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Abstract
Training accurate and robust machine learning models requires a large amount of data that

is usually scattered across data silos. Sharing, transferring, and centralizing the data from

silos, however, is difficult due to current privacy regulations (e.g., HIPAA or GDPR) and due

to business competition (e.g., in the finance field). An existing solution for collaborative

machine learning is federated learning where several parties collectively train a machine

learning model without sharing or transferring their local data. With federated learning, the

local data is preserved on the parties premises, the global model is trained via an iterative

exchange of cleartext gradients that are computed locally. These gradients have been shown

to leak private information about the original training data of the parties through inference

attacks. Consequently, any solution that does not incorporate additional security and privacy

mechanism to protect these gradients put the training data and their subjects at risk.

In this thesis, we propose, implement, and optimize several neural network algorithms to

preserve the privacy of the model and the data during federated learning. Our solutions

mitigate federated learning attacks that target the gradients during training in the cross-

silo and horizontal federated learning settings with N parties. We also protect the querier’s

evaluation data sent to prediction-as-a-service (PaaS) systems. To achieve this, we rely on

lattice-based multiparty homomorphic encryption (MHE), where all communicated values

between the parties remain encrypted and all computations are carried out under encryption.

With this, our solutions ensure both the data and the model confidentiality during the training

and the prediction under a passive adversary threat model that allows for collusions between

up to N−1 parties. We (i) propose and implement privacy-preserving federated neural network

operations for different neural network architectures (e.g., multilayer perceptrons or recurrent

neural networks), (ii) evaluate their performance under cross-silo federated learning settings

in terms of model performance, scalability, and efficiency, and (iii) show the maturity of our

solutions for real-life use-cases (e.g., medical application). We experimentally show that our

solutions’ performance is similar to centralized or decentralized non-private approaches and

that the communication overhead scales linearly with the number of parties.

First, we propose POSEIDON, a novel system that addresses the problem of privacy-preserving

training and the evaluation of multilayer perceptrons (MLPs) and convolutional neural net-

works (CNNs) in an N -party federated learning setting by relying on MHE. To efficiently and

securely execute the backpropagation algorithm, we provide a generic packing approach,

alternating packing, that enables single instruction, multiple data (SIMD) operations on en-

crypted data. We also introduce arbitrary linear transformations within the cryptographic
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bootstrapping operation. These transformations optimize the costly cryptographic compu-

tations over the parties; and we define a constrained optimization problem for choosing the

cryptographic parameters.

Second, we propose RHODE. RHODE enables privacy-preserving training of, and prediction

on, recurrent neural networks (RNNs) in the federated learning setting. We propose a novel

packing scheme, multi-dimensional packing, for a better utilization of SIMD operations that

is tailored for RNNs and mini-batch training. With multi-dimensional packing, we enable

the efficient processing, in parallel, of a batch of samples. Finally, we show that our solutions

are applicable to real-life applications and datasets, by replicating the training of a published

state-of-the-art CNN architecture in our privacy-preserving federated learning setting tailored

for single-cell disease classification tasks.

Keywords: federated learning, multiparty homomorphic encryption, secure collaborations,

privacy-preserving machine learning, neural networks, private training.
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Zusammenfassung
Das Training präziser und robuster maschinellen Lernmodelle erfordert eine große Menge an

Daten, die normalerweise in verschiedenen Datensilos verteilt sind. Das Teilen, Übertragen

und Zentralisieren der Daten aus den Silos ist aufgrund aktueller Datenschutzbestimmungen

(z.B. HIPAA oder DSGVO(GDPR)) und Geschäftkonkurrenz (z.B. im Finanzbereich) jedoch

schwierig. Eine bestehende Lösung für kollaboratives maschinelles Lernen ist das sogenannte

föderierte Lernen, bei dem mehrere Parteien ohne das Teilen oder Übertragen ihrer lokalen

Daten gemeinsam ein maschinelles Lernmodell trainieren. Obwohl die lokalen Daten nie

direkt geteilt werden, wird das globale Modell durch den iterativen Austausch von Klartext-

Lokalmodellen (z.B. Gradienten) trainiert. Dies kann zu einem Datenleck von privater Infor-

mationen führen. Dank der Anwendung statistischer Methoden auf die Gradienten kann ein

Teil oder alle der ursprünglichen Trainingsdaten der Parteien entblößt werden. Folglich setzt

jede Lösung, die keine zusätzlichen Sicherheits- und Datenschutzmechanismen zum Schutz

dieser Gradienten enthält, die Trainingsdaten und ihre Themen einem Risiko aus.

In dieser Arbeit präsentierenwir mehrere neuronale Netzwerke, um die Privatsphäre des

Modells und der Daten zu bewahren. Vor allem um Angriffe auf das föderierte Lernen wäh-

rend des Trainings in den cross-silo- und horizontalen föderierten Lernumgebungen mit N

Parteien abzumildern. Wir schützen auch die Bewertungsdaten des Abfragers, die an PaaS-

Systeme (Prediction-as-a-Service) gesendet werden. Um dies zu erreichen, setzen wir auf

lattice-basierte multiparty homomorphic encryption (MHE), bei der alle kommunizierten

Werte zwischen den Parteien und alle Berechnungen verschlüsselt ausgeführt werden. Auf

diese Weise garantieren unsere Lösungen sowohl die Daten- als auch die Modellvertraulichkeit

während des Trainings und der Vorhersage unter einem passiven Bedrohungsmodell, bis zu

einer Kollaboration von N −1 Parteien. Unsere Arbeit beinhaltet (i) privatheitsbewahrende

föderierte neuronalen Netzwerkoperationen für verschiedene neuronalen Netzwerkarchitek-

turen (z.B. multilayer perceptrons oder recurrent neural networks) und deren Implementation,

(ii) Bewertung derer Leistung unter den Bedingungen des cross-silo federated learning in Bezug

auf Qualität des Models, Skalierbarkeit und Effizienz und (iii) reale Anwendungsfälle, die die

Reife unserer Lösungen zeigen (z.B. medizinische Anwendungen). Wir zeigen experimentell,

dass sich die Modelleffizienz mit unseren Lösungen ähnlich wie bei zentralen oder dezentralen

Ansätzen ohne Einhaltung der Privatsphäre verhält und dass der Kommunikationsaufwand

linear mit der Anzahl der Parteien skaliert wird.

Zuerst schlagen wir ein neues System vor, POSEIDON, das erstmals im Bereich des datenschutz-

freundlichen Trainings von Neuronalen Netzen eine Lösung für das Training und die Bewer-
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tung von multilayer perceptrons (MLPs) und convolutional neural networks (CNNs) in einem

N -Parteien-Federated-Learning-Setting mit MHE vorstellt. Um den sicheren Backpropagation-

Algorithmus effizient ausführen zu können, zeigen wir einen generischen Ansatz, das alter-

nierende Packen, welches erlaubt, single instruction, multiple data (SIMD) Operationen auf

verschlüsselten Daten anzuwenden. Wir stellen auch beliebige lineare Transformationen

innerhalb der kryptographischen Bootstrapping-Operation vor, optimieren somit die kost-

spieligen kryptographischen Berechnungen über die Parteien und definieren ein begrenztes

Optimierungsproblem für die Wahl der kryptographischen Parameter.

Danach stellen wir RHODE vor. Es ermöglicht eine Datenschutz-gerechtes Training und Vor-

hersage von recurrent neural networks (RNNs) im selben föderierten Lernumfeld. Wir schlagen

ein neues Verpackungsschema, Multi-dimensional packing", für eine bessere Nutzung der

single instruction, multiple data (SIMD) Operationen unter Verschlüsselung vor, das speziell

für RNNs und Mini-Batch-Schulung angepasst ist. Mit Multi-dimensional packing können

wir die effiziente Verarbeitung eines Batches von Proben parallel durchführen. Schließlich

zeigen wir, dass unsere Lösungen auf realen Anwendungen und Datensätzen anwendbar sind,

indem wir das Training einer veröffentlichten State-of-the-Art-CNN-Architektur in unserem

datenschutzgerechten föderierten Trainingsumfeld für die single-cell disease Klassifikation

nachbilden.

Schlüsselwörter: Föderiertes Lernen, Mehrparteien-Homomorphe Verschlüsselung, sichere

Zusammenarbeit, Datenschutz-gerechtes maschinelles Lernen, Neuronale Netze, private

Schulung.
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Résumé
L’entraînement de modèles algorithmiques d’apprentissage précis et robustes nécessite un

grand volume de données qui sont généralement dispersées dans des silos de données. Ce-

pendant, le partage, le transfert et la centralisation des données à partir de ces silos sont

toutefois difficiles en raison des réglementations en vigueur concernant la protection des

données privées (par exemple, HIPAA ou GDPR) et en raison de la concurrence commerciale

(par exemple, dans le domaine de la finance). Une solution existante d’apprentissage machine

collaboratif est appelée apprentissage fédéré où, sans partager ni transférer leurs données lo-

cales, plusieurs tiers entraînent collectivement le modèle. Bien que les données locales soient

conservées in situ, le modèle global est entrainé en clair via un échange itératif de modèles

locaux (par exemple, des gradients). Ce qui provoque une potentielle fuite d’informations

privées des données locales d’entraînement en raison d’inférences attaquant les gradients ou

encore le modèle. Par conséquent, toute solution qui n’intègre pas de mécanisme de sécurité

et de confidentialité supplémentaire pour protéger ces gradients met en danger les données

de formation et leurs sujets.

Dans cette thèse, nous proposons plusieurs algorithmes de réseaux de neurones afin de pré-

server les données privées du modèle et des données d’entraînement, et pour mitiger les

attaques sur l’apprentissage fédéré qui visent la phase d’entraînement dans le contexte de

l’apprentissage fédéré avec N tiers et une distribution inter-silos horizontal des données. Nous

protégeons également les données d’évaluation du demandeur envoyées aux systèmes de

prédiction en tant que service (PaaS). Dans de tel scenario, le modèle entraîné dans le contexte

de l’apprentissage fédéré est utilisé et le demandeur envoie les données d’évaluation privées

pour le PaaS. Pour y parvenir, nous avons recours au chiffrement homomorphe multipartite

(MHE) basé sur un treillis euclidien, où toutes les valeurs communiquées entre les tiers et

tous les calculs sont effectués sous encryption. Grâce à cela, nos solutions garantissent à la

fois la confidentialité des données d’entraînement et du modèle pendant l’entraînement, et

la prédiction pour le modèle de menace d’un adversaire passif permettant des collusions

jusqu’entre N −1 tiers. Nous (i) proposons et implementons des opérations de réseaux de

neurones fédérés préservant la vie privée pour différentes architectures de réseaux de neu-

rones (par exemple, des perceptrons multicouches ou des réseaux de neurones récurrents), (ii)

évaluons leurs performances dans des contextes d’apprentissage fédéré inter-silos en termes

de performances du modèle, d’évolutivité , et d’efficacité, et (iii) montrons la maturité de

nos solutions dans des cas d’utilisation réels (par exemple, pour des applications médicales).

Nous montrons expérimentalement que les performances du modèle avec nos solutions
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restent similaires aux approches non-privée centralisées ou décentralisées, et que le coût de

communication évolue linéairement avec le nombre de tiers.

Tout d’abord, nous proposons un nouveau système, POSEIDON, le premier de son genre dans

le régime des réseaux neuronaux préservant les données privées qui aborde le problème de

l’entraînement préservant les données privée et l’évaluation des perceptrons multicouches

(MLP) et des réseaux de neurones convolutifs (CNN) dans le cadre de l’apprentissage fédéré de

N -tiers en s’appuyant sur MHE. Pour exécuter efficacement l’algorithme de rétropropagation

sécurisée, nous fournissons une approche d’empaquetage (packing) générique, empactage

alterné qui permet des opérations à instruction unique, données multiples (SIMD) sur des

données chiffrées. Nous introduisons également des transformations linéaires arbitraires dans

l’opération de rafraichissement des encryption homomorphes (bootstrapping), optimisant

ainsi les calculs cryptographiques coûteux entre les tiers ; et nous définissons un problème

d’optimisation sous contrainte pour le choix des paramètres cryptographiques.

Deuxièmement, nous proposons RHODE. Ce systeme permet un entraînement et une pré-

diction préservant les données privées sur les réseaux de neurones récurrents (RNN) dans le

même contexte d’apprentissage fédéré. Nous proposons un nouveau schéma de représen-

tation des donnés (packing), le packing multidimensionnel, pour une meilleure utilisation

des opérations à instruction unique/données multiples (SIMD) sous chiffrement, adapté aux

RNN et à l’entraînement par mini-lot (mini-batch). Avec l’emballage multidimensionnel, nous

permettons le traitement efficace, en parallèle, d’un lot d’échantillons.

Enfin, nous montrons que nos solutions sont applicables à des applications et des ensembles

de données réels, en reproduisant dans le contexte de notre apprentissage fédéré l’entraîne-

ment d’un réseau de neurone de pointe à des fins de classification des maladies unicellulaires.

Mots-clés : apprentissage fédéré, chiffrement homomorphique multi-tiers, collaboration

sécurisée, apprentissage machine préservant la vie privée, réseau de neurones, entraînement

privé.
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Introduction

In the era of big data and machine learning, neural networks are the state-of-the-art models.

They achieve remarkable predictive performance in various domains such as healthcare,

finance, and image recognition [19, 196, 267]. However, training an accurate and robust

machine learning model requires a large amount of diverse and heterogeneous data [310]. This

phenomenon raises the need for data sharing among multiple parties who seek to collectively

train a machine learning model in order to extract valuable and generalizable insights.

Nonetheless, collecting large amounts of data from multiple parties remains a challenge due

to the sensitive nature of the data, strict privacy regulations, such as HIPAA [3] or GDPR [8],

and business competition between the parties [262]. In a medical setting, for example, hospi-

tals need decision-support machine learning systems, e.g., for diagnosis, employing neural

networks that require large datasets for training [183, 84]. One approach is to aggregate or

pool all the data from different hospitals and to train the model in a centralized server. How-

ever, such a solution is not feasible in most real-life applications, due to the aforementioned

privacy regulations. The process for data sharing, in particular for cross-border transfers, also

needs to interface diverse legislation and ethics committees, which usually hinders the agile

process of the research. Hence, building new operational systems that enable several parties

to protect and to have ultimate control on their data while being able to collaboratively train

machine learning models is more significant than ever. Consequently, solutions that enable

privacy-preserving training of machine learning models on the data of multiple parties are

highly desirable in many domains [186, 47, 130].

A simple solution for collective training is to outsource the data of multiple parties to a trusted

party that trains the neural network model on their behalf. In this approach, the data and

model’s confidentiality relies on established stringent non-disclosure agreements. However,

these confidentiality agreements require a significant amount of time to be prepared by

legal and technical teams [182] and are very costly [157]. Furthermore, the trusted party

becomes a single point of failure, hence both data and model privacy could be compromised

by data breaches, hacking, leaks, etc. Therefore, solutions originating from the cryptographic

community replace and emulate the trusted party with a group of computing servers. In

particular, to enable privacy-preserving training of neural networks, several studies employ

secure multiparty computation (MPC) techniques and operate on the two [205, 60], three [204,

278, 279], or four [53, 57] server models. Such approaches, however, limit the number of parties
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among which the trust is split, often assume an honest majority among the computing servers,

and require parties to communicate their data outside their premises. This might not be

acceptable due to the privacy and confidentiality requirements and the strict data protection

regulations. Furthermore, the trusted computing servers do not operate on their own data or

benefit from the model training; hence, their only incentive is preventing the reputation harm

if they are compromised, which increases the possibility of malicious behavior.

A recently proposed algorithm for collective training of neural networks – without data out-

sourcing – is federated learning. Instead of bringing the data to the model, the model is

brought (via a coordinating server) to the clients who perform model updates on their local

data. The updated models from the parties are averaged to obtain the global neural network

model [194, 166]. As such, federated learning eliminates the need for storing huge amounts

of data collected from clients in a centralized server. Although federated learning retains the

sensitive input (training) data locally and eliminates the need for data outsourcing, the model

might also be sensitive, e.g., due to proprietary reasons. This model becomes available to the

coordinating server, thus placing the latter in a position of power with respect to the remaining

parties. Recent research demonstrates that sharing intermediate model updates among the

parties or with the server might lead to various privacy attacks, such as extracting parties’

inputs or membership inference attacks [128, 283, 309, 199, 212, 304, 110, 145, 280, 85, 87].

In addition, the model becomes also prone to general inference attacks (that usually target

inference frameworks) such as membership inference [254, 241, 299, 189] or model inver-

sion [98, 302, 294] by any party upon receiving the global model. Hence, during the training

process, any distributed learning approach requires the protection of the intermediate model

updates from any party. Consequently, several works employ differential privacy to enable

privacy-preserving exchanges of intermediate values and to obtain models that are free from

adversarial inferences [177, 253, 17, 195]. Although differentially private techniques limit

privacy attacks, they decrease the utility of the resulting machine learning model [229]. Fur-

thermore, training robust and accurate models is challenging and requires less noise to be

added, and as such, the level of privacy achieved in practice remains unclear [141]. There-

fore, a distributed privacy-preserving deep learning approach requires a strong cryptographic

protection of the intermediate model updates during the training and of the final model

weights.

Recent cryptographic approaches for private distributed learning, e.g., [307, 104], not only

have limited machine learning functionalities, i.e., regularized or generalized linear models,

but also employ traditional encryption schemes that make them vulnerable to post-quantum

attacks. This should be cautiously considered, as recent advances in quantum computing [114,

213, 266, 295], increase the need for deploying plausible quantum-resilient cryptographic

schemes that eliminate potential risks for applications with long-term sensitive data. We

proposed SPINDLE [102] (covered in the thesis by Froelicher [105]), a generic approach for

privacy-preserving training of machine learning models in an N -party setting that employs

multiparty lattice-based cryptography to achieve plausible post-quantum security guarantees.

However, SPINDLE demonstrates the applicability of the approach only for generalized linear
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models; and it lacks the necessary protocols and functions to support the training of more

complex machine learning models, such as neural networks.

In this thesis, we propose, implement, and evaluate novel systems for privacy-preserving,

quantum-resistant, federated learning-based training of and inference on neural networks

with N parties. Our systems rely on multiparty homomorphic encryption (MHE) and ensure

model and data confidentiality of both the parties and the querier, under a passive-adversarial

model and collusions between up to N − 1 parties [287]. We encrypt the full pipeline of

federated learning end-to-end, such that all intermediate values that are communicated

through the network or global/local models always remain under encryption. Each party in the

collaborative training of neural network retains their data locally and trusts only themselves for

the confidentiality of their data. Our systems do not require the collection of data in encrypted

form, as opposed to prior works [126, 211], thus reducing the computational complexity.

Our main contributions are as follows:

• Chapter 4 - Federated Multilayer Perceptron and Convolutional Neural Network

Learning. We present POSEIDON that enables the private training and evaluation of

multilayer perceptron (MLPs) and convolutional neural networks (CNNs) in the fed-

erated learning setting with N parties, under encryption. We propose an alternating

packing (AP) approach for the efficient use of single instruction, multiple data (SIMD)

operations. Our results demonstrate that POSEIDON trains a 2-layer neural network

model on a dataset with 23 features and 30,000 samples distributed among 10 parties,

in 8.7 minutes.

• Chapter 5 - Federated Recurrent Neural Network Learning. We present RHODE that

enables private training and evaluation of recurrent neural networks (RNNs) in the fed-

erated learning setting with N parties, under encryption. We address several challenges

introduced by training RNNs under encryption, e.g., exploding gradients. We propose a

multi-dimensional packing scheme that enables the efficient execution of mini-batch

training over RNNs, through SIMD operations. We show that RHODE can process 256K

samples distributed among 10 parties with an RNN of 32 hidden units and 4 timesteps,

with 100 global training iterations, in ∼ 1.5 hours.

• Chapter 6 - Federated Neural Network Learning for Disease-Associated Cell Classifi-

cation. We present PRICELL for evaluating our systems, within the medical framework

of single-cell analysis. We efficiently replicate the training of a convolutional neural

network (CellCnn) architecture, designed by Arvaniti and Claassen [32], in a decentral-

ized and privacy-preserving manner. We enable private CellCnn training for single-cell

analysis within our framework for a disease classification task. We design new packing

strategies that are tailored for the execution of CellCnn architecture. Our solution con-

verges comparably to the training with centralized data, and we improve on POSEIDON

in terms of training time. In a setting with 10 parties, we improve POSEIDON’s execution

time by at least one order of magnitude. PRICELL trains, in less than 20 minutes, a
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CellCnn model on a training set of 200 cells per sample, 1,000 samples per party, and 32

features across 10 parties.

Here, we summarize the key contributions and features of all the systems that we present

throughout this thesis:

– Data Locality. Our solutions eliminate the need for communicating the parties’

confidential data outside their premises, which might not be always feasible due to

privacy regulations [3, 8]. This is in contrast to MPC-based solutions that require

parties to distribute their data among several servers, hence fall under the cloud-

outsourcing model.

– Security. In our solutions, data holders trust only themselves and no other party. As

such we guarantee the data and model confidentiality properties under a passive-

adversarial model and collusions between up to N −1 parties. On the contrary,

MPC-based solutions limit the number of parties among which the trust is split

(typically, 2, 3, or 4 servers) and assume an honest majority among them for

efficiency.

– Scalability. The communication and the computation overhead in POSEIDON,

RHODE, and PRICELL is linear in the number of parties, when all other parameters

are kept the same.

– Accuracy/Model Performance. We evaluate our systems on several real-world

datasets and various neural network architectures/parameters. We show that in all

cases it achieves training accuracy or model performance levels on par with the

centralized or decentralized non-private approaches.

Publications. Chapter 4 contains the contributions of the paper [244] that was published at

NDSS’21 [12]. Then, Chapter 5 contains the contributions of the paper [243] that is accepted

at PETS’23. Finally, in Chapter 6, we describe the findings of [242] that was published in

the journal Patterns (Volume 3, Issue 5) [13]. We also compile our contributions on privacy-

preserving predictions on neural networks in the paper [136] that is accepted at Cloud S&P

2023 and which is not covered in this thesis. We enable the privacy-preserving federated

training of generalized linear models in the paper [102] that published in PETS’21 [11] and

that is not covered in this thesis.

Patents/Impact. The publication of Chapter 4 has received the best prize in the CSAW’21

Applied Research Competition in Europe [10]. To evaluate our contributions in the field

of applied homomorphic encryption, we participated in IDASH’21 for the "Homomorphic

Encryption-based Secure Viral Strain Classification" track and ranked 2nd in the competi-

tion [9].

Both [102] and the contributions in POSEIDON [244] resulted in the filing of patents. The

first patent filed is "System and Method for Privacy-Preserving Distributed Training of Ma-

chine Learning models on Distributed Datasets" [101] and the second is "System and Method for
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Privacy-Preserving Distributed Training of Neural Network Models on Distributed Datasets" [245].

These patents and the several contributions of this thesis are at the core of and used by the

startup company Tune Insight SA [16] that enables secure data collaborations for real-life

scenarios.

Software. We developed and implemented the prototypes for evaluating our systems de-

scribed in this thesis. The implementations of POSEIDON (Chapter 4) and RHODE (Chapter 5)

are licensed by Tune Insight SA [16]. Our implementation for the prototype for PRICELL

(Chapter 6) is available at [15] and is deposited at Zenodo [14].

Thesis Outline. In Chapter 1, we introduce the background on the building blocks that are

used throughout this thesis: neural networks, federated learning, multiparty homomorphic

encryption, and the frequently used symbols and notations. In Chapter 2, we describe the state-

of-the-art privacy-preserving machine learning frameworks, and we position our contributions

in this thesis. We present the common baseline, i.e., the system and threat model, problem

statement, and the system overview, in Chapter 3; this facilitates the presentation in all

remaining chapters. We describe our systems for privacy-preserving federated multilayer

perceptron and convolutional neural networks and recurrent neural network learning in

Chapters 4 and 5, respectively. We show the maturity of our solutions in a medical setting for

collaborative disease-associated cell classification tasks in Chapter 6. Finally, we summarize

the contributions of this thesis in the Conclusion (Chapter 7).
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1 Background

We introduce the main building blocks that we rely on for the remaining chapters of the

thesis. We first introduce the background information about neural networks (NNs), federated

learning, and the multiparty homomorphic encryption (MHE) [97, 33] scheme which are used

in all chapters.

1.1 Neural Networks

Neural networks are machine learning algorithms that extract complex non-linear relation-

ships between the input and output data. They are used in a wide range of fields such as

pattern recognition, data/image analysis, face recognition, forecasting, and data validation in

the medicine, banking, finance, marketing, and health industries [19]. Typical neural networks

are composed of a pipeline of layers, where feed-forward and backpropagation steps for linear

and non-linear transformations (activations) are applied to the input data, iteratively [115].

Each training iteration is composed of one forward pass and one backward pass, and the

term epoch refers to processing once all the samples in a dataset. Below, we provide a brief

explanation for multilayer perceptrons, convolutional neural networks, and recurrent neural

networks which are used throughout this thesis. We summarize their pipeline in Figure 1.1.

1.1.1 Multilayer Perceptrons (MLPs)

MLPs are fully-connected neural network structures that are widely used in the industry. MLPs

are composed of an input layer, one or more hidden layer(s), and an output layer; each neuron

is connected to all the neurons in the following layer. At iteration k, the weights between layers

j and j +1, are denoted by a matrix W k
j , whereas the matrix L j represents the activation of

the neurons in the j th layer. The forward pass first requires the linear combination of each

layer’s weights with the activation values of the previous layer, i.e., U j =W k
j−1 ×L j−1. Then, an

activation function is applied to calculate the values of each layer as L j =ϕ(U j ).

Backpropagation, a method based on gradient descent, is then used to update the weights
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Figure 1.1: Typical architecture for various neural networks.

during the backward pass. Here, we describe the update rules for mini-batch gradient descent,

where a random batch of sample inputs of size B is used in each iteration. The aim is to

minimize each iteration’s error based on a cost function E (e.g., mean squared error) and

to update the weights, accordingly. The update rule is W k+1
j = W k

j − η
B ∇W k

j , where η is the

learning rate and ∇W k
j denotes the gradient of the cost function with respect to the weights

and is calculated as ∇W k
j = ∂E

∂W k
j

. We note that backpropagation requires several transpose

operations applied to matrices/vectors, and we denote the transpose of a matrix/vector as

W T . Given a cost function, e.g., the mean squared error or the mean absolute error, El denotes

the error with respect to the the true class labels Y . Then, the error term, δ j for each layer j , is

calculated iteratively. Starting from the last layer δl = ∂E
∂L j

⊙ ∂L j

∂U j
, where

∂L j

∂U j
is the derivative of

the activation function (ϕ′) and ⊙ denotes element-wise multiplication. Following the chain

rule1 δk
j = (δk

j+1 × (W k
j )T )⊙ϕ′(U j ) for each hidden layer j , ∇W k

j = δk
j L j .

1.1.2 Convolutional neural networks (CNNs)

CNNs follow a very similar sequence of operations, i.e., forward and backpropagation passes,

and typically consist of convolutional (CV), pooling, and fully connected (FC) layers. It is worth

mentioning that CV layer operations can be expressed as FC layer operations by representing

them as matrix multiplications; in our protocols for Chapter 4, we simplify CV layer operations

by employing this representation [278, 4]. Finally, pooling layers are downsampling layers

where a kernel, i.e., a matrix that moves over the input matrix with a stride of a, is convoluted

with the current sub-matrix. For a kernel of size k ×k, the minimum, maximum, or average

(depending on the pooling type) of each k ×k sub-matrix of the layer’s input is computed.

1The chain rule is used to differentiate composite functions. It states that the derivative of f (g (x)) is
f ′(g (x))g ′(x).
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1.1.3 Recurrent Neural Networks (RNNs)

RNNs are a special type of model that enables the learning on sequential data (e.g., time-

series) [239, 90]. A typical RNN is composed of an input layer that obtains the sequential input

to the network, a hidden layer, and an output layer. Contrary to feed-forward neural networks

where the information flows from the input to the output layer, in an RNN, the information is

fed back to the network through connections between its hidden nodes that form a directed

graph. The RNN input is a sequence where each item in the sequence is called a timestep.

The hidden layer consists of several hidden units (neurons). Each hidden unit has a hidden

state that retains the information from the previous timestep. Thus, RNNs capture sequential

patterns in the data by processing each timestep sequentially and updating the hidden state.

In this way, RNNs use earlier information in the sequence to learn the current output and

retain a form of memory.

A typical RNN, e.g., an Elman Network [90], takes a sequential input (X = x1, x2, · · · , xT ) of T

timesteps then outputs the prediction yt through the hidden units and an activation function

by sequentially computing the hidden state at time t as

ht =ϕ(ht−1 ×W +xt ×U +bh)

yt = ht ×V +by
(1.1)

where U , W , and V denote the input-to-hidden, hidden-to-hidden, and hidden-to-output

weight matrices, respectively, and bh and by as the hidden and output biases. ϕ is the acti-

vation function that is usually chosen to be Tanh. Note that the input at each timestep xt

can itself be a d-dimensional feature vector (or a matrix b ×d for a batch of size b). But, to

avoid notation overflow, we assume that each timestep is a scalar value throughout the thesis,

unless otherwise stated. The dimensions of U , W , and V are d ×h, h ×h, and h ×o, where d ,

h, and o are the input, hidden, and the output dimensions, respectively. We here note that a

Jordan network [146] changes the first line of this equation to ht =ϕ(yt−1 ×W +xt ×U +bh),

and consequently the size of the weight matrix W to o ×h. Jordan networks [146] are similar

to Elman ones but with a slightly different hidden unit, i.e., ht = ϕ(yt−1 ×W + xt ×U +bh).

Consequently, the size of the weight matrix W in Jordan networks is o ×h.

Similarly to feed-forward neural networks, the training of RNNs is an iterative process with a

series of forward and backward passes. The forward pass comprises the prediction by using

the formulas in Eq. 1.1. However, backpropagation is computed via the backpropagation

through time (BPTT) algorithm that takes into account the error propagated through the

hidden units and computes the gradients by following the chain rule [239]. We describe in

detail the operations of this process under Chapter 5, Section 5.2, Algorithm 6.

Finally, we note that there are various RNN structures, i.e., one-to-one, one-to-many, many-to-

one, and many-to-many, depending on the input and output layer size (e.g., a many-to-many

structure yields outputs for κ timesteps). We differentiate these RNN structures from RNN

variants in terms of architecture, such as Gated Recurrent Unit (GRU) or Long Short-Term
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Memory (LSTM).

1.2 Federated Learning

Federated Learning is an emerging collaborative machine learning approach that is pro-

posed by Google and enables multiple parties to train a model, without sharing their local

training data [194, 167, 166]. With federated learning, each party performs several training

iterations on its local data, and the resulting local models are aggregated into a global model

via an aggregation server. We summarize the most popular federated learning algorithm, i.e.,

FedAvg, proposed by McMahan et al. [194] in Algorithm 1. W k
i denotes the model weights

of the i th party during the k th iteration. If no sub-index is used, then it simply denotes the

global model weights at a certain iteration. The server initializes the model weights and

sends them to a random subset of parties S that execute the local gradient descent algorithm

(Local Gradient Descent(·); see Chapters 4, 5, and 6 for the details under different systems) to

update their local model. The model updates from each party are aggregated to the global

model via weighted averaging (ni denotes the number of local samples at the i th party and

n the total number of samples). The number of global and local iterations are denoted as e

and l , respectively. Note that FedAvg is a generalization of the standard FedSGD algorithm

with several local iterations performed on each party’s side. We denote the local batch size as

b and global batch size as B , where for a number of local iterations is 1 and N parties, B = b×N .

Cross-silo vs. cross-device federated learning. Federated learning can be instantiated as a

cross-device or cross-silo setting. Cross-device refers to the setting where the participating

parties are the devices such as smartphones and hence the number of parties can be in the

order of millions (e.g., Google’s applications such as mobile keyboard prediction [121]). Cross-

silo, on the other hand, refers to the setting where the parties are organizations where the data

is siloed. Thus, the number of parties is small and usually below 200 [149, 133]. In this thesis,

we tackle privacy-preserving federated learning in the cross-silo setting and assume that the

parties are available to participate in cryptographic operations. Note that an extension to a

cross-device setting is possible without changing the protocols, but remains unpractical due

to the assumption on availability and the underlying cryptographic operations that would

result in unrealistic runtimes for millions of devices.

1.3 Multiparty Homomorphic Encryption (MHE)

In our system, we rely on a Cheon-Kim-Kim-Song (CKKS) [62] variant of the MHE scheme

proposed by Mouchet et al. [209]. In this scheme, a public collective key is known by all parties

while the corresponding secret key is distributed among them. As such, decryption is possible

only with the participation of all parties. Our motivations for choosing this scheme are as

follows: (i) It is well suited for floating point arithmetic. (ii) It is a lattice-based scheme which

relies on the ring learning with errors (RLWE) problem [193], thus making our system plausibly
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Algorithm 1 Federated Averaging Algorithm (FedAvg)

1: Initialize the global model W 0 ▷ Server executes
2: for k = 0 → e −1 do ▷ Global iterations
3: Choose P random subset of N parties
4: Send W k to each party in S

Each party Pi in P executes (in parallel):
5: for ℓ= 0 → l −1 do ▷ Local iterations
6: W k+1

i ← Local Gradient Descent(·)
7: end for
8: W k+1 ←∑N

i=1
ni
n W k+1

i ▷ Server executes
9: end for

secure against post-quantum attacks [20]. (iii) It enables secure and flexible collaborative

computations between parties without sharing their respective secret key. And (iv) it enables

a secure collective key-switch functionality, that is to say, changing the encryption key of

a ciphertext without decryption. Here, we provide a brief description of the cryptographic

scheme’s functionalities that we use throughout our protocols. The cyclotomic polynomial

ring of dimension N , where N is a power-of-two integer, defines the plaintext and ciphertext

space as RQL =ZQL [X ]/(X N +1), with QL =∏L
0 qi in our case. Each qi is a unique prime, and

QL is the ciphertext modulus at an initial level L. Note that a plaintext encodes a vector of up

to N /2 values. Below, we introduce the main functions that we use in our system. Note that

non-linear operations are not supported by this scheme (only addition and multiplication

operations can be performed).

We denote by c = (c0,c1) ∈ R2
QL

and p ∈ RQL , a ciphertext (indicated as boldface) and a plaintext,

respectively. p̄ denotes an encoded (packed) plaintext. We denote by Lc , Sc , L, and S, the

current level of a ciphertext c , the current scale of c , the initial level, and the initial scale

(precision) of a fresh ciphertext, respectively; we use the equivalent notations for plaintexts.

The functions listed below that begin with ’D’ are distributed, and executed among all the

secret-key-holders, whereas the others can be executed locally by anyone with the public key.

• SecKeyGen(1λ): Returns the set of secret keys {ski }, i.e., ski for each party Pi , for a

security parameter λ.

• DKeyGen({ski }): Returns the collective public key pk.

• Encode(msg ) : Returns a plaintext p̄ ∈ RQL with scale S, encoding msg .

• Decode(p̄) : For p̄ ∈ RQLp
and scale Sp , returns the decoding of p.

• DDecrypt(c , {ski }): For c ∈ R2
QLc

and scale Sc , returns the plaintext p ∈ RQLc
with scale

Sc .

• Enc(pk, p̄): Returns cpk ∈ R2
QL

with scale S such that DDecrypt(cpk , {ski }) ≈ p̄.
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• Add(cpk ,c ′′′
pk ): Returns (c +c ′′′)pk at level min(Lc ,Lc ′′′) and scale max(Sc ,Sc ′′′).

• Sub(cpk ,c ′′′
pk ): Returns (c −c ′′′)pk at level min(Lc ,Lc ′′′) and scale max(Sc ,Sc ′′′).

• Mulpt(cpk , p̄): Returns (c p)pk at level min(Lc ,Lp ) with scale (Sc ×Sp ).

• Mulct(cpk ,c ′′′
pk ): Returns (cc ′′′)pk at level min(Lc ,Lc ′′′) with scale (Sc ×Sc ′′′).

• RotL/R(cpk ,k): Homomorphically rotates cpk to the left/right by k positions.

• Res(cpk ): Returns cpk with scale Sc /qLc at level Lc −1.

• SetScale(cpk ,S): Returns cpk with scale S at level Lc −1.

• KS(cpk ∈ R2): Returns cpk ∈ R2.

• DKeySwitch(cpk , pk ′, {ski }) : Returns cpk ′ .

• DBootstrap(cpk ,Lc ,Sc , {ski }): Returns cpk with initial level L and scale S.

Below, we summarize the most important operations of this scheme:

• Key Generation: Each party i locally generates a secret key (ski ). The public key (pk)

and evaluation keys ({ek}) are collectively generated from the parties’ local secret keys

(DKeyGen({ski })). {ek} is a set of special public keys that are required for the execution

of homomorphic multiplications and rotations. With this scheme, any party can encrypt

and locally perform homomorphic operations by using pk and {ek}, but decrypting a

ciphertext requires the collaboration among all parties (DDecrypt(cpk , {ski })).

• Arithmetic Operations and Parallelization: The CKKS homomorphic encryption scheme

enables approximate arithmetic over a vector of complex numbers (CN /2) for a polyno-

mial ring of dimension N . Encrypted operations over CN /2 are carried out in a single

instruction, multiple data (SIMD) manner, which enables parallelization over the N /2

plaintext vector slots.

• Arithmetic Circuit Depth and Distributed Bootstrapping: A fresh ciphertext has an

initial level of L and at most L multiplications (i.e., an L-depth circuit) can be evaluated

on it. When the levels are exhausted, the ciphertext is refreshed with a collective boot-

strapping operation (DBootstrap(cpk , {ski })) that enables further operations. We note

here that DBootstrap(·) is a costly operation with an overhead approximately 2 orders

of magnitude higher than a homomorphic addition/multiplication.

