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Abstract

Upper limb amputation significantly impacts daily activities and diminishes the quality of life

for those affected. The aspiration to replace a lost hand with a functional substitute has deep

historical roots. People have sought prosthetic limbs for aesthetic, professional, or personal

independence purposes. Indeed, the hand is an essential part of the body and a powerful tool,

and its loss can lead to significant physical and emotional challenges.

After hand loss, basic daily tasks can become challenging and people with upper limb ampu-

tation have limited options to regain some dexterity. Over the years, researchers have been

working on creating robotic prosthetic hands (RPHs) that now match the size and weight

of a human hand. Today, RPHs can execute single-finger movements and reproduce grasps

used in most situations, as well as non-grasp-related motions. However, despite the growing

complexity of these devices, the control strategy has remained the same, and RPHs continue

to be seen as basic tools.

This thesis presents research on single-finger proportional control for RPHs, a strategy close to

the natural way we control our hands. I investigate different aspects of EMG decoding using

deep learning techniques and integrating such decoding with robotic automation to tackle

the inherent limitations of surface EMG decoding.

I begin by presenting the existing solutions for patients with trans-radial amputation and

describe EMG decoding in the framework of RPHs. Focusing specifically on the potential

and existing limitations of their primary components, I also offer insights into the future

development of various elements and the overall field of RPH advancement.

In the second chapter, I investigate the potential of deep learning for single-finger proportional

control, characterize a new medium-density EMG system, explore EMG data augmentation

using a generative adversarial network, and propose an easy-to-use real-time model calibra-

tion framework to bridge the gap between lab experiments and home-based applications.

Finally, I explore the advantages of implementing shared control approaches that combine

proportional single-finger decoding and robotic automation to improve the control of RPHs.

This includes the development of a compliant robotic controller to improve grasp robustness

and an autonomous controller for in-hand object manipulation.
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This thesis contributes to the improvement of RPH control with a biomimetic decoding ap-

proach, aiming to improve the intuitiveness, dexterity, and adoption of RPHs by individuals

with trans-radial amputation by offering more accessible, effective, and user-friendly solutions.

Keywords: robotic prosthetic hand, EMG, deep learning, CNN, proportional control, shared

control, robotic automation
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Résumé

L’amputation d’un membre supérieur a un impact significatif sur les activités quotidiennes

et diminue la qualité de vie des personnes concernées. L’aspiration à remplacer une main

perdue par un substitut fonctionnel a des racines historiques profondes. Des personnes ont

cherché à obtenir des prothèses à des fins esthétiques, professionnelles ou d’indépendance

personnelle. En effet, la main est une partie essentielle du corps et un outil puissant, et sa

perte peut entraîner des difficultés physiques et émotionnelles considérables.

Après la perte de la main, les tâches quotidiennes de base peuvent devenir difficiles et les

personnes amputées d’un membre supérieur ont peu d’options pour retrouver une certaine

dextérité. Au fil des années, les chercheurs ont travaillé à la création de prothèses de main robo-

tisées (PMR) qui ont désormais la taille et le poids d’une main humaine. Aujourd’hui, les mains

prothétiques robotisées peuvent exécuter les mouvements de chaque doigt indépendamment

et reproduire les mouvements de préhension utilisés dans la plupart des situations, ainsi que

des mouvements non liés à la préhension. Cependant, malgré la complexité croissante de ces

dispositifs, la stratégie de contrôle est restée la même et les PMRs continuent d’être considérés

comme des outils basiques.

Cette thèse présente une recherche sur le contrôle proportionnel de chaque doigt pour les

PMRs, une stratégie proche de la manière naturelle dont nous contrôlons nos mains. J’étudie

différents aspects du décodage EMG en utilisant des techniques d’apprentissage profond et

en intégrant ce décodage à l’automatisation robotique pour s’attaquer aux limites inhérentes

au décodage EMG de surface.

Je commence par présenter les solutions existantes pour les patients souffrant d’amputation

transradiale et je décris le décodage EMG dans le cadre des PMRs. En me concentrant spé-

cifiquement sur le potentiel et les limites actuelles de leurs principaux composants, j’offre

également un aperçu du développement futur de divers éléments et du domaine général de

l’avancement des PMRs.

Dans le deuxième chapitre, j’étudie le potentiel de l’apprentissage profond pour le contrôle

proportionnel de chaque doigt, je caractérise un nouveau système EMG de densité moyenne,

j’explore l’augmentation des données EMG à l’aide de réseaux antagonistes génératifs et je

propose un cadre de calibration de modèle en temps réel facile à utiliser pour combler le fossé
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entre les expériences de laboratoire et les applications à domicile.

Enfin, j’explore les avantages de la mise en œuvre d’approches de contrôle partagées qui

combinent le décodage proportionnel de chaque doigt et l’automatisation robotique pour

améliorer le contrôle des PMRs. Cela inclut le développement d’un contrôleur robotique pour

améliorer la robustesse de la saisie et d’un contrôleur autonome pour la manipulation d’objets

dans la main.

Cette thèse contribue à l’amélioration du contrôle des PMRs grâce à une approche de déco-

dage biomimétique, visant à améliorer l’intuitivité, la dextérité et l’adoption des PMRs par les

personnes souffrant d’amputation trans-radiale en offrant des solutions plus accessibles, plus

efficaces et plus facile à utiliser.

Mots-Clés : main prothétique robotisée, EMG, apprentissage profond, CNN, contrôle propor-

tionnel, contrôle partagé, automatisation robotique.
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1 Introduction

This thesis explores different ways to enhance the control of robotic prosthetic hands (RPHs).

To provide a comprehensive context, the following literature review aims at giving the reader a

broader overview of the field synthesizing the different aspects related to improving RPHs and

situating the control dimension within a larger, overarching challenge.

The content of this chapter is the postprint from the article Mendez, Iberite et al., “Current

Solutions and Future Trends for Robotic Prosthetic Hands.” Published in Annual Reviews of

Control, Robotics, and Autonomous Systems, 2021, pp. 595–627.

Find the published article here: https://doi.org/10.1146/annurev-control-071020-104336

Personal contributions as co-first author: Writing different chapters as well as design-

ing the related figures and tables.
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Current Solutions and Future Trends for Robotic Prosthetic Hands 

Vincent Mendez,1,* Francesco Iberite,2,* Solaiman Shokur,1,† and Silvestro Micera1,2,† 
1Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de 

Lausanne, 1202 Genève, Switzerland; email: silvestro.micera@epfl.ch 
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Abstract 

The desire for functional replacement of a missing hand is an ancient one. Historically, 

humans have replaced a missing limb with a prosthesis for cosmetic, vocational, or personal 

autonomy reasons. The hand is a powerful tool, and its loss causes severe physical and often 

mental debilitation. Technological advancements have allowed the development of 

increasingly effective artificial hands, which can improve the quality of life of people who 

suffered a hand amputation. Here, we review the state of the art of robotic prosthetic hands 

(RPHs), with particular attention to the potential and current limits of their main building 

blocks: the hand itself, approaches to decoding voluntary commands and controlling the 

hand, and systems and methods for providing sensory feedback to the user. We also briefly 

describe existing approaches to characterizing the performance of subjects using RPHs for 

grasping tasks and provide perspectives on the future of different components and the overall 

field of RPH development. 

1. INTRODUCTION 

Decades of research on robotic prosthetic hands (RPHs) have led to a paradoxical situation: 

On the one hand, the development of novel RPHs is among the most exciting fields of robotics 

(Piazza 2019), but on the other hand, the vast majority of amputee patients still use 

technologies that have changed little in almost half a century. However, this apparent 

discrepancy might seem less surprising when considering the immense challenge of 

developing a prosthetic that can mimic the functions of a hand. Indeed, the hand has one of 

largest sensory representations in the brain, and grasping is among the most complex 

coordination tasks (1); the hand has both the highest density of mechanoreceptors in the 

human body (see the sidebar titled Skin Mechanoreceptors) and the largest number of 

degrees of freedom (DOFs); and the hand permits people to both experience the surrounding 

world and shape it. 
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The skin has four types of mechanoreceptors, which are sensitive to different stimuli and 

therefore involved in different sensory functions: Merkel disks (which sense skin indentation, 

fine touch, and texture perception), Ruffini capsules (which sense skin stretch), Pacinian 

corpuscles (which sense vibration), and Meissner corpuscles (which sense dynamic 

deformation and slipperiness). Merkel disks and Ruffini capsules are slow-adapting receptors, 

meaning that they fire continuously during tactile stimuli, with a firing rate related to the 

pressure applied in their receptive field. Pacinian corpuscles and Meissner corpuscles are fast-

adapting receptors that respond mostly to changes in applied pressure or brief stimuli. 

The challenges are multiple and intricate, and they can be overcome only by combining 

advanced mechatronic solutions for dexterous and highly sensorized robotic hands with new 

approaches for robust and effective interfaces with users’ nervous systems to allow seamless 

natural–artificial integration. As such, several viable solutions can emerge from this 

multidimensional optimization problem. 

Tremendous efforts have been made in the past 20 years on the quest for an RPH that is 

easy to wear, comfortable, and intuitive to control. The design of such a device can be 

considered a compromise among dexterity, robustness, and usability (2). In the past 5 years, 

another aspect has been proposed by researchers as an essential milestone: sensorization. 

Indeed, feedback systems can increase both the acceptability and the performance of the new 

generation of RPHs (3–5). 

This review summarizes the main achievements in this field. In particular, after providing 

an overview of the existing neuroprostheses and their characteristics, we focus on four central 

aspects: (a) stable interfaces that enable a new connection with the nervous system to record 

neural signals and stimulate neural structures, (b) algorithmic strategies for decoding motor 

intentions, (c) RPH sensorization plus encoding strategies to convey somatosensory feedback, 

and (d) assessment methods to measure the efficacy of a given strategy or technology. 

Throughout the review, we keep a patient-centered perspective and ask ourselves, Does a 

novel approach significantly improve the subjects’ quality of life? Is it easy to learn and natural 

to use? And does it improve their independence? On a technical aspect, our goal is to provide a 

critical view of the most advanced technologies and a perspective on future implementations 

of RPHs. 

2. ROBOTIC HANDS 

Following a limb amputation, three solutions are generally considered: passive cosmetic limbs 

(Figure 1a); mechanical hands, often with hooks (Figure 1b); and RPHs (Figure 1c–g). In a 

survey of below-elbow amputees from Sweden, the United Kingdom, and Canada (6), 53% of 

the respondents wore a cosmetic prosthesis, 13% used a hook, 4% used a cable hand, and 30% 

used a myoelectric RPH. Despite encouraging results in the late 1990s (7), hand 

transplantation (Figure 1h) encountered significant surgical and clinical difficulties (rejection 
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and immunosuppression); it has therefore been tested in only a few patients and is not yet 

considered one of the available options. 

Figure 1 Examples of functioning hand replacement. (a) A personalized cosmetic hand solution (ITOP, 

Italy) provides a natural look. Photos reproduced with permission from ITOP and Procosil. (b) A body-

powered prosthetic solution (Ottobock, Germany) is a common approach for people with an upper-limb 

amputation. Photo reproduced with permission from Ottobock. (c) An sEMG-based pattern recognition 

system (Gen2, Coapt, USA) allows grasp classification. Photo reproduced with courtesy of Coapt LLC, 

www.coaptengineering.com. (d) sEMG control and extracellular stimulation via an implanted FINE were 

used to convey sensory feedback for home-use applications. The implant was stable for more than five 

years, and home-use electrical stimulation for sensory feedback was investigated for up to 13 days (115). 

Pannel adapted from reference 115 (CC BY-SA 4.0). (e) Fully implanted myoelectric sensors provide 

stronger and more reliable signals that do not change with arm positioning, socket rotation, or sweating 

(106). Pannel adapted with permission from reference (106). (f) Six-DOF prosthetic hand control (i-Limb 

Ultra, Össur, Iceland) uses threshold-based sEMG control and cocontraction to switch between grasps. 

(g) Sensory feedback conveyed via intraneural TIMEs enables the encoding of objects’ shape and stiffness 

(5). Pannel reproduced with permission © 2014 Lifehand 2 / Patrizia Tocci. (h) Hand transplantation is a 

promising technique which has not yet become a standard procedure due to several surgical and clinical 

difficulties. Pannel adapted with permission from reference (Bernardon et al. 2015).  

 Abbreviations: DOF, degree of freedom; FINE, flat interface nerve electrode; RPNI, regenerative 

peripheral nerve interface; sEMG, surface electromyography; TIME, transverse intrafascicular 

multichannel electrode. 

 

4



The cosmetic solution is often used for the most distal amputations (e.g., fingers) but is not 

adapted for patients with a transradial amputation given the dramatic loss of functionality. 

Body-powered mechanical hooks, mainly with one-DOF control, are popular solutions thanks 

to their low price, light weight, and easy maintenance. This type of prosthesis is also well 

suited for high-intensity work due to the control robustness. Also, because the subject must 

move their shoulder to open and close the hook, these systems have inherent proprioception 

feedback (8). However, one of the major limitations of the hook solution is the low level of 

dexterity and nonanthropomorphic appearance. Body-powered hands have solved the 

anthropomorphic aspect while keeping the robustness of body-powered solutions (9). For 

example, Baril et al. (10) developed a programmable body-powered hand that can perform 

different grasp types using a mechanical selector that blocks the closing of one or more 

fingers. Nevertheless, this solution has its drawback as well: Because of their low mechanical 

efficiency, body-powered prostheses require large amounts of energy (from 33 N for a hook to 

131 N for a hand) to produce a relatively low pinch force (15 N) (11). This could explain their 

high rejection rate by patients, which ranges between 16% and 66% depending on the survey 

and time period (12). 

Here, we concentrate on RPHs because they potentially offer the most versatile, natural, 

and power-efficient replacement for amputated hands and could become the default solution 

for patients. We investigate the challenges in existing RPHs, considering both commercially 

available solutions (Supplemental Table 1) and those in the research phase (Supplemental 

Table 2). 

Mimicking the biomechanics of a hand is not easy. Early prototypes (13) succeeded in 

designing fingers with skeleton-like structures, but biomimetic actuation was only recently 

properly implemented using muscle-like actuators (14). The challenge for RPH developers is 

to embed actuators, sensors, and electronic components into a prosthesis with the same size 

and weight as the replaced hand (13, 15, 16). Major system integration and miniaturization is 

necessary before these systems could be used by amputee patients. 

Instead, underactuation is a widespread approach to simplify the mechanics while 

keeping reasonable dexterity. An underactuated system is one where the number of degrees of 

actuation (DOAs) is smaller than the number of DOFs (see DOA/DOF < 1 in Supplemental 

Tables 1 and 2). The passive (nonactuated) DOFs are exploited to adapt to the surface in 

contact, as suggested by the concept of morphological computation (17), and to enable a self-

adjusting grip without the need to control each articulation. These systems reduce the 

number of motors needed in the RPH and therefore its complexity, weight, and price. 

2.1  Existing RPHs  

Numerous commercially available RPH solutions use underactuated mechanisms 

(Supplemental Table 1), including the Michelangelo prosthetic hand (Ottobock, Germany), 

the i-Limb Ultra (Össur, Iceland), the bebionic hand (Ottobock), and the VINCENTevolution 3 

(Vincent Systems, Germany). Despite remarkable advances, there is still arguably a trade-off 
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between dexterity and weight in these solutions, with companies usually emphasizing one 

aspect or the other. 

Many research groups are currently working on innovative solutions to tackle the 

dexterity/weight dilemma (18), such as the use of a monolithic 3D-printed soft material (19) or 

mechanical solutions to implement finger synergies via clutches (20). For example, Jing et al. 

(18) proposed an anthropomorphic RPH using only three motors that could achieve 13 grasp 

types while weighing only approximately 130 g. 

The price of RPHs is an additional limiting factor for broader adoption by patients. With 

most advanced solutions costing $10,000–20,000, many researchers advocate for cheaper 

solutions, particularly for emerging countries (e.g., 21). 

Open source RPHs are an exciting alternative to dramatically reduce the cost of 

development and distribution. One particularly interesting aspect of such hands is simplified 

maintenance and repairs (using, e.g., 3D printing) that do not rely on specific suppliers. For 

example, Open Bionics (United Kingdom) commercializes solutions for transradial amputees 

(e.g., the medically certified Hero Arm) but also provides the source files for some of their 

designs, and e-NABLE (https://enablingthefuture.org) reports 8,000 recipients of their 

prosthetics, which were built by volunteers around the world. Open source RPHs also enable 

users to alter the design to meet their unique needs; for example, the Galileo Hand (22) allows 

easy customization of the types of movements and number of electromyography (EMG) 

electrodes. 

Researchers are also working on better mechanical solutions to improve RPH dexterity. An 

underactuated hand prosthesis designed by Abayasiri et al. (23) has finger abduction and 

adduction to enable it to grasp larger objects, and an adaptive prosthetic hand designed by 

Yong et al. (24) adds DOFs in the palm with movable metacarpals. The Karlsruhe Institute of 

Technology (KIT) prosthetic hand (25) has an embedded camera and real-time object 

recognition, enabling the hand to be preshaped. Pneumatic artificial muscle (26) permits the 

development of light, compact solutions. Finally, biomimetic actuation is used for muscle-like 

actuators (14). 

In addition to the hardware aspect, there are also innovations in RPH control and 

sensorization. Low-level controllers use information about the state of the device and 

eventually activate the actuation to meet the desired state imposed by the user’s intentions. 

The choice of the state variable has a strong influence on how the device works. Position or 

speed can be read through encoders of each joint and controlled; these are straightforward 

approaches that have been used broadly in robotic applications. When the interaction of the 

hand with the external environment is of interest, more advanced control systems are 

implemented, such as torque or impedance control. Both approaches measure the force 

applied by the actuator, controlling it directly in the first case and simulating compliance in 

the second. Advanced control strategies enable complex manipulation and smoother gestures 

at the expense of a bulkier mechanical structure and a more complex control system. 

Therefore, enabling more sophisticated control requires integrated force and position sensors, 

which have been previously developed mainly to close the robotic control loop (27). 
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In summary, low-cost and light hands have flourished over the last few years. The race to 

simplify designs and reduce costs through 3D printing should not impact the dexterity of 

RPHs. For now, underactuated mechanisms are the best solution for RPHs and innovative 

designs based on synergy mechanisms or friction, the latter of which can help increase the 

number of DOAs without increasing the number of motors. 

2.2. Perspectives 

While rigid architectures are still the norm, there has been recent interest in the development 

of flexible systems that inherently permit safe robot–human interaction (28). Instead of using 

a rigid structure with mechanical joints, the compliant structures in soft designs enable them 

to bend continuously in any part. Since seminal work by Hirose & Ma (29), there have been 

several attempts to develop soft underactuated hand prostheses (30) and soft body-powered 

devices (8). These architectures combine the advantages of simple actuation with the 

performance of an adaptable hand. Recent studies have proved that soft manipulators could 

match the performance of rigid systems in many applications (31). Further investigations are 

necessary to determine whether soft architectures are viable solutions for larger use. 

Innovative actuations systems such as McKibben pneumatic muscles, granular jamming 

(32), and electro-conjugate fluid (33), which are strongly tied to soft robotic devices, are 

another interesting direction. Soft RPHs have the advantage of exploiting the structure to 

embed and eventually improve sensorization, safety, and efficiency (e.g., 34). These systems 

are at the early stage and need massive integration before being deployed in portable devices. 

3. INTERFACES WITH THE NEUROMUSCULAR SYSTEM 

Decades of work on robotic prosthetics have led to numerous invasive and noninvasive 

solutions for interfacing with the body (for a review, see Yoshida 2017) (Table 1). Here, we 

describe existing technologies and outline the ones we consider the most promising for the 

future. 

3.1 Taxonomy of the existing interfaces 

To classify and evaluate the quality of an interface, selectivity—defined as the ability to 

record from a specific location within the nerve—is the most straightforward metric. Both 

spatial and temporal selectivity are important, naturally, as they enable better motor decoding 

and more localized sensory feedback. Electrode invasiveness, by contrast, is categorized into 

two large classes, surface electrodes and implanted electrodes, the latter of which includes 

extraneural (i.e., around the nerve) (35, 36), intraneural (i.e., through the nerve) (5), and 

regenerative approaches (where the nerve regrows inside the electrode) (37; for reviews, see 

38, 39). Invasiveness is often seen as a trade-off to selectivity, with the observation that higher 

selectivity comes at the cost of greater invasiveness (40). While this relationship continues to 

be true to a large extent, two amendments are necessary: First, there are a multitude of other 
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dimensions to consider, and second, recent results are suggesting that the relationship might 

not be the same in the motor and the sensory domains. We detail both aspects here. 

 

Table 1 Maturity levels of different technologies 

Technology 

Most 

widespread Mature, home use Cutting edge, laboratory use Future directions 

Interface Body 

harnessc 

sEMGa 

iEMG (50)a 

Vibrotactile interface (176)b 

TENSb 

FINEs (135)b 

Osseointegration (137)c 

HD-sEMG (177)a 

Regenerative electrodes (37)a 

TIMEs (5, 41)b 

LIFEs (42)b 

Sieve electrodes (178)b 

Utah Array (112)c 

Noninvasive intraneural stimulation 

(ultrasound)b 

Soft neurotechnology (47)b 

Motor 

decoding 

Body power 

Threshold-

based 

sEMG 

EMG-based pattern 

recognition (e.g., Ottobock 

Myo Plus, Coapt Gen2) 

Simultaneous single-finger 

classification (74) 

Linear regression and shared 

control (78) 

Advanced control using regenerative 

peripheral nerve interfaces (37) 

Deep learning for single-finger 

proportional control  

Sensory 

feedback 

No feedback Vibrotactile haptic feedback 

(128) 

Touch contact (137) 

Position (135) 

Neuromorphic (61) 

Texture (60) 

Object stiffness (5) 

Multimodal (position and tactile) 

(63) 

Biomimetic stimulation (61) 

Temperature feedback 

Proprioception 

Sensorizatio

n 

No skin Force sensors (measuring 

motor current) 

Sensorized fingertips (e.g., 

bebionic) 

Asynchronously coded electronic 

skin (124) 

Soft embedded sensors (114) 

Bioinspired flexible organic artificial 

afferent nerve (121) 

 

Abbreviations: EMG, electromyography; FINE, flat interface nerve electrode; HD-sEMG, high-density 

surface electromyography; iEMG, intramuscular EMG; LIFE, longitudinal intrafascicular electrode; 

sEMG, surface electromyography; TENS, transcutaneous electrical nerve stimulation; TIME; transverse 

intrafascicular multichannel electrode. 

aMotor interface. 

bSensory interface. 

cBoth motor and sensory interface. 

 

Beyond the selectivity of an interface, it is crucial to consider its reach and level of 

discrimination. For example, transverse intrafascicular multichannel electrodes (TIMEs) (41) 

and longitudinal intrafascicular electrodes (LIFEs) (42) can have a very similar selectivity, but 

TIMEs reach a more substantial proportion of the nerve and therefore can infer more 

information about the whole signal. Comparing muscle stimulation with different electrodes, 
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Badia et al. (43) showed that a TIME could target three muscles, whereas they could not 

activate more than one muscle with a LIFE. Spatial discrimination of neural signals from 

nontarget signals is influenced not only by the electrode’s invasiveness (how close it is to the 

source) but also by its geometry (e.g., a spherical point source targets a small volume), 

electrode material, and configuration (e.g., a cylindrical electrode better discriminates the 

axons perpendicular to the main axis) (44). 

Signal quality and stability are also important aspects that have been extensively studied. 

Work in this area has included interventions to improve the device–tissue interfaces [e.g., 

electrode coating (45) or a hollow glass cone that permits the ingrowth of cortical neurites in 

the electrodes (46)], electrode impedance, and filtering processes to increase the signal-to-

noise ratio. The recording stability depends on biocompatibility, the electrode’s robustness 

(resistance to physical manipulation), and the stability of the contact between the interface 

and neural tissue. Significant efforts toward soft and implantable electrodes (47) have been 

made in order to reduce insertion trauma and physical mismatches between neural tissues 

and implantable interfaces. Finally, properly anchoring the electrodes with the neural tissues 

is also essential to maintain a steady recording or stimulation site over time. This is 

particularly important in the sensory domain, where the stability of the elicited sensation is 

paramount for continuous use. 

Finally, practicalities such as the cost of the technology and the difficulty of the implant 

must be considered. As such, an implantation procedure based on a known surgical 

procedure (48) has a better chance to be accepted and adopted by surgeons. The use of 

existing devices, materials, and mature technologies is also a way to reduce costs and risks. An 

example of such strategy is the use of Utah Arrays, which use well-established electrodes for 

brain recording, to interface with the peripheral nervous system. 

For motor decoding, surface EMG (sEMG) approaches are by far the most widely used 

technique to date. Recent implementations using a large number of electrodes [termed high-

density sEMG (HD-sEMG) (49)] have shown unprecedented results in term of accuracy and 

decoding robustness (for details, see Section 4). Implanted EMG (iEMG) has shown higher 

performance and stability than sEMG on the continuous control of three DOFs (50). However, 

studies have found no statistical difference in different electrodes’ ability to differentiate 

among 12 types of grasps (51). Neural interfaces with the peripheral nerves have also shown 

promising results on grasp classification with TIMEs (52) and proportional control with a Utah 

Slanted Electrode Array (53). However, the development of real-time control and sensory 

feedback stimulation is still at an early stage (52, 53) and will need further investigation. 

In the sensory domain, there is no current consensus for noninvasive approaches. Tactile 

feedback using vibrotactile (54, 55), mechanotactile (56), or sensory substitution [e.g., audio 

(57)] has been proposed. Transcutaneous electrical nerve stimulation (TENS) is a viable 

noninvasive approach to induce close to natural sensation with amputee patients (58, 59). 

However, as detailed elsewhere in this review, current solutions using implanted electrodes 

(particularly intraneural interfaces) have shown levels of sensory recovery far superior to 

those of noninvasive approaches. This is true from a functional point of view [e.g., the 
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possibility to encode texture (60) or shapes and stiffness (5)], phenomenologically [patients 

perceive the feedback as close to natural (61)], and in terms of cognitive load (62). 

3.2. Perspectives 

The challenges for future interfaces that can provide the necessary read/write bandwidth to 

use RPHs in a natural fashion are immense. We argue that the motor and sensory domains 

raise different problems. Indeed, the stimulation being close to the target is mandatory with 

current technologies, and therefore the best solutions are the most invasive ones. In the motor 

domain, it is possible to decompose the signal if we have enough sources (even noninvasive 

sources, as with sEMG). As shown in Section 4, machine learning techniques can help infer 

information from noninvasive interfaces. 

On the sensory level, the currently implantable electrodes are the most promising 

solution. However, the main advancement so far has been for the tactile modality, while the 

use of other modalities for proprioception has been obtained via a nonhomologous approach 

based on intraneural stimulation combined with the delivery of homologous tactile feedback 

via indirectly targeted intraneural electrical stimulation (63). 

Temperature sensation is another limit. Temperature is mediated through Aδ fibers (for 

cold) and C fibers (for warmth). Given the very small size of these fibers (C fibers are 20–100 

times smaller than Aβ fibers), it is not possible to target them using existing state-of-the-art 

electrodes (41). Future electrodes with even higher levels of selectivity might be able to target 

Aδ and C fibers. Sensory remapping (64) can be another viable solution to simulate 

temperature feedback on a different part of the body using a temperature display. 

4. MOTOR CONTROL 

Despite the advances in techniques for voluntary motor decoding and the increased 

sophistication of the available RPHs, body-powered prostheses are still the most robust 

control approach. The mechanism of these devices is based on a cable actuated by 

movements of the shoulder to control one DOF. The vast majority of commercially available 

RPHs use simple threshold-based sEMG decoding over a few surface electrodes and also 

generally control one DOF (65); in some cases, the RPH provides more DOFs, but this comes 

at the cost of a nonintuitive command scheme. These systems also offer no possibility to 

control several DOFs at the same time. The current situation is, therefore, increasingly 

sophisticated RPH mechanics with unchanged control strategies. As such, patients often 

abandon myoelectric prostheses, in part because the small functional improvement does not 

justify their price and complexity (12, 66). 

Here, we describe recent advances in control strategies in terms of decoding type 

(classification or continuous control) and functional achievement (e.g., number of DOFs, 

grasping, or single-finger decoding) and compare them with the classical direct control 

approach. Section 4.1 details different algorithmic approaches to decode motor functions, 
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with an emphasis on sEMG; Section 4.2 discusses the addition of robotic automation to 

improve grasp robustness; Section 4.3 compares implanted methods to extract the user’s 

intentions; and finally, Section 4.4 presents a perspective on the broader adoption of these 

techniques by patients. Table 1 includes the different decoding strategies and their level of 

maturity. 

4.1. Decoding Algorithms 

The clinical standard for RPH control is based on the use of two sEMG channels, with the 

electrodes placed superficially on antagonist muscles. The envelope of the signal is extracted 

so that the user can control the closing and opening of the RPH by modulating the amplitude 

of their muscle contraction. When the amplitude exceeds a certain threshold, the RPH will 

move depending on which muscle was activated. Companies are offering more DOFs, using 

cocontraction to cycle through different types of grasps (e.g., Ottobock’s Michelangelo hand). 

However, this type of control is highly nonintuitive and gives only low dexterity to the user. An 

alternative to this direct control approach is based on pattern recognition methods, extracting 

hand-crafted features to characterize the signal in a discriminative way (e.g., the signal root 

mean square, wavelength, and zero crossing) and classify the type of grasp intended by the 

user. This solution has become robust enough to reach the market (the Coapt system and 

Ottobock’s Myo Plus). Using 2–12 bipolar sEMG electrodes makes it possible to obtain good 

classification rates for different kinds of grasps, with 90–95% accuracy for 4–12 classes and up 

to 75% for 50 classes (67–71). 

Using a similar electrode disposition and classification method, other groups showed the 

possibility of decoding single-finger movement using the classification of flexion or extension 

(72, 73). Recently, Bhagwat & Mukherji (74) showed single- and multifinger classification of 15 

different movements with 99.79% accuracy. Researchers are also working on proportional 

control instead of classification, which makes it possible to decode several DOFs (e.g., wrist 

and finger movements) simultaneously and proportionally (75, 76). This type of control offers 

continuous position control. Several studies have also shown that single-finger proportional 

control is feasible, with good results (77, 78). 

As an alternative, nonbiomimetic EMG decoders have been developed that rely on the 

subject learning inverse maps to relate motor outputs to arbitrary control variables (79). Using 

an abstract decoding cursor control space, subjects can learn to modulate their EMG activity 

to reach different targets arranged in a center-out task in order to trigger various grasping 

movements (80). Dyson et al. (81) recently validated these results on amputee participants; 

they showed that after training, the difficulty of the tasks could be increased, improving the 

possibilities for robotic hand control. 

With only a few electrodes placed on muscles of interest, the accurate positioning of the 

electrodes requires anatomical knowledge; indeed, the type of amputation (congenital or 

traumatic), the surgical procedure, and the time since amputation (82) could influence the 

muscle anatomy and make the placement of the electrode tedious and specific to individual 

subjects. Moreover, a small shift in electrode placement can disrupt the pattern recognition 
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algorithm (83). To tackle these issues, several authors have proposed HD-sEMG as an 

alternative solution, which consists of a grid of closely spaced electrodes. The large number of 

electrodes allows information to be recorded from a large part of the subject’s forearm. 

HD-sEMG signals offer high spatial resolution, and recorded signals can be interpreted as 

spatial images of EMG activity. Using this image representation of EMG data, HD-sEMG is 

robust to small electrode shifts (84). Boschmann & Platzner (84) used a structural similarity 

index, borrowed from the computer vision field, on HD-sEMG images combined with a simple 

one-against-one nearest-neighbor classifier to decode wrist and hand motions. Similarly, 

Stango et al. (85) used a variogram of images (a measure of the degree of spatial correlation, 

used mainly in geostatistics) to classify wrist movements. Both groups showed that their 

methods, which use spatial information from the images, performed better or similarly to the 

classic feature extraction approach. Moreover, their strategies improved the robustness to 

electrode shift and electrode number. The use of several spatially close electrodes makes it 

possible to decompose the EMG signal into its constituent motor unit action potential (49, 86). 

Kapelner et al. (87) investigated this approach, decomposing EMG signals to extract motor 

unit activity from forearm muscles during wrist motions. Recently, Dai & Hu (88) showed that 

an approach consisting of finger joint angle estimation, combining classification for finger 

selection with EMG decomposition into motor unit activity, outperforms a standard 

amplitude-based approach. 

We observe a paradigm shift from feature engineering to feature learning using raw data as 

input for deep neural networks. Studies have shown that combining this deep learning 

approach with HD-sEMG offers better performance than hand-crafted features in both grasp 

classification (89) and simultaneous single-finger and wrist movement classification (90). 

Deep learning has also shown good results with a smaller number of electrodes for grasp 

classification (71) and regression of arm or wrist motions (91, 92). 

This approach permits both high dexterity and robustness, with unprecedented 

performance. However, one of the major difficulties of the deep learning approach is that it 

requires an extensive data set for training. For example, the deep learning used for the 

ImageNet challenge in 2012 used 1.2 million images for training on 1,000 categories (93). In 

the context of hand gesture recognition, generating tens of thousands of examples for a 

subject is not a viable option. 

A possible solution could use domain adaptation [often called transfer learning in the 

EMG literature (94, 95)], by leveraging data acquired from several subjects to enhance and 

accelerate training for a new user. Indeed, the aim is to use information from a database of 

several source domains and adapt it to a target domain (the end user) with a small number of 

samples. Authors generally apply deep domain adaptation (domain adaptation combined 

with deep learning) by pretraining a deep neural network and fine-tuning it with a few 

repetitions of movements by a target subject. The main idea is that gathering the recordings of 

several participants can meet the necessary conditions to learn a general mapping of all users’ 

sEMG signals. 
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Using this idea, Côté-Allard et al. (96) showed that their deep model was able to learn the 

features and significantly enhance the performance of deep networks on out-of-sample 

gestures. Using HD-sEMG and deep learning, Du et al. (97) also showed an unsupervised deep 

domain adaptation method that incrementally learns from data during a new session without 

explicit calibration of gestures. Consequently, deep learning offers a particularly attractive 

context from which to develop deep domain adaptation algorithms to leverage interuser data. 

