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Abstract

Natural language processing and other artificial intelligence fields have witnessed impressive

progress over the past decade. Although some of this progress is due to algorithmic advances

in deep learning, the majority has arguably been enabled by scaling up general learning

methods, such as language modeling, to more data, larger models, and increased compute

resources. All else being equal, this comes at a substantially higher cost, limiting access for

research teams with limited resources and preventing further upscaling. Consequently, the

investigation of lower-cost solutions is crucial for the future of the NLP field. The compute

cost of achieving a performance level can be broken down into three factors: 1) the amount

of compute needed to process a single example, 2) the amount of data required to train the

model, and 3) the number of hyperparameter configurations needed to reach the desired

performance.

In this thesis, we aim to contribute to all three factors through scalable, general learning

methods. To address factor 1), we investigate sentence embedding methods based on simple

word embedding summation. These methods often provide a strong baseline and are fast

to compute, but they are fundamentally limited by their inability to capture word order. We

propose a word embedding aggregation method that is sensitive to word order. Regarding

factor 2), we introduce Emb2Emb, a framework for learning conditional text generation tasks

in the embedding space of a text autoencoder. Since the autoencoder can be pretrained on

unlabelled data once, training the task-specific conditional text generation model requires

significantly less labeled data downstream. In pursuit of reducing the amount of hyperparam-

eter tuning (factor 3)), we propose an evaluation protocol for deep learning optimizers that

takes the cost of hyperparameter tuning into account, leading to actionable insights that can

decrease the amount of hyperparameter tuning required. Finally, we introduce HyperMixer,

an MLP-based neural architecture that can be viewed as a low cost alternative to the popular

Transformer architecture since it empirically lowers the cost in terms of all three factors.

Key words: natural language understanding, representation learning, efficient deep learning,

conditional text generation, hyperparameter tuning, transformers
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Zusammenfassung

Die Verarbeitung natürlicher Sprache und andere Bereiche der künstlichen Intelligenz haben

im vergangenen Jahrzehnt beeindruckende Fortschritte gemacht. Obwohl ein Teil dieser Fort-

schritte auf algorithmische Verbesserungen im Deep Learning zurückzuführen ist, wurde der

Großteil wohl durch die Skalierung allgemeiner Lernmethoden, wie zum Beispiel Sprachmo-

dellierung, auf mehr Daten, größeren Modelle und erhöhten Rechenressourcen ermöglicht.

Bei sonst gleichen Bedingungen führt dies zu erheblich höheren Kosten, was den Zugang

für Forschungsteams mit begrenzten Ressourcen einschränkt und eine weitere Hochskalie-

rung verhindert. Daher ist die Untersuchung kostengünstiger Lösungen entscheidend für

die Zukunft des NLP-Bereichs. Die Rechenkosten für das Erreichen einer Leistung können

in drei Faktoren unterteilt werden: 1) die Menge an Rechenleistung, die benötigt wird, um

ein einzelnes Beispiel zu verarbeiten, 2) die Menge an Daten, die zum Trainieren des Modells

erforderlich sind und 3) die Anzahl der Hyperparameterkonfigurationen, die getestet werden

müssen, um die gewünschte Leistung zu erreichen. In dieser Arbeit zielen wir darauf ab,

mittels skalierbarer, allgemeiner Lernmethoden alle drei Faktoren zu reduzieren. Um Faktor

1) anzugehen, untersuchen wir Satzeinbettungsmethoden, die auf einfacher Aufsummie-

rung von Worteinbettungen basieren. Diese Methoden bieten oft eine starke Grundlage und

sind schnell zu berechnen, aber sie sind insofern grundlegend begrenzt, als sie die Wortrei-

henfolge nicht erfassen. Wir schlagen eine Method vor, die die Wortreihenfolge erfasst. In

Bezug auf Faktor 2) führen wir Emb2Emb ein, eine Methode zum Erlernen von bedingten

Textgenerierungsaufgaben im Einbettungsraum eines Text-Autoencoders. Da der Autoenco-

der einmalig auf annotationsfreien Daten vortrainiert werden kann, erfordert das Training

des aufgabenspezifischen bedingten Textgenerierungsmodells erheblich weniger annotierte

Daten. Um die Kosten der Hyperparameteroptimierung (Faktor 3) zu reduzieren, schlagen

wir ein Evaluationsprotokoll für Optimierungsalgorithmen vor, welches die Kosten der Hy-

perparameteroptimierung berücksichtigt. Dies führt zu praktikablen Erkenntnissen, die die

Menge der erforderlichen Hyperparameteroptimierung verringern können. Zuletzt stellen

wir HyperMixer vor, eine auf MLPs basierende neuronale Architektur, die als kostengünstige

Alternative zur beliebten Transformer-Architektur angesehen werden kann, da sie die Kosten

in Bezug auf alle drei Faktoren empirisch senkt.

Stichwörter: Sprachverstehen, Repräsentationslernen, effizientes Deep Learning, bedingte
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1 Introduction

1.1 Motivation

Artificial intelligence (AI) in general and natural language understanding (NLU) in particular

have seen massive progress over the past decade since the advent of deep learning (LeCun

et al., 2015). Deep learning systems are now able to produce translations (Popel et al., 2020)

and news summaries (T. Zhang et al., 2023) at a quality comparable to human professionals,

write news articles indistinguishable from human-written ones (Radford et al., 2019; Zellers

et al., 2019), and outperform humans on natural language benchmarks long thought to be

out of reach for neural network technology (Raffel et al., 2020; A. Wang, Pruksachatkun, et al.,

2019). Current state-of-the-art systems based on large language models (LLMs) can solve new

tasks in a zero- or few-shot manner, i.e., with little to no task-specific adaptation (Brown et al.,

2020; Chowdhery et al., 2022; OpenAI, 2023). These LLMs are very expensive to train (Strubell

et al., 2019).

In light of the fast-paced, overarching progress of a handful of approaches that only few can

afford to train, NLU researchers are lead to wonder what is the best way to contribute to

continued progress in the field. Hence, going forward, the NLU research community faces a

fundamental question:

How can we conduct long-lasting, impactful research in natural language under-

standing?

While there is certainly not a single answer, in this thesis, we provide one that is based on three

guiding principles (Section 1.1.3): general learning methods, scalability and cost reduction,

which are motivated by the lessons learned from recent advancements (Section 1.1.1) and the

Green AI paradigm (Section 1.1.2). These guiding principles form the basis of our concrete

research contributions described in Section 1.2.
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1.1.1 Lessons from Recent Advancements

Early progress since the beginning of the deep learning era is often attributed to algorithmic

advances like Rectified Linear Unit (Nair & Hinton, 2010), Dropout (Srivastava, Hinton, et al.,

2014), and the attention mechanism (Bahdanau et al., 2015), among others. These provided

the basic building blocks for the development of task-specific neural network models, e.g. for

machine translation (Bahdanau et al., 2015), style transfer (T. Shen et al., 2017), or natural

language inference (S. Bowman et al., 2015). Trained on relatively large task-specific datasets,

these models perform well on the narrow task they were designed for.

By exploiting a task’s idiosyncracies with a more specialized model architecture, task perfor-

mance could be pushed further. For example, between 2015 and 2018, progress on the widely

used Stanford Natural Language Inference (NLI) corpus (S. Bowman et al., 2015), where the

goal is to determine whether a hypothesis sentence h is entailed by a premise sentence p, was

mainly driven by architectural innovationsI (Q. Chen et al., 2018; Conneau et al., 2017; Kim

et al., 2019; Mou et al., 2016; Rocktäschel et al., 2015; Sha et al., 2016). For example, Rock-

täschel et al., 2015 propose word-by-word attention, where the model takes the word-level

representation of the premise into account via attention when constructing the word-level

representations of the hypothesis. While this architecture leads to an improvement of 1 per-

centage point on the test set, it is only meaningful for a narrow set of tasks that are similar

to NLI. Moreover, since a new architecture usually requires retraining from scratch, it is pro-

hibitively expensive to make use of large quantities of unlabeled data. This makes these narrow

solutions also very difficult to scale.

More recently, however, scalability emerged as the facilitator of fast progress via a new mod-

elling paradigm, foundation models (Bommasani et al., 2021). These models now provide the

basis for virtually all state-of-the-art natural language understanding systems. Their success is

enabled through scaling up a general model architecture in terms of model size, training data,

and compute, usually by pretraining the model via self-supervision on unlabeled data (Devlin

et al., 2019; M. Peters et al., 2018; Radford et al., 2019). With only minor adaptations, the same

Transformer-based (Vaswani et al., 2017) language model, trained to predict the next token

in a text, can now be leveraged to reach state-of-the-art performance for machine transla-

tion (Brown et al., 2020), style transfer (Reif et al., 2022), and NLI (Chowdhery et al., 2022).

While task-specific architectures may still be used for industrial applications where specific

constraints need to be met, foundation models render solutions such as word-by-word atten-

tion and many that followed obsolete for state-of-the-art natural language understanding.

What lesson can we learn from this development? Sutton, 2019 argues that building knowledge

into AI systems only helps in the short-term, whereas "breakthrough progress eventually

arrives by an opposing approach based on scaling computation by search and learning". How-

ever, while scale is a necessary ingredient in the recent progress, it doesn’t suffice to scale any

method. As Brooks, 2019 points out, neural architectures do leverage prior knowledge in the

IAn overview can be found at https://nlp.stanford.edu/projects/snli/.
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form of inductive biases to achieve better generalization. For example, the attention mecha-

nism, which is core to the Transformer architecture, can be viewed as an implementation of

variable binding (A. Goyal & Bengio, 2022; J. Henderson, 2020), which is key to learning the reg-

ularities of natural language efficiently (Fodor & Pylyshyn, 1988). Of course, the best choice of

inductive bias depends on the availability of data (Welling, 2019); with infinite amounts of data,

any useful bias could also be learned. The success of LLMs suggests that next token prediction

is a general enough pretraining task to leverage internet-size data available in natural language

processing and adapt it to a large variety of downstream tasks. Moreover, Transformers seem

to possess a suitable inductive bias to effectively learn from natural language data.

For novel methods to establish themselves long-term, they will have to be competitive to these

LLMs. Hence, the lesson is perhaps that new methods not only have to generalize better on a

narrow task, but need to be general and scalable.

