∑I
i=1

∂Q i

∂X ∆X be the first order approximation to the aggregate demand shock caused

by the exogenous shock∆X . For example, positive news about the earnings of a company lead

investors to update their fundamental value causing increased demand by ∆Q. A first order

approximation to the equilibrium increase in prices is given by

∆P =
( I∑

i=1
ζ̃i

)−1

∆Q (1.25)

For example, in the CARA case the exogenous shock could be an index inclusion that reduces

the supply of stocks Q∗ by ∆Q. Because ζ̃i = 1
γi Σ

−1 the equilibrium change in prices is given

by ∆P = γΣ∆Q where 1
γ =∑I

i=1
1
γi is the markets effective risk aversion.

When elasticities ζi are defined in percentages (as in the main text), we can write the equilib-

rium price change as

∆P =
( I∑

i=1
diag(Q i )ζi

)−1

diag(P )∆Q (1.26)
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Defining the demand shock in dollar terms ∆D = diag(P )∆Q yields

∆P =
( I∑

i=1
diag(Q i )ζi

)−1

∆D =M∆D (1.27)

.

B Counterfactual Experiments in KY (2019)

Motivated by the fact that portfolio weights are log-normally distributed in the data, KY (2019)

use an exponential function for f i (P, X ) and model investor demand as

w i
t (n) = δi

t (n)

1+∑
n δ

i
t (n)

(1.28)

where δi
t (n) = exp

{
βi

t ,0 logPt (n)+∑K
k=1β

i
k,t Xk,t (n)+εi

t (n)

}
. The sum of all investors must

hold the market portfolio, thus

log
I∑

i=1
Ai

t wi
t (pt ) = pt . (1.29)

In order to stay as close as possible to the notation in KY (2019), bold letters denote vectors in

R
N and pt = logPt . Due to the exponential demand specification, equilibrium log prices are

not available in closed form and are a non-linear function g(·) of all characteristics Xt ∈RN×K ,

investors’ demand coefficients βt ∈RN×K+1, their assets under management At ∈RI and

their latent demand εt ∈RN×I :

pt = g(At ,Xt ,βt ,εt ). (1.30)

Any counterfactual experiment changes either the wealth distribution by ∆At (e.g. the shift

towards passive management in Haddad et al. (2021)), the fundamentals by ∆Xt (e.g. bond

characteristics in Bretscher et al. (2020)), the demand coefficients by ∆βt (e.g. higher demand

for ESG characteristics in Koijen et al. (2022)) or latent demand by∆εt to some alternative value.

Under downward sloping demand (βi
t ,0 < 1) the fixed point problem in (1.29) implies a unique

counterfactual equilibrium price change given by ∆pt . KY (2019) and all subsequent papers

solve for ∆pt numerically, which makes the underlying determinants of equilibrium effects

somewhat opaque. However, a first order taylor expansion produces a simple approximation

for ∆pt in closed form. To this end, it is convenient to rewrite (without loss of generality)

investors’ demand curve in terms of a price-dependent component βi
t ,0 logPt (n) and a shock

component d i
t (n) = ∑K

k=1β
i
k,t Xk,t (n)+εi

t (n). The shock component captures any demand

shock due to changes in characteristics, demand coefficients or latent demand. Therefore

δi
t (n) = exp

{
βi

t ,0 logPt (n) + d i
t (n)

}
. A first order approximation to the equilibrium price
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change following any counterfactual experiment is hence given by

∆pt ≈
I∑

i=1

(
∂pt

∂Ai
t

∆Ai
t +

∂pt

∂d i
t

∆d i
t

)
(1.31)

The demand shocks ∆d i
t capture demand changes due to changes in characteristics ∆Xt ,

preferences ∆βi
t and latent demand ∆εi

t . By differentiating the market clearing condition

(1.29) with respect to the wealth distribution {Ai
t }I

i=1 and demand shocks {d i
t }I

i=1 one can obtain

closed-form solutions for the partial derivatives. I start with the assets under management.

The derivative of (1.29) with respect to the assets under management of investor j , A j
t , is given

by:
∂pt

∂A j
t

= H−1
t

( I∑
i=1

Ai
t
∂wi

t

∂p′
t

∂pt

∂A j
t

+w j
t

)
, (1.32)

where Ht =∑I
i=1 Ai

t diag(wi
t ). Solving for ∂pt

∂A j
t

yields

∂pt

∂A j
t

=
(

I−
I∑

i=1
Ai

t H−1
t
∂wi

t

∂p′
t

)
︸ ︷︷ ︸

Mt

H−1
t w j

t =Mt H−1
t w j

t (1.33)

Similarly, the derivative with respect to the other demand shocks is given by

∂pt

∂d j
t

=Mt H−1
t A j

t

∂w j
t

∂d j
t

(1.34)

The partial derivatives of w j
t with respect to pt and d j

t are available in closed form. Let

G j
t = diag(w j

t )(I−1w j
t
′). The partial derivatives can be expressed as

∂w j
t

∂p′
t
= G j

tβ
j
0,t and

∂w j
t

∂d j
t
′ = G j

t .

Thus we can express (1.31) as

∆pt ≈Mt

( I∑
i=1

H−1
t wi

t∆Ai
t +H−1

t Gi
t∆d i

t

)
(1.35)

Note, that H−1
t (wi

t Ai
t ) is the vector of ownership shares of investor i in all stocks. Because

shares outstanding are normalized to 1, this is equivalent to Q i
t . Furthermore, the log price

change is approximately equal to the percentage change, i.e., ∆pt ≈ diag(Pt )−1∆Pt . Thus we

can express the change in prices as the product of a dollar demand shock and the multiplier

matrix

∆Pt =Mt∆D t (1.36)

where

∆D t =
I∑

i=1
diag(Pt )Q i

t︸ ︷︷ ︸
D i

t

(
∆Ai

t

Ai
t

+ (I−1w j
t
′)∆d i

t

)
︸ ︷︷ ︸

∆D i
t /D i

t

(1.37)
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is the demand shock ∆D i
t /D i

t due to flows
∆Ai

t

Ai
t

and portfolio changes (I−1w j
t
′)∆d i

t times the

original dollar holdings D i
t = diag(Pt )Q i

t . Note, lastly, that as in KY (2019) the relationship

between an investor’s elasticity ζi
t and βi

0,t is given by

ζi
t = I−βi

0,t diag(wi
t )−1Gi

t (1.38)

See equation (14) in their paper. Plugging into the expression for Mt in (1.33) yields

Mt =
I∑

i=1
diag(Q i

t )ζi
t (1.39)

C Additional Figures and Robustness Checks

Return Predictability from Price Pressure

Flow-induced demand from mutual funds f ⊥
t+1 has a large and significant contemporaneous

effect on prices. This price pressure tends to slowly revert over time as suggested in Figure 1.2.

To further investigate the significance of the reversal, consider the following panel regression

rt+1,t+h(n) = θ f ⊥
t+1(n)+Contr ol s +ϵt+1(n) (1.40)

where rt+1,t+h(n) is the return from t +1 to t +h with h = 12,24,36 denoting the horizon in

months. Thus the return excludes the contemporaneous price pressure between t and t +1.

The control variables include stock and time fixed effects, log market equity, log book equity,

profitability, investment, momentum, idiosyncratic volatility and market beta. Panel (a) of

Table 1.3 reports the estimated coefficient θ for the contemporaneous return rt and the long

horizon return rt+1,t+h . Stocks with higher flow-driven demand at time t have significantly

higher returns at t and significantly lower returns over the subsequent two years. The results

suggests, that the price pressure from flow-driven demand shocks is non-fundamental and is

corrected over time. Panel (b) reports the performance of a long-short investment strategy

that exploits the long-term reversal of flow-driven demand. The strategy goes short (long) the

decile of stocks with the highest (lowest) flow-driven demand. I report the returns, alphas and

factor loadings to equal and value-weighted versions of the strategy respectively. The strategy

loads negatively on short-term momentum and positively on long-term reversal.
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Table 1.3: Return Predictability from Flow-Driven Demand.
Panel (a) reports the return predictability estimates from flow-driven mutual fund demand from 2010 to 2020. I
control for log market equity, log book equity, profitability, investment, momentum, idiosyncratic volatility and
market beta, as well as stock and quarter fixed effects. Contemporenous returns are denoted by rt and future
returns up to h months ahead are denoted by rt+1,t+h . The standard errors are robust to heteroskedasticity
and autocorrelation. Panel (b) reports the returns to a long-short strategy that goes short (long) the decile with
the highest (lowest) flow-driven demand. I report the raw long-short returns, alphas and factor loadings of the
value-weighted (vw) and equal-weighted (ew) strategy. The momentum factor is based on past year returns and
reversal factor is based on past 5 year returns. All factor returns are from Kenneth French’s website.

(a) Long Horizon Predictability

Return Horizon rt+1,t+h

rt h =12 h =24 h =36

f ⊥t 0.28*** -1.39*** -0.1*** 0.101

(0.848) (0.24) (0.167) (0.137)

Controls Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes

(b) Long-Short Portfolio

Factor Loadings

Raw
Return

α βMkt βH ML βSMB βMOM βREV

Long-Short Deciles (vw) 0.32 0.29* 0.05 -0.24** 0.04 -0.18*** 0.21***

(0.225) (0.171) (0.049) (0.099) (0.084) (0.046) (0.075)

Long-Short Deciles (ew) 0.15 0.17 -0.02 -0.43*** -0.00 -0.11*** 0.35***

(0.277) (0.202) (0.045) (0.129) (0.065) (0.036) (0.086)
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Figure 1.4: Mutual Fund Elasticities: Monthly versus Quarterly Frequency.
The figure plots average aum-weighted elasticities for all active mutual funds from 2014 to 2020. Panel (a) reports
estimates using the level specification of KY (2019). Quarterly estimates are obtained using quarterly 13F filings
at the institution level. Panel (b) plots the estimates using the specification in changes. Quarterly and monthly
estimates are obtained by constructing ∆q i

t (n) and ∆pt (n) as quarterly and monthly changes respectively. Panel
(c) plots the estimates for all active mutual funds in the CRSP sample using the specification in changes. Active
funds are defined as funds labelled by CRSP as "index enhancers".

(a) Estimation in levels Q i
t (KY (2019))

(b) Estimation in changes ∆q i
t

(c) Estimation in changes ∆q i
t : Active Mutual Funds
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Chapter 2

Flow-Driven ESG Returns

Over the past decade, the sustainable investment industry has grown drastically. The high

demand for sustainable investments has fueled the emergence of new funds that incorporate

environmental, social, and governance (ESG) criteria into their investment decisions. Despite

the enormous growth in the ESG investment industry, both the price impact and the expected

returns of sustainable investing are widely debated. Academic and practitioner views on the

expected returns from sustainable investments are often diametrically opposed. The pervasive

theoretical view is that if investors have a preference for sustainability, the additional utility

gained by investing sustainably should be offset by lower expected returns. Investors bid up

the price of sustainable companies, and risk-adjusted expected returns must unambiguously

be lower. In other words, investors cannot do well by doing good. Empirically, however, sus-

tainable funds have performed well in recent years suggesting that ESG-concerned investors

are in fact doing well by doing good. At the same time, the extent to which sustainable investors

can impact prices is highly debated. For every buyer there is a seller. Hence, divesting from

oil companies simply implies a change in ownership towards funds without a sustainability

mandate. The impact of sustainable investing therefore depends on how much prices have to

change in order to induce other investors to hold the divested oil shares.

This paper reconciles the price impact and realized returns of sustainable investing. I show that

the high realized returns from sustainable investing are primarily driven by the price impact

of flows towards sustainable funds. Flows towards ESG funds - regardless of whether they

are motivated by growing ESG concerns or past fund performance - create buying pressure

on the stocks that the funds overweight. This buying pressure affects prices, if the market’s

willingness to accommodate the demand by substituting between stocks is finite. In other

words, if the aggregate demand curve for green stocks is downward-sloping, then ESG flows

increase the price of green stocks. In equilibrium, the price impact of flows towards ESG

funds is driven by two factors: The deviation of ESG funds from the market portfolio and the

aggregate willingness to substitute between stocks (henceforth, elasticity of substitution). If

the investors holding green stocks substitute elastically between stocks, then the price pressure
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due to ESG flows has a negligible impact. Small price changes induce investors to rebalance

their portfolios by substituting away from the overpriced green stocks. On the other hand, if the

holders of green assets do not aggressively rebalance their portfolios, i.e. if they are inelastic,

then flows have a large price impact. I show that institutions’ ability to accommodate ESG

demand is limited as their elasticity of substitution between stocks is low. Thus, flow-driven

trades by ESG funds have a large impact on prices, both in the cross-section of individual

ESG stocks and in the time-series of ESG portfolio returns. Therefore, the realized returns

from sustainable investing over the past decade have a large flow-driven component. The

outperformance of ESG funds should hence not be interpreted as expected outperformance

going forward.

I start by identifying a set of 551 sustainable mutual funds (henceforth ESG funds) by matching

their names with a list of sustainability keywords. Using data on mutual funds’ portfolio

holdings, I then construct a representative ESG portfolio that pools the holdings of ESG

mutual funds. The representative ESG portfolio outperformed the aggregate mutual fund

portfolio with a significant 5-factor alpha of 1.51% annually. Exposure to the Green Factor by

Pástor et al. (2021) does not explain the outperformance. The ESG portfolio’s deviations from

the aggregate mutual fund portfolio are a revealed preference measure of how sustainable a

stock is (perceived to be). I define ‘green’ stocks as the ones overweighted by ESG funds relative

to other mutual funds. Thus, in this paper ‘green’ refers to all dimensions of sustainability, not

only environmental concerns. Quantifying the flow-driven component of the realized returns

from the ESG portfolio requires a measure of total ESG flows. To this end, I propose a new

measure of total capital flows into managed portfolios. The measure includes the portfolio

tilts of all institutional investors and is constructed by projecting fund-specific holdings

onto managed portfolios in the portfolio-weight space as opposed to the return space. Total

institutional flows into the ESG portfolio amounted to $1.3 trillion, which dwarfs the flows

into ESG mutual funds of $350 billion.1

In order to quantify price impact of ESG flows, I estimate a structural model that jointly

matches flows and realized returns along the lines of Koijen and Yogo (2019). I use the

estimation proposed by van der Beck (2022), which identifies elasticities from investors’ trades,

as opposed to their portfolio holdings in levels. The model allows for estimating institutions’

elasticity of substitution between green and other stocks. I use demand shocks from dividend

reinvestments by Schmickler and Tremacoldi-Rossi (2022) as an instrument to address the

endogeneity of prices in the elasticity estimation.2 I show that the estimates are robust to

an alternative identification that uses changes in benchmarking intensities by Pavlova and

Sikorskaya (2022) as an exogenous shock to supply. The estimated elasticities can be combined

with ownership shares into a cross-sectional multiplier matrix. The multiplier matrix is the

1See Morningstar’s 2021 Sustainable Funds U.S. Landscape Report.
2Starting with Edmans et al. (2012), flow-induced trades by mutual funds have been commonly used as

exogenous demand shocks to identify causal relationships. See Wardlaw (2020) for a summary of the literature.
Note, that the instrument used in this paper is immune to the Wardlaw-critique (see van der Beck (2022) for
details).
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cross-sectional pendant to the macro multiplier in Gabaix and Koijen (2021). I find that, ceteris

paribus, a 1% demand shock for a green stock leads to a 1.11% percent increase in the price of

that stock. Furthermore, cross-elasticities suggest that as money is flowing out of the fossil

fuel industry, investors substitute towards green stocks, creating positive spillover effects.

I apply the model to the assess the flow-driven component in the realized returns of green

stocks. The price pressure due to a $1 flow into the ESG portfolio funds is given by the product

of the multiplier matrix and the deviation of the ESG portfolio from market weights. I show

that every dollar flowing from the market portfolio into the representative ESG portfolio

increases the aggregate value of green stocks by $0.4. I then compute the counterfactual

realized returns if the total ESG flows were instead invested in the market portfolio. The price

pressure from ESG flows accounts for virtually all of the outperformance of the ESG portfolio

over the market portfolio in recent years. In the absence of ESG flows, the ESG portfolio would

have underperformed the market with an annualized 5-factor alpha of -0.3%. This suggests

that, in the absence of flow-driven price pressure, investors would have had to pay a premium

for investing according to their ESG preferences. Moving to the cross-section, I show that

green stocks with higher flow-driven demand had significantly higher abnormal returns. The

average price impact implied from cross-sectional regressions is 1.17, which is strikingly close

to the structural estimate of 1.11. Furthermore, the stocks with higher multipliers implied by

the structural model indeed have a higher price impact in the cross-section, i.e. they are more

affected by ESG demand.

Lastly, I provide reduced-form evidence on the price pressure of ESG demand from inclu-

sions in the Vanguard 4Good index, as in Berk and van Binsbergen (2022). I show that not

all inclusions are followed by index-tracking mutual funds. However, the inclusions with

high trading volume by index-trackers are associated with significantly higher returns. The

price impact implied by the index inclusions ranges from 0.87 to 1.69, which is close to the

structurally estimated ESG multiplier. I then show how to decompose ESG mutual funds’

portfolio additions into a mandate-driven and a fundamental component. This extends the

concept of ESG index inclusions to a broader set of stocks. The mandate-driven portfolio

additions across ESG mutual funds represent non-fundamental shocks to ESG demand and

are significantly related to contemporaneous returns, controlling for changes in fundamentals

and known return predictors. The magnitude of the estimated price impact is once again in

line with the structural multiplier. Lastly, I show that there is substantial heterogeneity in the

price impact of different ESG mutual funds - both in terms of magnitude and direction. Many

‘sustainable’ mutual funds deviate very little from S&P500 weights. Others positively affect

the aggregate market capitalization of the fossil fuel industry. I outline how the model can be

used to distinguish ESG funds by their true impact on green firms’ cost of capital rather than

by flamboyant fund prospectuses.
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Related Literature

The empirical evidence on the realized returns from ESG investing over the past two decades

is mixed and tends to depend on the sustainability measure, time horizon, and asset universe

under investigation. Hong and Kacperczyk (2009) find that stocks in the tobacco, alcohol, and

gaming industry (i.e. sin stocks) outperform other stocks. Bolton and Kacperczyk (2021a)

and Bolton and Kacperczyk (2021b) find evidence for a carbon premium, implying that high-

emission stocks have higher returns after controlling for known risk factors. Similarly, Hsu

et al. (2020) find significant outperformance of high chemical emission stocks versus low

ones.3 Except for Hong and Kacperczyk (2009), who argue for a taste-based explanation along

the lines of Fama and French (2007), these papers suggest that sustainable firms offer hedges

against adverse climate events and hence require lower returns in equilibrium.

Conversely, many papers show that sustainable stocks had higher realized returns than other

stocks. Edmans (2011) shows that a portfolio of firms with high employee satisfaction has

a significantly positive alpha. In et al. (2020) find that an ESG portfolio, which longs low

emission and shorts high emission stocks earns a significantly positive annualized alpha of

3.5–5.4%. Similarly, Görgen et al. (2020) find that from 2010 to 2017 brown (high carbon) firms

performed worse than green firms on average. Hong et al. (2019) find that the risk of drought

negatively predicts a country’s stock returns. These papers typically propose under-reaction as

a reason why sustainability is associated with a positive return premium. Pedersen et al. (2020)

propose an equilibrium model with green preferences and ESG scores that are informative

about stocks’ risk and return. Their model shows that green stocks can have higher returns if

ESG scores positively predict returns in a way that has not been appreciated by all investors. In

support of the under-reaction hypothesis, Derrien et al. (2021) find that analysts downgrade

their earnings forecast in response to negative ESG incidents. Glossner (2021) shows that ESG

incidents predict future ESG incidents and that the stock market underestimates the adverse

value effects of negative poor ESG practices. Glossner (2021) also suggests that ESG mutual

funds benefit from the under-reaction to ESG news. Similarly, I argue that ESG mutual funds

benefit from flow-driven price pressure on green stocks.

The theories developed in Pástor et al. (2021) and Pedersen et al. (2020) imply that the expected

returns of green stocks should be lower than for brown stocks as investors have a taste for green

assets. However, if green preferences (e.g. via climate concerns) strengthen unexpectedly

over the estimation horizon, green stocks may have higher realized returns than brown firms.

Alternatively, if climate risks increase unexpectedly, the hedging benefits of holding green

stocks improve, which pushes up their price, resulting in higher realized returns. Thus unex-

pected shifts in the aggregate demand for green assets may drive a wedge between expected

and realized returns. This divergence between realized and expected returns may explain the

strong ambiguity in the empirical findings mentioned above. In a follow-up paper, Pastor,

3Other papers documenting a positive return premium on brown investments in equities, bonds, real estate,
and option markets include Faccini et al. (2021), Huynh and Xia (2021), Seltzer et al. (2022), Bernstein et al. (2019),
Baldauf et al. (2020), Painter (2020), Goldsmith-Pinkham et al. (2021) and Ilhan et al. (2021).
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Stambaugh and Taylor (henceforth PST, 2022) regress the realized returns of a green-minus-

brown (GMB) factor onto several proxies of unexpected shocks to climate concerns. They then

approximate the wedge between expected and realized factor returns as the return component

explained by green demand. As one particular proxy for green demand (by investors rather

than consumers) they use flows to ESG mutual funds and find no significant correlation to

contemporaneous GMB returns. However, ESG flows may not directly target the GMB portfolio.

Instead, they flow into the aggregate ESG mutual portfolio, the returns of which are highly

significantly correlated to total ESG flows. It is important to note, that this interpretation of

the relationship between green demand and realized returns is slightly different from the

mechanism proposed in this paper. In PST (2022), ESG demand only correlates with returns

as long as it represents aggregate shifts in green preferences (or equivalently, wealth-weighted

individual tastes as in Fama and French (2007)). Thus, if flows to green funds were driven

by e.g. past return performance instead of growing climate concerns, prices would remain

unchanged. Similarly, ESG demand shocks for individual stocks have negligible price effects

as they do not change the exposure to common risk factors and have little impact on aggregate

market risk.4 Nevertheless, despite the different interpretations of the correlation between

flows and returns, this paper shares the objective of measuring how the demand for green

stocks affects the wedge between realized and expected returns. The joint endogeneity of

prices and holdings makes identifying the causal relationship between demand shocks and

realized returns extremely difficult. Simple regressions of returns onto flows are typically

biased as the number of endogenous variables affecting both demand and prices are countless.

Hence, this paper circumvents direct regressions of returns onto flows and instead estimates

the coefficient linking flows to returns within a structural model. In a closely related paper,

Berk and van Binsbergen (2022) calibrate the potential impact of ESG divestment in a friction-

less CAPM world. They argue that the equilibrium price impact of sustainable investing is

negligible because the high return correlation between green and brown stocks makes them

strong substitutes. Therefore, inducing other investors to hold brown stocks requires little

price concessions. Petajisto (2009), however, shows that the price impact implied by the

CAPM greatly underestimates the estimates from the index inclusion literature. In other words,

the frictionless mean-variance benchmark considerably overestimates investors’ elasticity of

substitution between stocks. I directly estimate demand elasticities from holdings data and

show that the market’s elasticity of substitution between green and brown stocks is indeed very

low. Thus investors require large price concessions to accommodate the flow-driven trades by

ESG funds. Using index inclusion as in Berk and van Binsbergen (2022), I find that the stocks

purchased by ESG index trackers have significantly higher contemporaneous returns.

The paper also relates to the extensive literature on demand-driven price pressure. Shleifer

(1986) shows that index inclusion leads to positive realized returns as a result of buying

pressure by index funds. Coval and Stafford (2007), Frazzini and Lamont (2008), Edmans

et al. (2012) and Lou (2012) find evidence for cross-sectional price pressure resulting from

mutual funds’ flow-driven trades. More recently, Parker et al. (2020) find that the rebalancing

4See Petajisto (2009) for a simple calibration.
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of target date funds affects both the cross-section of realized returns and the aggregate stock

market. Using a Morningstar ratings reform as an instrument, Ben-David et al. (2020) show

that demand pressures affect the cross-section of realized style returns. Similarly, I show that

mandate-driven portfolio additions by ESG funds affect individual stock returns. More closely

related, Gabaix and Koijen (2021) use a structural approach to estimate the multiplier linking

flows and aggregate stock market returns. They find that a $1 unexpected flow raises the value

of the aggregate equity market by around $5. Using aggregate dividend reinvestments as

an instrument, Hartzmark and Solomon (2021) find, that even expected uninformed flows

into and out of the aggregate stock market have a price multiplier of 1.5 to 2.3. Pavlova

and Sikorskaya (2022) introduce a new measure, Benchmarking Intensity, which quantifies

the fraction of a stock’s total market cap that is held by benchmarked investors. They show

that changes in a stock’s Benchmarking Intensity are an effective change in supply that is

significantly related to contemporaneous returns around the Russell 1000/2000 cutoff. They

find that institutional trades have a price multiplier of 1.5. As a robustness check, I use

changes in Pavlova and Sikorskaya’s Benchmarking Intensity as an instrument to identify

investors’ demand elasticities. The resulting ESG multipliers are strikingly similar to the flow-

based identification. The estimated elasticities furthermore exhibit the same cross-sectional

patterns.

Lastly, this paper relates to the growing literature on demand system asset pricing following

the influential work by Koijen and Yogo (henceforth KY, 2019). KY (2019) present a structural

model that estimates investor-specific demand curves from quarterly 13F filings and links

the estimated demand coefficients to equilibrium asset prices. In a follow-up paper, Koijen

et al. (2022) estimate investors’ demand for environmental scores and show that long-term

investors, passive funds, and banks benefit the most from growing climate concerns. Similarly,

Noh and Oh (2022) regress institutional portfolio weights onto ESG-Scores and show that

ESG demand predicts firm-level improvements in Co2 emissions.5 In this paper, I refrain

from explicitly estimating investors’ green preferences as there are many unobserved char-

acteristics correlated with ESG-Scores that drive demand. A technology fund, for example,

has an inherently high preference for sustainability simply because tech stocks tend to have

higher ESG-Scores. A valid identification of green preferences, therefore, requires exogenous

variation in ESG-Scores uncorrelated with investors’ unobservable investment mandates and

portfolio tilts. Van der Beck (2022) proposes identifying the demand elasticities in KY (2019)

from investors’ trades, that is changes in their portfolios, as opposed to their cross-sectional

holdings. This alleviates the concern of slow-moving unobservable variables (such as invest-

ment mandates) that drive investors’ holdings in the cross-section and are correlated with

prices. The estimation in changes furthermore allows identifying elasticities with existing in-

5A growing number of papers applies the framework by KY (2019) to estimate the impact of counterfactual
experiments on equilibrium asset prices. Han et al. (2021) evaluate the impact of mutual fund risk shifting on the
beta anomaly. Bretscher et al. (2020) estimate a demand system for corporate bonds. Jiang et al. (2020) use the
demand system to decompose the variation in the US net foreign asset position into its underlying determinants.
Van der Beck and Jaunin (2021) investigate the impact of retail traders on the equity market through the demand
system approach. Haddad et al. (2021) suggest that the elasticity in KY (2019) is potentially endogenous as investors
strategically update their elasticity in response to the aggregate elasticity.
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struments from the reduced-form literature on price pressure.6 This paper uses the estimation

from van der Beck (2022) to identify the substitutability of green and brown stocks and links it

to the realized returns from ESG investing.

The remainder of this paper is structured as follows. Section 3.2 describes the data. In Section

3.3, I construct the representative ESG portfolio. Section 3.4 briefly outlines the structural

model and estimates the markets’ willingness to substitute between stocks. Section 3.5 uses

the model to quantify the impact of aggregate ESG flows on the time-series of ESG returns.

Section 3.6 investigates stock-specific flows and the cross-section of ESG returns. Section 2.6

provides robustness tests and applications. Section 2.7 concludes.

2.1 Data and Variable Construction

A Prices and Fundamentals

Stock price data on common ordinary shares (share code 10 and 11) traded on the NYSE,

AMEX and Nasdaq (exchange code 1, 2 and 3) are from CRSP. Accounting data are from Com-

pustat. Stocks are indexed by n. Stock n’s market equity as of date t is denoted by Pt ,n . I

normalize shares outstanding to 1, such that prices and market equity coincide. I construct

the stock-specific characteristics book equity, market beta, profitability, investment, idiosyn-

cratic volatility, turnover, momentum and industry affiliation.7 For industry classifications,

I use the Fama and French 12 industries. I furthermore construct monthly cash dividends

(distribution code 1000-1399) by summing over payment dates from CRSP’s daily security file.

Sin stocks are defined following Hong and Kacperczyk (2009) as companies involved in the

production of alcohol, tobacco and gaming. I further define controversial stocks following

MSCI’s exclusionary screens as companies in the biotech, firearms, oil, military and cement

industry. Because a firm’s sustainability is difficult to quantify and because ratings across

providers often diverge strongly (see Berg et al. (2019)), I construct an objective measure using

portfolio tilts of ESG mutual funds (see next section). As a robustness check, I also use Co2

emissions and ESG Scores from Refinitiv as a measure of a firm’s greenness.