This approach can increase decoding performance, improve robustness to electrode shift, and 

reduce the number of repetitions needed during training (98). 

As seen in this section, the search for new EMG decoding algorithms that go beyond 

threshold-based detection is an active field of research. Phinyomark & Scheme (99) and 

Khamparia & Singh (100) have reviewed recent research in EMG pattern recognition methods. 

Machine learning in the field of computer vision and object recognition has shown 

outstanding results using deep learning and is already used commercially by many 

companies. Some deep learning algorithms based on a pretrained network are now usable 

without any fine-tuning (e.g., self-driving cars). However, bio-signals are intrinsically different 

from images and need adaptation. More important, the amount of labeled EMG data available 

to effectively train deep networks might not be sufficient to capture the evolution of the signal 

over time (electrode displacement, skin impedance changes, etc.). Therefore, if model 

architectures and data processing are tailored for bio-signal applications and take into 

consideration signal evolution with time, deep learning can become a solution for more 

robust motor intention decoding. 

4.2. Shared Control to Help Motor Decoding 

The ultimate goal of RPH control is to be as close as possible to controlling a natural hand. 

Therefore, an ideal control needs to be intuitive and continuous over individual fingers and 

wrist movements. Increasing the number of DOFs and developing proportional control will 

increase dexterity for prosthesis users but will inevitably reduce the overall robustness of the 

decoder. Since reliability is one of the main factors for upper-limb prosthesis users (101), this 

is a significant issue for the commercialization of more dexterous control schemes. 

One possible solution to improve decoding robustness is to add robotic automation of 

some portion of the motor command. Shared-control strategies between a subject and a 

smart robotic hand have been reported for automated preshaping and grasping (102), grip 

force adjustment (103), slip detection, and hand closing (104). In the context of single-finger 

proportional control, Zhuang et al. (78) proposed a shared-control strategy to increase grasp 

robustness (avoiding accidental drops), by maximizing the number of contacts between the 

RPH and an object while allowing the user to maintain full autonomy over decisions about 

grasping and releasing, grasp preshaping, and non-grasp-related motions. These strategies 

allow both freedom during single-finger control and robustness during a grasp event (78) and 

can perform more dexterous movements that cannot be decoded based on EMG alone. 

However, they necessitate many DOAs (e.g., active control of each phalanx to reposition the 
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fingers around an object), which is still a significant challenge in terms of motor 

miniaturization, power consumption, and cost. 

4.3. Decoding Motor Intention via Implanted Electrodes 

Surface electrodes cannot precisely record the signal from deep muscles; to overcome this 

issue, several groups have focused on iEMG electrodes. This technique is more invasive but 

allows one to record EMG signals (50) uncorrelated from the underlying musculature and 

avoids the daily placement of electrodes. iEMG is robust against electrode shift (e.g., socket 

rotation) and change in skin impedance and sweat. Several studies have demonstrated the 

performance of simultaneous wrist and hand motions (three DOFs) using six to eight iEMG 

electrodes; Smith & Hargrove (50) showed that iEMG has better decoding performance than 

sEMG. High decoding performance is reported in real time (105), and in fully implanted 

setups, the results are stable for several days (106). 

On the other hand, Farrell & Weir (51) compared the pattern recognition–based grasp 

classification performance of iEMG and sEMG on 12 movement classes with eight channels 

and did not find a statistical difference between electrode types. They concluded that the 

choice of electrode should be based not on classification accuracy but rather on signal 

consistency over time and robustness to electrode lift-off. Zia ur Rehman et al. (107) 

compared a standard linear discriminant analysis with a deep network for grasp classification. 

They performed a multiday analysis comparing six iEMG and six sEMG electrodes, and their 

results showed that deep learning had better decoding performance and was more stable over 

time. 

Kamavuako et al. (108) investigated the effect of combining iEMG to target deep muscles 

with sEMG on myoelectric control. They showed that the combined solution improved offline 

and real-time control performance compared with sEMG alone. 

With 32 iEMG electrodes, Dantas et al. (109) compared different decoding methods for the 

continuous control of five DOFs corresponding to the flexion and extension of each digit. 

Using a data set aggregation algorithm, they showed a normalized mean squared error as low 

as 0.033 with a deep convolutional neural network. They also investigated signal stability 

during 150 days after training, showing a small degradation during the first month (0.003 

normalized mean squared error per day with a convolutional neural network), but that 

degradation stopped in the next four months. 

For transradial amputees, an alternative to using EMG signals to control hand prostheses 

is decoding from peripheral nerve signals. Different grasp types can be decoded from 

peripheral nerve signals with high accuracy using different interfaces, both offline and in real 

time (53, 110–112). Implanted peripheral nerve recordings are more invasive than sEMG but 

are more stable over time. Indeed, donning and doffing the prosthesis does not move these 

electrodes as much as it does sEMG electrodes. Recently, Cracchiolo et al. (52) decoded up to 

11 class states using TIMEs on an amputee subject and showed that the active sites chosen on 

the first day could also be used in the following sessions, for up to seven days (80% accuracy, 

compared with 83% by selecting active sites every session). However, this modality is generally 
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used to provide sensory feedback (63, 113–115). Therefore the development of new 

approaches to record neural signals during peripheral stimulation [e.g., artifact removal (116)] 

is necessary. 

Vu et al. (37) recently developed a regenerative peripheral nerve interface to increase 

signal specificity and long-term stability. They implanted transected peripheral nerves into a 

free muscle graft. After regeneration, revascularization, and reinnervation, the graft becomes a 

nerve bioamplifier that creates EMG signals. Using chronically implanted iEMG to record 

from these grafts, they performed five-class decoding in real-time with up to 98.2% accuracy 

with two transradial amputees in a virtual hand environment. They also showed results from a 

Box and Block Test using a robotic hand prosthesis that provided continuous control of two 

DOFs of thumb motions through their interface combined with a third DOF based on sEMG. 

4.4. Perspectives 

Motor decoding for RPHs is progressing in two main directions: Noninvasive approaches have 

seen advances in decoding algorithms using large data sets and increases in the number of 

recording points, and implanted electrodes (either muscular or intraneural) have seen 

improvements that enable better recording stability and more robust decoding. There is 

currently no consensus on which approach is best for transradial amputee patients, as they 

each have their own strengths and limitations. The need for daily signal and classification 

recalibration is a weak point of the classic sEMG approach, which is being addressed by 

several research groups developing, for example, HD-sEMG. And despite iEMG’s promising 

control performance, which is robust to donning and doffing of the prosthesis, its overall 

performance gain, when compared with sEMG, may not currently be sufficient to justify an 

invasive surgery. The same reasoning can be applied to intraneural electrodes. 

One can imagine a future where both invasive and noninvasive approaches will continue 

to progress and will target either patients who prefer a stable decoding setup or those who do 

not want to undergo surgery and will accept the need to calibrate their prosthesis on a regular 

basis (117). Another scenario can be a parallel development of invasive technologies for both 

sensory and motor functions. Indeed, as shown in Section 5, the approach using intraneural 

implanted electrodes has permitted unprecedented levels of somatosensory restoration; it 

might, therefore, be reasonable to perform a single surgery to restore both motor and sensory 

functions. For this reason, motor decoding using the intraneural interface can become a 

viable solution if these interfaces one day permit both providing sensory feedback and 

recording discriminative signals for motor decoding in parallel, but online artifact removal 

remains an important challenge. 

Power consumption is another critical issue: RPHs should embed small electronics 

because the size of the prosthesis limits the space available for batteries, but doing so usually 

comes at the cost of limited processing resources. Also, the electronics for the HD-sEMG 

remain cumbersome due to the large number of input channels and should be miniaturized 

and portable. Moreover, decoding model complexity is also limited by portable processing 

resources. In practice, an increased number of electrodes is already available in wearable 
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systems (Sessantaquattro, OT Bioelettronica, Italy) and may become available for prostheses 

in the future. 

Finally, low latency is paramount for seamless prosthesis control [<300 ms between user 

intention and real-time decoding (118)]. Among the studies discussed above, only a few 

performed analyses to show the feasibility of real-time control (without processing resource 

limitations), and even fewer included embedded electronics that would translate for home 

use. One possible solution for real-time decoding with complex models is to bypass 

embedded electronic limitations; this could be achieved by taking advantage of the 

computational power of cell phones or by relying on cloud computing and the next 

generations of wireless cellular networks for low-latency communication. 

5. RESTORING SENSORY FEEDBACK 

Sensory information plays a critical role in both the exploration of the external environment 

and in any manipulation task. When an individual interacts with surrounding objects, tactile 

sensations are used to infer features such as size, compliance, temperature, and texture, while 

the same sensations are exploited to handle them properly or use them as tools. From this 

perspective, aiming to restore afferent sensory channels from a hand prosthesis is a critical 

step in designing a device that ensures two key aspects: dexterous manipulation and 

embodiment of the prosthetic device. 

The design of a sensory feedback system that can successfully deliver information relies on 

three fundamental blocks working together: (a) sensor readings, processed by (b) an encoding 

strategy capable of translating meaningful information to the user, through (c) an interface. 

Previous sections have described the different available interfaces; here, we present the 

encoding techniques and sensors relevant to the design of modern hand prostheses (Table 1). 

Sensors mounted on a robotic hand should ideally record the whole spectrum of available 

human sensations, from both external and internal sources. Indeed, sensory information from 

the human hand covers both interactions with the external world (tactile perception, thermal 

perception, and nociception, i.e., perception of pain) and internal perception of the positions 

of the joints and the length and forces exerted by the muscles, together known as 

proprioception. Table 2 shows examples of sensor placements on RPHs from recent studies. 

5.1. Sensors for Proprioception 

Proprioception is not only fundamental for a dexterous hand prosthesis, enabling vision-free 

manipulation and multitasking, but is also the key to a properly embodied device (63). 

Usually, kinematic parameters of the robotic hand and (when available) the force exerted are 

needed to implement low-level control of the actuators, so they are measured with well-

established systems, such as rotary encoders or the motor’s current draw. 
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Table 2 Sensor types and encoding strategies used in milestone publications on bidirectional hand 

prostheses 

Reference RPH model 

Mechanical 

stimulation 

encoding 

Electrical stimulation encoding 

Interface 

Sensor 

distributiona Frequency Amplitude 

Pulse 

width 

3 Passive Linear — — — G10 tactor  

5 IH2 Azzurra — Fixed Linear Fixed TIME 

 
59 IH2 Azzurra — Fixed Fixed Linear TENS 

61 IH2 Azzurra — Model based Model 

based 

Fixed TIME 

36 SensorHand 

Speed 

— Linear Fixed Time 

variant 

FINE  

60 IH2 Azzurra — Neuromorphic Fixed Fixed TIME  

128 Various Discrete 

events 

— — — Vibrators   

135 VariPlus 

Speed 

— Linear Fixed Fixed FINE  

58 bebionic — Neuromorphic Fixed Neurom

orphic 

TENS  

63 IH2 Azzurra — Fixed Fixed Linear TIME  

138 DEKA Luke — Model based Fixed Fixed Utah 

Slanted 

Electrode 

Array 
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137 SensorHand 

Speed 

— Linear Fixed Fixed Cuff 

electrode 

 

 

Abbreviations: FINE, flat interface nerve electrode; RPH, robotic prosthetic hand; TENS, transcutaneous 

electrical nerve stimulation; TIME; transverse intrafascicular multichannel electrode. 

aThe positions of the pressure sensors are shown in green, the joints where force is measured are shown 

with solid red lines, and the joints where the position is read are shown with blue dashed lines. 

5.2. Tactile Sensors 

Despite improvements in sensor miniaturization, computational power, and knowledge of the 

neurophysiology of somatosensation (tactile sensation and proprioception), the capabilities 

of sensorized RPHs remain far from those of a natural hand. Overcoming this limitation will 

require satisfying three conditions: The sensors must match the skin’s sensing ability, a 

sufficient number of sensors must be embedded on the surface of the hand, and it must be 

possible to reliably read information from them. The first condition can be addressed with 

current technology, as the resolution of existing force and pressure sensors already matches 

human skin performance (119). However, fulfilling the second and third conditions is another 

matter, and we need to push the boundaries of circuit integration in order to create an RPH 

with many sensors and a way to communicate with them. 

The classical solution of using general-purpose sensors developed separately from the 

signal conditioning circuit and the subsequent signal processing has shown its limit. Instead, 

efforts are being made to optimize these devices with prosthetics in mind. For example, 

borrowing the concept of morphological computation from robotics (120), sensors can be 

optimized for specific tasks by tuning the features of their mechanical structures accordingly. 

Indeed, exploiting the low-pass filtering effect of a compliant material or surfaces with specific 

structures can increase texture discrimination (60, 114). Another example comes from Kim et 

al. (121), who measured forces using sensors embedded in a soft substrate. 

5.3. Sensory Architectures 

The problem of handling many sensors at the same time has been addressed successfully in 

the past by using time-sharing (multiplexing) and space-sharing (matrix arrangement) 

techniques, minimizing wiring complexity while keeping read latency in an acceptable range. 

Nevertheless, this approach does not scale well in terms of covering the whole hand with a 

sensor density comparable to that of the human hand. Additionally, the unavoidable increase 

in the number of electrical connections makes the system highly susceptible to breakage. 

Event-based architectures rely on the concept of send-on-delta (122), where each sensor 

(comprising an analog front end and an analog-to-digital converter), instead of signaling its 

value at a constant rate, does so only when the value changes by more than a certain 

threshold. These architectures have many advantages owing to the sparsity of the data 
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representation. In other words, the communication line does not need to be capable of 

handling all the sensors simultaneously (as an interaction where all the sensor are triggered in 

the same moment is unlikely); instead, single sensors are polled at a high rate, which 

preserves the time structure of the stimulus. 

The underlying idea of event-based systems is inspired by how neurons communicate 

information to each other, sending a train of spikes instead of continuous value. In earlier 

implementations, data flowed from sensors to the central unit through digital communication 

lines using well-known protocols such as Universal Asynchronous Transmitter Receiver 

(UART), Ethernet, and the Controller Area Network (CAN) bus. Some groups have designed 

communication paradigms by mimicking information encoding by the nerves; using pulses of 

20 ns, Bartolozzi et al. (123) showed a 94% improvement in data rate over traditional 

protocols. 

An even more advanced step was made in the work of Lee et al. (124), where the sensors 

communicate with spikes through the same conductive surface without any flow control, 

reducing the wires needed to two (data and ground). In this way, at the cost of a decoding 

stage for sensor value acquisition, the performance of the architecture increased, reaching up 

to 100,000 sensors sharing the same bus. 

5.4. Sensory Feedback 

In basic myoelectric or body-powered prostheses, feedback is delivered mainly by visually 

inspecting the movements of the prosthesis and by the physical interaction between the 

device and the user (125), as with hook prostheses. Clearly, the goal of a modern, robotic hand 

prosthesis is to deliver richer information more intuitively. 

Sensory feedback strategies are characterized by their precision and the coherence 

between the evoked sensation and the desired one in terms of timing (synchronicity), position 

(somatotopy) and modality (i.e., touch, vibration, and temperature). Feedback techniques 

encode sensor values to stimulation parameters, which in turn are strongly tied to the chosen 

stimulation interface (Table 2). Here, we focus mainly on electrical interfaces for feedback, 

but we also briefly discuss the mechanical interfaces. 

Noninvasive feedback strategies are attractive approaches since they do not necessitate 

surgical interventions (Figure 2a). Starting with the Boston Arm, which Mann & Reimers (126) 

used to demonstrate that position feedback was needed for precise reaching movements, 

these techniques have improved in both mechanical and electrical interfaces with the user. 

Indeed, the intact mechanoreceptors in the skin of the arm can be stimulated with small 

linear (127) or vibrating (128) motors that vary in their driving amplitude and frequency. On 

the other hand, mechanical stimulation brings an unavoidable delay of approximately 400 ms 

in the delivery of the sensation (129), and the integration and miniaturization of 

mechanoreceptors are challenging. The miniaturization of noninvasive feedback approaches 

is also challenging. 
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Figure 2 A neural interface and the target area for somatosensory feedback. (a) Noninvasive strategies 

include tactors targeting Meissner corpuscles and encoding pressure (3), vibrators that activate Pacinian 

corpuscle mechanoreceptors (128), and TENS (58), which targets the nerve noninvasively. (b) Invasive 

peripheral nervous system stimulation can be done with cuff electrodes (137) or FINEs (36, 135) that 

stimulate the nerve from outside the fiber. TIMEs (5, 59, 60, 63, 179) and Utah Slanted Electrode Arrays 

(180) are more invasive and are inserted through the nerve but stimulate directly from inside the fiber. 

(c) Epidural stimulation of the lateral spinal cord at the cervical level was able to induce tactile sensation 

in three upper-arm amputees (139). Abbreviations: FINE, flat interface nerve electrode; TENS, 

transcutaneous electrical nerve stimulation; TIME, transverse intrafascicular multichannel electrode. 

Nerve design from panels (a) and (b) adapted with permission from reference (41). 
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Electrical stimulation is usually delivered as train pulses, of which width, amplitude, and 

frequency can be independently modulated and can be conveyed noninvasively through the 

skin; this technique is generally known as electrotactile feedback (130). Single electrotactile 

electrodes can be assembled in bands and arrays (131) for targeting multiple sites at the same 

time, encoding information in both the position and amplitude of the stimulation. The main 

drawbacks of electrotactile stimulation are the dependence of sensory thresholds on the 

stimulation position (130), which forces a calibration after each mounting, and the artifacts 

induced in EMG readings, which strongly impair its application in closed-loop RPHs. 

Electrocutaneous stimulation tries to overcome electrotactile limitations by implanting 

subdermally thin electrodes. Geng et al. (132) characterized the sensations evoked and 

highlighted improvements in the detection threshold, the threshold of noticeable differences, 

and the general pleasantness compared with traditional electrotactile feedback. 

Electrocutaneous stimulation still has technical issues in real-world implementations, such as 

interference with EMG readings and variability in stimulation parameters over time (133), 

which impair long-term applications. 

Feedback through neural electrodes is a promising modality that matches how sensory 

information is transmitted in the nervous system (Figure 2b). These electrodes are 

implemented at both the cortical (134) and peripheral levels. Here, we focus on techniques 

targeting the peripheral nervous system. 

The three controlled parameters are the frequency, amplitude, and pulse width; the most 

straightforward approach is proportional modulation according to sensor readings. Studies 

have shown that this method can be successful even in long-term implants (113, 135–137) and 

confirmed the improvements brought by sensory feedback through peripheral nervous 

system interfaces in both performance and embodiment. 

Compared with noninvasive approaches, invasive neural stimulation has the advantage of 

being able to elicit sensations intuitive for the user, as they are delivered through the expected 

biological route (the peripheral nervous system) for sensory feedback. The focus in this field is 

currently shifting from basic feedback to evoking complex and natural sensations, feeding 

high-level features such as texture (60), and in general exploiting the potential of stimulating 

the nerves directly. Noninvasive feedback strategies are limited in the spatial precision of the 

evoked sensation in both mechanical and electrical stimulation (59). 

The naturalness and information content of the stimulation can be improved by 

modulating with patterns that go beyond a simple relation with the sensor value. George et al. 

(138) devised two biomimetic stimulation patterns: one that is proportional to the first 

derivative of the force and another that is proportional to the aggregated tactile nerve 

response. Both approaches outperformed standard modulation techniques and were felt to be 

more informative by the user. Valle et al. (61) started from a model of the response to the 

touch of human afferent fibers and modulated frequency and amplitude according to a 

simulated fire rate and fiber recruitment; at the cost of a small reduction in sensitivity, the 

user reported a consistent increase in the naturalness of the sensation together with an 

increase in dexterity during functional evaluations. Both of these studies highlighted that the 
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goal is not only to elicit precise sensations but also to focus on naturalness and intuitiveness. 

Neuromorphic stimulation patterns have also proven to be rich in information not only about 

tactile contact but also about the sliding speed and texture of an object (114). 

Considering the complex surgical procedure and the effort needed to develop a peripheral 

nervous system interface, techniques based on spinal cord stimulation are promising, as they 

rely on devices that have already been tested and approved by the US Food and Drug 

Administration. Chandrasekaran et al. (139) recently demonstrated a sensory neuroprosthetic 

for amputee subjects with spinal cord stimulation (Figure 2c). The main issue with this 

approach is the difficulty of eliciting natural sensations; biomimetic stimulation approaches 

could help address this limitation in the future. 

5.5. Perspectives 

We believe that sensorization will play a significant role in the next generation of RPHs. Here, 

we discuss three main directions influenced by sensorization: embedded sensorization, 

improved stimulation strategies, and new computational architectures. 

5.5.1. Embedded sensorization. 

Sensorized hands are not yet prevalent in the literature but are starting to draw interest, 

especially with the improvement of interfaces for bidirectional prostheses (for a list of RPHs 

with sensorized fingertips, see Supplemental Tables 1 and 2). As a recent example, Controzzi 

et al. (140) developed the Mia hand (Prensilia, Italy), which is integrated with sensors that can 

measure normal and tangential forces at the fingertips. Sensorization of RPHs is a design 

requirement that should be considered as important as other functional requirements for 

hand prostheses, such as weight or dexterity. To improve RPH performance and sensor 

integration, next-generation RPHs should then be designed with their sensorization in mind. 

Information about hand state (joint position, forces, and touch) can also be beneficial to 

increase the dexterity of such hands, enabling automatic adjustments such as catching 

slipping objects (e.g., the bebionic3 hand) and shared-control strategies (see Section 4). 

5.5.2. Improved stimulation strategies. 

Biomimicry is one of the strongest trends in nerve stimulation strategies, as it promises to 

deliver biologically plausible stimulation patterns to evoke more natural sensations. 

Biomimetic approaches rely on bio-inspired models to compute the stimulation patterns, so 

new iterations of these models, based on the current experience in stimulation and neural 

recording, are needed to improve the quality of elicited sensations. 

These model-based approaches permit simpler modulation strategies that increase the 

naturalness of sensations. Tan et al. (36), for example, proved that a sinusoidal modulation of 

the pulse width improved the naturalness of the sensation. Formento et al. (141) instead 

designed a strategy to activate asynchronously stimulated fibers, mimicking healthy neural 

activity; in their work, they replaced classical biphasic stimulation with a high-frequency burst 
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of pulses that slowly increased in amplitude, and confirmed their hypothesis in ex vivo 

experiments. Stimulation patterns that try to overcome the physical limits of present neural 

interfaces (as in 141) while paving the way for more natural evoked sensations also suggest the 

requirements for the future generation of neural interfaces and stimulators for sensory 

feedback: increase reaching without losing discrimination. 

 

Biphasic: characterized by a two-phase, bidirectional wave with one positive phase and one 

negative phase 

5.5.3. New computational architectures. 

Neuromorphic architectures have the potential to represent a paradigm shift in the design of 

the control systems for bidirectional hand prostheses, going toward distributed systems and 

edge computing. Both sensor acquisition and stimulation can benefit from these trends 

because they lead to more reliable systems that scale well with the increase of sensors and 

stimulation active sites. If the next generation of neuromorphic hardware promotes 

portability and lower power consumption, it could lead to broader implementation and 

adoption of neuromorphic systems in bidirectional hand prostheses. 

Many RPHs rely on advanced encoding and decoding algorithms implemented with 

neural networks (61), which are more computationally demanding than traditional 

approaches. It is interesting that even deep learning networks can be translated into spiking 

neural networks (142), possibly enabling full neuromorphic hardware encoding and decoding 

in future prostheses. 

6. PERFORMANCE ASSESSMENT 

Given the increasing complexity of RPHs that integrate both sensory and motor 

functionalities, it is important to have standardized tools to measure the efficacy of novel 

technologies (143). While designing custom experiments to evaluate a technology might be 

tempting, there is a crucial need for well-established assessment tools to enable comparisons 

of different approaches on a common basis. 

Caregivers should assess how a technology solves patients’ impairments (their body 

structures or functions), activity limitations (e.g., by improving their ability to grasp), and 

participation restrictions (e.g., by allowing them to participate in a sport). In addition, the 

impairment should be viewed not only from a biological perspective but also in terms of its 

psychosocial consequences; an effective RPH should promote autonomy and support the 

reintegration of the individual into society. The measurement of patients’ health-related 

quality of life has now become a norm during the rehabilitation process (144). For example, 

the Disabilities of the Arm, Shoulder, and Head (DASH) questionnaire (145) and its shorter, 

11-item version, QuickDASH (146), provide self-administered measurements that focus on 

patients’ symptoms and physical, social, and psychological aspects in populations with
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Table 3 Clinical assessments for transradial amputees using robotic prosthetic hands 

Abbreviations: QuickDASH, short version of the Disabilities of the Arm, Shoulder, and Head questionnaire; WHOQOL-BREF, short version of 

the World Health Organization Quality of Life scale. 

Name Reference(s) 

Measurement 

type 

Clinically 

validated 

Measurement 

Quality of 

life Embodiment Grasp Reach 

Fine 

movement 

Somatosensory 

feedback 

QuickDASH 146 Questionnaire X X     Implicit 

WHOQOL-BREF 147 Questionnaire X X      

Orthotics and Prosthetics 

User’s Survey 

143, 149 Questionnaire X X     Implicit 

Box and Block Test 153, 154 Pick and place X   X X  Implicit 

Nine Hole Peg Test 156, 157 Pick and place X    X X Implicit 

Clothespin Relocation Test 158 Pick and place       Implicit 

Action Research Arm Test 159 Handling and 

manipulation 

of objects 

X      Implicit 

Southampton Hand 

Assessment Procedure 

160 Handling and 

manipulation 

of objects 

X      Implicit 

Grasping Relative Index of 

Performance 

138 Grasping    X   Explicit 

Virtual Egg Test 128 Pick and place    X X  Explicit 

Prosthesis Efficiency and 

Profitability 

138 Pick and place, 

manipulation 

   X X  Explicit 

Magnetic table task 163 Pick and place    X X  Explicit 

Cross Congruent Task 181 Psychometric   X     

Peripersonal test 174 Psychometric   X     
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upper-extremity musculoskeletal conditions (Table 3). More generally, subjects’ perception of 

their quality of life can be measured with the short version of the World Health Organization 

Quality of Life scale (WHOQOL-BREF) (147) or the Quality of Life Scale (QOLS) (148). The 

Orthotics and Prosthetics User’s Survey (OPUS) (149) has also been used in upper-limb 

amputees (135). A recent study showed that long-term use of a sensorized prosthetic arm 

improved subjects’ participation (e.g., skiing and fishing) (137); the authors performed 

semistructured interviews at patients’ homes using a phenomenological approach to infer 

their experience with the prosthetic arm and to investigate the influence of a novel treatment 

within subjects’ social groups (using an emic ethnographic approach) (150). 

Another straightforward metric for evaluating the quality of a tool is patients’ acceptance 

of the proposed protocol. Treatment adherence—measured by, for example, the number of 

sessions carried out by the patients per month, or the average session length—can help the 

experimenter develop tools that will be effectively used by the patients (150). In a study by 

Graczyk et al. (135) that compared the use of a prosthetic hand with and without tactile 

feedback, the subjects used a modified version of the OPUS Upper Extremity Functional 

Status module to report on a daily basis the difficulty of performing tasks such as brushing 

teeth or using a key in a lock. 

When considering RPHs, assessment of the motor (or sensorimotor) functions is clearly 

essential. As described above, somatosensory feedback is crucial to performing a dexterous 

motor task (151); therefore, functional tests for motor tasks also implicitly evaluate the sensory 

feedback. In other words, high performance in, for example, a pick-and-place task using a 

bidirectional RPH indicates both an accurate motor decoding and sensory feedback. Other 

assessments [e.g., the Virtual Egg Test (152)] target the somatosensory feedback more 

explicitly. Here, we describe both types of measurements. 

The Box and Block Test (153) is a common evaluation of unilateral gross manual dexterity 

(Figure 3a), where subjects must transport as many wooden blocks as possible from one 

compartment of a box to another within one minute. A modified version of this test with 

motion capture has been proposed (154) to evaluate eventual compensatory strategies of the 

shoulder or the trunk; a normative version using predefined positions of the blocks inside the 

box has also been proposed to facilitated kinematic analysis (155). The fine dexterity of fingers 

can be measured with the Nine Hole Peg Test, which involves the placing of small 1.3-cm-

diameter dowels into nine holes (156). Variations of this test with motion tracking have also 

been proposed (157). The Clothespin Relocation Test (Figure 3b) measures both grasping and 

pronation/supination functions (158). 
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Figure 3 Examples of available assessment tools. (a) The standardized test equipment for the Box and 

Block Test includes a box with two compartments separated by a barrier and 150 2.5-cm colored blocks. 

The subject is asked to transfer as many blocks as possible from one from one compartment to the 

other in one minute. Panel adapted with permission from accsim instrumentos. (b) The Clothespin 

Relocation Test measures hand function (reaching, grasping, and wrist rotation). The measurement 

consists of the time it takes for the subject to move three clothespins from a horizontal to a vertical bar 

and then back (see, e.g., 182). Pannel adapted with permission from reference 182. (c) The Action 

Research Arm Test standard box is commercially available and contains different objects to assess 

grasp, grip pinch, and gross movement functions. Pannel reproduced with permission fromArat Kits.. 

(d) The Virtual Egg Test is a variation of the Box and Block Test where blocks are replaced by breakable 

objects. In this example, the plastic cubes have a magnetic fuse that breaks if the grasping force exceeds 

a certain threshold. Panel adapted with permission from Reference 128 (e) An audio–tactile interaction 

task has been used to measure the brain representation of the peripersonal space (the brain’s 

presentation of the space immediately around the body) (174). The test consists of a looming sound 

(perceived as coming from far away and moving toward the amputated hand) and a vibrator placed on 

the subject’s stump that is triggered when the sound is perceived to be at different distances from the 

subject (D1 to D5). The position where the presence of the sound facilitates the perception of the 

vibrator (reaction time) is used a proxy for the peripersonal space limit (dashed line).  
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The Action Research Arm Test (Figure 3c) is one of the most widely used measurements 

for upper-extremity (arm and hand) functions (159). It assesses four basic movements: grasp, 

grip, pinch, and gross movements of extension and flexion at the elbow and shoulder. 

Variously sized and shaped objects from daily living (a cup, a washer, etc.) are used for the 

test, which provides a broad overview of patients’ improvement in the activity and 

impairment domains. Finally, the Southampton Hand Assessment Procedure uses a set of 

abstract objects and activities of daily living with tasks specifically developed to assess the 

effectiveness of upper-limb prostheses (160). 

These evaluations are used in rehabilitation and have been clinically validated (Table 3). 

Most of them were developed for neurological impairments (such as a stroke), multiple 

sclerosis, or spinal cord injuries and have been adapted for the evaluation of RPHs. While 

these well-established evaluations are essential, detailed investigation of RPHs—mainly when 

integrating sensory feedback capabilities—implies specific challenges that have been 

addressed in a series of tests introduced in recent years. These tests, although not yet clinically 

validated, are, in our opinion, of great interest. 

The Grasping Relative Index of Performance measures the ability to control the desired 

force during grasping (138) independently from the control and feedback modalities. This 

measurement is based on the well-known Fitts’ law, which states that the difficulty of a 

reaching task is given by the log of the ratio between the distance to the target and its size; in 

other words, the farther away and smaller a target is, the harder it is to reach it. Thumser et al. 

(161) argued that grasping is similar to pointing with the thumb and finger toward selected 

positions and defined the index of difficulty for grasping as the ratio of the object’s weight to 

its hardness (where grasping a fragile object is analogous to a reaching a small target). Other 

assessments have been proposed to estimate object stiffness (138) and size discrimination (5); 

Risso et al. (162) investigated the contribution of vision, tactile feedback via intraneural 

stimulation, and visuo-tactile integration to estimate the size of a handheld object. 

The magnetic table task (163) and the Virtual Egg Test (128) (Figure 3d) are variations of 

the Box and Block Test in which the blocks are replaced by magnetic cubes and breakable 

objects, respectively. Both have been used to evaluate the efficacy of different sensory 

encoding strategies (see 135 for the magnetic table task and 61 for the Virtual Egg Test). 

Finally, Prosthesis Efficiency and Profitability is an ad hoc measurement for prosthetics with 

sensory feedback to assess searching, reaching, grasping, manipulating, and decision-making 

during a foraging task (138). 

Use of cognitive load during a sensorimotor task can give an indirect evaluation of the 

intuitiveness of a task: Do patients need to give their full attention to a particular movement, 

or are they able to perform it as part of a dual task? Subjects might be asked, for example, to 

perform a task while counting backward, finding words that start with a given letter, or 

visually following a moving target on a screen (for an example with a Virtual Egg Test, see 62). 

More direct measurement of the cognitive burden via electroencephalographic event-related 

potentials during human–machine interactions have also been proposed (164). Here, the 

subject must perform a specific task (the primary task) while detecting an auditory stimulus 
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(the secondary task), and the amplitude of the event-related potentials in response to the 

auditory stimulus then indicates the amount of dedicated attention to the secondary and 

primary tasks. Simply put, a small response to the auditory cue suggests more extensive 

attention to the primary task (165) and therefore a greater cognitive load. 

The prolonged use of prosthetic limbs can reverse some of the effects of post-traumatic 

maladaptive plasticity, one of the most debilitating of which is phantom limb pain, a 

condition present in the majority of subjects with amputation (166). Phantom limb pain has a 

complex etiology that can be elicited by a multitude of factors, including nociceptive 

(neuroma hyperactivity), neuropathic (cortical reorganization), or psychogenic mechanisms. 

Numerous studies have shown that the use of prosthetics with sensory feedback significantly 

reduces phantom limb pain for upper-limb (36, 111, 113) and lower-limb (165) amputees. 

Typical measurements of pain are the McGill Pain Questionnaire (167), the Neuropathic Pain 

Symptom Inventory (168), and the Visual Analog Pain intensity scale, but it can also be 

measured with the DASH assessment (145) and the physical domain of the WHOQOL test. 