• Slot Rotations: The slots of a ciphertext vector can be re-arranged via rotations to the left

or right, i.e., RotL/R(cpk ,k) homomorphically rotates cpk to the left/right by k positions,

using {ek}.
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• Collective Key-Switch: This operation (DKeySwitch(cpk , pk ′, {ski })) changes the en-

cryption key of a ciphertext c from pk to pk ′. As such, only the holder of the secret key

corresponding to pk ′ can decrypt the result cpk ′ .

We note that Res(·) is applied to a resulting ciphertext after each multiplication. Furthermore,

for a ciphertext at an initial level L, at most an L-depth circuit can be evaluated. To enable

more homomorphic operations to be carried on, the ciphertext must be re-encrypted to its

original level L. This is done by the bootstrapping functionality (DBootstrap(·)). Encode(·)
enables us to pack several values into one ciphertext and operate on them in parallel.

For the sake of clarity, we differentiate between the functionality of the collective key-switch

(DKeySwitch(·)) that requires interaction between all the parties, and a local key-switch (KS(·))

that uses a special public-key. The former is used to decrypt the results or change the encryp-

tion key of a ciphertext. The latter, which does not require interactivity, is used during the

local computation for slot rotations or relinearization after each multiplication. Lastly, we

provide the cryptography glossary that explains several terms that are used throughout this

thesis in Appendix A.

1.4 Notations

Table 1.1 summarizes the commonly used symbols and notations used throughout this thesis.

Table 1.2 summarizes the additional frequently used symbols and notations for the Chapters 4

and 5. Finally, we present the notations that are only used in Chapter 6 in the Table 1.3

13



Notation Description

Pi i th Party

Q Querier

Xi Input matrix of Pi

Xi [n] nth row of the input matrix

yi True labels of Pi

N Total number of parties

η Learning rate

ϕ(·) Activation function

ϕ′(·) Derivative of the activation function

E k
j Error propagated in layer j , at k th iteration

∇W k
j ,i Gradient computed in Pi for a layer j , at k th iteration,

k, j , and i are omitted if no ambiguity

⊙ Element-wise multiplication

× Matrix or vector multiplication

|| Concatenation

Cryptographic Parameters and Operations

N Ring dimension

λ Security level

W Encryption of W (bold-face)

RQ The ring ZQ [X ]/(X N +1), with N = 2d

RotL(cpk ,k) Homomorphically rotates cpk to the left by k positions,
pk is omitted if no ambiguity.

RotR(cpk ,k) Homomorphically rotates cpk to the right by k positions,
pk is omitted if no ambiguity.

Table 1.1: Frequently Used Symbols and Notations for Chapters 4, 5, and 6
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Notation Description

W k
j ,i Weight matrix in Pi for a layer j , at k th iteration,

k, j , and i are omitted if no ambiguity

n Number of data samples

d Number of features

da Degree of an approximated polynomial

ℓ Total number of layers

h j Number of neurons in j th layer for MLPs

hℓ Number of output labels for MLPs

h Hidden dimension for RNNs

b Local batch size

B Global batch size

e Number of global iterations

l Number of local iterations

Cryptographic Parameters and Operations

¯msg Encoded (packed) plaintext vector msg

L Initial level of a ciphertext

S Initial scale of a ciphertext

Lc Current level of a ciphertext c

Sc Current scale of a ciphertext c

RIS(c , p, s) RotateInnerSum with log2(s) number of rotations.

RR(c , p, s) RotateReplication with log2(s) number of rotations.

Table 1.2: Additional Frequently Used Symbols and Notations for Chapters 4 and 5
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Notation Description

s Total number of samples over parties

Ln×c×m Batch of multi-cell samples

Cm×h Convolution filters (weights)

Wh×o Weight matrix of dense layer

n Number of multi-cell samples in a batch (batch size)

c Number of cells in multi-cell input

m Number of features (markers) per cell

h Number of filters for the convolutional layer

o Number of labels (phenotype)

µ Momentum

Cryptographic Parameters and Operations

Aℓ Encryption of A (bold-face) at level ℓ

MultImag(·) Multiply the slots by the imaginary unit i

Conjugate(·) Complex conjugate of the slots

InnerSumi , j (·) Sum j batches of i slots

Replicatei , j (·) Replicate batches of i slots j times

Table 1.3: Additional Frequently Used Symbols and Notations used for Chapter 6
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2 Related Work

In this chapter, we discuss state-of-the-art privacy-preserving machine learning (PPML). We

first describe the literature on PPML that focuses on machine learning models other than

neural networks in Section 2.1. We then discuss privacy-preserving time-series solutions in

Section 2.2 that facilitate the contributions of Chapter 5. We discuss the state-of-the-art private

solutions for the inference and training of neural networks, including MLP, CNN, and RNN

models, in Sections 2.3 and 2.4, respectively. Finally, we describe some biomedical applications

of privacy-preserving tools that are related to the contributions of Chapter 6. Note that we

only review software or algorithm based solutions and exclude hardware-based solutions such

as Intel Software Guard Extension, SGX that lacks the theoretical privacy guarantees [38].

Our contributions in Chapters 4, 5, and 6 enable the training of neural networks in a cross-silo

federated learning while protecting the confidentiality of the training data of each party, the

local gradients, and the global model. By design, our work mitigates passive federated learning

inference attacks during training, because all intermediate values that are exchanged between

parties remain encrypted and as it enables all the computations of the federated learning

pipeline under encryption.

2.1 Privacy-Preserving Machine Learning (PPML)

Several PPML works focus exclusively on the training of (generalized) linear models [31,

144, 44, 76, 159, 162]. They rely on centralized solutions where the learning task is securely

outsourced to a server, notably using homomorphic encryption (HE) techniques. As such,

these works do not solve the problem of privacy-preserving distributed machine learning,

where multiple parties collaboratively train a machine learning model on their data. As a result,

the data records of individual parties have to be transferred to another server, which might be

difficult due to the data protection regulations. To address the problem of privacy-preserving

distributed machine learning, several works propose secure multi-party computation (MPC)

solutions where several tasks, such as clustering and regression, are distributed among two

or three servers [139, 52, 216, 108, 111, 25, 248, 41, 67]. Although such solutions enable
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multiple parties to collaboratively learn on their data, the trust distribution is limited to the

number of computing servers that train the model, and they rely on assumptions, such as

non-collusion or an honest majority among the servers. There exist only a few works that

extend the distribution of machine learning computations to N parties (N ≥ 4) and that

remove the need for outsourcing [75, 307, 104, 102]. A recent work also enables the principal

component analysis (PCA) in the federated learning setting by relying on HE and MPC [99].

For the privacy-preserving learning of linear models, Zheng et al. propose a system, Helen,

that combines HE with MPC techniques [307]. However, the use of the Paillier additive HE

scheme [218] makes their system vulnerable to post-quantum attacks. To address this issue,

we introduced SPINDLE [102], that constitutes the framework for MHE-based decentralized

training of generalized linear models but is not covered in this thesis. These works have

paved the way for PPML computations in the N-party setting, but none of them addresses

the challenges associated with the privacy-preserving training of and inference on neural

networks (NNs).

2.2 Privacy-Preserving Time-Series

Previous works aiming to protect the privacy of time-series data employed secure aggrega-

tion techniques to enable the computation of simple statistics and analytics [169, 198, 227],

whereas others combined secure aggregation with differential privacy to bound the leakage

stemming from the computations [251, 49]. More recently, Liu et al. [185] employed secure

multi-party computation (MPC) techniques for privacy-preserving collaborative medical

time-series analysis based on dynamic time warping. Dauterman et al. [81] use function

secret-sharing (FSS) to support various functionalities, e.g., multi-predicate filtering, on pri-

vate time-series databases. All these authors focus on simple collaborative time-series tasks.

Whereas, in Chapter 5, we focus mainly on the privacy-preserving training of machine learning

models on time-series data.

2.3 Privacy-Preserving Inference on Neural Networks

In this research direction, the majority of works operate on the following setting: a central

server holds a trained neural network model and clients communicate their secret evaluation

data to privacy-preserving obtain predictions-as-a-service (PaaS) [112, 54, 184, 148, 223, 237,

202, 134, 39, 126, 233, 50, 65, 197, 188, 48, 64, 174, 274, 173]. Their aim is to protect both

the confidentiality of the server’s model and the clients’ data. The first work on this line,

CryptoNets, proposes the use of a ring-based leveled HE scheme to enable the inference

phase on encrypted data [112]. Cryptonets is later improved in terms of latency [50]. Some

works rely on hybrid approaches by employing two-party computation (2PC) and HE [148,

184, 134, 233], or secret sharing and garbled circuits to enable privacy-preserving inference

on neural networks [223, 237, 202]. For instance, Liu et al. propose MiniONN [184] that

relies on leveled HE, in which the non-linear activation functions are enabled by secure
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two-party computation (2PC) - garbled circuits, whereas Juvekar et al. propose Gazelle that

employs HE supporting basic SIMD operations, and garbled circuits [148]. Riazi et al. use

garbled circuits to achieve constant round communication complexity during the evaluation

of binary neural networks [237], whereas Mishra et al. propose a similar hybrid solution

that outperforms previous works in terms of efficiency, by tolerating a small decrease in

the model’s accuracy [202]. Other works attempt to increase the efficiency through matrix

operations [192, 143] or focus on different machine learning models. For example, Ran

et al. recently propose a system that enables HE-based inference on graph convolutional

networks [231]. More recently, Kim et al. adopted the well-known private inference framework

and applied it to more realistic applications, such as human action recognition, and achieved

better latency than previous works [160].

Some works developed a deep learning graph compiler for multiple HE cryptographic libraries,

such as SEAL [1], HElib [118], and Palisade [238]. Boemer et al. enables the deployment of a

model that is trained with well-known frameworks (e.g., Tensorflow [18], PyTorch [222]) and

that enables predictions on encrypted data [39, 40]. Dalskov et al. use quantization techniques

to enable efficient privacy-preserving inference on models trained with Tensorflow [18] by

using MP-SPDZ [6] and they demonstrate benchmarks for a wide range of adversarial mod-

els [77]. CHET, on the other hand, supports domain-specific language for specifying and

compiling neural networks for different domains to inference protocols that rely on FHE [80].

Only a few recent studies focus on privacy-preserving prediction on RNNs and its variants.

Bakshi and Last propose CryptoRNN; it employs HE but requires interaction between the

client and the server to refresh the ciphertexts [35]. Rathee et al. propose SiRNN that relies on

novel two-party computation (2PC) protocols and lookup tables, combined with an iterative al-

gorithm, to approximate non-linear math functions [232]. Feng et al. tackle privacy-preserving

natural language processing [95] by relying on MPC. And Feng et al. propose a hybrid approach

that combines HE and garbled circuits for evaluating GRU networks on text analysis tasks [94].

More recently, Jang et al. extended the CKKS-HE scheme to the multivariate ring-learning

with errors (RLWE) problem in order to support efficient matrix operations that are required

for evaluating GRUs on sequence modeling, regression, and classification tasks [140].

Similar to these works, our solutions protect the confidentiality of the model and the client’s

evaluation data during the prediction phase. However, our work is broader, as it focuses

on both the privacy-preserving training and the inference, protecting the training data, the

resulting model, and the evaluation data by relying on MHE.

2.4 Privacy-Preserving Training of Neural Networks

In this section, we review the state-of-the-art solutions that address the privacy-preserving

training of neural networks relying on various techniques or algorithms. Below, we differentiate

the solutions that operate on a centralized setting and further discuss the other techniques

and algorithms that operate on the decentralized settings.
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Centralized Solutions. A number of works focus on centralized solutions to enable privacy-

preserving learning of [259, 17, 293, 276, 211, 126]. Some of them [259, 17, 293], in order to

derive models that are protected from inference attacks, employ differentially private tech-

niques to execute the stochastic gradient descent while training a neural network. However,

they assume that the training data is available to a trusted party that applies the noise required

during the training steps. Other works [276, 211, 126] rely on HE to outsource the training of

multi-layer perceptrons to a central server.

HE-Based Centralized Solutions. Along the direction of HE-based centralized solutions,

Vizitu et al. propose using MORE (Matrix Operation for Randomization or Encryption) [163],

a noiseless fully homomorphic encryption (FHE) scheme to enable deep neural networks

over encrypted data for medical applications. The underlying cryptographic scheme, how-

ever, achieves very poor security guarantees as it is based on strong assumptions on the

distribution of the plaintext, does not provide IND-CPA security [277], and is vulnerable to

post-quantum attacks [163]. Nandakumar et al. [211] propose training multi-layer perceptrons

over homomorphically encrypted data by using the FHE library HElib [118]. The choice of

the cryptographic parameters remains far from the realistic use of the underlying scheme

for deep learning tasks. Besides, they show that applying HE to deep neural networks is not

yet practical, because the proposed packing solution, the parallelization capabilities, and the

use of local bootstrapping slow down the overall training significantly. For the same neural

network structure, our system in Chapter 4 (POSEIDON) is several orders of magnitude more

efficient than the proposed solution, achieves better security guarantees, and enables learning

tasks over N parties. A similar approach, also employing HElib [118], to train multi-layer

perceptrons is proposed by Hesamifard et al. [126]. Their solution avoids the use of local

bootstrapping by allowing interactions between the client and the server. These solutions

either employ cryptographic parameters that are far from realistic [276, 211] or yield impracti-

cal performance [126]. Furthermore, they do not support the training of neural networks in

the N -party setting, whereas this is the main focus of our work. Several works also employ

HE to either enable secure aggregation in decentralized learning [224, 225] or to encrypt the

clients’ data, before outsourcing it to a server that performs the model training [300]. Note that

secure aggregation solutions still leak information and prone to several inference attacks upon

decryption on the client side. Below, we summarize the techniques for privacy-preserving

training of neural networks in a decentralized or federated manner:

Secure Multiparty Computation (MPC). A number of works that enable privacy-preserving

distributed learning of neural networks employ MPC approaches where the parties’ confi-

dential data is distributed among two [205, 22, 82], three [204, 278, 279, 127, 60, 264, 308],

and four servers [53, 57] (2PC, 3PC, and 4PC, resp.). For instance, in the 2PC setting, to train

various machine learning models, Mohassel and Zhang describe a system where data owners

process and secret-share their data among two non-colluding servers [205], and Agrawal et

al. propose a framework that supports discretized training of neural networks by ternarizing

the weights [22]. Then, Mohassel and Rindal extend [205] to the 3PC setting and introduce
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new fixed-point multiplication protocols for shared decimal numbers [204]. Wagh et al. fur-

ther improve the efficiency of privacy-preserving neural network training on secret-shared

data [278] and provide security against malicious adversaries, assuming an honest majority

among three servers [279]. Hie et al. demonstrate the application of privacy-preserving neural

network training with 3PC on a predictive model for drug-target interactions [127], and Chen

and Zhong enable the privacy-preserving backpropagation algorithm by using ElGamal en-

cryption [89] for neural network training over vertically partitioned data in 2PC setting [60].

Their work enables the privacy-preserving neural network training over vertically partitioned

data among two servers, in a semi-honest setting. More recently, 4PC honest-majority mali-

cious frameworks [53, 57] or arbitrary-number semi-honest frameworks [165] for PPML were

proposed. These works split the trust between more servers and achieve round complexities

better than previous ones, yet they do not address neural network training among N -parties.

Note that 2PC, 3PC, and 4PC solutions fall under the cloud outsourcing model, as the data of

the parties has to be transferred to several servers among which the majority has to be trusted.

Our work, however, focuses on a distributed setting, where the data owners maintain their

data locally and iteratively update the collective model yet data and model confidentiality is

ensured in the existence of a dishonest majority in a semi-honest setting, thus withstanding

passive adversaries and up to N − 1 collusions between them. We provide a comparison

between our contributions in Chapter 4 and aforementioned works in Section 4.5.6.

Overall, all aforementioned MPC solutions enable the training of regression models and feed-

forward neural networks, whereas RNNs or its variants have not been studied. As a result,

several algorithms, e.g., back-propagation through time, and crucial operations, e.g., gradient

clipping, have not been addressed. One recent work, which relies on additive secret-sharing,

investigates the training of RNNs as a case study [301], but without evaluating runtime per-

formance or scalability. Privacy-preserving training of RNNs and its variants in the federated

learning setting is our main contribution in Chapter 5.

Federated Learning. Federated learning (FL), proposed by Google, enables different parties to

perform the collective training of a machine learning model while maintaining the data in

their local premises and communicating only the intermediate values/local model updates to

an aggregation server [194, 167, 166]. The main idea is to train a global model on data that is

distributed across multiple clients, with the assistance of a server that coordinates model up-

dates on each client and averages them. Similarly to tabular or image data, federated learning

was applied on many time-series applications such as load forecasting [93], natural language

processing [59, 121], traffic flow prediction, [187], and healthcare systems [107]. However, re-

cent research has shown that sharing gradients and local model updates in federated learning

lead to severe privacy leakage because membership inference and data/label reconstruction

attacks are effective [128, 283, 309, 199, 212, 304, 110, 145, 280, 85, 87]. To counter this, some

works focus on secure aggregation techniques for distributed neural networks where the ag-

gregation of the local updates is done in a secure way by using HE [224, 225, 297] or MPC [42].

Although encrypting the gradient values prevents the leakage of parties’ confidential data to

the central server, these solutions do not account for potential leakage from the aggregate val-
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ues themselves. In particular, parties that decrypt the received model before the next iteration

are able to infer information about other parties’ data from its parameters [128, 199, 212, 309].

Differential Privacy (DP). One common approach for privacy-preserving decentralized or

federated machine learning is to integrate differential privacy (DP) into the learning phase,

such that the intermediate values exchanged among the parties and the global model meet

the DP requirements [253, 177, 17, 195, 285, 288]. Shokri and Shmatikov [253] apply DP to the

parameter update stages, and Li et al. design a privacy-preserving federated learning system

for medical image analysis where the parties exchange differentially private gradients [177].

McMahan et al. propose differentially private federated learning for RNNs [195], by employing

the moments accountant method [17], to protect the privacy of all the records belonging

to a user. Wen et al. applied local differential privacy to an federated learning framework

for energy-theft detection [286]. Finally, other works combine MPC with DP techniques to

achieve better privacy guarantees [142, 272]. Although DP-based learning aims to mitigate

inference attacks, it significantly degrades model utility, as training accurate neural network

models requires high privacy budgets [229]. As such, DP introduces a privacy vs. utility

trade-off that is hard to parameterize; and it is hard to quantify the level of privacy protection

that can be achieved with these approaches [141]. To account for these issues, our work

employs multiparty homomorphic encryption techniques for achieving private training of

neural networks in a distributed setting, where the parties’ intermediate updates and the final

model remain under encryption. Moreover, it was recently shown that RNNs are particularly

vulnerable to inference attacks (e.g., membership inference) compared to traditional neural

networks [289].

None of these works, however, address the learning of sequential patterns over the data (our

contributions in Chapter 5). A recent study employs secure aggregation with HE for federated

traffic-flow prediction [187], but the study remains vulnerable to privacy attacks due to the

shared global model.

Private Aggregation of Teacher Ensembles (PATE). A different line of research is focused on

the private aggregation of teacher ensembles (PATE) [219, 220], and its variants [190, 292];

the focus is mainly on knowledge transfer by combining differential privacy and generative

adversarial networks (GANs). PATE enables the private training of a student model from

several teacher models, where the knowledge is transferred in a noisy fashion. However,

PATE requires a trusted aggregator, and although it achieves record-level differential privacy

guarantees, it remains vulnerable to property inference attacks [199]. Our line of research

diverges from these works due to their strong assumption of publicly available datasets and

their different designs that predominantly target knowledge transfer. Choquette-Choo et al.

recently proposed CaPC Learning that enables confidential and private collaborative learning

by relying on MPC, HE, and DP in order to increase the utility of each party’s local machine

learning model [69]. Their approach works on non-iid settings with heterogeneous model

architectures across parties. However, CaPC Learning is evaluated only on feed-forward neural

networks, and the number of parties needs to be large enough to obtain better utility and
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higher privacy guarantees. Our work decouples privacy from the amount of data and the

number of parties by relying on MHE.

In summary, each of the aforementioned techniques introduces a different trade-off: DP

solutions decrease the utility of the machine learning model — in particular for RNNS [289] —

whereas their level of practical privacy protection remains unclear [142]; MPC solutions lack

scalability in terms of circuit complexity and number of parties due to high communication

overheads [116, 156]; and HE solutions do not scale with the model complexity due to high

computational overhead.

2.5 Privacy-Preserving Biomedical Applications

As in PPML solutions, privacy-preserving biomedical applications or genomic data sharing also

rely on DP, MPC, or HE [38]. Several solutions in the medical domain rely on DP [70, 177, 161,

21] as an obfuscation technique. Other works also rely on DP for enabling privacy-preserving

Genome-Wide Association Studies (GWAS) [257] or survival analysis [43]. DP-based solutions

introduce a privacy-accuracy trade-off by perturbing the model parameters which might be

unacceptable in the medical domain, whereas our contributions in Chapter 6 decouple the

accuracy from the privacy and achieves privacy-by-design with reasonable overhead.

MPC-based solutions [138, 67, 74, 151, 127] often require the parties to communicate their

data outside their premises to a limited number of computing nodes; and to protect the data

and/or model confidentiality, these solutions assume an honest majority among the comput-

ing nodes. Comparatively, our solution in Chapter 6 does not require communicating the data

and permits parties to keep their data on their premises, withstanding collusions of up to N −1

parties. Smajlović et al. recently propose a framework for developing efficient applications

(optimized computation and communication) for biomedical data with honest-but-curious

threat model with arbitrary collusions between parties as long as at least one party is hon-

est [258] (similar to our threat model and assumptions). Their solution does not necessarily

require parties to communicate their data but suffers from MPC-communication overheads;

our solution in Chapter 6 scales efficiently with N parties in terms of communication.

A recent work relies on a combination of HE and MPC to enable secure and federated GWAS

by enabling linear mixed models (LMMs) [58]. Similarly, this combination is later used also for

secure GWAS by enabling privacy-preserving principal component analysis (PCA) and LMMs

in the federated learning scenario [66]. HE-based solutions for privacy-preserving analytics

in distributed medical settings [103, 230] also enable functionalities (e.g., basic statistics,

counting, or linear regression) different than those in Chapter 6, as such they do not enable

the efficient execution of neural networks in a federated learning setting.
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3 System Overview

Here, we abstract the system and threat model for POSEIDON, RHODE, and PRICELL, as well as

their objectives (Sections 3.1 and 3.2). We provide a high-level description of their functionality

(Section 3.3). The model-specific system overviews for each chapter are then described in their

respective chapters to emphasize the changes that are introduced to the high-level system

model introduced in this section (e.g., aggregation server operations might include additional

evaluations such as gradient clipping).

3.1 System and Threat Model

We introduce the system and threat model that are used throughout this thesis below.

System Model. We consider a cross-silo federated learning (FL) setting with a moderate

number of parties (N ) (typically in the range of 2 to 200 [149]). Each party i has its input data

X i and the corresponding output Y i (Y i ∈ {0,1, · · · ,n} for n-class classification or Y i ∈R for

regression tasks) that they contribute for training a collective training of a neural network

model (horizontal federated learning). The structure of X i depends on the setting, e.g., X i is

time-series data in Chapter 5 for the training of RNNs.

At the end of the training process, the parties use the model to enable predictions-as-a-service

(PaaS). A querier q – which can be one of the N parties or an external entity – queries the

model and obtains prediction results yq on its evaluation data Xq . The parties involved in the

training process are interested in preserving the privacy of their local data, of the intermediate

model updates, and of the resulting model. The querier obtains prediction results on the

trained model and keeps its evaluation data confidential. We assume that the parties are

interconnected and organized in a tree-structured topology for efficient communication.

However, our system is fully distributed and does not assume any hierarchy, thus remaining

agnostic of the network topology, e.g., we can consider a fully-connected network.

Threat Model. We consider a passive-adversary model (common assumption for cross-silo
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settings) with collusions of up to N −1 parties (including the querier for PaaS): The parties

follow the protocol, but up to N −1 parties might share among them their inputs and observa-

tions to extract information about the other parties’ inputs. Our systems aim at preserving

the confidentiality of both the input data and the model during the training and prediction

pipelines. We note here that our focus is on mitigating federated learning inference attacks

that target the model during training [199, 212, 128, 309, 283]. Inference attacks targeting

the system’s outputs during prediction, such as model stealing [270], membership [254], or

model inversion [98], are out of the scope of this work. We discuss complementary security

mechanisms that can be used orthogonally to our systems that can limit the information a

querier infers from the prediction results and an extension to the active-adversary model in

Appendix B.1.

3.2 Objectives

POSEIDON, RHODE, and PRICELL’s main objectives are to enable the privacy-preserving train-

ing of and the inference on neural networks in the above system and threat model. Our

objective is to protect the parties’ and querier’s data confidentiality, as well as the trained

model confidentiality, as defined below:

• Data Confidentiality. During training and prediction, no party Pi (including the querier

Pq ) should learn more information about the input data X j of any other honest party

P j ( j ̸= i , including the querier Pq ), other than what can be deduced from its own input

data Xi , yi (or the input Xq and output yq , for the querier).

• Model Confidentiality. During training and prediction, no party Pi (including the

querier Pq ) should gain more information about the trained model weights, other than

what can be deduced from its own input data Xi and the output labels yi (or Xq , yq for

the querier).

Based on these definitions, we summarize the objectives below:

Training. The parties aim at collaboratively training a neural network model without relying

on a trusted party and without revealing their data to any other party. The objective is to

enable this and to mitigate passive federated learning attacks [128, 199, 212, 309] — that target

the model or local gradients and that can potentially leak information about the parties’ input

data — by protecting the confidentiality of the parties’ inputs, the model, and any intermediate

values, e.g., local or global models, that are communicated in the system. As we optimize

the communication via a tree-structured topology, the root data-holder plays the role of the

aggregation server in traditional federated learning; and for clarity, throughout the paper, we

refer to this node as the aggregation server and denote it as P1.

Prediction. Our objective is to protect the confidentiality of both the querier’s data and the
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Figure 3.2: POSEIDON, RHODE, and PRICELL’s Training and Prediction Pipelines. Training encapsulates
the generation of cryptographic keys and the federated learning iterations on an encrypted model with
multiple parties, e.g., healthcare institutions. After training, the model is either kept encrypted or
decrypted for further analysis.

trained neural network model: The parties should not learn anything about the querier’s

evaluation data, and the querier should not learn anything about the model other than what it

can learn from the prediction output.

3.3 Solution Overview

To fulfill the training and prediction objectives under the given threat model, we rely on feder-

ated learning and MHE. To protect data confidentiality and to mitigate the passive federated

learning inference attacks during training, we retain the model and all the intermediate values

communicated through the network in encrypted form (under the public collective key).

However, keeping the model protected implies that all the local neural network operations

performed by the parties need to be carried out under homomorphic encryption. To effi-

ciently enable this, we use novel packing strategies for each system, several cryptographic

optimizations, and approximations that are detailed in Chapters 4, 5, and 6. We represent the
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high-level training and prediction workflows that are used throughout this thesis in Figure 3.2

for a scenario with four parties (healthcare institutions for the example) and describe it in

detail in this section.

The operations required for the communication-efficient training of neural networks are

enabled by the scheme’s computation homomorphic properties, which enables the parties

to perform operations between their local data and the encrypted model weights. To enable

oblivious prediction on the trained model, we utilize the scheme’s key-switching functionality

(see Section 1.3 that allows the parties to collectively re-encrypt the prediction results with the

querier’s public key. We employ several packing schemes to enable SIMD operations on the

weights of various neural network layers and use approximations that enable the evaluation of

activation functions (e.g., Sigmoid, Softmax, ReLU) under encryption.

To refresh the noise accumulated by the homomorphic operations, we perform bootstrapping

(DBootstrap(·)) when required (depending on the network and security parameters) and

on appropriate ciphertexts. For clarity, we refer to Algorithm 1, Section 1.2 for a high-level

federated learning algorithm. Note that we enable, under encryption, both FedAvg and

FedSGD with every party included in each iteration (i.e., |S| = N ) as we consider a cross-silo

setting and given that all parties are available to participate in cryptographic operations (see

Appendix B for a possible extension to the asynchronous learning case).

3.3.1 Private Training

We provide a high-level solution for the aforementioned problem and the objectives in Algo-

rithm 2. The chapters of this thesis are different instantiations of this high-level algorithm that

are tailored for specific NNs. The bold terms denote encrypted values and W k
j ,i represents the

weight matrix of the j th layer, at iteration k, of the party Pi . When there is no ambiguity or

when we refer to the global model, we replace the sub-index i with · and denote weights by

W k
j ,·. Similarly, we denote the local gradients at party Pi by ∇∇∇W k

j ,i , for each network layer j

and iteration k. Throughout the thesis, the nth row of a matrix that belongs to the i th party is

represented by Xi [n] and its encoded (packed) version as X̄i [n].

The training protocol operates in four phases: Setup Phase, Local Computation Phase,

Aggregation Phase, and Model-Update Phase. We detail these phases hereunder:

Setup Phase: In this phase, the necessary cryptographic and learning parameters are decided

by the parties, i.e., the minimum security guarantees, the neural network architecture, and

the learning parameters, e.g., the learning rate (η), the batch size (b), the number of hidden

layers (ℓ), and the number of global (e) and local iterations (l ). Then, the parties generate their

secret keys (ski , for the i th party) and collectively generate the corresponding public key (pk)

with the forenamed MHE scheme (Section 1.3). Subsequently, they collectively normalize or

standardize their input data with the secure aggregation protocol described in [104]. Each Pi

encodes (packs) its input data samples Xi and output labels yi (see Section 4.3.1) as X̄i , ȳi .
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For the training execution to start, the aggregation server (P1) initializes the global model,

encrypts it with pk, and broadcasts it to all parties.

Local Computation Phase: Each party receives the encrypted global model weights and begins

the local gradient descent (Local Gradient Descent(·), Line 6, Algorithm 1), i.e., the execution

of the forward and backward pass on its local data as detailed in subsequent chapters of

this thesis, for an MLP, CNN, and RNN local computations. Note that for different neural

network architectures, the local gradient descent algorithm can be altered which is our main

contribution in this thesis: to enable different neural network algorithms under encryption.

Aggregate Phase: Parties collectively aggregate their locally computed models (or gradients)

in a tree manner. In other words, each party sends its encrypted local model to its parent, and

each parent homomorphically sums the received child models with its own encrypted one. As

such, the aggregation server receives the sum of all the local models.

Model-Update Phase: The aggregation server updates the global model by averaging the local

models of the parties (Line 8, Algorithm 1). As the batch size is public information (agreed

upon in the Setup Phase), the division for averaging over the encrypted local models becomes

a multiplication with a plaintext value. The global model is then broadcast to all parties for

the next Local Computation Phase.

Overall, the model training composes the Local Computation, Aggregate, and Model-Update

Phases that are repeated for a predefined number of global iterations (e).

Training Termination: In our systems, we stop the learning process, after a predefined number

of epochs. However, we note that several early-stop techniques [226] for the neural network

training termination can be straightforwardly integrated into our systems (see Appendix B.2).

3.3.2 Predictions-as-a-Service (PaaS)

After the collective model training, the parties can (i) use the encrypted model for oblivious

PaaS without decryption, or (ii) if required by the application, they can collectively decrypt the

model and reveal it to all the parties and/or an external party for semi-oblivious PaaS. In both

cases, the querier’s evaluation data is encrypted with the parties’ collective public key, and we

rely on the collective key-switch functionality of the underlying MHE scheme (Section 1.3). In

particular, for (i), the querier encrypts X q with the parties’ collective key pk, the parties then

compute the prediction on the encrypted data using the encrypted model, and switch the

encryption key of the result with DKeySwitch(Xq
pk , qk, {ski })), where qk is the querier’s key. As

such, only the querier can decrypt the prediction result. For (ii), the collective decryption is

simply a special case of the collective key-switch operation with the encrypted model as input

and no target public key. The rest of the evaluation is same as oblivious PaaS.

29



Algorithm 2 Collective Training
Inputs: Xi , yi for i ∈ {1,2, ..., N }
Outputs: W e

1,·,W e
2,·, . . . ,W e

ℓ,·
Setup Phase:

1: Parties collectively agree on ℓ,h1, ...,hℓ,η,ϕ(·),e,b
2: Each Pi generates ski ← SecKeyGen(1λ)
3: Parties collectively generate pk ←DKeyGen({ski })
4: Each Pi encodes its local data as X̄i , ȳi

5: P1 initializes W 0
1,·,W 0

2,·, ...,W 0
ℓ,·

6: for k = 0 → e −1 do
Local Computation Phase:

7: P1 sends W k
1,·,W k

2· , ...,W k
ℓ,· down the tree

8: Each Pi does:
9: Local Gradient Descent Computation:

10: ∇∇∇W k
1,i ,∇∇∇W k

2,i , . . . ,∇∇∇W k
ℓ,i

Aggregate Phase:
11: Parties collectively aggregate: ∇∇∇W k

1,·, . . . ,∇∇∇W k
ℓ,· ←

∑N
i=1∇∇∇W k

1,i , . . . ,∇∇∇W k
ℓ,i

12: P1 obtains ∇∇∇W k
1,·,∇∇∇W k

2,·, . . . ,∇∇∇W k
ℓ,·

Model-Update Phase (performed by P1) :
13: for j = 1 → ℓ do

14: W k+1
j ,· += η∇∇∇W k

j ,·
b×N

15: end for
16: end for
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4 Federated Multilayer Perceptron and
Convolutional Neural Network Learn-
ing
4.1 Introduction

In this chapter, we address the privacy-preserving training of and evaluation on MLPs and

CNNs in an N -party federated learning setting by relying on MHE to enable the executions

under encryption. MLPs and CNNs are crucial for many fields in the industry, e.g., multi-

layer perceptrons (MLPs) constitute 61% of Tensor Processing Units’ workload in Google’s

datacenters [147]. Consequently, the privacy-preserving solutions that enable their execution

are highly desirable. For this, we extend the approach of SPINDLE [102], that was for the

generalized linear models in the framework represented in Chapter 3, Section 3.3, and build

POSEIDON, a novel system that enables the encrypted training and evaluation of MLPs and

CNNs and provides end-to-end protection of the parties’ training data, the resulting model,

and the evaluation data. Using MHE [209], POSEIDON enables neural network executions

with different types of layers, such as fully connected, convolution, and pooling, on a dataset

that is distributed among N parties, e.g., a consortium of tens of hospitals, that trust only

themselves for the confidentiality of their data and of the resulting model. POSEIDON relies

on stochastic gradient descent and protects, from any party, the intermediate updates of the

neural network model by maintaining the weights and gradients encrypted throughout the

training phase. POSEIDON also enables the resulting encrypted model to be used for privacy-

preserving inference on encrypted evaluation data. It provides privacy-preserving inference

on the encrypted model using the encrypted data, by leveraging on the key-switching func-

tionality of the underlying crypto scheme that allows for changing the encryption key of a

ciphertext.

We evaluate POSEIDON on several real-world datasets and various network architectures and

observe that it achieves model performance (test set accuracy levels) on par with centralized or

decentralized non-private approaches. Regarding its execution time, we find that POSEIDON

trains a 2-layer MLP on a dataset with 23 features and 30,000 samples distributed among

10 parties, in 8.7 minutes. Moreover, POSEIDON trains a 3-layer neural network with 64

neurons per hidden-layer on the MNIST dataset [172] with 784 features and 60K samples
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shared between 10 parties, in 1.4 hours, and a neural network with convolutional and pooling

layers on the CIFAR-10 [168] dataset (60K samples and 3,072 features) distributed among 50

parties, in 175 hours. Finally, our scalability analysis shows that POSEIDON’s computation and

communication overhead scales linearly with the number of parties and logarithmically with

the number of features and the number of neurons in each layer.

In this chapter, we make the following contributions:

• We present POSEIDON, a novel system for privacy-preserving, quantum-resistant, feder-

ated learning-based training of and inference on neural networks with N parties, that

relies on multiparty homomorphic encryption and respects the confidentiality of the

training data, the model, and the evaluation data.

• We propose an alternating packing approach for the efficient use of single instruction,

multiple data (SIMD) operations on encrypted data, and we provide a generic protocol

for executing MLPs under encryption, depending on the size of the dataset and the

structure of the network.

• We improve the distributed bootstrapping protocol of [209] by introducing arbitrary lin-

ear transformations for optimizing computationally heavy operations, such as pooling

or a large number of consecutive rotations on ciphertexts.

• We formulate a constrained optimization problem for choosing the cryptographic pa-

rameters and for balancing the number of costly cryptographic operations required for

training and evaluating neural networks in a distributed setting.

• We evaluate POSEIDON against centralized and decentralized non-private solutions

using various datasets and evaluate its scalability in terms of the number of parties and

different neural network parameters, e.g., the number of neurons in each layer.

To the best of our knowledge, POSEIDON is the first system that enables quantum-resistant

distributed learning on neural networks with N parties in a federated learning setting, and

that preserves the privacy of the parties’ confidential data, the intermediate model updates,

and the final model weights.

Acknowledgements. This work is a result of a collaboration with Dr. Apostolos Pyrgelis, Dr.

Juan R. Troncoso- Pastoriza, Dr. David Froelicher, Jean-Phillipe Bossuat, Joao Sa Sousa, and

Prof. Jean-Pierre Hubaux.

4.2 POSEIDON Design

The system and threat model of POSEIDON is described in Chapter 3, Section 3.1. We also

present the high-level federated learning algorithm in Chapter 1, Algorithm 1 for the collective

training and our encrypted version of it in Chapter 3, Section 3.3 in Algorithm 2. As introduced
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in Chapter 3, POSEIDON’s training pipeline includes four phases: Setup Phase, Local Com-

putation Phase, Aggregation Phase, and Model-Update Phase; and PaaS after the training is

used for evaluating the predictions to the querier. We remind here that POSEIDON enables the

computations under encryption by keeping the model in encrypted form throughout the exe-

cution pipeline. Below, we define the system-specific Local Gradient Descent Computation

that refers to Line 9 of the Algorithm 2 and the weight initialization.