B Holdings and Flows

In the US, institutional investment managers who have discretion over $100M or more in

designated 13F securities must report their respective holdings via quarterly SEC 13F filings. I

obtain institution-level holdings from 2010 to 2021 from Thomson’s Institutional Holdings

6E.g. Index inclusions by Shleifer (1986), mutual fund fire sales by Coval and Stafford (2007), flow-driven
trades by Lou (2012), and dividend reinvestments by Schmickler and Tremacoldi-Rossi (2022) and Hartzmark and
Solomon (2021).

7See Appendix Section D for details on the construction of these variables.
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Database (s34 file). The holdings data are subsequently merged with characteristics data

from CRSP and Compustat.8 Institutions are indexed by i . I define institution i ’s quantity

demanded Q i
t ,n in stock n at time t as the shares held normalized by shares outstanding.9

Institution-level and mutual fund portfolio weights w i
t ,n = Q i

t ,n Pt ,n

Ai
t

are constructed as the dollar

holdings in each stock (price times shares held) divided by their assets under management Ai
t .

An institution’s assets under management are given by the sum of its dollar holdings. In order

to ensure market clearing, I follow KY (2019) and construct a household sector as the residual

shares outstanding not held by 13F institutions.10

Monthly data on mutual funds’ holdings, net returns and total net assets, as well as other

fund-specific characteristics are obtained from the CRSP survivorship-bias-free mutual fund

database. For over 90% of all mutual funds, CRSP provides holdings at a higher frequency

than Thomson’s Quarterly Mutual Fund Holdings Database (s12 file). I construct mutual fund

portfolios using both databases and opt for CRSP holdings when moving to a higher frequency.

For all mutual funds, I compute flows as f i
t = Ai

t−Ai
t−1(1+r i

t )

Ai
t−1

where Ai
t are the fund’s total net

assets and r i
t is the monthly return between t −1 and t as reported on CRSP.

2.2 ESG Mutual Funds

A Identifying ESG Mutual Funds

I use fund names from CRSP’s Mutual Fund Database to identify a comprehensive set of ESG

mutual funds. To this end, I match fund names with a list of sustainability keywords and

identify 551 ESG funds. Specifically, I define a mutual fund to be an ‘ESG fund’ if its name

contains at least one (or any abbreviation) of a list of sustainability keywords.11 Appendix

Section A reports the largest 30 identified ESG funds as well as robustness checks to the

identification of the ESG label. I then match the ESG funds with their quarterly and monthly

stock holdings from both CRSP and Thomson’s Mutual Fund Holdings Database (s12 file).

Table 2.1 provides summary statistics on the sample of ESG funds and their aggregate portfolio.

From 2010 to 2021 the average ESG fund held around 200 stocks in its portfolio. The average

assets have remained relatively stable and only increased in recent years to $630 Million. The

fifth column of Table 2.1 reports the total number of ESG name changes in a given year. Out of

the sample of ESG funds, 99 went from ‘non-ESG’ to ‘ESG’ by changing their name to include

8See KY (2019) for further details on the construction of the database.

9Formally Qi
t ,n = Shares Heldi

t ,n
Shares Outstandingt ,n

, where Shares Heldi
t ,n is the number of shares reported in i ’s 13F Filing.

10Furthermore, institutions with less than $10 million under management or without any holdings in the inside
and/or outside assets are attributed to the household sector, which therefore includes households, small asset
managers, and other non-13F institutions.

11The list of sustainability keywords used is: Environment, social, governance, green, sustainable, responsible, SRI,
ESG, climate, clean, carbon, impact, fair, gender, solar, earth, renewable, screen, ethical, conscious, CSR, thematic.
See Appendix Section A for details
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2.2 ESG Mutual Funds

Table 2.1: ESG Funds Summary Statistics
The table reports yearly averages of quarterly metrics describing the sample of ESG funds. The first 5 columns
report statistics at the ESG fund level. Excess Flows measure the average quarterly flow across all ESG funds
in excess of the average quarterly flow across non-ESG funds. The number of name changes captures the total
number of funds that change their name in a given year by including an ESG keyword. The last 3 columns report
statistics for the aggregated portfolio of all ESG funds. Index ESG funds are ESG funds that directly track (or are
based on) an index. The fraction of indexed AUM is computed as index ESG funds’ total AUM relative to the total
AUM of all ESG funds. Active share (Cremers and Petajisto (2009)) is computed as the deviation of the ESG portfolio
wESG

t ,n from market capitalization weights wm
t ,n , i.e. 1

2
∑

n |wESG
t ,n −wm

t ,n |. For all other variables, I report the average
across quarters within a given year.

ESG Fund-Level Statistics Aggregate Statistics on wESG
t

Year # Funds Avg. # Stocks Avg. AUM ($
Billion)

Excess Flows
(%)

# Name
Changes

AUM ($
Billion)

% Indexed
AUM Active Share

2010 89 95 0.34 0.54 2 30.60 0.11 0.71

2011 82 128 0.38 -1.26 0 31.17 0.13 0.70

2012 88 139 0.28 -0.69 2 25.02 0.16 0.70

2013 83 119 0.34 0.73 1 28.82 0.17 0.69

2014 88 115 0.43 -0.55 3 37.66 0.19 0.67

2015 101 133 0.36 -0.45 3 36.80 0.24 0.68

2016 117 153 0.31 0.35 6 36.62 0.25 0.67

2017 158 153 0.30 2.21 7 48.03 0.21 0.65

2018 199 147 0.32 1.46 19 63.19 0.22 0.63

2019 237 149 0.34 2.09 16 79.71 0.28 0.61

2020 288 165 0.43 3.24 19 126.68 0.40 0.56

2021 368 156 0.63 2.23 21 233.48 0.50 0.57

a sustainable keyword while leaving the fund and portfolio identifier unchanged. The column

‘Excess Flows’ reports the average flow into ESG funds in excess of the average flow into non-

ESG funds. Over the past 5 years, the ESG funds received around 2-3% higher quarterly inflows

than other funds. Appendix Section A provides an in-depth analysis of ESG flows controlling

for fund characteristics, performance, and portfolio holdings. In a difference-in-difference

setting using, I show that having an ESG keyword in the fund-name buys additional quarterly

inflows of 1.8%.

B The Representative ESG portfolio

Using Thomson’s Mutual Fund Holdings Database (s12 file), I construct the aggregate portfolio

held by the sample ESG mutual funds. To this end, let QESG
t ,n =∑

i∈I ESG Q i
t ,n denote the aggregate

holdings of the set of identified ESG funds mutual funds I ESG . The representative ESG mutual

fund’s portfolio weights are given by ESG funds’ total dollar holdings divided by their aggregate
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Chapter 2. Flow-Driven ESG Returns

assets under management. Formally

wESG
t ,n =

Pt ,nQESG
t ,n∑N

n=1 Pt ,nQESG
t ,n

(2.1)

By using weights instead of dollar holdings, the representative ESG portfolio (henceforth ESG

portfolio) is invariant to the number of identified funds, as long as the sample is representative

of the average ESG fund. The three rightmost columns of Table 2.1 report summary statistics

on the aggregate ESG portfolio. Total assets grew from $30 to $233 billion. At the same time,

the fraction of total ESG assets that track an ESG index has also steadily increased to 50%. To

what extent do the aggregated holdings across ESG funds reflect the market portfolio? Note,

that as more money is flowing into ESG funds, the ESG and the market portfolio converge by

construction. In the limit, all money is invested in ESG funds and the ESG portfolio coincides

with the market portfolio. ‘Active Share’ is defined as the deviation of the ESG portfolio from

the aggregate mutual fund portfolio (henceforth market portfolio). The ESG portfolio tilts

around 70% of its assets away from the market portfolio. However, in the most recent years,

the active share has declined to 57%.12 Despite portfolio heterogeneity across ESG funds, their

main portfolio tilts go in similar directions. Therefore, while the set of identified ESG funds

depends on the kind and amount of keywords used, the aggregate portfolio is extremely robust

to different subsets of ESG funds. Appendix Section A provides a detailed investigation of the

robustness of the ESG portfolio. Using the ESG portfolio, I construct a revealed-preference

measure τt ,n of investors’ green tastes for a stock given by

τt ,n = wESG
t ,n −w MF

t ,n (2.2)

where w MF
t ,n is the aggregate mutual fund portfolio, which is constructed as in (2.1) but sum-

ming over all mutual funds instead of the subset of ESG funds. Empirically w MF
t ,n is extremely

close to the market capitalization-weighted portfolio, so that defining τt ,n in excess of market

weights leaves all results of the paper unchanged. Stocks with a higher τt ,n are perceived to be

more sustainable as they are overweighted by the representative ESG portfolio. Note, that the

revealed preference measure τt ,n is also a zero-investment long-short portfolio, that is long $1

in the ESG portfolio and short $1 in the aggregate mutual fund portfolio. I define stocks with

τt ,n > 0 as green stocks and stocks with τt ,n < 0 as other (non-green) stocks. This revealed-

preference measure is available for all stocks at a monthly frequency over a large time horizon.

It furthermore does not rely on subjective sustainability metrics or third-party ESG scores.

τt ,n is therefore a more objective representation of the market’s perception of sustainability.

Note, that the purpose of this paper is not to identify a measure of true sustainability, but to

assess the cross-sectional price distortions due to ESG flows. The most adequate measure of

sustainability is hence the measure that people implicitly use when they invest sustainably.

In Appendix Section A, I confirm that τt ,n is robust to the subset of ESG funds used for its

12Formally, active share is defined as the deviation of the 1
2

∑
n∈N i |wESG

t ,n −w MF
t ,n | where wESG

t ,n are the aggregate

portfolio weights across all ESG funds and w MF
t ,n is the aggregate portfolio of all mutual funds.
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computation. I compute two different ESG portfolios using random (non-overlapping) subsets

of funds and show that the corresponding τt ,n are highly cross-sectionally correlated (ρ > 60%).

A thorough investigation of the difference between true and perceived sustainability is beyond

the scope of this paper, which addresses the distortion of realized returns due to ESG tastes,

regardless of whether they are correct or not. I nevertheless confirm that τt ,n is significantly

related to commonly used sustainability metrics. The ESG portfolio significantly tilts towards

stocks with high ESG scores and underweights sin stocks, stocks in the fossil fuel industry, and

high Co2 emitters.13

C Realized ESG Returns

Next, I investigate the realized performance of the ESG portfolio wESG
t ,n , the aggregate mutual

fund portfolio w MF
t ,n , and the long-short ESG portfolio τt ,n = wESG

t ,n − w MF
t ,n . The portfolios

are rebalanced quarterly based on the funds’ SEC filings.14 Table 2.2 reports the annualized

returns and alphas of the portfolios. The first two columns report the annualized returns of

Table 2.2: ESG Returns
The table reports annualized average returns and alphas from 2016 to 2021. The two left columns report average
annualized returns on the market portfolio w MF

t and the representative ESG portfolio wESG
t . The three right

columns report the annualized alphas of the long-short ESG portfolio τt = wESG
t −w MF

t . The ESG portfolios are
rebalanced quarterly. Alphas are computed with respect to the CAPM, the CAPM plus the Green Factor in PST
(2022), and the Carhart 4-factor model plus the Green Factor. The standard errors are robust to heteroskedasticity
and autocorrelation.

Long-Short ESG Portfolio (τt ,n )

Mutual Fund
Portfolio w MF

t

ESG Portfolio
wESG

t
Return

α

(CAPM)

α

(CAPM + Green)

α

(CH4 + Green)

2012-2022

Return (%) 15.57 16.37 0.72 0.96 0.48 0.42

t-statistic 3.20 3.41 1.57 2.03 1.01 0.90

2016-2022

Return (%) 16.98 19.11 2.01 2.40 1.87 1.51

t-statistic 2.05 2.36 2.91 3.47 2.55 2.01

the market portfolio and the ESG portfolio. Between 2016 and 2021 the ESG portfolio had a

significant 2% higher annualized return than the market portfolio. The four right columns

report the returns and alphas of the long-short ESG portfolio τt ∈RN . The returns of τt will

henceforth be referred to as ESG returns. Intuitively, one would expect significantly negative

alphas capturing the taste premium investors are willing to give up in order to invest according

13See Appendix Section A for details.
14The portfolios are not necessarily tradeable as funds usually delay their SEC report by up to 45 days.
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to their ESG preferences. However, long-short returns and alphas are significantly positive.

From 2016 to 2021, the long-short ESG portfolio had a significant annual CAPM alpha of

2.4%.15 The last column controls for PST’s (2022) Green Factor, as well as the Carhart 4-Factors.

The alpha merely drops to 1.5% and remains significant with t-Statistic of 2.01. Overall, Table

2.2 suggests that investors have been rewarded instead of penalized for investing according to

their ESG preferences. The weights in the long-short ESG portfolio τt can be interpreted as a

measure of investors’ perception of sustainability. Thus, regardless of their true sustainability,

the stocks that investors deemed more sustainable tended to have higher returns than others.

Despite the apparent outperformance of the ESG portfolio, the goal of this paper is not to

add to the debate about whether or why sustainable investing has higher or lower expected

returns in equilibrium. This paper tries to answer the question of how, ceteris paribus, the

cross-section of realized returns responds to flows to the ESG portfolio. Thus we can assess, to

what extent the realized returns from sustainable investing have been driven by flows towards

sustainable funds. However, total flows in the ESG portfolio are not directly observable. The

next section shows how to construct aggregate ESG flows from institutional portfolio holdings.

D Measuring Total Flows in the ESG Portfolio

Total flows into the ESG portfolio are difficult to observe. According to Morningstar, labelled

ESG mutual funds held $350 billion in total assets, which was less than 1% of the total $37

trillion held by all ETFs and Mutual funds in the US.16 However, this does not include the

(unobservable) ESG tilts of other mutual funds, investment advisors, pension funds, banks,

insurance companies, and other institutions. Therefore, the flows into labelled ESG mutual

funds only represent a small subset of total ESG flows. In order to get a sense of total ESG flows,

I use 13F filings to estimate each institution’s ‘ESG share’. Here, I merely present the main

procedure. Technical details are delegated to Appendix B. For simplicity, I omit the institution

and quarter labels i and t . I project each 13F institution’s portfolio wn in the cross-section

onto a set of S managed portfolios w s
n ,

wn =
S∑

s=1
βs w s

n +an (2.3)

where n ∈ N i
t is the subset of stocks held by i as of quarter t . The managed portfolios are con-

structed such that the weights add up to 1 across all stocks currently held by the institution. For

example, the ‘managed’ market-weighted portfolio (s = Mkt ) is given by w Mkt
n = Pn/

∑
n∈N i Pn .

The residual an from the projection is an active zero-cost long-short portfolio in the spirit of

15Note, that these are not the true returns an investor would have achieved by investing in the asset-weighted
portfolio of (ESG) mutual funds because of fees and because many of these funds trade actively within quarters.

16See Morningstar’s 2021 Sustainable Funds U.S. Landscape Report. The assets of labelled ESG funds from the
previous section are of a similar magnitude.
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Cremers and Petajisto (2009).17 Thus the coefficients βs
t sum to 1 and can be interpreted as the

asset shares of managed portfolios within institution i . The coefficient on the ESG-managed

portfolio, βESG , measures the institution’s ESG share. I then compute the total ESG flow as the

sum of institution-specific ESG flows

F ESG
t+1 =

I∑
i=1

Ai ,ESG
t+1 − Ai ,ESG

t (1+RESG
t+1 ) (2.4)

where Ai ,ESG
t =βi ,ESG

t Ai
t are the total assets of institution i allocated to the ESG portfolio at

time t and RESG
t+1 is the return on the ESG portfolio. This measure of total ESG flows is highly

robust to controlling for different managed portfolios in the estimation of βi ,ESG
t .18 Figure 2.1

plots the total flow into the ESG portfolio from 2012 to 2022. Total ESG flows have increased

Figure 2.1: Total ESG Flow
The figure plots the total flow into the ESG portfolio from 2012 to 2022. I compute the ESG flow for each 13F insti-
tution as the return-adjusted change in ESG-assets under management and then then sum across all institutions. I
report rolling 4-quarter averages and plot the cumulative sum of all flows since 2012. The dotted line plots the ESG
flow when controlling for exposures to 12 (Fama-French) industry portfolios in the estimation of βESG

t .
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rapidly since 2017 and amount to approximately $1.3 trillion as of 2022, which far exceeds the

flows into explicitly labelled ESG mutual funds. Having constructed total ESG flows, we are

now in the position to assess their impact on the realized returns of the ESG portfolio. The key

difficulty in measuring flow-driven price impact lies in the joint endogeneity of prices and

demand, which prevents simple regressions of realized returns onto flows. The next section

introduces a structural approach to estimating the price impact of ESG flows.

17In fact, 1/2
∑

n∈N i |an | and the active share in Cremers and Petajisto (2009) coincide if an = wn −w Mkt
n . This is

the case if the coefficient on the market portfolio βMkt is equal to 1 and the coefficients on all other managed
portfolios are equal to 0.

18See Appendix B for details.
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2.3 A Structural Model of Price Pressure

A Setup and Variable Definitions

This section provides a structural approach to estimating the link between demand shocks

and prices. The setup closely follows van der Beck (2022). Here, I merely state the variables

and main structural estimation equations. There are N stocks indexed by n = 1, ..., N and T

time periods t = 1, ...,T . Shares outstanding are normalized to 1 such that the price of a stock,

Pt ,n , coincides with market equity. Lowercase letters denote logs (if not otherwise specified)

and one-period changes in variables are denoted by ∆xt = xt − xt−1. There are I investors

indexed by i = 1, ..., I that hold a subset N i
t ⊆ N of all stocks. Q i

t ∈RN i
denotes the vector of

shares held by i . Because of the normalization, Q i
t are equal to ownership shares such that∑I

i=1 Q i
t ,n = 1. The optimal portfolio Q i

t = f i (Pt ,Vt ) is a function of the vector of current stock

prices Pt ∈RN and a collection of other exogenous observable and unobservable variables Vt

(such as the assets under management, interest rate, fundamentals, or investment constraints).

An investor’s elasticity of demand with respect to the price (henceforth elasticity of demand)

is defined as the negative percentage change in holdings when the price of a stock increases

by 1 %. Formally,

ζi
t ,n =−∂Q i

t ,n/Q i
t ,n

∂Pt ,n/Pt ,n
(2.5)

Similarly, the cross-elasticity of demand is given by ζi
t ,nm = − ∂Q i

t ,n /Q i
t ,n

∂Pt ,m /Pt ,m
and measures how

much of n investor i sells when m’s price increases by 1%.19 The stock-specific and cross

elasticities can be stacked in an N i × N i elasticity matrix ζi
t for every investor. The aggre-

gate elasticity of demand is defined as the ownership-weighted sum of the investor-specific

elasticity matrices,

ζt =
I∑

i=1
diag(Q i

t )ζi
t (2.6)

with elements equal to ζt ,nm = ∑I
i=1 Q i

t ,nζ
i
t ,nm .20 Stocks that are primarily held by passive

index funds (with ζi
t = 0) have a low aggregate elasticity. The distribution of ownership,

therefore, affects the aggregate elasticity. For example, the rise of passive investing increases

the ownership of less elastic investors which drives down the aggregate elasticity, unless the

active investors substantially increase their elasticity (see Haddad et al. (2021)).

Lastly, let ∆dt ,n denote a demand shock for n between t and t +1, expressed as a fraction of

shares outstanding. The demand shock could be flow-induced purchases of green stocks by

an ESG fund or the inclusion of a stock in an ESG index and the corresponding purchases by

index trackers.

19Note, that for m = n the cross-elasticities ζi
t ,nn are equal to stock-specific elasticities ζi

t ,n .
20Recall, that shares outstanding are normalized to 1. Therefore

∑I
i=1 diag(Qi

t ) is equal to the identity matrix.
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B Demand-Driven Price Impact

Now assume that an ESG fund receives large inflows and proportionally expands its existing

positions resulting in an exogenous demand shock ∆dt ∈ RN . Equilibrium prices adjust

in order to accommodate the demand shock resulting in realized log returns ∆pt ∈ RN .

Proposition 1 in van der Beck (2022) shows that a first order approximation to ∆pt for a

large class of models (including e.g. the CAPM or Demand System Approach to Asset Pricing)

is given by

∆pt =Mt∆dt +ϵt (2.7)

where Mt ∈RN×N is a price pressure matrix equal to the inverse of the market’s aggregate

elasticity of demand

Mt = ζ−1
t . (2.8)

See van der Beck (2022) for a proof. ϵt captures other sources of return variation such as factor

exposures or fundamental news and is orthogonal to the demand shock ∆dt . As the focus

of this paper is purely empirical, equation (2.7) can also be viewed as an assumption as in

Greenwood and Thesmar (2011). The link between demand shocks and prices is given by

the inverse of the market’s elasticity of demand Mt , henceforth referred to as the multiplier

matrix. The more elastic investors are (i.e. the larger the diagonal elements in ζi
t ), the less

prices of green stocks have to move, in order to accommodate the demand shocks from flows

to ESG funds. Cross-elasticities drive the off-diagonal elements in Mt and are responsible for

flow-induced spill-over effects to other stocks. If investors accommodate flow-driven price

pressure on green stocks primarily by substituting towards brown industries, the relative price

impact of ESG investing may be negligible.

Example. In order to bolster intuition for the importance of cross-elasticities, consider the

following simplified example: There are two stocks, a green stock g and a brown stock b with

a market capitalization of 1, and a representative investor with a 2×2 elasticity matrix. Her

demand elasticities with respect to g and b are the same, i.e. ζg = ζb . Also, her elasticity of

substitution is the same moving from g to b and vice versa, i.e. ζb,g = ζg ,b . Now assume that

there is an exogenous ESG flow in g and b equal to $1 and -$1 respectively. The flow-driven

price pressure (2.7), is given by
[

ζg −ζg ,b

−ζg ,b ζg

]−1[
1−1

]
. The difference in market capitalization

of g and b after the demand shock is given by 2
ζg+ζg ,b

.21 First, the greater the stock-specific

elasticity (i.e. the more willing the investor is to sell green and buy brown shares) the smaller

the price impact. Second, the greater the cross-elasticity (i.e investors’ substitution towards

brown stocks as a result of the price increase of the green stock) the smaller the equilibrium

price impact. The equilibrium impact of ESG investing, therefore, depends on i) how willing

the arbitrageurs are to provide green shares and ii) which stocks they substitute towards.

21To see this, note that the log return on green and brown stocks is given by
[

ζg −ζg ,b

−ζg ,b ζg

]−1[ 1−1

]
. Multiplying

by market equity (which is equal to 1) approximates the change in dollar terms. The difference in market equity

between the green and the brown stock after the flow is therefore given by [ 1 −1 ]
[

ζg −ζg ,b

−ζg ,b ζg

]−1[ 1−1

]= 2(ζg −ζg ,b )

ζ2
g −ζ2

g ,b
=

2
ζg +ζg ,b

.
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C Structural versus Reduced-Form Estimation

As outlined above (and expressed in detail in van der Beck (2022)) the matrix Mt , which links

demand shocks and the cross-section of realized returns, can be obtained structurally from

investors’ demand elasticities. Before diving into estimating elasticities from holdings data,

it is worth stepping back and asking whether a structural estimation is truly necessary. One

could imagine a much simpler identification from directly regressing realized ESG returns

onto demand shocks similar to PST (2022). For example, Pavlova and Sikorskaya (2022) regress

returns onto changes in benchmarking intensities and obtain a multiplier of around 1.5. After

all, estimating demand elasticities via regressions of demand onto prices is subject to the

same endogeneity concerns that contaminate regressions of prices onto demand: Both are

jointly determined in equilibrium. Assume, that we had access to non-fundamental demand

shocks for green stocks ∆dt from e.g. a stock’s inclusion in an ESG index as in Berk and

van Binsbergen (2022).22 The shocks could be used to directly estimate the multiplier using

(2.7) as a linear regression. Nevertheless, there are three distinct benefits of the structural

approach. First, it gives rich insights into the underlying investor-specific determinants of

the flow multiplier. Second, one can obtain stock-specific and time-varying effects even if we

estimate a scalar elasticity for every investor. Because the ownership Q i
t ,n varies across stocks

and time, ownership-weighted sums across elasticities
∑I

i=1 Q i
t ,nζ

i vary across stocks and time.

Third, one can use a large cross-section of holdings data over a long history to identify ζt as

opposed to the small number of potential ESG demand shocks.

Lastly, note that the elasticities themselves are not deep parameters and could be a function

of trading costs, risk aversion, or investment constraints. The model and its estimation are

therefore ‘semi-structural’. Understanding the drivers of demand elasticities and in particular

downward-sloping demand curves is an important avenue for future research.

D Estimating Elasticities

As in van der Beck (2022), I define institutions’ demand as ∆q i
t ,n = logQ i

t ,n − logQ i
t−1,n ≈

∆Q i
t ,n/Q i

t−1,n . Thus∆q i
t ,n simply measures the percentage change in shares held by institution

i in stock n between two quarters. Similarly, percentage changes in the price are given by

∆pt ,n = logPt ,n − logPt−1,n ≈ ∆Pt ,n/Pt−1,n . These variable definitions directly emerge from

the definition of the elasticity (2.5). Up to a first order, an investor’s demand elasticity can be

written as a linear regression of trades ∆q i
t ,n onto log returns ∆pt ,n .

∆q i
t ,n =−ζi∆pt ,n +ϵi

t ,n (2.9)

where ϵi
t ,n captures demand shocks due to e.g. fundamentals, flows or trading constraints.

The reduced-form specification essentially corresponds to a first difference estimator of the

22See Shleifer (1986), Coval and Stafford (2007) or Schmickler and Tremacoldi-Rossi (2022) for other examples of
non-fundamental demand shocks
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logit demand specification in KY (2019). van der Beck (2022) provides a detailed investigation

of the relationship between the two estimators, which is summarized in Appendix D of this

paper. Note, that the scalar regression coefficient ζi is a reduced-form approximation of an

investor’s elasticity, which does not ensure that the investor’s total assets remain unchanged.

Appendix D shows how to incorporate (2.9) in a logit framework that satisfies the budget

constraint and allows constructing the full time-varying elasticity matrix ζi
t ∈RN×N from the

scalar regression coefficient ζi and portfolio holdings.

E Identification

A causal identification of demand elasticities requires exogenous variation in prices that is

orthogonal to the investor’s own demand shocks. In other words, we can use the exogenous

demand shocks of one investor to identify the elasticity of another investor. As for every

buyer there is a seller, exogenous demand shocks by one investor can essentially be viewed

as shifting the supply curve. The literature has proposed a variety of potential instruments

such as index inclusions, mutual fund flows or dividend reinvestments.23 An advantage of

estimating elasticities via trades (instead of holdings as in KY (2019)) is that essentially all

of the instruments from the event-study literature on price pressure can be re-employed to

identify demand elasticities. Van der Beck (2022) uses flow-driven trades by mutual funds as

an exogenous shock to identify elasticities. Many mutual funds scale their existing holdings in

response to in- and outflows (see Lou (2012)). Aggregating the flow-driven trades across all

mutual funds provides exogenous cross-sectional demand shocks under the (strong) assump-

tion that the flows were not driven by the funds’ underlying fundamentals. To address these

concerns, van der Beck (2022) constructs surprise flows by orthogonalizing the cross-section

of mutual funds flows with respect to the funds’ underlying holdings and characteristics.24

However, it remains unclear whether a simple orthogonalization provides true exogenous

flow shocks. In this paper, I take one step further and construct exogenous flow shocks from

dividend reinvestments as in Schmickler and Tremacoldi-Rossi (2022). I closely follow their

construction of dividend-induced mutual fund trades. Let D t ,n denote stock n’s dividends per

share paid in quarter t . For every fund i , I construct dividend flow d f i
t as the total dividend

payout across all stocks in the portfolio relative to assets under management:

d f i
t = ∑

n∈N i

D t ,nQ i
t−1,n/Ai

t−1 (2.10)

In appendix 2.13, I show that mutual funds tend to proportionally reinvest aggregate dividend

payouts in their existing portfolios.25. The hypothetical trading in stock n due to reinvested

dividend flows is given by d f i
t Q i

t−1,n . I construct an instrument for each investor i by summing

23See Chang et al. (2015), Lou (2012), and Schmickler (2020) for respective examples.
24Similarly, Schmickler (2020) constructs high-frequency flow shocks to address contemporaneous return

chasing in mutual fund flows.
25Chen (2020) arrives at a similar result
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the dividend-induced trades (D I T ) by all other mutual funds,

D I T −i
t ,n = ∑

j∈MF, j ̸=i
d f j

t Q j
t−1,n (2.11)

Note, that the dividend announcement date of stock n, which contains fundamental infor-

mation, often lies in the same quarter as the dividend payment. To avoid including the

fundamental news coming from n’s own dividend announcement, I construct D I Tt ,n using

d f i
t ,−n =∑

m ̸=n D t ,mQ i
t ,m/Ai

t instead of d f i
t .26

Having constructed investor-specific instruments, the elasticities can be obtained in a simple

two-stage least squares procedure. Let ∆p̂ i
t denote the fitted value from regressing returns

onto the investor-specific instrument f −i
t ,n . The second stage regression of investor-specific

trades∆q i
t onto the investor-specific instrumented return∆p̂ i

t allows identifying their demand

elasticities ζi
t . Formally, for every investor the two stages are given by:

1st Stage: ∆p i
t ,n = θi D I T −i

t ,n +ϵi
t ,n

2nd Stage: ∆q i
t ,n =−ζi∆p̂ i

t ,n +ϵi
t ,n

(2.12)

where ϵi
t ,n =∑K

k=1 X t ,n,kβ
i
k +ui

t ,n includes the control variables log book equity, profitability,

investment, and market beta. The trading due to aggregate dividend flows D I T −i
t ,n is plausibly

more exogenous than ordinary flow-induced trading. The drawback of this instrument is,

however, that we cannot obtain negative demand shocks as dividends are strictly positive.