Longitudinal experiments with amputee patients have demonstrated changes in body 

schema representation and embodiment of the prosthetic when tactile (61, 169) or 

proprioceptive (170) feedback is provided to the subject. A questionnaire-based measurement 

inspired by the rubber hand illusion (171) is often used. Tools for psychometrical 

measurement of the embodiment include a visuo-tactile integration task (172) and a cross-

modal congruency task (173). A similar protocol using audio–tactile stimuli (174) revealed 

changes of the peripersonal space around the stump following prolonged use of a prosthetic 

limb (Figure 3e). In the same study, the authors used a tactile distance perception task in 

subjects’ healthy and amputated arms to measure the perceived length of the remaining part 

of the upper limb and the homologous region of the healthy limb. 

There is no single measurement that assesses all aspects of the use of an RPH. To evaluate 

the validity of novel technology, the experimenter should consider the multifaceted aspects of 

the impairment and subjects’ biopsychosocial welfare, which is possible only via a series of 

tools, as presented in this section. In the case of prosthetics with sensory feedback, there is a 

lack of validated and well-established measurements, but several research groups are working 

to define adapted measurements, which might become the new norm in the future. 

7. CONCLUSION 

More than 20 years ago, remarkable results by a group of French surgeons for hand 

transplantation (7) had raised hopes for a future where grafting would be the norm and 

prosthetics eventually obsolete (175). However, not only has this prediction—unfortunately—

not yet come to pass, but also the adoption of new RPH technologies has been slower than 

expected. As such, RPHs are still a field of active research. Significant efforts have been made 

to reduce their price and weight, improve their aesthetics and anthropomorphism, increase 

the robustness and accuracy of their motor intention decoding, and provide natural and 
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accurate somatosensory feedback. We have proposed here an outline of possible iterations of 

RPHs for the next few years and for 5–10 years in the future. 

In our view, there could soon be a broader integration of simple somatosensory feedback 

using mature implantable techniques, such as cuff electrodes. Motor decoding using machine 

learning and shared-control algorithms could permit continuous command of single fingers 

and broader sets of grasps. Ultimately, the next generation of prosthetics could use more 

advanced soft implantable electrodes, which could enable more sophisticated sensory 

encoding (proprioception, temperature perception, touch perception, and nociception) and 

motor decoding using, for example, deep learning techniques. But to reach this goal, the field 

must tackle significant challenges related to system integration, electronic miniaturization, 

computational power, surgical procedure, electrode robustness, the robotic hand itself, and 

the encoding of somatosensory information. 
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2 EMG Decoding

2.1 Deep Learning with Convolutional Neural Network for Propor-

tional Control of Finger Movements

Deep learning has demonstrated promising potential in electromyography (EMG) decoding,

particularly for grasp classification. By employing deep neural network architectures, deep

learning (DL) facilitate the extraction of high-dimensional, non-linear patterns within EMG

signals. The incorporation of DL techniques in single-finger proportional EMG decoding not

only promises to improve the dexterity of prosthetic devices but also allows for more intuitive

and natural control, which could significantly enhance the functional capabilities and user

experience of advanced prosthetic hands.

The content of this section is the postprint from the conference article Mendez et al., "Deep

Learning with Convolutional Neural Network for Proportional Control of Finger Movements

from surface EMG Recordings," 2021 10th International IEEE/EMBS Conference on Neural

Engineering (NER), Italy, 2021, pp. 1074-1078

Find the published article here: https://doi.org/10.1109/NER49283.2021.9441095

Personal contributions as the first author: conceived the experiments, prepared the

protocols and the experimental setup (hardware and software), and conducted the experiment

in the framework of another article. I also analyzed the results based on a preliminary analysis

performed by the second author, prepared the figures, and wrote the manuscript.
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Deep Learning with Convolutional Neural Network for Proportional Control 

of Finger Movements from surface EMG Recordings 
 

V. Mendez, L. Pollina, F. Artoni, S. Micera Member, IEEE 

Abstract 

 The control of robotic prosthetic hands (RPHs) for upper limb amputees is far from optimal. 

Simultaneous and proportional finger control of a RPH based on EMG signals is still challenging. Based 

on EMG and kinematics recordings of subjects following a pre-defined sequence of single and multi-

fingers movements, we aimed at predicting finger flexion and thumb opposition angles. We compared 

two deep learning (DL) based approaches, the first one using the raw EMG signals and the second one 

using the spectrogram of the signal as input,  with the standard state of the art decoding technique 

(STD) for finger angle regression. Using a genetic algorithm for hyper-parameter optimization, we 

obtained an optimized model architecture (and set of features in the case of STD) for each condition 

on one recording session. Then, we evaluated the best model of each condition on the eleven EMG and 

finger kinematics recordings available from four subjects. The two DL approaches based on 

convolutional neural networks predicted finger angles with a similar mean squared error loss but both 

of them outperformed the standard approach for the regression of simultaneous single-finger angles. 

This proposed decoding strategy and hyper-parameter optimization framework provides a basis to 

further improve single finger proportional control for RPHs.  

1. Introduction 

Controlling the human hand feels simple and intuitive but relies on a sophisticated and robust 

control strategy that allows for dexterous manipulation of a variety of objects. Hand loss is a traumatic 

event with not only motor but also psychological consequences (1), resulting in limited ability to 

perform object manipulation, sensing, as well as non-verbal communication. Robotic Prosthetic Hands 

(RPHs) aim at restoring hand functionality in trans-radial amputees. In order to capture the user’s 

intention, these RPHs usually rely on electromyographic (EMG) signals recorded from their residual 

forearm muscle activity. Commercially available RPHs usually use two surface EMG (sEMG) electrodes 

placed on remaining antagonist muscles (usually wrist flexion/extension). The control of these robotic 

hands rely on a simple threshold based strategy controlling one degree of freedom (2). The type of grasp 

can be selected using co-contraction to cycle between pre-defined grasps.  

By using more electrodes (~6-8), pattern recognition algorithms are an alternative to this direct 

control approach. It consists of extracting discriminative features from the EMG signals to decode 

directly the type of grasp intended by the user.  After a calibration phase, the user only has to think to 

perform the desired grasp with his phantom hand. Results showed 98% accuracy on 4 classes (3) and up 

to 75% for 50 classes (4). Other groups showed the possibility to decode single finger flexion and 

extension (5) with performance of 99% accuracy on single and multi-finger movements. 

Although this approach is more intuitive, it is still different from the natural way of controlling finger. 

Indeed, to obtain fingers in a middle position, the user has to contract his muscles until the desired angle 

is reached then relax to keep the RPH in the same position. In order to obtain an even more natural 
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control, few groups showed the possibility to perform single finger proportional control performing 

angle regression instead of movement classification (6–8).  

To decode meaningful information from EMG data, it is necessary to transform the signals into 

informative, discriminating and independent features. It has been now several decades that researchers 

have been working on the design of the best features to decode motor intentions from EMG signals (9). 

Since the first example in 2016 (10), the EMG decoding community shifted from this standard feature 

engineering (STD) approach to feature learning approach using deep learning (DL) and in most cases 

convolutional neural networks (CNN). The standard deep networks usually consists of several 

convolutional layers followed by fully-connected layers (11). Convolutional layers can learn 

discriminative features from the input signal and reduce its dimension. These features are then used as 

input to the fully connected layers that will make the prediction (see Figure 1). For EMG decoding, the 

input of CNNs can be either the raw signal (12) or the spectrogram of the signal (13). Several studies 

showed that deep networks could learn more discriminative features directly from the raw signal to 

perform grasp classification with higher accuracies than STD (14,15). Few groups showed DL-based 

regression of motor intention using sEMG for arm (16) and wrist motion (17–19) with promising results.  

For a more extensive review on RPHs see (20). 

The “perfect” motor decoding strategy could be described as one that increases subject dexterity to 

a level comparable to the healthy hand. In order to be as close as possible to the natural control of the 

hand, one have to decode fingers angle continuously and simultaneously. Due to the higher 

performance of DL compared to the STD approach in grasp classification, we aimed at quantifying the 

performance of single finger proportional control with a DL vs STD approach. 

2. Methods 

A. EMG Dataset and pre-processing 

The detailed protocol for EMG acquisition comes from Zhuang et al. (2019) experiment 3 (21). Briefly, 

four healthy subjects aged between 20 and 26 were recruited for this experiment. Ethical approval was 

obtained by the cantonal ethical committee of Vaud. Informed consent was obtained from all 

participants in the study. The subjects participated to 2 or 3 calibration sessions where EMG signals 

were recorded using a Noraxon Delsys system connected to a LabJack data acquisition card to record 

six channels placed around the subject’s forearm on specific muscles corresponding to the flexion of 

each finger and thumb opposition found with palpation. In this article, we focus only on the offline 

calibration part of the decoding model. The subjects followed a series of movements on a screen 

performed in a virtual environment. Hand kinematics were obtained from the finger angles shown on 

the video. The movements consisted in single and multi-finger movements and the virtual 

environment was synchronized with the EMG acquisition setup. The sequence of movements was 

repeated 5 times, each with a hold period of 5 seconds and the total time of the video was 4.5 minutes 

(see Figure 1). The EMG signals were recorded at 2 kHz and the kinematics at 60 Hz.  

From the 15 joint angles recorded during the training phase on the virtual environment, six joint 

angles were selected: the metacarpophalangeal joint angle of each finger to estimate finger 

flexion/extension and the carpometacarpal joint angle for thumb opposition. Kinematic data was 

linearly interpolated and oversampled at 2 kHz to match the EMG signal sampling frequency. 
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The dataset was then split into train, validation and test set, the three first repetitions were used for the 

training set, one for the validation set and the last one for testing. This non-random split was done to 

consider the real-world use case of RPH. Indeed, amputees would use their RPH after this calibration 

phase and therefore the last repetition for testing is the most suited repetition to evaluate performance 

of the decoding in real world scenario. For each set, a sliding window of 192ms with a moving step of 

40ms (152ms overlap) was used, the angle values of the end of each window were kept as labels and the 

angles were rescaled between 0 (fully open) and 10 (fully flexed).  

B. Learning paradigms 

In order to quantify the performance of DL vs STD, three learning paradigms are compared: The 

standard feature engineering approach (STD), a DL approach with the raw signal as input (RAW) and 

a DL approach with the spectrogram computed with the fast Fourier transform of each individual 

window (FFT) as input. For the two DL approaches, the input signal window is reshaped as squared 

images as in (22). In the STD one, EMG signals are processed and features are extracted from each 

channel. We chose 9 well-explored time and frequency domain features to extract from each time 

window (23): 

Figure 1. Training paradigm difference between a STD approach and Deep learning (dashed objects represents 
tunable hyper parameters). 

Figure 2. Illustration of the movements present in the EMG recordings. 
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1. Mean Absolute Value 

2. Wavelength: Cumulative length of waveform over time 

3. Maximum Absolute Value 

4. Standard Deviation 

5. Zero Crossings: Number of times the signal crosses zero 

6. Slope sign changes: Number of time that the slope of the EMG signal changes sign 

7. Root Mean Square 

8. Log detector: 𝑒
1

𝑁∑ log(|𝑥𝑖|)
𝑁
𝑖=1  where 𝑥𝑖 is the EMG amplitude at time bin i.  

9. Frequency spectrums in each frequency bin between 7 and 12 Hz, 12-30, 30-50, 50-100, 100-150 and 

150-400 Hz from FFT results. 

C. Hyper-parameter optimization 

There is a high number of hyper-parameters to optimize for each paradigm. Among those, we 

optimized a set of parameters based on the first session of the first subject due to computational power 

required to perform a hyper-parameter search for each recording. The hypothesis being that the 

quantity of information is relatively the same for each recording and therefore, the complexity of the 

dataset is relatively the same, meaning that the best model architecture for one recording is a good 

model for the other recordings.  

For the two DL approaches (RAW and FFT), we started from a VGG-like architecture (24) and 

optimized the shape of the network: the number of convolutional layers before each average pooling 

layer (up to 3), the number of pooling layer (up to 5) and the number of filters for each convolutional 

layer (16, 32, 64, 128). A batch-normalization layer follows each convolutional layer. Then, the number 

of fully connected layers (up to two layers) and the number of nodes for each layer (16, 32, 64) were also 

tuned. Except from the architectural parameter, the drop rate was also optimized (0, 0.2, 0.5) as well as 

the L2 regularization rate (0, 1e-3, 0.1), the learning rate (0.1, 0.01, 0.001), the convolutional filter size in 

x dimension, in y dimension (1, 3, 5) and the padding strategy for image border (with or without). The 

CNN networks were optimized with a batch gradient descent with a batch size of 32 samples, with 50 

epochs, a step decay with a drop of ½ every 10 epochs and an early stopping if the validation loss did 

not decreased for more than 13 epochs. 

For the STD approach, the model was a multi-layer perceptron (MLP) and therefore has less 

parameters to tune. However, the feature selection is an important process in order not to overfit the 

data. Therefore the hyper-parameters were the selection or not of a feature, the number of fully 

connected layers (up to 3 hidden layers), the number of node per layer (16, 32, 64, 128, 256), the drop 

rate (0, 0.2, 0.5), the L1 and L2 regularization terms (0, 1e-3, 0.1), the learning rate (0.1, 0.01, 0.001) and 

the optimizer (Adam, RMSprop, batch gradient descent). The MLP was optimized with a batch gradient 

descent with a batch size of 16 samples, with 100 epochs and similarly to the CNN, a step decay with a 

drop of ½ every 10 epochs with an early stopping if the validation loss did not decreased for more than 

13 epochs. All the models were trained with a mean squared error loss (MSE). 

Due to the high dimensionality of the hyper-parameter space, a grid search was impossible to perform 

in a reasonable amount of time. Therefore, we opted for a genetic algorithm (GA) parameter 

optimization approach (25). The problem was formulated as a genetic representation of the solution 

domain where each hyper-parameter was encoded as a gene on a chromosome that could take one of 

the discrete possible values. The fitness function was encoded as the validation loss of the trained model 
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to evaluate the solution domain. A population of 20 random individual was created and trained for 200 

generation using a fitness proportionate (or roulette wheel) offspring selection method. The rate of 

mutation was set to 0.1 and the selection rate to 0.6.  

D. Performance evaluation of each subject 

After hyper-parameter optimization on one session, the same pre-processing steps will be applied to 

all the available recordings in order to train a model on each recording available. For each recording, 

the model was trained ten times and the model with the lowest validation loss is kept. This step was 

necessary to reduce the chances of having the model stuck in a local minimum. Then the best model 

was evaluated on the testing set.   

3. Results 

The best model for the three paradigms obtained with the genetic algorithms was with RAW condition 

and had a validation loss of 5.34 and a training loss of 2.20. The model architecture is shown in Figure 

3. It is strained with a drop rate of 50%, without L2 normalization, a learning rate of 0.01 and the shape 

of the convolutional mask is (3, 1) with 0 padding to keep the same output dimension. 

For the FFT condition, the minimum validation loss was 6.41 with a training loss of 4.82 and for STD, 

the minimum validation loss was 9.14 with a training loss of 9.43. For the STD model, features from all 

channels were extracted and the final model used all the features except the slope sign change for a total 

of 46 features. 

The average test loss, meaning the performance on unseen data, per condition is shown in Figure 4 for 

the 11 sessions. The STD test loss is significantly different from the two other conditions (t-test, p < 0.05) 

but the FFT and RAW conditions are not different.  

The test loss for each subject is shown in Figure 5, each subject recorded 3 sessions except S2 who did 

only two calibration sessions. An example of the predicted angles versus the target labels is shown in 

Figure 6 for the RAW condition on the test set of subject S1. It consist of one repetition of each movement 

and lasts for 56 seconds. The angles correspond to the sequence: Index Flexion, Middle Finger Flexion, 

Ring Finger Flexion, Ulnar Grasp, Open, Tridigital Grasp, Power Grasp, Thumb opposition and Thumb 

opposition + flexion. It corresponds to a loss of 7.36. The baseline loss corresponding to a model 

outputting only the mean value of the targets was ~19.  

Figure 3. Architecture of the best model 
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4. Discussion 

This work aimed at quantifying the performance of DL compared to a STD feature extraction 

approach. The results showed that both DL conditions (RAW and FFT) are performing better than STD. 

However, it is not possible to conclude on which approach between RAW and FFT is best suited for 

single finger proportional control. For simplicity, one could argue to keep the RAW condition to avoid 

computing the FFT and therefore reduce the computational time for real time applications. A possible 

optimization is the combination of time-frequency information merging the RAW and FFT 

approaches, increasing the amount of information that inputs the model.  

However, the amount of data per session in these experiments is relatively low (3 repetitions for the 

train set) which create uncertainty during the training of the different models and high differences 

between the validation and testing losses. 

Figure 4. Boxplots of the test loss over all sessions for 

the best model with RAW, FFT and STD conditions 
Figure 5. Barplot of the test loss per subject for the best 

model with RAW, FFT and STD conditions 

Figure 6. Plot of the predicted angles (orange) vs. target angles of the test set. X-axis is shared across columns 
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Another limitation to take into account is that the dataset comprised only fully open and closed 

positions held for several seconds without any real “rest/middle” position.or other arbitrary angles. 

Indeed, when the users follow movements shown on a screen, there are intrinsic delays due to their 

reaction time that create jitter between expected kinematics and actual finger positions. In the case of 

single finger proportional control, exact finger position is paramount. Therefore, obtaining 

synchronized middle values is challenging and may be obtained using a kinematic glove for example.  

Deep networks like CNNs need a huge amount of data to reach their maximum accuracy (e.g. 

ImageNet Challenge (26)) which means that increasing the amount of data could play a significant role 

in the performances obtained. However, a subject cannot reasonably record tens of hours of data in a 

single sitting. One possible solution is to leverage the information of several subjects to pre-train a 

general network that could be fine-tuned for the subject’s specific EMG activity. Several authors 

(13,27,28) investigated this approach and showed promising results for grasp classification, this 

strategy could be applied to single finger proportional control.  

5. Conclusion 

To conclude, we showed that deep learning is a promising approach for proportional EMG decoding. 

Due to the placement of the electrodes on the forearm, these results obtained on healthy subjects could 

apply for trans-radial amputees or amputations that are more distal. On the decoding side, we cannot 

conclude on the best DL approach between raw signals or spectrogram as input since both 

outperformed the standard state-of-the-art approach but were not statistically different.  

For future developments, increasing the amount of data should be the main objective. Leveraging 

open access EMG databases like NinaPro (29,30) to improve performances of DL for single-finger 

regression. The feasibility of this DL approach in real time to control a real prosthesis or any 

microprocessor should also be addressed due to the high computational cost of the models used. 
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2.2 A novel medium-density EMG system for prosthetic hand control

Traditional EMG systems as seen in the previous chapter have some limitations. Indeed, the

electrodes must be placed carefully on muscles of interest and the number of electrodes avail-

able limits the amount of information that can be retrieved from the forearm spatiotemporal

muscle activity. On the other hand, the high-density EMG approach also presents limitations

since the amount of data to process is one order of magnitude higher, and due to the number

of electrodes necessary, amplifiers required for such setups cannot be portable. Therefore,

we developed a trade-off solution, a medium-density EMG system, which overcomes the

limitations of existing approaches by covering the whole forearm with 64 dry monopolar elec-

trodes without the need for expertise in electrode positioning. In this chapter, We characterize

its performance for single-finger proportional decoding when compared to a gold-standard

gel-based EMG system.

The content of this section is the preprint of the article Mendez et al., "A Novel Medium-

Density EMG System for Prosthetic Hand Control" submitted to the Journal of Neural

Engineering on the 15th of March 2023.

Personal contributions as the first author: conceived the experiments, prepared the

protocols and the experimental setup (hardware and software), recorded the data, analyzed

the results, prepared the figures, and wrote the manuscript.
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A Novel Medium-Density EMG System for Prosthetic Hand Control 
 

V. Mendez, F. Artoni, S. Micera 

Abstract 

Objective: Current control strategies for hand prostheses limit the dexterity of persons with upper-limb 

amputation, making daily tasks burdensome. Although robotic hands are capable of complex single-

finger movements, the control available to patients is still rudimentary. New control strategies must be 

developed to improve the functionality of hand prostheses. To obtain intuitive and dexterous hand 

prosthesis control, we aimed to decode single-finger motion simultaneously and proportionally with 

maximum precision. Approach: We developed a new medium-density EMG system with 64 dry 

electrodes placed on the forearm. We compared its performance against a gold-standard gel-based 

EMG system for single-finger proportional decoding. To obtain performant decoding, we optimized 

the architecture and hyperparameters of deep convolutional networks and multi-layer perceptrons 

using a genetic algorithm for each recording. Finally, the generalization capability of the optimized 

model architectures is assessed by training the recording-specific architectures on each of the other 

recordings. Main results: Results indicate that the medium-density EMG system outperforms the gel-

based system in decoding thumb opposition and flexion. Model architectures and hyperparameters 

obtained with the genetic algorithm on one recording generalize to other recordings except with the 

gold-standard EMG system and MLP. Finally, VGG-like CNNs do not improve single-finger 

proportional decoding compared to MLPs when the models are automatically optimized with a genetic 

algorithm. Significance: Our medium-density EMG system improves single-finger proportional 

decoding without careful electrode placement which is one step forward in the development of 

intuitive and dexterous control of prosthetic hands. The performances obtained with this system are 

stable between subjects and therefore avoid the need to optimize models for each new patient. Finally, 

feature learning using VGG-like CNNs does not outperform engineered features when models are 

optimized with a genetic algorithm. We suggest scientists designing new model architectures for  EMG 

decoding performance compare their results against algorithms such as optimized MLPs. 

Keywords: Optimization, Model Architecture Tuning, Deep Learning, CNN, Proportional Control, 

MD-EMG, Robotic Prosthetic Hand 

1. Introduction 

Millions of individuals live their daily life with only one hand or without any hands (1). For a person 

in this condition, basic daily tasks can become burdensome. Limited options are available to people 

with upper limb differences to help them regain some dexterity. For decades, researchers worldwide 

have been working on developing robotic prosthetic hands (RPHs) that now have the same size and 

weight as the human hand (2). Nowadays, RPHs are capable to perform single-finger motions and 

recreate grasps used in the majority of situations as well as non-grasp-related motions (2,3). However, 

despite their increasing complexity, the control strategy has remained unchanged and such RPHs are 

still perceived as rudimentary tools (4). 

In the case of trans-radial amputation, two surface electromyography (EMG) electrodes are placed 

on the patient’s forearm to create a bipolar derivation usually targeting two antagonist muscles. 
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Patients can modulate their muscle activity such that the EMG amplitude exceeds a threshold on one 

electrode or the other to move incrementally the RPH in a specific direction. This direct approach 

allows the control of only one degree of freedom (DoF) at a time and patients have to use a smartphone 

to select the type of grasp they want to perform from a predefined list. 

Alternatively, using pattern recognition algorithms, it is possible to improve the dexterity and 

intuitiveness of RPHs by decoding directly the type of grasp intended by the user. To obtain high 

performance, this approach usually requires 6 to 8 bipolar derivations with gel to reduce the 

impedance between the electrodes and the skin (5). This method requires a calibration phase to map 

the grasp intended by the user and his specific EMG activity. During calibration, informative and 

discriminating features are extracted from the EMG signals to train a machine learning model (6–10). 

Over the years, features were designed and compared striving to improve motor intention decoding 

(11). Nowadays, many groups showed the possibility to decode grasp types together with single-finger 

motion with high accuracy on subjects with two hands and patients with a limb difference (12–15). 

Some companies1,2 brought this solution to the market being able to obtain high performance as well 

as robust enough decoding over time with dry electrodes that are more convenient for donning and 

doffing of RPHs but at the price of a noisier recorded signal (16,17). 

More complex models such as multi-layer perceptrons (MLPs) with, as input, different sets of 

extracted features also showed promising results (12). More recently, due to the breakthrough of deep 

learning (DL) and more precisely convolutional neural networks (CNNs) in computer vision, the 

scientific community explored the possibility of using different DL approaches to improve 

performance (18,19) and robustness (20,21) for EMG-based grasp classification. Using CNNs that can 

learn discriminative features directly from the raw input signal showed great potential. Such models 

could improve classification accuracy by almost 10% compared to all the other competitors at the 

ImageNET image classification competition (22). This DL approach was shown to improve EMG-based 

grasp classification performance when compared to standard machine learning models (23,24) 

suggesting that features learned by the CNN can provide very promising performance. 

However, one limitation of the aforementioned approaches is the need to place electrodes and create 

bipolar derivations over each muscle of interest. The positioning of such electrodes is usually 

performed by trained clinicians and can be challenging for some patients who had an amputation after 

certain types of accidents that can change the position and number of muscles remaining in the stump. 

The Myo band developed by Thalmic Labs, used mostly in research, is an elastic band consisting of 8 

dry electrodes distributed equally around the forearm and showed promising results in the decoding 

of intended grasps without careful placement of electrodes both with more standard approaches (25) 

and deep learning (26).  

Another approach, High-Density EMG (HD-EMG), uses grids of closely arranged monopolar 

electrodes in patches of 64,128 or 256 to overcome this limitation. Such devices require the use of gel 

but can record spatiotemporal information from muscle activity by creating 2D images at each time 

instant and do not require precise positioning of the patches (27). The combination of HD-EMG and 

DL for grasp classification has been shown to outperform feature-based approaches (28,29).  

Nevertheless, HD-EMG requires an inter-electrode distance smaller than 10mm to avoid spatial 

aliasing (30). Therefore, the number of channels necessary to record muscle activity for grasp 

 
1 https://coaptengineering.com/ 
2 https://www.ottobock.com/en-au/Prosthetics/UpperLimb_MyoPlus 
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classification is high and can go up to 128 or more (28,29,31,32)which cannot be recorded with 

wearable devices yet.  

A trade-off solution consists in using fewer EMG electrodes (32-64 monopolar derivations) with 

lower density so that it is possible to acquire the signals with compact and wearable devices as well as 

cover enough portion of the forearm. This Medium Density approach (MD-EMG) does not require 

careful placement of the electrodes and was used to decode grasps intended by stroke patients with 

high accuracy (33). MD-EMG also gives the possibility to extract activation maps from the forearm’s 

muscle activity during wrist and finger movements (34). Ting et al. (35) could extract specific areas 

related to each finger and wrist motion measured during intended movement from a patient with 

tetraplegia. 

Single finger and grasp classification is the most widespread decoding approach with EMG signals. 

However, using classification to control an RPH is intrinsically different from the natural way humans 

are controlling their hands. Indeed, fingers are moved continuously and proportionally which is 

different from a succession of states. One step closer to natural and intuitive control is to try to regress 

the joint angle of single fingers continuously and independently. Several examples can be found in the 

literature on this approach with high performance. Using a few bipolar gel electrodes it is possible to 

regress single finger flexion angle with high accuracy (36). Others showed similar results using HD-

EMG (29,37) or dry MD-EMG setups (38), both with standard decoding approaches or deep learning 

techniques (see (18) for a more thorough literature review).  

However, despite the improved performance obtained with DL approaches, most examples using 

EMG signals for classification or regression with deep models are comparing single model 

architectures. Indeed, the architecture of deep networks such as MLPs or CNNs plays an important role 

in the performance obtained and is often defined with trial and error by experts in the field.  In the EMG 

literature, authors usually get inspiration from computer vision models and reduce the size of the 

models to train on smaller EMG datasets. For instance (39) created a ResNet to perform single finger 

angle regression from EMG signals recorded with a Myo band. Ameri et al. (40) used a simplified 

AlexNET-like architecture to perform wrist movement regression with 8 EMG bipolar derivations.  

A performing DL model requires both an optimized architecture as well as an optimized set of 

hyperparameters to train the model. Several algorithms can be used for this purpose, such as grid 

search, which has been historically used for hyperparameter tuning in EMG-based grasp classification 

(9,41,42). Random search is another candidate as it avoids running through all the combinations of 

parameters that grow exponentially (43). However, due to the high dimensionality of parameters, 

optimizing the architecture and hyperparameters of deep networks such as CNNs cannot be done 

using grid search in a reasonable amount of time and random search might not find a good solution in 

such a high dimensional space.  

Genetic algorithms (GAs) are a good tradeoff between random and grid searches as GAs are 

optimization techniques inspired by natural evolution principles. They are commonly used to solve 

complex problems that are difficult to address using traditional methods.  

 Aquino-Britez et al. (44) on EEG signals, outperformed baseline approaches by optimizing CNNs 

with GA. However, GAs also have some hyperparameters (population size, number of generations, 

mutation rate, selection rate, and selection strategy) and still can fall into a local minimum that results 

in a non-optimized model architecture and hyperparameter combination. 
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This work aims to characterize a new MD-EMG system for single-finger proportional control (See 

Fig. 1). In order to compare its performance against gold-standard bipolar gel derivations, we 

developed a framework to automatically optimize CNN and MLP architecture as well as 

hyperparameters. Optimization of the parameters is performed using a GA with both MD-EMG and 

gold-standard systems. In the case of MLP, a well-explored set of features is extracted and then selected 

by the GA.  

2. Methods 

Data recording and signal processing 

In this study, two setups to record EMG signals are compared. The first one is a standard Noraxon 

DTS desk receiver connected to a Labjack data acquisition card used to wirelessly record 6 bipolar 

surface EMG derivations at 2kHz. Gel electrodes are placed evenly around the proximal part of the 

subjects’ right forearms starting from the extensor digitorum muscle and rotating clockwise with 

reference electrodes placed distally (See Fig. 2.B left). For clarity, this setup will be called the low-

density EMG system (LD-EMG). All channels are notch filtered at 50Hz and bandpass filtered between 

15 and 500Hz. The second system is a homemade MD-EMG prototype designed with four elastic bands 

that attach around the whole forearm. Subjects were asked to place their forearm on the sleeve with 

their palm facing up. This system records 64 EMG monopolar channels with dry electrodes made of 

Figure 1: Picture of the MD-EMG system. It consists of 64 monopolar electrodes placed around the forearm of the 

subjects. 
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Ag/AgCl that are connected to a g.HIAMP amplifier with a gel-based reference electrode placed over 

the elbow (See Fig. 2.B right). Signals are acquired at 2400Hz, notch filtered at 50Hz, and bandpass 

filtered between 5 and 500Hz. 

Figure 2: (A) Model optimization pipeline. For each recording, a genetic algorithm (GA) is used to find an 

optimized model architecture and model hyperparameters. Finally, each optimized model architecture and 

hyperparameters are trained on each recording. (B) The optimization pipeline described in (A) is performed for 
each EMG system (LD-EMG and MD-EMG) and each decoding approach (MLP and CNN). 
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Sixteen subjects were recruited for this experiment (8 Males and 8 Females, aged between 21 and 40 

with an average of 25.5±4.6). Nine of them used the LD-EMG system to record one or two sessions and 

eight were recruited to use the MD-EMG prototype as one subject performed the experiment with both 

EMG setups. In summary, 9 subjects performed a total of 15 recordings with the LD-EMG setup, and 8 

subjects performed 14 recordings with the MD-EMG prototype. 

Subjects were comfortably seated in a chair with their arm placed on a table. They are asked to follow 

a virtual hand shown on a screen performing a series of single and multi-finger opening and closing 

movements interspersed with resting phases (see Fig. 6 and Fig. 7 for the detailed sequence). Subjects 

are verbally instructed to slightly force during each movement and relax completely during the resting 

phases. The goal is to dissociate three main states of the fingers: resting position (when fingers are in a 

middle position), flexed, and opened positions. Each movement is held for 5 seconds and the resting 

phase between each movement lasted 3 seconds. The whole sequence was repeated six times and the 

recording is completed in 9 min and 30 seconds. 

To synchronize EMG signals with hand kinematics, finger flexion angles are recorded from the virtual 

hand at 60Hz. From the 15 joint angles obtained from the virtual hand, six joint angles were selected 

corresponding to the metacarpophalangeal joint angle of each finger and the thumb’s 

carpometacarpal joint angle for thumb opposition. All joint angles were rescaled between 0 (open) and 

10 (close). Each recording is divided into three sets non-randomly. Indeed, the first 4 repetitions are 

used to train the model, the 5th is used to validate, and the last repetition is the test set. This non-

random split was done to consider a real-world use case of an RPH where patients would use their 

prosthesis right after calibration and therefore the last repetition is the most suited to evaluate 

decoding performance on unseen data. 

For each set, kinematic data is interpolated to match EMG sampling frequency and a sliding window 

is extracted with a length of 200ms and 150ms overlap which yields a window of shape (time x channels) 

depending on the sampling frequency and the number of channels. Hand kinematics at the end of each 

window is retrieved. 

Machine learning approaches 

In this study, two decoding approaches are compared. The first one is a standard EMG decoding 

approach with handcrafted features extracted to input an MLP versus a deep learning CNN-based 

approach that learns the features directly from the signal to regress the 6 finger angles. For the MLP 

approach with both the LD-EMG (LD_MLP) and the MD-EMG setup (MD_MLP), a set of time domain, 

as well as frequency domain features, are extracted for each window: 

- Mean absolute value (MAV). 

- Wavelength (WL): Cumulative length of the waveform over time. 

- Maximum Absolute Value (MaxAV). 

- Standard Deviation (STD). 

- Zero Crossings (ZC): Number of times the signal crosses zero. 

- Slope sign changes (SSC): Number of times the slope of the EMG signal changes signs. 

- Root Mean Square (RMS). 

- Log detector (LOG): 𝑒
1

𝑁∑ log(|𝑥𝑖|)
𝑁
𝑖=1  where xi is the EMG amplitude at time bin i. 

- Frequency spectrums in each frequency bin between 7 and 12 Hz, 12-30, 30-50, 50-100, 100-150, 

and 150-400 Hz obtained from fast Fourier transform (7_12, 12_30, 30_50, 50_100, 100_150, 

150_400). 
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In the CNN case with the LD-EMG setup (LD_CNN), similarly to (40), the windows are reshaped from 

the shape (400,6) to (50,48) to be able to create deeper networks with more pooling layers. On the other 

hand, with the MD-EMG setup (MD_CNN) the windows are kept in the original shape (480,64). 

Model architecture and hyperparameters Optimization 

For each recording, the model architecture and features selected (when applicable) are optimized 

with a GA (Fig. 2).  

In the case of the CNN approach, we started from a VGG-like architecture (45), and the network 

shape is optimized by adjusting various parameters such as the number of convolutional layers before 

each average pooling layer (up to 3), the number of pooling layer (up to 3 for the LD-EMG system and 

2 for the MD-EMG system), the pooling shape ([2,1], [2,2], [3,3] for both EMG systems and [4,4] was also 

possible for the LD-EMG setup) and the number of filters for each convolutional layer (16, 32, 64, 128). 