1.1.2 Green AI

Scaling up an existing technique can lead to substantially stronger results. However, it also

comes with significantly increased cost (Strubell et al., 2019). As Schwartz et al., 2020 point

out, this so called Red AI essentially buys stronger results with more compute and data, a

trend which many believe to be unsustainable in the long term. For example, Villalobos et al.,

2022 predict that, at current dataset growth rates, high-quality language data for training large

language models will be exhausted by 2026. So while Red AI solutions carry significant value

by pushing the boundaries of what is possible with the current technology, it is important to

reduce these costs in order to make the rate of progress more sustainable. Additionally, the

Red AI paradigm limits access to state-of-the-art research to those who can afford it (Schwartz

et al., 2020), limiting the amount of impactful research that low-resource labs, especially from

academia, can conduct. In response to these issues, Schwartz et al., 2020 have proposed the

Green AI paradigm, which emphasizes the need for research that takes into account the cost

associated with achieving a result. They defined this cost as

Cost (R) ∝ E ·D ·H , (1.1)

where E represents the amount of compute required to process a single example, D represents

the size of the training dataset, and H represents the number of hyperparameter configurations

experimented with before reaching the result. Current widely used systems like BERT (Devlin

et al., 2019) comprise of dozens of wide neural network layers, inducing a large processing

time, are pretrained on a lot of data, and still need a lot of data for finetuning (Yogatama et al.,

2019). These systems are also often sensitive to hyperparameters (Dodge et al., 2019) and may

require training to be restarted (Devlin et al., 2019; Dodge et al., 2020). Reducing each factor of

the above cost equation can help to reduce the overall cost of artificial intelligence research,

and thereby free up resources needed for continued long-lasting progress via Red AI research.
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1.1.3 Guiding Principles

From the lessons learned and the Green AI paradigm we infer three guiding principles that are

applied throughout the thesis: general learning methods, scalability, and emphasis on low cost

solutions.

• General learning methods. Our lesson states that narrow, task-specific solutions are

made obsolete in the long run by a more general, learning based methods. As a con-

sequence, in this thesis, we focus on methods with broad applicability, requiring little

adaptation to any specific downstream task. Moreover, we do not aim at achieving

state-of-the-art performance on any specific task. Rather, we show that our methods

yield better performance compared to a baseline method in a controlled setting.

• Scalability. Recent developments in NLP have demonstrated that scalability is crucial to

a method’s success; ideally, model performance should improve even at internet-scale

data and for multi-billion parameter models, like it is the case for LLMs (Hoffmann

et al., 2022). Consequently, we propose models that are likely to exhibit such a scaling

behavior, even though we can not test it due to the enormous cost associated with such

experiments.

• Cost reduction. We adopt the Green AI paradigm by taking the cost associated with a

result into account. To this end, we typically propose methods that either 1) improve

performance over a baseline given the same cost budget, or 2) reduce the cost while

retaining the same performance. Figure 1.1 illustrates this.

1.2 Contributions

In accordance with our guiding principles, in this thesis, we focus primarily on text represen-

tation learning techniques as scalable, general deep learning based solutions. Following the

cost reduction principle, we make four contributions that focus on decreasing the cost of AI in

terms of one or more factors from Equation 1.1.

(I., Chapter 2) Addressing factor E (single-sample processing time), we investigate sentence

embedding methods that are based on simple aggregation of word embeddings, which are typ-

ically trained on very large general-purpose corpora. Specifically, Continuous Bag-of-Words

(CBOW) simply sums word embeddings. This is very fast and often provides a strong baseline.

However, CBOW is limited fundamentally by the fact that it does not capture word order. We

address this issue by proposing Continual Multiplication of Words (CMOW), which embeds

words into matrices (rather than vectors) and uses (order-sensitive) matrix multiplication

(rather than addition) to represent phrases. We show that CMOW has complementary prop-

erties to CBOW. Consequently, their combination, a CMOW-CBOW hybrid, is superior in

performance to either model alone, while inducing no additional cost in terms of number of
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Figure 1.1: Types model improvements: Starting from a baseline model M0, we distinguish
between 3 types of model improvements. The Red AI approach yields a model R with a
significantly better performance, but at the expense of also higher cost. In this thesis, we take
the Green AI approach, where we aspire better performance while fixing the cost (G1), or we
aspire lower cost while retaining the performance (G2).

parameters. Importantly, this model is 5 times faster than a recurrent neural network of the

same size.

(II., Chapter 3) Regarding factor D (training data size), we investigate how autoencoder-based

conditional text generation models can leverage pretraining on unlabeled data. To this end,

we propose Embedding-to-Embedding (Emb2Emb), a method which learns conditional text

generation tasks in the embedding space of a text autoencoder. Because the autoencoder

can be pretrained on (potentially large-scale) unlabelled data once, training the task-specific

conditional text generation model requires much less task-specific data. This method can be

used for supervised training, i.e., where parallel input-output pairs are available. However, it is

arguably more useful for the unsupervised case, where we know what attributes the output

should have depending on the input, but have no concrete training examples thereof. In this

chapter, our contributions are three-fold: 1) We develop an Emb2Emb model for autoencoders

with single-vector embeddings, and show that pretraining on unlabeled data greatly reduces

the need for labeled data. 2) As single-vector embeddings are fundamentally limited in how

much information they can capture, we move to multi-vector embeddings and adapt the

Emb2Emb method accordingly. We show that the multi-vector model improves Emb2Emb’s

capabilities on long texts substantially. 3) Lastly, we include an initial investigation of the

potential of Emb2Emb for unsupervised text generation. To this end, we study unsupervised

opinion summarization as a use case. We argue that current state-of-the-art methods based

on language models are ill-equipped for this task, and propose an Emb2Emb-based approach
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instead.

(III., Chapter 4) Addressing factor H (hyperparameter tuning budget), we turn our atten-

tion to deep learning optimizers such as SGD with momentum (Sutskever et al., 2013) and

Adam (Kingma & Ba, 2015), which are widely used for training virtually all deep learning

systems, including but not limited to NLP models. These optimizers have a number of hy-

perparameters, perhaps most prominently the learning rate, which often determine whether

training is successful or not. Yet, when comparing different optimizers with each other, the

difficulty of finding good hyperparameter values is rarely taken into account, obscuring which

optimizers are preferable when aiming to obtain good results R with low cost Cost(R) as in

Equation 1.1. Addressing this issue, we propose an optimizer benchmarking protocol that

takes hyperparameter tuning into account.

(IV., Chapter 5) Finally, we investigate neural architectures based on multi-layer perceptrons

(MLPs) for natural language understanding. We identify that existing all-MLP models lack the

inductive biases that arguably made the popular Transformer architecture (Vaswani et al., 2017)

so successful. We then propose HyperMixer, a linear-time all-MLP model that exhibits similar

inductive biases to Transformers, which makes it a scalable general-purpose architecture.

While achieving competitive performance to Transformers, HyperMixer empirically lowers

the cost to achieving a result in terms of all three factors from Equation 1.1.

All our contributions are concerned with scalable, general learning methods and focus on

reducing the cost. We believe that this demonstrates that following the three guiding princi-

ples provides an accessible path to conducting long-lasting, impactful research by enabling

continued state-of-the-art progress via Red AI.
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Chapter summary

Word embeddings are low-dimensional continuous vector representations of words. In

the popular Continuous Bag-of-Words (CBOW) model, a phrase or sentence representa-

tion is obtained by averaging the corresponding embeddings of words in the sentence.

These sentence embedding models are scalable and general since they can be used in al-

most any downstream NLP application, e.g. as feature input to a text classifier. They also

become better with increasing size of the general-purpose corpus that they are trained

on. With regards to our guiding principles, this model is particularly interesting because

of its low processing cost E , making it a cheap yet powerful baseline. However, averaging

the word embeddings discards order information, which makes the sentence representa-

tion strictly less expressive than e.g. recurrent neural networks (RNNs). To address this,

we propose Continual Multiplication of Words (CMOW), where words are embedded

into matrices and the representation of sentences is obtained via matrix multiplication.

We show empirically that CMOW has complementary properties to CBOW due to the

order-sensitivity of matrix multiplication. Therefore, a simple CMOW-CBOW hybrid

model achieves better results than either of the models alone. CMOW has approximately

the same processing time as CBOW, which is significantly faster than an RNN of the same

size.

Publication(s) in this chapter

This chapter is based on the following paper:

• Mai, F., Galke, L. & Scherp, A. (2019). CBOW Is Not All You Need: Combining CBOW with

the Compositional Matrix Space Model. ICLR 2019.
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2.1 Introduction

Word embeddings are regarded as one of the most impactful contributions from unsupervised

representation learning to natural language processing (Goth, 2016). Similar to pretrained

Transformers, word embeddings are both scalable and general: They are learned once on

a large-scale stream of words, where performance increases with available (internet-size)

data (Mikolov et al., 2018) and model size (Eger et al., 2019). After learning, these pre-computed

vectors can be re-used almost universally in many different downstream applications. Be-

fore the emergence of large pretrained Transformer (Vaswani et al., 2017) models such as

BERT (Devlin et al., 2019), which encode text into a set of vectors, there had been substantial

interest in learning single-vector sentence embeddings. Perone et al., 2018 showed that the

best encoding architectures are based on recurrent neural networks (RNNs) (Conneau et al.,

2017; M. E. Peters et al., 2018) or the Transformer architecture (Cer et al., 2018). These neural

network architectures are typically very expensive to train and apply in terms of the single

example processing time E in the sense of the cost Equation 1.1. Their usefulness is therefore

limited when fast processing of large volumes of data is critical. In accordance with the low

cost principle of this thesis, we are hence interested in exploring substantially more efficient

encoding techniques such as aggregated word embeddings.

A popular word embedding aggregation method is Continuous Bag of Words (CBOW), which is

a mere summation of the word vectors (Mikolov, Chen, et al., 2013). Despite CBOW’s simplicity,

it attains strong results on many downstream tasks. Using sophisticated weighting schemes,

the performance of aggregated word embeddings can be further increased (Arora et al., 2017),

coming even close to strong LSTM baselines (Henao et al., 2018; Rücklé et al., 2018) such as

InferSent (Conneau et al., 2017). This raises the question how much benefit recurrent encoders

actually provide over simple word embedding based methods (Wieting & Kiela, 2019). In their

analysis, Henao et al., 2018 suggest that the main difference may be the ability to encode word

order. In this work, we propose an intuitive method to enhance aggregated word embeddings

by word order awareness.