Thus the identified elasticities only capture how stock price increases affect demand. As a

robustness check, Appendix C reports the estimated elasticities identified from flow shock-

induced trading, which can take on both positive and negative values. I also explore the

stability of the estimates by using changes in ‘Benchmarking Intensity’ (BMI) by Pavlova and

Sikorskaya (2022) as an alternative instrument in the first stage. The next section and Appendix

Section C provide further details.

F The Multiplier Matrix

I estimate ζi over the panel of quarterly holdings from 2010 to 2021.27 The multiplier matrix

M ∈RN×N is given by the inverse of the aggregate (ownership-weighted) elasticity. I omit

the time t subscript for notational simplicity. The diagonal elements of M are the stock-

specific multiplier effects. The n-th diagonal element Mn,n = ∆pn

∆dn
measures the price impact

of demand shocks for n onto the price of n. The off-diagonal elements are the spillover effects

to other stocks. In particular, Mm,n = ∆pm

∆dn
measures the price impact of demand shocks for n

onto the price of m. Let NG ⊂ N denote the subset of green stocks. We are interested in the

price impact of demand shocks for green stocks NG onto the cross-section of all stocks N .

Omitting the time subscript, one can partition the multiplier matrix into submatrices by green

26See Schmickler and Tremacoldi-Rossi (2022).
27The estimated investor-specific coefficients are reported in Appendix Table 2.16.
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(g ∈ NG ) and other (b ∉ NG ) stocks as

M =

Mg g Mg b

Mbg Mg b

 . (2.13)

The important elements are Mg g and Mbg , which capture the effect of green demand shocks

onto green stocks (g g ) and of green demand shocks onto non-green stocks (bg ) respectively.
28 Intuitively, Mg g measures by how much the prices of other green stocks go up when the

demand for any green stock increases by 1%. Mbg measures by how much the prices of

non-green stocks increase. The diagonal elements of Mg g are the direct stock-specific effects

of green demand, i.e. the price increase of n as a response to a 1% demand shock for n.29 The

cross-multipliers among green stocks are a key determinant of the spillover effects of ESG

demand. If market participants accommodate the demand for green stocks by substituting

towards other green stocks, the relative repricing of green versus brown stocks due to ESG flow

may be strongly amplified.

Table 2.3 summarizes the elements of the multiplier matrix Mt . The first column reports the

direct impact of ESG demand, i.e. the diagonal elements of Mg g . The remaining columns

report the cross-multipliers, i.e. the spillover effects onto other green and non-green stocks.

Table 2.3: The Elements of Multiplier Matrix
The table summarizes the stock-specific and cross-elements of the multiplier matrix for green demand shocks.
The first column reports the stock-specific multipliers, i.e. the percent increase in price of a green stock following a
1% increase in demand for that stock. The other columns report the off-diagonal elements of the multiplier matrix,
i.e. cross-multipliers, which capture spillover effects to other stocks. Cross-multipliers are separated into spillover
effects within green stocks (Mg g ) and from green stocks to brown stocks (Mbg ).

Cross-Multipliers (×104)

Mg Mg g Mbg

Mean 1.11 -0.86 -1.40

Std. (0.1) (9.66) (8.40)

10th Pctl. 1.01 -2.30 -3.23

Median 1.09 -0.05 -0.12

90th Pctl. 1.25 0.43 0.36

Fraction Positive
Spillovers 38% 32%

The average multiplier of the demand for green stocks is around 1.11, implying that (on

28Formally, letting N B = N −NG denote the number of non-green stocks, the dimensions of the matrices are

given by Mg g ∈RNG×NG
, Mbb ∈RN B×N B

, Mg b ∈RNG×N B
and Mbg ∈RN B×NG

.
29Note, that because ownership shares Qi

t ,n vary across stocks, the elasticity matrix is not symmetrical. Therefore
Mg b and Mbg are different objects.
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average) a 1% increase in the demand for a green stock leads to a 1.11% increase in the price of

that stock. The stock-specific multiplier is positive for all stocks because demand is downward-

sloping for all investors.30 This is the key channel through which continued capital flows

into green firms can lead to high realized returns. Among the cross-multipliers, there is great

heterogeneity across stocks which implies that the spillover effects of ESG demand shocks are

highly nontrivial. Notably, there are more positive spillover effects of ESG demand towards

other green stocks than towards non-green stocks. On average, a positive demand shock for a

green stock leads to a price increase for roughly 40% of all other green stocks.

How sensitive are the multiplier estimates to an alternative identification? In Appendix Section

C I identify investor-specific elasticities using an alternative instrument, namely changes in

benchmarking intensity (BMI) by Pavlova and Sikorskaya (2022). A stock’s BMI measures the

fraction of the total market capitalization held by benchmarked investors. Changes in BMI

reduce the effective supply of a stock and can be used to identify investor-specific elasticities.

The multipliers obtained from the BMI-based elasticities are of strikingly similar magnitude.

Using the alternative identification, a 1% demand shock for the average green stock raises its

price by 1.17%. As a final robustness check, Appendix Section C estimates investor-specific

elasticities from surprise-flow induced trading as in van der Beck (2022). Using surprise-flows

as an instrument, I estimate that a 1% demand shock for the average green stock raises its

price by 2.78%.

2.4 The Aggregate Impact of ESG Flows

Having estimated the market’s willingness to accommodate ESG demand we are now in the

position to estimate the impact of flows on the realized returns from ESG investing.

A ESG Flow Multiplier

What is the impact on valuations, if investors reallocate $1 from the market portfolio towards

the ESG portfolio? A $1 ESG flow translates into stock-specific demand shocks given by τt ,n =
wESG

t ,n −w MF
t ,n . Equation (2.7) then implies, that the equilibrium change in prices ∆P ESG

t+1 ∈RN

due to ESG flows is simply

∆P ESG
t+1 =Mtτt . (2.14)

Note, that (2.7) is expressed in percentage terms, i.e. the return ∆pt+1,n resulting from a de-

mand shock in percent of shares outstanding. It can also be expressed in terms of dollar terms

by multiplying by prices Pt ,n (which are equal to market equities due to the normalization).

Here, net flows are equal to zero as
∑N

n=1τt ,n = 0. One could alternatively model nonzero net

30Unlike in KY (2019), this is not an assumption. The estimation in changes yields downward-sloping demand
curves for all investors without a coefficient constraint. See van der Beck (2022) for details.
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equity flows, as inflows to ESG funds could also come from e.g. households that were not

previously invested in the stock market. Such flows would affect both aggregate stock market

and ESG returns. As the focus of this paper lies on the excess returns of ESG funds (over the

aggregate mutual fund portfolio), net-zero flows are a more suitable way of modelling ESG

demand.

Summing the flow-induced change in market equity across all green stocks yields the aggregate

dollar impact of a one-dollar ESG flow on all green firms (or at least the ones perceived to be

green).31 This effect will henceforth be referred to as the ESG flow multiplier. The ESG flow

multiplier is driven by two components: First, flows play a stronger role in cross-sectionally

inelastic markets with a low aggregate demand elasticity for green stocks and therefore a high

multiplier matrix Mt . Intuitively, if price inelastic investors (i.e. investors with a low ζt ,n) are

the main shareholders of green stocks (i.e. they have a high ownership Q i
t ,n), then aggregate

elasticity for green stocks is low and prices have to adjust a lot in order to accommodate

flow-induced demand. Second, the impact of ESG flows depends on the deviation of the ESG

portfolio from the market portfolio τt ,n . If ESG funds’ deviation from the aggregate mutual

fund portfolio is negligible, then flows towards sustainable funds have no impact on the price

regardless of the multiplier effect Mt . Panel (a) of Figure 2.2 plots the ESG flow multiplier

Figure 2.2: ESG Flow Multiplier
The figure plots the ESG flow multiplier, i.e. the aggregate change in market cap in green stocks due to a $1 ESG
flow. Formally, the aggregate effect of ESG flows on green stocks is given by

∑
n∈NG ∆P ESG

t+1,n where ∆P ESG
t =Mtτt

is the vector of price changes following the $1 ESG flow. The dotted line reports the ESG multiplier without
cross-spillover effects (setting the diagonal elements in M to 0. Panel (b) plots the impact of a divestment strategy
that divests $1 from a value-weighted portfolio of all fossil companies. The black line shows the direct impact on
the aggregate valuation of fossil fuel companies. The green line shows the indirect spillover effects to green stocks.
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over time. The ESG flow multiplier is around 0.5 and has declined to 0.3 in recent years. Thus,

withdrawing $1 from the market portfolio and investing it in the ESG portfolio leads to an

increase in green stocks’ aggregate market capitalization of around $0.3-0.5. The decline in

31Let NG
t ⊂ N denote the subset of green stocks (for which τt ,n > 0). The total impact on green stocks is then

given by
∑

n∈NG
t
∆P ESG

t+1,n where ∆P ESG
t+1,n are the stock-specific entries of ∆P ESG

t+1 .
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the ESG multiplier is directly related to the decline in the active share of the ESG portfolio in

recent years. As the ESG portfolio moves closer to the market portfolio, net zero ESG flows

lead to smaller demand shocks and therefore a smaller price impact. While arguably more

objective than third-party ESG scores, using τt ,n as a measure of sustainability remains a

subjective choice. In order to provide a broader perspective on the efficacy of ESG investing,

I also compute the impact of a divestment strategy that divests $1 from a value-weighted

portfolio of all fossil companies. Panel (b) of Figure 2.2 plots the impact of the divestment

strategy on the aggregate market capitalization of fossil fuel and green companies. Every

dollar withdrawn from the fossil fuel industry reduces its aggregate market capitalization

by $1-1.2. These estimates suggest that divestment strategies can have a large effect on

stock prices and therefore firms’ cost of capital. Even though green stocks are not directly

affected by the divestment strategy, their aggregate value is affected via spillover effects. This

underlines the importance of accounting for the off-diagonal elements in Mt . As market

participants accommodate the demand shock from the divestment strategy by buying fossil

fuel companies they simultaneously buy green companies (potentially to maintain a constant

industry exposure). This exerts price pressure on the latter resulting in positive spillover

effects.

B Counterfactual ESG Returns in the Absence of Flows

The ESG flow multiplier paired with the large ESG flows of $1.3 trillion suggest that the flow-

driven demand for green stocks has potentially large aggregate pricing implications. In order

to assess the quantitative return distortion from total ESG flows, F ESG
t+1 , I conduct a simple

simulation. I simulate counterfactual realized ESG returns if the quarterly flows to ESG funds

F ESG
t+1 were instead reinvested in the aggregate mutual fund portfolio w MF

t .32 Table 2.4 reports

the counterfactual ESG returns in the absence of flow-driven price pressure. The first row

reports the empirically observed annualized ESG return, which is defined as the excess return

of the ESG portfolio over the aggregate mutual fund portfolio τt = wESG
t −w MF

t . The second

row reports the counterfactual ESG return without price pressure from flows towards labelled

ESG mutual funds. The raw return and alphas drop by merely 10 basis points. The impact

of capital flows towards specifically labelled sustainable mutual funds is therefore negligible.

Without the price pressure from total ESG flows, however, the raw return and alphas drop

by 200 basis points and are all zero. Thus, when assessing the impact of ESG investing, it is

important to account for the ESG tilts by all institutions, including large investment advisors,

banks, and pensions funds. The results emphasize the sizeable gap between realized and

expected returns from ESG investing that is driven by total sustainable flows. Taking the

estimates at face value, this suggests that without a continued flow to the ESG portfolio, ESG

investing does not have positive abnormal returns. In other words, it is the price pressure from

32A first order approximation of the simulated price pressure from $X net-zero ESG flows is given by ∆P sim
t =

Mt (wESG
t −w MF

t )∗$X . The counterfactual returns in the absence of price pressure are then given by r
c f
t ,n =

rt ,n −∆P sim
t+1,n /Pt ,n . Counterfactual ESG returns are then given by

∑N
n=1 r

c f
t ,nτt ,n . See Appendix D for details.
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Table 2.4: Counterfactual ESG Returns without Flow-Driven Price Pressure
The table reports the true (empirically observed) realized returns of the long-short ESG portfolio τt and the
counterfactual returns observed in the absence of price pressure from i) labelled ESG mutual fund flows and ii)
total ESG flows. I report raw returns and alphas with respect to the CAPM, the CAPM plus the Green Factor from
PST (2022), and the Carhart 4-Factor Model plus the Green Factor.

Return
α

(CAPM)

α

(CAPM + Green)

α

(CH4 + Green)

True Returns: Empirically Observed

Return (%) 2.01 2.40 1.87 1.51

t-statistic 2.91 3.47 2.55 2.01

Counterfactual Returns: In Absence of
Flows from labelled ESG Mutual Funds

Return (%) 1.92 2.32 1.78 1.42

t-statistic 2.78 3.35 2.43 1.90

Counterfactual Returns: In Absence of Total
ESG Flows

Return (%) 0.04 0.57 -0.05 -0.30

t-statistic 0.05 0.77 -0.07 -0.38

ESG flows that made ‘doing well by doing good’-investing possible.

C ESG Flows and Returns: Reduced-Form Evidence

The structural approach presented above allows for circumventing the issue that flows and

returns are jointly endogenous. Within the model, ESG flows have a large impact on ESG

returns. This result is based on three findings: Large flows towards the ESG portfolio (F ESG
t+1 ),

a low elasticity of substitution between green and brown firms (Mt ), and a considerable

deviation of the ESG portfolio from the market portfolio (τt ). If ESG returns are truly flow-

driven, then aggregate ESG flows should be correlated to realized ESG returns. Figure 2.3 plots

the quarterly flow into the ESG portfolio along with the excess return on the ESG portfolio.

The correlation between quarterly ESG flows and returns is 74%. While this correlation is by

no means causal evidence for flow-driven price pressure, it is nevertheless strikingly high.

Notably, PST (2022) find that ESG returns and flows into labelled ESG mutual funds are not

significantly correlated. Table 2.5 replicates their result and provides further evidence on the

potential importance of flows in explaining ESG returns. I first regress ESG returns on the total

ESG flow and the flow to labelled ESG mutual funds separately. Both measures of ESG flows

are significantly related to ESG returns with an R2 of 29%. Note that simple regressions of the

returns onto flows cannot identify price pressure: Beliefs about the climate, the fundamentals

of ESG firms, and positive feedback trading, drive both flows into ESG funds, as well as the
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Figure 2.3: Aggregate ESG Flows and Returns
The figure plots the quarterly excess return on the ESG portfolio τt = wESG

t −w MF
t against the quarterly ESG flow

F ESG
t+1 measured in percent relative to the total stock market capitalization. I plot rolling 4-quarter averages of

returns and flows.
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return on their underlying assets. I merely present these correlations as suggestive evidence

for a potential link between ESG flows and returns. The second set of columns replicates the

findings of PST (2022). I regress their GMB factor return onto total ESG flows, ESG mutual

fund flows, and instrumented flows using quarterly lags. Confirming their results, I find no

significant relationship between GMB returns and ESG flows. This underlines the importance

of computing the suitable flow into the object of interest. It is unclear whether flows to ESG

mutual funds are indeed directed at the GMB portfolio. While many investors follow the

MSCI ESG ratings used in PST (2022), the direction of ESG flows critically depend on how the

ratings are used to construct portfolio weights. Thus ESG flows may not directly target the

GMB portfolio. I circumvent this issue by investigating flows and returns of the same portfolio

(wESG
t ).

2.5 The Cross-Sectional Impact of ESG Flows

This section puts the hypothesis of flow-driven ESG returns to a stronger test. If flow-driven

purchases by institutions drive aggregate ESG returns, they should also affect the cross-section

of ESG returns. In other words, green stocks that experience higher flow-driven demand

should exhibit higher realized returns in the cross-section.
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Table 2.5: The Correlation of ESG Flows and Returns
The table reports regressions of the form

RESG
t =α+βF ESG

t +ϵt

where RESG
t is an ESG return and F ESG

t a measure of ESG flows. The first set of columns uses the τ-portfolio
under 1) total ESG flows and 2) labelled ESG mutual fund flows. The second set of columns uses quarterly GMB
(green-minus-brown) factor returns PST (2022). In specification (3) I instrument for the ESG flow by its lag F ESG

t−1
as in PST (2022). The first stage t-Statistic is 7.6. I only report IV results for ESG mutual fund flows, as the relevance
condition does not hold for total ESG flows. For all specifications except for (3), I use rolling 4-quarter average
flows. T-statistics are reported in parentheses. Significance at the 90, 95 and 99% confidence levels is indicated by
*,**,*** respectively.

ESG Return τt GMB Factor Returns (PST, 2022)

(1) (2) (1) (2) (3)

const -0.00 -0.00 0.02 0.02 0.02

(-1.00) (-0.21) (2.17) (2.66) (2.15)

Total ESG Flow 2.47*** 1.46

(3.45) (1.46)

ESG Mutual Fund Flow 47.65*** 6.01

(3.40) (0.08)

IV (lagged Flow) 15.46

(0.24)

R2 0.29 0.29 0.01 0.00 -

A Stock-Specific ESG Flows and Returns

While the flows into individual stocks within the ESG portfolio are not directly observable, they

can be approximated by aggregating the flow-driven trades of all investors. Total flow-driven

trades in stock n are given by

∆dt+1,n =
I∑

i=1
Q i

t ,n f i
t+1 (2.15)

where I includes mutual funds and other 13F institutions (banks, pension funds, insurance

companies etc.). f i
t+1 is the flow into fund i expressed in percent (i.e. dollar flow relative to

lagged assets under management). Q i
t ,n the fund’s lagged ownership in stock n also expressed

in percent because shares outstanding are normalized to 1. Precise data on flow-driven trades

are only available for mutual funds. Because SEC 13F forms are filed at the management

company level, flows towards ESG funds within a manager are difficult to capture.33 Appendix

B provides a detailed description on how to resolve this issue and approximate flow-driven

trades for all 13F institutions. Note that because Q i
t ,n are ownership shares, ∆dt+1,n can

be interpreted as demand shocks in percent relative to shares outstanding. Thus a flow-

33For example, a $1 billion exogenous flow from the Vanguard S&P500 ETF to the Vanguard FTSE Social Index
Fund would only show up as a demand shock for greener stocks in Vanguard’s aggregate share holdings while
leaving its total assets under management unchanged.
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driven demand shock of ∆dt+1,n = 0.01 implies a 1% increase in the demand for the stock.

If flows affect the cross-section of ESG returns, then ∆dt ,n should be significantly related

to the cross-section of ESG returns. Let ∆pt+1,n denote the quarterly return on stock n. I

compute abnormal returns αt+1,n by cross-sectionally orthogonalizing returns with respect

to market beta, log market equity, log market-to-book ratio, profitability and investment.34 I

then compute the cumulative flow-driven demand ∆dn and abnormal returns for every stock

∆pn by summing over the sample period from 2016 to 2021.

B Price Pressure in the Cross-Section of ESG stocks

The structural model predicts that flow-driven price pressure is given by multiplying the vector

of flow-driven demand shocks ∆dt by the multiplier matrix Mt . Thus, the model implies a 1:1

mapping between Mt∆dt and the cross-section of realized ESG returns. Panel (a) of Figure

2.4 plots the abnormal returns on all green stocks along with the flow-driven price pressure. I

fit a linear regression through the scatter points, which shows that the cross-section of green

returns is significantly related to flow-driven price pressure (t-Statistic > 7). Furthermore, both

value- and equal-weighted regression lines are close to the diagonal. This is strong evidence

in favor of the overall magnitude of the demand elasticities obtained from holdings data.35 On

average, the multiplier matrix Mt correctly maps the cross-section of demand shocks into the

realized return space. Panel (b) of Figure 2.4 plots the price pressure (M∆d) for all green stocks

against their abnormal return αn . Once again, the cross-section of abnormal ESG returns is

significantly related to price pressure with a t-statistic of 5.25. We furthermore cannot reject

the null hypothesis that the slopes of the fitted lines are different from the diagonal.

C Testing different Elasticity Estimates

The flow-driven demand shocks allow for a more granular test of the price impact implied by

demand-based asset pricing models. Note, that equation (2.7) is a first-order approximation

to the demand shock in a large class of models, including the Demand System Approach to

Asset Pricing by KY (2019).36 We can test different elasticity estimates by comparing the cross-

section of flow-driven ESG returns to the price pressure obtained from different multipliers

Mt . Panel (a) of Table 2.6 compares the regression slope and R2 across different multipliers.

The first column regresses the cross-section of abnormal ESG returns αn onto the raw flow-

driven demand shocks ∆dn , which implies a diagonal multiplier matrix equal to the identity

matrix. The slope coefficient is 1.13 with a t-statistic of 6.84. This implies that a 1% demand

shock for a green stock increases its price by 1.13%. The average multiplier across all green

34Formally, I run the quarterly cross-sectional regressions of log returns rt+1,n onto lagged characteristics X k
t ,n

and extract the residual: rt+1,n =β0
t +

∑K
k=1β

k
t X k

t ,n +∆pt+1,n .
35If true multipliers were significantly higher than the model-implied estimates (i.e. investors respond more

strongly to price changes than implied by the model) then the slope of the regression line would be much steeper.
36See van der Beck (2022) for details.
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2.5 The Cross-Sectional Impact of ESG Flows

Figure 2.4: ESG Demand in the Cross-Section of ESG Returns
The figure reports binned scatter plots of the cross-section of ESG returns against flow-driven price pressure
Mt∆dt ,n . For each stock, I compute the cumulative price pressure and returns from 2016 to 2022. Panel (a) plots
price pressure against raw cumulative returns ∆pn . Panel (b) plots price pressure against abnormal returns αn
obtained from cross-sectional regressions of returns onto known predictors.
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stocks obtained from the structural model is 1.11, which is strikingly close to the reduced-form

estimate. Raw flow-driven demand furthermore explains around 4% of the cross-section

of ESG returns. The second column regresses the cross-section of abnormal returns onto

demand shocks scaled by the multiplier matrix as in Figure 2.4. The explained variation of the

cross-section of ESG returns rises to 5%. This does not necessarily imply that the additional

information contained in the stock-specific and cross-elasticities is small. It rather confirms

that the cross-section of individual stock returns is driven by unobservable latent demand

shocks unrelated to flow-driven demand (see KY (2019)). The third column uses the elasticity

matrix obtained using the methodology in KY (2019). Recall that they identify elasticities using

portfolio holdings in levels, whereas this paper identifies elasticities from quarterly trades (i.e.

changes in portfolios). The regression slope drops to 0.49 (t-Statistic of 7.22) which implies

that the price pressure estimated from holdings in levels is slightly too large. This may be owed

to the endogeneity problem of identifying elasticities from holdings as opposed to trades.37

Lastly, I provide a simple test of whether the stock-specific multipliers, i.e. the diagonal

elements in M contain additional information about price pressure beyond traditional char-

acteristics. To this end, let αn
∆dn

denote a primitive measure of stock-specific price pressure. It

is the abnormal return on stock n from 2016 to 2022 divided by the cumulative flow-driven

demand ∆dn . I regress αn
∆dn

in the cross-section onto the stock-specific multipliers, Mn , con-

trolling for log market equity and market beta. Panel (b) of Table 2.6 reports the estimated

coefficients. The price impact of flow-driven demand in cross-section of green stocks is signif-

icantly larger for smaller stocks. More importantly, it is significantly positively related to the

stock-specific price impact implied by the structural model (with a t-Statistic of 3.6).

37See van der Beck (2022) for details.
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Table 2.6: The Cross-Section of ESG Returns and different Elasticity Measures
Table (a) reports the slope coefficient β1 and R2 of regressions of the following form

αn =β0 +β1Pressuren +ϵn

where Pressuren is 1) raw demand ∆dn , 2) demand multiplied by the multiplier matrix estimated in this paper,
and 3) demand multiplied by the multiplier matrix estimated in KY (2019). Panel (b) plots the coefficient estimates
of a panel regression of price impact αn

∆dn
onto the diagonal elements of the elasticity matrix, controlling for log

market equity and beta. T-statistics are reported in parentheses.

(a) Comparing Multiplier Estimates

Raw
Demand

Demand ×
Multiplier

Demand ×
KY-Multiplier

∆dn M∆dn MKY∆dn

∆αn 1.13 1.09 0.44

(6.84) (7.28) (5.90)

R2 0.04 0.05 0.03

(b) Price Pressure Cross-Section

Price Impact αn/∆dn

const 1.809

(1.418)

diag M 2.813***

(3.598)

Log ME -0.211***

(-4.488)

Beta 0.154

(1.313)

2.6 Applications and Robustness Tests

A ESG Index Inclusion

The structural approach presented in this paper allows to circumvent the issue that ESG flows

and returns are jointly endogenous. It is nevertheless reassuring if the structural estimates are

at least to some extent backed by simple reduced-form evidence, such as demand shocks from

ESG index inclusions. A well-known ESG index is the FTSE USA 4 Good Index (henceforth 4G

Index). Berk and van Binsbergen (2022) use a stock’s membership in the 4G Index as a proxy

for aggregate ESG demand and find that there are no price effects associated with inclusion in

the index. They conclude that impact investing does not affect firms’ cost of capital. However,

it is unclear how much money is actually flowing into the stocks added to the index. In other

words, are the assets indexed to the 4G Index large enough to generate meaningful demand

shocks based on its reconstitution?

To further investigate this, I construct mutual fund demand ∆q MF
t ,n as the change in ownership

by mutual funds for every stock n and quarter t . Table 2.7 reports regressions in the style of

Berk and van Binsbergen (2022). ∆I 4G
t ,n is a variable equal to 1 in the quarter of inclusion in

the 4G Index, -1 in the quarter of exclusion, and 0 otherwise. I first regress index flow onto

∆I 4G
t ,n including the controls used in Berk and van Binsbergen (2022).38 Addition to 4G Index is

38Because additions and deletions are encoded as 1 and -1 respectively, I refer to all index reconstitutions as
additions.
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associated with a significant increase in total mutual fund ownership of 1.3 percent. In other

words, when a stock is included in the 4G Index, mutual funds contemporaneously purchase

1.3 percent of the stock’s shares outstanding (on average). This suggests that the 4G Index

is sufficiently widely followed such that reconstitutions cause meaningful shocks to index

investor demand. The third column of the table replicates the specification in Berk and van

Binsbergen (2022) at a quarterly frequency by regressing quarterly stock returns onto ∆I 4G
t ,n . As

in their study, the coefficient is insignificant and very small, suggesting that the ESG flows do

not generate meaningful price pressure. However, for only 56% of all index reconstitutions,

mutual fund flow ∆q MF
t ,n has the same sign as ∆I 4G

t ,n .39 In order to identify relevant (i.e. widely

followed) reconstitution events, I use ownership changes of index trackers. I interact the

4G index reconstitutions with a dummy variable, 1Demand, equal to 1 if the demand by index

trackers has the same sign as the reconstitution.40 The coefficient on the interaction term is

large and statistically significant. This suggests that ESG index inclusion has a strong effect

on prices, as long as mutual funds actually purchase the stock when it is included. In other

words, conditional on inclusion in the 4G index, the demand by index trackers has a large

impact on the prices of green firms. Furthermore, the implied price impact is in line with the

multiplier obtained from the structural model. In the quarter of inclusion in the 4G index, the

stocks followed by index trackers receive a 3.2−0.7 = 3.13% demand shock by mutual funds

and experience 11.5−6.2 = 5.3% higher returns, which implies an ESG demand multiplier of
5.3
3.2 = 1.69. The dummy variable 1Demand measures the demand by index-tracking funds and

should therefore not contain not contemporaneous return-chasing behaviour. Nevertheless,

endogeneity concerns remain because index-trackers often focus on the largest or most liquid

stocks within the index, which may precisely be the ones that had high returns. I therefore

construct an alternative dummy variable that is agnostic to the sign of the demand by index

trackers. To this end, I define index turnover as the total trading volume by index-tracking

mutual funds. I then interact the 4G index reconstitutions with a dummy variable, 1Turnover,

equal to 1 if the turnover by index trackers is over two standard deviations away from its stock-

specific mean.41 Column (3) of both panels report the results. High index-turnover stocks

have a 7.4+0.5 = 7.9% higher mutual fund demand and experience 6.8+0.1 = 6.9% higher

returns during the inclusion quarter in the 4G Index. This implies a multiplier of 6.9
7.9 = 0.87.

39From 2012 to 2021 and using quarterly data, I obtain 342 reconstitution events of the 4G index, conditional on
the stock already being in the FTSE USA Index. For 192/342=56% out of these events, the aggregate ownership
change of mutual funds has the same sign as the reconstitution.