A batch-normalization layer follows each convolutional layer. Then, the number of fully connected 

layers (up to three layers) and the number of nodes for each layer (16, 32, 64) are also tuned. Apart from 

the architectural parameter, other hyperparameters are optimized such as the drop rate (0, 0.2, 0.5) as 

well as the L2 and L1 regularization rates (0, 1e-3, 0.1), the learning rate (0.1, 0.01, 0.001), the 

convolutional filter shape ([3,3], [5,5]) and the optimizer (Adam, RMSprop, batch gradient descent). 

The CNN networks are optimized with a batch gradient descent with a batch size of 32 samples, for 50 

epochs, a step decay with a drop of ½ every 10 epochs, and an early stopping if the validation loss did 

not decrease for more than 13 epochs.  

For the MLP approach, the model is a multi-layer perceptron and, therefore, has fewer parameters 

to tune. For the architecture, the number of layers of MLPs is optimized (up to three layers), and the 

number of nodes for each layer (16,32,64,128,256). Hyperparameter values are the same as with the 

CNN case tuning only the drop rate, L2 and L1 regulation rates, the optimizer, and the learning rate. 

However, feature selection is an important process in order not to overfit the data. Therefore, the 

selection or not of any channel-feature combination was another hyper-parameter. The MLP was 

trained with a batch gradient descent with a batch size of 64 samples, with 50 epochs, and similarly to 

the CNN, a step decay with a drop of ½ every 10 epochs with an early stopping if the validation loss did 

not decrease for more than 13 epochs. All the models were trained with a mean squared error loss 

(MSE).  

To perform the GA, each hyper-parameter is encoded as a gene on a chromosome that could take 

one of the discrete possible values. The number of possible models for CNN models is approx. 106 and 

higher for MLPs as each combination of feature-channel could be selected or not. The fitness function 

is encoded as the validation loss of the trained model. A population of 20 random individuals is created 

and trained for 200 generations using a fitness proportionate (or roulette wheel) offspring selection 

method. The rate of mutation is set to 0.1 and the selection rate to 0.6. In summary, 4000 models were 

trained in each condition which equals 16000 models trained for the four conditions for each recording. 

In total, for the 29 recordings available, 464’000 models are trained. A High-Performance Computing 

cluster with Nvidia V100 GPUs is used to train all the models. The difference in hyperparameters 

between conditions is due to the amount of RAM available.  

Model selection and generalizability 

For each recording, the model with the lowest validation loss was selected. Each optimized model 

architecture was trained on each recording available 3 times locally on a Lenovo Extreme with an 
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Nvidia GeForce GTX 1050Ti GPU and the model with the lowest validation loss was selected to avoid 

falling in a local minimum (See Fig. 2).  

After comparing the performance between conditions on recording-specific models (model 

architectures and hyperparameters optimized on a specific recording, striped models in Fig. 2),  we 

assess the generalization performance of these optimized model architectures on other recordings. 

To compare the performance of the different conditions, the coefficient of determination R2 is 

extracted for each DoF decoded on the test set and used for the statistical analysis. The normality of 

variable distributions is assessed with the Shapiro–Wilk test such that parametric or non-parametric 

tests are used accordingly. 

Model architecture and hyperparameters selected 

To compare the different optimized models, several parameters are extracted from the architecture. 

In the CNN case, the number of trainable parameters is extracted before the flattening layer to remove 

the effect of the input shape and have a fair comparison between the two EMG systems. The number 

of embeddings is the output shape of the flattening layer and can be interpreted as the features 

extracted from the EMG signal whereas in the MLP case, the number of selected channel-feature 

combinations is extracted. 

3. Results 

Genetic Algorithm 

The evolution of the training and validation loss across generations of the GA for each recording is 

shown in Fig. 3.A. The GA did not converge for one recording in the condition LD_MLP as well as for 

two recordings in both MD_CNN and MD_MLP. The recordings were therefore removed from the 

analysis. For the remaining recordings, a plateau in performance is reached at approx. 30-40 

generations except in the case of the MD_CNN condition where there is a second drop in validation 

loss starting at generation 100.  

The performance of the models selected (with the lowest validation loss) in each condition is shown 

in Fig. 3.B. A Kruskal-Wallis test shows a statistical difference between conditions (H(3)=22.889, 

p<0.001). Post-hoc tests show a difference between LD_MLP and both MD_MLP and MD_CNN 

conditions (Mann-Whitney test, U=129.0, p<0.01 and U=141.0, p<0.001 respectively) as well as between 

LD_CNN and both MD_MLP and MD_CNN (Student’s T-test, t(24)=4.19, p<0.001 and t(24)=4.74, 

p<0.001 respectively). 

In summary, the median validation loss is lower for the MD-EMG setup compared to the standard 

LD-EMG system. However, there is no statistical difference between the CNN and the MLP approaches. 

Performance of selected models 

Figure 4 shows the finger-averaged R2 coefficient of recording-specific models in all conditions on 

the test set (Fig. 2.A striped models). There is a statistical difference between individual conditions 

(ANOVA, F(3,47)=3.034, p<0.05). Post-hoc tests show a significant difference in performance between 

LD_CNN and MD_MLP (Student’s t-test, t(24)=-2.418, p<0.05) as well as between LD_CNN and 

MD_CNN (Student’s t-test, t(24)=-2.234, p<0.05). 
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Figure 5 shows more precisely the differences between each finger, we observe that both decoding 

conditions with the MD-EMG setup are in general better at decoding thumb movements and index 

flexion but there is no difference for the other fingers (see Fig. S1 for detailed results and statistical 

analyses). Fig. 6 and 7 show the decoded joint flexions on the test set of a representative recording with 

the LD-EMG and the MD-EMG systems respectively. Heatmaps show the relative amplitude of the 

EMG envelopes averaged during each movement of the sequence with respect to the average resting 

activity. 

Figure 3: Genetic Algorithm results. (A) Training and Validation loss evolution of the best individual at each 

generation. Lines represent the average loss of all recordings and shadowed areas the standard deviation. (B) 
Boxplot of the validation loss obtained from the best-performing model for each condition. 

Figure 4: Boxplot of the finger-averaged coefficient of 

determination (R2) on the testing set obtained from 
models with the lowest validation loss. 

Figure 5: Single-finger performance in each 

condition. Circles represent medians and error bars 
represent 25% and 75% percentiles. 
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Figure 6: Virtual hand and predicted scaled finger angles on unseen data from a representative LD-EMG recording. 

Heatmaps are the average EMG signal envelope amplitude for each channel during each movement of the sequence 
with respect to the average activity during resting phases. The R2 of this specific recording is equal to 0.71. 

Figure 7: Virtual hand and predicted scaled finger angles on unseen data from a representative MD-EMG recording. 

Heatmaps are the average EMG signal envelope amplitude for each channel during each movement of the sequence 
with respect to the average activity during resting phases. The R2 of this specific recording is equal to 0.79. 
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Inter-subject model architecture stability 

For each recording, the performance of the recording-specific model architecture and 

hyperparameters is compared with the average of all the other architectures obtained with the GA in 

the other recordings. Finger averaged R2 of all the available recordings is shown in Fig. 8. There is a 

statistical difference for the condition LD_MLP where the R2 dropped by 0.09 between the GA-selected 

models and the ones obtained on other recordings. When looking at each recording individually, and 

comparing the value obtained with the recording-specific model versus all the other architectures 

obtained on the other recordings, this difference is significant for 13/13 recordings in the condition 

LD_MLP, 8/14 in the condition LD-CNN, 5/12 for MD_CNN and 3/12 for MD_MLP. The MD_MLP 

condition has the lowest proportion of recordings that obtained different performances with other 

optimized architectures and hyperparameters than the recording-specific one. 

Selected architectures and hyperparameters 

A subset of the hyperparameters selected by the GA is shown in Fig. 9. There is no noticeable 

difference in CNN architectures between LD and MD EMG systems. Indeed, the number of trainable 

parameters in the convolutional layers of the CNNs is not different between LD and MD-EMG systems 

(Fig. 9.C) and the number of embeddings extracted in the CNN-based approach is not different 

between EMG systems (Fig. 9.A) whereas for the MLP approach the number of channel-feature 

combination is statistically different between the EMG systems (Fig. 9.B). However, when the ratio of 

features per channel is compared, there is no statistical difference with an average of 6.95 features 

selected over 14 possible features per channel. The number of fully connected layers is different 

between CNNs and MLPs with more layers in the latter case (Fig. 9.D) but the number of embeddings 

that inputs the fully connected layers in the CNN approach is at least one order of magnitude higher 

than the channel-features combinations selected. Fig. S2 shows the hyperparameters selected by the 

GA in each condition. 

Figure 8: Finger-averaged R2 between recording-specific model architecture (A) and the average of all other 

architectures (B). 
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In the MLP case, features from all channels were selected equally in both EMG systems (Kruskal-

Wallis, H = 8.84, p = 0.12 for LD-EMG and H = 62.6, p = 0.49 for MD-EMG). Some features were more 

selected than others for the LD-EMG system (Kruskal-Wallis, H = 28.41, p < 0.01). Post-Hoc analysis 

with the Mann-Whitney U test with a significance level of p=0.01 showed that WL and ZC features were 

more selected than SSC,7_12,12_30, and 30_50 frequency bins. There is no statistical difference for the 

MD-EMG system (Kruskal-Wallis, H = 16.85, p = 0.21). See supplementary Figures S3 and S4 for 

heatmaps showing the percentage of recording where each feature of each channel was selected. 

4. Discussion 

In this study, we implemented a genetic algorithm to automatically optimize model architecture and 

hyperparameters for EMG decoding. This pipeline was used 

to compare the performance of a new MD-EMG system compared to a gold-standard gel-based LD-

EMG system for simultaneous and proportional decoding of single-finger motion. We compared the 

performance obtained with CNNs using the raw signal as input and MLPs using automatically selected 

features as input for both EMG systems. 

The results show that both decoding approaches with the MD-EMG system obtained better results 

than the LD_CNN condition (Fig. 4) and the difference is coming from thumb opposition, thumb 

flexion, and index flexion (Fig. S1). When looking at each DoF individually, there is a significant 

difference between LD_MLP and both MD-EMG conditions for thumb movements whereas the 

difference in the finger-averaged test loss is not significant. 

While this difference could come from the higher forearm coverage, another important aspect is the 

generalizability of model architecture and hyperparameters as it removes the need to perform a GA for 

each new patient. Indeed, running a GA for each recording in each condition as it was done in this 

study is computationally heavy. The models and hyperparameters obtained from the GA could 

generalize to other recordings without significant performance drops except in the LD_MLP case (Fig. 

8). Therefore, for the LD_CNN and both MD-EMG conditions, the GA could have been performed on 

one recording, and the resulting model used on all other recordings without changing the conclusions.  

Therefore, our new MD-EMG system is more suitable for prosthesis control as it can obtain higher 

performance than LD-EMG systems and optimized architectures are generalizable between 

Figure 9: Model architecture overview. (A) shows the number of embeddings obtained after the flattening layer 

that is the input to the fully connected layers of the CNN. (B) shows the number of channel/features combination 
selected to input the MLP. (C) Number of trainable parameters in the convolutional part of the CNNs. (D) 
Number of fully connected layers selected by the genetic algorithm in each condition.  

65



Journal XX (XXXX) XXXXXX Author et al  

 

recordings.  The design of this MD-EMG system using dry electrodes is easy to wear on the forearm and 

does not require careful placement of the electrodes. Moreover, by changing the inter-electrode 

distance, its size can be adapted to different stump lengths in order to obtain maximum performance. 

When examining in more detail the model differences between the conditions, we first see that there 

is no difference in model size (defined by the number of trainable parameters) on the convolutional 

layers between LD_CNN and MD_CNN conditions. There is a difference in the nature of the features 

extracted and the ones learned from the convolutional layers. Indeed, while approximately 7 features 

were selected per channel in both MLP cases, the number of embeddings obtained after the 

convolutional layers is at least one order of magnitude higher but is not different when the number of 

channels increases (Fig. 9). This could explain the architecture difference in the number of fully 

connected layers between CNNs where one fully connected layer is enough to obtain high performance 

and MLPs where the model has to combine non-trivially the features with 2 or 3 layers to regress finger 

angles. This result implies that simpler models such as linear discriminant analysis or support vector 

models might not be able to obtain optimal performance from carefully selected features. Therefore, 

we suggest that deep model architectures trained on a single recording should be compared with 

optimized MLPs if the aim is to improve decoding performance. 

On the other hand, CNNs are known to require huge amounts of data in order to perform well. As 

datasets for EMG decoding cannot be recorded over thousands of hours on a single subject, another 

approach is to use transfer learning. By leveraging data acquired from many subjects, (46,47) showed 

an improvement in decoding performance with CNNs using transfer learning. 

To conclude, we showed that our new MD-EMG system can outperform gold-standard gel-based 

EMG systems by decoding better thumb movements with a single optimization step and a simple 

placement of electrodes. In the case of upper limb amputation, this MD-EMG system can be tailored 

for different stump lengths and extract the maximum information to decode single finger movements 

proportionally. Finally, for single-finger proportional control, this VGG-like CNN approach is not 

outperforming more standard feature-based MLPs when model architectures, hyperparameters, and 

features are selected automatically with a GA. 

Data availability statement 

The data and code that support the findings of this study are available upon reasonable request. 
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2.3 EMG Data Augmentation for Grasp Classification Using Genera-

tive Adversarial Networks

Data augmentation techniques can play a crucial role in EMG decoding, particularly when

employing DL approaches for more sophisticated, functional, and robust decoding algorithms.

As deep models require large amounts of data to learn complex patterns and generalize well

to unseen data, a large amount of data is necessary to potentially unlock the full potential

of DL approaches. However, in practice, obtaining a sufficient quantity of EMG data can be

both challenging and time-consuming. Data augmentation methods enable the generation of

new, synthetic data points. This enriched dataset also improves the robustness of the deep

learning models by introducing variability and simulating different real-world conditions.

Consequently, data augmentation contributes to the enhancement of decoding performance,

ultimately leading to more accurate and reliable control strategies for prosthetic hands. In

this chapter, we investigate the possibility of using generative adversarial networks to obtain

high-quality synthetic EMG data.

The content of this section is the postprint from the conference article Mendez, Lhoste et al.,

"EMG Data Augmentation for Grasp Classification Using Generative Adversarial Networks,"

2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 3619-3622

Find the published article here: https://doi.org/10.1109/EMBC48229.2022.9871625

Personal contributions as the co-first author: conceived the experiments, prepared

the protocols, recorded the data, formated the figures, and wrote the manuscript
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Abstract 
Electromyography (EMG) has been used as an interface for the control of robotic hands for decades 
but with the improvement of embedded electronics and decoding algorithms, many applications are 
now envisaged by companies. Deep learning has shown the possibility to increase decoding 
performance, but it requires large amounts of data to show its full capabilities. However, recording 
such amounts of EMG signals face several issues since recording hours of data from patients is very 
time-consuming and can result in muscle fatigue. We explore a deep learning data augmentation 
strategy using generative adversarial networks (GANs) to create high-quality synthetic data to increase 
the performance of grasp classification. 

Clinical Relevance— This approach can increase the decoding performance of already existing 

decoding algorithms for patients with an amputation and suggests the possibility to increase the 
protection of personal data when recorded at a larger scale. 

1.  Introduction 

Electromyography (EMG) has been used for decades for the control of commercial robotic prosthetic 
hands (RPHs) (1). However, patients were able to control only one degree of freedom (DoF) at the time 
with non-homologous muscle activity. Patients could cycle between different types of grasps using co-
contraction of antagonist muscles or a smartphone app. Since a few years, some companies started to 
provide faster and more intuitive control of RPHs using pattern recognition methods that allow the 
patients to perform the intended grasp directly in a homologous way. This method is based on the 
extraction of discriminative features of the EMG signal that are used to train a classifier and identify the 
grasp intended by the patient. In the research literature, this approach showed high performance with 
accuracies up to 95% accuracy on 15 classes (2).  

In 2012, deep learning revolutionized the field of image classification in the ImageNET competition 
beating by more than 10% all the competitors who used a standard approach with feature extraction (3). 
Therefore, researchers applied similar approaches to EMG signals and showed an increase in decoding 
performance (4). One of the main limitations of deep learning is the amount of data necessary to 
outperform standard approaches, for instance, the ImageNet dataset has more than 14M images. 
However, datasets with hours of patient recordings are not feasible due to sweat that changes electrode 
impedance and muscle fatigue. Such a dataset cannot be recorded over several days due to subject 
variability among recordings as well as electrode placement which is crucial for comparable recordings 
(5). 

To tackle this issue, several groups showed the possibility to use transfer learning leveraging data 
acquired from several subjects to create a model that learns a general mapping of EMG signals which is 
then fine-tuned with a few repetitions of movements performed by the target subject. For instance, Fan 
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et al. (6) showed an increase in decoding accuracy using transfer learning from a database of healthy 
subjects to patients with an amputation 

Another approach is to augment the dataset with synthetic data. Indeed, the combination of deep 
learning with data augmentation could increase decoding performances. For EMG signals, several 
techniques exist to increase the diversity of available data such as Gaussian noise addition, magnitude 
wrapping, wavelet decomposition or synthetic EMG models and can effectively improve decoding 
performance (7). To draw a parallel with images, such techniques could be seen as equivalent to 
classical image data augmentation techniques such as noise addition, flipping, rotation or contrast 
modification (8). On the other hand, deep learning approaches with generative adversarial networks 
(GANs) are capable of generating completely new synthetic images such as faces with different emotions 
to increase classification accuracy on underrepresented classes (9). However, despite the promising 
results with images, deep learning has not been widely investigated for EMG data augmentation. Only 
a few groups showed the possibility of improving classification accuracy with deep learning approaches. 
Bird et al. (10) showed a generative algorithm for EEG and EMG data using GPT-2, a transformer-based 
generator originally developed for text generation. They show a real-time increase in performance with 
EMG for a three-class decoding task. Campbell et al. (11) used a sinGAN and improved the classification 
of a six-class decoding task by creating several models for each repetition of each motion per subject. 
We focused on the model developed by Zanini et al. (12) for Parkinson’s disease EMG data 
augmentation. The model is a deep convolutional GAN with an architecture that has been modified to 
capture more relevant features from EMG datasets. The discriminant model consists of four parallel 
convolutional pipelines that take as input the raw EMG signal, its frequency spectrum using FFT, FFT 
of the signal envelope as well as wavelet expansion that can extract essential features from EMG signals 
to perform movement classification.  

Another important point has to be taken into consideration. While EMG was mainly used for RPHs, 
clinicians for diagnostic purposes or research for different robotic applications (1,12), with the 
improvement of decoding algorithms and power of embedded electronics, companies nowadays 
consider EMG as a potential interface to interact with computers for games, keyboard typing that could 
be used by the general public. Personal data anonymization is a key aspect of research and medical 
environments and should be preserved when such technologies will hit the market. One application of 
GANs could be the anonymization of biometric data to allow data sharing (13).  

In this work, using the same model architecture as in (12), we train a deep convolutional GAN on a 
simple grasp classification dataset as a first step to create high-quality synthetic EMG data and 
augmenting a dataset for grasp classification. We report differences in classification accuracy with the 
addition of synthetic data as well as a close analysis of the amount of generated data necessary. We also 
investigate whether using only generated data is suitable for this task.  

2. Methods 

A. EMG recording and pre-processing 

EMG signal from one healthy subject (Male, 26 years old) was recorded for this study. Ethical 
approval was obtained from the cantonal ethical committee of Vaud and the subject signed informed 
consent. EMG signals were recorded at 2kHz using a Noraxon Delsys system connected to a LabJack 
data acquisition card to record six bipolar electrode channels placed uniformly around the subject’s 
forearm. During acquisition, the EMG signal is amplified and filtered with a notch filter at 50Hz and a 
bandpass filter between 15-500Hz. To synchronize EMG signals with hand gestures, the subject was 
asked to follow a virtual hand performing different finger gestures and hold for five seconds; the 
sequence of movement was repeated five times. In order to reduce synchronization issues between 
EMG and kinematics, the first second of each grasp was removed to train the GAN. We focused on three 
types of movements recruiting different sets of muscles: Power grasp, 2-digit pincer grasp, pinky finger 
closing and rest. For classification, the three first repetitions were considered as the training set while 
the fourth repetition was used as the validation set and results are reported on the last repetition which 
is the test set. 
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B. Generation of synthetic EMG data 

Using the model from (12), trained for each of the 6 channels and each class was evaluated for a total 
of 24 models trained. Each GAN was trained to generate one second of synthetic data using a sliding 
window of one second of EMG signal with a moving step of one sample. The GAN models were trained 
on one, two or three repetitions to detect any change in the quality of the generated samples. When 
using multiple repetitions of movements that are not continuous in time, the sliding window was 
computed separately on trials.  

The discriminative part of the GAN gave more weight to the frequency domain of the EMG signal 
than the time domain. Therefore, scaling could be an issue when generating different types of grasps 
separately, as the different models could not learn their relative range of values. Hence, the synthetic 
data, once generated, was rescaled in order to obtain the same standard deviation of the train set. 

C. Synthetic EMG signal validation 

To assess synthetic data quality and to quantify the effect of adding generated data for a grasp 
classification task, we chose a set of seven well-explored features: Mean Absolute Value (MAV) , 
Waveform Length: Cumulative length of the EMG waveform over time (WL), Maximum Absolute Value 
(MaxAV), Standard Deviation (STD), Root Mean Square of the EMG signal (RMS), Zero Crossings: 
Number of times the signal crosses zero (ZC) and Slope Sign Changes: Number of times that the slope 
of the EMG signal changes sign (SSC). 

These features were computed on windows of 250ms with a moving step of 25ms (225ms overlap) to 
train a multi-layer perceptron (MLP) for grasp classification. The extracted features of the EMG signal 
and the generated data were standardized based on the train set. 

Three conditions were compared: the baseline where the MLP was trained using EMG signal only, 
the generated condition where the MLP was trained using only synthetic data and the combined 
condition where a combination of EMG signal and synthetic data was used for training. In the second 
and third conditions, different amounts of generated data are compared. Then, the classification 
accuracies of the three conditions are reported on the test set which consists of true EMG signal only. 
Each training was performed 10 times and mean accuracy is reported with standard deviation. 

The MLP is composed of three layers (7 features input per channel, 350 nodes, 50 nodes, 4 classes 
output). ReLU activation function was used for the first two layers and SoftMax for the last one. Each 
MLP was trained with a batch size of 16 samples, with 50 epochs, a step decay with a drop of ½ every 
10 epochs with an early stopping if the validation loss did not decrease for more than 13 epochs. The 
models were trained with a cross-entropy loss (categorical cross-entropy), using an Adam optimizer. 

3. Results 

The first part of the analysis is performed on one GAN only, therefore on one channel, one class and 
the whole train set (three repetitions of movements) to assess the quality of the generated signals. Then, 
the analysis is focused on GANs from the same channel for all classes to assess performance differences 
with the addition of generated data. The quality of generated data is also compared when trained with 
one, two or three repetitions of movements. Finally, all GANs are used to train a model for grasp 
classification with the whole train set. 

Due to the non-normality of feature distribution (tested with a Shapiro-Wilk test), a Mann-Whitney 
U test was performed to compare the distribution of features of generated data and true data. Out of 
the 24 GANs trained, only 5 produced a similar distribution for at least one feature. Altogether, out of 
168 feature distributions compared (24 GANs*7 features), the null hypothesis could not be rejected for 
10 distributions. 
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Figure 1 shows the distribution of the extracted features on EMG signals and synthetic data for all 
classes. A Mann-Whitney U test was also performed mixing all classes and showed that the 
distributions of each feature are also different (p<0.05). Therefore, a PCA was performed to visualize  
the seven features of one EMG channel in 2D for all classes and retained 97% of the variance. Generated 
data was transformed with the same covariance matrix and is shown in figure 2 together with the true 
EMG signal. 

Regarding the classification task with one EMG channel, as shown in figure 3, the baseline accuracy 
of the classification task increased from one to two repetitions of movements from 0.56 (std=0.04) to 
0.70 (std=0.16) (Welch’s test, p<0.05), but not from two to three repetitions (Welch’s test, p=0.062). On 
the other hand, the best classification accuracy obtained with generated data increased when the 
number of repetitions increased (12000, 1250 and 8000 generated samples respectively, Welch’s test, 
p<0.05). The condition with generated data is higher than baseline when the GAN is trained with three 
repetitions with an accuracy of 0.76 (Welch’s test, p<0.05). With three repetitions, generated data alone 
has a higher test accuracy than the combined condition (Welch’s test, p<0.05). 

Figure 1.  Distribution of features extracted from 

EMG signal (true) and synthetic data (generated) for 
one channel and all classes with the whole train set. 

Figure 2.  Two first components extracted from PCA on 

the EMG signal of one channel for all classes with the 
whole train set. Generated data was transformed with 

the same covariance matrix used for the true EMG 
signal. For clarity, Gaussian kernel density estimates 
are shown. 

Figure 3.  Boxplots of the accuracy obtained for the three conditions with (A) one repetition of the movements, 

(B) two repetitions and (C) the whole train set. Generated and combined accuracy values are obtained with the 

optimal amount of generated data. 
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The combination of EMG signal and synthetic data showed an increase between one and two 
repetitions and between two and three repetitions (Welch’s test, p<0.05). The evolution with respect to 
the amount of generated data added in the train set is shown in figure 4. 
With all the channels, the baseline condition has an average accuracy of 0.93 (See figure 5). 
Nevertheless, with all channels, the condition with generated data only is not different from baseline 
(1748 generated samples, Welch’s test, p=0.248). However, the combined condition (mean=0.942) with 
4400 generated samples is higher than the baseline (Welch’s test, p<0.05).  

4. Discussion 

This work aimed at generating synthetic data to increase performances on a grasp classification task. 
As highlighted in figure 2, the generated data distribution is different from the true EMG signals. 
However, new plausible generated data can add additional variability to the input dataset and increase 
performance on unseen samples.  

We show in figure 3 that with enough training data, the combination of true features with the right 
amount of generated data can increase classification accuracy. While the gain in accuracy with one 
channel is on average 4.9%, the difference with all channels is relatively smaller (1.1%). This result 

Figure 4.  Evolution of the accuracy with respect to the number of samples used during training for the three 

conditions with (A) one repetition of the movements, (B) two repetitions and (C) the whole train set. 

Figure 5.  (Left) Evolution of the accuracy with respect to the number of samples used during training for the 

three conditions with all channels on the whole train set. (Right) Boxplots of the accuracy obtained for the three 
conditions Generated and combined accuracy values are obtained with the optimal amount of generated data. 
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could have several explanations. Indeed, the baseline accuracy with all channels is already at 93.5% 
and the small improvement with generated data could be due to a ceiling effect. The other factor comes 
from the fact that all GAN models were trained independently for each channel and cannot grasp the 
relationship between channels when generating new samples. 

Therefore, a potential improvement would be to design a new GAN architecture capable of 
generating several channels at once. Other types of models like RNNs specifically tailored to this 
application could better catch the time evolution of EMG signals. Moreover, such models could be 
developed for regression that allows more intuitive control of RPHs (1). However, there are only a few 
examples of GANs developed for regression problems (14). When trained with one channel and three 
repetitions, the performance of the generated condition is similar to the combined condition and can 
therefore be used to train a classifier without using any true EMG data. This result suggests that 
generated synthetic data could be a solution to legal and ethical issues of biometric data privacy and 
use by companies at large scale (13). 

5. Conclusion 

To conclude, this preliminary work showed the possibility to increase the decoding performance of a 
simple classification task with a focus on the amount of generated data necessary. For future 
development, more grasps should be added to have a functionally relevant setup for RPH control. 
Other model architectures (RNNs) should be investigated especially for the generation of synthetic 
data for regression tasks. Moreover, this approach can be combined with deep convolutional networks 
to perform classification and transfer learning since deep networks increase greatly their performances 
with more data. Finally, the results have to be confirmed with patients with amputation in a long-term 
analysis to assess robustness to electrode shift, sweat or muscle fatigue which are among the main 
factors that limit the application of such techniques outside of lab settings. 
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2.4 Optimizing setup and usability for potential home-based appli-

cations

The existing dichotomy between cutting-edge EMG decoding research in lab settings and the

relatively simple commercially available solutions highlights the need to translate advanced

techniques into practical applications for patients’ daily use. To bridge this gap, it is essential

to develop solutions that are not only effective but also accessible and easy to use for patients

at home. This can be achieved by developing more user-friendly calibration procedures and

leveraging robust data processing techniques that can account for the variability in real-world

conditions.

The following section outlines preliminary results from three approaches aiming to bring

single-finger proportional control at home for patients. The first subsection focuses on

markerless kinematic tracking, the second subsection explore the use of transfer learning

to reduce calibration time, and finally, a real-time training framework is presented for the

instantaneous generation of decoding models.

2.4.1 Simple finger angle acquisition with markerless angle extraction

The content of this section is a preliminary analysis adapted from the poster sent to Society

for Neuroscience (SfN) in 2022: Mendez et al., "A Framework for Markerless Wrist and Finger

Angle Extraction from a single webcam for EMG-based Proportional Control of robotic

prosthetic hands", poster, Society for Neuroscience 2022, San Diego, CA, November 12–16,

2022

Personal contributions as the first author: conceived the experiments, prepared the

protocols, recorded the data, formatted the figures, prepared and presented the poster.

Up to this section, EMG signals and hand movements were synchronized by asking the par-

ticipants to mimic the movements of a virtual hand. However, proportional control requires

precise calibration data from the recorded subject. In addition to the inherent delay between

the virtual hand and the subject’s motion, the subject may occasionally become distracted,

leading to a non-linear delay throughout the entire recording. This ultimately reduces the

quality of the calibration data. As this approach is a good trade-off for persons with a bilateral

amputation, for persons amputated on only one arm, we could leverage the synchronous

movements of both hands to synchronize EMG signals with intended motions. To achieve

the most intuitive control of these sophisticated RPHs, EMG-based proportional control is

essential, necessitating precise angle extraction for the calibration of decoding algorithms.

Many groups showed the possibility to record hand kinematics on able-bodied subjects as well

as amputated patients using kinematic gloves or motion capture systems. However, kinematic

gloves are bulky, expensive, and fragile while motion capture systems using markers require a

full setup that cannot realistically be used at home by patients due to their complexity and
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price. In response to these challenges, recent developments have focused on markerless pose

estimation software solutions that leverage one depth camera or multiple cameras to provide

a more accessible and cost-effective alternative for angle extraction and calibration of RPHs in

real-world settings. Nonetheless, depth cameras or calibrated systems with several cameras

are not available everywhere.

In this section, we investigate the performance of MediaPipe, a markerless kinematic tracking

library capable of inferring 21 3D landmarks on a hand from a single camera. This approach

has the advantage of being usable with a smartphone to re-calibrate the prosthesis anytime,

anywhere. From these landmarks, we extracted five finger flexion angles and the thumb

opposition angle, resulting in a total of 6 degrees of freedom (DoFs). With a brief 5-second

calibration to obtain the orientation of the subject’s forearm, wrist flexion and pronation

angles were also obtained from MediaPipe (see Figure 1) and compared to accurate angles

from two IMU sensors placed on the back of the hand and the elbow for reference. This

process allowed us to develop a framework for easily calibrating an EMG-based single-finger

proportional decoder using a single webcam, predicting a total of 8 DoFs.

To demonstrate the feasibility of this approach, one able-bodied subject was recruited for

the study. Seven wireless bipolar EMG channels were placed uniformly around the subject’s

forearm. The subject was instructed to follow a video of a person performing grasp and wrist

gestures, repeating the sequence of movements six times. The first four repetitions were

used to train a multi-layer perceptron (MLP), the fifth repetition as a validation set for early

stopping, and the final repetition to evaluate the performance of the model.

Seven well-explored features (MAV, WL, MaxAV, STD, RMS, ZC, and SSC) were extracted using

a sliding window of 200ms with a 170ms overlap to train the MLP. The EMG signal features

were standardized based on the train set.

Wrist Angle Extraction: IMU vs MediaPipe

The angles obtained from IMUs represent the difference between the angles measured by the

hand and elbow IMUs. Overall, wrist angles are accurately approximated using this approach

(Figure 2). The pronation angle derived from MediaPipe is found to be more correlated to the

IMU angles (R2=0.77) than the flexion angle (R2=0.54). This result suggests that MediaPipe

provides a reliable method for approximating wrist angles, particularly for pronation, offering

a viable alternative to traditional IMU-based methods.

EMG Decoding

The finger angles were predicted with an average coefficient of determination (R²) of 0.80

(Figure 3), while the wrist angles achieved an average R² of 0.72 (Figure 4). To enhance

clarity, the testing set predictions were post-processed using an 11-point moving median

filter (330ms). This post-processing technique can be easily applied in real-time settings,
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Figure 1. Illustration of the wrist and finger angles obtained from MediaPipe. Finger angles
could be obtained from MediaPipe without calibration, as they are defined by hand landmarks.
Wrist angles, on the other hand, were determined by the difference in pose relative to a
reference pose, requiring the subject to maintain a consistent forearm orientation throughout
the session.

Figure 2. (Left) Position of IMUs to extract the wrist pronation/supination and flexion/exten-
sion angles. (Right) Normalized angles extracted from IMUs and MediaPipe.
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with the drawback of increased delay. These results suggest that the proposed method offers

a reasonably high level of accuracy in predicting both finger and wrist angles, making it a

promising approach for EMG-based decoding applications.

The proposed framework demonstrated promising results for simultaneous and proportional

decoding of wrist and finger angles, and it could be tested on patients with amputations if they

perform synchronized and mirrored movements with their healthy and phantom hands. With

the extraction of 21 landmarks on the hand, more degrees of freedom could be determined

as RPHs continue to advance in complexity. Although this approach may not be as precise

as more complex tracking solutions, it enables high-quality decoding and a straightforward

calibration procedure that patients can easily perform daily at home. Ultimately, by gathering

data across multiple days and employing deep learning techniques, decoding accuracy could

be further improved, enhancing the overall effectiveness of this approach.
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Figure 3. Plot of the predicted finger angles from EMG signals (Blue) vs. target angles obtained
from MediaPipe (orange) on the test set. The average R2 for all the fingers is 0.80.
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Figure 4. Plot of the predicted wrist angles from EMG signals (Blue) vs. target angles obtained
from MediaPipe (orange) on the test set. The average R2 for the two wrist movements is 0.72.