The major drawback of these CBOW-like approaches is that they are solely based on addition.

However, addition is not all you need. Since it is a commutative operation, the aforementioned

methods are not able to capture any notion of word order. However, word order information is

crucial for some tasks, e.g., sentiment analysis (Henao et al., 2018). For instance, the follow-

ing two sentences yield the exact same embedding in an addition-based word embedding

aggregation technique: “The movie was not awful, it was rather great.” and “The movie was

not great, it was rather awful.” A classifier based on the CBOW embedding of these sentences

would inevitably fail to distinguish the two different meanings (Goldberg, 2017).

To alleviate this drawback, Rudolph and Giesbrecht, 2010 propose to model each word as

a matrix rather than a vector, and compose multiple word embeddings via matrix multi-

plication rather than addition. This so-called Compositional Matrix Space Model (CMSM)

of language has powerful theoretical properties that subsume properties from vector-based
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models and symbolic approaches. The most obvious advantage is the non-commutativity of

matrix multiplication as opposed to addition, which results in order-aware encodings.

In contrast to vector-based word embeddings, there is so far no solution to effectively train the

parameters of word matrices on large-scale unlabeled data. Training schemes from previous

work were specifically designed for sentiment analysis (Asaadi & Rudolph, 2017; Yessenalina &

Cardie, 2011). Those require complex, multi-stage initialization, which indicates the difficulty

of training CMSMs. We show that CMSMs can be trained in a similar way as the well-known

CBOW model of word2vec (Mikolov, Chen, et al., 2013). We make two simple yet critical

changes to the initialization strategy and training objective of CBOW. Hence, we present the

first unsupervised training scheme for CMSMs, which we call Continual Multiplication Of

Words (CMOW).

We evaluate our model’s capability to capture linguistic properties in the encoded text. We

find that CMOW and CBOW have properties that are complementary. On the one hand, CBOW

yields much stronger results at the word content memorization task. CMOW, on the other

hand, offers an advantage in all other linguistic probing tasks, often by a wide margin. Thus,

we propose a hybrid model to jointly learn the word vectors of CBOW and the word matrices

for CMOW.

Our experimental results confirm the effectiveness of our hybrid CBOW-CMOW approach.

At comparable embedding size, CBOW-CMOW retains CBOW’s ability to memorize word

content while at the same time improves the performance on the linguistic probing tasks by

8%. CBOW-CMOW outperforms CBOW at 8 out of 11 supervised downstream tasks scoring

only 0.6% lower on the tasks where CBOW is slightly better. On average, the hybrid model

improves the performance over CBOW by 1.2% on supervised downstream tasks, and by 0.5%

on the unsupervised tasks.

In summary, our contributions are: (1) For the first time, we present an unsupervised, efficient

training scheme for the Compositional Matrix Space Model. Key elements of our scheme

are an initialization strategy and training objective that are specifically designed for training

CMSMs. (2) We quantitatively demonstrate that the strengths of the resulting embedding

model are complementary to classical CBOW embeddings. (3) We successfully combine both

approaches into a hybrid model that is superior to its individual parts.

After giving a brief overview of the related work, we formally introduce CBOW, CMOW, and the

hybrid model in Section 2.3. We describe our experimental setup and present the results in

Section 2.4. The results are discussed in Section 2.5, before we conclude.

2.2 Related Work

We present an algorithm for learning the weights of the Compositional Matrix Space Model

(CMSM) (Rudolph & Giesbrecht, 2010). To the best of our knowledge, before the research in

9



Chapter 2 CBOW Is Not All You Need

this work was conducted, only Yessenalina and Cardie, 2011 and Asaadi and Rudolph, 2017

had addressed this. They present complex, multi-level initialization strategies to achieve

reasonable results. Both papers train and evaluate their model on sentiment analysis datasets

only, but they do not evaluate their CMSM as a general-purpose sentence encoder.

After the publication of our work, two more papers have studied methods within the CMSM

framework. Asaadi, 2020 proposes two novel algorithms for learning word matrices: The first

method aims to predict the context embedding (i.e., the multiplication of all word matrices

from the context) from the matrix embedding of the center word. The second method predicts

the normalized pointwise mutual information value of two words from their matrix embedding

product. Both methods adopt the matrix initialization strategy introduced in our work for

best results. Galke et al., 2022 extend our CMOW-CBOW hybrid method by introducing bi-

directionality, which improves its performance slightly. Moreover, it allows them to distill the

predictions of a pretrained BERT model into the CMOW-CBOW model.

Other works have represented words as matrices as well, but unlike our work not within the

framework of the CMSM. Grefenstette and Sadrzadeh, 2011 represent only relational words

as matrices. Socher et al., 2012 and Chung and Bowman, 2018 argue that while CMSMs are

arguably more expressive than embeddings located in a vector space, the associativeness of

matrix multiplication does not reflect the hierarchical structure of language. Instead, they

represent the word sequence as a tree structure. Socher et al., 2012 directly represent each word

as a matrix (and a vector) in a recursive neural network. Chung and Bowman, 2018 present a

two-layer architecture. In the first layer, pre-trained word embeddings are mapped to their

matrix representation. In the second layer, a non-linear function composes the constituents.

Before finetuning pretrained Transformers became the predominant paradigm with BERT (De-

vlin et al., 2019), sentence embeddings were an active field of research. In accordance with

our guiding principle of generality (see Section 1.1.3), an important desirable property of the

embeddings is that the encoded knowledge is useful in a variety of high-level downstream

tasks. To this end, Conneau and Kiela, 2018 and Conneau et al., 2018 introduced an evaluation

framework for sentence encoders that tests both their performance on downstream tasks as

well as their ability to capture linguistic properties. Most works focus on either i) the ability of

encoders to capture appropriate semantics or on ii) training objectives that give the encoders

incentive to capture those semantics. Regarding the former, initially large RNNs were by far

the most popular (Conneau et al., 2017; Hill et al., 2016; Kiros et al., 2015; Logeswaran &

Lee, 2018; McCann et al., 2017; Nie et al., 2019; M. E. Peters et al., 2018; S. Tang et al., 2017),

followed by convolutional neural networks (Gan et al., 2017). After the publication of our

work, Transformer-based solutions such as SentenceBERT (Reimers & Gurevych, 2019) were

popularized. A third group are efficient methods that aggregate word embeddings (Arora et al.,

2017; Pagliardini et al., 2018; Rücklé et al., 2018; Wieting et al., 2016). Most of the methods in

the latter group are word order agnostic. Sent2Vec (Pagliardini et al., 2018) is an exception

in the sense that they also incorporate bigrams. Despite also employing an objective similar

to CBOW, their work is very different to ours in that they still use addition as composition

10



CBOW Is Not All You Need Chapter 2

function. Regarding the training objectives, there is an ongoing debate whether language

modeling (M. E. Peters et al., 2018; Ruder & Howard, 2018), machine translation (McCann

et al., 2017), natural language inference (Conneau et al., 2017), paraphrase identification (Wi-

eting et al., 2016), or a mix of many tasks (Subramanian et al., 2018) is most appropriate for

incentivizing the models to learn important aspects of language. In our study, we focus on

adapting the well-known objective from word2vec (Mikolov, Chen, et al., 2013) for the CMSM,

which in principle allows for scaling to internet-size data as no annotations are needed.

2.3 Methods: CBOW and CMOW

We formally present CBOW and CMOW encoders in a unified framework. Subsequently, we

discuss the training objective, the initialization strategy, and the hybrid model.

2.3.1 Text Encoding

We start with a lookup table for the word matrices, i.e., an embedding, E ∈Rm×d×d , where m is

the vocabulary size and d is the dimensionality of the (square) matrices. We denote a specific

word matrix of the embedding by E [·]. By ∆ ∈ {
∑

,
∏

} we denote the function that aggregates

word embeddings into a sentence embedding. Formally, given a sequence s of arbitrary length

n, the sequence is encoded as ∆n
i =1E [si ]. For ∆ =

∑
, the model becomes CBOW. By setting

∆ =
∏

(matrix multiplication), we obtain CMOW. Because the result of the aggregation for any

prefix of the sequence is again a square matrix of shape d ×d irrespective of the aggregation

function, the model is well defined for any non-zero sequence length. Thus, it can serve as a

general-purpose text encoder.

Throughout the remainder of this chapter, we denote the encoding step by

encE
∆(s) := flatten

(
∆n

i =1E [si ]
)

,

where flatten concatenates the columns of the matrices to obtain a vector that can be passed

to the next layer.

2.3.2 Training Objective

Motivated by its success and amenability to scale, we employ a similar training objective

as word2vec (Mikolov, Sutskever, et al., 2013). The objective consists of maximizing the

conditional probability of a word wO in a certain context s: p(wO | s). For a word wt at

position t within a sentence, we consider the window of tokens (wt−c , . . . , wt+c ) around that

word. From that window, a target word wO := {wt+i } , i ∈ {−c, . . . ,+c} is selected. The remaining

2c words in the window are used as the context s. The training itself is conducted via negative

sampling NEG-k, which is an efficient approximation of the softmax (Mikolov, Sutskever, et al.,

2013). For each positive example, k negative examples (noise words) are drawn from some
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noise distribution Pn(w). The goal is to distinguish the target word wO from the randomly

sampled noise words. Given the encoded input words enc
∆

(s), a logistic regression with

weights v ∈ Rm×d 2
is conducted to predict 1 for context words and 0 for noise words. The

negative sampling training objective becomes:

logσ
(
vT

wO
encE

∆(s)
)
+

k∑
i =1
Ewi∼Pn (w)

[
logσ

(
−vT

wi
encE

∆(s)
)]

(2.1)

In the original word2vec (Mikolov, Chen, et al., 2013), the center word wO := wt is used as the

target word. In our experiments, however, this objective did not yield to satisfactory results.

We hypothesize that this objective is too easy to solve for a word order-aware text encoder,

which diminishes incentive for the encoder to capture semantic information at the sentence

level. Instead, we propose to select a random output word wO ∼ U ({wt−c , . . . , wt+c }) from

the window. The rationale is the following: By removing the information at which position

the word was removed from the window, the model is forced to build a semantically rich

representation of the whole sentence. We investigate the impact of this objective on the

downstream performance in Section 2.4.4.