Local Gradient Descent (LGD) Computation: Each Pi performs b forward and backward

passes to compute and aggregate the local gradients, by processing each sample of its respec-

tive batch. Algorithm 3 describes the LGD steps performed by each party Pi for an MLP with

l layers, at iteration k; ⊙ represents the element-wise product and ϕ′(·) the derivative of an

activation function. As the algorithm refers to one local iteration for a specific party, we omit k

and i from the weight and gradient indices. This algorithm describes the typical operations

for the forward and backward pass using gradient descent with the L2 loss. The computation

for each layer j in the forward pass comprises a multiplication of current layer values with

the weight matrix (U j = L j−1 ×W j ) and the activation function that is computed on this result

(ϕ(U j )). Then the backpropagation calculates the accumulated error for each layer. We note

that the operations in this algorithm are performed over encrypted data.

Weight Initialization. To avoid exploding or vanishing gradients, we rely on commonly

used techniques: (i) Xavier initialization [113] for the sigmoid or tanh activated layers: W j =
U ( −1p

h j−1
, 1p

h j−1
) where U is the uniform distribution and h j−1 is the size of the previous layer,

and (ii) He initialization [123] for ReLU activated layers, where the Xavier-initialized weights

are multiplied twice by their variance.

Algorithm 3 Local Gradient Descent (LGD) Computation (MLP)
Inputs: W k

1,·,W k
2,·, . . . ,W k

ℓ,·
Outputs: ∇W k

1,i ,∇W k
2,i , . . . ,∇W k

ℓ,i . Note that i and k indices are omitted in this protocol.
1: for t = 1 → b do ▷ Forward Pass
2: L0 = X̄ [t ]
3: for j = 1 → ℓ do
4: U j = L j−1 ×W j

5: L j =ϕ(U j )
6: end for
7: Eℓ = ȳ[t ]−Lℓ ▷ Backpropagation
8: Eℓ =ϕ′(Uℓ)⊙Eℓ

9: ∇∇∇Wℓ+= LT
ℓ−1 ×Eℓ

10: for j = ℓ−1 → 1 do
11: E j = E j+1 ×W T

j+1

12: E j =ϕ′(U j )⊙E j

13: ∇∇∇W j+= LT
j−1 ×E j

14: end for
15: end for
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4.3 Cryptographic Operations and Optimizations

We first present the alternating packing (AP) approach that we use for packing the weight

matrices (Section 4.3.1). We then explain how we enable activation functions on encrypted

values (Section 4.3.2) and introduce the cryptographic building blocks and functions employed

in POSEIDON (Section 4.3.3), together with their execution pipeline and their complexity

(Sections 4.3.4 and 4.3.5). Finally, we formulate a constrained optimization problem that

depends on a cost function for choosing the parameters of the cryptoscheme (Section 4.3.6).

4.3.1 Alternating Packing (AP) Approach

For the efficient computation of the forward pass and backpropagation described in Algo-

rithm 3, we rely on the packing capabilities of the cryptoscheme that enables Single Instruction,

Multiple Data (SIMD) operations on ciphertexts. Packing enables coding a vector of values in

a ciphertext and to parallelize the computations across its different slots, thus significantly

improving the overall performance.

We observe that the existing packing strategies for enabling secure distributed machine learn-

ing in SPINDLE [102], which are row-based [159] and diagonal approach [119], require a

high number of rotations for the execution of the matrix-matrix multiplications and matrix

transpose operations, performed during the forward and backward pass of the local gradient

descent computation (see Algorithm 3). We here remark that the number of rotations has

a significant effect on the overall training time of a neural network on encrypted data, as

they require costly key-switch operations (see Section 4.3.5). As an example, the diagonal

approach scales linearly with the size of the weight matrices, when it is used for batch-learning

of neural networks, due to the matrix transpose operations in the backpropagation. We follow

a different packing approach and process each batch sample one by one, making the execu-

tion embarrassingly parallelizable. This enables us to optimize the number of rotations, to

eliminate the transpose operation applied to matrices in the backpropagation, and to scale

logarithmically with the dimension and number of neurons in each layer.

We propose an "alternating packing (AP) approach" that combines row-based and column-

based packing, i.e., rows or columns of the matrix are vectorized and packed into one cipher-

text. In particular, the weight matrix of every FC layer in the network is packed following

the opposite approach from that used to pack the weights of the previous layer. With the AP

approach, the number of rotations scales logarithmically with the dimension of the matrices,

i.e., the number of features (d), and the number of hidden neurons in each layer (hi ). To

enable this, we pad the matrices with zeros to get power-of-two dimensions. In addition, the

AP approach reduces the cost of transforming the packing between two consecutive layers.

Algorithm 4 describes a generic way for the initialization of encrypted weights for an ℓ-layer

MLP by P1 and for the encoding of the input matrix (Xi ) and labels (yi ) of each party Pi . It

takes as inputs the neural network parameters: the dimension of the data (d) that describes
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the shape of the input layer, the number of hidden neurons in the j th layer (h j ), and the

number of outputs (hℓ). We denote by g ap a vector of zeros, and by | · | the size of a vector

or the number of rows of a matrix. Replicate(v,k, g ap) returns a vector that replicates v , k

times with a g ap in between each replica. Flatten(W, g ap,di m), flattens the rows or columns

of a matrix W into a vector and introduces g ap in between each row/column. If a vector is

given as input to this function, it places g ap in between all of its indices. The argument di m

indicates flattening of rows (’r ’) or columns (’c’) and di m = ’ · ’ for the case of vector inputs.

We observe that the rows (or columns) packed into one ciphertext, must be aligned with the

rows (or columns) of the following layer for the next layer multiplications in the forward pass

and for the alignment of multiplication operations in the backpropagation, as depicted in

Table 4.1 (e.g., see steps F1, F6, B3, B5, B6). We enable this alignment by adding g ap between

rows or columns and using rotations, described in the next section. Note that these steps

correspond to the weight initialization and to the input preparation steps of the Setup phase.

Convolutional Layer Packing. To optimize the SIMD operations for convolutional (CV) layers,

we decompose the nth input sample Xi [n] into t smaller matrices according to the kernel size

h = f × f . We pack these decomposed flattened matrices into one ciphertext, with a g ap in

between each matrix that is defined based on the number of neurons in the next layer (h2−h1),

similarly to the AP approach. The weight matrix is then replicated t times with the same g ap

between each replica. If the next layer is another convolutional or downsampling layer, the

g ap is not needed and the values in the slots are re-arranged during the training execution

(see Section 4.3.3). Lastly, we introduce the average-pooling operation to our bootstrapping

function (DBootstrapALT(·), see Section 4.3.3), and we re-arrange almost for free the slots for

any CV layer that comes after average-pooling.

We note that high-depth kernels, i.e., layers with a large number of kernels, require a different

packing optimization. In this case, we alternate row and column-based packing (similar to

the AP approach), replicate the decomposed matrices, and pack all kernels in one ciphertext.

This approach introduces k multiplications in the Local Computation Phase, where k is the

number of kernels in that layer, and comes with reduced communication overhead; the latter

would be k times larger for Aggregate Phase, Local Computation Phase, and DBootstrap(·), if

the packing described in the previous paragraph was employed.

Downsampling (Pooling) Layers. As there is no weight matrix for downsampling layers, they

are not included in the offline packing phase. The cryptographic operations for pooling are

described in Section 4.3.4.

4.3.2 Approximated Activation Functions

For the encrypted evaluation of non-linear activation functions, such as Sigmoid or Softmax,

we use least-squares approximations and rely on the optimized polynomial evaluation that,

as described in [102], consumes ⌈log(da + 1)⌉ levels for an approximation degree da . For
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Algorithm 4 Alternating Packing (AP) Protocol
Inputs: Xi , yi ,d , {h1,h2, ...,hℓ},ℓ
Outputs: W 0

1,·,W 0
2,·, ...,W 0

ℓ,·, X̄i , ȳi

1: for i = 1 → N each Pi do
2: Initialize |g ap| = max(h1 −d ,0) ▷ Input Preparation
3: for n = 1 →|Xi | do
4: Xi [n] =Replicate(Xi [n],h1, g ap)
5: X̄i [n] =Encode(Xi [n])
6: end for
7: if ℓ%2! = 0 then ▷ Labels Preparation
8: Initialize |g ap| = hℓ
9: yi =Flatten(yi , g ap, ’ · ’)

10: end if
11: ȳi =Encode(yi )
12: if i==1 then ▷ P1 performs Weight Initialization:
13: Initialize W 0

1,·,W 0
2,·, ...,W 0

ℓ,·
14: for j = 1 → ℓ do
15: if j %2 == 0 then ▷ Row Packing
16: if h j−2 > h j then
17: Initialize |g ap| = h j−2 −h j

18: end if
19: W 0

j ,· =Flatten(W 0
j ,·, g ap, ’r ’)

20: W 0
j ,· =Enc(pk,W 0

j ,·)
21: else ▷ Column Packing
22: if h j+1 > h j−1 then
23: Initialize |g ap| = h j+1 −h j−1

24: end if
25: W 0

j ,· =Flatten(W 0
j ,·, g ap, ’c’)

26: W 0
j ,· =Enc(pk,W 0

j ,·)
27: end if
28: end for
29: end if
30: end for

the piece-wise function ReLU, we approximate the smooth approximation of ReLU, softplus

(SmoothReLU), ϕ(x) = ln(1+ex ) with least-squares. Lastly, we use derivatives of the approxi-

mated functions. We discuss possible alternatives to these approximations in Appendix C.2.

To achieve better approximation with the lowest possible degree, we apply two approaches

to keep the input range of the activation function as small as possible, by using (i) different

weight initialization techniques for different layers (i.e., Xavier or He initialization), and (ii)

collective normalization of the data by sharing and collectively aggregating statistics on each

party’s local data in a privacy-preserving way [104]. Finally, the interval and the degree of

the approximations are chosen based on the heuristics on the data distribution in a privacy-

preserving way, as described in [126].
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AP Approach Representation

PREPARE:

1.
Each Pi prepares
Xi [n], yi [n]

Encode Xi [n], yi [n] → X̄i [n], ȳi [n]
L̄0 = X̄i [n]

ℎ!

Bootstrap DBootstrapALT

"#

"$, "&
"'

SetScale (Division)

("[*] =
-"[*] =

.# =

=

/! =

0! =

/$ =
/$ =

0$ =

1$ =

2’(/$) =

1$ =

1! =

1! =

1! =

1! =

ℎ!

ℎ$

|" − ℎ!|

d

|" − ℎ!||ℎ!|

/! =
/! =

2’(/!) =

1$ =

"6

"7

"8
"9, ":, "#;

B#

B$ B&

B'

B6

B7

B8

B9, B: B#;

B##, B#$, B#&

B#'U1

U1

U2, U3

U2, U3

2. P1 initializes W1,·
Vectorize columns, pack with |g ap| = 0
W 0

1,· =Flatten(W 0
1,·, g ap, ’c’)

3. P1 initializes W2,·
Vectorize rows, pack with |g ap| = d −hℓ
W 0

2,· =Flatten(W 0
2,·, g ap, ’r ’)

4.
Each Pi generates
masks m̄1,m̄2

m̄1 = [1,0,0,0,1,0,0,0,1,0,0,0,1, ...]
m̄2 = [1,1,0,0,0,0,0,0,0,0,0,0,0, ...]

Forward Pass (Each Pi ):

1. U1 = L̄0 ×W1,·
2. L1 =ϕ(U1)

F1. U1 =Mulpt(L̄0,W1,·), Res(U1)
F2. U1 =RIS(U1,1,d)
F3. U1 =Mulpt(U1,m̄1), Res(U1)
F4. U1 =RR(U1,1,hℓ)
F5. L1 =ϕ(U1)

3. U2 = L1 ×W2,·
4. L2 =ϕ(U2)

F6. U2 =Mulct(L1,W2,·), Res(L2)
F7. U2 =RIS(U1,d ,h1)
F8. L2 =Mulpt(L2,m̄2), Res(L2)
F9. DBootstrap(U2)
F10. L2 =ϕ(U2)

Backpropagation (Each Pi ):
1. E2 = ȳi [n]−L2 B1. E2 = Sub(ȳi [n],L2)

2. E2 = (ϕ′(U2))⊙E2

B2. d =ϕ′(U2)
B3. E2 =Mulct(E2,d ), Res(E2)
B4. E2 =RR(E2,d ,h1)

3. ∇∇∇W2,i = LT
1 ×El B5. ∇∇∇W2,i =Mulct(L1,E2), Res(∇∇∇W2,i )

4. E1 = E2 ×W T
2,·

B6. E1 =Mulct(E2,W2,i ), Res(E1)
B7. E1 =RIS(E1,1,hℓ)

5. E1 = (ϕ′(U1)⊙E1)

B8. d =ϕ′(U1)
B9. d =Mulpt(d ,m̄1)
B10. E1 =Mulct(E1,d ), Res(E1)
B11. DBootstrapALT(E1)

6. ∇∇∇W1,i = L̄T
0 ×E1

B12. E1 =Mulpt(E1,m̄1), Res(E1)
B13. E1 =RR(E1,1,d)
B14. ∇∇∇W1,i =Mulpt(L̄0,E1), Res(∇∇∇W1,i )

Update (at P1):

1. W j ,·+= η∇W j ,·
b×N

∀ j ∈ {1,2, .., l }

U1. SetScale(∇∇∇W j ,·,S∇∇∇W j ,· × (b ×N ))/η)
U2. W j ,· =Add(W j ,·,∇∇∇W j ,·)
U3. DBootstrap(W j ,·)

Table 4.1: Execution pipeline of a toy example with 2-layer MLP network. The left-most column shows the
operations for each step, the middle column present the AP approach and the respective homomorphic
operations for each MLP step. The right-most column presents the effect of each operation on the slots of
the ciphertext. Orange steps indicate the operations introduced to DBootstrapALT(·).
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4.3.3 Cryptographic Building Blocks

We present each cryptographic function that we employ to enable the privacy-preserving

training of neural networks with N parties. We also discuss the optimizations employed to

avoid costly transpose operations in the encrypted domain.

Rotations. As we rely on packing capabilities, computation of the inner-sum of vector-matrix

multiplications and transpose operation implies a restructuring of the vectors, that can only

be achieved by applying slot rotations. Throughout this chapter, we use two types of rotation

functions: (i) Rotate For Inner Sum (RIS(c , p, s)) is used to compute the inner-sum of a packed

vector c by homomorphically rotating it to the left with RotL(c , p) and by adding it to itself

iteratively log2(s) times, and (ii) Rotate For Replication (RR(c , p, s)) replicates the values in

the slots of a ciphertext by rotating the ciphertext to the right with RotR(c , p) and by adding

to itself, iteratively log2(s) times. For both functions, p is multiplied by two at each iteration,

thus both yield log2(s) rotations. As rotations are costly cryptographic functions (see Ta-

ble 4.2), and the matrix operations required for neural network training require a considerable

amount of rotations, we minimize the number of executed rotations by leveraging a modified

bootstrapping operation, that automatically performs some of the required rotations.

Distributed Bootstrapping with Arbitrary Linear Transformations. To execute the high-

depth homomorphic operations required for training neural networks, bootstrapping is re-

quired several times to refresh a ciphertext, depending on the initial level L. In POSEIDON,

we use a distributed version of bootstrapping [209], as it is several orders of magnitude more

efficient than the traditional centralized bootstrapping. Then we modify it, to leverage on the

interaction to automatically perform some of the rotations, or pooling operations, embedded

as transforms in the bootstrapping.

Mouchet et al. replace the expensive bootstrap circuit by a one-round protocol where the

parties collectively switch a Brakerski/Fan-Vercauteren (BFV) [92] ciphertext to secret-shares

in ZN
t . Since the BFV encoding and decoding algorithms are linear transformations, they

can be performed without interaction on a secret-shared plaintext. Despite its properties,

the protocol that Mouchet et al. propose for the BFV scheme cannot be directly applied to

CKKS, as CKKS is a leveled scheme): The re-encryption process extends the residue number

system (RNS) basis from Qℓ to QL . Modular reduction of the masks in Qℓ will result in an

incorrect encryption. Our solution to this limitation is to collectively switch the ciphertext to a

secret-shared plaintext with statistical indistinguishability.

We define this protocol as DBootstrapALT(·) (Algorithm 5) that takes as inputs a ciphertext

cpk at level ℓ encrypting a message msg and returns a ciphertext c ′
pk at level L encrypting

φ(msg ), where φ(·) is a linear transformation over the field of complex numbers. We denote

by ||a|| the infinity norm of the vector or polynomial a. As the security of the RLWE is based

on computational indistinguishability, switching to the secret-shared domain does not hinder

security. We refer to Appendix C.4 for technical details and the security proof of our protocol.
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Algorithm 5 DBootstrapALT(·)
Inputs: cpk = (c0,c1) ∈ R2

Qℓ
encrypting msg , λ a security parameter, φ(·) a linear transfor-

mation over the field of complex numbers, a a common reference polynomial, si the
secret-key of each party Pi , χer r a distribution over R, where each coefficient is indepen-
dently sampled from Gaussian distribution with the standard deviationσ= 3.2, and bound
⌊6σ⌋.
Constraints: Qℓ > (N +1) · ||msg || ·2λ.

Outputs: c ′
pk = (c ′0,c ′1) ∈ R2

QL

1: for all Pi do
2: Mi ← R||msg ||·2λ , e0,i ,e1,i ←χer r

3: M ′
i ←Encode(φ(Decode(Mi )))

4: h0,i ← si c1 +Mi +e0,i mod Qℓ

5: h1,i ←−si a −Mi +e1,i mod QL

6: end for
7: h0 ←∑

h0,i ,h1 ←∑
h1,i

8: c ′0 ←Encode(φ(Decode(c0 +h0 mod Qℓ)))
9: return c ′

pk = (c ′0 +h1 mod QL , a) ∈ R2
QL

Optimization of the Vector-Transpose Matrix Product. The backpropagation step of the local

gradient computation at each party requires several multiplications of a vector (or matrix) with

the transposed vector (or matrix) (see Lines 11-13 of Algorithm 3). The naïve multiplication of

a vector v with a transposed weight matrix W T that is fully packed in one ciphertext, requires

converting W of size g ×k, from column-packed to row-packed. This is equivalent to applying

a permutation of the plaintext slots, that can be expressed with a plaintext matrix Wg k×g k

and homomorphically computed by doing a matrix-vector multiplication. As a result, a naïve

multiplication requires
√

g ×k rotations followed by log2(k) rotations to obtain the inner sum

from the matrix-vector multiplication. We propose several approaches to reduce the number

of rotations when computing the multiplication of a packed matrix (to be transposed) and a

vector: (i) For the mini-batch gradient descent, we do not perform operations on the batch

matrix. Instead, we process each batch sample in parallel, because having separate vectors

(instead of a matrix that is packed into one ciphertext) enables us to reorder them at a lower

cost. This approach translates ℓ matrix transpose operations to be transposes in vectors (the

transpose of the vectors representing each layer activations in the backpropagation, see Line

13, Algorithm 3), (ii) Instead of taking the transpose of W , we replicate the values in the vector

that will be multiplied with the transposed matrix (for the operation in Line 11, Algorithm 3),

leveraging the gaps between slots with the AP approach. That is, for a vector v of size k and

the column-packed matrix W of size g ×k, v has the form [a,0,0,0. . . ,b,0,0,0, . . . ,c,0,0,0, . . . ]

with at least k zeros in between values (due to Algorithm 4). Hence, any resulting ciphertext

requiring the transpose of the matrix that will be subsequently multiplied, will also include

gaps in between values. We apply RR(v ,1,k) that consumes log2(k) rotations to generate

[a, a, a, ...0...,b,b,b, ..,0...,c,c,c, ...,0, ...]. Finally, we compute the product P =Mulct(v ,W ) and

apply RIS(P ,1, g ) to get the inner sum with log2(g ) rotations, and (iii) We further optimize

the performance by using DBootstrapALT(·) (Algorithm 5): If the ciphertext before the multi-

plication must be bootstrapped, we embed the log2(k) rotations as a linear transformation
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performed during the bootstrapping.

4.3.4 Execution Pipeline

Table 4.1 depicts the pipeline of the operations for processing one sample in LGD computa-

tion for a 2-layer MLP. These steps can be extended to an ℓ-layer MLP by following the same

operations for multiple layers. The weights are encoded and encrypted using the AP approach,

and the shape of the packed ciphertext for each step is shown in the representation column.

Each forward and backward pass on a layer in the pipeline consumes one Rotate For Inner

Sum (RIS(·)) and one Rotate For Replication (RR(·)) operation, except for the last layer, as the

labels are prepared according to the shape of the ℓth layer output. In Table 4.1, we assume

that the initial level L = 7, which is a typical value that is frequently used in our experimental

evaluations. When a bootstrapping function is followed by a masking (that is used to eliminate

unnecessary values during multiplications) and/or several rotations, we perform these oper-

ations embedded as part of the distributed bootstrapping (DBootstrapALT(·)) to minimize

their computational cost. The steps highlighted in orange are the operations embedded in the

DBootstrapALT(·). The complexity of each cryptographic function is analyzed in Section 4.3.5.

Convolutional Layers. As we flatten, replicate, and pack the kernel in one ciphertext, a CV

layer follows the exact same execution pipeline as a FC layer. However, the number of RIS(·)
operations for a CV layer is smaller than for a FC layer. That is because the kernel size is usually

smaller than the number of neurons in a FC layer. For a kernel of size h = f × f , the inner

sum is calculated by log2( f ) rotations. Note that when a CV layer is followed by a FC layer,

the output of the i th CV layer (Li ) already gives the flattened version of the matrix in one

ciphertext. We apply RR(Li ,1,hi+1) for the preparation of the next layer multiplication. When

a CV layer is followed by a pooling layer, however, the RR(·) operation is not needed, as the

pooling layer requires a new arrangement of the slots of Li . We avoid this costly operation

by passing Li to DBootstrapALT(·), and by embedding both the pooling and its derivative in

DBootstrapALT(·).

Pooling Layers. In POSEIDON, we evaluate our system based on average pooling as it is the

most efficient type of pooling that can be evaluated under encryption [112]. To do so, we

exploit our modified collective bootstrapping to perform arbitrary linear transformations.

Indeed, the average pooling is a linear function, and so is its derivative (note that this is not the

case for the max pooling). Therefore, in the case of a CV layer followed by a pooling layer, we

apply DBootstrapALT(·) and use it both to rearrange the slots and to compute the convolution

of the average pooling in the forward pass and its derivative, that is used later in the backward

pass. For a h = f × f kernel size, this saves log2(h) rotations and additions (RIS(·)) and one

level if masking is needed. For max/min pooling, which are non-linear functions, we refer

the reader to Appendix C.3 and highlight that evaluating these functions by using encrypted

arithmetic remains impractical due to the need of high-precision approximations.
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Computational Complexity #Levels Used Communication Rounds

FORWARD P. (FP) (log2(hi−1)+ log2(hi+1)) ·KS+Mulct+Mulpt+ϕ 2+⌈log2(da +1)⌉ − −
BACKWARD P. (BP) (log2(hi−1)+ log2(hi+1)) ·KS+2Mulct+Mulpt+ϕ′ 3+⌈log2(da)⌉ − −
Local Computation Phase ℓ(FP+BP)−2log2(hℓ) ℓ(5+⌈log2(da +1)+⌈log2(da)⌉) z(N −1)|c| 1/2

Aggregate Phase − − z(N −1)|c| 1/2

Model-Update Phase ℓ(Mulpt+DB) − − −
DBootstrap (DB) N log2(N )(L+1)+N log2(N )(Lc +1) − (N −1)|c| 1

Mul Plaintext (Mulpt) 2N (Lc +1) 1 − −
Mul Ciphertext (Mulct) 4N (Lc +1)+KS 1 − −
Approx. Activation Function (ϕ) (2κ+m−κ−3+⌈(da +1)/2κ⌉) ·Mulct ⌈log2(da +1)⌉ − −
RIS(c , p, s), RR(c , p, s) log2(s) ·KS − − −
Key-switch (KS) O (N log2(N )Lcβ) − − −

Table 4.2: Complexity analysis of POSEIDON’s building blocks. N ,α,L,Lc ,da stand for the cyclotomic
ring size, the number of secondary moduli used during the key-switching, maximum level, current level,
and the approximation degree, respectively. β= ⌈Lc +1/α⌉, m= ⌈log(da +1)⌉, κ= ⌊m/2⌋.

4.3.5 Complexity Analysis

Table 4.2 displays the communication and worst-case computational complexity of POSEIDON’s

building blocks. This includes the MHE primitives, thus facilitating the discussion on the

parameter selection in the following section. We define the complexity in terms of key-switch

KS(·) operations and recall that this is a different operation than DKeySwitch(·), as explained

in Section 1.3. We note that KS(·) and DBootstrap(·) are 2 orders of magnitude slower than an

addition operation, rendering the complexity of an addition negligible.

We observe that POSEIDON’s communication complexity depends solely on the number of

parties (N ), the number of total ciphertexts sent in each global iteration (z), and the size of

one ciphertext (|c |). The building blocks that do not require communication are indicated

with a dash −.

In Table 4.2, forward and backward passes represent the per-layer complexity for FC layers,

so they are an overestimate for CV layers. Note that the number of multiplications differs in

a forward pass and a backward pass, depending on the packing scheme, e.g., if the current

layer is row-packed, it requires 1 less Mulct(·) in the backward pass, and we have 1 less Mulpt(·)
in several layers, depending on the masking requirements. Furthermore, the last layer of

forward pass and the first layer of backpropagation take 1 less RR(·) operation that we gain

from packing the labels in the offline phase, depending on the neural network structure (see

Algorithm 4). Hence, we save 2log2(hℓ) rotations per one LGD computation.

In the Local Computation Phase, we provide the complexity of the local computations per

Pi , depending on the total number of layers ℓ. In the Aggregate Phase, each Pi performs an

addition for the collective aggregation of the gradients in which the complexity is negligible.

To update the weights, Model-Update Phase is done by one party (P1) and divisions do not

consume levels when performed with SetScale(·). The complexity of an activation function

(ϕ(·)) depends on the approximation degree da . We note that the derivative of the activation

function (ϕ′(·)) has the same complexity as ϕ(·) with degree da −1.
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For the cryptographic primitives represented in Table 4.2, we rely on the CKKS variant of the

MHE cryptosystem in [209], and we report the dominating terms. The distributed bootstrap-

ping takes 1 round of communication and the size of the communication scales with the

number of parties (N ) and the size of the ciphertext (see [209] for details).

4.3.6 Parameter Selection

We first discuss several details to optimize the number of Res(·) operations and give a cost

function which is computed by the complexities of each functionality presented in Table 4.2.

Finally, relying on this cost function we formulate an optimization problem for choosing

POSEIDON’ parameters.

As discussed in Section 1.3, we assume that each multiplication is followed by a Res(·) opera-

tion. The number of total rescaling operations, however, can be further reduced by checking

the scale of the ciphertext. When the initial scale S is chosen such that Q/S = r for a ciphertext

modulus Q, the ciphertext is rescaled after r consecutive multiplications. This reduces the

level consumption and is integrated into our cost function hereinafter.

Cryptographic Parameters Optimization. We define the overall complexity of an ℓ-layer

MLP aiming to formulate a constrained optimization problem for choosing the cryptographic

parameters. We first introduce the total number of bootstrapping operations (B) required

in one forward and backward pass. As B depends on the multiplicative depth, the factors

that affect it are the number of multiplications and the initial level of the ciphertext. Thus we

calculate B as

B = ℓ(5+⌈log2(da +1)+⌈log2(da)⌉)

(L−τ)r
,

where r =Q/S, for a ciphertext modulus Q and an initial scale S. The number of total boot-

strapping operations is calculated by the total number of consumed levels (numerator), the

level requiring a bootstrap (L−τ) and r which denotes how many consecutive multiplications

are allowed before rescaling (denominator). Note that a forward and backward pass for each

layer consumes 5 multiplications in total by default and the remaining multiplications depend

on the degree of the activation function da . The initial level of a fresh ciphertext L has an effect

on the design of the protocols, as the ciphertext should be bootstrapped before the level Lc

reaches a number (L−τ) that is close to zero, where τ depends on the security parameters. For

a cyclotomic ring size N , the initial level of a ciphertext L, and for the fixed neural network

parameters such as the number of layers ℓ, the number of neurons in each layer h1,h2, ...,hℓ,

and for the number of global iterations e, the overall complexity is defined as

C (N ,L) = m(
ℓ∑

i=1
{(2log2(hi−1)+ log2(hi+1)) ·KS+3Mulct+2Mulpt+ϕ+ϕ′}−2log2(hℓ)+B ·DB).

(4.1)
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Figure 4.1: The relationship between POSEIDON’s cryptographic and learning parameters.

This calculation is thus takes the number of rotations that are needed for each vector-matrix

multiplication + log2(h), the number of multiplications (Mulpt or Mulct), the number of boot-

straps (B) and the activation functions (ϕ) into account. Note that the complexity of each

KS(·) operation depends on the level of the ciphertext that it is performed on (see Table 4.2),

but we use the initial level L in the cost function for the sake of clarity. The complexity of

Mulct,Mulpt,DB, and KS is defined in Table 4.2. Then, the optimization problem for a fixed

scale (precision) S and a security level λ, which defines the security parameters, can be

formulated as

min
N ,L

C (N ,L) (4.2)

subject to mc = {q1, ..., qL}; L = |mc|; Q =
L∏

i=1
qi ; Q = kS, k ∈R+;

QL−τ > 2λ|pl ai ntext |N ; N ← postQsec(Q,λ),

where postQsec(Q,L,λ) gives the necessary cyclotomic ring size N , depending on the ci-

phertext modulus (Q) and on the desired security level (λ), according to the homomorphic

encryption standard whitepaper [27]. Eq. (4.2) gives the optimal N and L for a given neural

network structure. We then pack each weight matrix into one ciphertext. It is worth mention-

ing that the solution might give an N that has fewer slots than the required number to pack

the big weight matrices in the neural network. In this case, we use a multi-cipher approach

where we pack the weight matrix using more than one ciphertext and do the operations in

parallel.

One-cipher approach: We find the largest weight matrix to be packed and calculate the

necessary number of slots to fit this matrix into one ciphertext, including the gaps introduced

in between rows or columns. When optimization problem 4.2 finds optimal N such that the
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number of slots fit into one ciphertext, we follow the one-cipher approach for the evaluation.

Multi-cipher Approach. In the case of a big weight matrix, we divide the flattened weight

vector into multiple ciphertexts and carry out the neural network operations on several

ciphertexts in parallel. E.g., for a weight matrix of size 1,024× 64 and N /2 = 4,096 slots,

we divide the weight matrix into 1,024×64/4,096 = 16 ciphers. Last but not least, we show in

Figure 4.1 the relationship between the aforementioned parameters.

4.4 Security Analysis

We demonstrate that POSEIDON achieves the Data and Model Confidentiality properties

defined in Chapter 3, Section 3.2, under a passive-adversary model with up to N −1 colluding

parties. We follow the real/ideal world simulation paradigm [180] for the confidentiality proofs.

The semantic security of the CKKS scheme is based on the hardness of the decisional RLWE

problem [62, 193, 181]. The achieved practical bit-security against state-of-the-art attacks

can be computed using Albrecht’s LWE-Estimator [27, 28]. According to Lemma 1 in [62], a

CKKS ciphertext generated with parameters (N ,QL ,S) that ensures a post-quantum security

level of λ, is a valid encryption (i.e., indistinguishable from random data) due to the semantic

security of RLWE-based encryptions. Moreover, following Lemmas 2, 3, and 4 in [62], any local

homomorphic operation on a CKKS ciphertext, e.g., addition, multiplication, or rescaling,

yields a valid encryption of the result of the operation. The security of the used distributed

cryptographic protocols, i.e., DKeyGen(·) and DKeySwitch(·), relies on the proofs by Mouchet

et al. [209]. They show that these protocols are secure in a passive-adversary model with up to

N −1 colluding parties, under the assumption that the underlying RLWE problem is hard [209].

The security of DBootstrap(·), and its variant DBootstrapALT(·) is based on Lemma 1 which

we state and prove in Appendix C.4.

Remark 1. Any encryption broadcast to the network in Algorithm 2 is re-randomized to avoid

leakage about parties’ confidential data by two consecutive broadcasts. We omit this operation

in Algorithm 2 for clarity.

Proposition 1. Assume that POSEIDON’s encryptions are generated using the CKKS cryptosystem

with parameters (N ,QL ,S) ensuring a post-quantum security level of λ. Given a passive

adversary corrupting at most N −1 parties, POSEIDON achieves Data and Model Confidentiality

during training.

Proof (Sketch). Let us assume a real-world simulator St that simulates the view of a compu-

tationally bounded adversary corrupting N −1 parties, as such having access to the inputs

and outputs of N −1 parties. Without loss of generality, let us assume one training iteration

in POSEIDON. As stated above, any encryption under CKKS with parameters that ensure a

post-quantum security level of λ is semantically secure. During POSEIDON’s training phase,

the model parameters that are exchanged in between parties are encrypted, and all phases rely

on the aforementioned CPA-secure-proven protocols. Moreover, as shown in Appendix C.4,
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the DBootstrap(·) and DBootstrapALT(·) protocols are simulatable. Hence, St can simulate

all of the values communicated during POSEIDON’s training phase by using the parameters

(N ,QL ,S) to generate random ciphertexts such that the real outputs cannot be distinguished

from the ideal ones. The sequential composition of all cryptographic functions remains simu-

latable by St thanks to the use of different random values in each phase and due to Remark 1.

As such, there is no dependency between the random values that an adversary can leverage on.

Moreover, the adversary is not able to decrypt the communicated values of an honest party

because decryption is only possible with the collaboration of all the parties. Following this,

POSEIDON protects the data confidentiality of the honest party/ies.

Analogously, the same argument follows to prove that POSEIDON protects the confidential-

ity of the trained model, as it is a function of the parties’ inputs, and its intermediate and

final weights are always under encryption. Hence, POSEIDON eliminates federated learning

attacks [128, 199, 212, 309], that aim at extracting private information about the parties from

the intermediate parameters or the final model.

Proposition 2. Assume that POSEIDON’s encryptions are generated using the CKKS cryptosystem

with parameters (N ,QL ,S) ensuring a post-quantum security level of λ. Given a passive

adversary corrupting at most N −1 parties, POSEIDON achieves Data and Model Confidentiality

during prediction.

Proof (Sketch). (a) Let us assume a real-world simulator Sp that simulates the view of a

computationally-bounded adversary corrupting N −1 computing nodes (parties). The Data

Confidentiality of the honest parties and Model Confidentiality is ensured following the argu-

ments of Proposition 1, as the prediction protocol is equivalent to a forward-pass performed

during a training iteration by a computing party. Following similar arguments to Proposition 1,

the encryption of the querier’s input data (with the parties common public key pk) can be

simulated by Sp . The only additional function used in the prediction step is DKeySwitch(·)
that is proven to be simulatable by Sp [209]. Thus, POSEIDON ensures Data Confidentiality of

the querier. (b) Let us assume a real-world simulator S ′
p that simulates a computationally-

bounded adversary corrupting N − 2 parties and the querier. Data Confidentiality of the

querier is trivial, as it is controlled by the adversary which is the querier that has its own public

and secret key pairs. The simulator has access to the prediction result as the output of the

process for Pq , so it can produce all the intermediate (indistinguishable) encryptions that the

adversary sees (based on the simulatability of the key-switch/collective decrypt protocol [209]).

Following this and the arguments of Proposition 1, Data and Model Confidentiality are en-

sured during prediction. We remind here that the membership inference [254] and model

inversion [98] are out-of-the-scope attacks (see B.1 for complementary security mechanisms

against these attacks).
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4.5 Experimental Evaluation

In this section, we experimentally evaluate POSEIDON’s performance and present our empirical

results. We also compare POSEIDON to other state-of-the-art privacy-preserving solutions.

4.5.1 Implementation Details

We implement POSEIDON in Go [7], building on top of the Lattigo lattice-based library [200] for

the multiparty cryptographic operations. We make use of Onet [5] and build a decentralized

system where the parties communicate over TCP with secure channels (TLS).

4.5.2 Experimental Setup

We use Mininet [201] to evaluate POSEIDON in a virtual network with an average network

delay of 0.17ms and 1Gbps bandwidth. All the experiments are performed on 10 Linux servers

with Intel Xeon E5-2680 v3 CPUs running at 2.5GHz with 24 threads on 12 cores and 256 GB

RAM. Unless otherwise stated, in our default experimental setting, we instantiate POSEIDON

with N = 10 and N = 50 parties. As for the parameters of the cryptographic scheme, we use

a precision of 32 bits, number of levels L = 6, and N = 213 for the datasets with d < 32 or

32×32 images, and N = 214 for those with d > 32, following the multi-cipher approach (see

Section 4.3.6).

4.5.3 Datasets

For the evaluation of POSEIDON’s performance, we use the following real-world and publicly

available datasets: (a) the Breast Cancer Wisconsin dataset (BCW) [236] with n = 699, d =
9, hℓ = 2, (b) the hand-written digits (MNIST) dataset [172] with n = 70,000, d = 28×28, hℓ =
10, (c) the Epileptic seizure recognition (ESR) dataset [91] with n = 11,500, d = 179, hℓ = 2,

(d) the default of credit card clients (CREDIT) dataset [291] with n = 30,000, d = 23, hℓ = 2,

(d) the street view house numbers (SVHN) dataset [215] with colored images (3 channels),

n = 600,000, d = 3×32×32, hℓ = 10, and (e) the CIFAR-10 and CIFAR-100 [168] datasets with

colored images (3 channels), n = 60,000, d = 3×32×32, hℓ = 10, and hℓ = 100, respectively.