2.4.2 Transfer Learning to reduce calibration time

In computer vision, transfer learning has shown many advantages with deep learning ap-

proaches by improving decoding performance, particularly when dealing with complex tasks

and large-scale datasets. Leveraging pre-trained models, several authors showed that it is

possible to achieve superior performance with comparatively less training data and reduced

computational costs. In the context of EMG, deep learning has the potential to improve

decoding performance for single-finger proportional control. Therefore, transfer learning

offers significant potential to overcome challenges related to inter-session variability in muscle

activation patterns or electrode placement. Indeed, collecting large amounts of EMG data

from a specific subject can be challenging as patients with an amputation would not accept

to calibrate their prosthesis for one hour every day. This subsection focuses on a transfer

learning approach to reduce calibration time for subjects.

In this preliminary study, four able-bodied subjects (3M-1F, 20-27 years old) were recruited.

Using the MD-EMG prototype described in section 2.2, EMG signals were recorded from 64

monopolar channels at 2400Hz, bandpass filtered between 5 and 500Hz, notched filtered at

50Hz, and an overlapping sliding window of length 200ms (overlap of 150ms) was extracted.

Subjects were asked to follow a 14-minute long video showing a sequence of single and

multi-finger movements repeated 6 times. Finger angles were obtained with a webcam using

MediaPipe and synchronized with the EMG signals.

To obtain the baseline decoding performance for each subject, a CNN model was trained as in

section 2.2 with random initialization, and performance is assessed on the testing set. The

CNN model architecture and hyperparameters were optimized on previously acquired data

and the validation test was used for early stopping. As performed previously, the first four
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repetitions were used for training, the fifth one for validation, and the last one to evaluate the

performance of the model.

Next, a model was pre-trained on 10 recordings from subject 1 who recorded the full dataset

on 10 different days. This model was then used for fine-tuning on a smaller dataset recorded

by all participants consisting of 3 repetitions of movements. During fine-tuning, the training

was continued for 20 epochs with all convolutional layers frozen. Two repetitions were used

for training and the last one was used to evaluate the model’s performance.

Finally, after fine-tuning the model, each subject was asked to control a robotic hand in real-

time. The task consisted of grasping an object with the robotic hand with three different grasps

(power, tri-digital and ulnar grasp) and maintaining the ball for at least 5 seconds repeated 20

times for each grasp (see Figure 5.).

Figure 5. Illustration of the task performed by the subjects with the robotic hand.

Figure 6 shows the offline performance of the models trained from scratch compared to

the models pre-trained on 10 recordings before and after fine-tuning. Without fine-tuning

the performance is lower than the model trained from scratch and with fine-tuning. The

fine-tuned model has on average a lower R2 than the model trained from scratch.

Figure 6. Mean coefficient of determination (R2) obtained for each degree of freedom decoded.

Table 1 shows the outcome of the functional task. Successful grasp with 5 seconds of holding

the object was awarded one full point (✓) while if the grasp was performed but the object was
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not grasped for 5 seconds, it counted as 0.5 points (~). Failure to perform the intended grasp

resulted in 0 points (×). The average is the number of points obtained divided by the total

number of grasps intended. The performance increases with fine-tuning, however, without

fine-tuning the performance is relatively poor on subject 1 even after being trained for 10 days.

Table 1. Result of the robotic hand task. ✓ refers to a successful grasp, ~ represents a grasp
that was not kept for 5 seconds, and × is a trial where the robotic hand didn’t move or didn’t
perform the intended grasp.

This preliminary analysis confirmed the potential of using transfer learning with an MD-EMG

system for single-finger proportional control to reduce calibration time. Indeed, with only 7

minutes of recording, the subjects were able to perform the task with high accuracy. However,

the results also show that pre-training a network on many recordings on different days is not

enough to eliminate the calibration phase on subject 1. One hypothesis is that increasing the

amount of data during pre-training could remove the need to perform calibration. However,

the high inter-session variability could make the recording of a "sufficient" amount of data

impossible. An alternative hypothesis is that pre-training a model on data from multiple

subjects could improve its ability to generalize to new data potentially reducing the amount

of data required by a single participant to obtain a model performing without calibration for

each new session.

This analysis is preliminary and shows several limitations. For instance, the amount of data

necessary with transfer learning to obtain the same performance as the model trained from

scratch was not assessed. Moreover, the task was not performed in the case of a model trained

from scratch. This limitation is due to the time necessary to record the full sequence, extract

the finger angles from the video, and train the CNN which can take up to one hour when

performed on a laptop equipped with an Nvidia GeForce GTX 1050Ti GPU. With transfer

learning the total time to record and obtain a trained model was reduced to 20 minutes.
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2.4.3 A framework to train deep models in real-time for wrist and finger propor-
tional control

In this subsection, we discuss the development of a novel framework combined with MD-EMG

that has been patented (Application No: EP 23159952.3, Title: A wearable electromyographic

device and system and methods for motion decoding of body parts).

Based on the time limitations of the previous subsection, we designed a framework to reduce

the computational cost of EMG decoding and leveraged the full power of CPUs and GPUs

as extracting the angles from the video using MediaPipe and training a model with transfer

learning is still requiring time to be performed. In this subsection, a framework was developed

to extract finger angles from the webcam and train models in real-time. The main advantages

of real-time training are that it gives instantaneous feedback on the decoding performance of

the model to the user such that one can stop training when the model obtained has sufficient

performance, the user can also use the instantaneous feedback to emphasize gestures that are

not properly trained by the model. Moreover, the user can use the robotic hand as soon as the

model gives satisfactory results and does not need to wait for the analysis to be done before

knowing if the model is performing well or not.

To reduce the computational cost of training deep models on raw EMG data recorded at

2400Hz, we preprocess each channel of the MD-EMG system to obtain the envelope of the

EMG signal and subsample it to 100Hz. This processing is performed in real-time and allows

to reduce in 24 the amount of data stored and lowers the size of the input to the CNN with low

to no loss in decoding performance. Preprocessing the data simplifies the feature extraction

process for the model, ultimately resulting in a shallower architecture.

On the finger angle extraction side, the frames retrieved from the webcam are processed in

real-time to extract only the finger angles. Using CPU parallelization, the frames are acquired,

and the finger angles are extracted at a steady frequency of 30 Hz. Moreover, the user is able to

see the camera view on the screen of the PC with the value of the finger angles to get feedback

on the quality of the angles extracted.

Similar to the previous subsection, a model was pre-trained on 10 recordings of a single subject

and is used as a basis to reduce the calibration time.

The real-time framework architecture is shown in Figure 7. Briefly, the system is made of two

instances. The first one synchronizes and saves the data received from all modalities (EMG,

finger angles from the camera, and wrist angles from IMUs) in a folder. Another instance gets

all the data available in this folder to fine-tune the pre-trained model and keeps all the data

in a buffer. When a model is ready, it is pushed such that the data incoming is also used as

input to the model to obtain predictions. When the training is done, the instance adds the

new data available in the folder to its buffer and continues fine-tuning the model obtained at

the previous step.
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Figure 7. Architecture of the real-time training framework

Two subjects were recruited to control a robotic hand with real-time training and perform the

same task as in the previous subsection.

As this work is preliminary, there are only a few results obtained a the time of writing. Table 2

shows the performance of the two subjects on the robotic hand task after roughly 3 minutes

and 30 seconds of calibration using the pre-trained model as a basis.

Table 2. Result of the robotic hand task with the real-time framework after 3 minutes and 30
seconds of data acquisition. ✓ refers to a successful grasp, ~ represents a grasp that was not
kept for 5 seconds, and × is a trial where the robotic hand didn’t move.

This real-time framework opens up many scenarios to be tested with repetitive training of

models and to explore different training or transfer learning paradigms to obtain performing

models with the lowest amount of calibration data possible. It is important to notice that the

training is not exactly the same as what is generally reported in the literature. Indeed, in this

87



case, the model is trained with all the data available at every step. As the dataset increases in

real-time, it implies that the data obtained at the beginning of the recording will be used to

train the model more often compared to the latest data. Several strategies need to be compared

to obtain the maximum accuracy and long-term robustness of the decoding.
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3 Shared Control

EMG decoding will remain limited for some patients due to the number of remaining muscles

or movements previously performed by intrinsic muscles of the hand. On the other hand,

shared control, or the integration of robotic automation with EMG decoding for robotic

hand control, presents several advantages. Dexterity and functionality could be improved

by assisting in performing complex tasks such as providing additional stability for instance.

This allows the prosthetic user to accomplish tasks with greater ease and precision, enhancing

their overall quality of life. This can offload some of the cognitive load required to operate

prosthetic hands, as robotic automation can take over certain aspects of the task. It allows the

user to focus on higher-level decision-making and less on the intricate details of controlling

the prosthesis. Among other potential benefits of shared control, we will show in this chapter

two main aspects of adding robotic automation into the decision loop. The first section will

cover grasp robustness and potential muscle fatigue reduction while in the second section, we

will investigate how robotic automation can increase the dexterity of the user by performing

in-hand object manipulation.

3.1 Robotic Automation to Improve Grasp Robustness

The content of this section is the postprint from the article Zhuang et al., "Shared hu-

man–robot proportional control of a dexterous myoelectric prosthesis," Nat Mach Intell 1,

400–411 (2019).

Find the published article here: https://doi.org/10.1038/s42256-019-0093-5

Personal contributions as the co-second author: conceived the third experiment with

the physical robot, prepared the protocols and the experimental setup (hardware and

software) of the EMG part, and co-conducted the experiment. I analyzed the results from

the data recorded with the physical robot, prepared the EMG-related figures, and wrote the

manuscript on this part.

89

https://doi.org/10.1038/s42256-019-0093-5


 

 

Shared human-robot proportional control of a dexterous myoelectric 

prosthesis 

 

Katie Z. Zhuang, Nicolas Sommer*, Vincent Mendez*, Saurav Aryan*, Emanuele Formento, Edoardo 

D’Anna, Fiorenzo Artoni, Francesco Petrini, Giuseppe Granata, Giovanni Cannaviello, Wassim 

Raffoul, Aude Billard#, and Silvestro Micera# 

 

(* Equal contribution as junior authors, # Equal contribution as senior authors) 

Abstract 

Myoelectric prostheses allow users to recover lost functionality by controlling a robotic device with 

their remaining muscle activity. Such commercial devices can give users a high level of autonomy, 

but still do not approach the dexterity of the intact human hand. We present here a method to 

control a robotic hand, shared between user intention and robotic automation.  The algorithm 

allows user-controlled movements when high dexterity is desired, but also assisted grasping when 

robustness is paramount. This combination of features is currently lacking in commercial 

prostheses and can greatly improve prosthesis usability. First, we design and test a myoelectric 

proportional controller that can predict multiple joint angles simultaneously and with high 

accuracy. We then implement online control with both able-bodied and amputee subjects. Finally, 

we present a shared control scheme in which robotic automation aids in object grasping by 

maximizing contact area between hand and object, greatly increasing grasp success and object hold 

times in both a virtual and a physical environment. Our results present a viable method of 

prosthesis control implemented in real time, for reliable articulation of multiple simultaneous 

degrees of freedom.  

1. Introduction 

In the United States alone, about 1.6 million people live with an amputation, 541,000 of 

which affect the upper limbs (1). This condition diminishes quality of life, mobility and 

independence, while also imparting a social stigma (2). Upper limb prostheses controlled using 

surface electromyographic (sEMG) signals attempt to restore hand and arm functionality by using 

the amputee’s remaining muscle activity to control movements of a prosthetic device. However, 

the capabilities of current commercial prostheses are still grossly inferior compared to the dexterity 

of the human hand. Commercial devices usually use a two-recording-channel system to control a 

single degree of freedom (DoF), i.e. one sEMG channel for flexion and one for extension (3). While 

intuitive, the system provides little dexterity. Patients abandon myoelectric prostheses at high rates, 

in part because they feel that the level of control is insufficient to merit the price and complexity of 

these devices (4–6). In recent years, various research groups have made significant advances in 

myoelectric prosthesis control in laboratory and prototype environments. Many groups have 

demonstrated great success in grasp classification, which is a common approach for prosthesis 

control, but limits the user to a library of trained hand postures (7–10). However a few groups have 

now attempted to decode single finger movements (11–13). Despite high decoding accuracy, these 

studies showed results mainly from able-bodied subjects performing offline tests. With cited 
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decoding performances of upwards of 90-95% for each method, we see a clear dichotomy between 

laboratory experiments and clinical viability, a point that is addressed by Jiang et al (14).  

The idea of “shared control”, that is, automation of some portion of the motor command, is already 

a topic of interest within the field of robotics and neuroengineering (15–18). Indeed, shared control 

approach can play a key role in robotic applications involving human-robot interfacing such as 

prosthetic body parts. The limited sensory-motor control abilities in this case make the subjects  

unable to conform their fingers to the shape of the object. This in turn inhibits their ability to secure 

and adapt their grasp according to the requirement of the task. Shared control can fill this void by 

stabilizing the grasp, making fine adjustments to the fingers by processing information from the 

tactile sensors placed on prosthetic hand’s fingers. More generally speaking, shared control 

strategies aim to bridge the gap between human’s intentions and efficient execution of the intended 

task by using information from the sensors.   

Even if potentially useful, shared control has not yet become prevalent in the area of 

peripheral nerve interfaces. Došen et al. propose a camera-based approach (19) while Light et al. 

proposes 1-DoF control with automated grip force adjustment (20). Other methods of automation 

include automated hand-closing in response to slippage (21) and  underactuated systems in which 

spring-like mechanisms mediate grasp force (22). The only commercial application of shared-

control methods to date is the Ottobock Sensorhand Speed which automatically increases thumb 

flexion during grasping in response to slippage (18). However, it is only capable of binary action 

choices or 1-DoF proportional velocity control.  

The control method presented here attempts to implement a shared-control strategy with a 

highly-dexterous hand prosthesis by taking advantage of state-of-the art myoelectric decoding as 

well as an algorithmic controller for grasp optimization. We first propose a kinematic proportional 

decoder using a multilayer perceptron (MLP), which allows users to simultaneously and 

continuously control each finger individually. In addition, we propose to integrate and use a 

shared-control scheme in which a robotic controller aids in stable grasping by maximizing the area 

of contact between a prosthetic hand and an object (23). The idea behind this scheme is to make 

object grasping more robust (avoiding accidental drops) while allowing the user to maintain full 

autonomy over grasping or releasing, grasp preshaping, and non-grasp-related motions. In this 

way, we achieve both highly dexterous user control when precise positioning is valuable, and 

partially automated grasp attainment when object droppage avoidance is desirable.   

 

2. Results 

We performed three sets of experiments in which we decoded hand movements of subjects using 

sEMG signals recorded from their forearms.  We recruited three subjects with hand/transradial 

amputations (subjects A1, A2 and A3) and eight able-bodied subjects (subjects B1, B2, B3, B4, S1, 

S2, S3, S4) for the study. In the first set of experiments, able and amputee subjects performed online 

control of a virtual prosthetic hand. In the second set of experiments, the same subjects used a 

virtual hand to grasp and release virtual objects according to visual cues in two conditions: with or 

without robotic assistance. In the third set of experiments, four able-bodied subjects controlled a 

physical robotic arm and hand to perform functional object manipulation tasks. 
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Figure 1. Experimental Setup and Subjects. a, In online experiments, four able-bodied subjects and 

three amputee subjects controlled a virtual robotic hand using their surface EMG signals. The 

signals were decoded with a multilayer perceptron to obtain predictions of single-digit joint angles. 

b, The three amputee subjects had varying levels of amputation, shown here. c, Movements we 

tested consisted of both single-digit and multi-digit movements. All subjects performed all 

movements except Subject A2 who did not perform index and middle finger flexion/extensions 

independently. 

 

Experiment 1 (Online Kinematic Decoding). Three amputee subjects (A1, A2 and A3 in Figure 1b) 

and four able subjects (B1, B2, B3, and B4) performed online control of a virtual prosthetic hand 

with sEMG decoding. To train the MLP, subjects were asked to mimic the movements of the virtual 

hand while sEMGs were recorded. We decoded flexion and extension of each digit as well as thumb 

opposition and reposition. This gave DoFs per subject for all subjects except subject A2 who moved 

the index and middle fingers concurrently (Figure 1c). The average per-session correlation for all 

subjects and all sessions was 0.52 and the peak-to-peak normalized mean square error (24) (nMSE) 

was 15.7%. For all subjects, the MLP successfully predicts the flexion and extension of each finger, 
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both individually and simultaneously with flexion of other digits. We summarize performance in 

Supplementary Table 1 for all subjects and sessions.  

In order to further analyze the ability of the decoder to predict the desired joint angles and 

to compare these predictions against chance, we computed the percentage of time of correctly 

predicted joint angles for each subject (Figure 2a). As a control for this assessment, we selected 

random angles from the training set range and computed prediction accuracy using the random 

angle as the instructed one (white sections). This way, we were able to simulate chance accuracy of 

the MLP predictions. We find that in every degree of freedom for Subject A3, the MLP is able to 

decode significantly higher than chance (Wilcoxon two-sided signed rank test, p<0.01). The same 

analysis was performed for all subjects individually with similar results (Supplementary Figure 2) 

using a non-parametric test due to non-normal data (Komolgorov-Smirnoff test). We then 

performed this analysis for all subjects while pooling all of the degrees of freedom to obtain an 

overall measure of decoding performance (Figure 2b). 

To analyze any patterns in prediction error, we calculated a “confusion matrix” for each 

degree of freedom (Figure 2c). Here, we enforced a threshold (mean prediction angle) to separate 

joint predictions into either flexion or extension. We also mapped the instructed joint angles into 

flexion or extension using mean instructed angle for thresholding. Plotting instructed activation on 

the x-axis and performed action on the y-axis, we color map excessive action (false positive) to 

orange intensity and lack of action (false negative) to blue intensity. We observed that Subject A3 

has trouble controlling thumb flexion; it is excessively flexed during the actions of other fingers. 

Similarly, Subject A2, who has extensive median nerve damage, has difficulty controlling the 

thumb, index and middle fingers movements.  

These thresholded decoding accuracies are within a similar range as the ones obtained in 

online classification of finger flexion and extension cited by Cipriani et al. (79% average accuracy 

for amputees cited vs. our average of 89.5% for a similar number of classes: 7 classes cited vs. our 6 

effective classes which are simultaneously considered) (12).  

This experiment demonstrates our ability to decode individual finger movements 

proportionally for multiple simultaneous DoFs and in real time using noninvasive sEMG signals. 

Performance results are not only above chance level, but robust for all tested movements for both 

able-bodied subjects as well as amputee subjects.  
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Figure 2. Analysis of online prediction performance of the MLP. a, Prediction accuracy of the MLP compared 

to chance accuracy. Gray boxplots indicate the fraction of time per trial that each predicted DoF is within 15 

degrees of the instructed angle. White boxplots indicate the fraction of time per trial that a random angle 

(within the set of trained angles) is within 15 degrees of the instructed angle. Each degree of freedom was 

predicted higher than chance level (p<0.01 Wilcoxon two-sided signed rank test). All box plots in this 

manuscript include a median center line (red), box edges at 25th and 75th percentiles, notches calculated 

based on interquartile range ±
1.57∗𝐼𝑄𝑅

√𝑛
 b, Overall decoding accuracy versus chance for all subjects. Statistical 

significance is calculated with the Wilcoxon two-sided signed rank test. c, Confusion matrix of each digit’s 

degrees of freedom for one subject. Blue pixels indicate lack of specified movement when instructed (false 

negatives) while more orange pixels indicate undesired movements (false positives). Overall error is 

calculated as well as error along the diagonal of the matrix (whether the instructed motion was performed 

accurately). d, Confusion matrices for three other subjects.  
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Figure 3. Shared control in virtual environment, setup and results. a, Simulator of Allegro Hand b, Shared 

control scheme. Both the MLP decoder and shared controller run simultaneously and the MLP-decoded joint 

targets prevail before contact. During object contact, the shared control joint targets prevail unless the 

difference between MLP-only and shared control is above a 50-degree threshold. c, Action of the active 

compliant contact controller. When one contact on a digit touches the object, the direction of motion is 

computed to bring other contacts of the digit towards the object. Figure adapted from Sommer and Billard et 

al. (23) d, Example traces of shared control (Subject B4). Top row shows total of pressure detected without 

(left) and with (right) shared control. Traces show the joint angle for each DoF. Dotted lines indicate the MLP 
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prediction while solid traces indicate the actual position of the virtual robotic hand. Bottom row indicates the 

cues to grasp or release. e, Percentage of trials during which desired contacts are achieved for the three objects 

by Subject B5 over 3 sessions. (p-values from Fisher’s two-tailed exact test). Number of successful trials versus 

total trials are indicated on each bar. f, Duration of hold time for each object out of seven seconds (p-values 

from Wilcoxon two-sided signed-rank test). g, Percentage of grasping trial time during which contacts were 

touching the objects (p-values from Fisher’s two-tailed exact test). Contacts on different phalanges are 

indicated with different color shades, raw numbers for calculation included in Supplementary Table 1. 

Experiment 2 (Shared Control using the virtual environment). In this set of experiments, the user 

attempted to grasp, hold and then release virtual objects by controlling a sensorized virtual robotic 

hand implemented in Gazebo and rviz, a ROS package (Figure 3a). The same subjects from 

Experiment 1 performed this experiment with the exception of subject B1. In addition to the MLP 

decoding, we tested two conditions: one with shared control for partial grasp automation (shared 

control) and one without (MLP only). During the shared control condition, the virtual hand would 

automatically attempt to maximize contact between the hand and a grasped object by increasing 

flexion of a finger as soon as a single phalanx touches an object. If, however, the total joint angle 

difference between MLP predictions and shared control targets of a single digit would differ by more 

than 50 degrees, the controller would use torque control to achieve MLP-decoded joint angles for 

that digit (Figure 3b). This threshold was chosen empirically from preliminary testing. In the future, 

we will strive to make the transition gradual instead using a threshold. The action of the algorithm 

is shown in Figure 3c under the conditions of pre-contact (MLP joint targets), initial contact (shared 

control targets in red) and achievement of full contact (in green). Figure 4d shows an example of 

single-digit flexion and extension with or without shared control for Subject B4 grasping the thin 

rectangular bar. We see that when shared control is implemented, digits that make initial contact 

with an object are better able to achieve more contacts and maintain them. The higher number of 

contacts achieved with shared control reflects this advantage (top row). However, the user is still 

able to release the object when it is desired (movement instructions at bottom).  

In Figures 3e, 4a we show the percentage of trials in which a full grasp is achieved per subject across 

all sessions with either shared control or only MLP predictions. Full grasp is defined as attaining all 

possible contacts between the hand and a particular object (see Methods). In the shared control 

condition, subjects are able to achieve considerably more successful grasp trials for all objects. For  

each object and for each subject, we also show percentage change in fraction of successful grasp 

trials between the MLP-only and shared control conditions (Figure 4b).  

We also see a difference in grasping performance between objects grasped which is subject-

dependent. For example, Subject A2 benefitted the most from shared control for the rectangular 

bar. This result is consistent with the finding that the same subject has particular difficulty in 

sustaining muscle activation associated with the thumb, index and middle fingers due to median 

nerve damage.  

In addition to the attainment of grasp, we also assessed how long the subjects were able to 

maintain holds. Figure 3f, 4c shows the distribution of hold times per object and per subject with 

or without shared control. We define hold time as the length of continuous time during which the 

subject could maintain required contacts between the virtual hand and object without any contacts 

being broken (25).Due to the visual cue, a small percentage of non-hold time is likely due to subject 

reaction time. For all objects and subjects, hold times are greater with the shared control condition 

than only MLP, with the exception of the cylinder for subject B2.This may be due to the low number  
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Figure 4. Shared Control results in virtual environment cont’d. a, Comparison of fraction of successful 

grasping trials with (orange) or without (black) shared controller aid for three amputee subjects and all three 

object types. Data are shown for all sessions of each subject (# of sessions indicated in title). Statistical p-

values are computed using Fisher’s two-tailed exact test. Number of successful trials versus total trials are 

indicated on each bar. b, Percentage improvement in fraction of correct trials for the three subjects split by 

object type. Each color indicates a different subject. c, Duration of hold time for each object with or without 

shared control for the three subjects (p-values by Wilcoxon two-sided signed-rank test). Maximum instructed 

hold time was seven seconds. d, Percentage of grasping trial time during which each single contact on each 

digit made contact with the objects with or without shared control for the three subjects (p-values by Fisher’s 

two-tailed Exact Test). Each plot is for a different subject with the shaded bars indicating contact placement. 

Lighter color shades indicate more proximal phalanges on the same digit. Data are aggregated over all trials 

and sessions for a single subject, raw numbers for calculation included in Supplementary Table 2. 
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of trials subject B2 performed in comparison to Subjects A1-3. .  

Finally, we assess the percentage of time that each single sensor contacted the objects to 

analyze which contacts subjects found more difficult to maintain. For all objects, all subjects were 

able to maintain longer contacts with all parts of the digits with shared control than with only MLP 

predictions. Importantly, all subjects were capable of releasing the objects once grasped by relaxing 

their grasp (Fig. 4d, 6b). 

Taken together, these results show that the shared controller aids grasping in multiple ways, 

namely facilitating longer, more successful grasps and avoiding accidental drops.  

Experiment 3 (Shared Control in a physical environment). 

This experiment was divided into two sub-experiments. In the first sub-experiment, the subjects 

performed a variant of the box and block test (26) through teleoperation of a physical robotic hand 

and arm. The goal was to grasp and move an object (a bottle, half-filled of water) placed on a hard 

case to another one placed approximately 30cm away. Object droppage was considered a failed 

trial. The subjects controlled the robotic arm via an optical motion capture system. A robotic hand 

(the physical analog of the virtual one described in Experiment 2) was mounted onto the robotic 

arm and controlled with either MLP only or shared control. Four able-bodied subjects participated 

in this experiment (S1, S2, S3 and S4). After a training phase to train the MLP decoders, the subjects 

were required to perform 20 trials of the functional task under in each condition (randomized MLP 

only and shared control) for a total of 40 trials.  

Results are shown in Figure 5a (left panel). S3 and S4 performed significantly better with 

shared control than without whereas S1 and S2 were highly successful at the task in both conditions.  

To evaluate whether the shared control improves grasp quality, we defined two metrics 

based on the pressure sensor data: average number of contacts and the “effective normalized 

pressure” (see Methods). The results shown in figures 5b and 5c indicate better performance with 

shared control in terms of both of the two metrics. The p-values, computed using Wilcoxon’s rank-

sum test over all trials by all subjects, show statistical significance in case of effective normal 

pressure (p< 0.0001). The same test performed on average number of contacts was not significant 

for the index finger (p=0.07) but showed statistical significance for the other two fingers (p< 0.05).  

As shared control was notably advantageous for the subject S3, we compared the timeseries 

plots of a few trials from the subject’s box and block tasks (Figure 5d). In open position (close to 

zero), the actual position (solid line) closely follows the MLP prediction (dotted line) for each finger. 

However, the subject cannot close the fingers enough to grasp, leading to insufficient total pressure. 

With the shared control, the grasps are tightened to achieve the desired pressure. In case of the 

subjects who performed equally well with and without shared control (S1, S2) the MLP prediction 

by itself was high enough during grasping to achieve a tight grip and high pressure.  

The second sub-experiment used the same training protocol as first, with a slight variation 

in the behavioral task. The task here consisted of grasping the bottle from the table, bringing it to 

mouth, tilting it to mimic drinking and then returning the bottle back to a steady position (a few 

centimeters above the table). Subjects were given less than 10 seconds to complete the movement 

and then hold the bottle in steady position for at least 10 seconds. The rotation of partially filled 

bottle leads to the shifting of its moment of inertia due to flow of the water, resulting in a 

perturbation. Additionally, bottle’s conical shape and smooth surface further adds to sliding of the 

bottle. Thus, this sub-task can evaluate the potential of shared control in stabilizing the grasp under 
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Figure 5. Shared control in physical environment, setup and results. a, Comparison of fraction of successful 

trials for the box and blocks task and the manipulation task with shared control (orange) and without (black). 

Data are shown for all sessions of each subject. Number of successful trials versus total trials are indicated on 

each bar when not zero. For the manipulation task (right panel), the total number of successful trials in each 

condition was summed over all the subjects. Fisher’s two-tailed exact test was used to compute statistical p-

values for individual subjects, Wilcoxon rank-sum test was used for total values. b, Effective normalized 

pressure on each finger comparing the trials with and without shared control. The p-values indicated were 

computed using Wilcoxon’s rank-sum test. c, Number of contacts detected by pressure sensors on each 

finger, averaged over time of each trial. The bars indicate the mean of each trial’s average number of contacts. 

The p-value is computed using Wilcoxon’s rank-sum test to compare trials of all subjects with and without 
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shared control. d, Time series plots of total pressure, MLP decoded joint positions (dotted) and corresponding 

actual joint positions of the allegro hand (solid) over few sample grasping trials. The joints on each finger were 

summed over phalanges. Total pressure was computed by summing over all phalanges after normalization. 

e, Picture of the setup comprising the robotic arm and hand with a subject wearing the EMG acquisition 

system. f, Snapshots of completion of box and blocks task (top) and manipulation task (bottom). For full video 

see supplementary video 3. One trial of each condition (with and without shared-control) can be seen in 

supplementary video 4.  

object’s perturbations, slippery surface and non-uniform shape of object. S1, S2 and S3 performed 

better with shared control but not significantly (S1 and S3: p=0.3, S2: p=0.65) while S4 showed 

statistically significant improvement (Figure 5a right). This is likely due to the limited number of 

trials. Moreover, S4 was completely unsuccessful at completing the task without shared control but 

performed relatively well with shared control (p < 0.01). The overall advantage of using the shared 

control becomes evident when we pool together all the subjects (see last histograms in Figure 5b).  

 

3. Discussion 

Here we show that we are able to decode single finger kinematics from surface EMGs of both able 

and amputee subjects. The decoding approach was accurate for both single-finger movements and 

coordinated, simultaneously activated grasping motions. We also show that decoding is fast 

enough for real-time applications, with an update rate of 33 Hz. To the best of our knowledge, the 

work presented here is the first demonstration of a real-time proportional decoder for individual 

fingers tested with amputee subjects.  

One reason commercial prostheses prefer to implement classifier-based decoders instead 

of proportional ones is the robustness of classifiers in remaining in a particular posture. For 

grasping, this type of control is ideal to prevent accidental dropping but sacrifices user agency by 

restricting the number of possible hand postures. Our implementation of shared control allows for 

both user agency and grasping robustness. In free space, the user has full control over hand 

movements, which also allows for volitional pre-shaping for grasping.  

The tests performed in a physical environment allowed us to show the efficacy of shared 

control to the improvement of grasp especially when complex tasks are implemented (see Figure 

5b). For the first simpler sub-experiment, some subjects (S1 and S2) performed the tasks equally 

well regardless of the use of shared control while others (S3 and S4) benefitted from shared control 

significantly. This was because the MLP prediction performance varies across the subjects. These 

results show that the use of the shared control can be particularly useful for subjects with limited 

EMG control ability.  

Another advantage of shared control is that it requires less energy for the user to maintain a 

grasp14. Muscle fatigue is well-documented in sEMG studies (27–31) and is one hurdle for 

proportionally controlled prostheses. Without the presence of sensory feedback, the simplest 

solution for a user to be sure of sufficient force is to flex the fingers maximally throughout the 

duration of the grasp, which can be very fatiguing. In Figure 6b and 6c we show EMG activity of 

Subject B2 during grasping with shared control or with only MLP predictions. Figure 6b shows 

averaged EMG activity across all channels and all grasp trials of each object type in a session. As can 

be seen, for all objects, EMG amplitude is lower with shared control (p<0.01 Wilcoxon two-sided 

signed rank test). As a control, we also plot averaged EMG during release trials (Fig. 6b right) which 
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reveals low EMG activity for all objects, after a short peak at the beginning of the trial during which 

the subject reacts to the visual cue to release. Figure 6c shows the averaged EMG for each individual 

channel and for each individual object averaged across trials with only MLP predictions (left) or 

shared control (right). We observe a clear difference in overall muscle activation. This effect on EMG 

activity was also confirmed during Experiment 3. Figure 6d shows averaged EMG activity across all 

grasps and all EMG channels for each subject. EMG activity is significantly different for subject S1 

and S4 (p<0.01, Wilcoxon two-sided signed rank test), but not for S2 (p=0.64) and S3 (p=0.61). It is 

interesting to note that even two subjects performed well for the box and blocks test in both 

conditions (see Fig. 5a), the overall muscle activation is clearly lower during shared control than the 

MLP-only condition. We find the same result when we analyze each EMG channel separately 

(Figure 6e). 

In our study, inter-subject decoding performance was highly inconsistent. For amputee 

subjects, many factors can contribute to this heterogeneity, including the level of amputation 

(Figure 1b), type of injury and time since injury. In Figure 6a we plot the correlation coefficient 

between the EMG channels we recorded from for each subject. We see that subjects A1 and A3 have 

relatively uncorrelated EMG channels whereas subject A2 has highly correlated channels. This 

indicates inability to activate different muscle groups independently.  Functionally, this results in 

subject A2’s inability to perform all of the single-digit movements that the other subjects were able 

to In addition to a lower number of DoFs independently required for subject A2 (index and middle 

fingers moved together), we show that shared control can be particularly effective for subjects with 

few independent muscle groups We emphasize this point because regardless of the type of 

decoding algorithm one would implement, the subjects with lower neuromuscular ability will suffer 

lower decoding accuracy unless they can use some kind of compensation. Such compensation can 

be surgical, such as in targeted muscle innervation, behavioral, such as learning to contract in an 

unintuitive way, or it could be algorithmic, as we implemented.  

As of now, the compliance controller implemented in our shared control has only one set 

target force for applying pressure on grasped objects. Future studies should include user-

modulated forces, which would be greatly aided with the addition of sensory feedback. 

In conclusion, we have explored sEMG-control of individual finger movements in real time 

with both able-bodied and amputee subjects and show the advantages of a shared-control scheme. 