2.3.3 Initialization

Before this work was conducted, only Yessenalina and Cardie, 2011 and Asaadi and Rudolph,

2017 had proposed algorithms for learning the parameters of the matrices in CMSMs. Both

works devote particular attention to the initialization, noting that a standard initialization

randomly sampled from N (0,0.1) does not work well due to the optimization problem being

non-convex. To alleviate this, the authors of both papers propose rather complicated initializa-

tion strategies based on a bag-of-words solution (Yessenalina & Cardie, 2011) or incremental

training, starting with two word phrases (Asaadi & Rudolph, 2017). We instead propose an

effective yet simple strategy, in which the embedding matrices are initialized close to the

identity matrix.

We argue that modern optimizers based on stochastic gradient descent have proven to find

good solutions to optimization problems even when those are non-convex as in optimizing

the weights of deep neural networks. CMOW is essentially a deep linear neural network with

flexible layers, where each layer corresponds to a word in the sentence. The output of the

final layer is then used as an embedding for the sentence. A subsequent classifier may expect

that all embeddings come from the same distribution. We argue that initializing the weights

randomly from N (0,0.1) or any other distribution that has most of its mass around zero is

problematic in such a setting. This includes the Glorot initialization (Glorot & Bengio, 2010),

which was designed to alleviate the problem of vanishing gradients. Figure 2.1 illustrates the

problem: With each multiplication, the values in the embedding become smaller (by about
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Figure 2.1: Mean of the absolute values of the text embeddings (y-axis) plotted depending on
the number of multiplications (x-axis) for the three initialization strategies. As one can see, the
absolute value of the embeddings sharply decreases for the initialization strategies Glorot and
N (0,0.1) the more multiplications are performed. In contrast, when our initialization method
is applied, the absolute values of the embeddings have the same magnitude regardless of the
sentence length.

one order of magnitude). This leads to the undesirable effect that short sentences have a

drastically different representation than larger ones, and that the embedding values vanish for

long sequences.

To prevent this problem of vanishing values, we propose an initialization strategy, where each

word embedding matrix E [w] ∈ Rd×d is initialized as a random deviation from the identity

matrix:

E [w] :=


N (0,0.1) . . . N (0,0.1)

...
. . .

...

N (0,0.1) . . . N (0,0.1)

+ Id ,

It is intuitive and also easy to prove that the expected value of the multiplication of any number

of such word embedding matrices is again the identity matrix. The statement that we formally

proof is the following. For any sequence s = s1 . . . sn :

∀1 ≤ k ≤ n : E[enc∏(s1, . . . , sk )] = Id .

The basis (n = 1) follows trivially due to the expected value of each entry being the mean of the
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normal distribution. For the induction step, let E[
n∏

i =1
(Wi )] = Id . It follows:

E[
n+1∏
i =1

(Wi )]

=E[
n∏

i =1
(Wi ) ·Wn+1]

=E[
n∏

i =1
(Wi )] ·E[Wn+1] (Independence)

=Id ·E[Wn+1] (Hypothesis)

=Id · Id (Exp. val of each entry)

=Id

Figure 2.1 shows how our initialization strategy is able to prevent vanishing values. We demon-

strate the effectiveness of our initialization strategy experimentally in Section 2.4.4.

2.3.4 Hybrid CBOW-CMOW Model

Due to their different nature, CBOW and CMOW also capture different linguistic features from

the text. It is therefore intuitive to expect that a hybrid model that combines the features of

their constituent models also improves the performance on downstream tasks.

The simplest combination is to train CBOW and CMOW separately and concatenate the

resulting sentence embeddings at test time. However, we did not find this approach to work

well in preliminary experiments. We conjecture that there is still a considerable overlap in the

features learned by each model, which hinders better performance on downstream tasks. To

prevent redundancy in the learned features, we expose CBOW and CMOW to a shared learning

signal by training them jointly. To this end, we modify Equation 2.1 as follows:

logσ
(
vT

wO
[encE1∑ (s);encE2∏ (s)]

)
+

k∑
i =1
Ewi∼Pn (w)

[
logσ

(
−vT

wi
[encE1∑ (s);encE2∏ (s)]

)]
.

Intuitively, the model uses logistic regression to predict the missing word from the concate-

nation of CBOW and CMOW embeddings. Again, Ei ∈ Rm×di×di are separate word lookup

tables for CBOW and CMOW, respectively, and v ∈Rm×(d 2
1+d 2

2 ) are the weights of the logistic

regression.
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2.4 Experiments

We conducted experiments to evaluate the effect of using our proposed models for training

CMSMs. In this section, we describe the experimental setup and present the results on

linguistic probing as well as downstream tasks.

2.4.1 Experimental Setup

In order to limit the total batch size and to avoid expensive tokenization steps as much as

possible, we created each batch in the following way: 1,024 sentences from the corpus are

selected at random. After tokenizing each sentence, we randomly select (without replacement)

at maximum 30 words from the sentence to function as center words for a context window of

size c = 5, i.e., we generate up to 30 training samples per sentence. By padding with copies of

the neutral element, we also include words as center words for which there are not enough

words in the left or the right context. For CBOW, the neutral element is the zero matrix. For

CMOW, the neutral element is the identity matrix.

We trained our models on the unlabeled UMBC news corpus (Han et al., 2013), which consists

of about 134 million sentences and 3 billion tokens. Each sentence has 24.8 words on average

with a standard deviation of 14.6. Since we only draw 30 samples per sentence to limit the

batch size, not all possible training examples are used in an epoch, which may result in slightly

worse generalization if the model is trained for a fixed number of epochs. We therefore use

0.1% of the 134 million sentences for validation. After 1,000 updates (i.e., approximately every

millionth training sample) the validation loss is calculated, and training terminates after 10

consecutive validations of no improvement. Following Mikolov, Sutskever, et al., 2013, we

limit the vocabulary to the 30,000 most-frequent words for comparing our different methods

and their variants. Out-of-vocabulary words are discarded. The optimization is carried out

by Adam (Kingma & Ba, 2015) with an initial learning rate of 0.0003 and k = 20 negative

samples as suggested by Mikolov, Sutskever, et al., 2013 for rather small datasets. For the noise

distribution Pn(w) we again follow Mikolov, Sutskever, et al., 2013 and use U (w)3/4/Z , where

Z is the partition function to normalize the distribution.

We have trained five different models: CBOW and CMOW with d = 20 and d = 28, which lead

to 400-dimensional and 784-dimensional word embeddings, respectively. We also trained

the Hybrid CBOW-CMOW model with d = 20 for each component, so that the total model

has 800 parameters per word in the lookup tables. We report the results of two more models:

H-CBOW is the 400-dimensional CBOW component trained in Hybrid and H-CMOW is the

respective CMOW component. Below, we compare the 800-dimensional Hybrid method to

the 784-dimensional CBOW and CMOW models.

After training, only the encoder of the model encE
∆

is retained. We assess the capability to

encode linguistic properties by evaluating on 10 linguistic probing tasks (Conneau et al.,

2018). In particular, the Word Content (WC) task tests the ability to memorize exact words
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Table 2.1: Scores on the probing tasks attained by our models. Rows starting with “Cmp.” show
the relative change with respect to Hybrid.

Dim Method Depth BShift SubjNum Tense CoordInv Length ObjNum TopConst SOMO WC

400

CBOW/400 32.5 50.2 78.9 78.7 53.6 73.6 79.0 69.6 48.9 86.7
CMOW/400 34.4 68.8 80.1 79.9 59.8 81.9 79.2 70.7 50.3 70.7
H-CBOW 31.2 50.2 77.2 78.8 52.6 77.5 76.1 66.1 49.2 87.2
H-CMOW 32.3 70.8 81.3 76.0 59.6 82.3 77.4 70.0 50.2 38.2

784
CBOW/784 33.0 49.6 79.3 78.4 53.6 74.5 78.6 72.0 49.6 89.5
CMOW/784 35.1 70.8 82.0 80.2 61.8 82.8 79.7 74.2 50.7 72.9

800 Hybrid 35.0 70.8 81.7 81.0 59.4 84.4 79.0 74.3 49.3 87.6
- cmp. CBOW +6.1% +42.7% +3% +3.3% +10.8% +13.3% +0.5% +3.2% -0.6% -2.1%
- cmp. CMOW -0.3% +-0% -0.4% +1% -3.9% +1.9% -0.9% +0.1% -2.8% +20.9%

in the sentence. Bigram Shift (BShift) analyzes the encoder’s sensitivity to word order. The

downstream performance is evaluated on 10 supervised and 6 unsupervised tasks from the

SentEval framework (Conneau & Kiela, 2018). We use the standard evaluation configuration,

where a logistic regression classifier is trained on top of the embeddings.

2.4.2 Results on Linguistic Probing Tasks

Considering the linguistic probing tasks (see Table 2.1), CBOW and CMOW show comple-

mentary results. While CBOW yields the highest performance at word content memorization,

CMOW outperforms CBOW at all other tasks. Most improvements vary between 1-3 percent-

age points. The difference is approximately 8 points for CoordInv and Length, and even 21

points for BShift.

The hybrid model yields scores close to or even above the better model of the two on all tasks.

In terms of relative numbers, the hybrid model improves upon CBOW in all probing tasks but

WC and SOMO. The relative improvement averaged over all tasks is 8%. Compared to CMOW,

the hybrid model shows rather small differences. The largest loss is by 4% on the CoordInv

task. However, due to the large gain in WC (20.9%), the overall average gain is still 1.6%.

We now compare the jointly trained H-CMOW and H-CBOW with their separately trained

400-dimensional counterparts. We observe that CMOW loses most of its ability to memorize

word content, while CBOW shows a slight gain. On the other side, H-CMOW shows, among

others, improvements at BShift.

2.4.3 Results on Downstream Tasks

Table 2.2 shows the scores from the supervised downstream tasks. Comparing the 784-

dimensional models, again, CBOW and CMOW seem to complement each other. This time,

however, CBOW has the upperhand, matching or outperforming CMOW on all supervised

downstream tasks except TREC by up to 4 points. On the TREC task, on the other hand, CMOW

outperforms CBOW by 2.5 points.
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Table 2.2: Scores on supervised downstream tasks attained by our models. Rows starting with
“Cmp.” show the relative change with respect to Hybrid. Scores of SentenceBERT (Reimers &
Gurevych, 2019) were taken directly from the original paper and do not constitute a controlled
experiment.