Recall that hℓ represents the number of neurons in the last layer of a neural network (NN),

i.e., the number of output labels. We convert SVHN to gray-scale to reduce the number of

channels. Moreover, since we pad with zeros each dimension of a weight matrix to the nearest

power-of-two (see Section 4.3.1), for the experiments using the CREDIT, ESR, and MNIST

datasets, we actually perform the neural network training with d = 32, 256, and 1,024 features,

respectively. For SVHN, the number of features for a flattened gray-scale image is already a

power-of-two (32×32 = 1,024). To evaluate the scalability of our system, we generate synthetic

datasets and vary the number of features or samples. Finally, for our experiments we evenly

and randomly distribute all the above datasets among the participating parties. We note that

the data and label distribution between the parties, and its effects on the model accuracy is
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Dataset Accuracy Execution time (s)
C1 C2 L D POSEIDON Training Inference

BCW 97.8% 97.4% 93.9% 97.4% 96.9% 91.06 0.21

ESR 93.6% 91.2% 89.9% 91.1% 90.4% 851.84 0.30

CREDIT 81.4% 80.9% 79.6% 80.6% 80.2% 516.61 0.26

MNIST 92.1% 91.3% 87.8% 90.6% 89.9% 5,283.1 0.38

Table 4.3: POSEIDON’s accuracy and execution times for N = 10 parties. The model accuracy is compared
to several non-private approaches.

orthogonal to this work (see Appendix B.2 for extensions related to this issue).

4.5.4 Neural Network Configuration

For the BCW, ESR, and CREDIT datasets, we deploy a 2-layer fully connected neural network

with 64 neurons per layer, and we use the same neural network structure for the synthetic

datasets used to test POSEIDON’s scalability. For the MNIST and SVHN datasets, we train a

3-layer fully connected neural network with 64 neurons per-layer. For the CIFAR-10, we train

two models: (i) a CNN with 2 CV and 2 average-pooling with kernel size of 2×2, and 2 FC layers

with 128 neurons and 10 neurons, labeled as N1, and (ii) a CNN with 4 CV with kernel size of

3×4, 2 average-pooling with kernel size of 2×2 and 2 FC layers with 128 and 10 neurons labeled

as N2. For CIFAR-100, we train a CNN with 6 CV with kernel size of 3×4, 2 average-pooling

with kernel size of 2×2 and 2 FC layers with 128 neurons each. For all CV layers, we vary the

number of filters between 3 to 16. We use the approximated sigmoid, SmoothReLU, or tanh

activation functions (see Section 4.3.2), depending on the dataset. We train the above models

for 100, 600, 500, 1,000, 18,000, 25,000, 16,800, and 54,000 global iterations for the BCW, ESR,

CREDIT, MNIST, SVHN, CIFAR-10-N1, CIFAR-10-N2, and CIFAR100 datasets, respectively. For

the SVHN and CIFAR datasets, we use momentum-based gradient descent [228] or Nesterov’s

accelerated gradient descent [214], which introduces an additional multiplication to the

update rule (in the Local Computation Phase). Finally, we set the local batch size b to 10 and,

as such, the global batch size is B = 100 in our default setting with 10 parties and B = 500 with

50 parties. For a fixed number of layers, we choose the learning parameters by grid search with

3-fold cross validation on clear data with the approximated activation functions. In a practical

federated learning setting, however, the parties can collectively agree on these parameters by

using secure statistics computations [104, 100].

4.5.5 Empirical Results

We experimentally evaluate POSEIDON in terms of accuracy of the trained model, execution

time for both training and prediction phases, and communication overhead. We also evaluate

POSEIDON’s scalability with respect to the number of parties N , as well as the number of

data samples n and features d in a dataset. We further provide microbenchmark timings
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and communication overhead for the various functionalities and operations for FC, CV, and

pooling layers in Appendix C.5.1 that can be used to extrapolate POSEIDON’ execution time

for different neural network structures. We further give per-global-iteration execution times

of various neural network architectures in Appendix C.5.2 and various CNN architectures in

Appendix C.5.3.

Model Accuracy. Tables 4.3 and 4.4 display POSEIDON’s accuracy results on the used real-

world datasets with 10 and 50 parties, respectively. The accuracy column shows four baselines

with the following approaches: two approaches where the data is collected to a central party

in its clear form: centralized with original activation functions (C1), and centralized with

approximated activation functions (C2); one approach where each party trains the model

only with its local data (L), and a decentralized approach with approximated activation func-

tions (D), where the data is distributed among the parties, but the learning is performed

on cleartext data, i.e., without any protection of the gradients communicated between the

parties. For all baselines, we use the same neural network structure and learning param-

eters as POSEIDON, but adjust the learning rate (η) or use adaptive learning rate to ensure

the range of the approximated activation functions is minimized, i.e., a smaller interval for

an activation-function approximation requires smaller η to prevent divergence while bigger

intervals make the choice of ηmore flexible. These baselines enable us to evaluate POSEIDON’s

accuracy loss due to the approximation of the activation functions, distribution, encryption

and the impact of privacy-preserving federated learning. We exclude the (D) column from

Table 4.4 for the sake of space; the pattern is similar to Table 4.3 and POSEIDON’s accuracy

loss is negligible. To obtain accuracy results for the CIFAR-10 and CIFAR-100 datasets, we

simulate POSEIDON in Tensorflow [18] by using its approximated activation functions and

a fixed-precision. We observe that the accuracy loss between C1, C2, D, and POSEIDON is

0.9−3% when 32-bits precision is used. For instance, POSEIDON achieves 90.4% training accu-

racy on the ESR dataset, a performance that is equivalent to a decentralized (D) non-private

approach and only slightly lower compared to centralized approaches. Note that the accuracy

difference between non-secure solutions and POSEIDON can be further reduced by increasing

the number of training iterations, however, we use the same number of iterations for the sake

of comparison. Moreover, we remind that CIFAR-100 has 100 class labels (i.e., a random guess

baseline of 1% accuracy) and is usually trained with special neural network structures (ResNet)

or special layers (batch normalization) to achieve higher accuracy than the reported ones: we

leave these neural network types as future work (see Appendix B.2).

We compare POSEIDON’s accuracy with that achieved by one party using its local dataset (L),

that is 1/10 (or 1/50) of the overall data, with exact activation functions. We compute the

accuracy for the (L) setting by averaging the test accuracy of the 10 and 50 locally trained

models (Tables 4.3 and 4.4, respectively). We observe that even with the accuracy loss due to

approximation and encryption, POSEIDON still achieves 1−3% increase in the model accuracy

due to privacy-preserving collaboration (Table 4.3). This increase is more significant when the

data is partitioned across 50 parties (Table 4.4) as the number of training samples per-party is

further reduced and is not sufficient to learn an accurate model.
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Dataset Accuracy Execution time (hrs)
C1 C2 L POSEIDON One-GI Training Inference

SVHN 68.4% 68.1% 35.1% 67.8% 0.0034 61.2 8.89×10−5

CIFAR-10-N1 54.6% 52.1% 26.8% 51.8% 0.007 175 0.001

CIFAR-10-N2 63.6% 62.0% 28.0% 61.1% 0.011 184.8 0.004

CIFAR-100 43.6% 41.8% 8.2% 41.1% 0.026 1404 0.006

Table 4.4: POSEIDON’s accuracy and execution times for N = 50 parties (extrapolated). One-GI indicates
the execution time of one global iteration.

Execution Time. As shown on the right-hand side of Table 4.3, POSEIDON trains the BCW,

ESR, and CREDIT datasets in less than 15 minutes and the MNIST in 1.4 hours, when each

dataset is evenly distributed among 10 parties. Note that POSEIDON’s overall training time

for MNIST is less than an hour when the dataset is split among 20 parties that use the same

local batch size. We extrapolate the training times of POSEIDON on more complex datasets

and architectures for one global iteration (one-GI) in Table 4.4; these can be used to estimate

the training times of these structures with a larger number of global iterations. For instance,

CIFAR-10 is trained in 175 hours with 2 CV, 2 pooling, 2 FC layers and with dropouts (adding

one more multiplication in the dropout layer). Note that it is possible to increase the accuracy

with higher run-time or fine-tuned architectures, but we aim at finding a trade-off between

accuracy and run-time. For example, POSEIDON’s accuracy on SVHN reaches 75% by doubling

the training epochs and thus its execution time. The per-sample inference times presented in

Tables 4.3 and 4.4 include the forward pass, the DKeySwitch(·) operations that reencrypt the

result with the querier’s public key, and the communication among the parties. We note that as

all the parties keep the model in encrypted form, any of them can process the prediction query.

Hence, taking the advantage of parallel query executions and multi-threading, POSEIDON

achieves a throughput of 864,000 predictions per hour on the MNIST dataset with the chosen

neural network structure.

Scalability. Figure 4.2a shows the scaling of POSEIDON with the number of features (d) when

the one-cipher and multi-cipher with parallelization approaches are used for a 2-layer neural

network with 64 hidden neurons. The runtime refers to one epoch, i.e., a processing of all the

data from N = 10 parties, each having 2,000 samples, and employing a batch size of b = 10.

For small datasets with a number of features between 1 and 64, we observe no difference in

execution time between the one-cipher and multi-cipher approaches. This is because the

weight matrices between layers fit in one ciphertext with N = 213. However, we observe a

larger runtime of the one-cipher approach when the number of features increases further.

This is because each power-of-two increase in the number of features requires an increase in

the cryptographic parameters, thus introducing overhead in the arithmetic operations.

We further analyse POSEIDON’s scalability with respect to the number of parties (N ) and

the number of total samples in the distributed dataset (n), for a fixed number of features.

Figures 4.2b and 4.2c display POSEIDON’s execution time, when the number of parties ranges
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Figure 4.2: POSEIDON’s training execution time and communication overhead with increasing number
of parties, features, and samples, for 1 training epoch.

from 3 to 24, and one training epoch is performed, i.e., all the data of the parties is processed

once. For Figure 4.2b, we fix the number of data samples per party to 200 to study the effect of

an increasing number of members in the federation. We observe that POSEIDON’s execution

time is almost independent of N and is affected only by increasing communication between

the parties. When we fix the global number of samples (n), increasing N results in a runtime

decrease, as the samples are processed by the parties in parallel (see Figure 4.2c). Then, we

evaluate POSEIDON’s runtime with an increasing number of data samples and a fixed number

of parties N = 10, in Figure 4.2d. We observe that POSEIDON scales linearly with the number of

data samples. Finally, we remark that POSEIDON also scales proportionally with the number of

layers in the neural network structure, if these are all of the same type, i.e, FC, CV, or pooling,

and if the number of neurons per layer or the kernel size is fixed.

4.5.6 Comparison with Prior Work

A quantitative comparison of our work with the state-of-the-art solutions for privacy-preserving

neural network executions is a non-trivial task. Indeed, the most recent cryptographic so-

lutions for privacy-preserving machine learning in the N -party setting, i.e., Helen [307] and

SPINDLE [102], support the functionalities of only regularized [307] and generalized [102]
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linear models, respectively. We provide a detailed qualitative comparison with the state-of-

the-art privacy-preserving deep learning frameworks in Table C.1 in Appendix and expand on

it here.

POSEIDON operates in an federated learning setting where the parties maintain their data

locally. This is a substantially different setting compared to that envisioned by MPC-based

solutions [205, 204, 278, 279, 53, 57], for privacy-preserving neural network training. In these

solutions, the parties’ data has to be communicated (i.e., secret-shared) outside their premises,

and the data and model confidentiality is preserved as long as there exists an honest majority

among a limited number of computing servers (typically, 2 to 4, depending on the setting).

Hence, a similar experimental setting is hard to achieve. Nonetheless, we compare POSEIDON

to SecureML [205], SecureNN [278], and FALCON [279], when training a 3-layer neural network

with 128 neurons per layer for 15 epochs, as described in [205], on the MNIST dataset. We set

N = 3 to simulate a similar setting and use POSEIDON’s approximated activation functions.

POSEIDON trains MNIST in 73.1 hours whereas SecureML with 2-parties, SecureNN and

FALCON with 3-parties, need 81.7, 1.03, and 0.56 hours, respectively. Depending on the

activation functions, SecureML yields 93.1−93.4% accuracy, SecureNN 93.4%, and FALCON

97.4%. POSEIDON achieves 92.5% accuracy with the approximated SmoothReLU and 96.2%

with approximated tanh activation functions. We remind that POSEIDON operates under a

different system (FL-based) and threat model, it supports more parties, and scales linearly

with N whereas MPC solutions are based on outsourced learning with limited number of

computing servers.

Federated learning approaches based on differential privacy (DP), e.g., [177, 253, 195], train a

neural network while introducing some noise to the intermediate values to mitigate adver-

sarial inferences. However, training an accurate neural network model with DP requires a

high privacy budget [229], hence it remains unclear what privacy protection is obtained in

practice [141]. We note that DP-based approaches introduce a different tradeoff than POSEI-

DON: they tradeoff privacy for accuracy, while POSEIDON decouples accuracy from privacy

and tradeoffs accuracy for complexity (i.e., execution time and communication overhead).

Nonetheless and as an example, we compare POSEIDON’s accuracy results with those reported

by Shokri and Shmatikov [253] on the MNIST dataset. We focus on their results with the dis-

tributed selective SGD configured such that participants download/upload all the parameters

from/to the central server in each training iteration. We evaluate the same CNN structure

used in [253], but with POSEIDON’s approximated activation functions and average-pooling

instead of max-pooling. We compare the accuracy results presented in [253, Figure 13] with

N = 30, N = 90, and N = 150 participants. In all settings, POSEIDON yields > 94% accuracy

whereas [253] achieves similar accuracy only when the privacy budget per parameter is ≥ 10.

For more private solutions, where the privacy budget is 0.001, 0.01 or 0.1, [253] achieves ≤ 90%

accuracy; smaller ϵ yields better privacy but degrades utility.

Finally, existing HE-based solutions [126, 211, 276], focus on a centralized setting where the

neural network learning task is outsourced to a central server. These solutions, however,
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employ non-realistic cryptographic parameters [276, 211], and their performance is not practi-

cal [126] due to their costly homomorphic computations. Our system, focused on a federated

learning-based setting and a multiparty homomorphic encryption scheme, improves the

response time 3 to 4 orders of magnitude. The execution times produced by Nandakumar et

al. [211] for processing one batch of 60 samples in a single thread and 30 threads for a neural

network structure with d = 64, h1 = 32, h2 = 16, h3 = 2, are respectively 33,840s and 2,400s.

When we evaluate the same setting, but with N = 10 parties, we observe that POSEIDON pro-

cesses the same batch in 6.3s and 1s, respectively. We also achieve stronger security guarantees

(128 bits) than [211] (80 bits). Finally, for a neural network structure with 2-hidden layers of

128 neurons each, and the MNIST dataset, CryptoDL [126] processes a batch with B = 192 in

10,476.3s, whereas our system in the distributed setting processes the same batch in 34.7s.

Therefore, POSEIDON is the only solution that performs both training and inference of MLP

and CNNs in an N -party setting, yet protects data and model confidentiality withstanding

collusions up to N −1 parties.

4.6 Conclusion

In this chapter, we presented POSEIDON, a novel system for zero-leakage privacy-preserving

federated MLP and CNN learning among N parties. Based on lattice-based multiparty ho-

momorphic encryption, our system protects the confidentiality of the training data, of the

model, and of the evaluation data, under a passive adversary model with collusions of up to

N −1 parties. By leveraging on packing strategies and an extended distributed bootstrapping

functionality, POSEIDON is the first system demonstrating that secure federated learning on

neural networks is practical under multiparty homomorphic encryption. Our experimental

evaluation shows that POSEIDON significantly improves on the accuracy of individual local

training, bringing it on par with centralized and decentralized non-private approaches. Its

computation and communication overhead scales linearly with the number of parties that

participate in the training, and is between 3 to 4 orders of magnitude faster than equivalent

centralized outsourced approaches based on traditional homomorphic encryption. This work

opens up the door of practical and secure federated training in passive-adversarial settings.
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5 Federated Recurrent Neural Network
Learning

5.1 Introduction

In this chapter, we address the privacy-preserving training and evaluation on RNNs in an N -

party setting by relying on MHE to perform all the computations under encryption. Collecting

and mining sequential data, e.g., time-series, has become the base for numerous real-life

applications in the domains of healthcare, energy, and finance. For instance, in personalized

healthcare, electrocardiograms (ECGs) are used to monitor patients and to detect heartbeat

arrhythmia; and, in finance, historical economic records are mined to forecast stock prices.

The state-of-the-art time-series mining is achieved by employing machine learning algorithms

that extract useful patterns from the data. A well-known class of algorithms widely used for

learning on time-series data is recurrent neural networks (RNNs) [239, 90] and its variants,

e.g., Gated Recurrent Units (GRUs) and Long-short Term Memory (LSTMs), that are capable of

modelling high-dimensional and non-linear relationships in dynamic systems [246].

Training effective RNNs for time-series tasks requires large amounts of data that are usually

generated by multiple sources and scattered across several parties. Sharing or centralizing

this data is difficult because it is privacy sensitive [298]. For example, smart-meter data might

leak householders’ identities [51] and their activities [206], location data reveal information

about peoples’ lifestyles and beliefs [256, 255, 217, 296, 17, 73], and healthcare time-series are

by nature very private information [36, 186]. Additionally, privacy regulations enforce strict

rules for sharing this type of data [3, 8].

Federated learning has been applied in many time-series applications by using RNNs to

forecast the energy load [93], to detect out-of-vocabulary words [59], to predict the next

word typed on mobile phones [121], and to classify cancer in healthcare systems [107]. We

remind here that federated learning raises privacy issues through the shared model up-

dates [128, 283, 309, 199, 212, 304, 110, 145, 280, 85, 87]. To overcome these shortcomings,

several works propose integrating protection mechanisms such as differential privacy (DP),

secure multiparty computation (MPC), or homomorphic encryption (HE) in the federated

learning process (see Chapter 2 for a detailed discussion on the related work). Our contribu-
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tions in Chapter 4 focus solely on the training of feed-forward neural networks and do not

tackle the training of RNNs, which introduces its own additional challenges: (i) the sequential

computations make the training procedure slow and hard to parallelize, and (ii) the long-term

dependencies lead to exploding (or vanishing) gradients [221, 37]. For instance, the packing

scheme and the matrix/vector operations employed in [244] are tailored for the processing

of a single sample (by relying on vector-matrix multiplications and thus eliminating explicit

transpose and matrix multiplications; see Section 5.5.6 for microbenchmarks demonstrating

the unsuitability of this approach for training RNNs). Whereas in this chapter, we propose a

novel packing scheme suitable for mini-batch training of RNNs and enable matrix transpose

and matrix multiplications. Moreover, we propose several polynomial approximations for

enabling critical operations for RNNs, such as gradient clipping, under MHE.

To accelerate RNN training, we enable mini-batch training by relying on a novel packing

scheme that reduces the processing time of a batch. To address the problem of exploding/van-

ishing gradients, our novel system, RHODE, uses efficient polynomial approximations of the

gradient clipping function. We implement RHODE and our experimental evaluation shows

that its accuracy is on par with non-secure centralized and decentralized solutions. Moreover,

it scales sub-linearly with the number of features, sub-quadratically with the hidden RNN

dimension, and linearly with the timesteps, the batch size and the number of parties.

In summary, we make the following contributions in this chapter:

• We present RHODE, a novel system for the training of RNNs in a cross-silo federated

learning setting by relying on MHE. By using MHE, RHODE conceals all intermediate

values and the model that are communicated in the federated learning process. After

training, RHODE enables oblivious predictions to a querier that provides its encrypted

inputs for PaaS.

• We design a novel multi-dimensional packing scheme that enables efficient encrypted

matrix operations suitable for mini-batch training. We show that performing matrix

multiplication with our scheme improves the state of the art [143, 244] in terms of

throughput proportionally to the dimension of the matrices. Moreover, our packing

scheme preserves the number and size of the cryptographic keys regardless of the matrix

size.

• We propose and evaluate various polynomial approximations for performing gradient

clipping under encryption to alleviate the problem of vanishing/exploding gradient that

is inherent to RNNs.

• We experimentally evaluate RHODE and show that:

− It scales sub-linearly with the number of features, sub-quadratically with the

hidden RNN dimension, linearly with the timesteps or the batch size, and sub-

linearly (or linearly) with the number of parties depending on the number of

samples in the dataset.
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− Its homomorphic operations and building blocks have negligible effect on the

model performance for common time-series forecasting benchmarks, with both

homogeneous and heterogeneous (imbalanced) data distribution among the par-

ties.

To the best of our knowledge, RHODE is the first system that enables the training of and predic-

tion on sequential data with RNNs in a cross-silo federated learning setting under encryption.

Our system mitigates passive federated learning inference attacks during training and pre-

serves the privacy of the parties’ data, the intermediate model/gradients communicated

through network, the querier’s evaluation data, and the final model.

Acknowledgements. This work is a result of the collaboration with Abdulrahman Diaa, Dr.

Apostolos Pyrgelis, Jean-Philippe Bossuat, and Prof. Jean-Pierre Hubaux.

5.2 RHODE Design

The system and threat model of RHODE is described in Chapter 3, Section 3.1. We present the

high-level federated learning algorithm in Chapter 1, Algorithm 1 for the collective training

and our encrypted version of it in Chapter 3, Section 3.3 in Algorithm 2. As introduced

in Chapter 3, RHODE’s training pipeline is composed of four phases: Setup Phase, Local

Computation Phase, Aggregation Phase, and Model-Update Phase; and PaaS is enabled for

the predictions to the querier. RHODE enables the training and prediction execution of RNNs

under encryption by keeping the model in encrypted form throughout the execution pipeline

of this algorithm. Hence, the local gradient computation phase requires several solutions

to the challenges introduced by RNNs. Below, we define the system-specific Local Gradient

Descent Computation that refers to Line 9 of the Algorithm 2 and also present the challenges

associated with RNN training.

Local Gradient Descent Computation: The execution of the forward and backward pass on

the parties’ local data are executed under encryption and we introduce the algorithm for a

simple many-to-many RNN with κ= T outputs in Algorithm 6 for a party Pi with its own input

data and the labels Xi and yi . We note here that configuring RHODE to support different RNN

variants in terms of architecture, such as Gated Recurrent Unit (GRU) or Long Short-Term

Memory (LSTM), requires modifications to the hidden units, e.g., to account for memory units

in LSTMs. Throughout this chapter, we consider the traditional RNN architecture that is called

simple, vanilla, or Elman RNN [90]. A detailed discussion about how to extend RHODE to

more coplex RNN architectures and an example of the Local Computation Phase for a Gated

Recurrent Unit (GRU) architecture are given in Appendix B.

We remind that the encryption of any value, vector, or matrix are denoted with bold-face, e.g.,

W, and for clarity, we omit the indices of the global iteration and the party in Algorithm 1.

x̄t is the input d-dimensional feature-vector for a specific timestep t (or a matrix of size
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Algorithm 6 Local Computation Phase (RNN)

Input: U,W,V,hpr ev , Xi = (x̄1, x̄2, · · · , x̄t ),Yi = (ȳ1, ȳ2, · · · , yt )
Output:∇U,∇W,∇V

1: h0 ← hpr ev

2: for t ← 1 : T do ▷ Forward Pass
3: zt ← ht−1 ×W+ x̄t ×U
4: ht ←ϕ(zt )
5: pt ← ht ×V
6: end for
7: hpr ev ← ht

8: dhnext = 0
9: ∇U,∇W,∇V = 0

10: for t ← T : 1 do ▷ Backward Pass
11: dy ← pt − ȳt

12: dh ← dy×VT +dhnext

13: dz ← dh⊙ϕ′(zt )
14: dhnext ← dz×WT

15: ∇V ←∇V+ht ⊗dy
16: ∇U ←∇U+ x̄t ⊗dz
17: ∇W ←∇W+ht−1 ⊗dz
18: end for

b ×d for a batch of size b, in which case the outer-vector products in the backward pass

become matrix multiplications) and yt the corresponding output(s). Recall that T denotes the

number of timesteps and U,W,V denotes the encrypted input-to-hidden, hidden-to-hidden,

and hidden-to-output weight matrices, respectively.

ϕ (ϕ′) indicates any type of activation function (and its derivative), e.g., Tanh or Sigmoid.

We denote the transpose of a matrix A as AT , the element-wise multiplication with ⊙, the

matrix or vector multiplication with ×, and the outer product with ⊗. Note that the character-

istics of RNNs incur several challenges when training them under encryption and choosing

appropriate solutions is crucial. We discuss these challenges in Section 5.2.1 and propose

several techniques and optimizations to alleviate them in Section 5.3.

5.2.1 Challenges Associated with RNN Training

We discuss the challenges, as well as several solutions, associated with the training of RNNs

in general. We also highlight how these challenges (and their solutions) further increase the

difficulty of RNN training under homomorphic encryption. Section 5.3 presents the building

blocks that RHODE employs to alleviate these challenges.

RNNs are inherently challenging to train because of their sequential operations, i.e., the com-

putations performed over the timesteps or, in other words, the dependency of each network

node on the output of its previous one. This phenomenon causes two issues when training

RNNs: (i) the training procedure is slow, complex, and hard to parallelize, and (ii) the gradients
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tend to explode (or vanish) due to long-term dependencies between timesteps; during the

execution of the back-propagation through time (BBPT) algorithm these are computed based

on numerous consecutive matrix multiplications according to the chain rule [221, 37].

To mitigate the first challenge, several works suggest accelerating RNN training through data

parallelization, i.e., via a distributed approach and/or mini-batch training [158, 252, 135]. For

example, a master-slave approach where slave machines first compute the gradients and then

a master machine aggregates them to perform the global update (Map-Reduce algorithm [71])

is commonly proposed. RHODE ensures similar efficiency to such distributed training-based

approaches, through federated learning that is, by definition, distributed and resembles the

master-slave relationship proposed for distributed RNNs. On the other hand, mini-batch

training under homomorphic encryption requires a well-suited packing scheme for efficient

matrix multiplication and transpose operations. Therefore, in Section 5.3.1, we propose a

novel multi-dimensional packing scheme that reduces the processing time of a large batch.

The second challenge of exploding or vanishing gradients is addressed in the literature by sev-

eral techniques such as the use of gating mechanisms, e.g., LSTMs [129], along with a possible

modification of the gradient propagation [152], encoder-decoder approaches [68], gradient

clipping [221], non-saturating functions [55], and various recurrent-weight initialization tech-

niques via identity or orthogonal matrix initialization [171, 125]. Extending RNNs to LSTMs as

a solution to the problem of exploding/vanishing gradients brings its own challenges, due to

the computational complexity of training LSTMs under homomorphic encryption, and we

describe a similar extension in Appendix B. Although various weight-initialization techniques

are straightforward to adopt, the most widely applied solution, i.e., gradient clipping, is not

easy to compute under encryption as it requires a comparison function that is not homo-

morphically enabled. Therefore, in Section 5.3.2, we present various approximations for the

efficient computation of an element-wise clipping function, through different polynomials.

5.3 Cryptographic Building Blocks

We detail the main cryptographic building blocks that enable the training of and prediction

on RNNs in RHODE. We describe the packing scheme and the optimized matrix operations

including the matrix-multiplication and matrix-transpose in Section 5.3.1 and the approxi-

mated neural network building blocks in Section 5.3.2. Then, we analyze RHODE’s security in

Section 5.4.1.

5.3.1 Packing and Optimized Matrix Operations

We present the packing scheme and the optimized matrix operations used for RNN training

in RHODE. Due to the use of fully homomorphic encryption, packing has a significant effect

on the training performance as through SIMD operations, it enables mini-batch training

which alleviates the inherent high training times of RNNs. In addition, matrix operations are

57



𝑏! 𝑏" 𝑏#
𝑏$ 𝑏% 𝑏&
𝑏' 𝑏( 𝑏)

𝑎( 𝑎& 𝑎!
𝑎) 𝑎$ 𝑎"
𝑎' 𝑎% 𝑎#

𝑏$ 𝑏% 𝑏&
𝑏' 𝑏( 𝑏)
𝑏! 𝑏" 𝑏#

𝑎& 𝑎! 𝑎(
𝑎$ 𝑎" 𝑎)
𝑎% 𝑎# 𝑎'

𝑏' 𝑏( 𝑏)
𝑏! 𝑏" 𝑏#
𝑏$ 𝑏% 𝑏&

𝑎! 𝑎( 𝑎&
𝑎" 𝑎) 𝑎$
𝑎# 𝑎' 𝑎%

𝑎! 𝑎( 𝑎&
𝑎$ 𝑎" 𝑎)
𝑎' 𝑎% 𝑎#

𝑏! 𝑏( 𝑏&
𝑏$ 𝑏" 𝑏)
𝑏' 𝑏% 𝑏#

𝐴

𝐵

𝐴 ⊗ 𝐵 = C

𝑎! 𝑎( 𝑎&
𝑎$ 𝑎" 𝑎)
𝑎' 𝑎% 𝑎#

𝑏! 𝑏( 𝑏&
𝑏$ 𝑏" 𝑏)
𝑏' 𝑏% 𝑏#

𝐴

𝐵

𝑐! 𝑐( 𝑐&
𝑐$ 𝑐" 𝑐)
𝑐' 𝑐% 𝑐# =

C
𝜎

𝜏

𝜙!

𝜓!

𝜙"

𝜓"

𝑐! 𝑐( 𝑐&
𝑐$ 𝑐" 𝑐)
𝑐' 𝑐% 𝑐#

C

⊗

(a) Matrix Multiplication Method of Jiang et al. [143] for n = 3.

Lane = ciphertext

Row

Co
lu

m
n

𝐴! 𝐴" 𝐴#
𝐴$ 𝐴% 𝐴&
𝐴' 𝐴( 𝐴)

𝑎* 𝑎' 𝑎(
𝑎) 𝑎$ 𝑎%
𝑎& 𝑎! 𝑎"
𝕕 = 𝑛/𝑙

𝕕 = 𝑛/𝑙

𝑝 =
𝒩ℓ(

2𝑛(
𝑛

𝑛

𝐴! 𝐴" 𝐴#
𝐴$ 𝐴% 𝐴&
𝐴' 𝐴( 𝐴)

𝑛
𝐴! 𝐴" 𝐴#
𝐴$ 𝐴% 𝐴&
𝐴' 𝐴( 𝐴)

𝐵! 𝐵" 𝐵#
𝐵$ 𝐵% 𝐵&
𝐵' 𝐵( 𝐵)

𝐶! 𝐶" 𝐶#
𝐶$ 𝐶% 𝐶&
𝐶' 𝐶( 𝐶)

𝑛

𝑛

𝑛

𝐴!+ 𝐴"+ 𝐴#+
𝐴$+ 𝐴%+ 𝐴&+
𝐴'+ 𝐴(+ 𝐴)+

𝜉

Multi-dimensional Packing Multi-dimensional Multiplication Multi-dimensional Transpose

𝑝 =
𝒩ℓ(

2𝑛(
𝑝 =

𝒩ℓ(

2𝑛(
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Figure 5.1: Schematic Overview of the (a) Matrix Multiplication Protocol by Jiang et al. [143] and (b) our
Multi-dimensional Packing Scheme.

the most heavy and frequent operations in RNNs (see Lines 2-5 and 12-17 in Algorithm 6).

Thus, optimizations of the packing scheme and matrix operations such as multiplication

or transpose, are crucial for RHODE’s efficient training execution. In this work, we rely on a

row-based packing approach where matrices are decomposed row-wise and packed in one

plaintext and we use Jiang et al.’s [143] approach as a baseline for the matrix operations. On

top of these matrix operations and row-based packing, we propose and implement a novel

multi-dimensional packing scheme that relies on block matrices1 and the matrix operations

that are described below, for further optimizations.

Matrix Multiplication. The typical methods for matrix multiplication in fully homomorphic

encryption [120, 203] do not preserve the structure of the matrix in the plaintext slots, i.e., the

shape of the computation output is different than that of the inputs, or one of the matrices is

encoded in diagonal form. This prevents efficient chaining of matrix operations since after

each multiplication an expensive linear transformation is required to convert the output back

to an encoding compatible with further operations.

Jiang et al. propose a method for matrix multiplication that preserves the format of row-

encoded matrices, enabling the efficient chaining of an arbitrary number of matrix opera-

tions [143]. With their approach, a matrix multiplication consumes 3 levels per multiplication

(2 if one matrix is in plaintext) due to 2 linear transformations and 1 dot product. However,

it enables the packing of multiple matrices in a single ciphertext (assuming the number of

entries of the matrix is smaller than N /2) and to operate on them in a SIMD manner, which

increases efficiency and compensates for the level consumption. This feature yields a favor-

1Block matrix is a matrix defined by sub-matrices, called blocks, which enable matrix operations in parallel.
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able balance between computation runtime and level consumption for RNN computations.

We now describe this format-preserving method for matrix multiplication that is illustrated

in Figure 5.1a. Given A and B , matrices of size n ×n, the multiplication C = A ⊗B can be

evaluated under encryption as the scalar product C = 〈Ã, B̃〉, where Ã and B̃ are size-n vectors

of permutations of A and B, respectively (or permutations of the original matrices A and B).

These permutations are represented by the linear transformationsσ (cyclic rotation of all rows,

where the i -th row is rotated by i positions), τ (cyclic rotation of all columns, where the i -th

column is rotated by i positions), φi (cyclic rotation of all rows by i positions) and ψi (cyclic

rotation of all columns by i positions). For example, if A and B are two 4×4 matrices, then

Ã = {φ0(σ(A)),φ1(σ(A)),φ2(σ(A)),φ3(σ(A))} and B̃ = {ψ0(τ(B)),ψ1(τ(B)),ψ2(τ(B)),ψ3(τ(B))},

and C = 〈Ã, B̃〉. The linear transformations σ, τ, φi and ψi are computationally cheap as they

can be efficiently parallelized and evaluated with O (n), O (n), O (1), O (1) homomorphic rota-

tions, respectively. Hence, the matrix multiplication method of Jiang et al. has a complexity of

O (n) rotations for two n ×n matrices. This is smaller than previous approaches, such as the

naive approach with O (n3) or the one proposed by Halevi and Shoup [120] with O (n2).

Matrix Transpose. Another operation required for RNN training is matrix transpose, as

described in Algorithm 6 (Lines 12 and 14). The transpose of a row-packed matrix is straight-

forward and can be realized with a single linear transform of 2n non-zero diagonals [143]

(ξ), hence, it can be evaluated with 2n rotations. This cost can be further reduced to 3
p

n by

using the baby-step giant-step (BSGS) algorithm proposed by Halevi and Shoup [120] and

later improved by Bossuat et al. [46]. Thus, the cost of a matrix transpose operation is O (
p

n)

for a n ×n matrix.

Multi-dimensional Packing. We propose a novel packing scheme called multi-dimensional

packing to optimize the usage of ciphertext slots, which we illustrate in Figure 5.1b. Given an

n ×n matrix and ℓ a divisor of n, we split this matrix into ℓ2 smaller matrices of size d×d,

with d= n
ℓ . Each of these d×d-size matrices is stored in a different ciphertext, and we pack in

parallel up to p = N
2 · ℓ2

n2 block matrices of size n ×n in a set of ℓ2 ciphertexts. This packing

scheme brings several advantages over the plain row-packing approach by Jiang et al: (i) it

enables a more efficient packing of non-square matrices with a worst case of extra space used

reduced from n(n −1) to n
ℓ ( n

ℓ −1), (ii) it provides a better amortized multiplication complexity

as it packs up to N
2 · ℓ2

n2 matrices (instead of N
2n2 ) in parallel with O (nℓ) complexity for the mul-

tiplication, but amortizes to O (n/ℓ) per matrix (instead of O (n)), (iii) it reduces the complexity

of the transpose operation from O (
p

n) to O (
p

n/ℓ) (only the ξ permutation needs to be evalu-

ated on the sub-matrices and permutations between ciphertexts are free), and (iv) it enables

more efficient matrix slot manipulations as rows of sub-matrices can be individually moved

and/or rotated. We further minimize the number of redundant homomorphic operations by

leveraging the techniques used in the double-hoisting baby-step giant-step algorithm [46] to

evaluate linear transforms and delay ciphertext relinearization, further reducing the complex-

ity. We describe the protocol for multi-dimensional matrix multiplication in Algorithm 7. We

also present guidelines for configuring d and other cryptographic parameters in Section 5.4.
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RHODE employs the multi-dimensional packing for efficient mini-batch RNN training under

encryption. In particular, we distribute the RNN input batch along the “third" dimension (see

Figure 5.1b), by expressing the batch as p parallel matrices (as if computing an ensemble of p

parallel RNNs). We can increase the batch size (up to p∗n/ℓ) at no additional cost as it fits into

the same ciphertext. To enable further operations, i.e., to make the input batch compatible

with the weight matrices, we replicate the latter across the third dimension, so that they are

aligned with their parallel slices from the input batch. The computation of the forward and

backward passes for all the timesteps per iteration results in a parallel slicing of the gradients

across the third dimension. These gradients are then aggregated (with log(p) rotations to

perform an inner sum operation), to ensure consistency among the parallel instances. Note

that for batches that fit into one ciphertext, our multi-dimensional packing is equivalent to

an optimized version (via block-matrices) of Jiang et al.’s [143] approach. However, for bigger

matrix dimensions, where the matrix is split over more than one ciphertext, multi-dimensional

packing yields better amortized matrix multiplication cost (see Section 5.5.6).

5.3.2 Approximated Neural Network Building Blocks

To compute any non-linear activation or clipping function under CKKS encryption, RHODE

relies on polynomial approximations employing the least-squares or Minimax methods. The

least-squares method finds the optimal polynomial that minimizes the squared error between

the real function and its approximation over an interval, whereas Minimax minimizes the

corresponding maximum error. Admittedly, the maximum error with Minimax decreases as

the approximation degree (p) increases or as the range of the interval shrinks. However, note

that with larger p, the polynomial evaluation becomes more expensive (with a scale of O(log(p))

and smaller interval ranges are not always possible due to the need of accommodating the

range of the recurrent neural network outputs. We remark that choosing p and the interval of

approximations is a non-trivial task under privacy constraints. Yet, these can be determined

by synthetic datasets or based on data distribution-based heuristics such as computing the

minimum, the maximum, and the mean of feature vector means per dataset [126].