40In particular, 1Demand equal to 1 if the sign of index fund flow during the reconstitution quarter is the same
as the sign of the reconstitution ∆I 4G

t ,n . Index fund flow is defined as the change in ownership by index trackers.
To identify index funds, I use the label ‘Pure Index Fund’ provided by the CRSP mutual fund database, which are
mutual funds with an index-fund flag equal to ‘D’.

41More precisely, index turnover is given by ITt ,n =
∑

i∈I x |∆Q i
t ,n |∑

i∈I x Q i
t−1,n

where I x ⊂ I is the subset of index-tracking

mutual funds. The unconditional time-series mean and standard deviation are µIT
n and σIT

n . The index turnover
indicator, 1Turnover, is equal to 1 if ITt ,n −µIT

n > 2σIT
n .
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Table 2.7: How much money is following the FTSE 4 Good Index?
The table reports different regressions in the style of Berk and van Binsbergen (2022). ∆I 4G

t ,n is equal to 1 in the

quarter of inclusion in the FTSE 4 Good Index, -1 in the quarter of exclusion, and 0 otherwise. I 4G
t ,n is a dummy

equal to 1 in all quarters after inclusion. ∆It ,n and It ,n are defined equivalently, but for the FTSE USA index.
The stocks in the FTSE 4 Good Index are a strict subset of the stocks in the FTSE USA index. 1Demand is a dummy
equal to 1 if aggregate purchases by index-tracking mutual funds have the same sign as the ∆I 4G

t ,n . 1Turnover is a
dummy equal to 1, if the turnover by index-tracking mutual funds is more than 2 standard deviation away from its
stock-specific mean. The first two columns use quarterly mutual fund flow as a dependent variable. Columns
three and four use quarterly stock returns. T-statistics are in parentheses. Standard errors are double clustered
at the stock and year-month level. Significance at the 90, 95 and 99% confidence levels is indicated by *,**,***
respectively.

Mutual Fund Flow ∆qMF
t ,n Quarterly Returns ∆pt ,n

(1) (2) (3) (1) (2) (3)

const 0.002 0.002 0.002** 0.047** 0.047** 0.047**

(1.64) (1.64) (1.64) (2.43) (2.43) (2.43)

In,t -0.001 -0.001 -0.001 -0 -0.001 -0

(-0.93) (-1.01) (-0.81) (-0.06) (-0.1) (-0.04)

I 4G
n,t -0.001 -0.001 -0.001 -0.005 -0.005 -0.005

(-1.2) (-1.18) (-1.41) (-0.8) (-0.78) (-0.82)

∆In,t -0.001 -0.001 -0.002 -0.001 -0.001 -0.001

(-0.51) (-0.54) (-0.82) (-0.03) (-0.04) (-0.06)

∆I 4G
n,t 0.013*** -0.007* 0.005*** 0.009 -0.062* 0.001

(4.5) (-1.91) (2.78) (0.29) (-1.75) (0.05)

∆I 4G
n,t ×1Demand 0.032*** 0.115**

(4.52) (2.21)

∆I 4G
n,t ×1Turnover 0.074*** 0.068**

(10.06) (2.38)

R2 0.00 0.00 0.00 0.00 0.00 0.00

Observations 125263 125263 125263 125263 125263 125263

B Mandate-Driven Portfolio Reconstitutions

Mutual fund purchases based on additions and deletions from the 4G Index represent a small

set of potentially exogenous ESG demand shocks. In this section, I generalize the idea of

ESG index inclusion to construct a larger set of exogenous ESG demand shocks. In order to

disentangle non-fundamental from fundamental ESG demand, it will be useful to define two
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kinds of demand shocks: Intensive and extensive. Intensive demand shocks are changes in

the shares held by an investor that do not originate from or result in zero holdings. Extensive

demand shocks are portfolio additions and deletions, i.e. changes in shares held originating

from or resulting in zero holdings. A key difference between the two is that extensive demand

shocks likely contain an exogenous (non-fundamental) component that is related to the

investment mandate of the fund. For example, an ESG investor may include a stock in her

portfolio once the company’s Co2 Emissions fall below the industry median. Similarly, a

value fund includes a stock if it falls in the top quintile of book to market ratios. While not

all of the extensive demand shock is non-fundamental (Co2 emissions dropped because of a

change in production which affects profits) at least part of it is driven by the fund’s exogenous

portfolio constraint: “Buy the bottom 50% of Co2 emitters”. Let ∆Q⊥
t ,n denote the total amount

of shares purchased due to specific ESG mandates and portfolio constraints. Because ∆Q⊥
t ,n is

orthogonal to fundamental news, a significant relationship with contemporaneous returns

rt ,n would confirm that non-fundamental ESG demand affects prices. Appendix Section B

shows how to construct ∆Q⊥
t ,n from mutual funds’ extensive and intensive trades.

In order to test whether non-fundamental ESG demand impacts prices, I estimate panel

regressions of quarterly returns onto ∆Q⊥
t ,n controlling for known return predictors such

as market beta, size, value, profitability, and investment. Table 2.8 reports the estimated

coefficients on∆Q⊥
t ,n for different specifications. The coefficient on∆Q⊥

t ,n is highly statistically

significant with a t-Statistic of 11.02. Note, that ∆Q⊥
t ,n only captures the exogenous demand

shocks of labelled ESG mutual funds, which represent a subset of all ESG investors. If we scale

∆Q⊥
t ,n by the inverse market share of labelled ESG funds relative to total ESG assets, we can

identify the structural parameter linking exogenous ESG demand and prices.42 The coefficient

on scaled∆Q⊥
t ,n is 0.95, which implies that when ESG funds purchase 1% of a company’s shares

outstanding, the price increases by roughly 0.95%. The implied multiplier is 0.95 which is close

to the estimate from the structural model of 1.11. I also sort ∆Q⊥
t ,n into quartiles by absolute

values and assign dummy variables equal to 1 if ∆Q⊥
t ,n in the respective quartile is positive

and -1 if ∆Q⊥
t ,n in the respective quartile is negative. The results show that stocks with higher

mandate-driven ESG demand experience stronger price pressure. The coefficient on ∆Q⊥
t ,n is

significant across all specifications. Thus ESG investors’ trades that are driven by portfolio

constraints and investment mandates have a significant impact on prices. Furthermore, the

magnitudes are consistent with the elasticities estimated from holdings data.

C Impact-Investing at the Fund Level

The interaction between the multiplier matrix Mt and fund-specific deviations from the

market portfolio allows for assessing the efficacy of impact-investing at the fund level. A fund’s

impact is driven by its deviation from the market portfolio and by the extent to which the

42Formally, total ∆Q⊥
t ,n = SESG

t ∆Q⊥,Total
t ,n where Q⊥,Total

t ,n is total mandate-driven ESG demand and SESG
t is the

market share of labelled ESG mutual funds. Thus Q⊥,Total
t ,n = 1

SESG
t

∆Q⊥
t ,n .
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Table 2.8: Price Impact of Non-Fundamental ESG Demand
The table reports the results of panel regressions of quarterly returns onto non-fundamental ESG demand ∆Q⊥

t ,n .

Specification (1) uses the raw ∆Q⊥
t ,n , which are mandate-driven portfolio additions by labelled ESG mutual funds.

Specification (2) scales ∆Q⊥
t ,n by the inverse market share of labelled ESG funds relative to total ESG assets.

Specification (3) includes changes in fundamentals as additional controls. Specification (4) splits ∆Q⊥
t ,n into

quartile dummies. Robust t-Statistics are reported in parentheses. Significance at the 90, 95 and 99% confidence
levels is indicated by *,**,*** respectively.

Quarterly Returns

(1) (2) (3) (4)

∆Q⊥ 58.95***

(11.02)

∆Q⊥ Scaled 0.95*** 0.88***

(10.44) (9.88)

1(∆Q⊥ Quartile 1) -0.008***

(-3.240)

1(∆Q⊥ Quartile 2) 0.001

(0.250)

1(∆Q⊥ Quartile 3) 0.001

(0.330)

1(∆Q⊥ Quartile 4) 0.026***

(13.150)

Fundamental Controls Yes Yes Yes Yes

Changes in
Fundamentals No No Yes No

Time FE Yes Yes Yes Yes

deviations are concentrated towards inelastic stocks.43 A fund’s ability to affect green firms’

cost of capital is strongly limited, if it overweights stocks that are held by elastic investors

and by investors who respond by substituting towards brown stocks. Green stocks that are

associated with a high multiplier are best suited for impact investing as flows induce a large

realized return and hence a lower cost of capital. Also, note that Mt is an N ×N matrix that

accounts for flow-driven spillover effects to all stocks. If the market accommodates green

demand primarily by substituting towards other green stocks, then Mt ,g g is high, causing

an amplified relative price impact. Table 2.9 reports the impact of a $1 flow from the market

portfolio towards the largest ESG mutual funds averaged over the past 5 years. There is great

heterogeneity in the funds’ impact on green stocks. A $1 flow to the Calvert Social Investment

Fund boosts the aggregate value of green stocks by $0.82. In contrast, the same flow towards the

Vanguard FTSE Social Index Fund raises the value of green stocks by only $0.39. Furthermore,

many sustainable funds unintentionally boost the value of fossil fuel companies. A $1 flow

43Formally, fund i ’s impact is given by Mt w i
t ,n −w MF

t ,n . These are the cross-sectional price changes due to a 1
dollar from from the aggregate mutual fund portfolio towards i .
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Table 2.9: Flow Impact at the Fund Level
The table reports the impact of a $1 flow towards some of the largest ESG mutual funds in the US. I compute the
impact at every quarter and then average across quarters from 2016 to 2021. I report the impact on green stocks
for which τt ,n > 0, as well as fossil fuel and sin stocks. The second column reports the funds’ active deviation from
the S&P 500 computed as 1

2
∑

n |w i
t ,n −wSP

t ,n |.

Impact of 1$ Flow onto...

Deviation from
S&P500

Green
Stocks

Fossil Fuel
Stocks Sin Stocks

TIAA-CREF Funds: Social Choice Equity Fund 0.546 0.272 0.013 -0.008

Calvert Social Investment Fund 0.819 0.613 -0.006 -0.010

Putnam New Opportunities Fund 0.762 0.173 -0.052 -0.027

Vanguard FTSE Social Index Fund 0.391 0.098 -0.047 -0.030

Calvert Social Index Fund 0.339 0.097 -0.041 -0.021

Virtus Small-Cap Sustainable Growth Fund 0.971 -0.105 0.052 0.016

iShares FTSE KLD 400 Social Index Fund 0.594 0.313 -0.000 -0.015

Brown Advisory Winslow Sustainability Fund 0.833 0.432 -0.006 -0.009

iShares MSCI USA ESG ETF 0.515 -0.043 0.030 0.007

towards the iShares MSCI USA ESG ETF increases the aggregate value of fossil fuel companies

by 0.03$ and decreases the value of green stocks by 0.04$. On the one hand, this heterogeneity

is owed to the fact that there is no objective measure of a fund’s true sustainability. Asset

managers use different sustainability metrics, which often diverge substantially (see Berg et al.

(2019) and Berg et al. (2021)). On the other hand, funds differ strongly in their deviation from

the market portfolio. Some funds, such as the Vanguard FTSE Social Index Fund or the iShares

MSCI USA ESG ETF, deviate very little from S&P500 index weights and hence primarily serve as

a way for investors to feel good about themselves without having a true impact. Surprisingly,

flows towards many sustainable funds raise the aggregate valuation of fossil fuel companies.

Even though an ESG fund may underweight an industry as a whole, by tilting towards more

inelastic stocks it can positively affect the aggregate valuation of that industry. Similarly, if

the fund tilts towards stocks that have high cross-elasticities with underweighted stocks it

unintentionally boosts the valuation of the wrong companies. Overall, Table 2.9 emphasizes

that while sustainable flows do impact firms’ realized returns and cost of capital, the choice of

the appropriate fund is crucial to affect change in the preferred direction.

2.7 Conclusion

This paper investigates the extent to which the realized returns from ESG investing are owed to

price-pressure arising from flows towards sustainable funds. Flow-driven price pressure is the

product of sustainable funds’ deviation from the market portfolio and the market’s elasticity of

substitution between stocks. I find that every dollar flowing from the market portfolio towards
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the ESG portfolio increases the aggregate value of green firms by $0.4. Further, ESG funds

would have likely underperformed the market in the absence of flow-driven price pressure

on green stocks. Thus, one should be careful when using the realized outperformance of

sustainable investments in recent years to judge their expected outperformance going forward.

While the low aggregate elasticity of substitution is worrying for the overall stability and

efficiency of equity markets, it supports the effectiveness of impact investing. Flows towards

green funds that invest in cross-sectionally inelastic stocks substantially reduce the cost of

capital of the firms in the funds’ portfolios. As the framework allows quantifying the effect of

flows on green firms’ cost of capital, it enables differentiating sustainable funds by an objective

real-impact criterion.

The large impact of flows on realized ESG returns has important consequences for expected

ESG returns going forward. Assessing the extent to which expected returns are affected by

demand pressures is non-trivial as it depends on the expected flows into ESG funds. If ESG

funds continue to receive inflows then the prices of green firms will further increase causing

positive realized returns in the future. The reduction in short-term expected returns due to

flow-induced price pressure is therefore small. If, however, ESG inflows unexpectedly revert,

the realized future return may be strongly negative. The question, whether ESG funds will

receive outflows in the future ultimately depends on whether ESG flows are performance- or

taste-based. It is likely that at least some flows to ESG funds are driven by past performance

rather than true shifts in green preferences. Even if none of the flows to ESG funds are

performance-driven, green preferences fluctuate over time and may well decline during

bad economic times. Importantly, expected ESG returns going forward also depend on the

transitory versus permanent nature of past demand shocks. van der Beck (2022) shows, that

investors become more elastic in the long run. The impact of demand shocks on equilibrium

prices therefore partly reverts over time. In other words, over a longer horizon investors

substitute away from overpriced green stocks. As ESG funds move closer to the market

portfolio, this effect may outweigh the price impact of continued ESG flows. Investigating the

implications of demand shocks, elasticities, and arbitrage in a dynamic context is an important

avenue for further research.

Lastly, the purpose of impact investing goes beyond (temporarily) boosting the stock prices of

sustainable companies. Do sustainable firms capitalize on the rise of ESG investing by issuing

new shares at elevated prices and undertaking green projects? Investigating the real effects of

flow-driven price pressure by providing an explicit link between demand-based asset pricing

and corporate finance opens up an exciting research agenda.
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2.8 Proofs and Supplementary Material

A The ESG Portfolio

Robustness of the ESG portfolio

The ESG portfolio is constructed using ESG mutual funds’ portfolio holdings. To this end, I

identify a large set of ESG mutual funds via their fund name as reported by CRSP. A mutual fund

is an ESG fund if its name contains at least one (or any abbreviation) of a list of sustainability

keywords :Environment, social, governance , green, sustainable, responsible, SRI, ESG, climate,

clean, carbon, impact, fair, gender, solar, earth, renewable, screen, ethical, conscious, CSR,

thematic. The total list of keywords is much larger. For brevity, this list excludes all keywords

that are not actually used in funds’ names. Figure 2.10 plots the 30 largest ESG funds and their

assets under management as of December 2021.

Table 2.10: Largest 30 ESG Funds
The table the largest 30 ESG funds and their assets under management identified by the list of sustainability
keywords. Assets under management are reported in billion USD.

Fund Name Assets

iShares ESG Aware MSCI USA ETF 25.70

Vanguard FTSE Social Index Fund 16.79

TIAA-CREF Social Choice Equity Fund 7.75

iShares ESG Aware MSCI EAFE ETF 7.62

Brown Advisory Sustainable Growth Fund 7.38

Core Impact Bond Fund 7.27

Putnam Sustainable Leaders Fund 6.82

Calvert Impact Fund 6.75

Vanguard ESG US Stock ETF 6.50

iShares ESG Aware MSCI EM ETF 6.22

US Sustainability Core 1 Portfolio 5.86

iShares Global Clean Energy ETF 5.61

Calvert US Large-Cap Core Resp. Index Fund 5.26

iShares MSCI USA ESG Select ETF 4.82

iShares ESG MSCI USA Leaders ETF 4.31

Fund Name Assets

iShares MSCI KLD 400 Social ETF 4.20

Xtrackers MSCI USA ESG Leaders Equity ETF 4.14

Sustainable Equity Fund 3.86

International Sustainability Core 1 Portfolio 3.47

CCM Community Impact Bond Fund 3.40

Vanguard ESG International Stock ETF 3.17

Calvert Small Cap Fund 3.06

Invesco Floating Rate ESG Fund 2.86

FT Clean Edge Green Energy Index Fund 2.82

Pax Global Environmental Markets Fund 2.74

Invesco Solar ETF 2.73

AB Sustainable Global Thematic Fund 2.65

Pax Sustainable Allocation Fund 2.62

Calvert Bond Fund 2.49

PIMCO Total Return ESG Fund 2.46

Note, that the ESG portfolio wESG
t is scale-invariant and does not depend on the number of

identified ESG funds. Its representativeness therefore only depends on whether the subset of

ESG funds identified via the list of keywords is represenative of the total ESG fund population.

In other words, how stable is wESG
t for different samples of ESG funds. At every quarter, I

sort the sample of ESG funds by their assets under management and split the sample in two
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groups based on whether a fund has an odd or even rank. I then aggregate the holdings for

the two groups and compute two representative ESG portfolios wESG ,even
t and wESG ,odd

t . The

two portfolios are therefore computed using two different (non-overlapping) subsets of funds.

I also define two measures of greenness τeven
t and τodd

t as the deviation of wESG ,even
t and

wESG ,odd
t from the aggregate mutual fund portfolio w MF

t .44. Figure 2.5 plots the quarterly

cross-sectional correlation of the two ESG portfolios and the two taste measures. I plot both

raw (i.e. equal-weighted) correlations, and market cap-weighted correlations.

Figure 2.5: Representativeness of the ESG Portfolio
Panel (a) plots quarterly cross-sectional correlations between wESG ,even

t and wESG ,odd
t . Panel (b) plots the

quarterly cross-sectional correlations between τeven
t and τodd

t , which are deviations of the ESG portfolios from

the aggregate mutual fund portfolio wESG
t . I compute both equal-weighted and market cap-weighed correlations

and plot 3-month rolling averages of the cross-sectional correlation coefficients.
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The two ESG portfolios are highly correlated with correlations above 90% for the later part

of the sample. This correlation is not just by driven the common tilt towards the aggregate

mutual fund portfolio. The ESG portfolio’s deviations from the aggregate mutual fund portfolio,

τeven
t and τodd

t , are also highly correlated with an average correlation above 50%. Market-cap

weighted correlations are slightly higher implying that there is stronger agreement among ESG

funds for larger stocks.

Investor Preference for ESG Labels

In light of the large flows to sustainable funds in recent years, a natural question that arises is

whether including an ESG keyword in the fund title leads to increased inflows. In other words,

can fund managers effectively buy additional flows by simply changing their fund’s name?

Let 1i
ESG ,t denote a dummy variable equal to 1 if fund i has an ESG keyword in its name at

44Formally τeven
t = wESG ,even

t −w MF
t and τodd

t = wESG ,odd
t −w MF

t

68



2.8 Proofs and Supplementary Material

date t . As a first preliminary test, I regress the panel of quarterly aggregated flows onto 1i
ESG ,t

controlling for lagged flows, fund size, fund performance, portfolio tilts and factor exposures.

Panel (a) of Table 2.11 reports the estimated coefficient on the ESG dummy across different

specifications.

Table 2.11: ESG Labels and Flows
The table reports the results to panel regressions of quarterly flows onto ESG indicators from 2010 to 2020. Panel (a)
reports the coefficient on the ESG dummy equal to 1 if fund i has an ESG keyword in its name as of time t . The first
column reports the specification without any controls except quarter fixed effects. The second column includes
fund-level controls given by log assets under management, annual return, Sharpe ratio, Fama and French 3-Factor
alpha, and flows lagged up to 9 quarters. The third column includes portfolio-level controls given by exposure
to momentum, value and size factors as well as characteristic scores for momentum, value, size and greenness.
Panel (b) reports the coefficients to the three dummy variables indicating whether a fund is an ESG fund at some
point in the sample (1i

ESG ), whether it changed its name to an ESG title at some point in the sample, and whether

a previously non-ESG fund added an ESG keyword to its title (δi
ESG ,t ). Standard errors across specifications are

clustered at the fund level. Significance at the 99%, 95% and 90% level is indicated with ***,**,* respectively.

(a) ESG Fund Indicator 1i
ESG ,t

Flows f i
t+1

(1) (2) (3)

1
i
ESG ,t 0.041*** 0.023*** 0.020***

(0.005) (0.003) (0.003)

Time FE Yes Yes Yes

Fund Controls No Yes Yes

Ptfl. Controls No No Yes

(b) Name Change δi
ESG ,t

Flows f i
t+1

(1) (2) (3)

1
i
ESG 0.047*** 0.025*** 0.022***

(0.006) (0.004) (0.004)

1
i
treat -0.074*** -0.038*** -0.032***

(0.008) (0.004) (0.005)

δi
ESG ,t 0.021** 0.021*** 0.018**

(0.009) (0.006) (0.008)

Time FE Yes Yes Yes

Fund Controls No Yes Yes

Ptfl. Controls No No Yes

The estimates reveal that having an ESG keyword in the title leads significantly larger quarterly

flows of 2%. Given that average quarterly flows are of the same magnitude, the flow gains

from being regarded as an ESG fund are extremely large. The flow gain remains large and

statistically significant at any reasonable confidence levels despite controlling for various

fund-level characteristics including the lagged fund return, Sharpe ratio, Fama and French

3-Factor alpha, fund size (log assets under managament) and lagged flows up to 8 quarters. I

also control for portfolio exposures to momentum, value and size obtained from regressing

monthly fund returns onto factor returns. Lastly, I control for fund-level characteristic scores

as in Lettau et al. (2018), which are portfolio-weighted averages of the stock characteristics.45

Nevertheless, it is possible (although unlikely) that ESG funds differ from other funds along

some other dimension not captured by directly observable fund characteristics or common

45For every fund, I compute scores for greenness, value, size and momentum.
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risk exposures and portfolio tilts. To address remaining endogeneity concerns, I use funds’

name changes as exogenous variation in ESG titles. As mentioned in the previous section, 88

out of the 551 identified ESG funds have changed their name at some point between 2010

and 2020 by including an ESG keyword in the title. The name changes can be used akin to a

difference-in-difference estimator in order to control for unobservable flow heterogeneity at

the fund level. More formally, note that one can decompose the ESG dummy 1i
ESG ,t into three

sub-variables: i) A dummy 1i
ESG equal to 1 if the fund had an ESG keyword in the title at some

point between 2010 and 2020, ii) a treatment dummy 1i
treat equal to 1 if the fund switched to an

ESG title at some point between 2010 and 2020, and iii) a time-varying indicator δi
ESG ,t equal

to 1 after a previously non-ESG fund added an ESG keyword to its title. Any flow heterogeneity

from having an ESG keyword in the title that is driven by some unobservable fund-level fixed

effect is captured by 1i
ESG and 1i

treat, such that δi
ESG ,t captures the pure effect of the name

change. Panel (b) reports the estimates across different specifications. Despite having very few

name changes in the sample, the coefficient on the name change indicator 1i
ESG is statistically

significant and roughly equal to 2%. Thus controlling for various fund-level characteristics,

changing the fund’s name to include an ESG keyword boosts quarterly flows by 2%. Note, that

the treatment dummy 1i
treat is significantly negative. Thus funds with strong outflows seem to

have a greater incentive to include trending ESG keywords in their name, which significantly

alleviates subsequent outflows. This is an interesting avenue for further research.

Perceived versus True Sustainability

Do sustainable mutual funds invest sustainably? As already suggested in table 2.1, the ESG

portfolio wESG
t tilts over 50% of its assets away from the aggregate mutual fund portfolio

w MF
t . However, this does not imply that ESG funds (in aggregate) tilt towards truly sustainable

stocks. The difficulty in answering the question about true sustainability lies in the lack of an

objective definition. Particularly the social and governance component of ESG investing may

strongly depend on personal preferences and ethical convictions. While the environmental

component may be more easily objectifiable (e.g. via Co2 Emission data), it is still subject to

large variations in preferences. For example, is the least polluting company among all fossil

fuel companies a sustainable company? Analyzing, which companies are truly sustainable lies

beyond the scope of this paper. I nevertheless assess whether the ESG portfolio’s deviations

from the market portfolio align with a set of sustainability characteristics. To this end, I

estimate two regressions. The first is a panel OLS regression of τt ,n onto the sustainability

characteristics. The second is a probit regression of a greenness dummy 1τ>0 (which is equal

to 1, if the stock is overweighted by the ESG portfolio) onto the same set of sustainability

characteristics. As sustainability characteristics, I use Refinitiv ESG Scores, a Co2 emissions

indicator, a sin stock dummy, a fossil fuel industry dummy and a Vanguard 4 Good dummy

equal to 1, if the stock is in the Vanguard 4 good index. The Co2 emissions indicator is equal

to 1 at time t , if the stock is in the highest decile of Co2 scope 1 emissions across all stocks

in the sample. I furthermore control for log market equity, market beta and volatility in both
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specifications. Table 2.12 reports the results.

Table 2.12: ESG tastes and sustainability characteristics
The table reports the results of two regressions. The first is a panel regression including time fixed effects of τt ,n
onto different sustainability characteristics. The second is a probit regression of a greenness dummy1τ>0 (which is
equal to 1, if the stock is overweighted by the ESG portfolio) onto the same set of sustainability characteristics. The
control variables in all specifications are log market equity, market beta and volatility. *,**,*** denote significance
at the 90, 95 and 99% confidence level.

Sustainability Characteristics

ESG Score
High Co2
Emissions

Sin Stock Fossil Fuel
Vanguard 4
Good Index

Controls R2

Panel Regression τt ,n

Coefficient 0.21*** -0.21*** -0.58*** -0.21*** 0.51*** Yes 5.92%

t-stat 11.01 -16.28 -13.57 -11.80 39.05

Probit Regression 1τ>0

Coefficient 0.78*** -0.33*** -0.47*** -0.14*** 0.46*** Yes 5.53%

t-stat 28.83 -23.20 -9.82 -5.39 41.88

The coefficients on virtually all sustainability characteristics are highly significant with the

right sign. The ESG portfolio tilts significantly towards stocks with high ESG scores as well as

stocks that are in the Vanguard 4 Good Index. It significantly underweights sin stocks, stocks

in the fossil fuel industry and high Co2 emitters. This is strong evidence, that ESG funds (on

aggregate) do tilt towards what may be labelled as objective sustainability. Kim and Yoon

(2022), Liang et al. (2021) and Gibson et al. (2022), on the other hand, show that investors

who are part of the Principles for Responsible Investment initiative do not have better ESG

scores. The opposing results underline the above-mentioned concerns that treating readily

available scores by ESG ratings providers as objective or true sustainability is problematic.

Recent evidence furthermore suggests, that ESG scores by ratings providers are inflated by

greenwashing and empty sustainability claims (see Yang (2021) and Bams and van der Kroft

(2022)).

B Measuring ESG Flows

Aggregate ESG Flows

Price pressure in aggregate ESG returns is driven by flows towards the ESG portfolio wESG
t .

Total cumulative flows into labelled ESG mutual funds from Section 3.3 amount to roughly

$175 billion as of December 2021. However, the flows into labelled ESG do not include the
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(unobservable) ESG tilts of other mutual funds, large investment advisors, pension funds,

banks, insurance companies, and other institutions. Unfortunately, precise data on flows are

only available for mutual funds. 13F institutions report their holdings at the management

company level. Thus flows towards ESG funds within a manager show up as active trades ai
t+1

instead of flow-driven trades Q i
t f i

t+1. To illustrate this point, consider the following simple

example.

Example. Manager i manages two investment funds, an ordinary index fund and an ESG fund

that overweights green stocks and underweights brown stocks. Between t and t +1 investors

withdraw money from the index fund and invest it in the ESG fund provided by the same

manager. Thus total flows f i
t+1 are 0, but the manager buys some green stocks (∆Qt+1,green > 0)

and sells some brown stocks (∆Qt+1,brown < 0). In the aggregated 13F holdings, these trades

only show up as active trades ai
t+1, even though they are purely flow-driven.