Method SUBJ CR MR MPQA MRPC TREC SICK-E SST2 SST5 STS-B SICK-R

CBOW/784 90.0 79.2 74.0 87.1 71.6 85.6 78.9 78.5 42.1 61.0 78.1
CMOW/784 87.5 73.4 70.6 87.3 69.6 88.0 77.2 74.7 37.9 56.5 76.2
Hybrid 90.2 78.7 73.7 87.3 72.7 87.6 79.4 79.6 43.3 63.4 77.8
cmp. CBOW +0.2% -0.6% -0.4% +0.2% +1.5% +2.3% +0.6% +1.4% +2.9% +3.9% -0.4%
cmp. CMOW +3.1% +7.2% +4.4% +0% +4.5% -0.5% +2.9% +6.7% +14.3 +12.2% +2.1%
SentenceBERT 94.5 90.0 84.9 90.3 75.9 87.4 - 90.7 - 79.1 74.3

Table 2.3: Scores on unsupervised downstream tasks attained by our models. Rows starting
with “Cmp.” show the relative change with respect to Hybrid.

Method STS12 STS13 STS14 STS15 STS16

CBOW 43.5 50.0 57.7 63.2 61.0
CMOW 39.2 31.9 38.7 49.7 52.2
Hybrid 49.6 46.0 55.1 62.4 62.1
cmp. CBOW +14.6% -8% -4.5% -1.5% +1.8%
cmp. CMOW +26.5% +44.2% +42.4 +25.6% +19.0%
SentenceBERT 74.5 77.0 73.2 81.9 76.8

Our jointly trained model is not more than 0.8 points below the better one of CBOW and

CMOW on any of the considered supervised downstream tasks. On 7 out of 11 supervised

tasks, the joint model even improves upon the better model, and on SST2, SST5, and MRPC

the difference is more than 1 point. The average relative improvement over all tasks is 1.2%.

Regarding the unsupervised downstream tasks (Table 2.3), CBOW is clearly superior to CMOW

on all datasets by wide margins. For example, on STS13, CBOW’s score is 50% higher. The

hybrid model is able to repair this deficit, reducing the difference to 8%. It even outperforms

CBOW on two of the tasks, and yields a slight improvement of 0.5% on average over all

unsupervised downstream tasks. However, the variance in relative performance is notably

larger than on the supervised downstream tasks.

Finally, Tables 2.2 and 2.3 also show results of the state-of-the-art model SentenceBERT (Reimers

& Gurevych, 2019), which are substantially stronger than our models on almost all tasks.

2.4.4 Ablations

Our method proposes two key changes to make the training of CMOW models effective:

randomly sampling the target word to be predicted and initializing the word matrices close to

the identity matrix. To test the effectiveness of these contributions, we evaluate them with the

same experimental setup as described in Section 2.4.1.
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Comparison of objectives In Section 2.3.2, we describe a more general training objective

than the classical CBOW objective from Mikolov, Chen, et al., 2013. The original objective

always sets the center word from the window of tokens (wt−c , . . . , wt+c ) as target word, wO = wt .

In preliminary experiments, this did not yield satisfactory results. We believe that this objective

is too simple for learning sentence embeddings that capture semantic information. Therefore,

we experimented with a variant where the target word is sampled randomly from a uniform

distribution, wO := U ({wt−c , . . . , wt+c }).

Table 2.4 lists the results on the linguistic probing tasks. CMOW-C and CBOW-C refer to

the models where the center word is used as the target. CMOW-R and CBOW-R refer to the

models where the target word is sampled randomly. While CMOW-R and CMOW-C perform

comparably on most probing tasks, CMOW-C yields 5 points lower scores on WordContent and

BigramShift. Consequently, CMOW-R also outperforms CMOW-C on 10 out of 11 supervised

downstream tasks and on all unsupervised downstream tasks, as shown in Tables 2.5 and 2.6,

respectively. On average over all downstream tasks, the relative improvement is 20.8%. For

CBOW, the scores on downstream tasks increase on some tasks and decrease on others. The

differences are miniscule. On average over all 16 downstream tasks, CBOW-R scores 0.1%

lower than CBOW-C.

Table 2.4: Scores for different training objectives on the linguistic probing tasks.

Method Depth BShift SubjNum Tense CoordInv Length ObjNum TopConst SOMO WC

CMOW-C 36.2 66.0 81.1 78.7 61.7 83.9 79.1 73.6 50.4 66.8
CMOW-R 35.1 70.8 82.0 80.2 61.8 82.8 79.7 74.2 50.7 72.9

CBOW-C 34.3 50.5 79.8 79.9 53.0 75.9 79.8 72.9 48.6 89.0
CBOW-R 33.0 49.6 79.3 78.4 53.6 74.5 78.6 72.0 49.6 89.5

Table 2.5: Scores for different training objectives on the supervised downstream tasks.

Method SUBJ CR MR MPQA MRPC TREC SICK-E SST2 SST5 STS-B SICK-R

CMOW-C 85.9 72.1 69.4 87.0 71.9 85.4 74.2 73.8 37.6 54.6 71.3
CMOW-R 87.5 73.4 70.6 87.3 69.6 88.0 77.2 74.7 37.9 56.5 76.2

CBOW-C 90.0 79.3 74.6 87.5 72.9 85.0 80.0 78.4 41.0 60.5 79.2
CBOW-R 90.0 79.2 74.0 87.1 71.6 85.6 78.9 78.5 42.1 61.0 78.1

Table 2.6: Scores for different training objectives on the unsupervised downstream tasks.

Method STS12 STS13 STS14 STS15 STS16

CMOW-C 27.6 14.6 22.1 33.2 41.6
CMOW-R 39.2 31.9 38.7 49.7 52.2

CBOW-C 43.5 49.2 57.9 63.7 61.6
CBOW-R 43.5 50.0 57.7 63.2 61.0
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Initialization strategy In Section 2.3.3, we present a novel random initialization strategy.

We argue why it is more adequate for training CMSMs than classic strategies that initialize all

parameters with random values close to zero, and use it in our experiments to train CMOW.

Table 2.7 shows the results on the probing tasks. While Glorot achieves slightly better results

on BShift and TopConst, CMOW’s ability to memorize word content is improved by a wide

margin by our initialization strategy. This again affects the downstream performance as shown

in Table 2.8 and 2.9, respectively: 7 out of 11 supervised downstream tasks and 4 out of 5

unsupervised downstream tasks improve. On average, the relative improvement of our strategy

compared to Glorot initialization is 2.8%.

Table 2.7: Scores for initialization strategies on probing tasks.

Initialization Depth BShift SubjNum Tense CoordInv Length ObjNum TopConst SOMO WC

N (0,0.1) 29.7 71.5 82.0 78.5 60.1 80.5 76.3 74.7 51.3 52.5
Glorot 31.3 72.3 81.8 78.7 59.4 81.3 76.6 74.6 50.4 57.0
Ours 35.1 70.8 82.0 80.2 61.8 82.8 79.7 74.2 50.7 72.9

Table 2.8: Scores for initialization strategies on supervised downstream tasks.

Initialization SUBJ CR MR MPQA MRPC TREC SICK-E SST2 SST5 STS-B SICK-R

N (0,0.1) 85.6 71.5 68.4 86.2 71.6 86.4 73.7 72.3 38.2 53.7 72.7
Glorot 86.2 74.4 69.5 86.5 71.4 88.4 75.4 73.2 38.2 54.1 73.6
Ours 87.5 73.4 70.6 87.3 69.6 88.0 77.2 74.7 37.9 56.5 76.2

Table 2.9: Scores for initialization strategies on unsupervised downstream tasks.

Initialization STS12 STS13 STS14 STS15 STS16

N (0,0.1) 37.7 26.5 33.3 44.7 50.3
Glorot 39.6 27.2 35.2 46.5 51.6
Ours 39.2 31.9 38.7 49.7 52.2

2.5 Discussion

Our CMOW model produces sentence embeddings that are approximately at the level of

fastSent (Hill et al., 2016). Thus, CMOW is a reasonable choice as a sentence encoder. Essential

to the success of our training schema for the CMOW model are two changes to the original

word2vec training. First, our initialization strategy improved the downstream performance

by 2.8% compared to Glorot initialization. Secondly, by choosing the target word of the

objective at random, the performance of CMOW on downstream tasks improved by 20.8% on

average. Hence, our novel training scheme is the first that provides an effective way to obtain

parameters for the Compositional Matrix Space Model of language from unlabeled, large-scale

datasets.
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Regarding the probing tasks, we observe that CMOW embeddings better encode the linguistic

properties of sentences than CBOW. CMOW gets reasonably close to CBOW on some down-

stream tasks. However, CMOW does not in general supersede CBOW embeddings. This can be

explained by the fact that CBOW is stronger at word content memorization, which is known to

highly correlate with the performance on most downstream tasks (Conneau et al., 2018). Yet,

CMOW has an increased performance on the TREC question type classification task (88.0 com-

pared to 85.6). The rationale is that this particular TREC task belongs to a class of downstream

tasks that require capturing other linguistic properties apart from Word Content (Conneau

et al., 2018).

Due to joint training, our hybrid model learns to pick up the best features from CBOW and

CMOW simultaneously. It enables both models to focus on their respective strengths. This

can best be seen by observing that H-CMOW almost completely loses its ability to memorize

word content. In return, H-CMOW has more capacity to learn other properties, as seen in the

increase in performance at BShift and others. A complementary behavior can be observed

for H-CBOW, whose scores on Word Content are increased. Consequently, with an 8% im-

provement on average, the hybrid model is substantially more linguistically informed than

CBOW. This transfers to an overall performance improvement by 1.2% on average over 11

supervised downstream tasks, with large improvements on sentiment analysis tasks (SST2,

SST5), question classification (TREC), and the sentence representation benchmark (STS-B).

The improvements on these tasks is expected because they arguably depend on word order

information. On the other tasks, the differences are small. Again, this can be explained by the

fact that most tasks in the SentEval framework mainly depend on word content memoriza-

tion (Conneau et al., 2018), where the hybrid model does not improve upon CBOW.