Activation Functions. A neural network is a pipeline of layers composed of neurons on which

linear and non-linear transformations (activations) are applied to activate them. Typical

activation functions include Sigmoid (ϕ(x) = 1
1+e−x ), ReLU (ϕ(x) =max(0, x)), Tanh (ϕ(x) =

ex−e−x

ex+e−x ), etc., that are not computable under encryption as they comprise non-linear opera-

tions (e.g., comparison and exponentiation). To overcome this issue, previous works either

change the activation functions to other linear or square functions [35, 112], or rely on vari-

ous approximation techniques employing the least-squares method [102, 244], polynomial

splines [184], Legendre [126] or Chebyshev polynomials [200, 126]. For RNNs, the choice of

activation function is critical due to exploding gradients problem (i.e., the function should

be bounded) and commonly used functions are Tanh and ReLU (that can approximated as

SoftPlus, i.e., ϕ(x) =l n(1+ex ) [244]). Thus, similar to prior work, we rely on polynomial ap-

proximations employing the least-squares or Minimax methods to enable the execution of

these activation functions as we empirically observed that changing them to linear functions
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decreases the accuracy of RNNs.

Gradient Clipping. As described in Section 5.2.1, when the weights have a large norm, the

gradients accumulated over multiple steps of the BBPT algorithm can grow exponentially;

gradient clipping is a well-established technique to mitigate this issue. Thus, in RHODE, the

aggregation server applies gradient clipping during the Model Update Phase (see Section 5.2).

Pascanu et al. [221] propose clipping the gradients based on their infinity-norm, yet applying

directly their function under encryption is challenging due to the norm calculation that

comprises comparison operations. Thus, inspired from their norm-clipping, we propose a

gradient clipping strategy that restricts the infinity-norm of the gradients to a closed interval

whose limits are defined by a threshold |m|. To avoid the calculation of the norm under

encryption, we apply the following function element-wise to the accumulated gradient vector

x:

Clip(x,m) =


−m x ≤−m

x −m < x < m

m x ≥ m

Clip(x,m) is a baseline as this function is also difficult to practically approximate due to its

non-smoothness near the clipping interval limits [−m,m]. Therefore, we introduce two softer

approximations for clipping gradients. The first one is based on Tanh, which is very similar to

Clip except for the clipping interval limits −m and m:

TanhClip(x,m) = m ∗ t anh
( x

m

)
The second one is based on ReLU, i.e., Clip(x,m) = x +ReLU(−(x +m))−ReLU(x −m). Since

RHODE softly approximates the ReLU function with SoftPlus, SoftClip is defined accordingly

as SoftClip(x,m) = x +SoftPlus(−(x +m))−SoftPlus(x −m), or:

SoftClip(x,m) = x + ln
1+e−(x+m)

1+e(x−m)

Overall, RHODE enables the approximated execution of both TanhClip and SoftClip with these

polynomial approximations. We evaluate the performance of both clipping approximations

and provide the plots of the approximated curves (by using Minimax) and their errors for

polynomial degrees of p = 5 and p = 15 in Appendix D.3. We observe that both functions

achieve a similar average error over the approximation interval, yet SoftClip is slightly better

than TanhClip for higher degrees (Figures D.1c and D.1d) in terms of error and behavior around

the limits of the approximation interval.
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Algorithm 7 Multi-dimensional Matrix Multiplication

Inputs: A, B two ℓ×ℓ matrices of ciphertexts, each encrypting a sub-matrix of dimension
(n/ℓ)× (n/ℓ), the linear transformations σ, τ, φi and ψi (see Section 5.3.1 and Figure 5.1a).

Outputs: C ← A⊗B
1: for i = 1 → ℓ do
2: for j = 1 → ℓ do
3: z ←σ(Bi , j ) ▷ Depth 1
4: bi , j ← {φ0(z), . . . ,φn/ℓ−1(z)} ▷ Depth 1
5: end for
6: end for
7: for i = 1 → ℓ do
8: for j = 1 → ℓ do
9: z ← τ(Ai , j ) ▷ Depth 1

10: a ← {ψ0(z), . . . ,ψn/ℓ−1(z)} ▷ Depth 1
11: for k = 1 → ℓ do
12: Ci ,k ← Ci ,k +〈a,bi , j 〉 ▷ Depth 1
13: end for
14: end for
15: end for

5.4 Parameter Selection

We now devise guidelines for choosing the parameters that play a vital role for the efficient

RNN training execution in RHODE. In particular, we discuss how to select the cryptographic

parameters and the sub-matrix dimension d = n/ℓ (see Section 5.3.1) that is crucial for

the efficiency of the multi-dimensional matrix multiplication (Algorithm 7). RNN-related

parameters, e.g., the dimension of the hidden matrix, depend on the learning task and the

characteristics of the input data, thus, their configuration is out-of-the-scope of this work.

Cryptographic Parameters. These are linked to the depth of the circuit under evaluation

and the desired security level. The circuit depth highly depends on the number of hidden

layers and the approximation degree (p) of the activation and clipping functions. A higher

circuit depth implies a higher number of initial levels L and Q, for reducing the number of

DBootstrap(·) yielding a requirement for bigger cryptographic parameters. To configure the

security level, RHODE follows the guidelines of the homomorphic encryption standardization

whitepaper for choosing the cyclotomic ring size N (given the ciphertext modulus Q) [26].

Configuring the cryptographic parameters for the training of neural networks in general is

a non-trivial task due to the high number of other parameters that affect their choice, e.g.,

the number of layers, the polynomial approximation degree, the number of data holders,

etc. We refer the reader to [244] for additional details on how to configure the cryptographic

parameters based on other neural network learning parameters and to [209] for an overview

of the cryptographic parameters.

Choosingd. Recall that the complexity of the matrix multiplication described in Algorithm 7

amortizes to O (d). In the extreme case where d= 1, there are no costly ciphertext operations,
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except for arithmetic multiplications and additions (no linear transformations are needed).

Thus, choosing d = 1 minimizes the amortized computational complexity and supports

any dimension for the input matrices. However, the memory complexity (in the number of

ciphertexts) becomes the number of elements in the input matrices. Since batch sizes are

usually in the range {64,128,256}, it is unlikely that all the N /2 ciphertext slots will be used

when setting d= 1. In fact, since the number of slots is usually in the range of {213,214,215},

this approach would lead to a very low packing density and inefficient memory usage. Instead,

we choose a value for d that provides an acceptable trade-off between computational cost

and memory complexity. To maximize the packing density, the batch size should be b = N
2∗d ,

thus we can derive that d= N
2∗b . Since the batch size can be small due the learning task, we

introduce the ciphertext-utilization parameter α that indicates the fraction of the utilized

ciphertext slots, to relax the utilization assumption (e.g., α= 1 and α= 0.5 indicate full and

half utilization, respectively). Given that the batch size cannot be more than maxB and that

the ciphertext utilization is at least α we have that:

N ∗α
2∗d ≤ b ≤ maxB

which translates to:

d≥ N ∗α
2∗maxB

.

For example, in our experiments (see Section 5.5), we choose N = 214. Thus, for a full

ciphertext utilization (α= 1) at b = 256, we have that:

d≥ 214

2∗256
= 32.

For a ciphertext utilization of α= 0.5, the batch size can be as small as b = 128 at the same

d= 32, following a similar calculation.

5.4.1 Security Analysis

We demonstrate that RHODE fulfills the data and model confidentiality objectives (Chapter 3,

Section 3.2) by arguing that a computationally-bounded adversary that controls up to N −1

parties (i.e., yielding a collusion among N −1 parties) cannot infer any information about the

honest party’s data or the trained model. We first note that CKKS scheme is IND-CPA secure

and its semantic security is based on the hardness of the decisional RLWE problem [62, 193,

181]. We rely on the proofs by Mouchet et al. [209], which show that the MHE cryptographic

protocols, i.e., DKeyGen(·) and DKeySwitch(·), are secure in a passive-adversary model with

up to N −1 collusions as long as the underlying RLWE problem is hard. While their proofs

are constructed for the BFV scheme, they generalize to CKKS, since the two schemes rely

on the same computational assumptions and hard problem. The security of the collective
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bootstrapping operation, i.e., DBootstrap(·), is proven analogously in Chapter 4.

Assume that any ciphertext communicated with RHODE is generated using the CKKS cryp-

tosystem parameterized to ensure a post-quantum security level of λ. We rely on the real/ideal

world simulation paradigm [180] and consider a real-world simulator S that simulates a

computationally-bounded adversary corrupting N −1 parties. During RHODE ’s training pro-

tocol, the model parameters that are exchanged among parties at the Aggregate and Model

Update Phases are encrypted with the collective public key, while all other phases rely on the

collective MHE operations that are proven to be CPA-secure. The result of any computation

performed during the Local Computation Phase, following Lemmas 2, 3, and 4 of [62], is

a valid encryption under CKKS, thus, achieves a security level of λ. Furthermore, the de-

cryption of any ciphertext requires collaboration among all the parties that participated in

DKeyGen(·). To avoid leakage due to two consecutive broadcasts, we rely on an existing coun-

termeasure [209] that re-randomizes any ciphertext before communicating it to the network.

As a result, the sequential composition of all cryptographic computations during the training

phase of RHODE remains simulatable by S . Similarly, during RHODE’s prediction phase, the

data of the querier is encrypted with the collective public key and the prediction result is

re-encrypted with the querier’s public key; this is the only entity that can decrypt thanks to the

simulatable DKeySwitch(·) functionality. Hence, S can simulate all of the encryptions com-

municated during RHODE’s training and prediction phase by generating random ciphertexts

with equivalent security parameters; the real outputs cannot be distinguished from the ideal

ones. Consequently, RHODE protects the confidentiality of the honest party’s data and the

model (following analogous arguments).

5.5 System Evaluation

We first summarize the theoretical complexity of RHODE in Section 5.5.1 before empirically

evaluating it. We present our experimental setup in Section 5.5.2 and evaluate RHODE’s model

performance, scalability with different RNN and dataset parameters, runtime performance,

and provide various microbenchmarks in Sections 5.5.3, 5.5.4, 5.5.5, and 5.5.6, respectively.

5.5.1 Complexity Analysis

We theoretically analyze RHODE’s complexity by taking into account the memory usage per

data holder, as well as its communication and computational costs for an Elman network

(Algorithm 6). We first derive the total number of ciphertexts required which allows us to

estimate the memory usage per data holder. Then, we use the number of ciphertexts to

analyze the communication and computation cost of the training process by accounting for

the Local Computation, Aggregate, and Model-Update Phases. We exclude the Setup Phase,

i.e., the generation of the cryptographic keys (pk, [ek], etc.) and their memory costs from our

analysis; this is a one-time phase whose communication cost predominantly depends on the

generation of the rotation and relinearization keys (see [209] for details). For example, the
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generation of the rotation keys take 75% of the Setup Phase and the number of rotation keys

depends on the application (the parameters of the RNN).

Recall that the number of ciphertext slots is N /2, the input size (number of features) is

denoted as d , the batch size as b, the hidden dimension as h, the sub-matrix dimension as d,

the output size as o, and the number of data holders, local iterations, global iterations, and

timesteps as N , l , e, and T , respectively. The maximum size of a ciphertext is denoted by s.

To ease the presentation of our complexity analysis we use the following configuration as an

example:

Example Configuration: Assume a ring size of N = 214 and ciphertexts with an initial level

L = 10. Then, assume that d = 16, b = 256, h = 32,d= 32, κ= 1 (many-to-one RNN), and o = 1

(i.e., a regression task). Finally, assume a degree 7 (p= 7) polynomial approximation of the

activation and clipping functions (these are parameters primarily used in our experiments).

Memory Cost. We estimate the memory usage per data holder based on the number of input

plaintexts, activation ciphertexts (e.g., ht in Algorithm 6), weight ciphertexts (e.g., U,V,W),

and gradient ciphertexts (e.g., ∇U,∇W,∇V). We denote the number of plaintexts used to pack

a vector/matrix a as |a|, and the number of ciphertexts with bold-face a. We first calculate the

number of matrix rows/columns that each ciphertext can pack. Since we rely on row-based

packing, the number of matrix rows per ciphertext is ⌊ N
2∗d⌋ and the number of columns per

ciphertext is d, for any matrix size. As we split the input batch over the third dimension (i.e.,

the size of a ciphertext), the number of sub-matrix rows per ciphertext is ⌈ b
(N /2)/d⌉ = ⌈2∗d∗b

N ⌉
and the number of sub-matrix columns is ⌈ c

d
⌉, for any column of size c. These allow us to

derive the total number of plaintexts required for the input batch and activation ciphertexts

as:

|xt | = ⌈2∗d∗b

N
⌉∗⌈d

d
⌉ (input plaintexts)

|zt | = |ht | = ⌈2∗d∗b

N
⌉∗⌈h

d
⌉ (hidden ciphertexts)

|pt | = ⌈2∗d∗b

N
⌉∗⌈ o

d
⌉ (output ciphertexts)

As we replicate the weight matrices for the sub-matrix operations (see Section 5.3.1), for an

n×m weight matrix, the number of sub-matrix rows and columns per weight ciphertext is ⌈n
d
⌉

and ⌈m
d
⌉, respectively. Therefore, the total number of ciphertexts for the weight matrices are:

|U| = ⌈d

d
⌉∗⌈h

d
⌉ (input-weight ciphertexts)

|W| = ⌈h

d
⌉∗⌈h

d
⌉ (hidden-weight ciphertexts)

|V| = ⌈h

d
⌉∗⌈ o

d
⌉ (output-weight ciphertexts)

65



Finally, the number of gradient ciphertexts per weight matrix is the same as the number

of ciphertexts for the respective activation or weight matrix. The number of plaintexts and

ciphertexts sets an upper bound to the memory cost per data holder, per timestep execution.

Yet, not all computed values need to be stored during the training. For example, when the

activation function is Tanh, dh⊙ϕ′(zt ) (Line 14, Algorithm 6) is equivalent to dh⊙ (1−h2
t )

as the derivative of Tanh(x) is 1−Tanh2(x). Thus, zt is computed on-the-fly in the forward

pass, and then discarded as it is not used in the backward one. For the Example Configuration,

RHODE requires only one ciphertext for each activation, weight, and gradient matrix.

Communication Cost. The number of ciphertexts storing the weight matrices has a direct

impact on RHODE’s communication cost. During RNN training, communication among the

data holders is triggered by: (a) the collective bootstrapping (CBootstrap(·)) operation to

refresh the ciphertexts, and (b) the federated learning workflow, where data holders aggregate

their locally computed gradients (i.e., Aggregate Phase) before the aggregation server updates

the global model and broadcasts it (i.e., Model-Update Phase).

Collective Bootstrapping. The total number of bootstrapping operations depends on both

the learning and the cryptographic parameters. For instance, the approximation degree of

the activation or clipping functions (p) and the polynomial ring dimension (N ) have a direct

effect on the depth of the circuit and thus, the number of bootstraps. We refer the reader

to [244] for the detailed estimation of the number of bootstraps depending on the learning

and the cryptographic parameters. For the Example Configuration, RHODE bootstraps ht (Line

5) and dz (Line 14) in the forward pass of each local timestep iteration (Algorithm 6). After the

execution of all timesteps, the intermediate term I = ht ⊗dy (Line 16) in the backward pass is

bootstrapped in the output stage, i.e., RHODE executes one bootstrap for a one/many-to-one

RNN structure andκ bootstraps for one/many-to-many structures on I where |I| = |dz|. RHODE

also bootstraps the weight ciphertexts U, V, and W, after the Model-Update Phase to refresh

them before the next training round. Thus, the communication cost due to the collective

bootstrapping operation (BSc ) is:

BSc < e(|U|+ |W|+ |V|+ l |I|κ+T l (|ht|+ |dz|))(N −1)s.

Recall that s sets an upper bound for the sent/received messages; the communication cost of

the bootstrapping is lower in practise. For the Example Configuration BSc = (4+2T )(N −1)s

per local iteration.

Federated Learning (FL) Workflow. During a global training iteration, the data holders collec-

tively aggregate their locally computed gradients (i.e., ∇U, ∇W, ∇V, see Line 8, Algorithm 1)

and the aggregation server updates the global model and broadcasts its weights (i.e., U, W,

V, Line 4, Algorithm 1). In RHODE, data holders are organized in a tree-structured network

topology, thus, they collectively aggregate their gradients by sending them to their parent in

the tree. Then, the aggregation server broadcasts the updated weights down the tree. Given
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that this communication is incurred for every global iteration, the total communication cost

(F Lc ) is:

F Lc = (|∇U|+ |∇W|+ |∇V|+ |U|+ |W|+ |V|)e(N −1)s.

Computational Cost. We estimate RHODE’s computational cost per data holder and per local

iteration taking into consideration the dominating terms, i.e., the number of CBootstrap(·)
operations (which are ∼ 2 orders of magnitude slower than a homomorphic addition/multipli-

cation), the degree p, and the cost of the linear transformations (i.e., σ, τ, ψi and φi ) required

for the matrix multiplication. Note that bootstrapping a ciphertext at a level Lc (with an

initial level L ) has a complexity of C (BS) =N log2(N )(L +1)+N log2(N )(Lc +1), homo-

morphic rotations have a complexity of C (R) =O (N log2(N )L 2
c ), and ciphertext-ciphertext

multiplications have a complexity of C (M) = 4N (Lc +1)+C (R) [244].

The degree (p) of the polynomial approximation affects the depth of the circuit required for an

activation function; computing ϕ (or its derivative ϕ′) consumes ⌈log2(p)⌉ (⌈log2(p−1)⌉, re-

spectively) levels. Thus, using a higher p for polynomial approximation has two consequences

to the computational cost: (i) it increases the depth of the circuit, hence the number of boot-

straps, and (ii) results in more homomorphic multiplications. As discussed in Section 5.3.1,

the multi-dimensional matrix multiplication (Algorithm 7) consumes 3 levels and yields an

amortized cost of O (d) rotations per matrix (depending on d, see Section 5.4). The Example

Configuration requires 6 matrix multiplications per timestep (8 for the output-stage timestep

due to the multiplications with V and VT which adds a constant factor to the complexity), thus

yielding a computation complexity of O (6Td) rotations for a local iteration of T timesteps and

per ciphertext. Note that the matrix multiplication complexity predominantly comes from the

linear transformations; the rest of the algorithm comprises only multiplications and additions,

which are negligible in comparison. RHODE’s RNN training protocol requires several multipli-

cations with the weight matrices (W,U,V) and their transposes (VT ,WT ). As these matrices

are not updated through the local iteration of each timestep, we can pre-compute their linear

transformations at the beginning of each iteration and re-use them for all timesteps. For the

Example Configuration, this reduces the cost to O (6d) per local iteration, at a memory cost of

× per matrix.

5.5.2 Experimental Setup

We now present our implementation details and the datasets used for RHODE’s model perfor-

mance evaluation. We describe the data distribution, the RNN configuration, and the security

parameters.

Implementation Details. We implement RHODE in Go [7] and employ the Lattigo [200] lattice-

based HE library for the multiparty homomorphic operations. We rely on Onet [5] to build

a decentralized system where the parties communicate over TCP with secure channels and

Mininet [201] to emulate a virtual network. Our experiments are performed on 10 Linux
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servers with Intel Xeon E5-2680 v3 CPUs running at 2.5GHz with 24 threads on 12 cores and

256 GB RAM emulating a virtual network with an average network delay of 20ms and 1Gbps

bandwidth.

Datasets and Tasks. We employ the Hourly Energy Consumption (HEC) [132], Stock Prices

(Stock) [261], and Inflation datasets [79], for time-series forecasting tasks. HEC contains the

hourly energy consumption of several electricity distribution companies during a specific time

period [132]. The forecasting task is to use early sequences of energy consumption and predict

the future value for sequences of length T . The Stock dataset contains historical daily stock

statistics for 10 companies and varying dates [261]. The task on this dataset is to predict the

average open-high-low-closing (OHLC) price of the next day, given the OHLC of the previous

T days. The Inflation dataset contains quarterly inflation rates from 40 different countries and

the task is to predict the inflation rate of the next quarter given the data of previous T quarters.

We also employ the Breast Cancer Wisconsin dataset (BCW) [236] that contains benign and

malignant breast cancer samples for classification. More details about these datasets can be

found in Appendix D.1. For each experimental setting, we split the dataset into training (80%)

and test (20%) sets. For the RHODE’s scalability and microbenchmark experiments, we use

synthetic datasets.

Dataset Distribution. For the model performance experiments (Section 5.5.3), we split the

data among N = 10 parties and evaluate two different settings: (i) Even (E) distribution,

where we uniformly distribute the dataset samples to the N parties, and (ii) Imbalanced (I)

distribution where we simulate a heterogeneous setting, with each party having one dataset

file (see Appendix D.1), e.g., for the Stock dataset, a party might be Apple Inc. contributing the

stock prices of only Apple. We annotate the results per setting as "DatasetName-TypeT" where

Type denotes the type of the data distribution, and T the sequence length T , e.g., HEC-I10,

denotes imbalanced data distribution and a sequence length of T = 10 on the HEC dataset.

RNN Configuration. For the HEC and Stocks model performance experiments, we use an

Elman network with a local batch size of b=256, a hidden dimension of h=32, a learning rate

of η=0.1, and varying timesteps T=[5−20], and we train the RNN for e=1,000 and e=300

global iterations, resp. For the Inflation dataset, we employ a Jordan network that is widely

used for financial forecasting tasks [312, 207, 311, 122, 137, 88] with parameters b=128, h=16,

η=0.1, T=8, and e=500. For BCW, we evaluate an Elman network used for breast cancer

classification [306, 72, 263, 210] with b=32, h=64, η=0.2, T=9, and e=400. For all experiments,

the data holders perform one local iteration and we use the same approximation parameters:

SoftClip(x,m) with a clipping threshold of |m|=5, approximated with a p=7 polynomial over

the interval [−60,60] as a result of a preliminary evaluations on the datasets. To expedite

the model performance experiments (Section 5.5.3), we simulate RHODE’s fully-encrypted

training pipeline in plaintext by using the approximated activation and clipping functions,

and a fixed-precision.

Security Parameters. Unless otherwise stated, we set the degree of the cyclotomic polynomial
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Dataset
Model Performance (MAE | R2 or Acc.)

L C FL RHODE

Stock-E5 0.023 | 0.966 0.008 | 0.996 0.020 | 0.982 0.017 | 0.987
Stock-I5 0.024 | 0.976 0.008 | 0.996 0.012 | 0.992 0.012 | 0.992

HEC-E10 0.066 | 0.749 0.014 | 0.987 0.024 | 0.965 0.026 | 0.957
HEC-I10 0.081 | 0.625 0.014 | 0.987 0.025 | 0.962 0.027 | 0.955

HEC-E20 0.066 | 0.749 0.014 | 0.986 0.024 | 0.964 0.026 | 0.957
HEC-I20 0.081 | 0.626 0.014 | 0.986 0.025 | 0.962 0.027 | 0.954

Inflation-E8 0.067 | 0.778 0.067 | 0.775 0.067 | 0.774 0.067 | 0.771
Inflation-I8 0.103 | 0.579 0.066 | 0.777 0.066 | 0.777 0.067 | 0.770

BCW-E9 0.888 0.936 0.936 0.929
BCW-I9 0.880 0.936 0.900 0.914

Table 5.1: RHODE’s model performance in various settings where the Stock and HEC datasets are split
among N = 10 parties. The performance is compared to three baselines: local training without collabora-
tion (L), centralized (C), and federated learning (FL).

to N = 214 and the modulus of the keys to Q ≈ 2438. These parameters yield 128-bit security

according to the homomorphic encryption standard [27]. We set the plaintext scale to 231, and

the initial ciphertext level is L = 9.

5.5.3 Model Performance

Table 5.1 shows RHODE’s model performance results on the HEC and Stock datasets in various

settings. For each setting, we report the mean absolute error (MAE) and R2-scores for forecast-

ing tasks and accuracy (Acc) for the classification one. For comparison, the table displays the

performance of three baselines: (a) L stands for local training, where each party trains its own

local model with the original network (original activation functions and clipping), i.e., without

taking advantage of the other parties’ inputs, (b) C stands for centralized training, where all the

data is collected to a central server and trained with the original network (original activation

functions and clipping), and (c) FL stands for a cross-silo federated learning approach, where

the data is distributed among 10 parties and the learning is performed without any privacy

mechanism. The last column shows the performance of RHODE for privacy-preserving feder-

ated learning training. The baseline column L shows the performance gain of collaborative

training (note that we report the MAE and R2 averaged across the 10 parties). Whereas, the

baselines C and FL enable us to evaluate RHODE’s performance loss due to collective learning,

the approximation of the activation/clipping functions, and the encryption.

In all settings, we observe that RHODE achieves a model performance comparable to non-

private baselines, e.g., at most 0.03 difference in R2-score compared to a centralized solution,

and at most 0.01 from a federated learning (FL) approach and at most 1% accuracy difference

for the classification task. We also observe that there is always a performance gain, compared
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Figure 5.2: RHODE’s training execution times for computation and communication for one global
iteration with increasing (a) number of features, (b) hidden dimension, (c) timesteps, (d) batch size, and
(e) number of parties. The default network parameters are h = d = T = 4,b = 256,d= 32 (we vary one
of them in the corresponding experiment while keeping the others fixed), and the number of parties is
N = 10.

to L (except for the even distribution of the Inflation dataset where the local data already

captures the global insights). For instance, the gain in terms of R2-score for the Stock dataset is

between 0.01−0.02, whereas it is between 0.21−0.33 for the more complex HEC dataset. More

importantly, for an imbalanced distribution, i.e., HEC-I10 or HEC-I20, the gain from collabo-

rative learning is more substantial (∼ 0.33 increase in R2-score). We observe a similar trend

on the MAE, justifying the use of privacy-preserving collaborative learning over local training

without collaboration. Similarly, RHODE yields a ∼3% accuracy gain on BCW compared to L.

5.5.4 Scalability Analysis

We evaluate RHODE’s scalability by employing synthetic datasets on which we vary the number

of features (d), the hidden dimension (h), the timesteps (T ), and the batch size (b), and by

experimenting with the number of parties (N ). Our default network parameters are h = d =
T = 4 and b = 256, d= 32, the number of data providers is N = 10, and we vary the parameter

under analysis. The calculated runtime includes average per-party Local Computation, as

well as the Aggregate, and Model-Update Phases. Figure 5.2 shows the time spent by RHODE

(and its optimized version with pre-computed linear transforms, described in Section 5.5.1)

on computation and on communication during a global iteration. The communication

indicates the total time spent for the collective bootstrapping operations (DBootstrap(·)) and

the collective aggregation. Overall, we observe that the optimized computation is always more
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Runtime (s)

Structure
(b,d ,h,T ) Training Training (Opt) Prediction Prediction (Opt)

(256, 4, 32, 4) 72.65 56.68 27.61 18.10
(256, 32, 32, 4) 73.66 57.94 28.06 18.55
(256, 64, 32, 4) 80.48 59.63 31.04 20.53
(256, 4, 16, 4) 74.56 51.45 29.28 15.50
(256, 4, 32, 4) 74.19 53.04 71.92 16.31
(256, 4, 64, 4) 178.01 118.17 225.34 56.41

Table 5.2: RHODE’s training and prediction runtime (including communication) for several many-to-one
RNN architectures with N = 10 parties. Training runtimes are for one global iteration and Prediction
runtimes are for oblivious predictions (both the data and the model are encrypted) on 256 samples. Opt
stands for optimized execution.

efficient in terms of runtime at a memory cost of 32× more ciphertexts per weight matrix (see

Section 5.5.1). Moreover, Figures 5.2a, 5.2b and 5.2d demonstrate that RHODE’s computation

time remains constant, with increasing the respective parameters {d ,h,b} when d ,h,b <d.

This is due to the SIMD operation support by the HE scheme; as for these settings the number

of matrix entries fit into one ciphertext, RHODE enables processing larger batches (more

samples) or larger networks at zero additional cost.

In more detail, Figure 5.2a shows that RHODE scales sub-linearly with d and that the effect of

increasing d is almost negligible in runtime. This is because each party’s data remains in clear

form through the training and the plaintext operations are negligible, compared to ciphertext

ones. Increasing d has a direct effect on the matrix multiplication (xt ×U) of the first layer, as xt

is a plaintext whose size depends on d . As a result, the effect of increasing d is not observable;

the ciphertext multiplications, i.e., ht−1 ×W, dominate the runtime. The communication

overhead also scales sub-linearly; increasing d increases the number of ciphertexts to be

bootstrapped (see Section 5.5.1). Figure 5.2b shows that RHODE scales sub-quadratically, with

increasing h whend= 32; while increasing h quadratically increases the number of ciphertexts

for the weight matrix W, this affects the runtime of a few matrix multiplications only (see

Section 5.5.1). This trend holds also for the communication due to an increased number

of ciphertexts that are bootstrapped by the aggregation server for W. Figures 5.2c and 5.2d

demonstrate that RHODE’s runtime scales linearly with increasing T or b; this is due to the

sequential operations over the T timesteps or the linear increase in the number of ciphertexts

processed when increasing b. Finally, Figure 5.2e shows that RHODE’s local computation time

remains constant with increasing number of parties, as the local computations per party are

performed in parallel. The communication overhead increases linearly with increasing N , as

more parties are involved in the interactive protocols, i.e., the DBootstrap(·) and the Aggregate

Phase.
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Dimension Jiang et al. [143] POSEIDON [244] Multi-dimensional (d= 32)

n ×n Total | Amortized (s) #M logN Total | Amortized (s) #M logN Total | Amortized (s) #M logN

32×32 0.43 | 0.05 8 14 6.14 | 6.14 1 14 0.43 | 0.05 8 14
64×64 0.82 | 0.41 2 14 14.02 | 14.02 1 14 1.70 | 0.21 8 14

128×128 2.86 | 2.86 1 15 69.25 | 69.25 1 15 7.16 | 0.89 8 14
256×256 NA 1 17 NA 1 17 30.6 | 3.82 8 14
512×512 NA 1 19 NA 1 17 79.17 | 9.89 8 14

Table 5.3: Comparison between RHODE’s multi-dimensional packing to Jiang et al.’s [143] and POSEI-
DON [244] (Chapter 4) packing approaches. We report the total and amortized runtime per matrix for the
multiplication of #M matrices of size n ×n. logN is the ring degree, and NA indicates that the memory
was insufficient to carry out the evaluation.

5.5.5 Runtime Performance

Table 5.2 displays RHODE’s training and prediction runtimes (for the original and optimized

implementations) for various many-to-one RNN architectures with N = 10 parties. The Train-

ing runtime is for one global iteration (including the communication for DBootstrap(·) and

Aggregate Phase). The Prediction runtime is for oblivious predictions (both data and model

are encrypted) on a batch of 256 samples (including the communication for DKeySwitch(·)
that changes the key of the prediction result to the querier’s public key). The results of this

table can be used along with the scalability results of Section 5.5.4 to estimate RHODE’s total

training runtime for various RNN structures. For instance, RHODE can process 256K samples

split among 10 parties with an RNN with b = 256,d = 4,h = 32,T = 4 (first table row), over

100 global iterations, in ∼ 1.5 (∼ 2) hours with its optimized (non-optimized, respectively)

implementation. Moreover, as the Prediction runtime is calculated for a batch of 256 sam-

ples, RHODE yields a prediction throughput of ∼ 14.43 (∼ 9.31) samples per second with its

optimized (non-optimized, respectively) implementation, for an RNN with the same structure.

5.5.6 Microbenchmarks

We compare RHODE with prior work based on matrix multiplication microbenchmarks as they

are the dominant and expensive operations in RHODE. Then, we present how different RNN

structures affect the runtime of forward and backward passes.

Comparison with Prior Work. We compare RHODE’s multi-dimensional packing scheme with

Jiang et al.’s [143] and POSEIDON [244] packing approaches in Tables 5.3 (timings) and 5.4

(memory). We report the total and amortized time (or throughput) by executing #M multipli-

cations of n ×n-size matrices in parallel.

We observe that our multi-dimensional packing approach and Jiang et al.’s one perform

identically when n = d; this is expected since Jiang et al.’s approach is a special case of

our multi-dimensional packing with only one ciphertext. For n >d the multi-dimensional

packing requires more time to complete the multiplications but achieves a better amortized

time than Jiang et al’s approach. Due to memory limitations, we were not able to benchmark

Jiang et al.’s approach for n = 256 and n = 512. This is a consequence of each method’s
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memory requirements (see Table 5.4). The memory overhead arises particularly from the ring

dimension (N ), the number of ciphertexts, and the size of the evaluation keys. The first row

of Table 5.4 shows that, with Jiang et al.’s method, N scales quadratically with n compared to

ours that scales similarly with d (or with the closest power of two above n2 or d2, respectively).

In other words, for larger matrices (e.g., when multiplying two 128×128 matrices), Jiang et

al.’s approach requires increasing N (as the matrix does not fit into one ciphertext), whereas

our approach increases only the number of ciphertexts for a fixed d (second row of Table 5.3).

However, their approach also significantly impacts the size of the evaluation keys. Indeed,

as in their approach N scales with O (n2), increasing n has the side effect of increasing the

evaluation keys’ size (third row of Table 5.3). Recall that Jiang et al.’s method also requires

O (n) evaluation keys to perform the multiplication, thus resulting in an overall O (n3) memory

complexity. In contrast, our approach provides a better memory complexity, with only O (d3)

that is O (1) for a fixedd. In conclusion, our multi-dimensional packing is at least equivalent to

Jiang et al.’s [143] and can be configured to provide a better throughput for settings with large

batch sizes or hidden dimensions such that the inputs/weights do not fit into one ciphertext.

It also uses a constant memory for the evaluation keys, regardless of the matrix dimension n;

enabling the multiplication between large matrices, without the need for larger cryptographic

parameters or the re-generation of the evaluation keys.

[143] POSEIDON [244] Multi-dimensional

N O (n2) O (n2) O (d2)
#Ciphertexts O (1) O (1) O (n2/d2)

Evaluation Keys (Size) O (n3) O (n2 logn) O (d3)

Table 5.4: Comparison of the memory complexity between RHODE’s multi-dimensional packing to Jiang
et al.’s [143] and POSEIDON [244] approaches, with respect to the matrix and sub-matrix dimensions n
and d.

We remind that we propose a system, POSEIDON [244] in Chapter 4, for training feed-forward

neural networks under multiparty homomorphic encryption using a packing scheme that

optimizes the learning over one sample (instead of a mini-batch) with efficient vector-matrix

operations. Thus, with their scheme, a matrix multiplication between two n ×n matrices

requires n vector-matrix multiplications using their one-cipher packing approach (yielding

the same total and amortized time, see Table 5.4). Following their approach, a vector-matrix

multiplication requires O (logn) inner sum rotations, and repeating this n times to achieve a

matrix multiplication yields a complexity of O (n logn) for a fixed N (increasing N for bigger

matrices adds a factor of O (N ) to this complexity). For example, for the multiplication of two

32×32 matrices, our multi-dimensional packing is ∼ 14× and ∼ 122× faster than POSEIDON’s

packing approach for total and amortized times, respectively. Similar to Jiang et al., the

memory complexity of their approach is bound to n for configuring N and hence the size of

the evaluation keys (see Table 5.3), whereas our multi-dimensional packing decouples the

memory complexity from n. As a result, employing the one-sample processing approach by
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POSEIDON to train RNNs would significantly increase computational complexity due to the

large number of homomorphic rotations and vector-matrix multiplications that are required

for the forward and backward pass of the various timesteps and for the multiple samples of an

input batch. We estimate that if POSEIDON’s framework was extended to RNNs, training an

RNN with d = 32,h = 32,b = 256, and T = 4 would be ∼ 25−32× slower compared to RHODE

and its optimized version.

Finally, we discuss another packing scheme similar to our multi-dimensional packing. Aharoni

et al., improving on earlier work [23], propose a packing scheme that leverages on the CKKS

complex domain to enable dense packing [24]. Their approach is based on data structures

that pack tensors, e.g., matrices or hypercubes, in fixed sized chunks (tiles), thus enabling

a natural use of the SIMD capabilities. Yet, we observe that our multi-dimensional packing

differs in multiple ways: First, their packing density is less optimal in terms of slot-usage as

a ciphertext multiplication requires inner sums to compute the product between tensors,

which implies that the result will be sparsely packed compared to our technique that fully-

utilizes the ciphertext slots. Furthermore, their approach is not format-preserving, i.e., it

requires pre- or post-processing for each multiplication, whereas our approach supports

chaining operations without additional processing steps. Thus, even though their approach

consumes two levels less than Jiang et al. [143] (on which our packing is based) for the case of

only one multiplication, the complexity of their scheme remains asymptotically equivalent.

Finally, our approach is simpler to instantiate as its complexity depends only on d, whereas

Aharoni et al.’s approach requires the configuration of many parameters for applications that

require sequential operations, e.g., the training of RNNs. As their work does not provide an

open source implementation nor matrix multiplication microbenchmarks, an experimental

comparison with our multi-dimensional packing is not possible.

RNN Structure. We evaluate RHODE’s performance for different RNN structures including

many-to-one and many-to-many. Table 5.5 depicts the results of microbenchmarks for the

forward and backward passes per timestep without bootstrapping and without optimization

for different RNN structures. FP, BP, FP-to , and BP-to , stands for the forward pass, the backward

pass, the forward pass of the output-stage timestep, and the backward pass of the output-stage

timestep, respectively. The columns ‘FP Total’ and ‘BP Total’ show the total time required for

the execution of the FP and BP, respectively. For example, the first row is a many-to-one RNN

structure with T = 6 and κ = 1. This means that the FP is calculated for 6−1 = 5 timesteps

and FP-to is calculated once. Similarly, for the second row with T = 6 and κ = 2, the FP is

calculated for 6−2 = 4 timesteps, whereas FP-to is calculated for 2. There is no FP and BP

for the last row as T = κ = 6. Overall, Table 5.5 shows that the forward and backward pass

calculations of the output-stage timestep (FP-to , BP-to) are more costly than the usual FP and

BP timesteps ( 1.7×). This is due to the extra multiplication required in the FP for calculating

the prediction (Line 5, Algorithm 6), and the extra subtraction and multiplication during the BP

(Lines 11-12, Algorithm 6) for the output error calculation. Recall that Algorithm 6 is presented

for a many-to-many RNN structure with κ= T outputs. The computations of Lines 5, 11, and

12, are executed κ times for other structures with κ ̸= T . Consequently, many-to-many RNN
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structures are more expensive, and the increase in the runtime depends on κ.