In order to address this issue I propose decomposing 13F institutions’ portfolios into different

fund-level portfolios via a simple cross-sectional projection. For simplicity of notation, I am

dropping the fund superscripts i . For every 13F-quarter pair, I am projecting the portfolio

weights onto a set of s = 1, ...,S managed portfolios (or individual funds)

min
{βs

t }S
s=1

||wt ,n −
S∑

s=1
βs

t w s
t ,n ||2

s.t. 0 ≤βs
t ≤ 1 ∀s = 1, ...,S

(2.16)

Thus βs
t are the wealth-shares of individual funds belonging to institution i and w s

t ,n their

corresponding portfolios. As a set of managed portfolios w s
t ,n , I choose the equal-weighted

portfolio wE
t ,n = 1/N i , the market cap-weighted portfolio w Mkt

t ,n = Pt ,n/
∑

n∈N i Pt ,n and the

ESG portfolio wESG
t ,n . (2.16) is essentially equal to a constrained cross-sectional regression of

portfolio weights wt ,n onto a constant (the equal-weighted portfolio wE
t ,n) and characteristics

(the other managed portfolios). The managed portfolios are constructed such that the weights

sum to 1 across the institution’s current holdings N i . This implies rescaling the ESG portfolio

w i ,ESG
t ,n = wESG

t ,n /
∑

n∈N i wESG
t ,n such that

∑
n∈N i wESG

t ,n = 1. The residual from the projection

at ,n = wt ,n −∑S
s=1β

s
t w s

t ,n is a long-short active portfolio that is orthogonal to the managed

portfolios w s
t ,n . The inclusion of the equal-weighted portfolio wE

t ,n furthermore ensures that

at ,n is a net-zero investment portfolio, i.e.
∑N

n∈N i at ,n = 0. The active deviation relative to the

managed portfolios (as a fraction of total assets) is given by

Active Sharet = 1

2

∑
n∈N i

|at ,n | (2.17)

Thus the projection of a fund’s weights onto managed portfolios can be viewed as an extension

to the ‘Active Share’ proposed by Cremers and Petajisto (2009). If the coefficient on the market

portfolio βMkt
t is equal to 1 and the coefficients on all other managed portfolios are equal to 0,

then at ,n = wt ,n −w Mkt
t ,n and the two measures of activeness coincide.

Because the weights in the zero-cost portfolio sum to 0, and all the managed portfolio weights
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w s
t ,n sum to 1 respectively, it must hold that

∑S
s=1β

s
t = 1. The coefficients βe

t , βm
t and βESG

t

can therefore be interpreted as the wealth shares of the individual funds wE
t ,n , wm

t ,n and wESG
t ,n

within the management company i . Figure 2.6 summarizes the ESG tilt across 13F investors.

Panel (a) plots the equal- and value-weighted average ESG tilt across all 13F institutions from

2012 to 2022. The value-weighted ESG tilt βESG
t steadily grew from 7 to 18% in the past 10 years.

As a robustness check, I also add 12 Fama-French industry portfolios to the projection (2.16).

The aggregate ESG tilt and the corresponding total flows to the ESG portfolio are unaffected by

controlling for industry exposures.

Figure 2.6: ESG Tilts across 13F Investors
Panel (a) plots the average equal- and value-weighted ESG tilt βESG

t across all 13F institutions. Formally, I compute
1
I
∑I

i=1β
i ,ESG
t and

∑I
i=1 v i

tβ
i ,ESG
t where v i

t = Ai
t /

∑I
i=1 Ai

t are AUM-weights. Panel (b) plots the fraction of Closet-
ESG investors, both in terms of number of institutions and in terms of assets. Closet-ESG investors are defined
as investors with an ESG-share of over 50%. The grey lines report values obtained when controlling for industry
exposures in the estimation of βESG

t .
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Using the investor-specific ESG tiltsβi ,ESG
t and their total assets under management Ai

t , we can

compute the total ESG assets held by investor i as Ai ,ESG
t = Ai

tβ
i ,ESG
t . Following the literature

on mutual fund flows, I define the flow in the ESG portfolio of investor i as the change in ESG

assets in excess of the valuation gains due to ESG returns. Formally,

F i ,ESG
t+1 = Ai ,ESG

t − Ai ,ESG
t (1+RESG

t+1 ) (2.18)

where RESG
t+1 is the return on the ESG portfolio. Note that empirically, this return may differ

across investors because 13F institutions hold different subsets of stocks N i ⊆ N . Summing

across all investors yields the total flow by 13F investors in the ESG portfolio. Lastly, note that

the ESG tilt βESG
t allows distinguishing 13F investors by their tilt towards sustainable stocks.

I define ‘Closet-ESG’ investors as 13F institutions that hold over 50% of their assets in the

ESG portfolio (i.e. βESG
t > 0.5). Between 2016 and 2021, the total number Closet-ESG funds

grew from 8 to 133. Panel (b) plots the number of Closet-ESG funds and their total assets. The

fraction of assets held by Closet-ESG funds increased over tenfold over the past 10 years.
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Stock-Specific ESG Flows

If one had access to the flows and holdings of all investors i = 1, ..., I , one could decompose

each investor’s trades ∆Q i
t+1,n into a flow-driven and an information-related component as in

e.g. Greenwood and Thesmar (2011) or Lou (2012):

∆d i
t+1,n = f i

t+1Q i
t ,n︸ ︷︷ ︸

Flow-Driven Demand

+ ai
t+1,n︸ ︷︷ ︸

Active Demand

(2.19)

However, the only investor group for which we have precise data on both flows f i
t+1 and

holdings Q i
t ,n at the fund level are mutual funds. 13F institutions only report quarterly holdings

Q i
t ,n . As mentioned above, the aggregation of 13F holdings across funds within a management

company makes it difficult to construct flow-driven trades for 13F investors. However, we can

approximate the flow-driven trades in green stocks using the investor-specific flows in the

ESG portfolio F i ,ESG
t+1 and the corresponding weights w i ,ESG

t .46 For each 13F institution that is

not a mutual fund, I construct f i
t+1 = F i ,ESG

t+1 /Ai ,ESG
t as the relative flow to the ESG portfolio

and Q i
t ,n = (w i ,ESG

t Ai ,ESG
t )/Pt ,n as the corresponding stock-specific holdings within the ESG

portfolio. Total flow-driven demand for each green stock is given by summing the flow-driven

demand across all mutual funds and 13F investors. In order to avoid double-counting we I

omit all 13F institutions that are classified as mutual funds using the corrected type codes

from KY (2019).

∀n ∈ NG : ∆dt+1,n =
I∑

i=1
Q i

t ,n f i
t+1 (2.20)

where NG ⊂ N denotes the subset of green stocks. Because shares outstanding are normalized

to 1, Q i
t ,n are ownership shares and ∆dt+1,n are demand shocks in percent relative to shares

outstanding. Lastly, note that one could construct ∆dt+1,n for alternative subsets of stocks by

decomposing 13F holdings into other managed portfolios and computing the within-manager

flow to the portfolio of interest.

Extracting Non-fundamental ESG Demand

Let 1X
t ,n denote indicator variables equal to 1 if a trade between t −1 and t is an extensive

trade.47 Let ∆Q X
t ,n denote extensive green demand. It is the sum of all extensive trades in stock

n by ESG mutual funds between t −1 and t :

∆Q X
t ,n = ∑

i∈I ESG

1
X
t ,n(Q i

t ,n −Q i
t−1,n) (2.21)

46Recall that the ESG portfolio weights are investor-specific because I normalize them within each investor’s

universe w i ,ESG
t ,n = wESG

t ,n /
∑

n∈N i wESG
t ,n .

47Formally

1
X
t ,n =

{
0 if Qt−1,n = 0 or Qt ,n = 0

1 otherwise
.
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Similarly, the intensive green demand is given by ∆Q I
t ,n =∑

i∈I ESG (1−1X
t ,n)(Q i

t ,n −Q i
t−1,n). As

described above, the goal is to extract the mandate-driven (i.e. non-fundamental) component

of ∆Q X
t ,n . Under the assumption that all fundamental information contained in extensive

trades is also present in intensive trades, we can extract the mandate-driven component from

extensive green demand Q X
t ,n . To this end, I cross-sectionally orthogonalize extensive green

demand with respect to intensive green demand,

∀t :∆Q X
t ,n =βt∆Q I

t ,n +Contr ol s +∆Q⊥
t ,n (2.22)

where Contr ol s includes changes in book equity, total assets and profitability between t −1

and t . One could argue, that intensive trades by ESG funds do not capture all of the funda-

mental information in extensive trades. I therefore also orthogonalize with respect to total

intensive trades (i.e. trades summed across all investors and not just ESG funds). This should

eliminate any variation in ESG funds’ extensive trades that is driven by fundamental informa-

tion. The residual from the regressions, ∆Q⊥
t ,n , is the component of ESG funds’ purchases that

is exclusively driven by exogenous portfolio constraints or mandates. That is, it is a proxy for

non-fundamental ESG demand. However, because ∆Q⊥
t ,n is constructed using only a subset of

all ESG investors, regressions of returns onto ∆Q⊥
t ,n do not capture structural parameters. In

order to approximate total mandate-driven ESG demand, let SESG
t denote the wealth share of

labelled ESG mutual funds relative to total ESG assets AESG
t . Figure 2.7 plots SESG

t over time.

Figure 2.7: Wealth Share of Labelled ESG Mutual Funds
The figure reports the wealth share of labelled ESG mutual funds as a fraction of total ESG assets AESG

t . Total ESG

assets are constructed as the sum of individual investors’ ESG holdings Ai ,ESG
t from Section 3.3.
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The figure suggests that demand from labelled ESG mutual funds is roughly 2% of total

ESG demand. Total mandate-driven ESG demand can be approximated as 1
SESG

t
∆Q⊥

t ,n . The

coefficient obtained from regressions of returns onto total mandate-driven ESG demand

should then reveal the structural parameter. Lastly, note that for simplicity of exposition, the

estimation is split into the construction of ∆Q⊥
t ,n and regressions of returns onto ∆Q⊥

t ,n . This is
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equivalent to simple regressions of returns onto the raw ∆Q X
t ,n , controlling for intensive trades

∆Q I
t ,n .

C Identification

Dividend Reinvestments

Do mutual funds reinvest total dividend payout in their existing portfolio? I assess the extent to

which mutual funds invest a stock’s dividend payout in all other stocks within their portfolios.

Let∆q i
t ,n =Q i

t ,n/Q i
t−1,n −1 denote the percentage change in shares held between two quarters.

If mutual funds reinvest dividend payouts across their entire portfolio, then ∆q i
t ,n should be

significantly related to the dividend flow from all other stocks d f i
t ,−n . I test this in a pooled

regression given by

∆q i
t ,n = θd f i

t ,−n +Contr ol s +ϵi
t ,n (2.23)

where Contr ol s includes a constant, time fixed effects, total fund flows f i
t and log returns

∆pt ,n . Table 2.13 reports the coefficient estimates across different specifications. The dividend-

Table 2.13: Dividend Reinvestments
The table reports the estimated coefficients from the pooled regression of trades ∆q i

t ,n onto dividend flows from

other stocks d f i
t ,−n . Standard errors robust to heteroskedasticity and autocorrrelation are reported in parentheses.

Significance at the 90, 95 and 99% confidence levels is indicated by *,**,*** respectively.

Quarterly trades ∆q i
t ,n

(1) (2) (3) (4) (5) (6)

Dividend Flow d f i
t ,−n 4.88*** 5.83*** 2.52*** 2.44*** 1.21** 1.91***

(0.807) (0.836) (0.545) (0.408) (0.502) (0.554)

Total Flow f i
t - - 0.61 0.67 0.27 0.21

- - (0.046) (0.035) (0.027) (0.025

Stock Return ∆pt ,n - - -0.02 -0.03 -0.04 -0.04

- - (0.003) (0.003) (0.012) (0.018)

Div. per Share Dt ,n - - - -0.01 0.02 -

- - - (0.001) (0.008) -

Quarter FE No Yes Yes Yes Yes Yes

Large Dividend Flow (d f i
t ,−n > 1%) No No No No Yes Yes

Exclude Dividend Stocks No No No No No Yes

scaling coefficient θ is significantly positive across all specifications. Thus, on average mutual

funds reinvest their dividend payouts across all other stocks in their portfolios. Specification

(5) estimates the impact of large dividend flows that exceed 1% of the fund’s total assets.

The scaling coefficient is close to 1, suggesting that when funds receive large total dividend
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flows, they proportionately scale up all their existing positions. Specification (6) excludes

dividend-paying stocks. While this greatly reduces the number of observations, the dividend

scaling coefficient remains highly statistically significant. Lastly, note the effect of total relative

flows f i
t on quarterly trades is highly statistically significant across all specifications. The

estimated coefficient is comparable in magnitude to Lou (2012). Mutual funds scale their

existing portfolio holdings in response to both, total in- and outflows, and total payouts from

dividends.

Instrument Relevance

The significant relationship between flow-driven purchases and contemporaneous returns

(i.e. the relevance of the instrument) has been shown at least since Lou (2012). Schmickler

and Tremacoldi-Rossi (2022) furthermore show that the trades induced by dividend flows are

significantly related to contemporaneous stock returns. This paper uses their instrument to

identify exogenous price shocks in the first stage. Recall, that the first stage regression is given

by

∆p i
t ,n = θi D I T −i

t ,n +ϵi
t ,n

where D I T −i
t ,n is the dividend-based instrument and ϵi

t ,m includes the control variables log

book equity, profitability, investment, and market beta. I estimate the first stage in a pooled

panel regression for the subset of stocks held by Thomson Reuters’ institutional type codes.

Figure 3.3 reports the t-statistic of θi for each institutional type. The t-statistic exceed the

critical weak-instrument threshold of of 4.05 (see Stock and Watson, 2005) for all institutional

types.

Figure 2.8: Weak Instrument Test
The figure reports the t-statistic on the coefficient θi for each institutional type. The red dotted line indicates the
weak instrument threshold of 4.05 (see Stock and Watson, 2005).
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Chapter 2. Flow-Driven ESG Returns

Identification using Benchmarking Intensity

The central object of the relationship between flow-driven demand and realized returns is in-

vestors’ elasticity of demand. The parameter estimates critically depend on a valid instrument,

i.e. exogenous variation in prices that is orthogonal to the investor’s own latent demand shocks.

In this section I explore the stability of the estimates to an entirely different instrument. In

particular, I use the benchmarking intensity by Pavlova and Sikorskaya (2022) as exogenous

supply shocks to identify investors’ demand elasticities. I kindly thank Anna Pavlova and

Taisiya Sikorskaya for generously sharing their data with me.

Benchmarking Intensity. If the aggregate demand for equities is downward-sloping, changes

in the supply of stocks can have significant price effects. These supply shifts can in turn be

used to identify investors’ demand elasticities. If benchmarked (or passive) investors increase

their holdings in a given stock, they are effectively reducing its supply. Pavlova and Sikorskaya

(2022) construct each stock’s benchmarking intensity as the AUM-weighted sum across index

weights:

B M It ,n =
∑

x Ax
t w x

t ,n

Pt ,n
(2.24)

where w x
t ,n is the portfolio weight of stock n in index x at time t and Ax

t is the total amount of

exchange traded funds’ and mutual funds’ assets benchmarked to index x. Changes in a stock’s

benchmarking intensity between two quarters, ∆B M It ,n , represent a change in the stock’s

effective supply and may be used as an exogenous shock to identify elasticities. However,

changes in benchmarking intensity may be driven by fundamental news (or price increases

themselves) that cause index additions and deletions. Pavlova and Sikorskaya (2022) address

the potential endogeneity by only using changes in benchmarking intensity across the Russell

1000/2000 cutoff. However, the amount of observations around the Russell cutoff are not

sufficient to estimate the structural model in Section 3.4. Despite the potential endogeneity

concerns, I therefore use the raw ∆B M It ,n across all stocks and quarters to identify investor-

specific demand elasticities. While this instrument is imperfect, it serves as a useful robustness

check that similar elasticity estimates can be obtained using a completely different instrument

from a separate study.

Table 2.15 summarizes the impact of ESG demand shocks identified from changes in bench-

marking intensities. The estimates are close to the estimates identified from the flow-based

instrument (see Table 2.3). The average price impact of the demand for green stocks is 1.17%

respectively. Recall, that the multiplier identified from the flow-based instrument is 1.11%.

Thus the multiplier identified via benchmarking intensity is slightly higher but lie in the same

ballpark.

78



2.8 Proofs and Supplementary Material

Table 2.14: Multiplier Matrix identified from Benchmarking Intensity
The table summarizes the price impact M of green demand onto green g and non-green stocks b. (i.e. diagonal
and off-diagonal elements of the multiplier matrix M ) identified from from changes in Benchmarking Intensity
∆B M It ,n (see Pavlova and Sikorskaya (2022).

Cross-Multipliers (×104)

Mg Mg g Mbg

Mean 1.17 -0.82 1.50

Std. (1.06) (29.48) (33.99)

10th Pctl. 0.35 -8.46 -6.27

Median 0.83 0.00 0.18

90th Pctl. 2.5 6.61 10.87

Fraction Positive
Spillovers 50% 61%

Identification using Flow Shocks

Following van der Beck (2022), I construct an alternative instrument for each investor by

aggregating the surprise flow-induced trades by all other mutual funds,

f −i
t ,n =

I∑
j ̸=i

f j ,⊥
t+1Q j

t ,n (2.25)

where f j ,⊥
t+1 is the flow into fund j between t and t + 1 orthogonalized for fund character-

istics, holdings and returns. In particular, I obtain the surprise flow f j ,⊥
t as the residual in

cross-sectional regressions of fund flows f j
t onto fund characteristics. The characteristics are

portfolio weighted greenness, value, size, momentum, profitability, investment and idiosyn-

cratic volatility as well as the funds’ own contemporaneous returns. Thus the flow shocks are

orthogonal to the fund’s portfolio tilts. This addresses the endogeneity concern that flows are

driven by fundamental news regarding the fund’s underlying assets. See van der Beck (2022)

for details.

D Details on Estimation and Variable Construction

Pooling by Institutional Types

In order to pool investors into groups, I start by computing each investor’s active share as of

quarter t as

Active Sharei
t =

1

2

∑
n
|w i

t ,n −w M
t ,n | (2.26)
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Table 2.15: Multiplier Matrix identified from Flow Shocks
The table summarizes the price impact M of green demand onto green g and non-green stocks b. (i.e. diagonal
and off-diagonal elements of the multiplier matrix M ) identified from flow shocks (see van der Beck (2022).

Cross-Multipliers (×104)

Mg Mg g Mbg

Mean 2.78 -16.56 -9.81

Std. (0.72) (62.99) (40.27)

10th Pctl. 1.81 -41.63 -24.23

Median 2.82 -3.68 -1.31

90th Pctl. 3.67 0.00 0.56

Fraction Positive
Spillovers 10% 21%

which measures a fund’s deviation from holding a passive market portfolio. I define index

funds as 13F institutions with Active Sharei
t < 0.01. These are all investors who tilt less than

1% of their portfolio away from passive market weights. For the remaining investors, I use

Thomson’s institutional type code labels, which split investors into banks, pension funds,

investment advisors, insurance companies, mutual funds and other. I divide the largest

investor groups, investment advisors and mutual funds, into activeness terciles based on their

Active Sharei
t . The resulting groups are labelled rigid, medium and elastic. I estimate group-

specific demand curves using the two-step procedure in (2.12) by pooling the observations of

all institutions within a group.

Estimated Coefficients by Investor Type

I estimate elasticities over the panel of quarterly holdings from 2010 to 2020 including time

fixed effects. Table 2.16 reports the estimated coefficients for all investors. The first row reports

the estimates for a pooled regression across all investors. The pooled elasticity is 1.05, which

implies that on average institutions sell 1.05% of their holdings in a stock when the price

increases by 1%.48 The remaining rows report the elasticities obtained in a pooled estimation

across institutional types. There is great heterogeneity in the estimated elasticities ζi across

types. ζi is the lowest for insurance companies and large passive investment advisors investors

such as Blackrock, Fidelity and Vanguard. Active mutual funds are the most elastic investors

with an elasticity of 3.2. The second column reports the elasticities estimated from the cross-

section of quarterly holdings Q i
t ,n instead of trades ∆q i

t ,n . The estimates are considerably

smaller for the majority of investors.

48Note. that ζi only approximates the true elasticity. The next section provides a thorough description on how to
structurally construct exact elasticities.
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Table 2.16: Demand Curves by Investor Type
The table reports the estimated demand curves for different groups of investors. The trades ∆q i

t ,n are pooled over
stocks, quarters and institutional types, such that one demand curve is estimated per investor group. Formally, the
estimation equation is given by

∀ j = 1, ..., J :∆q
j
t ,n =−ζ j∆p̂t ,n +ϵt ,n .

where ∆p̂t ,n is the fitted return from dividend flow demand shocks and ϵt ,n includes the control variables log
book equity, profitability, investment and market beta. Institutional types (split by active share) are denoted by
j = 1, ...J and include mutual funds, investment advisors, households, pension funds, insurance companies, and
other 13F institutions. Standard errors (in parentheses) are robust to heteroskedasticity and autocorrelation.

ζi Identified from Trades ∆qt ,n ζi Identified from portfolio holdings Qt ,n

van der Beck (2022) Koijen and Yogo (2019)

Pooled All

1.054 (0.033) 0.282 (0.001)

Pooled by Type

Mutual Funds

High Active Share 3.198 (0.305) 0.744 (0.004)

Medium Active Share 2.660 (0.298) 0.477 (0.004)

Low Active Share 1.296 (0.092) -0.142 (0.003)

Investment advisors

High Active Share 0.924 (0.120) 0.795 (0.002)

Medium Active Share 0.250 (0.103) 0.624 (0.001)

Low Active Share 0.424 (0.046) 0.521 (0.001)

Banks 1.292 (0.118) 0.238 (0.002)

Pension funds 0.838 (0.081) 0.322 (0.002)

Insurance companies 0.387 (0.168) 0.321 (0.003)

Other 13F Instiutions 0.039 (0.226) -0.415 (0.003)

Households 0.724 (0.244) 0.530 (0.009)
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Incorporation in Logit Framework and Asset Substitution

Motivated by the fact that portfolio weights are log-normally distributed in the data, KY (2019)

propose (and microfound) a logit framework for the demand of investor i :

logδi
t ,n = (1−ζi ) logPt ,n +εi

t ,n (2.27)

where δi
t ,n = w i

t ,n/w i
t ,0 is the portfolio weight relative to the weight in an outside asset w i

t ,0 and

εi
t ,n includes a constant, observable characteristics and a residual. The portfolio constraint

that
∑

n∈N i w i
t ,n = 1−w i

t ,0 implies that

wt ,n = δi
t ,n

1+∑N
m=1δ

i
t ,m

. (2.28)

The logit framework ensures that portfolio holdings add up to total assets and that holdings

cannot be negative (as observed in the 13F filings). Note that we can rewrite logδi
t ,n = logQ i

t ,n+
logP i

t ,n − log w i
t ,0 Ai

t . Rearranging and taking first differences yields49

∆q i
t ,n =−ζi

t∆pt ,n +ϵi
t ,n (2.29)

where ϵi
t ,n =∆ log(w i

t ,0 Ai
t )+∆εi

t ,n . The first-difference estimator has the distinct advantage

of eliminating any time-invariant drivers of cross-sectional portfolio holdings that are cor-

related to prices. In a simple simulation, van der Beck (2022) shows that (2.29) successfully

eliminates the ommitted variable bias from unobservable portfolio tilts that are slow-moving

and correlated to the cross-section of prices.

A first-order approximation of investor’s demand elasticity is given by the scalar regression

coefficient −∆q i
t ,n

∆pt ,n
= ζi . However, this measure of elasticity does not ensure that the investor’s

portfolio weights add up to 1, (or alternatively: that her assets Ai
t remain unchanged). In order

to ensure that the budget constraint holds we need to plug the estimated coefficient into (2.28).

To this end, note that log w i
t ,n = logQ i

t ,n + logP i
t ,n − log Ai

t . Differentiating and rearranging

yields the following elasticity

−∂ logQ i
t ,n

∂ logPt ,n
= ζi +w i

t ,n(1−ζi )︸ ︷︷ ︸
Portfolio Constraint

. (2.30)

The elasticity is given by ζi plus a correction term, which ensures that portfolio weights add

up to 1.50 Precisely because of the portfolio constraint, price changes have spillover effects to

49KY (2019) actually propose re-estimating 2.27 over the cross-section of portfolio weights every quarter t
resulting in time-varying coefficients ζi

t . Empirically, however, the coefficients remain very stable in the time-
series. Thus the correction term for time-varying coefficients in the first-difference estimator is small and can
be ignored. In fact, estimating constant demand coefficients ζi in a panel regression including time-fixed effects
leads to essentially the same demand curves (see van der Beck and Jaunin (2021) and Koijen et al. (2022))

50The correction term is negative, if the investor is very elastic ζi > 1. In this case the dollar holdings (not the
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other stocks. Cross-elasticities are given by

− ∂ logQ i
t ,n

∂ logPt ,m
= w i

m,t (1−ζi ).51 (2.31)

We can stack the elasticities into an elasticity matrix −∂ logQ i
t

∂ logP ′
t
∈RN×N given by

−∂ logQ i
t

∂ logP ′
t
= ζi I + (1−ζi )1w ′

t , (2.32)

where I is the identity matrix and 1 is a vector of ones. Thus the logit framework allows

transforming the simple scalar regression coefficient ζi into a demand-elasticity matrix that

accounts for spillover effects across the entire cross-section of holdings.

Details on the Flow Simulation

Let ∆P ESG-Flow
t+1 denote vector of price pressures (expressed in dollars) resulting from $X flow

from the market portfolio towards the ESG portfolio. Equation (2.7) implies that

∆P ESG-Flow
t+1 =Mt (wESG

t −w MF
t )∗$X

Note, that (2.7) is expressed in percentage terms (i.e. the return ∆pt+1,n resulting from a de-

mand shock in percent of shares outstanding). It can also be expressed in terms of dollar terms

by multiplying by prices Pt ,n (which are equal to market equities due to the normalization).

The price pressure in percentage terms for each stock n is given by

∆pESG-Flow
t+1,n =

∆P ESG-Flow
t+1,n

Pt ,n

Note, that true (empirically observed) realized returns of the ESG portfolio are given by RESG
t+1 =∑

n τt ,nrt+1,n = τ′t rt+1. The structurally implied price pressure from $X ESG flows is given by

Pr essur eESG
t+1 =

N∑
n=1

τt ,n pESG-Flow
t+1,n

A first order approximation of the counterfactual ESG returns in the absence of flow-driven

price pressure is therefore given by

R̃ESG
t+1 = RESG

t+1 −Pr essur eESG
t+1

number of shares held!) in stock n is decreasing in price of n and we have to make a downward adjustment to the
elasticity to satisfy the portfolio constraint.

51Again, if ζi > 1 an increase in the price of stock m reduces the dollar holdings in stock m and the freed up cash
is invested in all other stocks, causing spillover effects proportional to the size of the shock to m given by w i

m,t .
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. Table 2.17 reports the ESG portfolio’s counterfactually observed alpha in the absence of price

pressure arising from simulated sustainable flows of $10 and $25 billion quarterly.

Table 2.17: ESG Alpha without Flow-driven Price Pressure
The table reports annualized long-short returns and alphas of the ESG portfolio from 2016 to 2021. On the left I
report the empirically observed alphas. On the right, I report the counterfactually observed alphas without the
price pressure from simulated sustainable flows. The long-short ESG portfolio τt is the zero-investment portfolio
that goes long the ESG portfolio wESG

t and short the aggregate mutual fund portfolio w MF
t . Alphas are computed

with respect to the CAPM, the CAPM plus the Green Factor in PST (2022), and Carhart 4-factor model plus the
Green Factor. The standard errors are robust to heteroskedasticity and autocorrelation.

Return
α

(CAPM)

α

(CAPM + Green)

α

(CH4 + Green)

True Returns: Empirically Observed

Return (%) 2.01 2.40 1.87 1.51

t-statistic 2.91 3.47 2.55 2.01

Counterfactual Returns: In Absence of
Flows of Simulated Flow $25B

Return (%) 0.66 1.05 0.5 0.12

t-statistic 0.86 1.36 0.6 0.14

The price pressure from quarterly ESG flows of $10 billion is already sufficient to account for

almost all of the outperformance of ESG funds. Furthermore, in the absence of $25 billion

quarterly ESG flows, the counterfactual returns and alphas of the ESG-taste portfolio are all

negative. In contrast, the realized (i.e. truly observed) returns and alphas are all significantly

positive. These results emphasize the sizeable gap between realized and expected returns

from ESG investing that is driven by flows to sustainable funds. This suggests that without

continued flow to sustainable funds, ESG investing may have negative alpha. In other words, it

is the price pressure from ESG flows that made ‘doing well by doing good’-investing possible.

Variable Construction

• Book Equity: Book equity is constructed following Fama and French. It is the book value

of stockholders’ equity, plus balance sheet deferred taxes and investment tax credit,

minus the book value of preferred stock.

• Market beta: Stocks’ market betas are estimated in a regression of monthly returns over

the one-month T-bill. We use 60-month rolling windows and require a minimum of 24

months of returns.
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• Profitability: I use the Fama and French definition, i.e. revenues minus cost of goods

sold, interest expense, and selling, general, and administrative expenses divided by book

equity for the last fiscal year end in t −1.

• Investment: Investment is the annual growth rate of assets computed as a log difference.

• Idiosyncratic volatility: Idiosyncratic volatility is computed as the monthly time series

standard deviation of residual returns. Residual returns are obtained from regressing

daily returns onto daily realization of the market, size and value factor.

• Turnover: Turnover is the total share volume in a given month (as reported on CRSP)

divided by the total shares outstanding.

• Momentum: Momentum is computed as the total return over the past 11-months,

excluding the most recent month.