Please note, the models in our study do not represent the state-of-the-art for sentence embed-

dings. As shown in Table 2.2 and 2.3, SentenceBERT achieves significantly better results due to

larger, more expressive Transformer models and more pretraining. Moreover, Perone et al.,

2018 show that better scores are achieved not only by LSTMs and Transformer models, but

also by averaging word embedding from fastText (Mikolov et al., 2018). These embeddings

were trained on the CBOW objective, and are thus very similar to our models. However, they

are trained on large corpora (600B tokens vs 3B in our study), use large vocabularies (2M vs 30k

in our study), and incorporate numerous tricks to further enhance the quality of their models:

word subsampling, subword-information, phrase representation, n-gram representations,

position-dependent weighting, and corpus de-duplication. In the present study, we focus on

comparing CBOW, CMOW, and the hybrid model in a scenario where we have full control over

the independent variables. To single out the effect of the independent variables better, we

keep our models relatively simple. Our analysis yields interesting insights on what our models

learn when trained separately or jointly, which we consider more valuable in the long term for

the research field of text representation learning.

We offer an efficient order-aware extension to embedding algorithms from the bag-of-words

family. Our 784-dimensional CMOW embeddings can be computed at approximately the
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same rate as CBOW embeddings. We empirically measured in our experiments 71k for CMOW

vs. 61k for CBOW in terms of encoding sentences per second. This is because of the fast

implementation of matrix multiplication in GPUs. It allows us to encode sentences approxi-

mately 5 times faster than using a simple Elman RNN of the same size (12k per second). Our

matrix embedding approach also offers valuable theoretical advantages over RNNs and other

autoregressive models. Matrix multiplication is associative such that only log2 n sequential

steps are necessary to encode a sequence of size n. Besides parallelization, also dynamic

programming techniques can be employed to further reduce the number of matrix multi-

plication steps, e. g., by pre-computing frequent bigrams. We therefore expect our matrix

embedding approach to be specifically well-suited for large-scale, time-sensitive text encoding

applications. Our hybrid model serves as a blueprint for using CMOW in conjunction with

other existing embedding techniques such as fastText (Mikolov et al., 2018).

2.6 Conclusion

This work proposes a method that follows the guiding principles (cmp. Section 1.1.3) of this

thesis: The Compositional Matrix Space Model (CMSM) is a general text encoding method,

which represents words as matrices and computes their composition via matrix multipli-

cation, making them sensitive to word order. We have presented CMOW, the first efficient,

unsupervised learning scheme for the CMSM. In principle, this enables training CMSMs on

internet-size scale. We showed that the resulting sentence embeddings capture linguistic fea-

tures that are complementary to CBOW embeddings. We thereupon presented a hybrid model

with CBOW that is able to combine the complementary strengths of both models. Without

requiring more parameters than the individual models, it yields an improved downstream

task performance, in particular on tasks that depend on word order information. Empirically,

CMOW is approximately as fast as CBOW, offering improved representational capacity at the

same cost, even though we used a non-parallel implementation that does not make effective

use of the associativity property of matrix multiplication. Future work will focus on a more

efficient implementation.
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3 Plug and Play Autoencoders for Opin-
ion Summarization

Chapter summary

In this chapter, we are motivated by the opinion summarization task, which requires

to infer consensus opinions from multiple individual opinion statements. Importantly,

supervised approaches are likely to fail due to the large cost of annotation, necessitating

an unsupervised approach. Our literature review reveals that existing unsupervised

approaches try to learn from a corpus of opinion statements alone. However, in general

consensus opinions can look very different from opinion statements (i.e., follow a differ-

ent distribution), making the above approach inadequate in this case. We again apply

our three guiding principles to address this challenge. To this end, we develop a novel,

general framework for conditional text generation tasks, called Emb2Emb. The core idea

is to learn the task-specific component in the embedding space of a text autoencoder that

was pretrained on an unlabeled, large general-purpose corpus, similar to large language

models. This mitigates the need for labeled data, effectively decreasing the factor D in

the cost equation Cost(R) ∝ E ·D ·H . Moreover, because the general-purpose corpus

subsumes data similar to consensus opinions, the desired outputs can in principle be

generated by the autoencoder’s decoder if given the respective embedding. Lastly, we

propose and evaluate a special formulation of Emb2Emb which produces the embedding

of the consensus opinion from embeddings of opinion statements in an unsupervised

way.

Publication(s) in this chapter

The Emb2Emb framework (Section 3.2) is based on the following two papers:

• Mai, F., Pappas, N., Montero, I., Smith, N.A., & Henderson, J. (2020). Plug and Play Autoen-

coders for Conditional Text Generation. EMNLP 2020.

• Mai, F. & Henderson, J. (2022). Bag-of-Vectors Autoencoders for Unsupervised Conditional

Text Generation. AACL 2022.
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LLMs have revolutionized most parts of NLP. But there are some tasks for which we argue

LLMs are ill-equipped to provide a good solution. One such task is large-scale opinion sum-

marization, where thousands, if not millions of opinions have to be synthesized into a short

summary.

In this chapter, we envision a potential path to a large-scale opinion summarization system

by applying the recurrent principles of this thesis: We develop a general learning framework

based on text representation learning that is amenable to large scale, which reduces the need

for labeled data.

Summary of this chapter In Section 3.1, we start by discussing the societal significance

of large-scale opinion summarization task (Section 3.1.1) and the shortcomings of existing

approaches (Section 3.1.2). In Section 3.2, we then sketch a general framework for condi-

tional text generation that could potentially solve the shortcomings of existing approaches:

Emb2Emb, in which conditional text generation tasks are learned in the embedding space of

a text autoencoder. We apply this framework to consensus inference, a subtask of opinion

summarization, in Section 3.3. Finally, we discuss our contributions in light of the guiding

principles in this thesis, reflect on our design choices, and provide a potential path for future

work (Section 3.4).

3.1 Problem and Vision

In this section, we first discuss the opinion summarization task, before we survey existing

approaches and their shortcomings. Finally, we provide an overview of a framework that

addresses these shortcomings.

3.1.1 Opinion Summarization

Due to their accessibility, the internet and social media bear the potential to facilitate public

discourse, as they enable anyone to view a large number of diverse opinions. However, due

to the scale, it is difficult for humans to filter major concerns shared across large parts of the

population. Hence, automatic tools to extract and summarize the public opinion have been a

long standing goal with important prospects for democratization (see e.g., B. Liu, 2012 for a

discussion). For example, the recently popularized platform Polis (Small et al., 2021) aims to

provide analyses of people’s opinions at scale, by asking participants to rate other participants’

comments. By utilizing dimensionality reduction and clustering techniques on the resulting

(sparse) participant-comment matrix, prominent opinion clusters emerge. However, this

approach still requires a lot of annotation to fill the matrix.

In contrast, we envision a large-scale opinion summarization system that identifies major

opinions and their distribution in the population from just individual opinion statements
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Figure 3.1: An example of opinion summarization for the topic "free college education" where
4 major opinions (two positive and two negative) were identified from 8 utterances.

alone (e.g. tweets), as depicted in Figure 3.1. It illustrates some of the challenges: The same

opinion can be expressed in a multitude of ways, which necessitates abstraction abilities

and abstractive writing. Often, an opinion is only implicitly stated in an utterance, requiring

substantial world knowledge. An utterance can even contain more than one aspect.

Developing such a system poses at least three major challenges: i) In order to cope with the

large quantities of input text, an efficient encoding method is required. ii) It is impractical for

humans to write gold summaries of large number of posts that are needed for deep learning.

Therefore, a large-scale opinion summarization method will likely have to be unsupervised. iii)

There is both large diversity and redundancy of opinions across social media posts. Adequately

handling these requires the ability to identify different aspects people express opinions on,

and to learn to extract and textually convey the consensus among a subset of opinions.

3.1.2 Existing Approaches and Their Conceptual Shortcomings

Generally, summarization approaches can be categorized into extractive and abstractive. The

former constructs a summary by selecting sentences from the inputs, whereas the latter

produces largely novel text. Although some promising extractive methods do exist (Angelidis

& Lapata, 2018; Chowdhury et al., 2022), in this chapter, we focus on abstractive methods,

because they are in principle strictly more powerful, and arguably fit the requirements of

opinion summarization better, where abstraction is needed to identify the consensus among

many input reviews.

We sort approaches into four categories: supervised, self-supervised, embedding space models

and large language models.

Supervised Approaches

Supervised approaches rely on input-summary pairs where the summary is written by a hu-

man. When input-summary pairs are available, one can train standard sequence-to-sequence

models to predict the summary from the concatenation of inputs (Amplayo & Lapata, 2021;

Bražinskas et al., 2021; L. Wang & Ling, 2016). Often the number of input reviews is too large

to be handled efficiently by the encoder (e.g., a Transformer). It is therefore common to train a
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selection algorithm (Amplayo & Lapata, 2021; Bražinskas et al., 2021; L. Wang & Ling, 2016).

To date, there are only few opinion summarization datasets for supervised training, as these

are expensive to collect. L. Wang and Ling, 2016 created two datasets, RottenTomato and IDe-

bate, by crawling human-written consensus statements from the RottenTomato and IDebate

websites, respectively. The former consists of movie critic reviews, and the latter consists of

debate arguments. C. Shen et al., 2022 propose a dataset based on ICLR reviews and meta-

reviews. However, the above datasets consist of only a few thousand examples, which is often

not enough to train powerful deep learning models. Bražinskas et al., 2021 automatically

collect a large dataset from already existing human-written expert summaries of products.

However, those summaries were not directly based on user reviews, deviating from the use

case we are considering here.

There are ways to deal with the shortness of training data. Oved and Levy, 2021 propose to

augment the training data set by generating random subsets of input reviews. Each subset

generates a candidate summaries, among which the most consistent can be selected via a

separately trained classifier. Few-shot learning techniques are generally well-suited to perform

well from few examples (usually less than 100). For example, Bražinskas et al., 2022 first

pretrain a model in a self-supervised way, where a lot of examples are available, and then

finetune on few gold summaries.

In summary, purely supervised approaches are unlikely to lead to excellent opinion summa-

rization systems because of the large cost of collecting large datasets needed to train deep

learning systems. While few-shot learning is a promising way to further improve an existing

system at low cost, the latter has to be obtained in an unsupervised way first, which we discuss

next.