We here note that a Jordan network requires the calculation of the output yt at every timestep

(see Section 1). As a result, its computation time is very similar to a many-to-many Elman

RNN with T outputs and a modified matrix multiplication (yt−1 ×W). This results in roughly

∼1.5× slower execution per timestep compared to an Elman network. For instance, for the

parameters of the first row in Table 5.5, a Jordan network requires 7.15s and 10.02s for the

F P and BP without bootstrapping (similar to FP-to and BP-to of the line, resp.). Finally, note

that the Jordan network requires one extra CBootstrap(·) operation during the backward pass,

resulting in slightly higher communication than Elman networks.

Runtime (s)

Structure
(b,d ,h,T ,o,κ) FP FP-to BP BP-to FP Total BP Total

(256, 64, 32, 6, 1, 1) 4.36 7.44 7.60 11.55 29.24 49.55
(256, 64, 32, 6, 1, 2) 4.42 7.39 7.62 11.47 32.46 53.42
(256, 64, 32, 6, 1, 4) 4.32 7.47 7.55 11.59 38.52 61.46
(256, 64, 32, 6, 1, 6) - 7.38 - 11.42 44.28 68.52

Table 5.5: Microbenchmarks for the forward pass (FP) and backward pass (BP) per timestep for various
RNN structures without optimization. to represents the timestep at the output stage.

5.6 Conclusion

In this chapter, we presented RHODE, a novel system that enables privacy-preserving training of

and predictions on Recurrent Neural Networks (RNNs) in a cross-silo federated learning setting.

Building on multi-party homomorphic encryption (MHE), RHODE preserves the confidentiality

of the training data, the model, and the prediction data, under a passive adversary model

with collusions of up to N −1 parties. By leveraging on a novel multi-dimensional packing

scheme and polynomial approximations for clipping and activation functions, RHODE enables

efficient mini-batch training and addresses the problem of exploding/vanishing gradients that

is inherent in RNNs. RHODE scales sub-linearly with the number of features and the number

of parties, linearly with the number of timesteps and the batch size, and its accuracy is on

par with non-secure centralized and decentralized solutions. To the best of our knowledge,

RHODE is the first system providing the building blocks for federated training of RNNs and

its variants under encryption. As future work, we plan to evaluate RHODE on sequential data

types other than time-series and on more complex recurrent neural network architectures.
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6 Federated Neural Network Learning
for Disease-Associated Cell Classifica-
tion
6.1 Introduction

In this chapter, we address the privacy-preserving training and evaluation of a convolutional

neural network (CNN) that is tailored for single-cell analysis to show-case the maturity of

our contributions in this thesis. We enable the under-encryption training of a published

state-of-the-art CNN in an N -party setting by relying on MHE.

Single-cell analysis has been a trending topic over the last decade. This technique involves

collecting cells from different patients in clinical applications to identify cell types, which is of

significant value for biomedicine [170, 265]. Single-cell analysis is a powerful tool for studying

the molecular and functional characteristics of individual cells, and it enables investigations of

genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the single-

cell level. Before the advent of single-cell analysis, bulk populations of cells collected from a

patient’s tissue were studied to discover mechanisms. However, with the discovery of cellular

heterogeneity, analyzing individual cells has become a powerful approach to uncovering

mechanisms that may be masked in bulk cell studies.

Machine learning models, in particular neural networks, extract valuable insights from data

and have achieved unprecedented predictive performance in the healthcare domain, e.g.,

in single-cell analysis [282], aiding medical diagnosis and treatment [164, 275], or in person-

alized medicine [273]. Training accurate and unbiased models without overfitting requires

access to a large amount of diverse data that is usually isolated and scattered across different

healthcare institutions [150]. As mentioned earlier, sharing or transferring personal healthcare

data is, however, often unfeasible or limited due to privacy regulations such as GDPR [8] or

HIPAA [3]. Consequently, privacy-preserving collaborative learning solutions play a particu-

larly important role for studies that involve novel informative, yet not universally established,

data modalities such as high dimensional single-cell measurements, where the number of

examples is typically low at individual study centers and only amounts to critical mass for

the successful training of machine learning models across multiple study centers [235]. The

ability to satisfy privacy regulations in an efficient and effective manner constitutes a pivotal
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requirement to carry out translational multi-center studies.

Federated learning (FL) has enabled collaborative learning for several medical applications,

and it has been shown that federated learning performs comparably to centralized training on

medical datasets [240, 250, 109]. Recently, the concept of swarm learning has been proposed;

it enables decentralized machine learning for precision medicine. The seminal work of swarm

learning [284] is based on edge computing and permissioned blockchains and removes the

need for a central server in the federated learning approach. Despite the advantages of

federated learning and swarm learning for keeping the sensitive data local and for reducing

the amount of data transferred/outsourced, the model and the intermediate values exchanged

between the parties remain prone to several privacy attacks executed by the other parties

or the aggregator (in federated learning), such as membership inference attacks [199, 212]

or reconstructing the parties’ inputs [128, 283, 309]. In this chapter, we provide a solution

that further conceals the global machine learning model from the participants, as in previous

chapters, by relying on mathematically secure cryptographic techniques to mitigate these

inference attacks in the healthcare framework.

In order to mitigate or prevent the leakage in the federated learning setting, several privacy-

preserving mechanisms have been proposed that are presented in Chapter 2. These mecha-

nisms are classified under three main categories, depending on the strategy they are based on:

differential privacy (DP), secure multiparty computation (MPC), and homomorphic encryp-

tion (HE).

We remind that differential privacy (DP)-based solutions aim to perturb the parties’ input

data or the intermediate model values exchanged throughout the learning. Several studies in

the medical domain keep the data on the local premises and use federated learning with a

differential privacy-mechanism on the exchanged model parameters [70, 161, 177]. Despite

being a pioneering mitigation against privacy attacks, DP-based solutions perturb the model

parameters, thus decreasing the utility and making the deployment harder for medical ap-

plications, where the accuracy is already constrained by limited data. Quantification of the

privacy achieved via DP-based approaches is also very difficult [141] and the implementation

of DP, especially in medical imaging applications, is not a trivial task [150].

MPC techniques are also applied to ensure privacy and to enable collaborative training of

machine learning models [138, 67, 74, 151, 127]. MPC techniques rely on secret-sharing the

data of the parties and on performing the training on the secret-shared data among multiple

computing nodes (usually 2,3, or 4 nodes). Nevertheless, it is usually hard to deploy these

solutions, as they often rely on a trusted third party for the sake of efficiency. Moreover, their

scalability with the number of parties is poor due to the large communication overhead.

Finally, several works employ homomorphic encryption (HE) to enable secure aggregation or

to secure outsourcing of the training in the medical appliacation to a cloud server [162, 45].

These solutions, however, cannot solve the distributed scenario where parties keep their local

data in their premises.
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The adoption of each of the aforementioned solutions introduces several privacy, utility, and

performance trade-offs that need to be carefully balanced for healthcare applications. To bal-

ance these trade-offs, several works employ multiparty homomorphic encryption (MHE) [103,

230]. Although the underlying model in these solutions enables privacy-preserving distributed

computations and maintains the local data of the parties on their local premises, the func-

tionality of these works is limited to the execution of simple operations, i.e., basic statistics,

counting, or linear regression and the underlying protocols do not support an efficient execu-

tion of neural networks in the federated learning setting. We proposed in Chapter 4 a more

versatile solution, POSEIDON, for enabling privacy-preserving federated learning for neural

networks by relying on MHE [244] to mitigate federated learning inference attacks by keeping

the model and intermediate values encrypted. Our solution, however, does not address the

efficient implementation and execution of convolutional neural networks that are tailored to

analyze complex data types such as single-cell data.

In this chapter, we propose PRICELL, a novel solution based on MHE to enable the training of

a federated convolutional neural network in a privacy-preserving manner, thus preserving

the utility of the data for single-cell analysis. To the best of our knowledge, PRICELL is the

first of its kind in the regime of privacy-preserving multi-center single-cell studies under

encryption. By bringing privacy-by-design and by preventing the transfer of patients’ data to

other institutions, our work contributes to single-cell studies and streamlines the slow and

demanding process of the reviewing of independent ethics committees for consent forms and

study protocols. To mitigate federated learning attacks, we keep the model and any value that

is exchanged between the parties in an encrypted form, and we rely on the threat model and

setting proposed in Section 3.1.

By designing new packing strategies and homomorphic matrix operations, we improve the

performance of the protocols for encrypted convolutional neural networks (CNNs) that are

predominantly used in the healthcare domain [234]. To evaluate our system within the frame-

work of single-cell analysis, we train a convolutional neural network (CellCnn), designed by

Arvaniti and Claassen [32], within our privacy-preserving system for the disease classification

task. We also show the feasibility of our solution with several single-cell datasets utilized for cy-

tomegalovirus infection (CMV) [131] and acute myeloid leukaemia (AML) [175] classification,

and one dataset for non-inflammatory neurological disease (NIND) and relapsing–remitting

multiple sclerosis (RRMS) [106] classification. We compare our classification accuracy in a

privacy-preserving federated learning setting with the centralized and non-encrypted baseline.

Our solution converges comparably to the training with centralized data, and we improve

on our contributions with POSEIDON, in Chapter 4, in terms of training time. For example,

in a setting with 10 parties, we improve POSEIDON’s execution time by at least one order of

magnitude.
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6.2 PRICELL Design

PRICELL’s system and threat model is based on the model described in Section 3.1. In PRI-

CELL’s scenario, there are N healthcare institutions (parties), each holding its own patient

dataset and collectively training a CNN model, without sharing/transferring their local data.

Our aim is to preserve the confidentiality of the local data, the intermediate model updates in

the federated learning setting, the querier’s evaluation data, and optionally the final model. We

remind that we rely on a synchronous learning protocol, assuming that all parties are available

throughout the training and evaluation executions. We note here that this assumption can be

relaxed by using different HE schemes, such as threshold or multi-key HE [191, 249], but with

a relaxed security assumption for the former and an increased computation cost for the latter.

We summarized PRICELL’s system and its workflow for collaborative training and query eval-

uation (prediction), in Figure 3.2. As introduced earlier, the training pipeline is composed

of four phases: Setup Phase, Local Computation Phase, Aggregation Phase, and Model-

Update Phase; and PaaS is enabled for the predictions to the querier. Below, we define the

system-specific Local Gradient Descent Computation that refers to Line 9 of Algorithm 2.

Assuming there are four healthcare institutions with each holding its respective secret key, the

workflow starts with the generation of a collective public key and a set of evaluation keys that

are necessary for the encrypted operations, using each participant’s secret key (Setup Phase).

Then, the participants agree on the initial random global model weights (Wg ) and encrypt

them with the collective public key. We denote the encryption of any value with boldface

letters, i.e., Wg . After encrypting the initial global weights, the local computation begins. To

find the model gradients (∇∇∇Wk ), each party performs several encrypted training iterations

on their local data (Local Computation Phase). The local-model gradients are then sent and

aggregated at one of the parties that will perform the global model update (Model-Update

Phase). The updated model is then broadcast back. After a fixed number of training iterations,

the participants can choose to keep the model confidential (option 5.1 in Figure 3.2) or to

decrypt it for further analysis (option 5.2 in Figure 3.2).

If prediction-as-a-service is offered to a querier (a researcher) and the model is kept encrypted,

the querier must encrypt the evaluation data (Xq ) with the collective public key of the parties.

Once the prediction is done, the result (ŷ) is collectively switched to the public key of the

querier by using the underlying cryptoscheme’s collective key switching functionality. If the

model is instead decrypted, the querier encrypts the data with their own key hence no key

switch is needed after the prediction. As a result, regardless of the model being confidential or

not, the evaluation data of the querier and the prediction result always remain protected, as

only the querier can decrypt the end result.

We describe the CNN model that is used in Local Computation Phase in Section 6.2.1. We
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Figure 6.1: CellCnn [32] Neural Network Architecture that is used in Local Computation Phase. The
network takes multi-cell samples as an input and applies a 1D convolution with h filters followed by a
pooling layer. A dense (fully-connected) layer then outputs the phenotype prediction.

listed the frequently used symbols and notations in Section 1.4.

6.2.1 CellCnn Model Overview

CellCnn is a convolutional neural network that enables multi-instance learning and associates

a set of observations on cellular population, namely multi-cell inputs, with a phenotype [32].

This architecture is designed for detecting rare cell subsets associated with a disease, by using

multi-cell inputs generated from high-dimensional single-cell marker measurements. By

their nature, these inputs can be used to predict the phenotype of a donor or the associated

phenotype for a given subset of cells. In this scenario, we enable privacy-preserving and

distributed multi-instance learning, and we compare our classification performance with

the baseline (CellCnn [32] trained on centralized data with no privacy protection). We note

here that replicating the full-pipeline of CellCnn [32] for downstream analysis requires either

heavy approximations under encryption or the decryption of the trained model. Our solution

enables the collective and privacy-preserving training for the classification task, whereas

subsequent analyses that require access to the model are out-of-the-scope of this work. Yet,

we show the negligible effect that our encryption would practically have on these analyses in

Appendix E.3.

We show the architecture of CellCnn [32] in Figure 6.1. The network comprises a 1D convolu-

tional layer followed by a pooling layer and a dense (fully-connected) layer. Each multi-cell

input sample in Figure 6.1 is generated using c cells per phenotype with m features (mark-

ers), and these samples are batched to construct multi-cell inputs. The training set is then

generated by choosing z multi-cell inputs per output label or per patient.

We refer the reader to the work of Arvaniti and Claassen [32] for the details of the neural

network architecture. We detail the changes we introduce to this architecture to enable

operations under homomorphic encryption in Section 6.2.2.
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6.2.2 Local Neural Network Operations

In this section, we give a high-level description of the neural network circuit that is evaluated

in the encrypted domain (a detailed and step-by-step description can be found in Section 6.3).

We first present the changes introduced to the original CellCnn circuit to enable an efficient

evaluation under encryption: (i) we approximate the non-polynomial activation functions

by polynomials by using least-squares approximation, (ii) we replace the max pooling with

an average pooling, (iii) we replace the ADAM optimizer with the stochastic gradient descent

(SGD) optimizer with mean-squared error and momentum acceleration. Finally, we introduce

the packing strategy used in PRICELL and give a high-level circuit overview. We give more

details on these steps and optimizations, in Section 6.3, and we empirically evaluate the effect

of these optimizations on the model accuracy in a distributed setting in Section 6.4.

Polynomial Approximations. We remind that with additions and multiplications, the CKKS

scheme can efficiently evaluate polynomials in the encrypted domain. However, these two

basic operations are not sufficient for easily evaluating non-linear functions, such as sign
or sigmoid. A common strategy that we rely on in this thesis to circumvent this problem is

to find a polynomial approximation of the desired function. We rely on polynomial least-

squares approximations for the non-polynomial activation functions, such as sigmoid, and we

use identity function after convolution (instead of ReLU). We show in Section 6.4 that these

changes only have a negligible effect on the model accuracy.

Pooling. The original CellCnn circuit makes use of both max pooling and average pooling. Max

pooling requires the computation of the non-linear sign function which cannot be efficiently

done under encryption. We replace the max pooling with the average pooling, which is a linear

transformation and brings the following advantages: (i) it is efficient for computing under

encryption with only additions and constant multiplication, (ii) it simplifies the backward

pass under encryption, (iii) it commutes with other linear transformations or functions, such

as the convolution and the identity activation, which allows for an efficient preprocessing

of the data and reduces the online execution cost. Indeed, we are able to pre-compute the

average pooling on the data, which reduces the input size of a batch of samples from n×c ×m

to n ×m, i.e., we remove the dependency on c.

Optimizer. The original CellCnn training relies on the ADAM optimizer, which requires

the computation of square roots and inverses. Although approximating these operations is

possible, a high-precision approximation requires an excessive use of ciphertext levels and

significantly reduces the efficiency of the training. To avoid these costly operations, we rely

instead on the SGD optimizer with momentum acceleration that, for an equivalent amount of

epochs, shows a comparable rate of convergence to the ADAM optimizer.

Packing Strategy. The CKKS scheme provides complex arithmetic on CN /2 in a SIMD fashion.

The native operations are addition, multiplication by a constant, multiplication by a plaintext,

multiplication by a ciphertext, slots rotation (shifting the values in the vector), and complex

conjugation. As the rotations are expensive, when considering encrypted matrix operations,

one of the main challenges is to minimize the number of rotations, which can be done by

adopting efficient packing strategies and algorithms. We give more details about the packing
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and algorithms, in Section 6.3.

With the aforementioned pre-computed pooling, only a 1×m vector is needed to represent

a sample, instead of a c ×m matrix. Hence, we pack an entire batch of n samples in a single

ciphertext and compute the forward and backward pass on the whole batch in parallel, which

reduces the complexity of the training proportionally to the size of the batch.

Encrypted Circuit Overview. Given a batch size of n samples, each sample being a matrix

Lc×m , for c the number of cells per sample and m number of features (markers) per cell, we

first evaluate the mean pooling across the cells in plaintext. The result is a set of n vectors

of size 1×m, which is packed in an Ln×m matrix. The 1D convolution is evaluated with a

Ln×m ×Cm×k matrix multiplication. We feed the result to the dense layer Wk×o where o is

the number of output labels. Lastly, we perform an approximated activation function to the

output of the dense layer. Our encrypted circuit with reduced complexity is

Yn×o =Polyact
((

MeanPool(Ln×c×m)×Cm×k
)×Wk×o

)
.

In the next section (Section 6.3), we detail each of the aforementioned building block (pooling,

convolution, packing) of the encrypted circuit and present several optimizations to improve

the efficiency under encryption.

6.3 Cryptographic Operations and Optimizations

Notations. We denote a batch of samples, the convolution layer and the dense layer matrices

by Ln×c×m , Cm×h and Wh×o , respectively, with n the number of samples, c the number of cells

per sample per batch, m the number of features (markers), h the number of filters and o the

number of output classes (labels). When there is no ambiguity, we eliminate the sub-index

of the matrices, e.g., Cm×h is often referred to as C . We recall that encrypted matrices are

denoted in boldface. We denote the plaintext of binary values as mask. When multiplied with

a ciphertext, mask selects specific slots of the ciphertext by setting the other slots to zero. The

terms row, column and diagonal encoding of a matrix denote the mapping of a 2D matrix on a

1D vector by concatenating each row, each column or each diagonal of the matrix respectively.

Convolution With Pre-Pooling. Given a hyper-cube batch of samples Ln×c×m , we first prepro-

cess L by applying the average pooling across the cells. As the convolution, the average pooling,

and the activation of this step are all linear transformations, their order is interchangeable.

This preprocessing reduces the size of the hyper-cube from n × c ×m to only n ×m, thus re-

moving its dependency on c . The convolution is computed with a single matrix multiplication

Pn×h = Ln×m ×Cm×h , with a row-encoded Pn×h matrix where each row stores the result of the

convolution layer for one sample. In the rest of this section, we describe how we pack Ln×m

and Cm×h in order to enable an efficient convolution through SIMD operations.

We evaluate the convolution with a diagonally-encoded plaintext and row-encoded ciphertext

matrix multiplication. As we operate with non-square matrices, we pad the matrix C with
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the copies of itself until its number of rows reaches n. As such, the result will yield n rows,

each of h values. With this approach, the convolution can be evaluated with only m plaintext-

ciphertext multiplications and additions, and m −1 rotations. If m ×n is not a power of two,

cyclic rotations of the ciphertext slots will not result in a cyclic rotation of the flattened matrix.

Instead, it requires using the masking and rotations, which consumes a level. To overcome

this, we pad the flattened matrix with additional copies of itself until it reaches a total of

n + (m −1) rows (hence the final size of the flattened matrix is h(n +m −1)). This enables us,

at the expense of more slots used, to simulate a cyclic rotation. Note that those extra rows are

removed by the plaintext multiplication by L that also acts as a masking.

We further reduce the number of operations by making use of complex arithmetic, which is

natively provided by the CKKS scheme. Using the following, we compute the dot product of

〈(a0, a1), (b0,b1)〉 in a single multiplication:

(a0 − i a1) · (b0 + i b1) = (a0b0 +a1b1)+ i (a0b1 −a1b0).

Hence, the convolution of two half-sized complex matrices L′
n,m/2 ×B ′

m/2,h (the matrix is

padded in case of odd number of rows/columns) is sufficient to compute the convolution of

the real matrices Ln×m ×Cm×h :
a1,1 . . . a1,m

...
. . .

an,1 . . . an,m


(n×m)

×


b1,1 . . . b1,h

...
. . .

...

bm,1 . . . bm,h


(m×h)

→


a1,1 − i a1,2 . . . a1,m−1 − i a1,m

...
. . .

...

an,1 − i an,2 . . . an,m−1 − i an,m


(n×m/2)

×


b1,1 + i b2,1 . . . b1,m + i b2,m

...
. . .

...

bn−1,1 + i bn,1 . . . bn−1,m−1 + i bn,m


(m/2×h)

Below we present a toy-example with 2×4 and 4×3 matrices:

(
1 2 4 1

3 5 6 2

)
(2×4)

×


4 2 1

9 5 3

2 2 3

3 5 6


(4×3)

→
(

33 25 25

75 53 48

)
(2×3)

becomes

(
1−2i 4− i

3−5i 6−2i

)
(2×2)

×
(

4+9i 2+5i 1+3i

2+3i 2+5i 3+6i

)
(2×3)

→
(

(1−2i )× (4+9i )+ (4− i )× (2+3i ) · · ·
(3−5i )× (4+9i )+ (6−2i )× (2+3i ) · · ·

)
(2×3)

→
(

(4+18−8i +9i )+ (8+3−2i +12i ) · · ·
(12+45−20i +27i )+ (12+6−4i +18i ) · · ·

)
(2×3)

→
(

33+11i · · ·
75+21i · · ·

)
(2×3)

The extraction of the real part can be done with complex conjugation and addition. The

mapping from Cm,h to C ′
m/2,h is straightforward and can be homomorphically computed with
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C ′ = C +RotLh(MultImag(C )). Note that it requires C to be padded with an additional row.

The encoding of the plaintext matrix Ln,m is done by encoding each diagonal of L′
n,m/2 in a

separate plaintext.

The matrix multiplication L′×C ′ is then done with

P ′
n×h =

m/2−1∑
i=0

L′
n×m/2 ⊙RotL2hi (C ′

m/2×h).

The result is a row-encoded n ×h complex matrix. We remove its imaginary part P = 1
2 (P ′′′+

Conjugate(P ′′′)) with the 1
2 factor being pre-applied to L′. Because the number of rotations is

reduced by a factor of two, the number of rows for the padding must also be readjusted:

n︸︷︷︸
result

+ (⌈m/2⌉−1) ·2︸ ︷︷ ︸
rotations

+ 1︸︷︷︸
i repacking

,

and the total number of slots used to encode Cm×h is nh + (⌈m/2⌉− 1)2h +h. We give an

overview of how Cn×h and Pn×h are each encoded on a vector:

Cm×h = (C(1,1), . . . ,C(1,h),C(2,1), . . . ,C(2,h), . . . ,Cm,1, . . . ,C(m,h),C(1,1), . . .︸ ︷︷ ︸
nh+(m/2−1)2h+h

,0, . . . ,0),

Pn×h = (
P(1,1), . . . ,P(1,h), . . . ,P(n,1), . . . ,P(n,h),0, . . . ,0

)
.

Dense Layer. The input to the dense layer is a row-encoded Pn×h matrix that is multiplied with

the Wh×o matrix. As the matrix Pn×h is row-encoded and requires a homomorphic extraction

of its diagonals, the technique used in the convolution step becomes costly for the dense

layer. Instead, we use the multiply-then-inner-sum approach, as in POSEIDON [244]. The

values of Wh×o are grouped by samples. We first preprocess P by duplicating it o times for

each label. This duplication is done with log2(o)+hw(o)−1 rotations. The matrix Wh×o is

column-encoded (row-encoding of its transpose), with each of its columns replicated n times

(for each sample):

Wh×o = (
(W(1,1), . . . ,W(h,1)), . . . , (W(1,1), . . . ,W(h,1))︸ ︷︷ ︸

n×h

, . . . , (W(1,o), . . . ,W(h,o)), . . . , (W(1,o), . . . ,W(h,o)),0, . . . ,0
)
.
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The multiplication Un×o = Pn×h ×Wh×o is carried on with a single ciphertext-ciphertext mul-

tiplication, followed by an inner-sum of batch n and h (log2(h)+hw(h)−1 rotations). The

resulting vector has a size of onh:

Un×o = (
(U(1,1),×, . . . ,×), . . . , (U(n,1),×, . . . ,×)︸ ︷︷ ︸

n×h

, . . . , (U(1,o),×, . . . ,×), . . . , (U(n,o),×, . . . ,×),0, . . . ,0, (×, . . . ,×︸ ︷︷ ︸
h−1

)
)
,

with × denoting unusable by-product values in the ciphertext slots.

Repacking for Bootstrapping. We repack the following elements in a single ciphertext for the

optimized bootstrapping:

• Un×o : the result of the dense layer, which uses onh +h −1 slots.

• Pn×h : the result of the convolution layer, which uses nh slots.

• Wh×o : the dense layer matrix, which uses onh slots.

• ∇∇∇W prev
h×o : the updated dense layer weights of the previous backward pass, which uses

onh slots.

• ∇∇∇C prev
m×h : the updated convolution layer weights of the previous backward pass, which

uses size nh + (⌈m/2⌉−1) ·2h +h slots.

The repacking is done solely with additions and rotations, concatenating the empty slots of

Un×o :

Drepack =Un×o +RotL−onh(Pn×h)+RotL−2onh(Wh×o)+RotL−3onh(∇∇∇W prev
h×o )+RotL−4onh(∇∇∇C prev

m×h).

Bootstrapping and Repacking for Backward Pass. The goal of this step is to refresh the

ciphertext Drepack to a higher level, to enable more computation and to re-arrange its slots

optimally for the backward pass.

• Un×o : We re-order the slots to arrange them first by samples then by classes, and we

duplicate each value h times (replacing the non-zero by-product slots):

UbackW = (
(U(0,0), . . . ,U(0,0),U(0,1), . . . ,U(0,1)︸ ︷︷ ︸

2h

), . . . , (U(n−1,0), . . . ,U(n−1,0),U(n−1,1), . . . ,U(n−1,1))
)
.

We note that the size of this vector remains onh. UbackW will be used to compute the

dense layer error for the updated dense layer weights. We pack an additional copy

of U , UbackC, which is pre-formatted for the convolution layer error and clustered by
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sample. By computing twice the same values in parallel, but packed in two different

ways (one for the dense layer, one for the convolution layer), we avoid expensive and

level-consuming repacking procedures, at the cost of more slot usage. Hence for each

label, we pad the nh values with (m/2−1)2h +h additional copies of the relevant rows.

The used size is therefore (nh + (m/2−1)2h +h)o.

UbackC =
((

U(1,1), . . . ,U(1,1)︸ ︷︷ ︸
h

, . . . ,U(n,1), . . . ,U(n−1,0),U(1,1),...

︸ ︷︷ ︸
nh+(m/2−1)2h+h

)
, . . . ,

(
U(1,o), . . . ,U(1,o), . . . , (U(n,o), . . . ,U(n,o),U(1,o), . . .

))
.

• Pn×h : The result of the convolution layer, which is an n ×h row-encoded matrix, is

re-arranged by duplicating each of its rows for each class of the dense layer (2 in this

example) and multiplied by the learning rate (η).

Pback = η
(
(P(1,1), . . . ,P(1,h),P(1,1), . . . ,P(1,h)︸ ︷︷ ︸

2h

), . . . , (P(n,1), . . . ,P(n,h),P(n,1), . . . ,P(n,h))
)
.

• Wh×o : The dense layer matrix, which is an h ×o column-encoded matrix, is re-arranged

by padding each column with itself such that each column has a size of nh + (m/2−
1)2h +h, for a total size of o(n ×h + (m/2−1)2h +h) and is multiplied by the learning

rate (η).

Wback = η
(
(W(1,1), . . . ,W(h,1),W(1,1), . . .︸ ︷︷ ︸

nh+(m/2−1)2h+h

), . . . , (W(1,o), . . . ,W(h,o),W(1,o), . . . )
)
.

• ∇∇∇W prev
h×o : The previous dense layer updated weights, of size nho. The format is preserved

(column encoded matrix of size ho with each column replicated n times), but the values

are multiplied by the momentum (µ).

∇Wback =µ
(

(∇W(1,1), . . . ,∇W(h,1)), . . . , (∇W(1,1), . . . ,∇W(h,1))︸ ︷︷ ︸
n×h

, . . . , (∇W(1,o), . . . ,∇W(h,o)), . . . , (∇W(1,o), . . . ,∇W(h,o))
)
.

• ∇∇∇C prev
m×h : The previous convolution layer updated weights, of size n×h+ (m/2−1)2h+h.

The format is preserved (row encoded matrix, padded), but the values are multiplied by

the momentum (µ).

∇∇∇Cback =µ(∇∇∇C(1,1),∇∇∇C(1,2), . . . ,∇∇∇C(1,h),∇∇∇C(2,1), . . . ,∇∇∇C(2,h), . . . ,∇∇∇C(m,h),∇∇∇C(1,1), . . .︸ ︷︷ ︸
nh+(m/2−1)2h+h

).

In summary, the bootstrapped ciphertext contains the following elements:
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Dboot =UbackW︸ ︷︷ ︸
onh

|| UbackC︸ ︷︷ ︸
o(nh+(m/2−1)2h+h)

|| Pback︸ ︷︷ ︸
onh

|| Wback︸ ︷︷ ︸
o(nh+(m/2−1)2h+h)

|| ∇Wback︸ ︷︷ ︸
onh

|| ∇Cback︸ ︷︷ ︸
nh+(m/2−1)2h+h

,

and the total number of slots used in the ciphertext must respect

3onh + (2o +1)(nh + (m/2−1)2h +h) ≤N /2

for a ring degree N . Therefore, a bootstrapped ciphertext can hold up to n = ⌊(N /(2h)−
(2o +1)(m −1))/(5o +1)⌋ samples. For example, given N = 215, m = 38, h = 8 and o = 2, the

ciphertext holds 169 samples. This number is smaller than the number of samples that can be

repacked in a single ciphertext before the bootstrapping, hence it sets an upper bound for the

number of samples that can be trained in a single batch.

Backward Pass. The backward pass is computed using the ciphertext Dboot. The different

values contained in Dboot are accessed via rotations and ciphertext duplication. Masking is

used only at the very end to minimize the use of levels. We start by computing the error of the

dense layer formatted for the dense layer update (E1) and formatted for the convolution layer

(E ′
1) at the same time:

(E1||E ′
1) =ϕ′(UbackW||UbackC)⊙ (

ϕ(UbackW||UbackC)− (YbackW||YbackC)
)
,

with YbackW||YbackC, the plaintext labels, accordingly encoded and formatted. We then com-

pute in parallel the updated weights of each sample of the dense layer and the partial error of

the convolution layer by multiplying E1||E ′
1 with Pback||Wback. Note that Pback||Wback can be

accessed and aligned with a rotation on Dboot.

∇∇∇W ||E0 = (E1||E ′
1)⊙ (Pback||Wback).

∇∇∇W is clustered by samples, hence we add a summation across the n samples to obtain the

updated dense layer weights of the batch. The output contains only a single copy, column-

encoded, of ∇∇∇W , and of size oh. An additional step first adds, then masks and extracts, each

column of the result and replicates them n times to expand its size back to onh and to match

the original encoding format of W (this masking also removes all the unwanted by-product

values). ∇∇∇Wback is added to the result to get the final updated weights of the dense layer.

We finalize the computation of E0 by a summation across the labels, reducing its size to

nh + (m/2−1)2h +h). E0 is already formatted to be multiplied with the plaintext transposed

sample matrix η ·LT (pre-pooled and multiplied by η). This step is the same as the convolution

layer matrix multiplication:

∇∇∇C = η ·LT ×E0.
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The result is of size nh, with no by-product garbage slots due to the plaintext multiplication,

but it needs to be extended to a size of nh + (m/2−1)2h +h to comply with the formatting of

C . This is done by replicating the nh slots until it reaches at least this amount of slots and by

masking the overflow of slots. Similarly, ∇∇∇Cback is added to ∇∇∇C , and the result is stored as the

newly updated weights for the next batch of samples.

We summarize the given steps in Algorithm 8. We initialize the weight matrices with the levels

that are compatible with the algorithm. That is, the final level of the ciphertexts after weight

updates are used for initialization. Note that the algorithm describes the local computations.

Then, the parties collectively aggregate and update the global model, which includes the

additional step of taking the mean of ∇∇∇W and ∇∇∇C across all the parties.
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Algorithm 8 The local computation algorithm for PRICELL. The superscript of encrypted values
(e.g., y for C y ) denotes the current ciphertext level. Encryption, encoding, and detailed steps
of the repacking during the bootstrapping are omitted for clarity. The value csize represents
nh + (⌈m/2⌉−1)2h +h. We give the function definitions in Section 1.4.

Inputs: X and Y set of samples and labels, learning rate η, momentum µ, batch size n, number of

iterations d , number of features m, number of filters h, number of labels o, maskW a vector

containing ones in the first onh slots, maskWi a set of o vectors containing ones in the slots i nh to

(i +1)nh slots for 0 < i < o, and maskC a vector containing ones in the first csize slots.

Outputs: The encrypted weights C and W .

1: C 4 ← Init(m,h),W 3 ← Init(h,o) ▷ Initialize convolution and dense weights

2: ∇∇∇W 5
prev,∇∇∇C 4

prev ← 0 ▷ Initialize previous updated weights

3: for i = 0; i < d ; i = i +1 do
Batch Selection

4: Xbatch ← Selectn(X ) ▷ Select a batch of random samples

5: Ybatch ← Selectn(Y ) ▷ Select the corresponding labels

6: Lpool ←Pre-pooling(Xbatch) ▷ Apply the pre-pooling to the batch

Forward Pass

7: C 4
tmp ←C 4 +RotLh(MultImag(C 4)) ▷ Preprocessing for complex matrix multiplication

8: P 3 ←∑⌈m/2⌉−1
i=0 Ldiag[i ]

pool ⊙RotL2hi (C 4
tmp) ▷ Convolution

9: P 3 ←Replicatenh,o(P 3) ▷ Replicate the result for each label

10: U 2 ← InnerSum1,h(P 3 ⊙W 3) ▷ Dense layer

Bootstrapping

11: D2
repack =U 2 +RotL−nho(P 3)+RotL−2nho(W 3)+RotL−3nho(∇∇∇W 5

prev)+RotL−4nho(∇∇∇C 4
prev)

▷ Pack all necessary values in a single ciphertext

12: D9
boot ←DBootstrapη,µ(D2

repack) ▷ Refresh the ciphertext and formatting for the backward pass

Backward Pass

13: U 17 ←ϕ(D9
boot) ▷ Activation

14: U 27 ←ϕ′(D9
boot) ▷ Activation derivative

15: E 16 ←U 27 ⊙ (U 17 −Ybatch) ▷ Dense layer error

16: P 9 ←RotLnho+o·csize(D9
boot) ▷ Access pooling result and dense layer weights

17: ∇∇∇W 5 ← P 9 ⊙E 16 ▷ Dense layer updated weights and convolution layer error

18: E 05 ←RotLnho(∇∇∇W 5) ▷ Access convolution layer error

19: ∇∇∇W 5 ← InnerSumoh,n(∇∇∇W 5) ▷ Finish updated weights with summation across the samples

20: E 05 ← InnerSumcsize,o(E 05) ▷ Finish E1 with summation across the labels

21: ∇∇∇C 4 ←∑⌈n/2⌉−1
i=0 (0.5 ·LT,diag[i ]

pool )⊙RotL2mi (E 05) ▷ Multiply with the transposed samples

22: ∇∇∇C 4 ←∇∇∇C 4 +Conjugate(∇∇∇C 4) ▷ Clean imaginary part

23: ∇∇∇C 4 ←Replicatemh,⌈csize/mh⌉(∇∇∇C 4) ▷ Format updated weights for convolution layer

24: ∇∇∇W 5 ←Replicateh,n(
∑o−1

i=0 RotL−i nh(maskWi ⊙∇∇∇W 5)) ▷ Format weights for dense layer

25: ∇∇∇W 8
prev ← maskW ⊙RotL2nho+2o·csize(D9

boot) ▷ Access and extract the previous weights

26: ∇∇∇C 8
prev ← maskC ⊙RotL3nho+2o·csize(D9

boot) ▷ Access and extract the previous weights

Weights Update

27: ∇∇∇W 5 ←∇∇∇W 5 +∇∇∇W 8
prev ▷ Add previous updated weights with momentum

28: ∇∇∇C 4 ←∇∇∇C 4 +∇∇∇C 8
prev ▷ Add previous updated weights with momentum

29: C 4 ←C 4 −∇∇∇C 4 ▷ Update the weights

30: W 3 ←W 3 −∇∇∇W 5 ▷ Update the weights

31: ∇∇∇C 4
prev ←∇∇∇C 4 ▷ Store the new updated weights

32: ∇∇∇W 5
prev ←∇∇∇W 5 ▷ Store the new updated weights

33: end for
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6.4 Experimental Evaluation

In this section, we describe the datasets that are used in the evaluation. Then, we present the

experimental setting and lay out our experimental findings.