• Sin Stocks: Tobacco and alcohol stocks are defined as belonging to the Fama and French

SIC classification groups 4 and 5 respectively. Gaming stocks are identified using NAICS

codes 7132, 71312, 713210, 71329, 713290, 72112, and 721120.

• MSCI Controversial Stocks: Stocks in the biotech, firearms, oil, military and cement

industry are identified using SIC codes 2833–2836, 1300, 1310–1339, 1370–1382, 1389,

2900–2912, 2990–2999, 3240–3241, 3760–3769, 3795, 3480–3489 and NAICS codes 336992,

332992–332994.

• Co2 Emissions: Total Co2 Emissions are scaled by revenue. As the fraction of US stocks

with available Co2 emissions is relatively small, I compute an additional proxy for Co2

emissions which fills missing observations with the median emissions within Fama and

French 48 industries.
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Chapter 3

The Equity Market Implications of the
Retail Investment Boom

3.1 Introduction

The emergence of commission free brokerage has changed the investment landscape for small

retail investors. The online trading platform “Robinhood Markets Inc.” was the first brokerage

to offer costless trading to households - a large group of potentially less sophisticated investors.

During the onset of the Covid-19 pandemic, its users (henceforth Robinhood traders) have

received considerable attention by the media.1 A reoccurring narrative has been that retail

trading activity may be the driver of many sudden surges in equity valuations observed during

the first half of 2020. A popular example is the car rental company Hertz. Shortly after it

filed for bankruptcy on May 22nd, 140,000 Robinhood traders added Hertz to their portfolios.

Hertz’s share price simultaneously jumped by over 1,000%. However, it was the beginning

of 2021 that put retail traders’ price impact at the center of attention. On “r/wallstreetbets”,

which is a subforum on the message board Reddit, retail traders coordinated to collectively

purchase shares and call options of several companies they deemed undervalued. Within the

second half of January 2021, the share price of the video game retailer GameStop rose from

20$ to 486$. There exists widespread belief that retail traders can affect the price of small

companies such as Hertz or GameStop.2 However, given their small assets under management,

it seems unlikely that retail investors can affect the aggregate US stock market with a market

capitalization of over $40 trillion, or the share price of large individual companies such as

General Electric, Ford or General Motors. Furthermore, it is unclear why and over which

1The Wall Street Journal, July 25, 2020: “Everyone’s a Day Trader Now”; Financial Times, August 17, 2020:“Retail
trading app Robinhood’s value tops $11bn on new fundraising”; Bloomberg News, July 13, 2020: “Ten Thousand
Day Traders an Hour Are Buying Tesla Shares”; Business Insider, July 14, 2020: “Nearly 40,000 Robinhood day traders
added Tesla shares in 4 hours Monday as the stock whipsawed”

2Bloomberg News, June 12, 2020: “Day Traders Might Have Fun Saving Hertz From Bankruptcy”; Financial
Times, January 22, 2021: “GameStop shares leap as day-trading ‘mob’ tussles with short seller”
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horizon non-fundamental retail demand shocks impact prices.

Motivated by these events, we seek to quantify the impact of retail traders’ demand on the

US equity market within a structural model of asset demand. In our analysis, we specifically

consider the demand of Robinhood traders. We focus on the onset of the Covid-19 crisis from

January to July 2020. The first two quarters of 2020 (henceforth Q1 and Q2) are well-suited to

assess the impact of retail investors’ demand. In early 2020, the pandemic came as an exoge-

nous shock which altered the perspectives of many firms and induced financial institutions to

rebalance their portfolios. Simultaneously, retail trading activity - presumably fueled by com-

mission free brokerage, stimulus checks and a lack of consumption opportunities - increased

sharply. This paper investigates the dual role played by Robinhood traders in accommodating

market-wide supply shocks during Q1 and amplifying the extraordinary recovery in Q2. We

motivate our analysis in reduced form by showing a positive relationship between Robinhood

demand and stock returns during Q2. We identify Robinhood demand using a novel dataset

of account holdings from “Robinhood Markets Inc.” provided by Robintrack. We find that

the abnormal returns of a portfolio that longs high demand stocks and shorts low demand

stocks are significantly greater than zero from April to June. Furthermore, we document

a significantly positive cross-sectional relationship between stock returns and Robinhood

demand, controlling for a range of stock-specific characteristics. Based on these findings we

investigate the following question: To what extent did Robinhood demand affect prices during

the stock market crash in Q1 and the subsequent recovery in Q2?

As reduced-form regressions cannot answer this question, we estimate a demand system

along the lines of Koijen and Yogo (2019) (henceforth KY) to quantify the impact of the

retail investment boom. Their “Demand System Approach to Asset Pricing” accounts for

the endogeneity of demand and prices, and is therefore able to elicit the causal effect of

Robinhood demand on prices. We approximate the Robinhood portfolio using data from

Robintrack and institutional portfolios using 13F filings. The residual shares not held by 13F

institutions or Robinhood traders make up the household portfolio as in KY (2019). Since

institutional holdings are only available quarterly, we restrict our analysis to this frequency. We

stress that an exact quantification of Robinhood traders’ price impact is impaired by the fact

that their true holdings remain unobserved. However, we provide a reasonable approximation

of the Robinhood portfolio using the number of Robinhood accounts invested in each stock,

which is publicly available on Robintrack. We emphasize that this approximation is the best

one can do given the currently available data on retail and institutional investors’ equity

holdings.3 We then estimate characteristics-based demand curves for institutional investors,

households and Robinhood traders, taking into account the endogeneity of prices and latent

demand. In contrast to KY (2019), our focus lies on running counterfactual experiments. More

specifically, we want to assess the counterfactual equilibrium observed in the absence of

Robinhood traders. KY (2019) re-estimate demand quarterly and hence obtain time-varying

demand curves. In a deviation from their methodology, we estimate demand over the panel

3We furthermore provide simulations which suggest that our qualitative results are not driven by potential
misapproximations.
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of observed portfolio holdings and obtain time-invariant demand curves. This substantially

increases the number of observations for each investor and therefore raises the statistical

significance of the estimated demand curves. It furthermore facilitates the incorporation of

Robinhood traders’ demand curves in the institutional demand system. The responsiveness

of investors’ portfolio allocation to the price is given by the estimated demand coefficient

on the characteristic market equity. This coefficient drives an investor’s demand elasticity

with respect to the price. We find an extremely low price elasticity for institutional investors,

who hold roughly 65% of the US equity market. In fact, 39% of all invested wealth is held by

passive institutional investors that are fully inelastic. This inelasticity of equity markets, which

is potentially driven by investment mandates and the rise of passive investing, is in line with

recent findings by ?. We find that it is the inelastic demand response of institutional investors

that allows Robinhood traders’ demand shocks to have sizeable price effects.

Based on the estimated demand curves and assets under management (AUM) disclosed in

Robinhood’s S-1 filing, we impose market clearing to derive an equilibrium price for each

stock, which is a function of exogenous stock-specific fundamentals as well as the estimated

demand coefficients and AUM of institutions, households, and Robinhood traders. We use

the market clearing condition in three counterfactual experiments. First, we decompose the

cross-sectional variation in log returns during Q1 and Q2 into supply- and demand-driven

components. We find that in Q1 much of the variation in stock returns was driven by real

effects, i.e. changes in fundamentals. During the recovery in Q2 however, the majority of return

variation was driven by demand effects, i.e. flows between investors. Despite their negligible

market share, we show that Robinhood traders accounted for 10% of the cross-sectional

variation in stock returns.

Second, we estimate a counterfactual US equity market in the absence of Robinhood traders

in 2020. To this end, we redistribute Robinhood traders’ assets across all other investors

during Q1 and Q2. The resulting counterfactual market prices approximate what equity

valuations would have been without the retail investment boom. Our findings suggest that

Robinhood traders were providing considerable liquidity to the equity market during the crash

and amplified the recovery in Q2. Decomposing the crash and recovery into size quintiles,

we find that Robinhood traders’ price impact is concentrated towards smaller stocks. In July

2020, Robinhood demand accounted for 25% of the aggregate market capitalization of the

smallest size quintile and over 40% of the market capitalization of the smallest size decile.

The price impact decreases monotonically moving to larger percentiles. Furthermore, the

aggregate market capitalization of both energy and industrial stocks would have been almost

1% lower without the presence of Robinhood traders. We compute standard errors around

the counterfactual equilibrium via simulating alternative demand curves and find that both

the estimated elasticities as well as Robinhood traders’ equilibrium price impact are highly

statistically significant.

Third, we examine the effects of Robinhood traders on the time-series volatility of individual

stocks. To this end, we extend the demand system to jointly match prices and Robinhood
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holdings at a daily frequency. We find, that except for a few idiosyncratic herding events,

Robinhood trading activity lowers the volatility for the majority of all stocks. In particular, 71%

of the stocks not directly traded on Robinhood have a lower volatility due to the presence of

Robinhood traders.

Fourth, we assess the return implications of the retail investment boom for individual stocks.

We show that Robinhood traders’ price impact can be approximated as a product of their

ownership share and an inelasticity multiplier. A stock’s inelasticity multiplier is determined

by the ownership-weighted demand elasticity of its investor base. Robinhood traders hold a

relatively small fraction of the total shares outstanding for stocks within the S&P500. We show

that they nevertheless provided considerable liquidity for some large individual stocks in Q1

and strongly amplified their subsequent recovery in Q2. Robinhood traders’ outsized price

impact is driven by the fact that these stocks have high multipliers, as they are primarily held

by large passive investors with strongly inelastic demand curves. These findings shed light on

the recent events in January 2021. While GameStop was subject to substantial short interest by

hedge funds, its long investor base was primarily inelastic. We find that, as of July 2020, the

inelasticity multiplier was 5.5. This implies that, ceteris paribus, buying 10% of GameStop’s

shares outstanding results in a 55% price increase.

Related Literature This paper is located within the recent and growing literature on the inelas-

tic nature of equity markets. This literature has its roots in some early attempts to estimate

the slope of aggregate equity demand (Shleifer, 1986; Wurgler and Zhuravskaya, 2002). In

their “Demand System Approach to Asset Pricing”, KY (2019) propose a practical framework

to estimate investor-specific demand functions and, imposing market clearing, derive equi-

librium prices consistent with these demand functions. In a follow-up paper, Koijen et al.

(2022) link global valuation ratios to the estimated demand coefficients of different investor

groups. While we closely follow the methodology of KY (2019), we adopt the panel estimation

from Koijen et al. (2022) in order to obtain time-invariant demand curves which increases

statistical significance and facilitates the incorporation of Robinhood traders’ demand. In

a closely related paper, Gabaix and Koijen (2021) estimate the macro-elasticity of demand

for the aggregate stock market and find that investing $1 in the market portfolio increases

the aggregate stock market capitalization by $5. We, on the other hand, are concerned with

the micro-elasticity of demand and Robinhood traders’ impact on the cross-section of stock

returns.

More generally, this paper relates to the large literature analyzing the trading behavior of retail

investors. Barber et al. (2008) find that stocks that retail investors are buying (selling) exhibit

positive (negative) abnormal returns in the current and following weeks. These findings are

confirmed by Boehmer et al. (2020) who find that retail order flow predicts the cross-section

of stock returns over the following three weeks. In line with these findings, we show that the

stocks bought by Robinhood traders display positive abnormal returns in Q2. Barrot et al.

(2016) show that the retail sector provides liquidity to the equity market in times of stress.

Likewise, we find that Robinhood traders acted as liquidity providers during the stock market
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crash in March 2020.

Our paper furthermore contributes to the recent literature analyzing the trading behavior of

Robinhood users. Barber et al. (2020) find that the information displayed on the Robinhood

trading platform incites investor herding to a level that can impact prices.4 Glossner et al.

(2020) and Welch (2021) find suggestive evidence that Robinhood traders provided liquidity

during Q1.5 We quantify their findings and furthermore show that Robinhood also contributed

positively to the surge in equity prices in Q2. Lastly, Eaton et al. (2021) use intraday data to

show that Robinhood platform outages are associated with higher market liquidity among high

attention stocks favored by Robinhood traders. They argue that zero-commission investors

increase market makers’ inventory risk. This hypothesis is distantly related to ours, as inelastic

market participants can be viewed as a source of inventory risk for market makers.

The remainder of this paper is structured as follows. Section 3.2 describes the stock market

and holdings data. Section 3.3 motivates our investigation via a reduced-form analysis of

the relationship between Robinhood demand and stock returns. Section 3.4 describes the

demand system and the estimation procedure. Section 3.5 presents our empirical results on

the impact of Robinhood traders on the equity market. Section 3.6 concludes.

3.2 Data

A Stock Characteristics

While this study focuses on the impact of Robinhood demand on the US equity market during

the first half of 2020, the estimation of demand curves is based on data reaching back to 2005.

The accounting and financial data used in this paper are obtained from Refinitiv. Our initial

sample of stocks is comprised of all ordinary common shares traded on the New York Stock

Exchange (NYSE), the NYSE American, and NASDAQ between January 2005 and June 2020.6

We follow KY (2019) and use log market equity, log book equity, profitability, investment,

dividends to book equity, and market beta as stock-specific characteristics in the demand

estimation. Profitability is the ratio of operating profits to book equity. Investment is the

annual growth rate of assets computed as a log difference. Dividends to book equity is the

annual split-adjusted dividend divided by book equity. Stocks’ market betas are estimated in a

regression of monthly returns over the one-month T-bill.7 Finally, profitability, investment,

and market beta are winsorized at the 2.5th and 97.5th percentile in the cross-section, while

dividends to book equity is winsorized at the 97.5th percentile. We construct an outside asset

from the set of firms which are either not headquartered in the US, are real estate investment

4In a complementary paper, Ozik et al. (2020) provide evidence that attention-grabbing stocks were more
heavily traded on Robinhood during the Covid-19 crisis.

5Similarly, Pagano et al. (2020) show that Robinhood traders engaged in contrarian trading during the crisis.
6We ignore stocks with missing shares outstanding and prices.
7We use 60-month rolling windows and require a minimum of 24 months of returns.
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trusts (i.e, GICS classification 601010) or have missing characteristics. Excluding the outside

asset, our final investment universe contains 2,078 stocks in Q1 and 2,117 in Q2. When we

refer to time spans, we use Q1 and Q2 to denote the time span from January 1st to March 31st,

2020 and April 1st to June 30th, 2020 respectively. When we refer to dates, we use Q1 and Q2 to

denote March 31st and June 30th. These dates are chosen in line with the reporting dates at

which 13F institutions have to file their holdings with the SEC.

B Institutional Holdings

In the US, institutional investment managers holding over $100M in designated 13F secu-

rities must report their quarterly holdings in Form 13F with the Securities and Exchange

Commission (SEC). We obtain the data on 13F institutional stock holdings from the Refinitiv

Ownership database. Based on Refinitiv’s investor labels, we group institutions into six types:

banks, pension funds, insurance companies, investment advisors, hedge funds, and others.

In the construction of institutional portfolios, we closely follow the methodology proposed by

KY (2019). In order to keep the exposition as comprehensible and parsimonious as possible,

we refer the reader to the detailed description in their paper and to Appendix B of this paper.

We compute the percentage of ownership as the number of shares held divided by shares

outstanding. Finally, we construct each institution’s equity portfolio weights as the dollar

holdings in each stock (price times shares held) divided by their AUM. We compute assets

under management as the sum of an institution’s dollar holdings.

C Robinhood and Household Holdings

Founded in 2013, “Robinhood Markets Inc.” has been one of the fastest growing online

brokerages. While Robinhood does not disclose the actual number of shares held by its user

base, the number of registered accounts invested in a particular stock over time is publicly

available and has been compiled on Robintrack from March 2018 to August 2020.8 We start

from the Robintrack dataset and exclude holdings outside our investment universe. Let

Ht (n) denote the number of Robinhood accounts holding stock n at time t . Figure 3.1 plots

the average number of Robinhood accounts holding a stock, i.e. 1
N

∑N
n=1 Ht (n), from 2018

until 2020. The figure emphasizes the surge in retail trading activity during the onset of the

pandemic, a time at which the S&P500 plunged.

8The website https://robintrack.net/ relied on Robinhood’s own API to obtain the counts of open stock-account
positions on the platform. Since Robinhood does not allow its users to short sell, this number solely reflects long
positions. Options are also excluded from the count. The API was decommissioned in August 2020.
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Figure 3.1: Evolution of Robinhood Account Holdings
The left axis of the figure plots the daily average number of Robinhood accounts holding a stock within our
investment universe. The number of accounts holding a stock Ht (n) is directly reported on Robinhood and has
been compiled until August 2020 by Robintrack. The right axis plots the level of the S&P500 over time.

Appendix C reports further summary statistics on Ht (n) for Q1 and Q2. Between Decem-

ber 2019 and June 2020 the number of open stock-account positions on Robinhood, i.e.∑N
n=1 Ht (n), grew from 6 million to 19 million. On May 4th, 2020, Robinhood announced

that it currently had 13 million users and had signed 3 million new users in the first quarter

alone. These numbers suggest that the boom in retail trading manifested itself in both the

entry of new retail traders and an increase in their average portfolio size. The cross-sectional

distribution of Ht (n) is strongly (positively) skewed. As of June 2020, the majority of stocks are

held by less than 1,000 Robinhood accounts, while some exceptionally popular stocks such as

Ford or General Electric are held by more than 500,000 users.

While the construction of institutional portfolios via 13F filings requires little additional

assumptions, the construction of the Robinhood portfolio is less straight-forward, as we

do not observe the actual amount of shares held by Robinhood traders. However, we can

construct a proxy for their portfolio weights using Ht (n). Let 1a,t (n) be an indicator function

equal to 1, if Robinhood account a holds stock n in his portfolio at time t . The number of

accounts holding n at time t is then given by Ht (n) =∑Ut
a=11a,t (n) where Ut is the total number

of registered Robinhood users. Cross-sectional differences in Ht (n) indicate which stocks

are relatively preferred by Robinhood traders. Assuming that every account holding a stock

(1a,t (n) = 1) represents an equal amount of dollars, the representative Robinhood portfolio

weight in stock n at time t is given by

wRH
t (n) = Ht (n)∑N

n=1 Ht (n)
. (3.1)

See Appendix C for a proof as well as a set of alternative and less restrictive assumptions under
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which (3.1) holds.

In anticipation of its initial public offering on July 29th, 2021, Robinhood released its SEC S-1

filing on July 1st. The file contains the exact number for Robinhood’s users and assets under

management for March 31st and December 31st of 2020. The number of Robinhood’s total

users grew from 7.2 to 12.5 million. Over the same horizon, the total equities held by all users

quadrupled from $13.5 to $53 billion. Using the AUM figures along with the portfolio approxi-

mation (3.1), we can reverse-engineer Robinhood traders’ share holdings (see Appendix C for

details). In order to ensure market clearing, we follow KY (2019) and construct a household

sector as the residual shares outstanding not held by 13F institutions and Robinhood traders.

In addition, we merge institutions with less than $10 million under management or without

any holdings in the inside and/or outside assets to the household sector, which therefore

includes households, small asset managers, and other non-13F institutions.

We are aware of the fact that our approximation of Robinhood traders’ portfolio weights criti-

cally affects our equilibrium price impact estimates. For example, (3.1) may understate the

weight in the largest and overstate the weight in the smallest stocks, if wealthier Robinhood ac-

counts tilt towards market weights. We therefore simulate alternative counterfactual equilibria

for deviations from (3.1). In particular, we use market weights wm
t (n) to construct a pseudo

value-weighted Robinhood portfolio wRH,v
t (n) using H̃t (n) = Ht (n)wm

t (n) instead of Ht (n)

in (3.1). While Robinhood traders’ impact on the equity market in 2020 varies for different

portfolio approximations, our main results remain qualitatively unchanged: Given their small

market share, Robinhood traders’ impact on the valuation of small stocks is large.

3.3 Motivating Facts

In this paper, we explicitly quantify the impact of Robinhood demand during the first half of

2020 and show that, despite their negligible wealth, their liquidity provision in Q1 and recovery

amplification in Q2 was sizeable. We argue that the significance of Robinhood demand is

driven by the inelastic nature of financial institutions during the Covid-19 pandemic. Before

quantifying these effects in a structural model, we study in reduced form the relationship

between Robinhood demand and stock returns during Q1 and Q2. Note that we do not draw

any causal implications from these regressions. Our goal is merely to show that stocks more

heavily purchased by Robinhood traders exhibit higher returns in Q1 and Q2.

We first confirm this relationship using a cross-sectional regression of quarterly log returns on

institutional and Robinhood demand,

rt (n) = b0,t +b1,t∆
IO
t (n)+b2,t∆

RH
t (n)+b3,t X t−1(n)+ϵt (n) for t = Q1, Q2, (3.2)

where ∆IO
t (n) is the change in institutional ownership for firm n in quarter t , and ∆RH

t (n) =
Ht (n)−Ht−1(n) is the quarterly change in the number of Robinhood accounts holding stock n.
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X t−1(n) is a vector of lagged controls that includes the stock-specific characteristics described

in Section A, the one-period lagged return, and the lagged cash-to-asset ratio. Since we expect

this effect to be stronger for small cap companies, we split our sample into size quintiles and

estimate (3.2) for each quintile in Q1 and Q2. Panel (a) in Figure 3.2 reports the coefficients

on Robinhood demand b2,t across size quintiles. Accounting for known return predictors,

high demand stocks belonging to the two smallest size quintiles earned higher returns in both

Q1 and Q2. On average, each additional 1,000 invested accounts coincide with 1.95 (1.05)

percentage points higher returns in Q1 (Q2) for the smallest size quintile.9

Second, we conduct an event study and compute the abnormal returns of a “Robinhood

portfolio” (henceforth RHP ). To this end, we sort stocks into deciles based on ∆RH
Q2 (n). We

then build two long-short portfolios and compute their monthly returns. The first portfolio

longs firms in the top decile and shorts firms in the bottom one. The second portfolio also longs

the top decile but shorts a set of matched stocks, where matching is based on industry and

size. We assess the performance of RHP by analysing the residuals from the Fama-French five-

factor model. Factor coefficients are estimated on a 36-months estimation window starting

April 2017 and ending March 2021. Panel (b) in Figure 3.2 shows the monthly abnormal returns

of RHP , which are significantly greater than zero for the months of April, May, and June.10

With respect to their past performance, stocks subject to high demand from Robinhood traders

in Q2 perform significantly better.

9The average change in invested Robinhood accounts ∆RH
t (n) in the smallest quintile is 988 (1,905) in Q1 (Q2).

10We have conducted the same analysis using deciles based on ∆RH
Q1 (n). The abnormal returns display similar

patterns, and conclusions remain unchanged. Using quintiles instead of deciles also yields similar results.
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Figure 3.2: Robinhood Demand and Stock Returns in Reduced Form
Panel (a) reports coefficients on∆RH

t (n) from estimating (3.2) for each size quintile in both Q1 and Q2. Coefficients
are scaled to reflect changes in thousands. All specifications include industry fixed effects and a set of control
variables reported in the main text. Standard errors are clustered at the industry level. Error bars indicate the 95%
confidence interval. Panel (b) plots the abnormal returns on the Robinhood long-short portfolios (RHP ). Portfolios
are equally weighted and rebalanced monthly. The blue line corresponds to the portfolio that longs the decile of
stocks with the highest Robinhood demand over Q2 and shorts the bottom decile. The black line corresponds
to the long-short portfolio that longs the same top decile and shorts matched stocks from the same industry
and of similar size. Abnormal returns are defined in excess of the Fama-French five-factor model estimated on a
36-month window from April 2017 to March 2020. Standard errors are adjusted for autocorrelation using a 12 lag
Newey-West correction. The shaded areas indicate 95% confidence bands.

(a) Impact of 1,000 Additional Invested Robinhood Accounts on Returns by Size Quintile

(b) 5-Factor Abnormal Returns

These observations entertain the possibility of Robinhood traders affecting the cross-section

of stock returns and the overall recovery process during the Covid-19 pandemic. They do not,

however, suffice to conclude that the relationship is causal and remain silent on the role of

financial institutions. A true (i.e. causal) counterfactual analysis needs to explicitly address
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the endogeneity of prices and demand. The next section provides a structural model that is

able to elicit the causal role of Robinhood traders by estimating empirical demand curves and

decomposing prices into investor-specific demand components.

3.4 The Demand System Approach

The “Demand System Approach to Asset Pricing”, developed by KY (2019), constitutes a

practical modelling framework that - under some modifications - is ideally suited to assess the

causal impact of Robinhood traders on the US equity market during Q1 and Q2. In particular,

we deviate from KY’s methodology by estimating time-invariant demand curves over the panel

of observed portfolio holdings including time fixed effects. Thus we can combine Robinhood

holdings, which are available at a daily frequency, with quarterly institutional holdings. In

particular, this allows us to jointly match daily prices and Robinhood demand and derive daily

equilibrium counterfactuals.

A The Model

Following the notation in KY (2019), there are N financial assets and T time periods indexed

by n = 1, ..., N and t = 1, ...,T respectively. The total market equity of asset n is given by

MEt (n) = Pt (n)St (n), where Pt (n) and St (n) are the price and shares outstanding of asset n.

The assets differ in terms of K asset-specific characteristics X t (n) ∈RK , which are independent

of the price Pt (n) and determined by an exogenous endowment process, and log market equity

met (n), which is endogenously determined in equilibrium as it depends on the equilibrium

price Pt (n).

Investor Demand

There are I institutional investors indexed by i = 1, ..., I , a representative household sector

(HH) and a representative Robinhood trader (RH). All I +2 investors j = {i }I
i=1, H H ,RH are

short-sale constrained, have log utility and heterogeneous beliefs about expected returns

and covariances, and are subject to heterogenous leverage constraints. KY (2019) show that

when both expected excess returns and the factor loadings that drive the covariance matrix

are linear functions of the K +1 asset-specific characteristics [X t (n);met (n)], characteristics-

based demand emerges. In other words, the optimal portfolio weights w j
t (n) are a function of

observable stock-specific characteristics:

∀ j :
w j

t (n)

w j
t (0)

= exp

{
θ

j
t +γ j met (n)+

K∑
k=1

β
j
k Xk,t (n)

}
ϵ

j
t (n), (3.3)
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where w j
t (0) is the portfolio weight in the outside asset and θ

j
t represents the time-varying

demand for all stocks inside the investment universe relative to the outside asset. The investor-

specific demand function (3.3) can be estimated empirically using observable portfolio hold-

ings and lies at the heart of the demand system.

Demand Elasticities

Letting pt ,q j
t ∈RN denote vectors of log prices and log shares held by investor j respectively, it

can be shown (see Appendix A) that (3.3) implies the following demand elasticity with respect

to the price

−∂q j
t

∂p′
t
= I−γ j diag(w j

t )−1G j
t , (3.4)

where G j
t = diag(w j

t )−w j
t w j

t
′. Thus γ j , the demand coefficient associated with market eq-

uity, determines the price elasticity of demand. The higher an investor’s price elasticity of

demand (i.e. the smaller γ j ), the more liquidity this investor provides to the market by ac-

commodating the demand shocks of other investors. In this light, the set of price elasticities{
{γi }I

i=1,γHH,γRH
}

critically determines the transmission of retail demand shocks to the cross-

section of asset prices. If γ j is 1 for all investors, i.e. the equity market is perfectly inelastic,

then retail demand shocks have an infinite impact on the price. Lastly, note that if j holds a

diversified portfolio, then w j
t w j

t
′ is small and the diagonal elements of −∂q j

t
∂p′

t
are approximately

−∂q j
t (n)

∂pt (n) = 1−γ j .

Market Clearing

The system of I +2 demand functions given by (3.3) is linked via the market clearing condition

for each stock n, which implies that MEt (n) =∑
j A j

t w j
t (n) for each n, where A j

t is the AUM of

investor j . Plugging in (3.3) and rewriting in vector notation, the equilibrium market clearing

prices pt solve

pt = log

(∑
j

A j
t w j

t (pt )

)
−st , (3.5)

where st ∈RN is the vector of log shares outstanding. The dependence of w j
t (pt ) on pt reveals

how the explicit estimation of a demand function for each investor j allows to address the

interplay of demand and equilibrium prices. When changing e.g. Robinhood traders’ demand,

(3.5) explicitly accounts for the endogenous demand responses by all other investors. In other

words, Robinhood traders’ demand affects the portfolio choice of all other investors because

equilibrium prices enter their demand functions via γ j .
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B Estimating the Demand System

This section describes how we estimate the demand curves given by (3.3) for institutions,

households and Robinhood traders. Note, that while Robinhood holdings are available at a

daily frequency, institutional holdings are obtained from SEC form 13F, which is generally

filed quarterly. We hence estimate time-invariant demand curves over the panel of observable

holdings for each investor. This allows us to feed the estimated demand system with holdings

at different frequencies and obtain counterfactuals at a daily frequency.