Self-supervised Approaches

One class of unsupervised approaches are self-supervised, by which we mean models that

generate synthetic input-summary pairs from the inputs alone. The neural network models

can then be trained in a supervised way. One way to create synthetic pairs is to select an input

review as the summary and create noisy reviews as the corresponding artificial inputs (Am-

playo et al., 2021b). However, it is more common to leave the inputs unmodified and instead

select the summary among the inputs in a specific way, e.g. by largest similarity to the in-

puts (Elsahar et al., 2021), by review aspects they cover according to a classifier (Amplayo

et al., 2021a), or through clustering and medoid selection (Shapira & Levy, 2020). Rather than

choosing an input review as the summary, one can also create artificial summary text, e.g. by

using textual entailment classifiers to identify consensus propositions among inputs (Louis &

Maynez, 2022), by identifying implicit sentences and opinion aspects (Y. Liu et al., 2022) or by

retrieving and reusing subphrases from professionally written reviews (Iso et al., 2022).
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Autoencoder Embedding Space Methods The core idea of this class of models is to per-

form summarization in the embedding space of an autoencoder trained on the corpus of

inputs. To this end, textual inputs are mapped to their embedding representation and then

aggregated via a summarization operation (e.g., summation) to yield the embedding of the

summary. By propagating the summary embedding through the decoder, we can then obtain

the textual summary. This line of work was pioneered by Chu and Liu, 2019, who proposed

MeanSum, which employs averaging as the summarization operation in the embedding space.

Moreover, the textual summary is re-encoded into an embedding, so that an additional loss

term maximizing the similarity between this re-encoded summary and the input embeddings

enforces coherence between the summary and the inputs. Subsequent works proposed to use

different autoencoder types and ways to aggregate the embeddings. Iso et al., 2021 find that a

simple average as used in MeanSum is inadequate, leading to overly generic summaries. They

instead propose to compute a weighted average that maximizes word overlap of input reviews

with the generated summary. J. Song et al., 2022 use distributional latent representations

and compute the Wasserstein barycenter as the summary representation. Coavoux et al.,

2019 extend MeanSum to consider aspects by clustering the input reviews in the embedding

space and decoding from each cluster’s centroid. Isonuma et al., 2021 represent a review as

a gaussian mixture distribution, where each component corresponds to a sentence, which

leads to higher topic coverage. Bražinskas et al., 2020 make the assumption that the amount

of novelty in an opinion summary should be zero. By employing a variational autoencoder

that receives previous opinions as input, they are able to control the amount of deviation from

the inputs through the noise added. In order to produce the summary at test time, the noise is

omitted.

Zero-Shot Opinion Summarization with Large Language Models As language models be-

come larger, they obtain zero- and few-shot abilities that are not present at smaller scale (Wei

et al., 2022). For example, T. Goyal et al., 2022 show that humans rate zero-shot outputs of

GPT-3 (Brown et al., 2020) for news summarization substantially higher than the output of

even the state-of-the-art finetuned systems. Naturally, this poses the question if the same

can be achieved for opinion summarization, where additional challenges apply (see Sec-

tion 3.1.1), such as abstracting from multiple inputs and handling a lot of them. Since LLMs

are becoming proficient at hard reasoning tasks (Chowdhery et al., 2022), the former could

be adequately addressed by LLMs. As the first study to approach opinion summarization

with LLMs, Bhaskar et al., 2022 address the latter challenge through recursive summarization,

where individual text chunks are summarized separately first. Human judges rate the quality

of outputs of this model highly in terms of factuality, and better than the self-supervised model

AceSum (Amplayo et al., 2021a) in terms of relevance.

Existing Unsupervised Approaches are Limited While unsupervised neural opinion summa-

rization methods have seen a lot of progress on widely used datasets like RottenTomatoes (L.

Wang & Ling, 2016) or Yelp Reviews (Chu & Liu, 2019), we argue that existing approaches are
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limited to datasets where the summaries are written in the style of the input. We call these

type A datasets. Formally, the distributions of the inputs Ai n and the outputs Aout overlap

significantly. In contrast, the distributions of type B datasets do not overlap significantly. Since

both self-supervised and autoencoder embedding space models train on the input corpus

only (or slight variations thereof), they cannot be expected to handle type B datasets well, as it

would require them to map to a distribution that the decoder was never trained to produce.

Figure 3.2 illustrates this point.

Indeed, when creating the evaluation set for Yelp, Chu and Liu, 2019 explicitly instructed the

annotators to generate summaries that read like input reviews, i.e., to create a type A dataset.

In the following, we provide evidence that the popular RottenTomatoes dataset is also of type

A. In contrast, we show that the IDebate dataset (L. Wang & Ling, 2016), a dataset that is rarely

used for evaluation, has outputs that are very clearly distinguishable from the inputs, i.e.,

IDebate is a type B dataset.

To determine this, we first examine the difference in the length between inputs and outputs.

While the length distributions do not necessarily have to differ if the text distributions don’t

overlap, they are certainly sufficient to show differences in text distributions. Figure 3.3 shows

that outputs in the IDebate dataset tend to be much shorter than the inputs by on average

14.1 words. On the RottenTomatoes dataset, however, the lengths between inputs and outputs

match fairly well. On average, the outputs are only 1.4 words longer.

Perhaps, RottenTomatoes’ inputs and outputs differ in the kind of words that are used. To test

this, we train a fastText classifier to discriminate between inputs and outputs. This classifier

averages over word embeddings, and is hence length-agnostic. We use the same number of

training examples and tuning effort for both datasets. On IDebate, the classifier discriminates

between inputs and outputs with 99.8% accuracy. This suggests that not only the lengths, but

also the word distributions of inputs and outputs are significantly different in this dataset. On

RottenTomatoes on the other hand, the classifier reaches only 80% accuracy, suggesting that

there is a significant overlap between inputs and outputs.

These results indicate that RottenTomatoes, like Yelp, is closer to a type A dataset, whereas

IDebate is a true type B dataset. As we argued above, type B datasets cannot reasonably be

approached with existing unsupervised learning from the inputs alone. This hypothesis is

further supported by the findings of Bilal et al., 2022, who recently collected a type B dataset

similar to our example from Figure 3.1. The corpus contains 3100 input-summary pairs, where

inputs are 20-50 tweets and the summaries are written by journalist to reflect the main story,

the majority opinion and minority opinions. As the example in Table 3.1 shows, the summary

is easily distinguishable from the tweets. The experimental evaluation by Bilal et al., 2022

suggests that 1) models for this task should be abstractive, as the best abstractive summariza-

tion models outperforms the extractive oracle model, 2) finetuning a pretrained model on the

corpus works best, but absolute performance suggests a lot of room for improvement, and 3)

self-supervised models perform relatively poorly: CopyCat (Bražinskas et al., 2020) performs
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Figure 3.2: We illustrate the overlap between input and output distributions depending on the
type of opinion summarization dataset. In type A datasets, outputs are generally more similar
to the inputs, enabling self-supervised learning from just inputs. In type B datasets, however,
outputs look very different from inputs, making self-supervised learning from inputs alone
very difficult.
While previous papers on unsupervised neural opinion summarization dealt with type A
datasets, learning a function f A : Ai n → Ai n , we argue that opinion summarization research
should put strong focus on type B datasets, which existing approaches arguably cannot handle.
In this chapter, we propose a framework to address this problem: We first train an autoencoder
on a general enough corpus X such that it encompasses B ⊆X , and then learn a function
fB : Bi n → Bout by restricting the possible output space X to those that heuristically match
Bout .
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3.3.a: RottenTomatoes 3.3.b: IDebate

Figure 3.3: Histograms of lengths of inputs and outputs, respectively, by dataset.

comparable to the non-deep learning baseline Opinosis (Ganesan et al., 2010).

In summary, the findings by Bilal et al., 2022 support our hypothesis: Most existing approaches,

supervised or unsupervised, are unlikely to yield excellent opinion summarization systems

because they cannot model the distribution of the outputs well. Existing LLMs do have the

potential to overcome this issue, as is showcased by the excellent zero-shot performance of

GPT-3 (Bhaskar et al., 2022; T. Goyal et al., 2022). However, they have not yet been thoroughly

tested on a type B dataset as proposed by Bilal et al., 2022. Moreover, LLMs of that size are

extremely costly, and it is not clear that their performance justifies this cost. Finally, the cost of

LLMs grows quadratically with the amount of input tokens. Chunking the inputs, as done by

Bhaskar et al., 2022, can only be regarded as a workaround, rather than a principled solution.

3.1.3 Proposed Approach to Opinion Summarization

In the following, we give an overview of a novel framework for conditional text generation,

which we believe is in principle applicable to datasets of type B . As illustrated in Figure 3.2, we

propose to first train an autoencoder on a large general-purpose corpus such that the outputs

of the B type dataset can be assumed to be producable by the autoencoder’s decoder. We then

propose a way to learn conditional text generation in the embedding space of the autoencoder,

by learning a function to map embeddings of B ’s inputs to embeddings from the autoencoder’s

latent space that match the characteristics of B ’s outputs. Of course, in the unsupervised case,

we cannot estimate those target embeddings from the data, so we instead employ heuristics

that help guide the learning towards outputs that exhibit desired characteristics.

Autoencoder Training Autoencoders are a popular and promising tool for unsupervised

conditional text generation because they provide a way to generate novel text without relying

on input-output pairs. However, the generated text necessarily follows the same distribu-
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Summary Main Story: The UK government faces intense backlash after its decision to
fund the war in Syria. Majority Opinion: The majority of users criticise UK
politicians for not directing their efforts to more important domestic issues
like the NHS, education and homelessness instead of the war in Syria. Minority
Opinion: Some users accuse the government of its intention to kill innocents
by funding the war.

Input #1 It is shocking to me how the NHS is on its knees and the amount of homeless
people that need help in this country...but we have funds for war!..SAD

Input #2 The government cannot even afford to help the homeless people of Britain yet
they can afford to fund a war? It makes no proper sense at all

Input #3 They spend so much on sending missiles to murder innocent people and they
complain daily about homeless on the streets? Messed up.

Input # 4 Also, no money to resolve the issues of the homeless or education or the
NHS.Yet loads of money to drop bombs? #SyriaVote

Table 3.1: Opinion summarization example from corpus created by Bilal et al., 2022. Blue
denotes main story, red denotes majority opinion, and green denotes minority opinion.

tion that it was trained on. Previous autoencoder embedding space methods for opinion

summarization were trained on the corpus of inputs of the specific task at hand only, which

means they can only generate text from the input distribution. The recent success of LLMs,

however, has demonstrated that training on large general-purpose corpora is very beneficial

for downstream task performance. Radford et al., 2019 have shown that at increasingly large

scale language models can produce long texts of unprecedented coherence, to the extent

that they obtain the ability to achieve state-of-the-art performance without any supervised

finetuning (Brown et al., 2020). However, many of these models are decoder only models

that are trained to predict the next word in a sequence; they do not produce an embedding.