In particular, our shared controller leverages the dexterity afforded by user control with the grasp 

robustness of automation, which can greatly benefit the translation of myoelectric control 

algorithms into commercial devices. Furthermore, we recognize that amputees and even able users 

are extremely varied in their ability to modulate their remaining muscle activity. Consequently, 

some subjects will be less able to control as many DoFs, or as consistently, as others. Shared control 

can particularly help these users who are less proficient in sEMG modulation and additionally may 

prevent premature fatigue. Thus, control algorithms should account for user variance and partial 

automation is one such method that can greatly improve myoelectric prosthesis usability.  
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Figure 6. EMG analysis with and without shared control. a, Cross-correlation of EMG activity between each 

of the recorded channels for four subjects during a single session of MLP decoding. Darker pixels indicate 

lower correlation between pairs of EMG channels while brighter pixels indicate high correlation. High 

correlation is a proxy for muscle coactivation. b, Averaged sEMG amplitude during grasping trials for Subject 

B2 for the three objects in  the virtual environment. Solid lines indicate EMG amplitude during grasp trials of 

shared control and dashed lines indicate average EMG amplitudes during trials with only MLP control (left). 

The same plot is shown for release trials: when the subject was instructed to release the object (right). c, Per-

channel EMG activity during grasp trials of each object for Subject B2. Each row is normalized amplitude of 

a single EMG channel averaged over all grasping trials for a particular object. d, Averaged EMG activity during 

grasps of the physical box and block task for each subject. Activity is averaged across all grasps and all 

channels per subject. e, Per-channel EMG activity of grasps during one session of the physical box and blocks 

task for each Subject. Each row is normalized amplitude of a single EMG channel averaged over all trials for a 

particular subject.  
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4. Methods 

Subjects and EMG recording. Three amputee subjects were recruited for this study, two female 

(Subjects A2 and A3) aged 53 and 49, respectively, and one male (Subject A1) 69 years of age. 

Subjects A1 and A2 had proximal transradial amputations while subject A3 had a right hand 

amputation just distal to the wrist (Figure 1).  In addition, seven able bodied subjects were recruited, 

all of whom were male, between 26 and 30 years of age for experiment 1 and 2. Subject B6 was left-

handed and performed all experiments with the left hand. Four additional male subjects aged 

between 20 and 26 (S1, S2, S3, and S4) were recruited for the third experiment with the physical 

robot. Ethical approval was obtained by the Institutional Ethics Committees of Policlinic A. Gemelli 

at the Catholic University, the Italian Ministry of Health, and the cantonical ethical committee of 

Vaud. Informed consent was obtained from all participants in the study.  

In Experiments 1 and 2, we collected data from three able-bodied subjects (subjects B2, B3, 

and B4) and all three amputee subjects. Subject B1 performed only Experiment 1. For the three 

experiments, we used the Noraxon Delsys system connected to a LabJack data acquisition card to 

wirelessly record from five to seven bipolar surface EMG channels at 2kHz from each subject. In 

general, we tried to use the fewest possible channels that could result in full DoF control in order to 

show translational potential. Thus, we opted for five channels for subjects A2, B1, B2, B3, B4 and 

seven channels from A1 and A3 and finally six for S1, S2 and S3. We started with using five EMG 

channels per subject. For the amputee subjects, we attempted to add more electrodes to improve 

decoding performance. Subject A2, however, had very limited surface area on the remaining 

forearm and so we were unable to use any additional electrodes. For the able subjects, the muscles 

targeted were the extensor digitorium, flexor carpi radialis, palmaris longus, flexor digitorum 

superficialis and flexor carpi ulnaris, located with palpation. Due to the differences in the cause of 

amputation (ex. Torsion vs. lacerating), remaining muscles in the forearm differed in placement 

from non-amputees so palpation of the stump for controllable muscle tone determined electrode 

placement.  

 

EMG processing and Feature Extraction. We chose eight well-explored time-domain features to 

extract for both experiments 1 and 2 (32,33):  

• Mean absolute value 

• Zero crossing: number of time that the amplitude value of the EMG crosses zero 

• Slope sign changes: number of times that the slope of the EMG amplitude changes sign 

• Waveform length: cumulative length of the EMG waveform 

• Log detector: 𝑒
1

𝑁∑ log(|𝑥𝑖|)
𝑁
𝑖=1   where xi is the EMG amplitude at time bin i. 

• Root mean square of EMG amplitude 

• Willison amplitude: number of times the difference between two EMG neighboring samples 

is greater than a certain threshold. In the implemented code, the threshold has been set to 

0.2 times the value of the standard deviation of the global signal.  

• Maximum absolute value was used only in Experiment 3. 

In Experiment 1, all seven features of all channels became the inputs of the multilayer perceptron 

model. In experiments 1 and 2, we used a 100ms-sliding window with 50ms of overlap to calculate 

features, downsampled to 30Hz for the online experiments.  
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For a preliminary offline experiment (Supplementary Figure 1), we also calculated four 

autoregressive features. Before fitting the MLP, we performed both channel and feature selection 

so not all features were included in the network training. In channel selection, one MLP was first 

trained and tested for each EMG channel. The channel providing the highest estimation 

performance was chosen as the first optimal channel. In the second fit iteration, the previously 

selected channel was paired with each of the remaining channels. These pairs were then used to 

train and test other MLPs. Again, the pair providing the highest estimation performance was chosen 

as the optimal subset of two channels. This procedure was repeated until either the increase in 

coefficient of determination (R2) after adding one channel was less than 0.01 or a limit of 5 channels 

was reached. For feature selection, the same forward selection algorithm as for channel selection 

was used, repeating as long as the increase in R2 after adding one feature was greater than 0.01. For 

the third experiments, we used a 300ms sliding window with 30ms overlap to extract features 

offline. Online frequency was kept the same, no feature selection was applied nor channel selection. 

 

Experiments in a virtual environment (Experiments 1 and 2) 

Experiment 1 began with a training period lasting approximately 3 minutes. The subject 

watched a series of movements on a screen performed by a pair of virtual robotic hands (Modular 

Prosthetic Limb by Johns Hopkins University Advanced Physics laboratory). The subject was 

instructed to try to copy the movements on the screen with mirrored movement (imagined 

movement of the phantom hand in the case of amputees). Each movement was repeated three 

times, each with a hold period of approximately five seconds. sEMG activity from the stump of the 

amputation (decomposed into features) and the directed movements of the virtual hand served as 

training signals for the MLP. Thus, we assumed perfect tracking between the subject and the 

movements presented on the screen. We asked subjects to perform single finger flexions and 

extensions, thumb opposition, closed hand, three-finger pinch, ulnar grasp, and open hand (Figure 

1c). Due to subject A2’s lack of residual active muscle, we asked only this subject to perform thumb 

opposition, index and middle finger combined flexions and extensions, closed hand, three-finger 

pinch, ulnar grasp and open hand. After the training period, subjects attempted to repeat these 

movements in random order, using the MLP prediction output. Again, they were cued with the 

virtual hand movements. Each movement was repeated five times. Either the right or left hand of 

the virtual hand performed the desired movement, which the subjects attempted to follow, while 

the other virtual hand showed the MLP-decoded output. The controllable virtual hand was 

ipsilateral to the amputation for amputee subjects and the dominant hand for able subjects.  

During shared control, Experiment 2, the MLP output controlled one virtual hand for 

grasping objects. Subjects used a color cue (red/green) to signal when to grasp and release each 

object. Each grasp or release phase lasted seven seconds. The virtual objects presented were a 

cylinder, a cross-shaped joint, and a thin rectangular bar in one of three different orientations per 

object (rotations around either the x, y or z axes) presented at random. Subjects controlled the hand 

with MLP predictions of four digits: thumb, index, middle and either the ring or the pinky finger for 

the last finger of the Allegro Hand simulation. From the virtual environment, we are able to record 

data from the hand’s contact sensors and hence are able to assess hand-to-object contact as well as 

hold time. For each object, we defined required contacts for a successful trial based on the contacts 

that were physically attainable. For the cylinder, required contacts were proximal interphalangeal 

and metacarpophalangeal contacts on every digit, for the cross-joint, required contacts were distal 
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and proximal interphalangeal contacts on every digit, and for the rectangular bar, required contacts 

were the distal phalanges of the index and ring fingers and the thumb.   A trial was a success if the 

subject was able to achieve all required contacts simultaneously. 

 

Experimental Hardware description 

The hardware for the final “physical” experiments consists of an Allegro hand mounted on the 

KUKA IIWA 7 robot, OptiTrack camera system and TEKSCAN pressure sensors. The right allegro 

hand consists of three fingers and a thumb, each with four degrees of freedom. The fingers have 

four motors, one each at the MCP, PIP and DIP joints while the fourth motor is located just under 

the finger base, where it is attached to the palm and controls its lateral rotation. The thumb has 

three motors located at the joint connecting to the palm, controlling rotations along the three axes 

and one motor located at the joint connecting the two phalanges.  Each of the 16 motors can be 

operated in position control or torque control mode, the later being used in shared control 

approach. A set of two TEKSCAN tactile sensor GRIP system is mounted on the allegro hand to 

obtain contact and pressure information at the phalanges. Due to an issue with the third finger, we 

had to restrain its motion completely and work with the thumb and other two fingers in all our 

experiments. 

The allegro hand is mounted on KUKA arm so that it can be moved around in space by the subject. 

The subject wears a set of three OptiTrack markers on the wrist, using which the position and 

orientation of the subject’s hand can be detected by a set of 7 infrared camera. The EE of KUKA is 

then sent the same to move it in tandem with subject’s hand. KUKA IIWA 7 robot has 7 degrees of 

freedom, which allows its end-effector (EE) to be moved in desired position and orientation in 

smooth and continuous manner. An inverse-kinematics solver decodes the EE position and 

orientation into the individual desired joint positions, and sends them to the KUKA arm’s 

controller. 

 

 

Protocols of the “physical” experiments (Experiment 3). 

These experiments began with a training period lasting 4 and a half minutes. The subject watched 

a series of movements on a screen performed by the same virtual environment as experiments 1 

and 2. Each movement was repeated five times, each with a hold period of approximately five 

seconds. sEMG activity from the forearm of the subjects (decomposed into features) and the 

directed movements of the virtual hand served as training signals for the MLP. Thus, we assumed 

perfect tracking between the subject and the movements presented on the screen. At the end of this 

task, the MLP was trained.  

For the “box and block” task, two hard cases were placed on a table in front of the robot with 

a bottle of water placed on one of them. Subjects were instructed to grab a bottle of water (Badoit 

1L) and move it from one box to the other. They could grasp it freely and change grip position until 

they felt confident enough to lift it up. A trial was considered as success if the bottle was moved 

from one box to the other without droppage before reaching the second box. If the subject knocked 

over the bottle while trying to grasp it, the experimenter put it back at initial condition and the trial 

was not considered as fail.  

During these experiments, several metrics were used to assess the performance of the 

subjects: 

105



 

 

1. Number of successful trials performed by the subject. A trial was considered as failure if the 

bottle fell in the gap between the two boxes. 

2. Time to perform the overall task 

3. Average number of contacts and the “effective normalized pressure”. These two parameters 

were used to characterize the quality of grasping. Owing to the varying sensitivity of the sensors, 

pressure of each sensor data was first normalized by dividing by the maximum detected value 

of the respective sensors. The normalized data were used in rest of the evaluations. The average 

number of contacts on each finger was computed by summing the number of contacts detected 

on each finger and averaged over the grasping time of each trial. Whereas, the effective normal 

pressure is defined as the sum of maximum normalized pressure detected on all phalanges of a 

finger weighed by the average contact time of the respective phalange during the grasping 

period of a given trial. Usually, a greater number of contacts on each finger tends to make the 

grasp more stable against perturbation. Further, higher pressure and duration of contact are 

expected to improve the grasp in a task such as block test. Therefore, it is reasonable to assume 

that the two metrics defined here can be used to test shared control’s performance in improving 

the grasp. 

 

For the manipulation task, the same bottle was placed on a table in front of the robot. Subjects 

were instructed to grasp and lift the bottle, then tilt their arm as if they were drinking from it. The 

trial was considered successful if the water flowed to the other side of the bottle (touching the bottle 

cap). The subject was then required to return the arm to initial position, and then hold the bottle in 

the air above the table for 10 seconds without any slippage. The experimenter verified that the 

bottle-tilt movement phase was completed within ten seconds and that the post-movement hold 

period also lasted 10 seconds. The MLP was retrained between the two behavioral sessions to avoid 

any loss of performance and the order between the two conditions (MLP only and shared control) 

was reversed for each subject compared to the first session. 

 

Multilayer perceptron model. We chose to use the multilayer perceptron as the decoding method 

for decoding finger kinematics due to its extensive use in sEMG applications (34). For experiment 1 

and 2, we chose a three-layer network with one input layer, one hidden layer with three neurons 

and an output layer. The input layer is composed of the different features extracted from sEMG data 

and the number of nodes is dependent on the number of channels we recorded. Each of the three 

neurons of the hidden layer exhibit a hyperbolic tangent activation function. The output layer is the 

decoded output and consists of only one parameter (DoF). Hence, the full decoder incorporates as 

many MLP networks as desired degrees of freedom. The decoded joints in Experiment 1 were wrist 

pronation/supination, index and middle finger flexion/extension and ring and little fingers 

flexion/extension (three DoFs total). The decoded joints in Experiments 2 and 3 were metacarpal-

phalangeal joint angle and interphalangeal joint angle of each digit, and thumb 

opposition/reposition (11 DoFs total). For more robustness, we averaged value of the 

interphalangeal and metacarpal-phalangeal joints per digit and considered them one DoF for all 

analyses.  

Model training defines the weights of each node’s contribution to the next layer and in an 

MLP, all nodes of one layer are connected to each of the nodes of the next layer by these weights. 

Training was accomplished by minimizing a sum-of-squares error function. A training set with 
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input features xn where n is the number of time lags (n = 1, …, N) and desired kinematics tn has the 

error function:  

𝐸(𝑤) =
1

2
∑ ∥ 𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛 ∥

2

𝑁

𝑛=1

 

Here, w is the array of weights of the neurons and y are the predicted kinematics using the feature 

input. We chose to use the Levenberg-Marquardt method for fitting the network weights due to its 

faster convergence time than the more typical gradient descent methods.  

In order to fit the MLP weights in Experiment 1, seven movement repetitions were used for 

the training set, five for the testing set and three for the validation set. We used 10-fold cross-

validation in Experiment 1 and 4-fold cross-validation in Experiments 2 and 3, with the training and 

test sets in order to determine the optimal weights for testing. In Experiment 2, each session began 

with a 3-minute training phase in order to record a data set of desired movements consisting of 

three repetitions of each movement, of which 70% of the time was used for training and 30% for 

validation. We then performed cross-validation in order to choose the optimal weights for online 

control. The full model-training process lasted a total of less than ten minutes for all of the subjects, 

with exact duration depending on the number of EMG channels used. Hence, we emphasize the 

practical implications of such an algorithm for clinical use. 

We also performed a preliminary offline experiment in which three able-bodied subjects 

index and middle finger combined flexion/extension, ulnar grasp/release, and wrist 

pronation/supination in three different arm positions: arm extended, arm flexed, and arm at rest 

(supported) shown in Supplementary Figure 1.  Subjects performed bilateral volitional alternating 

movements of each DoF while we optically tracked kinematics of the hand and arm contralateral to 

the one from which we recorded sEMGs. The MLP decoder was then trained and we performed 

offline testing of decoder performance. Decoding accuracy of the testing set for one subject is 

plotted in Figure 2a. With impressive R2 values of 0.82, 0.79 and 0.80 for the index and middle finger 

flexion/extension, ring and pinky finger flexion/extension, and wrist pronation/supination 

respectively, the MLP is able to predict movements with high accuracy for each of the DoFs 

simultaneously. In particular, the decoder adeptly tracks both the sinusoidal flexions and 

extensions as well as sustained flexion or extension to the full range of motion of the DoFs. 

For the final “physical” experiment, the architecture of the MLP was changed slightly from 

the first two experiments. The MLP was designed using TensorFlow’s (35) premade DNN regressor 

class and  consisted of three fully connected layers as the other experiments but in this case the 

hidden layer consisted of thirty neurons that exhibited a ReLU activation function (max[0,x]). The 

output layer is also the decoded output and consists of only one parameter (DoF). Therefore, there 

was again one MLP per decoded joint. In this case, joint angle values were kept independent. The 

loss function was the mean squared error as before. The network was trained using adaptive 

moment estimation (Adam). During training of experiment 3, subjects were required to perform 

five repetitions of each movement; four were used as the training set and one for validation. No 

cross-validation was needed since we could directly see the performance in real time with the robot 

(~test set). The full model-training process lasted approximately ten minutes for each of the three 

subjects. 
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Online Control.  

Real time software for the MLP was programmed in C++ (Visual Studio 2015)) for experiment 1 and 

2, which integrated input from the EMG recording systems and sent decoded joint angles to the 

Modular Prosthetic Limb and to the Allegro Hand simulator in Gazebo. For experiment 3 the real-

time software was programmed in Python 3.6, which received the EMG signals and sent decoded 

joints to the real Allegro Hand. In the C++ software, matrix functions were implemented using the 

Armadillo class38 and Scilab (Scilab Enterprises 2012). After fitting of the MLP, we extracted features 

from EMG signals in real time. Here, we use only the most recent 100ms (or 300ms in the third 

experiment) of EMG data for feature computation. We first normalize EMG amplitudes with means 

and standard deviations derived from the training data of the same channels and then made 

prediction updates at 33Hz (every 30ms). To obtain a smoother signal, we low-pass filtered the MLP 

output with a 10-frame moving average and in the third experiment, a Kalman filter was added after 

the moving average filter. 

Shared Controller. The autonomous controller for the shared-control condition adapted from the 

compliant contact approach published by Sommer and Billard for the maximization of “desired 

contact points” with objects(23). As soon as the hand is in contact with the object, the controller 

moves the fingers in directions that increase the area in contact. It stops once it has established a 

contact at all desired contact points. The digits are controlled in torque-mode at all times. The 

controller’s principle is based on operational space control. That is, it projects the forces/torques 

in the nullspace of the contact forces. The controller can also modulate the torques in the fingers’ 

joints to generate the desired forces at the contact point so as to stabilize the object. For a complete 

mathematical description of the approach, the reader can refer to Sommer and Billard(23). 

Depending on the task, different types of contact points and numbers of contacts can be 

defined. In our implementation, we used a Gazebo simulator of the Allegro Hand, which is a 4-

digted robotic hand with simulated contact sensors on the inner, side and top surface of each digit. 

The hand has three phalanges per digit and joints between the phalanges can all be independently 

controlled in torque, for a total of 16 actuated degrees of freedom. We defined one desired contact 

per phalanx of each finger and two for the thumb for a total of 11 desired contacts on the simulator. 

When the hand is not touching any objects, a proportional-derivative (PD) controller modulates 

joint torques to achieve the desired joint angle targets. These targets are the angles decoded by the 

MLP, and streamed to the simulation over UDP. Instead of predefined preshaping as in the previous 

work, preshaping is left to the user. Indeed, we observed thumb opposition before finger flexion for 

many subjects (see Supplementary Video 2), which allowed them high grasp stability. In lieu of the 

drill object tested previously, we presented a thin rectangular bar along with the cylinder and cross 

joint part (Suppl. Fig. 3a). Each object was tested in one of three random orientations, 30 degrees 

tilted in either roll, pitch or yaw. This allowed exploration of the full range of object locations with 

respect to the hand.  

In the shared control condition, the algorithm attempts to maximize contact area by 

applying motor torques in the direction of desired contact points. Once a digit comes in contact 

with an object at any location, the controller will exert joint torques on the hand in order to achieve 

more desired contact points with the object. The direction of these joint torques is computed as a 

summation of the normal vector of the contact point with the object and the direction of the desired 

contact towards that point (Figure 4c). If there is no contact between a digit and an object, that digit 

is still PD-controlled to achieve the MLP output’s target angles. As for the contacts already made 
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between the hand and the object, the shared controller exerts a predefined force, but also permits 

joint torques in magnitude and direction such that contact force between the desired contact and 

the object does not change, the contact nullspace. Thus, each digit is allowed to slide along the 

surface of the object to continue seeking contact with the object at “desired contacts” that have not 

yet been achieved. Meanwhile, the PD controller continues to compute the joint torques required 

to achieve MLP-dictated joint angles. The shared controller applies the vector components of these 

joint torques at already-achieved contacts such that the those contact forces do not change. The 

result is that the user is still able to move the hand over the object as desired without breaking 

contact. This feature made object manipulation possible.  

The shared controller is designed to optimize for maximum contact between hand and 

object. However, if the difference in desired joint angle of the active shared controller becomes too 

different (defined in our case as 50 degrees total difference amongst all joints of a digit) from the 

decoded MLP output, the PD controller takes over again using MLP-decoded joint angles as target 

angles. Thus, any contact that may already exist could freely be broken.   
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3.2 Robotic Automation to Perform In-Hand Object Manipulation

The content of this section is the postprint from the article Khadivar, Mendez et al., "EMG-

driven shared human-robot compliant control for in-hand object manipulation in hand

prostheses," 2022 J. Neural Eng. 19 066024

Find the published article here: https://doi.org/10.1088/1741-2552/aca35f

Personal contributions as the co-first author: conceived the experiments, prepared

the protocols and the experimental setup (hardware and software) on the EMG side,

co-conducted the experiment, analyzed part of the results, prepared part of the figures, and

wrote part of the manuscript.

114

https://doi.org/10.1088/1741-2552/aca35f


EMG-Driven Shared Human-Robot Compliant Control for In-Hand
Object Manipulation in Hand Prostheses

Farshad Khadivar1,5, Vincent Mendez2,5, Carolina Correia3, Iason Batzianoulis3, Aude Billard1,6,

Silvestro Micera2,4,6

1 LASA Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Laussane, Switzerland
2 Neuro X Institute, Ecole Polytechnique Fédérale de Lausanne, 1202 Genève, Switzerland
3 Former member of LASA Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Laussane,

Switzerland
4 BioRobotics Institute and Department of Excellence in Robotics and AI, 56127 Pisa, Italy
5 Equal contribution co-authors.
6 Equal contribution senior authors.

Abstract

Objective. The limited functionality of hand prostheses remains one of the main reasons

behind the lack of its wide adoption by amputees. Indeed, while commercial prostheses

can perform a reasonable number of grasps, they are often inadequate for manipulating

the object once in hand. This lack of dexterity drastically restricts the utility of prosthetic

hands. We aim at investigating a novel shared control strategy that combines autonomous

control of forces exerted by a robotic hand with electromyographic (EMG) decoding to perform

robust in-hand object manipulation. Approach. We conduct a 3-day long longitudinal study

with 8 healthy subjects controlling a 16-degrees-of-freedom robotic hand to insert objects

in boxes of various orientations. EMG decoding from forearm muscles enables subjects to

move, proportionally and simultaneously, the fingers of the robotic hand. The desired object

rotation is inferred using two EMG electrodes placed on the shoulder that record the activity

of muscles responsible for elevation and depression. During the object interaction phase,

the autonomous controller stabilizes and rotates the object to achieve the desired pose. In

this study, we compare an incremental and a proportional shoulder-decoding method in

combination with two state machine interfaces offering different levels of assistance. Main

results. Results indicate that robotic assistance reduces the number of failures by 41% and,

when combined with an incremental shoulder EMG decoding, leads to faster task completion

time (median=16.9s), compared to other control conditions. Training to use the assistive device

is fast. After one session of practice, all subjects managed to achieve tasks with 50% less failures.

Significance. Shared control approaches that give some authority to an autonomous controller

on-board the prosthesis are an alternative to control schemes relying on EMG decoding alone.

This may improve the dexterity and versatility of robotic prosthetic hands (RPHs) for people

with trans-radial amputation. By delegating control of forces to the prosthesis’ on-board

control, one speeds up reaction time and improves the precision of force control. Such a

shared control mechanism may enable amputees to perform fine insertion tasks solely using

their prosthetic hands. This may restore some of the functionality of the disabled arm.

Keywords: In-hand manipulation, EMG decoding, Shared-control, Compliant robot Control
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1. Introduction

We rely on our hands and their fine dexterity to perform everyday tasks, from basic manipula-

tions, such as picking up a glass of water, to fine-manipulation skills, such as writing, knitting,

and playing an instrument. The human hand owes its dexterity to its individuated control of

finger motion and precise sense of touch, and to dedicated brain processes for ensuring fluent

control of objects once in hand [Kontoudis2019, Castiello2005].

Being deprived of this dexterity following an amputation affects one’s life considerably. Even

the simplest chores, such as placing the cap on a bottle or inserting a spoon in a cup, become

arduous if not impossible. The lack of tactile perception and the absence of fine finger

motions are the predominant hindering factors that render reorienting or repositioning an

object impossible. If one could restore some, even if a tenuous part, of this dexterity through

the help of automation and robotics, this would have immediate benefits to the persons with

an amputation.

While robotics has made vast progress in the control of human-like robotic hands [melchiorri2016robot,

okamura2000overview], these advancements have rarely been used to control prostheses.

The main reasons are that (i) robotic prosthetic hands (RPHs) remain under-actuated with

simple position or speed control, and (ii) we still lack robust decoding strategies to infer and

translate the user’s intentions into fine and individuated finger motions of an RPH. The latter

is a bottleneck that reduces the incentive to develop more complex robotic hands for people

with trans-radial amputation.

With a look towards the availability of better and more performing hand prostheses – and

while recognizing that individuated finger EMG decoding will remain limited in its accuracy

–, we design shared control mechanisms where a robotic controller is in charge of low-level

closed-loop control. This controller enables online adaptation of the positioning of fingers

and stabilization of the object in hand through forces applied by the fingers. To this end, we

build on recent advances in robotic hand control to enable human-like control of the fingers

in either individual or coordinated manner [li2016dexterous]. Such enhancements permit

the execution of robust grasps with multi-finger robotic hands.

Commercially available RPHs rely on identifying motion intention using EMG. The control

of prostheses is usually achieved by placing two electrodes on two remaining antagonist

muscles of the forearm. A threshold is set on the EMG amplitude acquired at a fixed frequency

to control one degree of freedom (DoF) for closing or opening the fingers by a small incre-

ment [mendez2021current]. This is insufficient to capture individuated finger motions and

does not allow to provide continuous control of fingers.

Finer EMG-based control can be obtained using single-finger angle regression [1]. With this

method, the RPH follows the intended motion of the user in an intuitive manner [Farina2014].

Several groups showed successful use of multi-layer perceptrons (MLPs) for the regression of

single finger angles. For instance, one of the first example in 2008, Smith et al. [2] showed the
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possibility to regress the metacarpophalangeal (MCP) joint angle of each finger individually

and simultaneously with a neural network. Ngeo et al. [Ngeo2014] showed the possibility

to regress MCP angle as well as proximal interphalangeal (PIP) and distal interphalangeal

(DIP) joint angles of each fingers using a MLP. Finally, Dantas et al. [Dantas2019] obtained

similar performance with intramuscular EMG recorded from two amputee patients between

convolutional neural network and MLP outperforming polynomial Kalman filters and Long

Short-Term Memory networks for single-finger angle regression.

However, continuous control of finger motion from EMG is susceptible to noise. The slightest

error in EMG-based intent detecting could lead a finger to inadvertently re-open, letting the

object slip. Hence, controlling for a stable and robust grasp when manipulating objects is

crucial to restoring the essential dexterity needed for everyday use. This requires ensuring fast

and accurate control of finger-object interactions.

Decades of research in robotics have been devoted to devising algorithms for closed-loop

control to enable on-the-fly stabilization of a grasp to secure an object in hand when subjected

to external disturbances [billard2019trends]. Typically, re-balancing the forces to stabilize

the object is performed through impedance control [kao1992quasistatic], whereas reposi-

tioning of fingers on the object requires planning algorithms [li2014learning]. In this paper,

we consider the task of inserting an object into another object. Such a "peg-in-hole" task

can be considered a robotic benchmark. While it has received attention already in the 70’s

[takeyasu1976precision], it remains a topic of research [tang2015learning]. As simple as it

may appear, inserting an object into another one still relies on complex algorithms to deter-

mine when the object is jammed and when to correctly adapt the object’s orientation so that

neither object nor the robot is damaged. Such rapid and compliant control of finger-object

interaction requires estimating the force at contact and adapting fingers’ motion accord-

ingly. Contact detection is usually done through reading of tactile sensors, sometimes in

combination with vision [karayiannidis2016adaptive].

When controlling a prosthesis tasked to insert an object into another one, we must assume

that the autonomous controller of the prosthesis has access solely to tactile information.

Corrections driven by visual feedback are conveyed implicitly through EMG-based intention

detection, driven by the amputee’s visual appraisal of the situation. In this paper, we design

a shared control framework that uses an autonomous compliant control of fingers to adapt

fingers’ orientation and exerted forces only based on tactile information.

When integrating users’ motor intentions for individuated finger control, a possible solution is

to distribute the control by automating some parts of the motor commands and relieving the

user from precise modulation [3]. It can ease grasping through preshaping [4], grip force ad-

justment [3], slip detection [5], and even hand closing using underactuated systems in which

spring-like mechanisms mediate grasp force [6]. The Ottobock Sensorhand Speed is a commer-

cial example of shared control in RPHs, which automatically increases thumb flexion during

grasping in response to slippage [Ciancio2016]. A more recent study [zhuang2019shared]
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Figure 1. List of shared control conditions. We conduct a 2x2 experimental study with two
levels of autonomy in the EMG-Robot interface, (U) unassisted and (A) assisted, and with two
types of EMG shoulder decoding, (C) continuous and (I) incremental.Es ∈R is the EMG signal
from the shoulder. Θ is a vector of high-level commands determined via EMG decoding (see
Figure 3). Si ∈R denotes the state machine defining the hand’s control mode (see Figure 6),
and τh ∈R16 is the joint torques computed to control the robotic hand. q i ∈R4 and p i ∈R are,
respectively, the joint positions and tactile sensor feedback for the i − th finger.

showed that an EMG-based shared control strategy could ensure the safe handling of a bottle

filled with content. This work leveraged an autonomous robot control that maximized the

number of contacts between the robotic hand and an object.

This work evaluates novel shared control strategies to perform EMG-driven object manip-

ulation tasks. We show that these shared control approaches allow subjects to perform a

continuum of manipulation: from grasping an object to manipulating it in air and during

insertion when in contact with another object. The subject remains in control of deciding

when to grasp and release the object and how to preshape the hand. Importantly, our shared

control mechanism enables subjects to rotate objects in hand when controlling a dexterous

16-DoF robotic hand. This is achieved thanks to the following:

i An EMG-based single-finger proportional decoder to infer high-level finger motor inten-

tions from forearm muscles.

ii A second EMG-based decoder from shoulder muscles to let the user control the in-hand

object rotation via elevation or depression of the shoulder.

iii A virtual object-based compliant controller for low-level robot control. Given the task

objective and tactile feedback, the low-level control of the robotic hand employs an au-

tonomous and adaptive compliant controller that regulates online the interaction forces
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at contact points.

iv An interface that uses feedback-based state machines to integrate high-level and low-level

robot control. The interface selects which task has to be executed, provided the subject’s

command and robotic feedback.

In a first experimental protocol, we compare two methods for shoulder decoding, and measure

how quickly and precisely healthy participants are able to rotate objects in various orientations.

Then, we evaluate our shared control approach with the two shoulder decoding strategies in a

longitudinal study, where participants are required to teleoperate a robotic arm to pick, rotate

and place an object in boxes with different orientations. The aim of this functional assessment

is to evaluate the robustness of our shared control, taking into account the noise induced in

finger decoding from forearm motions and interactions between the shoulder decoder and

arm motions that would also be present in the case of persons with an amputation.

2. Methods

The first experiment is designed to compare two EMG shoulder decoding strategies, while the

robotic hand is locked in place. The first approach is a threshold-based incremental decoding.

When the subject elevates or lowers the shoulder and the EMG activity recorded from one

electrode exceeds a threshold, the decoder modulates a rotation value that remains constant

when the shoulder rests. The second strategy consists of a continuous decoder based on a

support vector regression (SVR) algorithm that directly maps the shoulder position to the

rotation value (e.g. maximum shoulder movement will result in maximum rotation and rest

corresponds to zero rotation). We envision that the continuous decoder would allow subjects

to rotate the object faster [Cler2014] as object rotation is proportionally correlated to shoulder

movements, whereas the incremental one would be more robust to noise since it does not rely

on a non-linear pattern recognition model.

Figure 2. An example of tracking target angle in the first experiment. From left to right: (1)
the object and the base are aligned in 60o , (2) target angle is changed to −30o , (3) user is
performing in-hand rotation with the robotic hand, and (4) target angle is achieved. All target
angles of the rotating base are −60o , −30o , 0o , 30o , and 60o .

In the second experiment, we compare four different shared control schemes; see Figure 1. We
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perform a 2x2 experimental study with two levels of autonomy in the state machine interface

versus the two types of EMG shoulder decoding, resulting in a total of four types of shared

control schemes.

Figure 3. Overview of the experimental setup. The subject is asked to grasp a cuboid and
place it in one of the target boxes, differing in position and orientation. The order of all pick
and place tasks, as specified from 1 to 5, is fixed throughout the entire recording. A KUKA
IIWA 14 robotic arm is set to follow the displacement of the subject’s wrist acquired via the
Optitrack capture system (Yw : markers tracking signals, x w ∈ R3: wrist position, αw ∈ R3:
wrist orientation, q a ∈ R7: joint position feedback of the robotic arm, and τa ∈ R7: joints
torque command send to the robotic arm). A left Allegro robotic hand mounted with BioTac
tactile sensors executes grasp and manipulation received from the EMG decoder. The hand is
commanded to open or close via processing forearm EMG signals, and to rotate the object
within the hand frame through shoulder EMG activation (Eh ∈R200×6: forearm EMG signals,
Eh ∈R200×2: shoulder EMG signals, θ f ∈R5: scaled fingers flexion, and θs ∈R: scaled shoulder
flexion).

The two autonomy modes of the state machine interface are (i) unassisted and (ii) assisted. In

the former, the controller relies only on the command and state sequence, whereas the latter

also uses feedback from the robotic system. The assisted mode utilizes tactile sensing and

finger kinematics for identifying the task and its status. We expect the assistance to reduce

trial failures, because it would avoid the unexpected drop of objects coming from noise in the

finger EMG decoder.