6.4.1 Datasets

We detail the features of the three used datasets:

Non-inflammatory neurological disease (NIND), relapsing–remitting multiple sclerosis

(RRMS). We rely on a large cohort of peripheral blood mononuclear cells (PBMCs), including

29 healthy donors (HD), 31 NIND, and 31 RRMS donors [106]. The dataset comprises samples

with a varying number of cells for each donor and 35 markers for each cell. We use this dataset

for two classification tasks: (i) HD vs. NIND, and (ii) HD vs. RRMS, as shown in Figure 6.3

and 6.4. For both NIND and RRMS experiments and in all experimental settings, we use 48

donors (24 HD, 24 NIND / RRMS) for training and 12 donors (5 HD, 7 NIND / RRMS) for

testing.

Cytomegalovirus Infection (CMV) classification. We use a mass cytometry dataset [131] for

the classification of cytomegalovirus infection (CMV). This dataset comprises samples from

20 donors with a varying number of cells for each donor and mass cytometry measurements

of 37 markers for each cell and has 11 CMV- and 9 CMV+ labels. We use 14 donors for training

and 6 donors as a test set in all experimental settings.

Acute Myeloid Leukaemia (AML). We rely on the mass cytometry dataset from Levine et

al. [175] for the 3-class classification problem for healthy, cytogenetically normal (CN), and

core-binding factor translocation (CBF). For each cell, the dataset includes mass cytometry

measurements of 16 markers. As in the original work [32], we use the AML samples with at

least 10% CD34+ blast cells with the availability of additional cytogenetic information. The

final training dataset comprises 3 healthy bone marrows (BM1, BM2, BM3), 2 CN samples

(SJ10,SJ12), and 2 CBF samples (SJ1, SJ2). The test set in all experimental settings comprises 2

healthy bone marrows (BM4, BM5), 1 CN (SJ13), and 3 CBF (SJ3, SJ4, SJ5) samples.

The individual donors in all aforementioned training sets are then evenly distributed among

N parties for PRICELL collective training. To construct our baselines and to make a fair com-

parison with the baseline, we use the same data preprocessing for all experiments per setting

(centralized CellCnn, Local, or PRICELL). We give the details of the data preprocessing and

parameter selection, in Appendix E.1.

6.4.2 Experimental Settings

We implemented our solution in Go [7] by using the open-source lattice-based cryptography

Lattigo [200]. We use the implementation of CellCnn [32] to preprocess the data and to

construct baselines. We use Onet [5] to build a decentralized system and Mininet [201] to
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evaluate our system in a virtual network with an average network delay of 0.17 ms and 1 Gbps

bandwidth on 10 Linux servers with Intel Xeon E5-2680 v3 CPUs running at 2.5 GHz with 24

threads on 12 cores and 256 GB RAM. The parties communicate over TCP with secure channels

(TLS). We choose our security parameters that achieve at least 128-bits security [27].

6.4.3 Empirical Results

We evaluate our proposed solution in terms of model accuracy, runtime performance, scala-

bility with the number of parties, number of data samples, number of features, and communi-

cation overhead. And we provide a comparison with POSEIDON in this section. We give details

on the machine learning hyperparameters and security parameters used for our evaluation in

the Appendix E.1.

Model Accuracy. To assess our solution in terms of accuracy, we use the same datasets used in

two peer-reviewed biomedical studies [32, 106]. We rely on three aforementioned datasets

to perform non-inflammatory neurological disease (NIND), relapsing–remitting multiple

sclerosis (RRMS), Cytomegalovirus Infection (CMV), and Acute Myeloid Leukaemia (AML)

classification. Our aim is to show that PRICELL achieves a classification performance on par

with the centralized non-private baseline.

As the original studies rely on centralized datasets, we evenly distribute the individual donors

in the respective dataset over N parties. We give the classification performance on these

datasets in Figure 6.2, 6.3, and 6.4. The x-axis shows different training approaches: (i) the data

is centralized and the original CellCnn approach [32] is used for the training and classification

to construct a baseline, (ii) each party trains a model only with its local data (Local), without

collaborating with other parties, and (iii) our solution for privacy-preserving collaboration

between parties is used (PRICELL). For the Local training (ii), we average the test accuracy

achieved by individual parties.

In our experiments, random multi-cell inputs that are used for training are drawn with re-

placement from the original training samples. Drawing multi-cell inputs can be done in two

ways: using the bag of all cells per class or individually drawing them from each patient. We

report the classification performance by using two test datasets: One set is generated by using

multi-cell inputs with c = 100−200 cells drawn from all patients in the test set to increase

the size of the test set for multi-cell classification; and the second set is generated by drawing

1000−10000 cells from each donor separately for phenotype prediction. We give more details

about the setting and hyperparameters for each experiment in the Appendix E.1.

For CMV classification, we generate the training data by drawing random cell subsets from the

cell bags per phenotype. For NIND and RRMS classification, we observe that drawing multi-

cells per phenotype varies the accuracy between runs and that the median accuracy over 10

runs increases when distributing the initial dataset among N = 6 parties (see Figure 6.3a, 6.3b

and 6.4a, 6.4b). This suggests that separately drawing multi-cell inputs from each individual

performs better for this task, as corroborated by the results obtained with drawing 2000
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(a) Phenotype Classification
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(b) Multi-Cell Classification

Figure 6.2: Accuracy Boxplots when classifying healthy donor (HD) vs. cytomegalovirus infection (CMV)
for training multi-cells drawn from the bag of all cells per class. Experiments are repeated 10 times with
different train and test set splits, the vertical dashed line illustrates the median for the baseline (CellCnn)
and the dots represent the outliers. Classification accuracy is reported for two datasets: (a) phenotype
classification of 6 patients and (b) multi-cell input classification on 4000 samples.

cells from each patient with replacement (see Figure 6.3c, 6.3d and 6.4c, 6.4d). Finally, in

Appendix E.2, Table E.1, we report the median accuracy, precision, recall, and F-score of 10

runs (with different train and test set splits) on patient-based sub-sampling for NIND and

RRMS, and phenotype-based sub-sampling for CMV.

To construct a realistic overall distribution, we limit the number of parties to be lower than the

number of donors in the dataset. We observe that, given a sufficient number of samples per

party, our distributed secure-solution achieves classification performance comparable to the

original work, where the data is centralized and the training is done without privacy-protection.

In the experiments on CMV, for example, the median accuracy achieved by PRICELL is exactly

the same as the centralized baseline for phenotype classification and very close (at most 2%

gap) for multi-cell classification. Analogous results are obtained for the other experiments:

Our privacy-preserving distributed solution achieves almost the same median accuracy with

the baseline in RRMS and NIND with patient-based sub-sampling, where the datasets are

sufficiently large to be distributed among up to 6 parties.

Lastly, we provide the classification performance on AML in Appendix E.2, Table E.1. As the

dataset is relatively small, emulating a distributed setting with more than two parties was not

feasible for this task and, as the accuracy does not vary in between different train-test splits,

we do not provide the boxplots on the accuracy. However, we observe that with two parties

in PRICELL training, the accuracy remains exactly same as the centralized baseline for AML

classification.

Most importantly, our evaluation shows that there is always a significant gain in classifica-

tion performance when switching from local training to privacy-preserving collaboration.

The number of donors that each institution has is insufficient for individually training a ro-
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(b) Multi-Cell Classification with bag of all cells
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(d) Multi-Cell Classification with cells drawn
from each patient separately

Figure 6.3: Accuracy boxplots when classifying healthy donor (HD) vs. relapsing–remitting multiple
sclerosis (RRMS), for training multi-cells drawn from the bag of all cells per class (a-b) and drawn from
each patient separately (c-d). Experiments are repeated 10 times with different train and test set splits, the
vertical dashed line illustrates the median for the baseline (CellCnn) and the dots represent the outliers.
Classification accuracy is reported for two datasets: multi-cell input classification on 96 samples, and
phenotype classification of 12 patients.
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(b) Multi-Cell Classification with bag of all cells
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Figure 6.4: Accuracy Boxplots when classifying healthy donor (HD) vs. non-inflammatory neurological
disease (NIND), for training multi-cells drawn from the bag of all cells per class (a-b) and drawn from
each patient separately (c-d). Experiments are repeated 10 times with different train and test set splits, the
vertical dashed line illustrates the median for the baseline (CellCnn) and the dots represent the outliers.
Classification accuracy is reported for two datasets: multi-cell input classification on 96 samples and
phenotype classification of 12 patients.
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bust model. In all experimental settings, for a fixed number of N , PRICELL achieves better

performance than the local training while ensuring the confidentiality of the local data.

Runtime. We report in Table 6.1, the execution times for the training and prediction with

N = 10 parties and a ring degree N = 215. To be able to compare the runtimes at a larger scale,

we use synthetically generated data for this set of experiments and vary the number of features

(m). We generate a data set of 1000 samples per party with c = 200 cells per sample. We use

h = 8 filters, a local batch size of n = 100, and 20 global epochs for training. We report the

execution time of the setup phase, of the local computations, and of its communication. We

include the execution time of distributed bootstrapping (see Section 6.3 for details) as part

of the communication time, which takes 1.2s per iteration and 122s over 20 epochs. Hence,

the communication column for training comprises the time to perform all communication

between parties throughout the training, distributed bootstrapping, and the model update.

We observe that PRICELL trains, in less than 20 minutes, a CellCnn model on a training set

of 200 cells per sample, 1000 samples per party, and 32 features across 10 parties, including

the setup phase and communication. The training time, when the number of features varies,

remains 20-25 minutes, which is the result of our efficient use of the SIMD operations provided

by the cryptosystem; this is further discussed in the scalability analysis.

We also report in Table 6.1, the execution times of an oblivious prediction when both the model

and the data are encrypted (Phase 5.1 of Figure 3.2). We recall that the collective key-switching

operation enables us to change the encryption key of a ciphertext from the parties’ collective

key to the querier’s key. The maximum number n of samples that can be batched together for

a given ring degree N , number of labels o, and number of features m, is (N /2)/(m ·o) (we

also need m/2 ciphertexts to batch those samples, see Appendix 6.3 for more details). Hence,

in our case the maximum prediction batch size for N = 215 and o = 2 is n = 213/m.

We observe that the local computation for the prediction increases linearly with m, and is

linked to the cost of the dominant operation, the convolution, which is, unlike training, carried

out between two encrypted matrices (see Appendix 6.3). The communication required for

prediction includes m/2 ciphertexts sent by the querier and one ciphertext (prediction result)

sent back by the server. Hence, the communication time also increases linearly with m. Lastly,

the time for the collective key-switch remains constant, as it is performed once at the end of

the prediction protocol on only one ciphertext.

Scalability Analysis. Figure 6.5 shows the scalability of PRICELL with the number of parties,

the global number of rows (samples), number of features (markers), and the number of

filters for one global training epoch that is to process once all the data of all parties. Unless

otherwise stated, we use c = 200 cells per sample, a local batch size of n = 100, m = 38 features,

and h = 8 filters, for all settings. We first report the runtime with an increasing number

of parties (N ) in Figures 6.5a and 6.5b when the global number of data samples is fixed to

s = 18000 and when the number of samples per party is fixed to 500, respectively. As the parties
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Training Execution Time [sec] Prediction Execution Time [sec]

m Setup Local Computation Communication
Local computation

Communication Collective Key-Switch
Querier + Server

8 17.8 753.4 370.1 0.2 + 0.1 0.3 0.3
16 18.1 778.7 387.0 0.3 + 0.2 0.6 0.3
32 19.3 836.1 393.7 0.3 + 0.4 1.0 0.3
64 21.9 951.1 373.1 0.6 + 0.6 2.2 0.3

128 24.5 1135.9 374.8 1.6 + 1.5 4.2 0.3

Table 6.1: PRICELL’s execution times for training and prediction with a varying number of features (m),
10 parties, and ring degree N = 215 (214 ciphertext slots). The computation is single-threaded in a virtual
network with an average network delay of 0.17 ms and 1 Gbps bandwidth on 10 Linux servers with Intel
Xeon E5-2680 v3 CPUs running at 2.5 GHz with 24 threads and 12 cores and 256 GB RAM.

perform local computations in parallel, PRICELL’s runtime decreases with increasing N when

s is fixed (Figure 6.5a). When the number of data samples is constant per party, PRICELL’s

computation time remains almost constant and only the communication overhead increases

when increasing N (Figure 6.5b).

We further analyze PRICELL’s scalability for N = 10 when varying the number of global samples

(s), the number of features (m), and the number of filters (h). In Figure 6.5c, we show that PRI-

CELL scales linearly when increasing the number of global samples with N = 10. Increasing the

number of features and filters has almost no effect on PRICELL’s runtime, due to our efficient

packing strategy that enables SIMD operations through features and filters. However, we note

that the increase in h = 64 in Figure 6.5e is due to increasing the cryptosystem parameter N to

have a sufficient number of slots to still rely on our one-cipher packing strategy. The increase

in runtime is still linear with respect to N and, as expected, the use of larger ciphertexts also

produces a slight increase in the communication.

Comparison with POSEIDON

HE-based solutions for privacy-preserving analytics in distributed medical settings [103, 230]

allow for functionalities (e.g., basic statistics, counting, or linear regression) different than

those PRICELL enables. Due to the fact that the underlying system, the threat model, and

the enabled functionalities of all these solutions are different from PRICELL, a quantitative

comparison with these works is a challenging task. We build on the system and threat model

proposed in Chapter 3.1 and thus make a quantitative comparison with POSEIDON (see Chap-

ter 4). PRICELL improves upon the state-of-the-art solution, POSEIDON, by at least one order

of magnitude when training CellCnn with the same number of epochs and filters. This is due

to PRICELL’s design for optimizing the use of SIMD operations, with a packing strategy that

enables encrypting all samples of a batch in a single ciphertext whereas, POSEIDON packs the

samples within a batch in different ciphertexts. For a local batch size of 1, 8 filters, 38 features,

and 200 cells per sample, PRICELL’s local computation time is 1.7s; whereas, POSEIDON’s is

15.4s. Increasing the batch size to 100 results in a 100x slower local execution for POSEIDON,

whereas it remains constant for PRICELL, as all samples are packed in one ciphertext. In
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Figure 6.5: PRICELL’s training execution time and communication overhead for one training epoch with
increasing number of parties, data samples, features, and filters. The computation is single-threaded in
a virtual network with an average network delay of 0.17 ms and 1 Gbps bandwidth on 10 Linux servers
with Intel Xeon E5-2680 v3 CPUs running at 2.5 GHz with 24 threads on 12 cores and 256 GB RAM.

summary, increasing the batch size or the number of filters yields a linear increase in the

advantage of our solution, in terms of local computation time.

Downstream Analysis. The training in the original CellCnn study aims at detecting rare

disease-associated cell subsets via further analysis [32]. Assuming the end model is decrypted

upon pre-agreement to conduct these analyses, we further investigate how the changes that

we introduce in the CellCnn architecture (see Local Neural Network Operations, Section 6.2.2)

affect the detection capability. To be able to make a comparison with the original study in

terms of detection capability, we introduce these changes in the original implementation of

CellCnn, simulate our encryption, and evaluate the impact in the subsequent analyses. We

report our results and about how our changes to the circuit and training affect the detection

capability on rare CMV infection, in the Appendix E.3.

6.5 Conclusion

In this chapter, we present PRICELL, a system that enables privacy-preserving federated neural

network learning for healthcare institutions, in the framework of an increasingly relevant

single-cell analysis, by relying on multiparty homomorphic encryption (MHE). To the best
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of our knowledge, PRICELL is the first solution to enable the training of convolutional neural

networks with N parties under encryption on single-cell data.

In this chapter, we demonstrate the flexibility of PRICELL with the different learning parame-

ters (e.g., batch size, number of features, number of filters), different real-world datasets, and

a varying number of parties. Our empirical evaluation shows that PRICELL is able to efficiently

train a collective neural network with a large number of parties while protecting the model

and the data through homomorphic encryption. We also show that PRICELL’s computation

and communication overhead remains either constant or scales linearly with the number of

parties and with the model parameters.

Furthermore, we show that PRICELL achieves classification accuracy comparable to the cen-

tralized and non-encrypted training. Our evaluation demonstrates a substantial accuracy gain

by collaboration between the parties when compared to locally training with their data only.

As data sharing in the healthcare domain is usually prevented due to the sensitive nature of

data, and due to privacy regulations such as HIPAA [3] or GDPR [8], PRICELL brings unprece-

dented value for the healthcare domain, exemplified in this chapter for single-cell analysis,

where the data is scarce and sparse. These benefits are extensible to federated healthcare

scenarios that rely on machine learning, and constitutes an important landmark for real-

world applications of collaborative training between healthcare institutions while preserving

privacy.
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7 Conclusion

In this thesis, we have proposed novel systems for addressing the privacy-preserving train-

ing of neural networks in cross-silo federated learning settings. Our systems also enable

the prediction-as-a-service for a querier in a privacy-preserving way. The proposed systems

enable the training pipeline to executed under encryption by relying on multiparty homomor-

phic encryption (MHE). As such, they provide security against inference attacks to federated

learning [199, 212, 128, 283, 309]. Furthermore, our solutions are quantum-resistant and

ensure at the same time the confidentiality of the model, the training data, and the evaluation

data under a passive adversary threat model.

We have shown that our high-level solution that enables encrypted training scale linearly

with the number of parties in the federated learning system and do not degrade the utility of

the data. We have further investigated the model performance and shown that all proposed

systems achieve a performance that is on par with centralized or decentralized non-private

approaches.

In Chapter 4, we have proposed POSEIDON: a system that enables the training and evaluation

of multilayer perceptrons and convolutional neural networks in a cross-silo federated learning

setting with N data providers. By building a modular system, we have shown that several

blocks can be changed or added to our system to better tune the trade-off between the model

performance and the runtime performance or to improve the system to enable the training of

different network structures (e.g., MLP or CNNs). We have efficiently performed the training

with the benchmark datasets and showcased the applicability of our solutions. We believe that

our system will be a key enabler for the privacy-preserving predictive tasks on the cross-silo

settings by enabling the data providers to have control over their data.

In Chapter 5, by building on the solution proposed in Chapter 4, we have proposed RHODE:

a system that tackles the training and evaluation of recurrent neural networks in the same

federated learning setting. For this, we have addressed the challenges of training recurrent

neural networks under encryption by our technical contributions. RHODE is the first system

that enables predictive time-series analysis under encryption in the federated learning setting.
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By its modular design and building blocks, RHODE serves as a guideline for building more

complex recurrent neural network models.

In Chapter 6, we have demonstrated a real-life medical application of a privacy-preserving

federated learning by leveraging the systems that we built. We have introduced further opti-

mizations to the system to enable the training with single-cell data. We have demonstrated

the flexibility of our solution in terms of several network parameters and different datasets.

Our solution brings a remarkable value for the medical applications where the data is scarce

and sparse.

We believe that our contributions in this thesis will promote the capabilities of homomor-

phic encryption within the context of collaborative learning with multiple data holders in

a privacy-preserving way. Data sharing between multiple institutions is inherently difficult

and incorporates legislation and ethics committees. According to European General Data

Protection Regulation [8], the legal status of homomorphically encrypted data remains unclear

and might depend on the argument. Indeed, several principles have to be examined before

homomorphically encrypted data can be qualified as anonymous, thus this qualification is

heavily dependent on the setting and the adversarial model. Within the context of the ’relative

approach’ (which states that the legal status of the data must be examined through the eyes of

each processor), a large part of the legal doctrine argues that encrypted data can be qualified

as anonymous to a processor who cannot have access to the decryption key [117, 96]. Thus,

one can argue that MHE provides full anonymity as the key is split among all the participating

entities and no single entity is able to decrypt the data by itself. Regardless of the legal status of

the data, this thesis shows that homomorphic encryption is mature enough to be practical in

a wide range of applications where multiple parties must collaborate. This alone can be used

as a tool to provide technical measures and ensure data protection by design and by default

(art. 25 GDPR [2]), enabling collaboration that would have been difficult, if not impossible,

previously. One example is computing a function on data that is split between multiple juris-

dictions and that would have previously required a cross-border transfer to achieve the same

result. Consequently, we believe that our solutions that rely on MHE will be the key facilitator

for more secure and easier collaborations for machine learning models.

Limitations and Future Work.

In terms of limitations, our systems protect the confidentiality through encryption and, by

design, do not decrypt any value throughout the learning for end-to-end protection. Hence,

monitoring the learning process, e.g., the training/validation errors, is not possible as these

values will be under encryption. Yet, by allowing a small amount of leakage through the

validation losses, we can ensure a collective decryption of the loss that is calculated in several

pre-defined iterations by all the parties or part of the parties, depending on a pre-agreement.

Quantifying the leakage through validation-set losses is an interesting future direction.

The systems that we have proposed in this thesis preserve the confidentiality under a passive

adversary threat model. Future work involves extensions to other scenarios with active adver-
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saries and, to enable the practical execution with active attacks, further optimizations to the

learning process. We discuss an extension to active adversaries in Appendix B. Note that this

extension is not trivial and comes at the cost of a substantial increase in the computational

complexity.

In this work, we assume that all data holders are available (online) during the training and

prediction workflows. As we rely on a cross-silo federated learning setting, this assumption

is realistic. However, it is also prohibitive in terms of failures of any party as the collective

cryptographic operations, e.g., DBootstrap(·) or DKeySwitch(·), require collaboration among

all the data holders. Therefore, to support asynchronous federated learning (driven by a time-

threshold or by relying on a subset of online data holders), our systems can be deployed with a

threshold multi-party homomorphic encryption scheme that enables a subset of t-out-of-N

data holders to perform the collective operations [208]. However, note that this cryptographic

scheme would introduce a relaxation in the threat model (allowing collusions of up to t −1

data holders instead of N −1).

Lastly, we have shown that our systems provide a balanced trade-off between the computation

and communication through our scalability analysis. For more complex neural network archi-

tectures, we note that homomorphic encryption requires further optimizations, e.g., hardware

accelerations or GPU-compatible cryptographic functions, to enable practical training of

these complex structures.
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A Cryptography Glossary

Here, we provide a summary of the cryptography terms that are frequently used throughout

this thesis in an alphabetical order.

Bootstrapping: the act of homomorphically refreshing a ciphertext to allow for further com-

putations.

Ciphertext Slots: available space in a ciphertext to encrypt multiple values. In CKKS, the

maximum number of slots that a ciphertext can have is half of the dimension of the ring degree,

i.e. N /2.

Collective Public Key: a public key generated with the interaction of a set of parties and that

can be used by any party to encrypt. The decryption of a ciphertext that is encrypted with the

collective key requires all parties to participate in the decryption protocol.

Collective Key Switching: an interactive re-encryption of a ciphertext to a different secret key.

Distributed Bootstrapping: bootstrapping that requires interaction between the parties but

that is less computationally expensive than its non-interactive variant.

Evaluation Keys: special public keys used during the homomorphic evaluation of a circuit

(e.g., homomorphic slot rotations).

Multiparty Homomorphic Encryption: a set of protocols that enable a group of parties to

securely compute joint functions over their private inputs by using homomorphic encryption.

Compared to LSSS-based (linear secret-sharing scheme) approaches, these protocols scale

linearly with the number of parties and do not require private channels.

Packing: the act of encrypting multiple scalar values in a single ciphertext by using ciphertext

slots.

Ring Degree (N ): the degree of the RLWE cyclotomic polynomial X N +1.

Ring Learning With Errors (RLWE): a computational problem based on the difficulty of
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solving linear equations that are perturbed by an error. The security of the cryptographic

schemes used in this work is based on this problem.

Secret Key: a secret value used to decrypt a ciphertext and to generate the encryption key and

evaluation keys.

Single Instruction, Multiple Data (SIMD) Operations: the ability to carry out operations in

parallel on a batch of data that is encrypted in one ciphertext by using ciphertext slots, in the

context of this work.

Slots Rotation: cyclic shift of the values encrypted in a ciphertext.
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B Extensions

We introduce here several security, learning, and optimization extensions that can be inte-

grated to POSEIDON, RHODE, or PRICELL.

B.1 Security Extensions

We provide several security extensions that can be integrated to POSEIDON as a future work.

Active Adversaries: Our systems preserve the privacy of the parties under a passive-adversary

model with up to N −1 colluding parties, motivated by the cooperative federated learning

scenario presented throughout this thesis. If applied to other different scenarios, our work

could be extended to an active-adversarial setting by using standard verifiable computation

techniques, e.g., resorting to zero-knowledge proofs where the active adversary is the ag-

gregation server. This would, though, come at the cost of an increase in the computational

complexity, that will be analyzed as future work.

Extending our solutions to active adversaries requires primitives that enable the verification

of the tree-based aggregation and the local gradient descent operations performed by each

data holder. Such primitives can be implemented with verifiable computation techniques,

e.g., secure multi-party computation [260] or zero-knowledge proofs [307], however, with

a significant computational cost. Moreover, another extension required to tolerate active

adversaries during training is to verify the correctness of the data holders’ inputs, e.g., using

statistical tests [61] or proofs of authenticity on encrypted data [56], as well as their consistency,

e.g., using cryptographic commitments [307]. While such techniques can reduce the risk of

poisoning attacks in federated learning [268], their elimination remains an open research

problem. Currently proposed defenses rely on gradient inspection [176, 303, 269, 290, 30] or

operations that are not HE-friendly (min/max comparison, division under encryption) [154],

thus, raising new challenges for encrypted FL pipelines. Time-coupled attacks, on the other

hand, can be adressed via integration of the clipping (which slightly changes the packing and

should be approximated) and client-side momentum proposed in [153].
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Out-of-the-Scope Attacks: We briefly discuss here out-of-the-scope attacks and countermea-

sures that are not addressed in this thesis. By maintaining the intermediate values of the

learning process and the final model weights under encryption, during the training process,

we protect data and model confidentiality. As such, our systems protect against federated

learning attacks [212, 199, 128, 309, 283]. Nonetheless, there exist inference attacks that target

the outputs of the model’s predictions, e.g., membership inference [254], model inversion [98],

or model stealing [271]. Such attacks can be mitigated via complementary countermeasures

that can be easily integrated to our systems: (i) limiting the number of prediction queries

for the queriers, and (ii) adding noise to the prediction’s output to achieve differential pri-

vacy guarantees. The choice of the differential privacy parameters in this setting remains an

interesting open problem.

RHODE can further minimize such leakage by feeding encrypted predictions back to the RNN

for further oblivious processing and decrypt only an aggregated result (e.g., revealing only the

time-series trend over a coarse period instead of a more fine-grained one).

B.2 Learning Extensions

Early Stop. There are several techniques proposed for the early stopping of the training of a

neural network. They also prevent over-fitting as described and evaluated by Prechelt [226].

These approaches are: (i) GLα: stop when the generalization loss exceeds a certain thresholdα,

(ii) PQα: stop when the quotient of generalization loss and progress exceeds a certain threshold

α, and (iii) UPs : stop when the generalization error increased in s successive strips. The

generalization error is estimated by the error on a validation set. We note that these methods

can be seamlessly integrated into our systems by dividing each party’s data into training

and validation sets. Depending on the threshold and the method, the privacy-preserving

implementation would require the homomorphic aggregation of the generalization error

evaluated on each Pi ’s validation set and a collective decryption of the error, after a number of

global iterations t . As the error is the averaged scalar value. The leakage from the loss remains

negligible when there are sufficient validation samples.

Availability, Data Distribution, and Asynchronous Distributed Neural Networks. In this

thesis, we rely on a multiparty cryptographic scheme that assumes that the parties are always

available. We here note that our systems can support asynchronous distributed neural net-

work training [83] without waiting for all parties to send the local gradients. As such, a time

threshold could be used for updating the global model. However, we note that the collective

cryptographic protocols (e.g., DBootstrap(·) and DBootstrapALT(·)) require that all the parties

be available. Changing POSEIDON’s distributed bootstrapping with a centralized one that

achieves a practical security level would require increasing the size of the ciphertexts and

result in higher computation and communication overhead.

For the evaluation of POSEIDON, we evenly distribute the dataset across the parties; we con-
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sider the effects of uneven distributions or the asynchronous gradient descent to the model

accuracy — which are studied in the literature [179, 83, 281] — orthogonal to this work. How-

ever, a preliminary analysis with the MNIST dataset and the neural network structure defined

in our evaluation (see Section 4.5) shows that asynchronous learning decreases the model

accuracy between 1 and 4% when we assume that a server is down with a failure probability

between 0.4 and 0.8, i.e., when there is between 40 and 80% chance of not receiving the local

gradients from a server in a global iteration. Finally, we find that the uneven distribution of

the MNIST dataset for N = 10 parties with one party holding 90% of the data results to a 6%

decrease in the model accuracy.

Lastly, we note that the non-iid or heterogeneous distribution of the data in federated learning

settings causes weight/parameter divergence [178, 305] or slow down the convergence due

to client drift [155] that is introduced by the updates of each party (client) in the non-iid

settings. Some mitigation techniques do not change the working principle of POSEIDON and

can be integrated to the pipeline, e.g., by adjusting hyperparameters [178], gradient alignment

algorithm [78], or creating and globally sharing a set of data with uniform distribution among

the participants [305]. Other mitigation techniques such as the algorithm SCAFFOLD [155] is

harder to integrate into our solutions as they require operations that are not HE-friendly such

as comparison for checking the actual value of the gradient/local updates.

Other Neural Networks. In this work, we focus on the training of MLPs and CNNs with

POSEIDON and present our packing scheme and cryptographic operations for these neural

networks. We note that POSEIDON’s packing protocols are tailored to MLPs and CNNs and

might require adaptation for other neural network structures. We introduce the new packing

protocols for RNNs with RHODE in Chapter 5 where we focus on simple RNN architectures

with an input layer, hidden layers with RNN units, and an output layer of various structures,

e.g., many-to-one, many-to-many, etc. We note that other RNN architectures, e.g., GRUs or

LSTMs, comprise more complex pipelines that are harder to implement under (M)HE. Yet,

RHODE’s main building blocks, i.e., the approximated activation/clipping functions, the multi-

dimensional packing, the matrix multiplication and transpose operations are sufficient to

implement such complex RNN architectures. These RNN architectures, e.g., GRUs or LSTMs,

require changes only on the Local Computation Phase of RHODE.

As an example, we summarize the protocol for the forward and backward pass of a GRU

architecture in Algorithm 9 for a party Pi holding its own input data Xi . Such an RNN has the

same workflow as a conventional RNN but with different operations inside the GRU unit. A

typical GRU comprises an Update Gate (R-Gate) that decides how much information from

previous timesteps is needed for future timesteps, a Reset Gate (Z-Gate) that decides how

much information to forget, and a Candidate activation (N-Gate) which is similar to the hidden

state of an RNN unit. Other GRU variants modify these gates by computing only the bias or

by excluding them [124, 86]. Both Reset and Update gates include an activation function that

is typically a Sigmoid, ϱ= 1
1+e−x , and the hidden state includes an activation function that is

typically Tanh, ϕ= ex−e−x

ex+e−x .

111



Given the above gate rules, the pipeline for the forward pass of a GRU is similar to a conven-

tional RNN and the backward pass follows the BBPT algorithm with the chain rule for the

calculation of the derivatives and the loss (see Algorithm 9). In more detail, the forward pass

(Lines 2-10) comprises matrix multiplications, additions, and activation functions, thus, the

packing scheme of RHODE, the matrix multiplication and the approximated building blocks

can directly be applied. Similarly, the backward pass comprises the same operations as the

forward pass but additionally requires multiple executions of the transpose operation, which

is also supported by RHODE (Section 5.3.1). Thus, different RNN architectures can be enabled

using the main building blocks of RHODE. Yet, it is worth mentioning that the implementation

of GRUs under MHE will increase RHODE’s computation and communication overhead and

its evaluation on more complex RNN architectures is a direction for future work.

B.3 Optimization Extensions

Optimizations for Convolutional Neural Networks. We present a scheme for applying the con-

volutions on the slots, similar to FC layers, by representing them with a matrix multiplication.

Convolution on a matrix, however, can be performed with a simple polynomial multiplication

by using the coefficients of the polynomial. This operation requires a Fast-Fourier Transform

(FFT) from slots (Number Theoretic Transform (NTT)) to coefficients domain, and vice versa

(inverseFFT) for switching between CV to pooling or FC layers. Although it achieves better

performance for CV layers, domain-switching is expensive. In the case of multiple CV layers

before an FC layer, this operation could be embedded into the distributed bootstrapping

(DBootstrapALT(·)) for efficiency. The evaluation of the trade-off between the two solutions

for larger matrix dimensions is an interesting direction for future work.

Graphics Processing Units (GPUs). In this work, we evaluate our system on CPUs. Using

GPUs to improve POSEIDON’s performance requires GPU-compatible cryptographic functions,

i.e., extending the underlying cryptographic library Lattigo [200]. In a recent work, Badawi et

al. [34] proposed the first GPU implementation of the full RNS-variant of the CKKS scheme,

for which they report speedups of one to two orders of magnitude over a CPU implementa-

tion. Hence, GPU-accelerated FHE is an option that could greatly improve the practicality of

POSEIDON.
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Algorithm 9 Local Computation Phase (GRU)

Input: Uz ,Ur ,Un ,Wz ,Wr ,Wn ,V,by ,bz ,br ,bn ,hpr ev , Xi = (x̄1, x̄2, · · · , xt ),Yi =
(ȳ1, ȳ2, · · · , ȳt )

Output:∇Uz ,∇Ur ,∇Un ,∇Wz ,∇Wr ,∇Wn ,∇V,∇by ,
∇bz ,∇br ,∇bn

1: h0 ← hpr ev

2: for t ← 1 : T do ▷ Forward Pass
3: zr aw ← ht−1 ×Wz + x̄t ×Uz +bz ▷ Z-Gate
4: zt ← ϱ(zr aw )
5: rr aw ← ht−1 ×Wr + x̄t ×Ur +br ▷ R-Gate
6: rt ← ϱ(rr aw )
7: nr aw ← (rt ⊙ht−1)×Wn + x̄t ×Un +bn ▷ N-Gate
8: nt ←ϕ(nr aw )
9: ht ← zt ⊙ht−1 + (1−zt )⊙nt ▷ Hidden State

10: pt ← ht ×V+by ▷ Output Gate
11: end for
12: dhnxt = 0 ▷ ∂loss[T+1:∞]

∂ht

13: ∇Uz ,∇Ur ,∇Un ,∇Wz ,∇Wr ,∇Wn ,∇V,
∇by ,∇bz ,∇br ,∇bn = 0

14: for t ← T : 1 do ▷ Backward Pass
15: dy ← pt − ȳt

16: dh ← dy×VT +dhnxt

17: dn ← (1−zt )⊙dh
18: dnr aw ←ϕ′(nt )⊙dn = (1−n2

t )⊙dn
19: dr ← (dnr aw ×WT

n )⊙ht−1

20: drr aw ← ϱ′(rt )⊙dr = rt ⊙ (1− rt )⊙dr
21: dz ← (ht−1 −nt )⊙dh
22: dzr aw ← ϱ′(zt )⊙dz = zt ⊙ (1−zt )⊙dz
23: dhh ← dh⊗zt

24: dhz ← dzr aw ×WT
z

25: dhr ← drr aw ×WT
r

26: dhn ← rt ⊗ (dnr aw ×WT
n )

27: dhnxt ← dhz +dhh +dhn +dhr

28: ∇V+= ht ⊗dy
29: ∇Uz+= x̄t ⊗dzr aw

30: ∇Ur+= x̄t ⊗drr aw

31: ∇Un+= x̄t ⊗dnr aw

32: ∇Wz+= ht−1 ⊗dzr aw

33: ∇Wr+= ht−1 ⊗drr aw

34: ∇Wn+= rt ⊙ (ht−1 ⊗dnr aw )
35: ∇by+= dy
36: ∇bz+= dzr aw

37: ∇br+= drr aw

38: ∇bn+= dnr aw

39: end for
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C Federated Multilayer Perceptron and
Convolutional Neural Network Learn-
ing.
C.1 Comparison to Other State-of-the-Art Solutions

Table C.1 displays a qualitative comparison of POSEIDON with the state-of-the-art privacy-

preserving neural network training and/or inference solutions. The MPC-setup row of the

table denotes the number of parties responsible for the execution of the neural network

operations. The adversarial model for data confidentiality indicates the capabilities of the

parties (active (A) or passive (P)), and collusion shows the maximum number of possible

colluding parties.

We note that several works allow as admissible adversary (collusions between one server and

an arbitrary number of clients/data owners) [205]. For a fair comparison, we consider only

the collusions permitted between the parties (servers) that are responsible for the training.

To the best of our knowledge, POSEIDON is the only solution that performs both training and

inference of neural networks, in an N -party setting, yet protects data and model confidentiality

and withstands collusions up to N −1 parties. Therefore, our work differentiates itself from

cloud outsourcing models and enables a privacy-preserving federated learning approach.

XONN
[237]

Gazelle
[148]

Blaze
[223]

MiniONN
[184]

ABY3
[204]

SecureML
[205]

SecureNN
[278]

FALCON
[279]

FLASH
[53]

TRIDENT
[57]

CryptoNets
[112]

CryptoDL
[126]

[211] POSEIDON

MPC Setup 2PC 2PC 3PC 2PC 3PC 2PC 3PC 3PC 4PC 4PC 1PC 1PC 1PC N-Party

Private Infer. ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Private Train. ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔ ✔ ✔

Data Conf.
Adversarial Model*
Collusion*

1 P 1 P 1 A 1 P 1 A/P 1 P 1 A/P 1 A/P 1 A 1 A/P 1 P’ 1 P’ 1 P’ N −1 P
No No No No No No No No No No NA NA NA N −1

Techniques GC,SS HE,GC,SS GC,SS HE,GC,SS GC,SS HE,GC,SS SS SS SS GC,SS HE HE HE HE

Supported
Layers

Linear ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Conv. ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✔

Pooling ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✔

Table C.1: Qualitative comparison of private deep learning frameworks. Conf. stands for confidentiality.
A and P stand for active and passive adversarial capabilities, respectively. GC, SS, HE denote garbled-
circuits, secret sharing, and homomorphic encryption. Adversarial model* and collusion* take into
account the servers responsible for the training/inference. 1 P’ denotes our interpretation as [112], [211],
and [126] do not present an adversarial model. NA stands for not applicable.
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C.2 Approximated Activation Function Alternatives

For the piece-wise function ReLU, we propose two alternatives: (i) approximation of square-

root for the evaluation ofϕ(x) = 0.5(b+
p

b2) that is equivalent to ReLU, and (ii) approximating

the smooth approximation of ReLU (SmoothReLU), or softplus, ϕ(x) = ln(1+ ex ), both with

least-squares. Our analysis shows that the latter achieves a better approximation for a degree

da = 3, whereas the former approximates better the exact ReLU if one increases the multiplica-

tive depth by 1 and uses da = 7. In our evaluations, we use SmoothReLU for efficiency.