Instrument Construction

We follow KY (2019) and assume that the characteristics X t (n) are exogenous to latent demand

ϵ
j
t (n). Prices, however, are inherently endogenous, as they are a function of the latent demand

ϵ
j
t (n) of all investors. Estimating (3.3) without the use of investor-specific instruments for

met (n) therefore leads to biased demand elasticities. We therefore construct investor-specific

instruments for market equity m̂e j
t (n) using heterogeneity in the investment universes across

investors. To this end, let N
j

t denote the set of stocks in j ’s investment universe. Stocks

that are in the investment universe of more investors have a higher exogenous component of

demand and therefore a higher exogenous price. This relies on the assumption that investors’

investment universes are (at least partly) exogenously determined. KY estimate investor i ’s

investment universe N
j

t as all stocks held at some point in the past 11 quarters (including

current holdings). While they show that this choice set is quite persistent, it remains unclear

why an investor should exert exogenous demand pressure on a stock that is in its universe but

not currently held. Furthermore, they implicitly assume that any correlation between latent

demand ϵ j
t and the currently held subset of stocks is sufficiently diluted by including all stocks

held over the look-back period of 3 years. To mitigate these concerns, we define N̂
j

t ⊂N
j

t as

the part of investor j ’s universe that is exogenously determined. We estimate N̂
j

t as the set of

stocks that are currently held but were also held at every quarter over the past two years. The

instrument is equal to the counterfactual market equity obtained, if all investors held equal

weighted portfolios across their exogenous investment universe. Formally, the instrument is

given by

m̂e j
t (n) = ∑

i ̸= j ,RH,HH
Ai

t
1

i
t (n)

1+|N̂t ,i |
, (3.6)

where 1i
t (n) is an indicator equal to 1 if stock n is in i ’s exogenous part of the investment

universe N̂t ,i . We assess the instrument’s relevance for each investor in a panel regression

of m̂e j
t (n) onto met (n) and the exogenous characteristics X t (n) including time-fixed effects.

Panel (a) of Figure 3.3 plots the first stage t-statistic of the instrument for institutions, house-

holds, and Robinhood traders.

99



Chapter 3. The Equity Market Implications of the Retail Investment Boom

Figure 3.3: Weak Instrument Test
Panel (a) plots the first stage t-statistic on the instrument m̂e

j
t (n) for institutions, households, and Robinhood

traders. The red dotted line indicates the weak instrument threshold of 4.05 (see Stock and Yogo (2002)). Panel (b)
plots the estimated γ j for all investors under the different instrument specifications.

(a) 1st Stage t-Statistic (b) Estimates of γ j for Different Instruments

We can confidently reject the null hypothesis of weak instruments for households, Robinhood

traders and almost all institutions.11 Lastly, the exogeneity of the instrument relies on a wealth

distribution {Ai
t }I

i=1 that is orthogonal to the latent demand shocks driving portfolio weights.

One could argue that latent demand, such as ESG preference shocks, potentially drive both

prices and flows across institutional investors. Therefore we construct an exogenous wealth

distribution, that would be obtained if assets under management were proportional to the

number of stocks held |N j
t |.12 If we construct the instrument under this alternative wealth

distribution, the resulting estimates for γ j remain largely unchanged. Panel (b) plots the γ j

estimates for all investors under the different instrument specifications. The estimates all lie

in the same ballpark and are strongly positively correlated. We conclude that our results on

the inelasticity of institutional investors are robust to the construction of the instrument.

11The few institutions with marginally insignificant first stage coefficients have a combined AUM of $30 billion
and are pooled together with the household sector.

12Formally, the instrument then becomes

m̂e
j
t (n) = ∑

i ̸= j ,RH,HH
|N i

t | 1
i
t (n)

1+|N̂t ,i |
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Panel Estimation

We estimate demand (3.3) by constrained generalized method of moments (GMM) under the

following moment condition

∀ j : E

[
log(ϵ j

t (n))

∣∣∣∣ m̂e j
t (n), X t (n)

]
= 0 s.t . γ j < 1. (3.7)

The constraint γ j < 1 ensures a unique equilibrium price by imposing downward sloping

demand for all investors (see KY 2019, proposition 2). We follow KY (2019) and choose log

book equity, profitability, investment, market beta, and dividends to book ratio as exogenous

characteristics X t (n). For Robinhood traders, we estimate demand over the panel from March

2018 to August 2020. For institutions and households (the residual party), we have a greater

time span of available portfolio holdings and estimate demand over the panel from January

2005 to August 2020. Many 13F institutions hold too concentrated portfolios to consistently

estimate their demand. We therefore pool investors with insufficient observations by their in-

stitutional type, investment style and size (see Appendix B for details). We emphasize the panel

nature of the demand function (3.3), which in contrast to KY (2019) features time-independent

demand coefficients γ j and β
j
k . The purely cross-sectional specification proposed by KY

(2019) inherently features time-varying demand curves. Taking logs on both sides of (3.3),

we reformulate the demand function into a panel estimation problem for each investor j

including time fixed effects. Estimating demand over the panel has a distinct advantage over

the quarterly re-estimation in KY (2019). The increased number of observations leads to less

pooling across investors and more precisely estimated demand curves. In Appendix D, we

re-estimate investor’s demand every quarter. While the quarterly estimated coefficients are

fairly stable over time, their statistical significance strongly declines.

Estimation Results

Panel (a) of Table 3.1 summarizes the estimated demand curves. For illustrative purposes, we

group 13F investors - which comprise over 3,500 institutions - by their respective institutional

types: Hedge funds, banks, pensions funds, investment advisors (including mutual funds),

insurance companies, and other. We report the AUM-weighted average demand coefficients

across investors within a group. Note that, from the estimated demand coefficients γ j , we can

infer each investors’ demand elasticity with respect to the price via (3.4). Hedge funds are the

most elastic institutional group. Their demand elasticity is 0.46, implying that (ceteris paribus)

a 10% price increase in stock n causes hedge funds to sell 5% of their shares held in n. However,

hedge funds’ ability to provide elasticity to the aggregate equity market is strongly limited,

as their holdings account for merely 2% of total holdings within our sample. Pension funds,

who are primarily passive long-term investors, have the most inelastic demand. 60% of the

US equity market is managed by investment advisors, banks and pension funds, all of whom

respond extremely inelastically to price changes. The inelastic nature of the institutional
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investment management industry is the main driver of micro-inelastic markets and allows the

small retail sector to have significant price effects. Households are on average more elastic

than institutions and hence provide more liquidity to the market. As of 2020, households hold

roughly one third of the US equity market as compared to 60% in the year 2000. Their steadily

declining market share in favor of passive institutions may be one reason for the arguable lack

of market elasticity observed in recent years. Lastly, Robinhood traders have the most elastic

demand, implying that they react most strongly to price changes.

The coefficient on book equity β j
be captures demand for size. While investment advisors and

banks have a preference for larger high-dividend stocks, hedge funds tilt towards smaller

low-dividend stocks. Robinhood traders have a strong preference for small stocks, which is

reflected in their outsized price impact on the smallest quintile of US stocks (see Section B).

Demand for market risk β j
beta is lowest for liability constrained institutions such as insurance

companies, banks and pension funds, and highest for Robinhood traders. Unsurprisingly, the

demand coefficients of hedge funds and pension funds have opposite signs for all exogenous

characteristics. Note, furthermore, that the demand functions of households and Robinhood

traders strongly diverge. This difference can be attributed to the design of the trading platform

and the display of information on Robinhood (see Barber et al. (2020)).

In order to emphasize the inelasticity of institutional demand, Panel (b) groups institutional

investors by their elasticity. The groups are defined as follows: Elastic investors with γ j < 0,

inelastic investors with 0 ≤ γ j < 1, and passive investors with γ j = 1. Elastic investors respond

to a 1% (non-fundamental) price increase by selling over 1% of their shares. Inelastic investors

sell less than 1%, whereas passive investors hold the market portfolio and do not respond to

price changes.13 Less than 1% of the US equity market is managed by elastic institutions with

a demand elasticity above 1. The institutional investment industry is largely comprised of

passive investors, who hold roughly 40% of the aggregate US market capitalization. Passive

investors value-weight their portfolios within their investment universe and hence have a

demand elasticity of 0. Without in- and outflows, their demand (in terms of shares held

q j
t ) is constant. The large market share of passive investors has strong implications for the

micro-elasticity of equity markets and is a key contributor to the significant price impact of

small retail investors.

3.5 The Impact of Robinhood Traders on the Equity Market

Having estimated each investor’s demand curve, we can express equilibrium prices via the

market clearing condition (3.5) as a function of supply and demand components. The market

clearing condition is a fixed point problem and allows computing the counterfactual equilib-

13The demand responses are approximations based on − ∂q
j
t (n)

∂pt (n) = 1−γ j . See Section AA for details.
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Table 3.1: Estimated Demand Functions
The table reports the estimated demand coefficients for Robinhood traders, households, and 13F institutions.
The disaggregated nature of the 13F data allows estimating a separate demand function for each institution. In
Panel (a) we group 13F institutions into 6 groups based on Refinitiv’s type labels (hedge funds, banks, insurance
companies, investment advisors, pension funds) and report AUM-weighted average for each group. In Panel (b) we
group of 13F investors into: elastic institutions (γ j < 0), inelastic institutions (0 ≤ γ j < 1) and passive institutions
(γ j = 1).

(a) Demand Functions

Estimated Coefficients

Wealth Share γ j β
j
be β

j
inv. β

j
profit β

j
beta β

j
div/be

Demand Elasticity

Institutional Investors

Hedge Funds 2% 0.55 -4.84 8.83 0.31 7.56 -0.43 0.46

Insurance Companies 2% 0.71 0.95 5.24 -2.03 -8.41 -1.24 0.34

Other 1% 0.85 26.81 3.49 0.69 1.75 0.22 0.17

Investment Advisors 50% 0.85 15.17 3.21 0.11 -0.13 0.12 0.16

Banks 7% 0.92 18.36 1.13 -0.26 -5.84 0.19 0.09

Pension Funds 3% 0.95 4.63 -1.55 -0.02 -2.29 0.03 0.07

Households 35% 0.73 7.68 -1.29 0.66 -12.76 0.21 0.28

Robinhood Traders 0.2% 0.31 -27.57 5.61 -1.53 26.40 -0.55 0.69

(b) Grouping Institutions by Elasticity

Institutional Investors

Elastic demand 0.07% -0.06 2.54 9.15 1.71 3.67 -0.82 1.06

Inelastic demand 26% 0.63 0.93 3.87 -0.59 -3.07 -0.07 0.39

Passive 39% 1 22.92 2.46 0.44 0.89 0.16 0.02

rium prices that would clear equity markets under alternative inputs.14 For example, we can

assess the counterfactual equilibrium obtained without the presence of Robinhood traders by

setting ARH
t = 0 and redistributing their wealth across all other investors. The counterfactual

equilibrium price vector pt ∈RN is an implicit function g(.) of exogenous characteristics and

shares outstanding, as well as the AUM and demand shocks of all investors,

pt = g
(

Xt ,st︸ ︷︷ ︸
Supply

, {A j
t ,ϵ j

t } j=I,HH,RH︸ ︷︷ ︸
Demand

)
. (3.8)

The following sections use (3.8) in three counterfactual experiments to quantify the effect of

Robinhood demand on equity markets in 2020.

14We numerically solve for counterfactual equilibria using the algorithm proposed in KY (2019). Uniqueness is
guaranteed by the coefficient constraint that γ j < 1 for all investors.
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A Variance Decomposition

We first use (3.8) to decompose the cross-section of stock returns during the first two quarters

of 2020 into supply- and demand-driven components. We label changes in the exogenous

characteristics Xt and log shares outstanding st as supply changes. Demand changes re-

fer to changes in assets under management (AI
t , AHH

t , ARH
t ) and changes in latent demand

(ϵI
t ,ϵHH

t ,ϵRH
t ). To reduce the notational clutter, we define the set of supply and demand

variables as St = (Xt ,st ) and D j
t = (A j

t ,ϵ j
t ) respectively. By iteratively changing supply and

investor-specific demand to their next period’s values, we can decompose the vector of log

returns rt+1 = pt+1 −pt into its subcomponents,

rS
t+1 = g

(
St+1,DI

t ,DHH
t ,DRH

t

)−pt ,

rI
t+1 = g

(
St+1,DI

t+1,DHH
t ,DRH

t

)−g
(
St+1,DI

t ,DHH
t ,DRH

t

)
,

rHH
t+1 = g

(
St+1,DI

t+1,DHH
t+1,DRH

t

)−g
(
St+1,DI

t+1,DHH
t ,DRH

t

)
,

rRH
t+1 = pt+1 −g

(
St+1,DI

t+1,DHH
t+1,DRH

t

)
.

Note that g(.) is concave in investors’ dollar demand. Thus we purposely place the change in

Robinhood traders’ demand after having accounted for institutions’ and households’ demand

change in order to leave the least scope for Robinhood traders to affect returns. Using the

fact that rt+1 = rS
t+1 + rI

t+1 + rHH
t+1 + rRH

t+1, we decompose the cross-section of returns during the

pandemic into its underlying supply and demand components15,

Var(rt+1) = Cov(rt+1,rS
t+1)+Cov(rt+1,rI

t+1)+Cov(rt+1,rHH
t+1)+Cov(rt+1,rRH

t+1). (3.9)

The structural nature of the decomposition explicitly takes into account the endogeneity of

prices and demand, and therefore allows for a quantification of Robinhood traders’ contribu-

tion to the cross-section of stock returns in Q1 and Q2 that goes far beyond simple regressions

of returns onto holdings as in e.g. Ozik et al. (2020) or Glossner et al. (2020).

15The variance and covariance terms are purely cross-sectional, i.e. they are computed as Var(rt+1) =
1
N

∑N
n=1

(
rt+1(n)− r̄t+1

)2.
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Figure 3.4: Variance Decomposition in Q1 and Q2
The figure reports the decomposition of return variation during the first and second quarter of 2020. Cross-sectional
variance is decomposed into investor-specific subcomponents, which add up to 1 as given by equation (3.9). The
Supply bar indicates the variation in returns explained by changes in fundamentals and shares outstanding. The
Demand bars (split into institutions, households, and Robinhood traders) indicate the variation explained by
changes in latent demand and assets under management.

Figure 3.4 reports the decomposition of the cross-sectional variation into changes in supply

(i.e. changes in exogenous characteristics and shares outstanding) and demand (i.e. changes

in the AUM and latent demand of institutions, households, and Robinhood traders).16 In

Q1, the majority of the cross-sectional variation in returns can be explained by changes in

stock-specific characteristics unrelated to price. This is reasonable as the pandemic had real

effects on the companies’ balance sheets, which enter investor demand via the fundamentals

profitability, investment, and book equity. The deterioration of these exogenous characteristics

led to lower investor demand across the board and hence lower stock prices. The negative

contribution of institutions’ changes in AUM and latent demand shows that they provided

liquidity by accommodating some of the supply-side induced price pressure. However, relative

to their small market share, the liquidity provision by Robinhood traders is much stronger.

Despite holding less than 0.2% of the aggregate equity market, their contribution to the cross-

sectional variation in stock returns is -11%. This finding is in line with Ozik et al. (2020) and

Glossner et al. (2020), who show that Robinhood traders attenuated the rise in illiquidity

during the first quarter of 2020.

By contrast, the variations in returns observed during Q2 are purely demand driven. In fact, the

16In the Online Appendix, we decompose the variance contribution of institutions into different institutional
types (i.e. hedge funds, pension funds, etc.).
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counterfactual returns observed without demand effects (i.e. only considering the real effects

from changes in fundamentals) are negatively related to observed returns. Most importantly,

the demand of Robinhood traders accounts for 10% of the cross-sectional variation in returns

observed during the recovery in Q2. Considering their small market share, Robinhood traders’

contribution is enormous. Note that this impact is directly related to the inelastic nature of

institutional demand. If institutional investors would react more elastically to price changes

(e.g. via a greater active asset management industry), the impact of Robinhood traders’

demand shocks would be considerably smaller. In the Online Appendix, we report a variance

decomposition under the assumption that all investors have a demand elasticity of −∂q j
t (n)

∂pt (n) = 1.

Within this more elastic equity market Robinhood traders’ impact still remains sizable.

B Counterfactual Equity Market Without Robinhood Traders

The equilibrium pricing function (3.8) allows us to infer the impact of retail trading activity

on both the crash in Q1 as well as the recovery in Q2. We construct a counterfactual recovery

process for 2020, which would have been observed without the surge in retail trading activity.

To this end, note that the market clearing condition allows us to extract the equilibrium

price vector p−RH
t , that clears equity markets in 2020 without Robinhood traders. We take a

conservative approach by assuming that without the existence of Robinhood traders, their

assets under management were instead invested in the market portfolio. This is consistent

with the market clearing condition that investors’ wealth shares must sum to 1. Without the

existence of the brokerage platform in 2020, the shares traded on Robinhood would be held

by all other investors. If we could observe the origins of Robinhood’s market share as flows

from e.g. investment advisors to retail trading platforms, then we could take a more explicit

stance on the redistribution of wealth shares. In an earlier version of the paper we conducted

a counterfactual experiment that withdraws Robinhood traders’ assets under management

from the equity market without redistribution. While the cross-sectional repricing effects

remain quantitatively unchanged, the repricing effects for the stock market as a whole are

naturally smaller under redistribution. In fact, withdrawing Robinhood traders’ AUM leads

to a mechanical decline in aggregate valuations, while under redistribution the value of the

aggregate equity market market remains roughly unchanged.

Formally, the counterfactual equilibrium price vector without Robinhood traders is given by

p−RH
t = g

(
Xt ,st , {γ j ,β j , Ã j

t ,ϵ j
t } j ̸=RH

)
, (3.10)

where Ã j
t = A j

t + ARH
t

A j
t∑

k ̸=RH Ak
t

. This is equivalent to assigning to Robinhood traders the wealth-

weighted demand curve of all other investors, as in Koijen et al. (2022). Using the counter-

factual price vector p−RH
t , we can gauge the contribution of Robinhood traders to the crash

and recovery of a subset of stocks Ns ⊆N by computing the counterfactual aggregate market
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capitalization

M−RH
t ,Ns

= ∑
n∈Ns

exp{p−RH
t (n)+ st (n)}. (3.11)

Figure 3.5 reports the observed total market capitalization Mt ,Ns and counterfactual market

capitalization M−RH
t ,Ns

across size quintiles during the Covid-19 pandemic. Panel (a) plots the

absolute valuation effects in dollar terms. The black line plots the truly observed market

capitalization on a quarterly basis, whereas the red line plots the counterfactual market

capitalization in the absence of Robinhood traders. Panel (b) shows the repricing effects as

the valuation delta relative to the true market capitalization
Mt ,Ns −M−RH

t ,Ns
Mt ,Ns

.
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Figure 3.5: Counterfactual US Market Capitalization
Panel (a) reports the true and counterfactual market capitalization across size quintiles with and without Robin-
hood traders during the Covid-19 pandemic. The black line illustrates the observed aggregate market capitalization
for each size quintile, whereas the red line plots the counterfactual market capitalization in the absence of Robin-
hood traders. Panel (b) reports the relative repricing of the size quintiles due to Robinhood traders. The shaded
areas indicate 99% confidence bands, which we compute via simulating alternative demand curves (see Section
D). Panel (c) plots the counterfactual market capitalization of the smallest quintile in the absence of Robinhood
traders for different levels of ARH

Q2 ranging from $35 to $95 billion. Size quintiles are computed over all stocks within

our investment universe using their market equity as of January 2020.

(a) $ Valuation Effects: Size Quintiles

(b) % Repricing: Size Quintiles (c) ARH
t Simulation: Smallest Quintile

The impact of Robinhood traders on the valuation of small stocks is substantial. Robinhood

traders drove 25% of the valuations of the smallest quintile during Q2. In other words, the

aggregate market capitalization of small cap stocks would have been 25% lower without the

additional demand from Robinhood traders. Moving to larger size quintiles, their incremental

contribution decreases monotonically. In fact, the presence of Robinhood traders has a slightly

negative effect on the valuation of the largest quintile of US stocks. Under the redistribution of

Robinhood’s assets, the counterfactual effects on the aggregate equity market are negligible.

This is owed to Robinhood traders’ inability to affect the valuation of large cap stocks, which
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account for the majority of the aggregate market capitalization. Even with an extremely

inelastic institutional sector, the retail sector’s dollar demand shocks are too small relative to

the market capitalization of e.g. the big tech stocks (i.e. Amazon, Apple, Google, Facebook and

Microsoft). When moving to deciles instead of quintiles the effects are even more pronounced.

Without Robinhood traders, the aggregate market capitalization of the smallest decile of US

stocks would have been roughly 40% lower in the first two quarters of 2020.17 We note that

retail traders’ impact on the equity market going forward critically depends on their growth in

assets under management. In Panel (c) of Figure 3.5, we therefore simulate counterfactual

valuations of the smallest quintile under varying levels of Robinhood traders’ AUM in Q2.

Naturally, Robinhood traders’ impact declines with lower AUM estimates. However, even

under an AUM estimate as low as $35 billion, their absence would nevertheless lead to a

17% lower aggregate market capitalization of the smallest quintile of US stocks. We therefore

confirm that our main finding, the strong repricing of smaller stocks due to retail trading,

is likely to continue. Lastly, we assess Robinhood traders’ impact at the industry level. The

relative valuation effects are strongest for energy and industrial stocks with Robinhood traders

increasing aggregate valuations by almost 1%. The effects are substantial given the fact that

the aggregate market capitalization of these industries greatly exceed Robinhood’s total assets

under management.

Overall, the retail investment boom led to a considerable dampening of the price deterioration

of small stocks during the first quarter of 2020. Thus we quantitatively confirm the hypothesis

made by Glossner et al. (2020) and Ozik et al. (2020) that Robinhood traders provided liquidity

in Q1. The contribution of the retail crowd during the recovery in Q2 is arguably even more

interesting, as it encapsulates the key point that this paper is trying to highlight: The micro-

inelastic nature of financial markets - driven by the large market share of passive institutions

- allows the relatively small retail sector to have substantial aggregate pricing effects. The

surprisingly large aggregate impact of the small retail sector is owed to the fact that a large

fraction of the equity market is managed by institutional investors with price-inelastic demand

curves.

C Do Robinhood Traders Increase Volatility?

A large empirical literature on the interaction of stock returns and retail trading activity

documents short-term contrarian behaviour by individual investors (see e.g. Kaniel et al.

(2008) and Barber et al. (2008) and the references therein). More recently, Peress and Schmidt

(2020) find that transitory declines in the intensity of noise trading lead to deteriorating

liquidity and higher volatility.18 With a steadily growing retail investment crowd, quantifying

17Blume et al. (2014) find that, in recent times, institutional investors have overweighted small stocks. This
disproportionate presence of inelastic institutions can further explain how Robinhood traders’ demand shocks are
amplified beyond their small dollar value.

18Using a french reform that permanently discouraged retail trading for a subset of stocks, Foucault et al. (2011)
find that reduced retail trading activity improves liquidity and decreases volatility. Similary, Eaton et al. (2021) find
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the impact of retail trading at a higher frequency is potentially important. Our structural model

allows for a quantification of the impact of Robinhood demand on stock-specific volatility,

which would be difficult to do in a reduced-form framework.

Note, that the estimated demand system based on quarterly data is not ideally suited to assess

the time-series volatility of individual stocks (as opposed to the cross-sectional variation in

Section A). We therefore extend the demand system approach to jointly match holdings and

prices at a daily frequency. Unfortunately, Robinhood traders are the only market participants

for which we obtain stock holdings at a daily frequency. The availability of institutional

holdings at a quarterly frequency makes it impossible to account for the micro-structural

interplay between institutional and retail trading).19 We can nevertheless compute daily

counterfactual prices obtained if Robinhood traders were the only active entity, i.e. under the

absence of fundamental changes and institutional trading.

To this end, let td denote the d th day in quarter t and t0 the beginning-of-quarter date. During

a quarter, we set stock-specific fundamentals and institutional demand to their t0 values. We

first infer daily Robinhood demand shocks as

ϵRH
td

(n) = log

( wRH
td

(n)

wRH
td

(0)

)
−γRH metd (n)−

K∑
k=1

βRH
k Xk,t0 . (3.12)

We also estimate the daily evolution of Robinhood’s AUM ARH
td

by fitting a polynomial to the

evolution of account holdings (see 3.1) that matches the quarterly AUM figures reported

in Robinhood’s S1 filing. For each trading day within a quarter, we then set Robinhood

traders’ latent demand and their assets under management to their daily values and compute

the counterfactual daily return obtained due to Robinhood demand only. Formally, the

counterfactual daily return due to Robinhood trading only is given by

rRH
td+1

= pRH
td+1

−pRH
td

(3.13)

where

pRH
td

= g
(

Xt0 ,st0 , {A j
t0

,ϵ j
t0

} j ̸=RH, ARH
td

,ϵRH
td

)
.

Daily changes in fundamentals and daily institutional trading (which are both unobservable)

account for the difference between daily observed returns rtd+1 and the counterfactual returns

due to Robinhood trading only. Note that the equilibrium return observed without Robinhood

trading can hence be written as r-RH
td+1

= rtd+1 − rRH
td+1

. Based on this decomposition we define the

that intense herding by retail traders may lower market quality.
19Our structural model therefore cannot quantify and distinguish between e.g. adverse selection risk (as in Kyle

(1985)) and inventory risk (as in Grossman and Miller (1988)).
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relative increase in stock-specific volatility due to Robinhood trading as

∆σRH(n) =
Cov(rRH

td+1
,rtd+1 )

Var(rtd+1 )
.20 (3.14)

We compute ∆σRH(n) for each stock n in our sample using true and counterfactual daily

returns. If Robinhood traders are contrarian with respect to n, they provide liquidity to the

market and hence lower stock-specific volatility as Cov(rRH
td+1

,rtd+1 ) < 0. Note, that a price

increase of an individual stock has spill-over effects to all other stocks as market participants

rebalance their portfolios by substituting towards other stocks in their investment universe.

Thus Robinhood trading affects the volatility of all stocks, even the ones not directly traded on

Robinhood.

Figure 3.6: Impact on Daily Return Volatility

Panel (a) plots the relative increase in volatility due to Robinhood traders ∆σRH(n) = Cov(rRH
td+1

,rtd+1
)

Var(rtd+1
) for all stocks

in the sample relative to their size. There are a few herding stocks (less than 5%), for which ∆σRH(n) takes very
large values. For illustrational purposes, we limit the y-axis at 4%. Panel (b) plots the fraction of stocks for which
Robinhood traders lower volatility (i.e. ∆σRH(n) < 0) by size quintiles based on market equity.

(a) ∆σRH(n) for all stocks (b) Median ∆σRH(n) by size quintile

The left panel of Figure 3.6 plots ∆σRH(n) for all stocks in the sample, split by whether they

are actively traded by Robinhood traders. The presence of Robinhood traders lowers the

volatility for over two-thirds of all stocks. This suggests, that the contrarian behaviour of

Robinhood traders may improve overall liquidity by providing immediacy to institutional

trades. Robinhood traders are less constrained than institutions, whose ability to provide

liquidity is limited by e.g. investment mandates and agency conflicts. Notably, 71% of all stocks

not directly traded on Robinhood have a lower volatility due to the presence of Robinhood

20The absolute increase in volatility due to Robinhood traders is given by Var(rtd+1 ) − Var(r-RH
td+1

) =
2Cov(rRH

td+1
,rtd+1 )−Var(rRH

td+1
). Omitting the latter term, which artificially drives up the liquidity provision by

Robinhood traders, and scaling by the observed volatility yields (3.14).
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investors. This implies that the liquidity provision by Robinhood traders has positive spillover

effects to other stocks. The right panel of Figure 3.6 reports the fraction of stocks for which

Robinhood traders lower volatility (i.e. ∆σRH(n) < 0) by size quintile. Only for the smallest

quintile, Robinhood trading activity increases volatility for the majority of stocks. These

stocks are sufficiently small such that Robinhood trading drives market prices as opposed to

providing liquidity to institutional trades. For all other quintiles the contrarian behaviour of

Robinhood traders tends to accommodate institutional trades and leads to lower volatility.

Note, that demand shocks for large stocks have high cross-sectional spillover effects because

they constitute a large portion of institutional portfolios and therefore cause considerable

portfolio rebalancing. In contrast, the spillover effects from smaller stocks are negligible.

Thus despite Robinhood traders increasing the volatility of small stocks, the overall liquidity

spillovers are positive.

D Simulating Alternative Demand Curves

In order to underline the robustness of our results, we simulate the counterfactual equilibria

without Robinhood traders under alternative demand curve estimates. This allows us to

compute standard errors around our repricing measures. To this end, we estimate the covari-

ance matrix of the coefficients Ω j = Var(β̂ j , γ̂ j ) for each investor, taking into account both

heteroskedasticity as well as autocorrelation in the latent demand component (the residuals

from the demand estimation). As we have over 1,400 observations for each investor, the joint

distribution of the estimated demand coefficients is approximately Gaussian. UsingΩ j and

the estimated coefficients from Table 3.1, we simulate 100 alternative demand curves for

each investor, i.e.{γ j
(s),β

j
(s),ϵ

j
t ,(s)}

100
s=1. For each set of simulated demand curves, we re-estimate

the counterfactual equilibrium without Robinhood traders, which results in 100 simulated

counterfactual price vectors {p−RH
t ,(s) }100

s=1. Standard errors around the counterfactual aggregate

market equity are computed over the simulated equilibrium samples. Table 3.2 reports the

repricing due to Robinhood traders for the aggregate US stock market, size percentiles, and

the energy and industrial sector. Note that the Robinhood-induced repricing is highly signifi-

cant, which is a direct consequence of the low standard errors around the estimated demand

coefficients. Low standard errors imply that changes in the demand coefficients over the

simulated samples are small, causing minimal changes in the counterfactual price vector and

consequently low standard errors around the equilibrium. This gives us confidence that the

strong impact of Robinhood traders is not driven by misestimated demand curves.