In order to evaluate the performance of the proposed shared controllers, we adopt the Grooved

Peg Test [Wilcox2022], a standard dexterity assessment. The test requires fine motor skills

to place grooved pegs in holes with different orientations. This test is performed routinely

to quantify the development of dexterity in 6-year-old children [Wilcox2022], and the loss

of dexterity in stroke patients [Thompson-Butel2014]. We adapt the Grooved Peg test to the

size of the robotic hand at our disposal and design a peg-in-hole task where subjects have to

grasp a rectangular object and place it inside boxes with different orientations (Figure 3). An

inclined surface is used to prevent subjects from relying on gravity to insert the object in the
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box, when the angle of the object does not perfectly match the box’s angle.

2.1 Experimental Protocol

Finger and Shoulder Decoders Calibration:

In each session of each experiment, subjects are asked to follow a series of single and multi-

finger opening and closing movements performed by a virtual hand on a screen. The sequence

of movements is repeated 6 times, and each movement is held for 5 s before the virtual hand

goes back to its original resting position for 3 s. The rationale is to dissociate three main

states of the fingers: a resting state corresponding to no muscle activation, flexed and opened

positions. The total calibration time for the finger movements is 9 minutes and 30 s.

Virtual hand kinematics are recorded at 60 Hz and synchronized with the EMG acquisition

system. Six DoFs are recorded from the virtual hand corresponding to each finger’s flexion

and thumb’s opposition. Hand kinematics are rescaled between 0 (opened) and 10 (closed),

and the rest position is set to 3 for each DoF to mimic a resting hand pose on the virtual hand.

Since there is an intrinsic delay between the movement of the virtual hand and the finger

movements of the subject, a visual inspection is performed by the experimenter to time-shift

the signals and synchronize virtual hand kinematics and EMG activity (maximum shift of

300ms).

To calibrate the continuous shoulder controller, the same setup is used, with the virtual hand

alternating between closed (target = 10), opened (target = 0) and a middle position (target =

5) to record 1 DoF. The subjects are asked to elevate their shoulder when the hand is flexed,

lower their shoulder when the hand is opened, and rest when the virtual hand is in the middle

position. Each movement is held for 5 s, alternating with a rest position for 3 s. The sequence

is repeated 6 times for a total calibration time of 1 minute and 35 s.

Shoulder Decoders Comparison:

After calibrating all EMG decoders, participants are asked to grasp a cuboid placed by the

experimenter in the robotic hand, and to perform a sequence of object in-hand rotation tasks.

A rotating base with indicators of the desired rotation angles is placed below the grasped object,

see Figure 2. Markers are attached to the cuboid and the base to track their orientations.

The task involves rotating the object 10 times to one of the five target angles. Following instruc-

tions from an algorithm creating random integer values between 0 and 5, the experimenter

rotates the base randomly between −60o , −30o , 0o , 30o , and 60o .

Before starting the experiment, the participants have a maximum three minutes to familiarize

themselves with the shoulder decoders and the direction of rotation. Then, the participants

must perform the task with both shoulder decoding strategies starting at random with either

decoder. In the case of the cuboid falling from the robotic hand, the experimenter puts it back

in the robotic hand, the base resets to the initial configuration without rotation, and the trial
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is not considered. The experiment is completed in less than an hour for all subjects.

Longitudinal Functional Assessment:

The experimental protocol is summarized in Figure 5. Subjects enrolled in this experiment

participate in 3 sessions consisting of 4 experiment runs. In each run, a specific control

condition is selected. Given the control condition, subjects perform 5 tasks of picking and

placing a cuboid in different target boxes. In our experimental protocol:

i. A task consists of grasping a cuboid and inserting it in a target box, see Figure 4. Each

experiment run consists of 5 tasks that differ only in position and orientation of target

boxes, see Figure 3. Throughout the entire experiment, the order of tasks is fixed.

ii. There are 4 control conditions specified as the combination of 2 shoulder control condi-

tions (incremental and continuous EMG decoder) and 2 state machine interfaces (assisted

and unassisted). Control conditions are listed in Figure 1. To eliminate the effect of factors

like fatigue in our analysis, the order of control conditions is chosen randomly for each

subject and session.

iii. Before each session, subjects have to calibrate the finger decoding model and the contin-

uous shoulder controller. The calibration process takes between 12 and 15 minutes.

iv. After model calibration, subjects are verbally instructed to perform the experiment. Sub-

jects are informed which shoulder decoder is activated but not which control condition is

utilized. After each experiment run with a control condition, subjects are given a 2-minute

break before starting with the next control condition.

v. Since acquaintance with the setup can affect performance, all subjects participate in 3

sessions over 3 consecutive days, in order to account for the expected learning effects.

vi. An experimental session takes between 60 and 100 minutes for all subjects.

2.2 Subjects and EMG Recording

In the first experiment, four male participants aged between 27 and 32, all right-handed are

enrolled (average weight: 77kg, average height 177cm). Eight subjects are recruited for the

second study, all of whom are males aged between 26 and 30 (average weight: 74kg, average

height: 177cm, and two left-handed). A Noraxon DTS system wirelessly records EMG signals at

1 kHz. Six bipolar surface EMG channels are placed on the right forearm to target the extensor

digitorum, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, and flexor carpi

ulnaris muscles, located with palpation. Two other bipolar surface EMG channels are placed

on the right shoulder and the back of the subjects to target the upper and lower fibers of the

trapezius that allow, respectively, elevation and depression of the shoulder joint.
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Figure 4. An example of one experiment run. The subject first grasps the object (red numbers),
then rotates it within the robotic hand (green numbers), and finally inserts it in the target box
(blue numbers). (1) the subject needs to bring the robotic hand to the picking position. The
robotic hand is in open hand mode given the fingers’ EMG decoding. (2) the user commands
the robotic hand to grasp the object by closing his fingers. Then, he lifts the object and moves
the robotic arm near the target box. The robotic hand is autonomously holding the object.
(3) Through shoulder movement, the subject tries to align the orientation of the object and
the target box. (4) the subject aligns the orientations by rotating the object within the robotic
hand frame. (5) the object is placed in the target box and then released (6).

2.3 Finger and Shoulder Decoders Training

For both decoders, a sliding window of 200ms is used with a moving step of 30 ms (170

ms overlap). To evaluate the offline performance of the decoders, the last repetition of the

sequence of movements is used as a validation set. In total, 5 features are extracted to serve

as input for the decoders [Boostani2003]: (i) mean absolute value, (ii) waveform length

(cumulative length of the EMG waveform over time), (iii) maximum absolute value, (iv) zero

crossings (number of times the signal crosses zero), and (v) slope sign change (number of

times the slope of the signal changes sign).

For the EMG finger decoder, a MLP regressor is used to decode simultaneously the 6 DoFs.

The model is designed in Keras1 with Tensorflow2 backend. It has 1 hidden layer with 32 nodes

(ReLU activation function). The MLP is trained using gradient descent with a batch size of

16 during 50 epochs. The learning rate is set to 0.01 and divided by 2 every 10 epochs. Early

stopping is set if the validation loss is not decreasing for more than 13 epochs. A dropout is set

to 0.2 during training.

The shoulder continuous decoder is an SVR algorithm with a radial basis function kernel from

1https://github.com/fchollet/keras
2https://www.tensorflow.org/
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Figure 5. Summary of the experimental protocol. In 3 consecutive days, a subject participates
in 3 sessions of 4 experiment runs. In each run, a specific control condition among 4 others is
selected. The order of control conditions is randomized in every session and for all subjects.
After setting the control condition, subjects complete 5 pick-and-place tasks, differing in the
target positions. The task order is fixed from the top left box to the bottom right one in Figure 3.
During task execution, we record completion time, the number of failed attempts, the grasping
time duration, and EMG signals.

sklearn [scikit-learn]. This model is chosen instead of an MLP to avoid overfitting due to the

lower amount of calibration data, since the decoding task was simpler.

To maximize real-time performance, decoded values from the MLP are smoothed using a

3-point median filter. Moreover, to reduce noise when subjects are performing the tasks,

predicted values are set to 0 if the decoded value is below 2, and set to 10 if the decoded

value is higher than 7. Similar post-processing is applied on the SVR shoulder decoder with a

median filter and value clipping, if the decoded values are out of bound.

2.4 Data Analysis

To compare the shoulder decoders, the task was divided in rotations between target angles. We

quantified the angle difference over time between the target angle obtained from the base and

the angle of the object. For each new target angle, the error was computed as the difference

between the object and the base angle. We also quantified the time taken to perform each

rotation.

For the functional assessment, we measured the completion time and number of failed

attempts for each of the 5 different tasks within an experiment run. To better follow the results,

the key terms and main outcome variables (completion time and the number of failures) are

listed below, following control conditions in Figure 1.

• Control condition: There are 4 control conditions differing in the type of employed state

machine interface and EMG decoder.

124



• Session (Trial): A series of 4 experiment runs where the subject completes all tasks with

all control conditions. Each subject participates in three sessions over three days.

• Target: A box (hole) in a specific pose where the object (cuboid) is placed. In each

experiment, there are five fixed targets placed in different positions and orientations.

• Task Completion Time (success time): The time duration in a successful trial that it takes

to lift the object from grasp position and place it in the target box. In other words, the

time to finish a manipulation/insertion of a peg in a hole. This time duration starts from

the moment that the subject lifts the object.

• Number of Failed Attempts: The number of failed manipulation attempts. An attempt is

counted as a failure if the object is not fully placed in the specific target.

For the first experiment, statistical analysis was performed to test for significant differences

in performance between the two shoulder control strategies, in terms of rotation time. In

the second experiment, we conducted statistical tests to assess for significant changes in

performance (in terms of the number of failures and completion time) across the different

sessions, control conditions, and targets. To check if the variables were normally distributed,

we used the Shapiro-Wilk test and used parametric or non-parametric tests accordingly.

Figure 6. Block diagram of robot hand control with state machines of the (shoulder) EMG-
robot interface. S1,S2, and S3 represent preshape, grasp, and manipulate modes respectively.
We assess 4 control conditions for controlling the robotic hand. Control conditions are the
combination of 2 EMG decoders (incremental/ continuous) and 2 interface modes (assisted/
unassisted); see Figures 1 and 3.

2.5 EMG-Robot Interface

The robotic hand operates in three modes:

i. Preshape: robot opens and closes each finger individually.
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ii. Grasp: robot grasps the object by closing the fingers and securing contacts by using tactile

sensors.

iii. Manipulate: robotic fingers manipulate the object while holding it in the hand frame.

Fingers move in a coordinated object-centered fashion to rotate the object.

We model each of these modes via a set of state machines, S = {S1,S2,S3}, see Figure 6 where

S1,S2, and S3 represent preshape, grasp, and manipulate, respectively. Transitions from S2 to

S3, and from S3 to S1 are unidirectional. However, the switch from S1 to S2 is bi-directional,

meaning that if the grasp is not sound, the subject can re-open the hand and attempt a

new grasping. The bi-directional transition between these two states allows the subject to

open/close fingers several times to find the seemingly fine grasp.

We define and evaluate two state transition functions for our interface. One takes only the

EMG command as input (unassisted interface), and the second one uses robotic feedback

in addition to the EMG command (assisted interface), see Figure 6. More precisely, in the

assisted interface, we benefit from tactile feedback to verify contact with the object and grasp

realization, used in the transition from S2 state to S3 state. Moreover, from finger kinematics

and the joint angles, we estimate object angular displacement. This estimation is then used to

confirm the attainment of the desired motion. Once the desired manipulation is achieved, the

robotic hand releases the object only if the command from the subject is received consistently

over a time window of 4 s, i.e. the subject insists on opening the hand.

2.6 Experimental Hardware

The hardware for experiments consists of an Allegro left hand1 mounted on a KUKA LBR IIWA

142 robotic arm, OptiTrack motion capture system, and BioTac tactile sensors, see Figure 3.

The Allegro hand has four fingers (thumb included), each with four active DoFs. Each DoF is

actuated with a motor: three motors at the MCP, PIP, and DIP joints, and the fourth motor is

located just under the finger base, attached to the palm and controlling the lateral rotation.

The thumb has three motors at the joint connecting to the palm, controlling rotations along

the three axes, and one motor at the joint connecting the two phalanges. The Allegro hand

can be operated either in position or torque control mode, which is used in our shared control

approach. A set of three BioTac sensors are used as fingertips to obtain tactile information

at contact points during grasp and manipulation. The robotic hand is mounted on the end-

effector (EE) of the KUKA IIWA 14 robotic arm. The KUKA IIWA 14 robot has 7 DoFs that allow

its EE to be moved to a desired position and orientation smoothly and continuously. The

redundancy in joint space, the extra DoF of KUKA, is exploited to minimize the acceleration in

a trajectory, resulting in smooth robot motion.

In the first experiment, 3D markers are placed on the cuboid as well as the rotating base to

1http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand
2https://www.kuka.com/en-ch/products/robotics-systems/industrial-robots/lbr-iiwa
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record the difference in orientation over time with the OptiTrack camera system; see Figure 2.

In the second experiment, the subject wears a set of 3D markers positioned explicitly on the

wrist (see Figure 3) to detect the position and orientation of the subject’s hand through the

OptiTrack camera system. The acquired position and orientation of the subject’s wrist are then

sent to the control interface and used to teleoperate the KUKA’s end-effector. Target boxes and

the object’s initial place are fixed to specific positions within reach of the robotic arm. During

recording, to avoid inconsistency in actuators and sensors performance due to overheating

and friction drift during active times, the entire system is shut down for 30 minutes after each

experiment run.

2.7 Autonomous Robot Controller

We control both the robotic arm and the robotic hand in the torque mode, maintaining joint

compliance. Compliant controllers enable the robot to adapt to perception uncertainties and

provide safer human-robot interaction compared to position controllers. We introduced an

additional safety layer on top of the controller, a user-robot collision avoidance that enhances

the safety of human-robot interaction. Our autonomous compliant controller has two sub-

modules: (a) a controller to imitate the subject’s wrist displacement in position and orientation

with the robotic arm EE, and (b) a controller that computes the joint torques of the robotic

hand to perform tasks like grasp and manipulation.

Robotic Arm Control:

The desired position and orientation of the robotic arm EE are computed based on the mea-

sured subject’s wrist motion. From the OptiTrack system, we obtain the 3D position (x, y ,

and z axes) and orientation (roll, pitch, and yaw) of the subject’s wrist with respect to the

world frame. In our tracking strategy, the EE must mimic the subject’s wrist displacement in 4

coordinates, 3D position, and the angle in the roll axis. Since the subject and the robot are

facing each other in our setup, the robot EE is commanded to mirror the displacement in the

pitch axis of the subject’s wrist. To restrict the object rotation only to in-hand manipulation

in our control scenario, the robot EE is indifferent to the displacement in the yaw axis of the

subject’s wrist achieved with Rodrigues’ rotation formula [belongie1999rodrigues]. We found

that mirroring the pitch orientation and not tracking the yaw rotation is more intuitive for sub-

jects and simultaneously results in more accurate tracking. Then, the desired pose of the robot

EE is passed to a predefined linear dynamical system (DS) [khadivar2021learning] to find the

desired translational and angular velocities. These velocities serve as the inputs for our un-

derlying compliant and passive controller [kronander2015passive, khadivar2021efficient]

that outputs a set of joint torques for the robotic arm. Thanks to the dynamical system ap-

proach, our controller is robust to perturbations and disturbances and safe for human-robot

interactions due to compliant passivity. The redundant DoF of the robotic arm is constantly

optimized to decrease robot acceleration while traversing from one point to another.
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Robotic Hand Control:

Similar to the robotic arm control, this controller also requires a set of desired fingertip

positions/ velocities as inputs. The computation of these inputs depends on the task state

and whether or not a finger is in contact with the object. In the pre-grasp state, the desired

position is computed based on the angle from the EMG decoder. In this state, each finger of

the Allegro hand is separately commanded by the EMG decoder. The object’s relative position

with respect to the robotic hand is computed by tracking the subject’s wrist motion. Once

the object is within the hand frame, subjects changing hand posture from open hand to fist

is equivalent to a robotic hand attempting to grasp. From tactile feedback, the control state

changes from pre-grasp to grasp if three fingers make contact with the object. In this state,

the fingers establish a force-closure [prattichizzo2016grasping] around the object. In other

words, in case the subject feels a higher grip force is needed to obtain a firm grasp and lift the

object, it can be achieved by clenching the fist tighter.

In the manipulation state, where the fingertips are in contact with the object, the control

inputs are determined based on the object’s desired position. In the grasp state, the object’s

desired position is fixed. When the subject intends to rotate the object within the robotic hand,

in the manipulation state, the object’s desired position changes, given the input from the EMG

shoulder decoder. This desired pose is relative to the palm frame (a frame attached to the

base of the robotic hand) and is used to find the desired object velocity through a linear DS.

Translating an object-centric desired velocity to individual in-contact fingers’ desired velocities

is realized through grasp matrix transformation [prattichizzo2016grasping], grasp stability

metric, and the estimated contact mechanical properties. More precisely, we obtain the

desired velocity of all fingers from the desired object velocity commanded by the shoulder EMG

decoder. Similar to robotic arm control, these velocities are sent to our underlying compliant

and passive controller to compute the corresponding joint torques [li2016dexterous].

3. Results

3.1 Shoulder Controllers Comparison

The results of the first experiment are depicted in Figure 7, where we compare the control

performance of the incremental and continuous EMG decoders. From Figure 7 (left), we

observe that with the incremental decoder, the rotation error decreases more uniformly and

to a lower value (0.18rad less) compared to the continuous decoder (Z=2.07, p < 0.05). On the

other hand, Figure 7 (right) shows that the continuous decoder is significantly faster than the

incremental one (Wilcoxon test, Z=133.5, p < 0.01). Therefore, the incremental decoder leads

to a slower but more precise control due to smooth error decay compared to the continuous

decoder.
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Figure 7. Performance of two shoulder decoders with the robotic hand fixed. Left: Angle error
between the grasped object and the desired base orientation for two shoulder decoders. The
solid line depicts the mean, and the shaded area shows one standard deviation over all subjects
and all target angles. Difference at 100% completion time is statistically different (Z=2.07, p
< 0.05). Right: Boxplots of rotation time to achieve the desired angle. Statistical difference
regarding completion time can be seen between the two shoulder decoders. ∗∗ : p < 0.01.

3.2 EMG Decoder

During EMG calibration, subjects were asked to follow a virtual hand doing a sequence of

movements 6 times. The first 5 repetitions were used for training the model, and the last one

as a validation set, to evaluate the decoding quality and stop the training when the validation

loss was not decreasing. The validation losses of the finger decoder for the 3 sessions of the

second experiment are shown in Figure 8. The three sessions were compared using Friedman’s

ANOVA (χ2(2) = 4.75, p = 0.093) and are not statistically different with a significance level of

5%.

Figure 8. Average EMG validation loss during calibration of the finger decoder across subjects
(N = 8), throughout the three experimental sessions.
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Figure 9. Virtual hand and predicted scaled joint flexion on the validation set of a representa-
tive recording for fingers and shoulder.

Predicted values were post-processed as in real-time. A) Finger decoding, the recording
corresponds to a loss of 5.90. High values represent flexed fingers. B) Shoulder decoding, the
recording corresponds to a loss of 2.18. Maximum value represents shoulder elevation, five

corresponds to resting position and zero for shoulder depression (R2: coefficient of
determination, Loss: Mean Squared Error).
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Figure 9 shows a representative example of the EMG decoder accuracy for predicting both

finger flexion and shoulder movements. The virtual hand provides the ground truth finger

flexion in this example. In contrast, the predicted flexion values are computed from the

validation dataset of one subject after performing the EMG calibration. Note that the virtual

hand finger values were shifted by 0.150 s to account for the delay between the virtual hand

and the subject. A Mean Squared Error loss of 5.90 was obtained before post-processing

the predicted angles. For clarity, the data shown in Figure 9 was post-processed using the

same methods applied during real-time decoding (smoothed and clipped). In Figure 9 some

movements are not completely synchronized even if the general delay between the subject

and the virtual hand was taken into account. The model generally performs better on the last

fingers than the first ones. Regarding continuous shoulder decoding, all subjects obtained

high offline accuracy (average loss: 3.22±1.44 and average R2: 0.78±0.1, see Figure 9 for an

example). In real-time, when the subject was moving the object in space, some noise could

arise due to arm motion that activated shoulder muscles.

3.3 Shared Control Functional Assessment

On average, one session for a subject took 75 minutes. Approximately 30 minutes were

used at the beginning to place the EMG electrodes and calibrate the finger and the shoulder

decoders. Then, performing the 5 pick and place tasks took, on average, 6 minutes and 11 s for

each condition. Figure 10 provides an overview of the collected data for all participants and

conditions.

Task Performance Across Sessions:

Figure 11 shows the mean number of failed attempts and mean completion time for the 8

subjects, across the 3 sessions. Using the Friedman’s ANOVA test, we observe a statistically

significant difference in task completion time across the 3 sessions, χ2(2) = 31.962, p < 0.001.

Post hoc analysis with Wilcoxon signed-rank tests was conducted by using a Bonferroni correc-

tion, setting the significance level at p < 0.05/3 = 0.017. We observe no significant differences

between Session 1 and Session 2 (Z =−1.943, p = 0.052), whereas there are significant changes

in completion time between Session 1 and Session 3 (Z = −4.996, p < 0.001) and Session 2

and Session 3 (Z = −4.281, p < 0.001). In fact, from Session 2 (median= 18.0s, IQR = 11.3)

to Session 3 (median = 15.2s, IQR = 10.2) there is a significant decrease of 2.8s in median

completion time, and from Session 1 (medi an = 19.6s, IQR = 13.4) to Session 3 the decrease

is of 4.4s.

For the number of failures, we also verify a statistically significant difference between the 3

sessions using the Friedman’s ANOVA, χ2(2) = 11.494, p = 0.003. Using the Wilcoxon signed-

rank test we see, (also in Figure 11), that only from Session 1 (mean = 0.96, standard deviation

(SD) = 1.5) to Session 3 (mean = 0.41, SD = 0.68) the mean number of failures decreases

significantly (Z =−3.639, p < 0.001) by an average of 12.1 failures. From Session 1 to Session 2

(Z =−2.321, p = 0.020) and from Session 2 to Session 3 (Z =−1.509, p = 0.131) there are no

131



0.0 0.2 0.4 0.6 0.8 1.0
Mean Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ile

d 
At

te
m

pt
s

10 20 30 40

0

2

4

6

8

10

12

U-I

10 20 30 40

0

2

4

6

8

10

12

U-C

10 20 30 40

0

2

4

6

8

10

12

A-I

10 20 30 40

0

2

4

6

8

10

12

A-C

Figure 10. All collected data from all 8 participants. Each subject tried 4 different shared
control conditions (see Figure 1) in 3 sessions over three days. Thus, for each control condition,
there are 24 data points (8 subjects ×3 sessions). In each experiment run, subjects were asked
to complete five sub-task in a specific order (Figure 3), placing a cuboid in five different target
boxes. We recorded the number of failed attempts and the completion of each sub-task. The
x-axis for each plot is the mean completion time of these five sub-tasks, the y-axis is the
corresponding sum of the failed attempts, and the size of the marker indicates the relative
variance in completion time over.

statistically significant changes.

Comparison between Shared Control Conditions:

We investigated the performance of four shared control schemes, which combined two state

transition modes (assisted vs. unassisted) with two EMG decoding approaches (continuous vs.

incremental). The mean task completion time and mean number of failures were obtained

and analyzed for each of the control conditions, for all subjects and experimental sessions

(see Figure 12).
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Figure 11. Performance progress of all subjects and all control conditions over 3 sessions (3
days). Left: boxplot of task completion time per session; mid-lines indicate the median. Right:
barplot of mean number of failed attempts for each session. Statistically significant differences
regarding mean completion time can be seen between sessions 1 and 2, and sessions 2 and
3. For the mean number of failures, only the first and third sessions differ significantly. Error
bars: +SD , ∗∗ : p < 0.01.

Using again the Friedman’s ANOVA test with α= 0.05, we observe a statistically significant

difference in task completion time between the 4 experimental conditions, χ2(3) = 11.325, p =
0.010. The same is verified for the number of failures, χ2(3) = 10.305, p = 0.016. By running

the Wilcoxon signed-rank test with p = 0.05/4 = 0.0125, we find that the task completion time

in condition U-I (median = 19.0s, IQR = 11.9) was significantly longer than the completion

time in U-C (median = 17.4s, IQR = 10.4), Z =−2.803, p = 0.005. That is, without assistance,

subjects were significantly faster by an average of 3.36s using the continuous controller, when

compared to incremental control. Between U-I and A-I (median = 16.9s, IQR = 12.2 ) – i.e, the

two assistance modes using the incremental EMG decoding –, we observe that the assisted

robotic interface led to a significantly faster performance (Z =−2.71, p = 0.005), by an average

of 2.48s.

Regarding the number of failures, we see statistically significant changes between U-I (mean

6.125) and A-I (mean 2.625), Z =−3.046, p = 0.002, and between conditions U-C (mean 6.0)

and A-I (Z =−2.549, p = 0.011). In fact, the number of failed attempts for both control schemes

that used an unassisted interface significantly improved with the assisted interface, when

combined with the incremental control modality (by 3.5 and 1.5 difference, respectively).

Overall, comparing the two state transition modes (unassisted vs. assisted), the assisted

interface was significantly better than the unassisted counterpart, in terms of resulting in lower

number of failed attempts (41% more precise) (Wilcoxon test, Z = 3431.5, p < 0.05). Regarding

completion time, no significant difference were observed between the two methods. On the

other hand, the two EMG decoding approaches (incremental vs. continuous) performed

similarly in terms of both completion time, regardless of the assistance mode.
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Figure 12. Performance of all shared controller conditions across all subjects and sessions. Left:
boxplot of task completion time across control conditions. Right: barplot of subject’s mean
number of failed attempts per control condition. Error bars: ±SD , ∗ : p < 0.05, ∗∗ : p < 0.01.

Taking a closer look at the performance for each of the 5 targets, Figure 13 shows that the

assisted mode resulted in lower failures, especially for those that require large change in wrist

orientation and large in-hand rotation (tasks 1,2, and 4 where the necessary angle is higher).

The first two tasks are considered to be the most difficult ones, since the subject needs to

adjust the orientation of the robot’s EE (palm being parallel to the target box inclination) and

rotate the object in hand simultaneously.

3.4 Results Summary

In summary, the assisted control mode improved the performance significantly in terms

of lowering the number of failed attempts. The assisted state transition mode, when in

combination with EMG incremental control condition, A-I, outperformed the others as it has

the lowest completion time and significantly lower number of failures (higher precision). On

the contrary, the incremental EMG decoding without assistance (U-I) proved to be the least

efficient among control conditions. Comparing the control condition U-C with lowest robot

autonomy with the condition A-I with highest robot autonomy shows that increasing the

autonomy of the robot controller improved the precision (reduced number of failures) more

significantly (by 41%) than the efficiency (by 2.4s task completion time).

4. Discussion

We first compared two shoulder decoders in a controlled object rotation task, then, to assess

the performance of subjects in a functional task, we used a robotic hand to pick, manipulate

and place an object in various target boxes. We examined four shared control conditions based

on a compliant controller in conjunction with EMG decoding to teleoperate a robotic arm,

while maintaining full autonomy over high-level commands. Given the experimental results,

we propose the shared control strategy with assisted state machine interface and incremental
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Figure 13. Median completion time (left) and mean failed attempts (right) for each pair of
sub-tasks and shared control condition. In each experiment run with a set shared control
condition, subjects had to place a cuboid in five different boxes. Here is shown the overall
performance of each control condition in accomplishing a specific sub-task.

shoulder EMG decoder.

The participants’ grasping motor commands were interpreted individually, simultaneously,

and proportionally for each finger. Proportional decoding is intuitive [Farina2014]; it enabled

the subjects to effectively complete the task while keeping full control over the fingers when not

grasping. However, complex decoding strategies inevitably increased the noise in the predicted

output, reducing the system’s reliability. The presence of noise in the predicted output and

disparities in performance between fingers are highlighted in Figure 9. The anatomy of the

forearm is an essential factor, as superficial electrodes do not allow for selective recordings

from deep muscles. However, multiple studies demonstrated that deep learning could improve

decoding accuracy [Mendez2021, Ameri2019, Hu2018].

The first experiment showed that the incremental decoder was significantly slower than the

continuous one when the robotic hand was locked in place. However, this strategy was more

stable and precise based on the smoother and lower tracking error (0.18rad less).

In the second experiment, subjects had to reach target boxes on an inclined surface, requiring

the subjects to move their arms and to rotate their wrist. Although forearm orientation is

a major source of noise for real-time applications [KyungYou2010], the control technique

developed in this study was robust enough for the subjects to complete the task. Calibrating the

model in the various arm and wrist orientations could improve the robustness to wrist rotation,

and arm orientation [Park2016], but this would imply a substantially longer calibration time.

Using a virtual hand to synchronize EMG and hand kinematics was also a limitation. Indeed,
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unreliable samples were introduced during training due to a non-constant latency between

the virtual hand and the subject’s movement. Furthermore, because muscle synergies can

cause finger co-flexion [Ajiboye2009], the movements expected by the virtual hand were not

always natural and, in some situations, deviated from the actual movements of the individuals.

Kinematic tracking of real finger motions (on the contralateral hand in the case of unilateral

amputation) by using a glove [Atzori2012], or cameras [1] could more precisely track intended

movements.

To accomplish in-hand object rotation with a robotic hand, precise finger motions in asso-

ciation with sensory input are necessary [li2016dexterous]. In this study, information such

as object position, displacement, and grasp position is obtained directly from the subjects.

Computing such variables and states is challenging when approaching complex manipulation

tasks. The controller had to remain reactive to the user’s commands with a minimal execution

time delay to increase intuitiveness and sense of agency [rognini2013visuo]. At the same

time, the controller had to be robust to inconsistencies coming from the EMG decoder due to

the variability of the signals. Although there was no statistical difference in EMG validation

loss between days, we observed that the number of failed attempts and the completion time

decreased over test sessions across all tasks and subjects. This confirmed that subjects learned

how to improve their performance on this modified grooved peg test and did not rely on

an increase in EMG decoding accuracy. In this control approach, we estimated the object’s

pose relative to the robotic hand from the forward kinematic and the fingers’ joint position.

This estimation proved helpful in these tasks with a cuboid object; on the contrary, for more

complex object shapes and to obtain higher accuracy, more sophisticated object pose esti-

mation methods like vision-based [doosti2020hope] or tactile images [sodhi2021learning]

are required. From Figure 13, target tasks that required larger in-hand rotation foreseeably

took more time to be completed. To reach human-level performance, reducing delay in user

command execution and increasing the decoding precision [Xia2018] are instrumental for

future enhancement. Furthermore, we can use the information from the robotic hand to pro-

vide sensory feedback to the users. For instance, contact, force, and finger angle information

gathered from the robotic hand can be given to users with trans-radial amputation through

invasive [DAnna2019] or non-invasive channels [Stephens-Fripp2018]. Sensory feedback

can help users to send more accurate high-level commands to the robotic hands, improve

embodiment [Bensmaia2020], and reduce cognitive load [Valle2020].

Numerous strategies could have been employed to control object rotation indirectly. However,

the chosen strategy cannot interfere with other motor functions when used by individuals with

a trans-radial amputation in a real-world scenario. Redundancy in the DoFs of the human

body can be used. The shoulder elevation and depression movements are not essential for

many activities of daily living and could therefore be leveraged. A widely available portable

solution to record such movement is EMG. This solution could alter muscle activity when

patients wear their RPH. However, we hypothesize that this shoulder muscle activity would not

be that different from a healthy subject moving his arm in space as prosthetic hands weight is

now similar to natural hands. Another limitation would then appear when a patient lifts heavy
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objects. Nevertheless, heavy objects are rarely manipulated with one hand. Therefore, we

investigated two decoding strategies based on shoulder muscle EMG. The continuous decoder

was proportional to the shoulder motion but in the first experiment, this decoder showed a

noisier behavior with slightly more oscillations in tracking the target angle. Moreover, due to

the cross-talk with the arm motion in the functional assessment, we observed noisy behaviors

in real-time during the task execution. For instance, when subjects had to lower their arm to

reach the fifth target (placed directly on the table), they had to lift their shoulder upwards to

rotate the object in the right direction, which increased the number of failed attempts with

the continuous shoulder decoder. On the contrary, when activity thresholds were set, the

incremental shoulder decoder did not show this unwanted behavior partly because subjects

could modulate their shoulder activity to rotate the object before placing it in the correct box.

The increments’ value determined the objects’ desired rotation and allowed the subjects to

regulate the rotation accurately. This highlighted the robustness of the incremental decoder

for such a task.

In the first experiment (in-hand rotation only), subjects were more accurate (0.18rad less

tracking error) but slower in task completion with the incremental decoder compared to the

continuous decoder. We observed the same behavior in the functional assessment experiment

when both decoders were used without the assisted interface. However, when using the

assisted interface, there was no statistical difference between the two shoulder decoders in

task completion time. Overall, the assistance reduced the mean number of failures by 41%

compared to unassisted.

Indeed, the continuous shoulder decoder was expected to rotate objects faster since it is

directly linked to the shoulder angle. On the other hand, in some cases, a too fast rotation

could cause the object to slip and fall, increasing the number of failed attempts compared

to the incremental decoder. As a result, subjects developed a strategy to overcome this issue.

They reduced the shoulder motion speed, which can explain the results obtained. This was

valid only in the case of the assisted transition mode as, without assistance, the number of

failed attempts was large both with and without assistance. Finally, assistance from the robotic

state became greatly beneficial for targets 1 and 2, where decoding the subject’s intention and

encoding the desired command was more convoluted. Indeed, the two inclined targets had a

high angle and elevation. For these targets, the assisted state transition mode significantly

decreased the number of failures compared to the unassisted interface.