We note that the derivative of softplus is a sigmoid function, and we evaluate the approximated

sigmoid as the derivative, as this achieves better accuracy. Finally, the Lattigo cryptographic

library [200] comes with a native way of approximating functions using Chebyshev inter-

polants and an efficient algorithm to evaluate polynomials in standard or Chebyshev basis.

The least-squares is the optimal solution for minimizing the squared error over an interval,

whereas Chebyshev asymptotically minimizes the maximum error. Hence, Chebyshev is more

appropriate for keeping the error bounded throughout the whole interval, but requires a larger

degree for a high accuracy approximation. Thus, when a high accuracy is needed for the

activation function, we suggest using a large degree Chevshev interpolant. The advantage of

the Chebyshev approximation, along with its asymptotic optimality and simple computation,

is that it ensures that the polynomial interpolant has small coefficients and is numerically

stable regardless of its degree, which is well suited for homomorphic evaluation.

C.3 Approximation of the Max/Min Pooling and Its Derivative

For the sake of clarity, we describe the max-pooling operation. Given a vector x = (x[0], . . . , x[n−
1]) the challenge is to compute y with y[0 ≤ i < n] = max(x). To approximate the index of

max(x), which can then be used to extract the max value of x, we follow an algorithm similar

to that presented in [63], described below.

Given two real values a,b, with 0 ≤ a,b ≤ 1, we observe the following: If a > b, then a −b <
ad −bd for d > 1, i.e., with increasing d , smaller values converge to zero faster and the ratio

between the maximum value and other values increases. The process can be repeated to

increase the ratio between a and b but, unless a = 1, both values will eventually converge to

zero. To avoid this, we add a second step that consists in renormalizing a and b by computing

a = a/(a+b) and b = b/(a+b). Thus, we ensure that after each iteration, a+b = 1 and since b

will eventually converge to zero, a will tend towards 1. If a = b, both values will converge to 0.5.

This algorithm can be easily generalized to vectors: Given a vector x = (x[0], . . . , x[n −1]), at

each iteration it computes x[i ] = x[i ]d /
∑n−1

j=0 x[ j ]d , and multiplies the result with the original

vector to extract the maximum value.

This max-pooling algorithm is a time-consuming procedure as it requires computing an

expensive inverse function, especially if a high accuracy is desired or if the input values are

very small. Instead, we employ a direct approach using max(a,b) = 1
2 (a+b+

√
(a −b)2), where
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the square-root can be approximated by a polynomial. To compute the maximum value for a

kernel f = k×k, we iterate log( f ) times ci+1 = max(ci ,RotL2i (ci )). As each iteration consumes

all levels, we use DBootstrap(·) log( f ) times. Hence, we suggest using the average-pooling

instead, which is more efficient and precise, e.g., Dowlin et al. [112] show that low-degree

approximations of max-pooling will converge to a scalar multiple of the mean of k values. We

provide microbenchmarks of both max and average-pooling in Appendix C.5.1.

C.4 Technical details of Distributed Bootstrapping with Arbitrary

Linear Transformations (DBootstrapALT(·))

A linear transformation φ(·) over a vector of n elements can be described by a n ×n matrix.

The evaluation of a matrix-vector multiplication requires a number of rotations proportional

to the square-root of its non-zero diagonals, thus, this operation becomes prohibitive when

the number of non-zero diagonals is large.

Such a linear transformation can be, however, efficiently carried out locally on a secret-shared

plaintext, as φ(msg +M) = φ(msg )+φ(M) due to the linearity of φ(·). Moreover, because

of the magnitude of msg +M (100 to 200 bits), arbitrary precision complex arithmetic with

sufficient precision should be used for Encode(·), Decode(·), and φ(·) to preserve the lower

bits. The collective bootstrapping protocol in [209] is performed through a conversion of

an encryption to secret-shared values and a re-encryption in a refreshed ciphertext. We

leverage this conversion to perform the aforementioned linear transformation in the secret-

shared domain, before the refreshed ciphertext is reconstructed. This is our DBootstrapALT(·)
protocol (Protocol 5).

When the linear transformation is simple, i.e., it does not involve a complex permutation or

requires a small number of rotations, the Encode(·) and Decode(·) operations in Line 8, Proto-

col 5 can be skipped. Indeed, those two operations are carried out using arbitrary precision

complex arithmetic. In such cases, it is more efficient to perform the linear transformation

directly on the encoded plaintext.

Security Analysis of DBootstrapALT(·). This protocol is a modification of the DBootstrap(·)

protocol of Mouchet et al. [209], with the difference that it includes a product of a public matrix.

Both DBootstrap(·) and DBootstrapALT(·) for CKKS differ from the BFV version proposed

in [209] in which the shares are not unconditionally hiding, but statistically or computation-

ally hiding due to the incomplete support of the used masks. Therefore, the proof follows

analogously the passive adversary security proof of the BFV DBootstrap(·) protocol in [209],

with the addition of Lemma 1 which guarantees the statistical indistinguishablity of the shares

in C. While the RLWE problem and Lemma 1 do not rely on the same security assumptions,

the first one being computational and the second one being statistical, given the same security

parameter, they share the same security bounds. Hence, DBootstrap(·) and DBootstrapALT(·)
provide the same security as the original protocol of Mouchet et al. [209].

117



Lemma 1. Given the distribution P0 = (a +b) and P1 = c with 0 ≤ a < 2δ and 0 ≤ b,c < 2λ+δ

and b, c uniform, then the distributions P0 and P1 are λ-indistinguishable; i.e., a probabilistic

polynomial adversary A cannot distinguish between them with probability greater than 2−λ:

|Pr[A → 1|P = P1]−Pr[A → 1|P = P0]| ≤ 2−λ.

We refer to Algesheimer et. al [29, Section 3.2], and Schoenmakers and Tuyls [247, Appendix

A], for the proof of the statistical λ-indistinguishability.

We recall that an encoded message msg of N /2 complex numbers with the CKKS scheme is

an integer polynomial of Z[X ]/(X N +1). Given that ||msg || < 2δ, and a second polynomial M

of N integer coefficients with each coefficient uniformly sampled and bounded by 2λ+δ−1

for a security parameter λ, Lemma 1 suggests that Pr[||msg (i ) + M (i )|| ≥ 2λ+δ] ≤ 2−λ, for

0 ≤ i <N and where i denotes the i th coefficient of the polynomial. That is, the probability

of a coefficient of msg +M to be distinguished from a uniformly sampled integer in [0,2λ+δ)

is bounded by 2−λ. Hence, during Protocol 5 each party samples its polynomial mask M

with uniform coefficients in [0,2λ+δ). The parties, however, should have an estimate of the

magnitude of msg to derive δ, and a probabilistic upper-bound for the magnitude can be

computed by the circuit and the expected range of its inputs.

In Protocol 5, the masks Mi are added to the ciphertext of RQℓ
during the decryption to

the secret-shared domain. To avoid a modular reduction of the masks in RQℓ
and ensure

a correct re-encryption in RQL , the modulus Qℓ should be large enough for the additions

of N masks. Therefore, the ciphertext modulus size should be greater than (N + 1) · ||M ||
when the bootstrapping is called. For example, for N = 10, a QL composed of a 60 bits

modulus, a message msg with ||msg || < 255 (taking the scaling factor ∆ into account) and

λ= 128, we should have ||Mi || ≥ 2183 and Qℓ > 11 ·2183. Hence, the bootstrap should be called

at Q3 because Q2 ≈ 2180 and Q3 ≈ 2240. Although the aforementioned details suggest that

DBootstrapALT(·) is equivalent to a depth 3 to 4 circuit, depending on the parameters, it is

still compelling, as it enables us to refresh a ciphertext and apply an arbitrary complex linear

transformation at the same time. Thus, its cost remains negligible compared to a centralized

bootstrapping where any transformation is applied via rotations.

C.5 Supplementary Experimental Results

We provide further experimental results of POSEIDON, that were left out of the main text due

to space constraints. We provide the microbenchmarks and execution times of various neural

network architectures.

C.5.1 Microbenchmarks

We present microbenchmark timings for the various functionalities and sub-protocols of

POSEIDON in Table C.3. These are measured in an experimental setting with N = 10 parties,
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Topology Local Computation:FFLocal Computation:BPREDUCE (s)Comm.Total

(6, 1, 1, 2) 0.40 0.36 0.05 0.47 1.28

(6, 2, 2, 2) 0.44 0.43 0.04 0.52 1.43

(16, 2, 2, 8) 0.48 0.42 0.03 0.54 1.47

(16, 4, 4, 8) 0.47 0.45 0.04 0.51 1.47

(32, 8, 8, 8) 0.57 0.50 0.04 0.45 1.56

(32, 16, 16, 8) 0.55 0.52 0.03 0.47 1.57

(64, 8, 8, 8) 0.55 0.50 0.04 0.45 1.54

(64, 32, 32, 8) 0.55 0.62 0.04 0.43 1.64

(128, 32, 32, 8) 0.60 0.63 0.04 0.38 1.65

(128, 64, 64, 8) 0.78 0.80 0.05 0.56 2.19

(256, 64, 64, 8) 1.04 1.36 0.06 0.38 2.84

(256, 128, 128, 8) 2.01 2.62 0.11 0.61 5.35

Table C.2: Execution times (in seconds) per-global-iteration of various neural network architectures
with batch size B = 120, N = 10 parties. Local Computation:FF, Local Computation:BP, Comm. stand
for Local Computation:feed-forward, Local Computation: backpropagation, and communication
respectively.

a dimension of d = 32 features, h = 64 neurons in a layer or kernel size k = 3×3, and degree

da = 3 for the approximated activation functions for FC, CV, FC backpropagation, CV back-

propagation, and average-pooling benchmarks. These benchmarks represent the processing

of 1 sample per party, thus b = 1. For max-pooling, we achieve a final precision of 7 bits

with a square-root approximated by a Chebyshev interpolant of degree da = 31. We observe

that max-pooling is 6 times slower than average-pooling, has a lower precision, and needs

more communication due to the large number of DBootstrap(·) operations. For 12-bits preci-

sion, max-pooling takes 4.72s. This supports our choice of using average-pooling instead of

max-pooling in the encrypted domain. The communication column shows the overall commu-

nication between the parties in MB. As several HE-based solutions [112, 148, 126], use square

activation functions, we also benchmark them and compare them with the approximated

activation functions with da = 3.

We note that Setup Phase stands for the offline phase and it incorporates the collective gen-

eration of the encryption, decryption, evaluation, and rotation keys based on the protocols

presented in [209]. Most of the time and bandwidth are consumed by the generation of the

rotation keys needed for the training protocol. We refer the reader to [209, 200] for more

information about the generation of these keys. Although we present the Setup Phase mi-

crobenchmark to hint about the execution time and communication overhead of this offline

phase, we note that it is a non-trivial task to extrapolate its costs for a generic neural network

structure. Model-Update Phase indicates the reducing step for 1 weight matrix (updating the

weight matrix in root) and collectively refreshing it.
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Functionality Execution time (s) Comm. (MB)

ASigmoid/ASmoothRelu 0.050 -

ASigmoidD/ASmoothReluD 0.022 -

Square / SquareD 0.01 / 0.006 -

ASoftmax 0.07 -

DBootstrap(·) 0.09 6.5

DBootstrapALT(·) (log2 (h) rots) 0.18 6.5

DBootstrapALT(·) with Average Pool 0.33 6.5

MaxPooling 2.08 19.5

FC layer / FC layer-backprop 0.09 / 0.13 -

CV layer / CV layer-backprop 0.03 / 0.046 -

DKeySwitch 0.07 23.13

Setup Phase 18.19 3.8k

Local Computation Phase (only communication) 0.03 18.35

Aggregate Phase 0.09 7.8

Model-Update Phase 0.1 6.5

Table C.3: Microbenchmarks of different functionalities for N = 10 parties, d = 32, h = 64, N = 213,
da = 3, k = 3×3.
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We show how to use these microbenchmarks to roughly estimate the online execution time and

communication overhead of one global iteration for a chosen neural network structure. We

combine the results of Table C.3 for layers/kernels with specific size, fixed N , da , and N , with

those of Table 4.2 that show POSEIDON’s linear scalability with N for the operations requiring

communication, linear scalability with N , and logarithmic scalability with d . We scale the

execution time of each functionality for the various parameters depending on the theoretical

complexity. Here exemplify the time for computing one global iteration with N = 50 parties,

for a CNN with 32×32 input images, 1 CV layer with kernel size k = 6×6, 1 average-pooling

layer with k = 3×3, and 1 FC layer with h = 128 neurons. We observe that the number of parties

N is 5 times bigger than the setting of Table C.3, thus yields one round of communication

of Local Computation Phase and Aggregate Phase as 0.03×5 = 0.15s and 0,09×5 = 0.45s,

respectively. The Model-Update Phase microbenchmark is calculated for 1 weight matrix, thus

with 2 weight matrices, Model-Update Phase will consume 0.2s. For the LGD computation,

we start with the CV layer with k = 6×6 kernel size. We remind that CV layers are represented

by FC layers, thus the kernel size affects the run-time logarithmically; we multiply the CV layer

execution time by 2 (0.03×2 = 0.06) followed by an activation execution time of 0.05s. For

more than 1 filter per CV layer, this number should be multiplied by the number of filters

(assuming no parallelization). Then, we use DBootstrapALT(·) with average pooling to refresh

the ciphertext, compute the pooling together with the backpropagation values yielding an

execution time of 0.33s scaled to 50 parties as 0.33× 5 = 1.65s. Lastly, since its execution

time scales logarithmically with the number of neurons, the FC layer will be executed in

0.09/log2(64)∗log2(128) = 0.105s followed by another activation of 0.05s. A similar approach is

then used for the backward pass and with FC layer-backprop, CV layer-backprop, and using the

derivatives of the activation functions. The microbenchmarks are calculated using 1 sample

per-party; thus, to extrapolate the time for b > 1 without any parallelization, the total time for

the forward and backward passes should be multiplied by b. Finally, as this example is a CNN,

we already refresh the ciphertexts after each CV layer both in the forward and backward pass,

to compute pooling or to re-arrange the slots. To extrapolate the times for MLPs, the number

of bootstrappings are calculated as described in Section 4.3.6 and this is multiplied by the

DBootstrap(·) benchmark. Extrapolating the communication overhead for a global iteration is

straightforward: As the communication scales linearly with the number of parties, we scale the

overheads given in Table C.3 with N . For example, with N = 50 parties, Local Computation

Phase and Aggregate Phase consume 18.32×5 = 91.6MB and 7.8×5 = 39MB, respectively.

Similarly, the total number of DBootstrap(·), and its variants, should be multiplied by 5. Lastly,

in this example, the weight or kernel matrices fit in one ciphertext (N /2 = 4,096 slots); if more

than 1 cipher per weight matrix is needed, the aforementioned numbers should be multiplied

by the number of ciphertexts.

C.5.2 Benchmarks on Various Neural Network Topologies

We provide execution times of different network topologies in Table C.2. “Topology” represents

number of features (d), hidden neurons in each layer (h1,h2), and number of output labels
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(h3) as (d ,h1,h2,h3). We use local batch size b = 12 and global batch size B = 120 for N = 10

parties. We use ASigmoid with da = 3 as an activation function. The execution times indicate

the time required for one global iteration, i.e., a processing of the global batch, and we report

forward pass, backpropagation and the number of communications in separate columns.

The “Communication” column includes the communication required for the Aggregate Phase

phase and for DBootstrap(·) operations. We provide the feed-forward and backpropagation

times in Local Computation Phase separately.

C.5.3 Benchmarks on Various Convolutional Neural Network Topologies

We provide extrapolated execution times of different CNN topologies in Table C.4. As we

introduce several operations (derivative of pooling) in the forward pass to bootstrapping

function, we do not separate between forward pass and backpropagation times, and we

introduce the overall execution times. “Topology” represents the padded (power-of-two)

number of features (d), kernel size for CV layer (CV [n ×n]), kernel size for average pooling

layer (P [n ×n]), and h number of neurons in the last FC layer connected to hℓ output layers

(FC [h : hℓ]) as (d ,CV [n ×n],P [n ×n],FC [h : hℓ]).

Topology Execution Time (s)

(256,CV [2×2],P [2×2],FC [16 : 2]) 1.42

(512,CV [2×2],P [2×2],FC [16 : 2]) 1.52

(512,CV [2×2],P [2×2],FC [32 : 2]) 1.88

(784,CV [2×2],P [2×2],FC [32 : 2]) 2.12

(784,CV [2×2],P [2×2],FC [32 : 10]) 2.56

(784,CV [2×2],P [2×2],CV [2×2],P [2×2],FC [32 : 10]) 3.88

Table C.4: Execution times per-global-iteration of various CNN architectures, with batch size B = 120,
N = 10 parties.
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D Privacy-Preserving Federated Recur-
rent Neural Networks

D.1 Detailed Dataset Description

Hourly Energy Consumption (HEC): This dataset contains historical hourly energy consump-

tion (in MegaWatts) from 12 major electricity distribution companies across the United States.

The data was collected by PJM Interconnection LLC’s website and is publicly available on

Kaggle [132]. The dataset contains 12 files, each corresponding to a distribution company

and to a specific time period. Table D.1 shows further details about the names of these 12

companies and the number of samples in each file. The total number of samples is 1,090,167.

Note that for our experiments with N = 10 data holders, we use the first 10 companies for the

training, but we include samples from all companies in the test set. To capture the season-

ality in energy consumption (i.e., trends with respect to daytime vs. nighttime, weekdays vs.

weekends, winters vs. summers etc.), we incorporate on top of the energy consumption values

5 more features in the input space: hour, day-of-the-week, day-of-the-month, month and

year (d = 6). Additionally, for every file, we separately perform Min-Max scaling on the energy

consumption values. This allows for a realistic distribution of the data among the multiple

data holders (each data holder has one file, and does not necessarily know the range of the

energy consumption values for other data holders).

Stock Prices (Stock): This dataset contains historical daily stock prices and statistics for 10

companies, and was collected by the Yahoo! Finance website [261]. Similar to the HEC dataset,

we perform Min-Max scaling on each file separately. Table D.2 shows the company name for

each file, the data collection period, and the number of samples per file. The total number

of samples is 39,873. To prepare the datasets for the forecasting tasks, we pre-process and

slice them using a sliding window of size T for varying timesteps T = [5,10,20] for our model

performance analysis.

Inflation dataset (Inflation): This dataset contains quarterly inflation rate based on consumer

price index from 1998-Q1 to 2022-Q1 with 97 timesteps for 40 different countries and was

collected from the Organisation for Economic Cooperation and Development [79]. We split
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the data into 40 different files for a realistic distribution. Each data holder receives 4 files

(imbalanced setting) or the aggregate data is distributed evenly to the data holders (even

setting). We perform Min-Max scaling on each file separately. Each file is processed with a

sequence of length 8.

Breast Cancer Wisconsin (BCW): This dataset [236] contains benign and malignant breast

cancer samples. As the original dataset is centralized with 699 samples (576 training and 123

test samples), we randomly distribute the data among N=10 data holders each having 57-58

training samples for the even setting. For the imbalanced setting, one party has half of the

training data and we evenly distribute the other half to the remaining parties. We perform Min-

Max scaling on each file separately. BCW has 9 features that we treat as timesteps, i.e., T=9

(we also experimentally evaluated T=1 and d=9 but did not observe a significant difference in

classification accuracy).

Company Name File Name [132] #Samples

American Electric Power [AEP_hourly.csv] 121,273
Commonwealth Edison [COMED_hourly.csv] 66,497
The Dayton Power and Light C. [DAYTON_hourly.csv] 121,275
Duke Energy Ohio/Kentucky [DEOK_hourly.csv] 57,739
Dominion Virginia Power [DOM_hourly.csv] 116,189
Duquesne Light Co. [DUQ_hourly.csv] 119,068
East Kentucky Power Cooperative [EKPC_hourly.csv] 45,334
FirstEnergy [FE_hourly.csv] 62,874
Northern Illinois Hub [NI_hourly.csv] 58,450
PJM East Region [PJME_hourly.csv] 145,366
PJM West Region [PJMW_hourly.csv] 143,206
PJM Load [PJM_Load_hourly.csv] 32,896

Table D.1: Detailed description of the HEC dataset.

Company Name File Name [261] From To #Samples

Apple Inc. [AAPL.csv] 1980-12-12 2017-08-11 9,247
Amazon.com, Inc. [AMZN.csv] 1997-05-15 2022-05-19 6,296
Alibaba G.H.L. [BABA.csv] 2014-09-19 2022-05-19 1,931
Facebook [FB.csv] 2012-05-18 2022-05-19 2,518
Alphabet Inc. [GOOG.csv] 2004-08-19 2022-05-19 4,470
Alphabet Inc. [GOOGL.csv] 2004-08-19 2022-05-19 4,470
Netflix Inc. [NFLX.csv] 2002-05-23 2022-05-19 5,034
Tesla, Inc. [TSLA.csv] 2010-06-29 2022-05-19 2,995
Twitter, Inc. [TWTR.csv] 2013-11-07 2022-05-19 2,148
Uber Tech., Inc. [UBER.csv] 2019-05-10 2022-05-19 764

Table D.2: Detailed description of the Stock dataset.
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Algorithm 10 Matrix Multiplication

Inputs: A, B , two n×n matrices, expressed as ℓ×ℓmatrices, where each entry is a sub-matrix
of dimension (n/ℓ)× (n/ℓ).

Outputs: C ← A⊗B
1: for i = 1 → ℓ do
2: for j = 1 → ℓ do
3: bi , j ,1 ←σ(Bi , j )
4: for v = 2 → n/ℓ do
5: bi , j ,v ←ψv (bi ,1)
6: end for
7: end for
8: end for
9: for i = 1 → ℓ do ▷ Iterate on each entry of A.

10: for j = 1 → ℓ do
11: a1 ← τ(Ai , j ) ▷ For each entry of A, compute the linear transformations τ and φ.
12: for v = 2 → n/ℓ do
13: av ←φv (a1)
14: end for
15: for v = 1 → ℓ do ▷ Product between an entry of A and each corresponding row of B .
16: d ← a1 ⊙b j ,1

17: for k = 2 → n/ℓ do
18: d ← d +ak ⊙b j ,k

19: end for
20: Ci ,v ←Ci ,v +d ▷ Aggregate the intermediate results on C .
21: end for
22: end for
23: end for
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D.2 Matrix Multiplication Protocol

Algorithm 10 presents the plaintext operations required for the matrix multiplication protocol

with multi-dimensional packing (see Section 5.3.1). This algorithm is described in the plaintext

space for clarity; it is the same as Algorithm 7 with further details about the linear transfor-

mations employed. The first outer loop (Line 1) pre-computes the linear transformations on

the entries (sub-matrices) of the right-matrix B while the second one (Line 9) calculates the

entries of the left-matrix A. The inner loop starting at Line 15 computes the product between

one entry of A and each corresponding row of B . Finally, it aggregates the intermediate results

on the output C (Line 20).

D.3 Approximation of the proposed clipping functions

Figure D.1 displays the approximation and error curves of TanhClip(·) and SoftClip(·) (com-

pared to the baseline clipping function (Clip(·))) by employing the Minimax method with

degrees p= 5 and p= 15 in the approximation interval [−30,30] and for a clipping threshold

of |m| = 5. Error curves are plotted in the range of [−32,32] to observe the behavior of the

approximations out of the approximation interval limits. E in the plot legends indicates the av-

erage absolute error of each function in the approximation interval [−30,30]. We observe that

both approximations yield similar shapes and their error oscillation is alike. Yet, for smaller

degrees, e.g., p= 5, the average error E of TanhClip(·) is slightly smaller than SoftClip(·) (0.643

vs.0.706). For higher degrees (p= 15), however, SoftClip(·) achieves a better approximation

(i.e., E = 0.089 vs. E = 0.183 for TanhClip(·)). Moreover, the divergence of SoftClip(·) near

the limits of the approximation interval is slower than TanhClip(·) (see Figure D.1c); this is

a desired characteristic for any approximation. As a consequence, one should choose the

approximation method based on the characteristics of the dataset, the desired degree (or

precision) required for the polynomial approximation, and the aforementioned features of

these approximations.
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Figure D.1: Approximation and error curves of TanhClip(·) and SoftClip(·) compared to baseline clipping
function Clip(·) with degrees p= 5 and p= 15 in the interval [−30,30] for a clipping threshold of |m| = 5.
Error curves are plotted in the range of [−32,32]. E in the legends of the approximation plots indicates
the average absolute error per approximation in the interval [−30,30].
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E Privacy-Preserving Federated Neu-
ral Network Learning for Disease-
Associated Cell Classification
E.1 Data Preprocessing and Parameter Selection

Our data preprocessing is similar to the one used in CellCnn [32]. To address the distributed

setting, we split individual donors in the training set to N institutions. Each party then

generates the multi-cell inputs similar to CellCnn (Figure 6.1) by selecting c cells per sample,

and z samples per class or per patient, depending on the experiment. As a result, each multi-

cell input sample has a size of c ×m, where m is the number of markers; and the total training

set per party has o × z multi-cell inputs, where o is the number of labels when the data is

generated in a per class-basis. The total training set has p × z multi-cell inputs, where p is the

number of patients in that institution when the data is generated in a per patient-basis.

For accuracy evaluation, we use two test datasets for each experimental setting: One is gener-

ated by multi-cell inputs of c cells and z samples drawn from test set as in training set, and

one is generated with the g of cells per individual to predict the phenotype where g is the

minimum of all available cells per individual in the test set. Lastly, for a fair comparison, we

use the same test set generated in all settings per dataset.

For all experimental settings, we scale and standardize the marker distributions, based on the

training data.

Below, we give the parameters for each experimental setting.

RRMS/NIND experiments. For RRMS and NIND experiments in Figures 6.3 and 6.4, we

generate two training datasets: (i) multi-cell inputs with 100 cells were drawn for each class

label to generate a dataset of 30000 samples (phenotype-based) and (ii) multi-cell inputs with

2000 cells were drawn from each patient to generate 480 samples (patient-based). We report

the median accuracy in Figures 6.3 and 6.4, for patient-based multi-cell input generation in

Table E.1.

The size of the test set for multi-cell inputs, is set to 10000 for the phenotype-based multi-

cell generation, and to 96 for patient-based multi-cell generation setting. The test set for
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phenotype classification is 12 donors for all RRMS and NIND experiments.

CMV experiments. We transform the marker measurement with the inverse hyperbolic sine

function with a cofactor of 5. The training and test datasets respectively comprise 14 and 6

donors.

For the CellCnn results in Table E.1, 200 cells were drawn for each class label to generate one

multi-cell sample and 2000 samples are generated per label. For all distributed settings, we

also generate 200 cells per sample and gradually decrease the number of samples bagged in

each party for a fair comparison.

The size of the test set including multi-cell inputs is set to 4000 and the size of the test set for

phenotype classification is 6 donors.

AML Experiments. For the AML experiments in Table E.1, we draw 200 cells per class label to

generate multi-cell samples and 1000 samples generated per label. Note that there are 3 class

labels for this set of experiments. For all distributed settings, we generate 200 cells per sample

and gradually decrease the number of samples, as in other experimental settings. The size of

the test set including multi-cell inputs, is set to 3000 and the size of the test set for phenotype

classification is 6 donors.

Machine Learning Parameters. For all accuracy experiments, we use 8 filters, average pooling,

1 local iteration per party before aggregating local gradients, identity activation after convolu-

tion, and an approximated sigmoid activation for the dense layer. For the baseline (CellCnn),

we rely on their original optimizer, ADAM, and for PRICELL, we use SGD with momentum (µ)

to enable efficient training of the neural network under encryption. We vary µ= 0.5−0.9 and

the learning rate η= 0.0001−0.01 for the distributed setting.

For the RRMS and NIND experiments, we use a batch size of 64 for the baseline (CellCnn)

and gradually decrease the batch size proportionally to the number of parties when data is

distributed. For example, when the number of parties is 4, the local batch size is 16. We use

the approximated sigmoid activation in [−1,1] with a polynomial degree of 3 for the dense

layer, and 30 epochs.

For the CMV experiments, we use a batch size of 200 for the baseline (CellCnn) and gradually

decrease the batch size proportionally to the number of parties when the data is distributed.

For example, when the number of parties is 2, the local batch size is 100. We use an approxi-

mated sigmoid activation in [−3,3] with a polynomial degree of 3 for the dense layer, and 20

epochs.

For all AML experiments, we use a batch size of 200 for the baseline (CellCnn) and 100 for

the local batch size in the distributed setting with 2 parties. We use an approximated sigmoid

activation in [−3,3] with a polynomial degree of 3 for the dense layer, and 20 epochs.

Lastly, for the Local training in Figures 6.2, 6.3, and 6.4 or the Local row in Table E.1, we use the

original CellCnn architecture, with the same baseline parameters and average the accuracy,

precision, and recall over N local parties’ models.
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Security Parameters. Unless otherwise stated, all experiments use a cyclotomic polynomial

ring of dimension N = 215 and an initial level L = 10, which provides 214 slots per ciphertext

and allows for a depth-10 circuit before bootstrapping is needed (10 operations to be carried

out before bootstrapping). For the inference times given in Table 6.1, we start with an initial

level of 4 as we do not need the backpropagation. This enables a more efficient forward

pass as operations carried out on a ciphertext with a lower level are less expensive. All our

cryptographic parameters ensure at least 128-bit security level during the training and up to

256-bit security during the inference.

E.2 Summary of Experiments

In Table E.1, we show the median accuracy, precision, recall, and F-score values of 10 runs for

RRMS and NIND experiments with patient-based sub-sampling shown in Figures 6.3c, 6.3d

and Figures 6.4c, 6.4d, and CMV experiments for phenotype-based sub-sampling shown in

Figure 6.2. We also report these metrics for the AML classification for the centralized and

two-party PRICELL settings.

We note that for 3-class classification, i.e., AML, we rely on macro-averaging on metrics, and we

calculate the F-score in Table E.1 over the averaged precision and recall for the Local-training

experimental setting.

Our results show that PRICELL achieves an accuracy comparable to the centralized and non-

private solutions. The accuracy achieved by PRICELL remains almost the same as the central-

ized one, and the slight decrease in phenotype classification in NIND classification is due to

the limited number of samples in the test set for this task, i.e., there are only 12 patients in the

NIND phenotype test set, which results in accuracy decrease of 4% in the median value when

the trained model misses only one patient classification.

Lastly, we note that the differences in the precision and recall values are due to the nature

of the preprocessing and training mechanism: the random selection of multi-cell inputs

generates higher or lower precision and recall values depending on the eventual selection,

even in the centralized and no privacy-protection solution.

E.3 Downstream Analysis

The original CellCnn [32] study aims at detecting the rare disease-associated cell subsets via

learned filter weights. The final filter weights are used to select phenotype-associated cell

subsets via a filter response, i.e., the weighted sum of the abundance profile for each cell. As

the cell subset selected by a filter can contain more than one cell type, the authors perform a

density-based clustering of the group of cells with high cell-filter responses.

We perform an analogous analysis to evaluate the effect of our introduced changes in the
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original neural network architecture, namely the average pooling, the approximated activation

functions, and the optimizer. We introduce these changes in CellCnn’s original implementa-

tion, simulate our encryption on centralized data, and conduct further analysis by using their

downstream analysis [32]. We use the CMV infection dataset with c = 200 cells per multi-cell

input and z = 1000 samples per phenotype to generate the training dataset. The test set is

generated as explained in the Data Preprocessing and Parameter Selection section. We train 20

models for CellCnn and 20 models for PRICELL simulation and take the best 3 models for each

approach based on the validation accuracy, as in the original work [32]. In all model training,

we use 20 epochs with early-stopping and varying numbers of filters in each model training.

In Figure E.1, we show the consensus filters, i.e., one representative filter per class (phenotype)

that has minimum distance to all other members of the hierarchically clustered filters, based

on a threshold of 0.2, found by CellCnn and PRICELL simulation, respectively. In both Fig-

ures E.1a and E.1b, we observe that the filter which is positively associated (second filter) with

previous CMV infection gives more weights to the CD16, CD57, NKG2C, and CD94 markers.

We note that while the trend of consensus filters is similar, the distribution of the consensus

filters, i.e., the final filter weights and the scale of the values, differs between CellCnn and

PRICELL. This is due to our approximated activation function that affects the final values of the

filter weights but does not affect the interpretation from the consensus filters. Similar results

were found for the repetition of these experiments, which suggests that, as in the original

work [32], our encrypted model is able to find natural killer (NK) cell populations associated

with prior CMV infection.

In Figure E.2, we show the boxplot of the selected cell population frequencies from the test

samples of the CMV- and CMV+ classes by using the positively associated filter. Although

CellCnn has higher discriminative frequencies, PRICELL simulation is able to select CMV+ cell

populations with the positively associated filter.

Finally, we show in Figure E.3 the marker expression profiles for all cells vs. cell population

selected by the positively associated filter learned by CellCnn training (Figure E.3a) and by

PRICELL simulation(Figure E.3b). In both CellCnn and PRICELL training, we again observe

that the positively associated filter weighs CD16, CD57, NKG2C, and CD94 markers more than

the others.

In summary, we show that the PRICELL training does not affect the further findings of an

existing work that performs training on a centralized data without integrating a privacy-

preserving mechanism.
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(a) Consensus filters found by CellCnn
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(b) Consensus filters found by PRICELL simulation

Figure E.1: Comparison of the consensus filters (one representative filter per class label) learned by (a)
CellCnn original architecture, and by (b) PRICELL’s adapted architecture for encrypted training on CMV
dataset.
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(b) PRICELL simulation

Figure E.2: Comparison of the selected cell population frequencies from the test samples of the CMV- and
CMV+ classes by using the positively associated filter learned by (a) CellCnn original architecture, and by
(b) PRICELL’s adapted architecture for encrypted training.
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Setting/Metrics Accuracy Precision Recall F-score
RRMS (multi-cell / phenotype classification)

CellCnn 0.65 / 0.67 0.62 / 0.71 0.61 / 0.71 0.66 / 0.71
Local (N =2) 0.59 / 0.62 0.59 / 0.68 0.62 / 0.64 0.59 / 0.66
PRICELL (N =2) 0.65 / 0.67 0.66 / 0.75 0.62 / 0.64 0.64 / 0.67
Local (N =4) 0.55 / 0.55 0.57 / 0.61 0.60 / 0.61 0.58 / 0.62
PRICELL (N =4) 0.64 / 0.67 0.63 / 0.73 0.61 / 0.64 0.61 / 0.69
Local (N =6) 0.53 / 0.52 0.53 / 0.58 0.55 / 0.54 0.53 / 0.57
PRICELL (N =6) 0.64 / 0.67 0.68 / 0.80 0.61 / 0.64 0.63 / 0.69

NIND (multi-cell / phenotype classification)
CellCnn 0.72 / 0.75 0.82 / 0.83 0.75 / 0.71 0.76 / 0.77
Local (N =2) 0.57 / 0.58 0.65 / 0.65 0.59 / 0.52 0.62 / 0.63
PRICELL (N =2) 0.72 / 0.75 0.73 / 0.75 0.80 / 0.86 0.78 / 0.80
Local (N =4) 0.55 / 0.55 0.66 / 0.68 0.51 / 0.50 0.59 / 0.58
PRICELL (N =4) 0.72 / 0.71 0.75 / 0.73 0.84 / 0.71 0.78 / 0.75
Local (N =6) 0.53 / 0.52 0.63 / 0.64 0.57 / 0.56 0.59 / 0.57
PRICELL (N =6) 0.71 / 0.71 0.73 / 0.75 0.76 / 0.71 0.75 / 0.75

CMV (multi-cell / phenotype classification)
CellCnn 0.80 / 0.75 0.72 / 0.58 0.98 / 1.00 0.83 / 0.73
Local (N =2) 0.54 / 0.58 0.52 / 0.42 0.50 / 0.50 0.52 / 0.47
PRICELL (N =2) 0.79 / 0.75 0.71 / 0.58 0.98 / 1.00 0.83 / 0.73
Local (N =3) 0.59 / 0.55 0.56 / 0.40 0.64 / 0.67 0.60 / 0.49
PRICELL (N =3) 0.79 / 0.75 0.76 / 0.58 0.84 / 1.00 0.80 / 0.73
Local (N =5) 0.50 / 0.52 0.44 / 0.31 0.57 / 0.55 0.50 / 0.39
PRICELL (N =5) 0.78 / 0.75 0.69 / 0.58 0.97 / 1.00 0.82 / 0.73

AML (multi-cell / phenotype classification)

CellCnn 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
Local (N =2) 0.98 / 1.00 0.98 / 1.00 0.98 / 1.00 0.98 / 1.00
PRICELL (N =2) 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00

Table E.1: Classification performance (accuracy, precision, recall, and F-score) of the models obtained
with PRICELL, original CellCnn, and local training without collaboration for RRMS, NIND, CMV, and
AML classification tasks. All models are tested on two datasets for multi-cell and phenotype classification
respectively, separated with ’/’.
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(a) CellCnn

 

 

 
 

(b) PRICELL simulation

Figure E.3: Comparison of the histograms of univariate z-transformed marker expression profiles for
all cells and for the cell population selected by the positively associated filter learned by (a) CellCnn
original architecture, and by (b) PRICELL’s adapted architecture for encrypted training on CMV dataset.
The distributions show that PRICELL training does not affect the findings of the non-privacy preserving
training.
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