E Price Impact at the Stock Level

A widespread narrative during Q2 was that some of the large jumps in stock prices are owed to

retail investors’ demand shocks. The demand system offers an ideal setting to put this narrative

through an analytical test. To this end, we use (3.10) to assess each stock’s counterfactual return
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Table 3.2: Simulated Counterfactual Repricing
The table reports the repricing of the market, the size percentiles, and of the energy and industrial sector without
the presence of Robinhood traders in Q1 and Q2 respectively. Repricing is defined as (Mt ,Ns −M−RH

t ,Ns
)/Mt ,Ns .

We simulate s=1,...,100 demand curves for each investor from the multivariate normal distribution given by

N
(
(β̂ j , γ̂ j ),Ω j ). Given 100 different demand curves for each investor {γ

j
(s),β

j
(s),ϵ

j
t ,(s)}100

s=1, we compute 100 coun-

terfactual equilibrium price vectors {p−RH
t ,(s) }100

s=1. Standard errors are then computed over the sample of 100
simulated counterfactuals.

Repricing (%)

All Stocks Largest
Quintile

Smallest
Quintile

Smallest
Decile

Energy
Stocks

Industrial
Stocks

2020 Q1

Repricing (%) -0.03 -0.11 18.36 38.93 0.51 0.36

Standard Errors (%) 0.00 0.00 0.44 0.80 0.01 0.01

2020 Q2

Repricing (%) -0.03 -0.16 24.94 41.32 0.89 0.83

Standard Error (%) 0.00 0.00 0.60 0.96 0.02 0.02

without the demand shocks from Robinhood traders as R−RH
t+1 (n) = exp{p−RH

t+1 (n)−pt (n)}−1.

Table 3.3 reports the 10 stocks within the largest decile of US companies in our universe

for which Robinhood traders had the greatest impact on returns in Q1 and Q2. Panel (a)

and (b) respectively confirm the proposed liquidity and amplification channel of Robinhood

demand. Robinhood demand substantially alleviated the negative returns observed in Q1.

Ford’s return during Q1 would have been over 14 percentage points (pp) lower without the

liquidity provision from Robinhood traders. Similarly, General Electric’s share price would have

dropped by an additional 12 pp without the demand from Robinhood. The return implications

are even more pronounced during the recovery in Q2. Ford’s return would have been over

40 pp lower, and American Airlines’ return would have been over 60 pp lower without the

additional demand coming from Robinhood traders. The magnitude of Robinhood demand

effects is particularly remarkable given the size of these companies.

In order to better understand the source of the demand effects, we decompose Robinhood

traders’ price impact into an elasticity and ownership channel. Differentiating (3.5) with

respect to the latent demand of Robinhood traders reveals the coliquidity matrix ∂pt

∂ log(ϵRH
t )′ ∈

R
N×N as in KY (2019, equation 23). Assuming that diag(w j )−w j w′

j ≈ diag(w j ), the diagonal

elements of the coliquidity matrix simplify to

∂pt (n)

∂ log(ϵRH
t (n))

=Mt (n)zRH
t (n), (3.15)

where Mt (n) = 1
1−∑

j z j
t (n)γ j

and z j
t (n) is the fraction of shares outstanding of n held by j (see

Appendix A for a proof). Mt (n) can be interpreted as a cross-sectional multiplier, which
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Table 3.3: Robinhood traders’ price impact on large stocks
Within the largest decile of US stocks, we choose the 10 stocks with the highest p−RH

t+1 (n)−pt (n) for Q1 and Q2. We
report the actually observed return Rt+1 and the counterfactually observed return without Robinhood demand
R−RH

t+1 (n) = exp{p−RH
t+1 (n)−pt (n)}−1. The last two columns in each panel decompose the price impact into the

multiplier Mt (n) = 1/(1−∑
j z

j
t (n)γ j ) and the fraction of shares held by Robinhood traders zRH

t (n). Rt ,R−RH
t (n),

and zRH
t (n) are reported in %.

(a) 2020 Q1

Company Name RQ1 R-RH
Q1 MQ1(n) zRH

Q1 (n)

Ford Motor Co -48.06 -62.69 5.37 9.24

Carnival Corp -74.09 -78.65 5.17 5.75

Royal Caribbean
Cruises Ltd -75.90 -79.86 4.88 5.58

Twitter Inc -23.37 -30.36 6.09 2.48

MGM Resorts
International -64.53 -67.74 5.46 2.85

United Airlines
Holdings Inc -64.18 -67.15 4.00 3.61

Delta Air Lines Inc -51.21 -54.99 4.44 2.92

General Electric Co -28.85 -34.17 6.14 2.01

Halliburton Co -72.01 -74.06 4.45 2.69

Advanced Micro
Devices Inc -0.83 -4.68 6.51 1.02

(b) 2020 Q2

Company Name RQ2 R-RH
Q2 MQ2(n) zRH

Q2 (n)

Carnival Corp 24.68 -22.67 5.96 12.54

Ford Motor Co 25.88 -16.41 5.40 11.47

Delta Air Lines Inc -1.68 -28.12 4.86 9.92

United Airlines
Holdings Inc 9.70 -17.02 4.39 10.02

MGM Resorts
International 42.37 11.02 5.50 7.32

Royal Caribbean
Cruises Ltd 56.36 25.14 4.99 6.79

General Electric Co -13.98 -26.83 6.04 4.18

Twitter Inc 21.29 8.31 6.14 2.97

Southwest Airlines
Co -4.02 -11.70 4.72 3.06

Halliburton Co 89.49 76.09 4.75 2.53

is inversely related to the market’s price elasticity of demand for n. The more elastic the

investors in stock n are, the better they accommodate Robinhood traders’ demand shocks

and the lower Mt (n) is.21 In this light, Mt is the micro-pendant to the macro-multiplier in

Gabaix and Koijen (2021). Equation 3.15 highlights the sources of Robinhood traders’ price

impact on stock n: Either the investors in n are inelastic (Mt is large), or Robinhood traders

hold a substantial fraction of n’s shares outstanding (zRH
t is large), or both. The size of the

cross-sectional multiplier Mt helps explain the large price impact of Robinhood demand

despite their small ownership share zRH
t .

In order to bolster intuition about the relative magnitude of the two effects, we double-sort

stocks into deciles based on ownership zRH
Q2 (n) and multiplier MQ2(n). We compute the

stock-specific repricing∆RH
Q2 (n) = MQ2(n)−M−RH

Q2 (n)

MQ2(n) for each stock and take averages across stocks

within each of the 10× 10 Multiplier-Ownership portfolios. Table 3.4 shows the average

repricing for all portfolios in percent. In line with the decomposition of Robinhood traders’

price impact (3.15), the average repricing conditional on ownership rises from small to big

multiplier deciles. Similarly, conditional on the multiplier, the repricing increases with higher

ownership. As the overall market share of Robinhood traders is small, these effects are sizeable

21In general, a substantial portion of larger stocks’ investor base is made up of big institutional investors. Because
these investors tend to be fairly inelastic, the micro-multiplier is higher for large-cap stocks. In the Online Appendix
we illustrate the distribution of the micro-multiplier across stocks and size deciles.

114



3.5 The Impact of Robinhood Traders on the Equity Market

Table 3.4: Multiplier-Ownership Double Sorts
The table reports the average repricing (%) for 10×10 = 10 multiplier-ownership decile portfolios. As of July
2020, we sort all stocks into Robinhood ownership zRH

Q2 and multiplier MQ2 deciles. Within each of the 100

portfolios, we compute the average repricing across the Nq stocks in portfolio q = 1, ...,100 as 1
Nq

∑
n∈q ∆

RH
Q2 (n),

where ∆RH
Q2 (n) = (MQ2(n)−M−RH

Q2 (n))/MQ2(n) is the repricing of stock n due to Robinhood traders.

Ownership Deciles zRH
Q2

Multiplier Deciles MQ2 Low 2 3 4 5 6 7 8 9 High

Small -0.28 -0.36 -0.33 -0.29 -0.26 0.04 0.54 2.40 9.38 53.67

2 -0.44 -0.45 -0.41 -0.36 -0.28 0.02 0.90 3.32 14.76 59.46

3 -0.46 -0.43 -0.48 -0.36 -0.29 0.04 0.92 3.48 14.04 58.21

4 -0.44 -0.43 -0.40 -0.37 -0.27 0.06 0.99 3.59 15.34 60.50

5 -0.41 -0.45 -0.48 -0.41 -0.23 -0.02 1.03 4.02 13.45 64.70

6 -0.50 -0.49 -0.42 -0.44 -0.21 0.16 1.09 4.45 13.88 53.27

7 -0.45 -0.52 -0.47 -0.39 -0.25 0.13 1.22 4.34 15.84 53.65

8 -0.49 -0.50 -0.51 -0.45 -0.25 0.21 1.62 4.01 20.69 75.54

9 -0.50 -0.54 -0.52 -0.45 -0.22 0.29 1.66 6.23 21.89 76.12

Large -0.55 -0.57 -0.55 -0.44 -0.22 0.20 2.20 7.11 24.19 89.80

only for the larger ownership deciles. The repricing for the portfolio comprised of the highest

Robinhood-ownership stocks that are held by the most inelastic institutions is 94%. This

implies that without the presence of Robinhood traders, the average stock in this portfolio

would have had a 94% lower market capitalization in Q2.

Lastly, we assess the extraordinary rally of GameStop (GME) during January 2021 through

the lens of the demand-based approach. While we do not have data on Robinhood traders’

ownership in GameStop during January 2021, we can nevertheless gauge their buying pressure

on its share price via the multiplier Mt (GME). In July 2020, GameStop was already subject to

substantial short interest by hedge funds. However, we find that the institutional investors

that were long GameStop (as extracted from 13F filings) are primarily inelastic. In fact, over

60% of GameStop’s shares outstanding were held by perfectly inelastic (i.e. passive) investors,

who do not provide any liquidity in the case of collective buying pressure from retail traders.22

Furthermore, the hedge funds that already had existing short-positions in GameStop were

unlikely to provide additional liquidity as this would have increased their short exposure.

We estimate a multiplier of Mt (GME) = 5.5, which implies that, as of Q2, buying 10% of

Gamestop’s shares outstanding causes a 55% increase in GameStop’s share price. If GameStop’s

institutional investor base remained largely unchanged, this multiplier also applies to January

2021.

Thus, the inelastic nature of institutional demand sheds light not only on the impact of the

22In the Online Appendix, we plot the price elasticity of demand of GameStop’s institutional investor base relative
to their ownership shares zi

t (GME).
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retail investment boom on the market crash and recovery of 2020, but also on the extraordinary

volatility observed in early 2021.

3.6 Conclusion

This paper investigates the effects of the retail investment boom on the US equity market

within a structural model. We find that the majority of all institutional investors - who hold

over 60% of the US equity market - have inelastic demand. Because they respond inelastically

to price changes, the relatively small retail sector can have a substantial impact on prices.

Robinhood traders provided considerable liquidity to the stock market in Q1 and amplified the

recovery in Q2. In their absence, the aggregate market capitalization of the smallest quintile

of US stocks would have been 25% lower in Q2. While their price impact is concentrated

towards smaller stocks, they are able to affect the price of some large companies, which are

being held primarily by passive investors. Our findings have important implications for policy

makers. Large scale policies, such as the 2020 CARES act under which stimulus checks were

sent to most American citizens, have the potential to move prices considerably far from their

fundamental values if households invest rather than consume their share. Moreover, the

prominent role of Robinhood traders in driving returns evokes concerns about the future role

of retail trading in equity markets. If - facilitated by novel fintech solutions - the retail sector

continues to grow its wealth share, the extraordinary volatility observed during the pandemic

may turn out to be the new normal.
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3.7 Proofs and Supplementary Material

A Proofs

Proof of Equation (3.4)

Taking the demand function (3.3) and imposing the budget constraint
∑

n w j
t (n) = 1−w j

t (0)

yields

w j
t (n) = δ

j
t (n)

1+∑
n δ

j
t (n)

, (3.16)

where δ j
t (n) = exp

{
θ

j
t +γ j met (n)+∑K

k=1β
j
k Xk,t (n)

}
ϵ

j
t (n). Note that met (n) = pt (n)+ st (n).

The vector of investor j ’s log shares held at t can be written as

q j
t = log(A j

t w j
t )−pt , (3.17)

where bold letters denote vectors inRN . Differentiating q j
t from above with respect to the

price vector yields an N ×N matrix23

∂q j
t

∂p′
t
=

(
diag(w j

t )

)−1 ∂w j
t

∂p′
t
− I. (3.18)

The diagonal elements of
∂w j

t
∂p′

t
are given by

∂w j
t (n)

∂pt (n) = γ j w j
t (n)(1 − w j

t (n)), whereas the off-

diagonal elements are given by
∂w j

t (n)
∂pt (m) =−γ j w j

t (n)w j
t (m). Thus

∂w j
t

∂p′
t
= γ j

(
diag(w j

t )−w j
t w j

t
′
)
. (3.19)

Substituting (3.19) into (3.18) yields (3.4).

Proof of Equation (3.15)

Recall the market clearing condition, which implies that pt = log
(∑

j A j
t w j

t (pt )
)− st . Differ-

entiating both sides with respect to the log latent demand of Robinhood traders log(ϵRH
t )

yields

∂pt

∂ log(ϵRH
t )′

= H−1
t

(∑
j

A j
t

∂w j
t

∂p′
t

∂pt

∂ log(ϵRH
t )′

+ ARH
t

∂w j
t

∂ log(ϵRH
t )′

)
, (3.20)

23Note that, by assumption, an investor’s assets under management A
j
t are determined exogenously and hence

do not depend on pt .
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where Ht =∑
j A j

t diag(w j
t ). Solving for ∂pt

∂ log(ϵRH
t )′ yields

∂pt

∂ log(ϵRH
t )′

=
(

I−∑
j

A j
t H−1

t
∂w j

t

∂p′
t

)
ARH

t H−1
t
∂wRH

t

∂ϵRH
t

′ , (3.21)

where the last term is given by

∂wRH
t

∂ log(ϵRH
t )′

= diag(wRH
t )−wRH

t wRH
t

′. (3.22)

Substituting (3.19) and (3.22) in (3.21) yields

∂pt

∂ log(ϵRH
t )′

=
(

I−∑
j

A j
t γ

j H−1
t G j

t

)−1

ARH
t H−1

t GRH
t , (3.23)

where Ht =∑
j A j

t diag(w j
t ). The matrix inside the inverse captures the market’s demand elas-

ticity, which determines the amplification of demand shocks across the stock universe. If

diag(w j )−w j w′
j ≈ diag(w j ), then A j

t H−1
t G j

t = diag(z j
t ), where z j

t (n) = w j
t (n)A j

t∑
k w k

t (n)Ak
t

is the owner-

ship share of j in stock n. Thus, we can write

∂pt

∂ log(ϵRH
t )′

=
(

I−∑
j
γ j diag(z j

t )

)−1

diag(zRH
t ). (3.24)

B Institutional Holdings

Institutional Investors

We obtain quarterly institutional holdings data on stocks traded on the New York Stock Ex-

change (NYSE), the NYSE American, and the NASDAQ between January 2005 and July 2020

from Refinitiv. We restrict our sample to holdings disclosed in 13F filings. Note that Refinitiv

Ownership reports holdings by investment managers. An investment manager does not always

correspond to an entire institution, but can be a subsidiary.24 Using Refinitiv, we identify the

parent institution of each investment manager and aggregate holdings at the parent institution

level. We compute the percentage of ownership as the number of shares held divided by shares

outstanding. Following Ben-David et al. (2016), we winsorize ownership shares above 50%

and proportionally scale down holdings so that total institutional ownership does not exceed

100%.25 We construct each institution’s equity portfolio weights as the dollar holdings in each

stock (price times shares held) divided by their assets under management. We compute assets

under management as the sum of an institution’s dollar holdings. Following KY (2019), we

24For example, BlackRock is split between 16 investment managers.
25Lewellen (2011) finds that institutional holdings exceeding 100% of shares outstanding are not data errors but

the result of double-counting shares that were short-sold.
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Table 3.1: Institutional Ownership Data Summary
This table reports summary statistics on institutional holdings. The number of financial institutions (first column)
is computed after the cleaning steps A, B, and C. This number is the count of institutions present in our sample in
either or both Q1 and Q2. The remaining statistics displayed in the last 7 columns are the average of the Q1 and Q2
quarterly statistics.

Number
of FI

Percentage
of Market
Held

Assets under
Management

Number of Stocks
Held

Number of Stocks in
Universe

Median 90th
Percentile Median 90th

Percentile Median 90th
Percentile

Banks 170 7 599 37,016 187 1,387 319 1,896

Insurance Companies 34 2 703 10,309 109 591 200 860

Pension Funds 62 3 6,434 42,153 704 1,768 971 2,219

Investment Advisors 2,822 50 194 3,097 82 439 147 833

Hedge Funds 512 2 315 2,458 28 211 79 573

Other 50 1 677 15,812 50 1,517 106 2,367

attribute the holdings of institutions with less than $10 million under management to the

household sector. Similarly, all institutions that do not have any holdings in any inside assets

or the outside asset are merged with households.

We regroup Refinitiv’s 14 investor categories into six investor types. Insurance companies

and hedge funds remain as they are. Banks and trusts are grouped with holding companies,

investment advisors with investment advisors/hedge funds, and pension funds with sovereign

wealth funds. Finally, endowment funds, venture capital firms, research firms, foundations,

private equity firms, and corporations are grouped together (labelled as Other). Table 3.1

reports summary statistics on institutional holdings by investor type for the first half of 2020.

Sparse Portfolios

Estimating the demand system requires estimating demand coefficients for each individual

investor. However, most of the institutions in our sample hold very concentrated portfolios

or have filed few 13F filings. Indeed, the majority of institution-quarter pairs report less than

100 holdings. In order to obtain sufficiently many observations for the demand estimation,

we pool institutions with insufficient holdings together and estimate demand coefficients

for the pooled entities. We establish two cutoffs; i) a cross-sectional cutoff of 100 positive

holdings in our investment universe (excluding the outside asset) that must be satisfied in

every quarter, and ii) a time series cutoff of 12 quarters of available 13F filings. Institutions that

do not meet the required cutoffs are only pooled together with institutions of the same investor

type. Additionally, investment advisors are pooled with investment advisors that share the

same investment style. We obtain advisors’ investment style from Refinitiv. Within each type

(banks, hedge funds, insurance companies, pension funds, and other) and investment style

(core value, core growth, growth at a reasonable price (GARP), growth, hedge fund, deep value,
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income value, yield, and other), we sort institutions by quantiles of average AUM. The holdings

of the institutions belonging to the same type/style and quantile are summed together and

form the aggregated holdings of our pooled entities. The number of quantiles is set such

that the cross-sectional and the time series cutoffs are satisfied for every pool. Note that,

to conform with our panel approach, pools are immutable. Thus, an institution is uniquely

assigned to the same pool in every quarter.

C Robinhood Holdings

Summary Statistics

Robintrack reports Ht (n), i.e. the number of accounts holding each stock traded on the online

brokerage platform “Robinhood Markets Inc.”. Table 3.1 reports summary statistics on Ht (n)

for Q1 and Q2.

Table 3.1: Robinhood Accounts Holding Summary Statistics
This table reports summary statistics on the number of Robinhood accounts holding a stock Ht (n) for the last
quarter of 2019, and the first two of 2020. The summary statistics are cross-sectional measures computed across
all stock within our investment universe. For example, the mean corresponds to 1

N
∑N

n=1 Ht (n). The number of
observations corresponds to the number of stocks traded on Robinhood. Changes in Ht (n) are computed for each
stock-quarter pair in Q1 and Q2.

Mean Std Min P25 Median P75 Max N(Obs.)

Accounts Holding Ht (n)

2019 Q4 3,070 17,168 0 118 364 1,196 321,191 1,981

2020 Q1 5,667 30,147 0 173 543 1,916 649,148 2,028

2020 Q2 9,601 48,158 0 276 906 3,158 925,539 2,076

Changes in Accounts Holding Ht (n)−Ht−1(n)

2020 Q1 2,602 15,806 -4,394 17 93 507 327,957 1,903

2020 Q2 3,929 21,304 -11,138 50 213 922 397,892 2,016

Portfolio Weight Approximation

Note that Ht (n) cannot be readily interpreted as the total number of shares held by all Robin-

hood traders in the respective stock. This is because Ht (n) simply tracks the number of

registered accounts holding stock n, regardless of whether an account holds multiple shares

or a fraction of a share. However, we can use the number of accounts holding each stock to

approximate the representative Robinhood portfolio as in (3.1). To this end, let Wa,t denote

the wealth of account a on Robinhood and wa,t (n) the account’s portfolio weight in stock n.
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Then, the aggregate Robinhood portfolio is given by

wRH
t (n) =

∑Ut
a=1 Wa,t wa,t (n)∑Ut

a=1 Wa,t

. (3.25)

If every account holding a stock 1a,n(n) represents an equal amount of dollars U SD t , then∑Ut
a=1 Wa,t wa,t (n)∑Ut

a=1 Wa,t

=
∑Ut

a=11a,n(n)U SD t∑Ut
a=1

∑N
n=11a,t (n)U SD t

= Ht (n)∑N
n=1 Ht (n)

. (3.26)

The approximation also holds if1a,t (n) = 1 represents different dollar amounts across users, as

long as the wealth distribution is uncorrelated with the users’ investment universes, i.e. their

sets of preferred stocks. Note that, because users can buy fractional shares on Robinhood, the

actual dollar price of a stock plays a subordinate role for the investment decision, even under

a limited budget. Lastly, the approximation even holds if 1a,t (n) = 1 represents different dollar

amounts across stocks, as long as investors’ deviations from holding equal-weighted portfolios

are random. If a user randomly distributes her budget across stocks within her investment

universe, then (as Ut grows large) the average user holds an equal-weighted portfolio within

her universe and (3.1) holds.

Scaling the Implied Holdings

While the actual amount of shares held by Robinhood traders QRH
t (n) is unobserved, we

reverse-engineer an approximation using (3.1) and the AUM figures of the S-1 filing from July

1st, 2021.

QRH
t (n) = wRH

t (n)ARH
t

Pt (n)
. (3.27)

The S-1 filing only reports key metrics for December 31st, 2019, as well as March 31st and

December 31st, 2020. In order to infer the shares held in Q2, approximate need to Robinhood’s

AUM given the reported figures in the S-1. The publicly reported user base of 13 Million in

May 2020 is roughly equivalent to the number of disclosed users in the S-1 for December

31st, 2020. While the rising number of open positions (Figure 3.1) suggests that Robinhood

traders’ AUM likely increased from May to July 2020, we take a conservative approach and

assume their AUM to be $50 billion throughout Q2. In order to get AUM approximations for

all quarters before December 2019, that are consistent the evolution of open positions, we

fit a polynomial to 1
N

∑N
n=1 Ht (n) and evaluate the function at different dates, given that in

December 31st it took $11.7 billion. The residual shares not held by Robinhood traders or

institutions make up the household sector. In the rare cases, where institutional and implied

Robinhood holdings exceed the shares outstanding, we rescale Robinhood traders’ shares

held to be Q̃RH
t (n) = St −∑I

i=1 Q i
t (n). Robinhood portfolio weights are then recomputed as

wRH
t (n) = Q̃RH

t (n)Pt (n)∑N
n=1 Q̃RH

t (n)Pt (n)
.
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D Quarterly Demand Estimation

KY (2019) propose the following demand function, which is purely cross-sectional and implies

time-varying demand coefficients,

∀ j , t :
w j

t (n)

w j
t (0)

= exp

{
β0,t +γ j

t met (n)+
K∑

k=1
β

j
k,t Xk,t (n)

}
ϵ

j
t (n). (3.28)

Thus, each investor’s demand is estimated over the cross-section of portfolio weights at time

t and is re-estimated quarterly. In our setting, this implies the following quarterly moment

conditions for 13F-institutions, households and Robinhood traders,

∀ j , t : E

[
log(ϵ j

t (n))

∣∣∣∣ m̂e j
t (n), X t (n)

]
= 0 s.t . γ

j
t < 1, (3.29)

from which we estimate demand by constrained generalized method of moments. Note, that

for each investor, we obtain a time series of coefficients. Robust inference from counterfactual

experiments (e.g. redistributing Robinhood’s assets under management) requires that the

estimated coefficients do not change in the counterfactual. If the estimated coefficients vary

strongly over time, it implies demand curves are inherently unstable as they tend to vary with

the macro-economic or political environment. Arguing for counterfactual-invariant demand

coefficients then becomes difficult. Having estimated {γ j
t }T

t=1 and {β j
k,t }T

t=1 for all characteris-

tics k and for all quarters t = 1, ...,T , we compute the wealth-weighted average across investors

within each investor type at each quarter. Using the time series of wealth-weighted coefficients

for each type, we compute the mean and standard deviation over time. Table 3.1 reports the

estimated coefficients and their time series standard deviations for each investor type.

While the average coefficients are roughly equivalent to the panel estimates, many are sta-

tistically insignificant. Note that the averages of quarterly re-estimated coefficients are not

necessarily equivalent to the reported panel estimates due to the coefficient constraint (γ j < 1).

Furthermore, coefficient averages are wealth-weighted at all dates, whereas Table 3.1 reports

coefficient averages using wealth shares as of Q2 only.
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Table 3.1: Quarterly Demand Coefficients
The table reports the average coefficients and their time series standard deviations for the quarterly re-estimated
demand curves. Within each investor type, we first compute AUM-weighted average coefficients for each quarter
and then compute time series averages and standard deviations across quarters.

Demand Coefficients

γ j β
j
be β

j
inv. β

j
profit β

j
beta β

j
div/be

Institutional Investors

Hedge Funds Mean 0.53 -4.64 9.12 4.45 7.39 -6.26

Std. 0.07 3.18 2.73 7.45 5.06 7.01

Insurance Companies Mean 0.72 0.55 4.26 -5.09 -8.23 2.60

Std. 0.06 4.73 5.73 14.68 7.43 13.81

Other Mean 0.82 22.57 4.70 4.10 0.61 -0.43

Std. 0.10 13.66 4.65 7.13 5.72 6.93

Investment Advisors Mean 0.82 13.67 3.11 4.84 -0.09 -2.92

Std. 0.03 1.74 2.11 7.32 2.63 6.06

Banks Mean 0.89 16.70 0.57 2.50 -6.29 -0.85

Std. 0.04 4.93 2.83 6.24 4.76 5.28

Pension Funds Mean 0.94 5.98 -0.93 3.81 -1.23 -2.73

Std. 0.01 2.19 1.91 10.77 2.57 10.52

Households Mean 0.72 9.50 -1.11 -0.14 -11.86 6.09

Std. 0.03 4.47 2.84 6.42 4.44 6.28

Robinhood Traders Mean 0.32 -27.07 7.32 -7.41 24.25 8.29

Std. 0.03 1.69 4.27 6.91 16.33 5.48
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Conclusion

This thesis studies the incorporation of data on investors’ portfolio holdings into equilibrium

asset pricing models. The three chapters investigate the theory, estimation and applications

of such demand-based models. In particular, I study the application and structural estimation

of demand systems in asset pricing. A series of papers studies 1) the identification of demand

curves from data on portfolio holdings, 2) the implications of institutional demand for the

pricing of sustainable investments, and 3) the interaction of retail traders and large institutions.

There is a wealth of data on investor-level portfolio holdings and capital flows across assets,

asset classes and countries. If demand curves for financial securities are downward sloping,

then one can learn a lot about asset prices by linking them to capital flows and portfolio

holdings through equilibrium models. In this light, the use of quantity data provides an explicit

link between market micro-structure, intermediary asset pricing, and corporate finance. The

market micro-structure literature has carefully developed theories and tools to estimate

downward-sloping demand curves, price impact, and the relationship between prices and

flows at a higher frequency. Investigating how investors’ demand shocks enter prices at a

higher frequency and estimating their permanent impact is an exciting avenue for future

research. Another interesting direction for future research is understanding the interaction

of investor demand and the supply curve, i.e. the decisions at the corporate level. What

is the joint role of investor demand, downward sloping demand curves, capital structure

and investment decisions? An explicit link between asset pricing and corporate finance via

the use of portfolio holdings would allow quantifying the real effects of of financial markets.

Do sustainable firms capitalize on the rise of sustainable investing by issuing new shares at

elevated prices and investing in green projects?

Overall, demand-based asset pricing opens up an exciting research agenda which, on the one

hand, develops the tools to incorporate quantity data into equilibrium asset pricing models,

and on the other hand, uses these tools to uncover new facts about the sources of financial

market fluctuations. Understanding the role of quantities and prices jointly will provide

valuable insights for policymakers as it allows making quantitative statements about the level

of intervention required to affect asset prices in the desired direction.
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