5. Conclusion

We showed that combining a shared control condition with EMG decoding for finger motions

and object rotation could be a realistic alternative for users with trans-radial amputation

to improve the dexterity and versatility of RPHs. The shared control created in this study

could allow users with an amputation to manipulate objects in their prosthetic hand, which is

practical in numerous daily tasks. In our teleoperated system, subjects maintained complete
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control over the robotic hand. The condition that obtained the best results was the incremental

shoulder EMG decoder with the assisted state transition mode. Surely, integration of an

RPH and validation on people with trans-radial amputation with an amputation would be

necessary to quantify functional improvements. Another future direction of this work includes

the implementation of fine-scale force modulation on objects to allow patients to grasp and

manipulate fragile objects. Nonetheless, this study took one step toward more advanced

control systems, implying that future RPH development in the direction of sensorized hands

with compliant controllers would benefit people with trans-radial amputation.
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4 Future Perspectives for the Control of
RPHs

Based on the body of work presented in this thesis, the aim of this section is to put into

perspective the two main axes. From what was achieved, what are the next steps in order to

bring these solutions to the patients? On the EMG decoding and on the shared control side

several open questions remain and should be investigated in the future.

4.1 EMG Decoding: Increase performance and reduce computa-

tional cost

Deep learning for EMG decoding is a hot topic in the field with recent advances on the propor-

tional decoding of several DoFs [1, 7] with the main hypothesis that learned features are more

informative than engineered features. However, as highlighted by the difference in results

obtained between sections 2.1 and 2.2, we can see that the benefits of deep learning are not as

straightforward. Indeed, we could see that a recording-specific model architecture could yield

different outcomes compared to one model architecture applied to all available recordings.

Some articles on proportional control are reporting results with only one DL approach which

make it impossible to compare with other approaches [1, 2]. But also in articles compar-

ing deep learning with more standard approaches, the reader should be careful about the

complexity of models compared and whether model architecture and hyperparameters were

optimized only once or for each recording.

In section 2.2, no difference was found between the CNN and the MLP approaches implying

that the features learned were not more informative than engineered features. However, other

model architectures such as transformers or recurrent neural networks could potentially

learn more informative features from the raw EMG signal with sufficient data during training.

Indeed, the amount of data necessary to obtain robust and high-quality decoding for a patient

with an amputation is still unclear from the literature as only a few studies have shown long-

term results with single-finger proportional decoding.

As stated in section 2.4.2, transfer learning has the potential to reduce the amount of data
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necessary from a patient. However, the pre-training and fine-tuning best practices are still

unclear. Pre-training from several subjects has shown potential [8] but also in section 2.4.2

when pre-training from many recordings of only one subject. The number of different subjects

and/or recordings for pre-training should be assessed to see if depending on the machine

learning model used, there is a plateau in performance or if hundreds of individuals and

recordings will be necessary to obtain a performing model from a few repetitions of a new

prosthesis user. Finally, one should investigate how this translates to patients with amputation

as muscles can be missing or atrophied.

On the other hand, such models will be used on embedded electronics and therefore, model

size as well as energy consumption are important parameters to take into account. New

state-of-the-art hardware-accelerated systems are being developed especially in the domain

of brain implants. Such technology should also be leveraged for hand prostheses to increase

decoding capabilities and maintain battery life.

One way to reduce energy consumption is to decrease the input size. One approach was

explored in section 2.4.3 by extracting only the envelope of the signal and subsampling it at

100Hz. However, the performance of models at several sampling frequencies, from raw input

or envelope should be compared to find the optimal trade-off.

Another approach consists in selectively choosing electrodes used as input. As MD-EMG cov-

ers the full stump, not all electrodes are recording qualitative signals or are highly correlated

to other electrodes and therefore are just adding noise to the model. Electrode selection [9]

should be performed after placement of the prosthesis as it may fluctuate between record-

ings, however, this step should be relatively fast as the user cannot wait for the optimization

algorithm to run for a long time before each use.

Electrode selection opens up the question of the number of electrodes that are necessary

to obtain high-quality decoding. Starting from healthy individuals and assessing patients

with trans-radial amputation at different levels, it remains an open question for single-finger

proportional decoding and MD-EMG. Nevertheless, the number of electrodes selected, the

type of machine learning model, and the number of DoFs decoded is an intertwined question

and should be answered for each combination to find the best combination.

Next steps involve the investigation of whether it is possible to decode more than single-

finger angles. Section 2.4.1, shows preliminary results of single-finger proportional decoding

together with 2-DoFs wrist proportional motions. However, the complexity of the human hand

goes beyond position control. The interactions between different joints, the varying degrees

of applied force, and the dynamic control of stiffness based on task requirements all add to

this intricacy. Therefore, the challenge lies in replicating this sophisticated coordination in

prosthetic hands.

Future investigations should consider including additional features beyond positional data

in the decoding process. This could encompass the forearm position, the force applied by
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each finger, the modulation of joint stiffness based on the type of object being manipulated,

or even the torque exerted at each joint. The inclusion of these parameters would require

investigation in signal processing techniques, as well as improvements in machine learning

algorithms to handle the augmented data complexity. The development of such intricate con-

trol systems could indeed push the boundaries of current robotic prosthetic hands, bringing

them closer to the sophistication and versatility of the natural human hand. Investigations

in that direction might require leveraging musculoskeletal models that can translate muscle

activity into motions (see for instance [10]).

Increasing complexity in decoding will imply an increase in the amount of data necessary. To

this end, data augmentation could play a crucial role to obtain performant models. In this work,

I investigated the potential of GANs to create high-quality synthetic data to improve decoding

performance. However, GANs might not be the best model architecture to replicate EMG

signals, especially for regression purposes. Some examples [11–13] showed potential model

architecture for regression tasks but should be investigated for EMG signals. Moreover, [14]

showed that combining different augmentation methods could yield increased performance

compared to a single augmentation technique. Therefore, future steps include comparing

standard EMG data augmentation techniques with deep learning approaches (GANs, Auto-

encoders...) and a combination of all approaches. Finally, to apply these potential results to

patients with an amputation, it could be possible to leverage style-transfer as shown in [15]

to adapt the EMG signals from healthy individuals to mimic the muscle activity of a specific

patient.

4.2 Shared Control: Robotic automation for an improved tool or

towards hand replacement?

The use of robotic automation and shared control in the context of prosthetic hands presents

a promising avenue for enhancing both functionality and user experience. Shared control

was explored in many examples for BCI applications [16–18], but also for hand prosthesis

applications [3–6]. The two examples shown in this work could be divided into two distinct

objectives. The first example aims at improving grasp robustness and helping the user to

perform daily activities without being disturbed about the possibility of releasing the grasped

object. On the other hand, the second example doesn’t show grasp assistance but rather

automatic grasp execution with an extra DoF (in this case shoulder motion). The second

example is far less biomimetic and the prosthesis could be seen more as a sophisticated tool.

Robotic automation in prostheses has two sides and is intrinsically linked to the control

method. With single-finger proportional control, adding too much robotic automation could

lower the user’s agency. In my opinion, there are two objectives that should be followed in

parallel. Indeed, the first one is to give prosthetic hands to patients that are functional and

could help them in activities of daily living. The prosthesis remains a tool (as already the

case [19], but will very efficiently help the user. In this case, any robotic automation added to
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help the user to perform different tasks is beneficial. EMG decoding and other non-invasive

decoding approaches are and will remain limited due to anatomical constraints. Indeed,

some movements usually performed by intrinsic muscles of the hand cannot be decoded and

robotic automation could increase the user’s dexterity. In.hand object manipulation is an

example where EMG decoding from the forearm alone will not be possible even by considering

perfect decoding and perfect information about the object’s properties. In this case, robotic

automation has the potential to increase the quality of life of patients by giving them the

possibility to perform actions that were not possible before such as grasping objects and

replacing them in the hand for firm grasping is an action performed every day.

However, by automatizing a large part of the motor command, the user might lose the sense

of agency and ownership. The second objective is the long-term goal of scientists working

in this field: replacing the human hand. The extent to which robotic automation and shared

control are perceived as a tool or an extension of the body may vary depending on the level

of control retained by the user, the transparency of the control interface, and how well the

automated actions align with the user’s intentions. The goal should be to strike a balance

between providing high levels of functionality and maintaining user agency. In this direction,

robotic automation could help in grasping to reduce cognitive load, and simplify motor

commands sent but should remain transparent in the sense that it should remove the noise

in the decoded output to keep the intention of the user. In this case, the extent to which it

is possible to add movements without using other DoFs should be investigated. It could be

possible that synergies between intrinsic muscles and extrinsic muscles could be identified

and leveraged to decode more complex movements such as in-hand object manipulation and

performed using robotic automation.

Additionally, shared control integration into these devices requires the development of suffi-

ciently sophisticated prostheses that can incorporate complex robotic controllers and have

enough degrees of actuation for task execution. However, the prosthetic hand field is towards

underactuated designs due to weight and size considerations [20]. Incorporating robotic

automation to perform more complex movements demands the creation of devices that are

lightweight, compact, and possess high dexterity. In parallel, another essential feature of these

devices is the incorporation of compliant controllers. Such additions make the devices safer,

more adaptable, and robust, enhancing the user experience. Compliant controllers mitigate

the complexity of necessary control and offer better performance across diverse tasks and

environments.

4.3 Integration of a complete system for long-term use

Finally, in order to validate the various hypotheses discussed above, complete systems should

be provided to patients for long-term evaluation. The rich feedback obtained from these

users will guide future developments, highlighting the primary user requirements. This would

also provide a better understanding of the behavior and performance evolution of machine
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learning models during extended use. For instance, one could examine whether recalibration

of deep models would be required after six months of daily use. Additionally, it would be

valuable to explore whether users develop certain strategies over time to enhance dexterity,

and if single-finger proportional control offers any everyday life advantages compared to grasp

classification. These questions, and more, could be addressed by providing patients with a

fully integrated, user-friendly, and easily calibrated system.

Such a comprehensive system necessitates a prosthetic hand capable of complex task execu-

tion, potentially with the incorporation of robotic automation. Given that complex manipula-

tion with robotic hands require data about the object being manipulated and the state of the

robotic hand, sensorization of the prosthetic hand becomes essential. The subject-specific

socket should incorporate medium-density derivations throughout the available area. Fur-

thermore, the system should house the necessary electronics to acquire data, such as EMG

signals and sensory information, process inferences from deep learning models, integrate

signals, operate the robotic controller, and control the movement of the robotic hand. All

these processes should occur in real-time with minimal latency, leading to a highly efficient

and responsive prosthetic system.

In the pursuit of comprehensive, user-centered systems, seamless integration for long-term

use is a crucial focus of future research directions. This necessitates the creation of a cali-

bration setup that emphasizes accessibility and user-friendliness. Envisioned as an anytime,

anywhere solution, the calibration process could be managed through an application on the

user’s smartphone. This involves the user executing a sequence of predefined movements

in front of their mobile device. Subsequently, the smartphone utilizes the kinematic data

generated in conjunction with the captured EMG signals to train a deep learning model. Once

trained, this model is deployed directly onto the prosthetic hand’s integrated electronics. This

approach ensures a streamlined, user-controlled calibration process that effectively combines

the flexibility and accessibility of smartphone technology with the computational prowess

of deep learning models, ultimately facilitating an optimized, real-time performance of the

prosthetic hand.

The introduction of a fully integrated, easy-to-use system opens the door for the utilization of

sensory information collected by the prosthetic hand, augmenting the user’s experience with

sensory feedback. This feedback provides the user with valuable information regarding the

prosthetic hand’s state - including applied force, proprioceptive feedback, and contact points.

Sensory feedback can significantly reduce the cognitive load for users by providing them with

an intuitive understanding of the prosthetic hand’s actions, thereby increasing the ease and

efficiency of use [21].

The synergy between shared control and sensory feedback promises to offer a user-friendly

and engaging experience. Shared control handles a portion of the manipulative complexity,

while sensory feedback offers a sensory link to the prosthetic hand’s state, creating a more

immersive interaction. The resulting experience is expected to be not only straightforward
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and pleasant but also more akin to natural hand usage. It can enable users to focus less on the

tool (prosthetic hand) and more on the task at hand, providing a natural and efficient user

interface.

In light of these considerations, it is crucial to underscore the importance of ecological settings

in testing and refining these comprehensive prosthetic systems. The simulated or laboratory

conditions, while useful for preliminary studies, may not entirely reflect the complex realities

of day-to-day use. Consequently, long-term assessments in realistic settings, such as a user’s

own kitchen or a lab-simulated household environment, would provide more insightful data.

Current standard tests may offer a comparative measure of performance between different

control methods, but their limited scope might not capture all the nuances that could inform

about potential improvements. For instance, observing and tracking users’ movements during

everyday tasks over extended periods could reveal subtleties in usage patterns that might

otherwise be overlooked. This could highlight potential areas of advancement, from improving

individual dexterity to refining the shared control and feedback integration.

It is the interplay between these multidimensional factors - advanced prosthetic design,

shared control, sensory feedback, user-friendly calibration, and comprehensive assessment

methodology - that would truly push the boundaries of what is achievable in prosthetics.

The prospect of providing users with a highly functional and intuitive prosthetic solution is

more tangible than ever, and the progress in this direction will undoubtedly continue to make

significant strides toward recreating a natural hand experience for users.
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5 General Conclusion

This thesis has presented a body of work focused on the control of robotic prosthetic hands

(RPHs) with single-finger proportional control. I have articulated this work into two distinct,

yet complementary goals: investigating deep learning for EMG decoding and the integration

of robotic automation for increased RPH dexterity.

I started by introducing the current solutions available to patients suffering from trans-radial

amputation and reviewed the state of the art of scientific literature in the multi-faceted field

of RPHs. Indeed, RPHs will feel like a natural hand only when significant efforts will be put

into both the robotic hand itself and the sensorimotor interface. RPHs should be enhanced

in terms of dexterity, and designed with soft and compliant controllers. On the other hand,

proficient control of movements relies on the integration of motor commands and sensory

information. Therefore we will be able to provide patients the ability to perform complex

tasks only when the interfaces will have sufficient bandwidth to allow dexterous control and

rich sensory feedback. Although significant progress has been made in the tactile modality,

other modalities such as proprioception have been explored only through nonhomologous

approaches. Due to the biomimetic nature of single-finger proportional control, it has the

potential to partly provide some proprioceptive information to the user, as this approach

leverages the natural manner in which we control our fingers.

In the second chapter, I presented my work focused on the motor control of RPHs through

surface EMG decoding. I started by investigating the potential of deep learning for single-finger

proportional control comparing two CNN approaches with the more standard feature-based

approach. In section 2.1 I introduced the genetic algorithm that was used for model parameter

optimization. The preliminary results shown in this section suggest that deep learning is a

promising approach to improve EMG decoding performance. In section 2.2, I presented a

new medium-density EMG system and compared its performance against a gold-standard

gel-based EMG system. While the MD-EMG system showed improved performance compared

to the low-density system, there was no clear advantage in using deep learning compared

to the feature-based approach. The main difference with the results presented in section

2.1 may come from the model optimization strategy. Indeed, in the previous work, only one
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optimized model architecture was obtained and generalized to the other recordings while

here, the models were optimized for each recording. However, it is well known that CNNs

require a substantial amount of training data to show superior performance compared to other

machine learning techniques. For this reason, I explored data augmentations techniques

with GANs to provide high-quality synthetic data and improve decoding performance, as

reported in section 2.3. However, further improvements are necessary to create synthetic data

for regression tasks. Section 2.4 explored three approaches to bridge the gap between lab

environments and home use of the proposed decoding approach. First, using a single camera

to simplify model calibration, second, leveraging transfer learning to reduce the amount

of data necessary to train a model and finally performing all the steps in real-time such

that the user gets instantaneous feedback on the progression of the training. However, the

results presented in this section are still very preliminary and would require a more rigorous

examination to quantify the potential advantages of such approaches.

Finally, I explored the advantages of implementing a shared control approach that combines

proportional single-finger decoding and robotic automation to control RPHs. Indeed, some

movements cannot be decoded due to limitations in the performance of surface EMG decoding

and the fact that some motions are performed by intrinsic muscles of the hand. The first

section focused on a compliant robotic controller to improve grasp robustness by increasing

the number of contacts between the robotic hand and the object. The real-time shared

control developed in this section allows for both high dexterity and robust grasping. We

showed improvements in different tasks with the shared controller as well as a reduced EMG

activity which reflects an increase in confidence and potentially prevents muscle fatigue

over long-term use. The objective of the second shared control approach was to enable

subjects to perform in-hand object manipulation, a non-trivial task in robotics that cannot

be performed with EMG decoding alone. Similarly to the previous section, we combined

single-finger proportional decoding with an autonomous controller enabling in-hand object

rotation controlled by the subject with shoulder motion. In a pick-and-place task, two types

of shoulder controllers and two robotic assistance levels were compared. Results showed that

the combination of robotic assistance and an incremental shoulder controller yielded the

best performance. This autonomous controller could potentially be integrated with the one

discussed in the previous section resulting in both robust grasping and increased dexterity

for the users. It is important to notice that both approaches provide full agency on finger

movements when the user is not manipulating an object. However, the main limitation of

such shared control strategies is the need for highly dexterous robotic hands with compliant

actuators which are not yet available in current RPHs due to their size, weight, and battery life

constraints.

In conclusion, RPH control could be enhanced with machine learning by improving decoding

performance, reduction of calibration time, and increasing intra and inter-session robustness.

Many approaches are still to be investigated such as cutting-edge deep models like transform-

ers which have demonstrated remarkable results in natural language processing or combining

musculoskeletal models with machine learning to decode not just finger angles but also force
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and stiffness.

Ultimately, the advancements presented in this thesis contribute to the ongoing efforts to

improve the functionality, dexterity, and adoption of RPHs for individuals with trans-radial

amputation. It is hoped that these upcoming solutions will become more accessible, effective,

and user-friendly, enabling amputees to regain independence and improve their quality of life.
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A Supplementary Material

This section includes the supplementary material of the articles in the thesis.
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Supplemental Table 1.  Commercially available robotic prosthetic hands (RPHs) 

HAND MODEL COMPANY DOFS DOAS DOAS/DOFS 
SENSORIZED 

(ON 
FINGERTIP) 

RPH TYPE 

I-LIMB Össur, Reykjavík, 
Iceland 

10 5 0.50 No Hand 

AZZURRA HAND Prensilia, 
Pontedera, Italy  

16 4 0.25 No Hand 

MICHELANGELO HAND Ottobock, Berlin, 
Germany 

10 4 0.40 No Hand 

BEBIONIC HAND Ottobock, Berlin, 
Germany 

11 6 0.55 No Hand 

VINCENT HAND Vincent Systems, 
Karlsruhe 
Germany 

10 6 0.60 No Hand 

TASKA HAND Taska, 
Christchurch, New 

Zealand 

9 6 0.67 No Hand 

MIA HAND Prensilia, 
Pontedera, Italy 

6 3 0.50 No Hand 

HERO ARM Openbionics, 
Bristol, UK 

10 4 0.40 No Hand 

LUKE ARM (RADIAL 
CONFIGURATION) 

Mobiusbionics, 
USA 

13 4 0.31 No Hand 

AXONHOOK Ottobock, Berlin, 
Germany 

1 1 1.00 No Hook 

SENSORHAND SPEED Ottobock, Berlin, 
Germany 

1 1 1.00 Yes 3 Fingers 

SYSTEM ELECTRIC GREIFER Ottobock, Berlin, 
Germany 

1 1 1.00 No Hook 

MOTION CONTROL 
PROPLUS 

Fillauer, 
Chattanooga, TN, 

USA 

1 1 1.00 No Hand 

MOTION CONTROL 
PROPLUS ETD2 

Fillauer, 
Chattanooga, TN, 

USA 

1 1 1.00 No Hook 

ABILITY HAND Psyonic, USA 10 4 0.40 No Hand 

HANNES HAND IIT Lab, Genova, 
Italy 

10 1 0.1 No Hand 
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Supplemental Table 2. RPHs found in research papers from 2005 to 2020 

 

 YEAR HAND MODEL REFERENCE DOFS DOAS DOAS/DOFS SENSORIZED (ON 
FINGERTIP) 

RPH TYPE MATURITY 

1 2005 Softhand (1) 10 1 0.1 No Hand On socket Lab 

2 2005 UB Hand III (2) 16 16 1 No Hand Bench Test 

3 2006 HIT/DLR Prosth. Hand (3) 13 3 0.23 No Hand Bench Test 

4 2007 Biomechatronic hand (4) 10 4 0.4 No 3 Fingers Bench Test 

5 2011 SmartHand (5) 16 4 0.25 Yes Hand On socket Lab 

6 2011 DART Hand (6) 19 19 1 Yes Hand Bench Test 

7 2011 ECF Robot Hand (7) 5 10 2 No Hand Bench Test 

8 2012 Prosthetic gripper (8) 16 3 0.19 No Hand On socket Lab 

9 2012 E-Nable enablingthefuture.org 10 1 0.1 No Hand Open Source 

10 2013 Dextrus Hand openhandproject.org 11 5 0.45 No Hand Open Source 

11 2013 UB Hand 4 (9) 20 20 1 Yes Hand Bench Test 

12 2013 ACT Hand (10) 11 30 2.72 No Hand Bench Test 

13 2014 ISR-SoftHand (11) 10 4 0.4 No Hand Bench Test 

14 2015 Open Bionics Hand (12) 15 1 0.07 No Hand Bench Test, Open 
Source 

15 2015 Delft Hand (13) 7 1 0.14 No Hand Bench Test (with 
user) 

16 2015 SoftHand 2 (14) 19 2 0.11 No Hand Bench Test 

17 2015 Anthropomorphic Hand (15) 15 2 0.13 No Hand Bench Test 

18 2015 SMA Gripper (16) 6 3 0.5 No 3 Fingers Bench Test 

19 2015 Touch Hand (17) 15 5 0.33 No Hand On socket Lab 

20 2015 Soft Bionic Hand (18) 11 2 0.18 Yes Hand Bench Test 

21 2015 HACKberry Hand exiii-hackberry.com 10 3 0.3 No Hand Open Source 

22 2016 Biomimetic Hand (19) 21 10 0.48 No Hand Bench Test 

23 2016 Yale Multigrasp Hand (20) 11 2 0.18 No Hand Patent 

24 2016 SoftHand-D (21) 19 1 0.05 No Hand Bench Test 

25 2016 SoftHand Pro (22) 19 1 0.05 No Hand On socket Lab 

26 2016 ADA Robotic Hand www.openbionics.com 10 5 0.5 No Hand Open Source 

27 2016 Soft Prosthetic Hand (23) 5 5 1 Yes Hand Bench Test 

28 2016 Bionic Hand (24) 15 11 0.73 No Hand Bench Test 

29 2016 Soft Robotic Hand II (25) 5 10 2 No Hand Bench Test 

30 2017 Underarctuated hand (26) 10 2 0.2 No Hand Bench Test 

31 2017 SSSA-MyHand (27) 3 3 1 No Hand On socket Lab 

32 2017 MORA Hap-2 (28) 15 4 0.26 No Hand Bench Test 

33 2017 SCCA Hand (29) 11 5 0.45 No Hand Bench Test 

34 2017 SoftHand Pro-H (30) 19 1 0.05 No Hand On socket Lab 

35 2017 Robotic Hand II (31) 10 5 0.5 No Hand Bench Test 

36 2017 Compliant Prosthetic Hand (32) 6 6 1 Yes Hand On socket Lab 

37 2018 HR-Hand (33) NA NA NA No Hand Bench Test 

38 2018 DeTOP Hand (34) 6 3 0.5 Yes Hand On Socket Lab 

39 2018 F3Hand (35) 15 1 0.07 No Hand On Socket Lab 
(with controller) 
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40 2018 Soft Pneumatic Hand (36) 6 6 1 No Hand Bench Test 

41 2018 KIT Prosthetic Hand (37) 10 2 0.2 No Hand Bench Test 

42 2019 Low-Cost prosthetic hand (38) 14 2 0.14 No Hand Open Source 

43 2019 AstoHand (39) 10 5 0.5 No Hand On socket Lab 

44 2019 Low-Cost sEMG Prosthetics (40) 14 5 0.36 Yes (temperature) Hand Bench Test 

45 2019 anthropomorphic prosthetic 
hand 

(41) 10 3 0.3 No Hand Bench Test 

46 2019 Rehand II (42) 10 1 0.1 No Hand on socket lab 

47 2019 DUFAB Hand (43) 13 5 0.38 No Hand Bench Test 

48 2019 Adaptive Prosthetic Hand (44) 18 3 0.17 No Hand On Socket Lab 
(healthy subject) 

49 2019 Lightweight 10-DOF Robotic 
Hand 

(45) 10 1 0.1 No Hand Bench Test 

50 2019 Highly compliant prosthetic 
hand 

(46) 15 3 0.2 Yes Hand Bench Test 

51 2019 Gear-Driven Hand for Toddlers (47) 1 1 1 No Hand On Socket Lab 

52 2019 low-cost compliant prosthetic 
hand 

(48) 15 5 0.33 No Hand Bench Test 

53 2019 thermoregulated lightweight 
hand prosthesis 

(49) 14 1 0.07 No Hand On Socket Lab 

54 2019 Multi-Fingered Prosthetic 
Hand 

(50) 15 6 0.4 No Hand Bench Test 

55 2019 Prosthetic hand (51) 16 3 0.19 No Hand On Socket Lab 
(healthy subject) 

56 2020 Under-Actuated Hand 
Prosthesis 

(52) 15 7 0.47 No Hand Bench Test 

57 2020 Galileo Hand (53) 15 6 0.4 No Hand Bench Test 

58 2020 X-Limb (54) 13 5 0.38 No Hand On Socket Lab 

59 2020 F3Hand II (55) 15 1 0.07 No Hand On Socket Lab 
(with controller) 
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Figure S1: Boxplot of the performance in each condition for each finger (as shown in Fig. 4). The difference 

between conditions is significant for thumb opposition, thumb flexion, and index flexion (respectively: Kruskal-

Wallis H(3)=16.56, p<0.001, ANOVA F(3, 47)= 9.56, p<0.001 and Kruskal-Wallis H(3)=9.74, p<0.05). For thumb 

opposition, there are statistical differences between LD_MLP and LD_CNN (Mann-Whitney test, U=136.0, 

n1=n2=14, p<0.05), LD_MLP and MD_MLP (Mann-Whitney test, U=24.0, n1=14, n2=12, p<0.01), LD_CNN and 

MD_MLP (Student’s T-test, t(24)=-4.10, p<0.001) and between LD_CNN and MD_CNN (Student’s T-test, 

t(24)=-2.28, p<0.05). For thumb flexion, there are differences between LD_MLP and MD_MLP (Student’s T-test, 

t(23)=3.63, p<0.01), LD_MLP and MD_CNN (Student’s T-test, t(23)=-2.56, p<0.05), LD_CNN and MD_MLP 

(Student’s T-test, t(24)=-4.52, p<0.001), and between LD_CNN and MD_CNN (Student’s T-test, t(24)=-3.61, 

p<0.01). Finally for index flexion the significant differences are between LD_MLP and LD_CNN (Mann-Whitney 

test, U=135.0, , n1=13, n2=12, p<0.05), LD_CNN and MD_MLP (Student’s T-test, t(24)=-2.56, p<0.05) and 

between LD_CNN and MD_CNN (Student’s T-test, t(24)=-3.20, p<0.01). 
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Figure S3: Heatmap showing the percentage of recordings where each feature-channel 

combination was selected with the MD-EMG system. 
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Figure S4: Heatmap showing the percentage of recordings where each feature-channel combination 

was selected with the LD-EMG system. 
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Supplementary Figure 1. Preliminary offline experiment setup and results for three able-bodied subjects, performing 5 repetitions 
of each movement. Optical tracking was performed for the arm contralateral to the one from which sEMGs were recorded a, Offline 
prediction results of Subject C1 with target and predicted joint angles of the three DoFs for three different arm positions. b, Offline 
prediction results of Subject C2 in same format as for Subject C1. c, Offline prediction results of Subject C3 in same format as for 
Subjects C1 and C2. 
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Supplementary Figure 2. Online MLP prediction performance against chance level for Subjects A1, A2, B3, B5, B6, and B7. 
Gray boxplots indicate the fraction of time per trial that each predicted DoF is within 15 degrees of the instructed angle. White 
boxplots indicate the fraction of time per trial that a random angle (within the set of trained angles) is within 15 degrees of the 
instructed angle. DoFs that perform significantly better than chance are marked (assessed by the Wilcoxon two-sided signed 
rank test). Data are aggregated over all sessions per subject (number of sessions performed are found on Table 1).
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Supplementary Figure 3. Shared Control objects and results for Subjects B6 and B7. a, Objects tested during grasping: 
cylinder, cross joint part and rectangular piece. Objects were presented in three different orientations with respect to the robotic 
hand. b, Percentage of trials during which desired contacts are achieved for the three objects with or without shared for able 
subject B6 (left) and B7 (right). p-values determined with Fisher’s two-tailed exact test. Number of successful trials versus total 
trials are indicated on each bar, number of sessions are indicated in the title. c, Duration of hold time for each object out of 
seven seconds of instructed hold with or without shared control (p-values determined with Wilcoxon two-sided signed-rank 
test). d, Percentage of grasping trial time during which contacts were touching the objects with or without shared control 
(p-values determined with Fisher’s two-tailed Exact Test). Contacts on different phalanges are indicated with different shades – 
lighter shades indicate more distal phalanges while darker shades indicated more proximal phalanges. Raw data corresponding 
to these bar plots are shown in Supplementary Table 1.
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Supplementary Tables 

 

Supplementary Table 1. Performance metrics of MLP decoder for all subjects and each degree of freedom tested. Correlation 

coefficient and normalized Mean Squared Error are presented. Under each subject ID, we cite the number of sessions that the 

subject performed. 

  

SUBJECT METRIC THUMB INDEX MIDDLE RING PINKY 
THUMB 

OPP. 

A1 
(n = 10) 

correlation 
0.49 +/- 0.16  

(0.77) 
0.62 +/- 0.06  

(0.74) 
0.58+/- 0.07  

(0.72) 
0.47 +/- 0.07  

(0.64) 
0.54 +/- 0.06  

(0.64) 
0.62 +/- 0.07  

(0.71) 

nMSE (%) 
8.2 +/- 3.1  

(3.8) 
12.2 +/- 4.5  

(6.9) 
12.5  +/- 3.0  

(7.5) 
16.9  +/- 3.0  

(13.2) 
13.8  +/- 2.2  

(10.6) 
12.4  +/- 2.5  

(7.9) 

A2 
(n = 8) 

correlation 
0.26 +/- 0.18  

(0.55) 
0.53 +/- 0.02  

(0.58) 
0.51 +/- 0.07  

(0.56) 
0.70 +/- 0.10  

(0.82) 
0.71 +/- 0.11  

(0.82) 
0.52 +/- 0.09  

(0.70) 

nMSE (%) 
15.3 +/- 5.3  

(7.5) 
14.5 +/- 1.1  

(13.2) 
15.0 +/- 2.0  

(13.0) 
11.1 +/- 5.2  

(6.8) 
11.0 +/- 6.1  

(6.1) 
19.0 +/- 7.0  

(10.8) 

A3 
(n = 4) 

correlation 
0.59 +/- 0.06  

(0.64) 
0.54 +/- 0.15  

(0.68) 
0.59 +/- 0.18  

(0.78) 
0.62 +/- 0.11  

(0.74) 
0.51 +/- 0.27  

(0.79) 
0.35 +/- 0.16  

(0.47) 

nMSE (%) 
10.4 +/- 2.4  

(7.2) 
11.5 +/- 2.1  

(10.0) 
9.7 +/- 3.4  

(6.2) 
10.7 +/- 1.8  

(9.0) 
15.5 +/- 9.6  

(6.8) 
21.2 +/- 2.5  

(17.5) 

B2 
(n = 4) 

 

correlation 
0.31 +/- 0.20  

(0.49) 
0.33 +/- 0.23  

(0.59) 
0.56 +/- 0.24  

(0.75) 
0.57 +/-0.15  

(0.76) 
0.35 +/- 0.21  

(0.51) 
0.39 +/- 0.16  

(0.48) 

nMSE (%) 
20.0 +/- 6.3  

(14.3) 
25.7 +/-13.4  

(10.4) 
14.9 +/- 11.2  

(6.4) 
23.0 +/- 12.7  

(10.6) 
19.9 +/- 6.7  

(14.3) 
23.4 +/- 1.3  

(22.0) 

B3 
(n = 4) 

correlation 
0.21 +/- 0.13  

(0.39) 
0.39 +/- 0.14  

(0.60) 
0.53 +/- 0.17  

(0.78) 
0.70 +/- 0.13  

(0.83) 
0.58 +/- 0.17  

(0.77) 
0.39 +/- 0.15  

(0.57) 

nMSE (%) 
33.1 +/- 18.7  

(12.3) 
21.1 +/-7.9  

(14.7) 
19.9 +/- 7.5  

(9.2) 
8.3 +/- 2.1  

(5.3) 
16.5 +/- 8.8  

(6.0) 
17.8 +/- 3.5  

(15.0) 

B4 
(n = 2) 

correlation 
0.31 +/- 0.05  

(0.35) 
0.54 +/- 0.08  

(0.60) 
0.63 +/- 0.06  

(0.67) 
0.55 +/- 0.02  

(0.59) 
0.65 +/- 0.01  

(0.66) 
0.37 +/-0.04  

(0.40) 

nMSE (%) 
35.7 +/-0.1  

(35.6) 
13.2 +/- 4.1  

(10.3) 
9.7 +/- 1.7  

(8.5) 
26.4 +/- 5.1  

(22.8) 
21.0 +/- 1.1  

(20.2) 
20.9 +/- 0.5  

(20.6) 

B1 
(n = 1) 

correlation 0.21 0.45 0.38 0.77 0.61 0.52 

nMSE (%) 32.3 32.0 23.2 9.0 10.3 13.0 
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Supplementary Table 2. Fraction of trial time during which contact with object exists, per phalanx. Data correspond to bar plots 

in Fig. 4g, 5d, and Supplementary Fig. 3d. Entries indicate successful contact between sensors on a single phalanx with an 

object during grasping with shared control (gray shaded) or MLP only control (white shaded) as a fraction of total time steps. 

Data are aggregated over all object types and sessions for a single subject. Number of sessions are indicated for each subject. 
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For supplementary videos of section 3.1 refer to: https://doi.org/10.1038/s42256-019-0093-5

For supplementary video of section 3.2 refer to: https://doi.org/10.1088/1741-2552/aca35f
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