To the best of our knowledge, at the time when this research was conducted, no directly

applicable large-scale autoencoder model existed. Although models like BART (Lewis et al.,

2020) and T5 (Raffel et al., 2020) are Seq2Seq models pretrained as denoising autoencoders,

their were not trained specifically to have a smooth latent space. In fact, in Section 3.2.7, we

provide empirical evidence that it is difficult to learn in the BART embedding space. Training

autoencoders to have a smooth latent space is a very active area of research, with various

variants such as Variational Autoencoders (S. R. Bowman et al., 2016; J. Henderson & Fehr,

2023; Kingma & Welling, 2014), denoising autoencoders (Vincent et al., 2010), or autoencoders

trained via adversarial methods (Makhzani et al., 2016; J. J. Zhao et al., 2018). These methods

make heavy use of the manifold hypothesis, which posits that the data distribution lives on

a low-dimensional manifold. The autoencoder tries to learn this manifold by encoding the

input data into a fixed-dimensional vector, or embedding. Unfortunately, training very large

models on general-purpose corpora requires large amounts of computing resources, which

were insufficient at the time when the research in this thesis was conducted. Therefore, in the

following, we train our autoencoders on the downstream task data. While this significantly

reduces absolute performance, it still allows us to test the framework that is used for training
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the task-specific model.

Learning in the embedding space We now assume that a suitable autoencoder with a smooth

latent space has been pretrained. In the next step, we could in principle further finetune the

encoder and decoder on the input data of the downstream task. However, in our scenario, this

runs into the risk of catastrophic forgetting (French, 1999) of the target task distribution Bout

(see Figure 3.2). This refers to the phenomenon that neural networks change their parameters

during finetuning to an extent that previously acquired skills or knowledge are forgotten,

which can occur even in large language models (Yogatama et al., 2019). To prevent this, the

encoder and decoder are frozen, and learning is reduced to the embedding space alone. To this

end, we propose embedding-to-embedding (Emb2Emb), a method to learn conditional text

generation tasks in the embedding space of an autoencoder by mapping the embedding of the

input to the embedding of the output. This poses several challenges: How do we ensure that

output embeddings still remain on the manifold of the autoencoder, such that the decoder can

decode them accurately? How do we deal with multi-vector embeddings, which are needed

to represent long texts? In the unsupervised setting, how do we train the mapping to output

the "right" embedding? These questions are answered in Section 3.2, where Emb2Emb is

proposed and evaluated.

Modelling consensus inference through training in the embedding space With Emb2Emb,

we have a framework that allows us to model conditional text generation tasks in the embed-

ding space of a (potentially large-scale) pretrained autoencoder. However, how to concretely

model opinion summarization in the embeddings space remains an open problem. We as-

sume that the summary format from Figure 3.1, where the input consists of opinion statements

and the output consists of consensus statements, can be obtained through a decomposition

into a pipeline of two major steps:

1. Consensus clustering: Identify clusters of opinion statements for which there is a (non-

trivial) consensus statement.

2. Generate one consensus statement from each cluster.

We hypothesize that component 1 can be built reasonably well from existing clustering tech-

niques for opinion summarization (Coavoux et al., 2019) when enhancing them with textual

entailment classifiers to identify consensus, like Louis and Maynez, 2022.

In this work, we will instead focus on component 2, and approach it within the Emb2Emb

framework. This comes with several challenges: While the initial Emb2Emb is evaluated on

tasks that require a one-to-one mapping (e.g., style transfer), opinion summarization requires

to map many inputs to a single output. This not only requires a specific mapping that supports

multiple inputs, but we also need to output embeddings that encode the relationship to the
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inputs correctly. Finally, these relations need to be concretely specified in the embedding

space. In Section 3.3, we address these challenges.

3.2 Plug-and-Play Autoencoders for Conditional Text Generation

3.2.1 Motivation and Overview

Conditional text generationI encompasses a large number of natural language processing

tasks such as text simplification (Nisioi et al., 2017; X. Zhang & Lapata, 2017), summarization

(Nallapati et al., 2016; Rush et al., 2015), machine translation (Bahdanau et al., 2015; Kumar &

Tsvetkov, 2019) and style transfer (Fu et al., 2018; T. Shen et al., 2017). When training data is

available, the state of the art includes encoder-decoder models with an attention mechanism

(Bahdanau et al., 2015; Vaswani et al., 2017) which are both extensions of the original sequence-

to-sequence framework with a fixed bottleneck introduced by Sutskever et al., 2014. Despite

their success, these models are costly to train and require a large amount of parallel data.

Figure 3.4: The manifold of a text autoencoder is the low-dimensional region of the high-
dimensional embedding space where texts are actually embedded. The example shows the
mapping of a source sequence x with embedding zx to zy, which is the embedding of target
sequence y such that it reflects the target manifold.

Yet parallel data is scarce for conditional text generation problems, necessitating unsupervised

solutions. Text autoencoders (S. R. Bowman et al., 2016) have proven useful for a particular

subclass of unsupervised problems that can be broadly defined as style transfer, i.e., changing

the style of a text in such a way that the content of the input is preserved. Examples include

sentiment transfer (T. Shen et al., 2017), sentence compression (Fevry & Phang, 2018), and

neural machine translation (Artetxe et al., 2018)II. Most existing methods specialize autoen-

coders to the task by conditioning the decoder on the style attribute of interest (Lample et al.,

2019; Logeswaran et al., 2018), assuming the presence of labels during training of the autoen-

IWe use this term to refer to text generation conditioned on textual input.
IIAs Krishna et al., 2020 point out, in a narrow definition of style transfer, the semantics of the text must not

change, which would exclude sentiment transfer. In this thesis, we apply a broader definition which also includes
attribute transfer (e.g., sentiment transfer).
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Figure 3.5: High-level view of the supervised variant of our framework Emb2Emb. Left: we
pretrain an autoencoder on (unannotated) text, which transforms an input sentence x into an
embedding zx and uses it to predict a reconstruction x̂ of the input sentence. Center: using the
(frozen, hence depicted in gray) autoencoder, we learn a mapping Φ (trained, hence depicted
in green) from the autoencoder’s embedding of an input zx to the embedding zy of the output
sentence y . The training objective consists of two losses: Ltask enforces the predicted output
embedding to be close to the true output embedding, and Ladv is an adversarial loss term that
enforces the output embedding to be on the manifold of the autoencoder. Right: at inference
time, Φ is composed between the autoencoder’s encoder and decoder to transform input
sentence x to output sentence ŷ . Not shown: the unsupervised variant where only x (not y)
sequences are available in task training.

coder. The main drawback of this approach is that it cannot leverage pretraining on unlabeled

data, which is probably the most important factor for widespread progress in supervised NLP

models in recent years in text analysis (Devlin et al., 2019; M. Peters et al., 2018; Radford et al.,

2019) and generation tasks (K. Song et al., 2019; Variš & Bojar, 2019). At the time when this

research was conducted, there were no style transfer methods, to the best of our knowledge,

that were designed to leverage autoencoder pretraining, and only few could be used in this

way (T. Shen et al., 2020; K. Wang et al., 2019).

We propose an autoencoder-based framework that is plug and play,III meaning it can be used

with any pretrained autoencoder, and thus can benefit from pretraining. Instead of learning

conditional text generation in the discrete, high-dimensional space where texts are actually

located, our method, called Emb2Emb, does all learning in the embedding space.

If the embedding is a single low-dimensional continuous vector, this amounts to learning on

the manifold of a pretrained text autoencoder (see Figure 3.4). Then, the result of learning is

simply a mapping from input embedding to output embedding. Two crucial model choices

enable effective learning of this mapping. First, an adversarial loss term encourages the output

of the mapping to remain on the manifold of the autoencoder, to ensure effective generation

with its decoder. Second, our neural mapping architecture is designed to learn offset vectors

that are added to the input embedding, enabling the model to make small adjustments to the

input to solve the task.

However, single-vector representations are fundamentally limited as they struggle to encode

longer text (Bahdanau et al., 2015). Therefore, we also extend Emb2Emb from single-vector

bottleneck AEs to Bag-of-Vector Autoencoders (BoV-AEs), which encode text into a variable-size

representation where the number of vectors grows with the length of the text. We propose

IIIThis term is borrowed from studies on unconditional text generation with a specific attribute Duan et al., 2020.
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several technical contributions designed to overcome crucial challenges when making this

shift: How to regularize BoV-AEs, how to model the mapping, and how to train it.

Lastly, we propose three conditional generation models based on our framework: for su-

pervised text simplification, for unsupervised style transfer, and for unsupervised sentence

summarization. A central component for unsupervised attribute transfer is modelling content

preservation of the input in the embedding space. Consequently, the concrete implementation

differs between single-vector AEs and BoV-AEs.

We evaluate our single-vector models on two English datasets. On text simplification (Section

3.2.3), where supervision is available, we find that our approach outperforms conventional

end-to-end training of models with a fixed-size “bottleneck” embedding (like an autoencoder)

while being about four times faster. On unsupervised sentiment transfer (Section 3.2.3),

where no parallel sentence pairs are available to supervise learning, and where models with

a fixed-size bottleneck are a common choice, Emb2Emb preserves the content of the input

sentence better than the state-of-the-art method from when the research was conducted,

while achieving comparable transfer performance. Our ablations show that the adversarial

loss term is key to this success. Experimentally, we find that our method, due to being plug and

play, achieves performances close to the full model when only 10% of the labeled examples

are used, demonstrating the importance of pretraining for this task.

Finally, we show on two unsupervised sentiment transfer datasets (T. Shen et al., 2017) and a

sentence summarization dataset (Rush et al., 2015) of drastically different text lengths that

BoV-AEs perform substantially better than standard AEs if the text is too long to be captured

by one vector alone. Our ablation studies confirm that our technical contributions are crucial

for this success.

In Table 3.2, we provide an overview summarizing our technical contributions from Section 3.2

and their effects.

3.2.2 Proposed Framework

The key idea of our framework is to reduce discrete sequence-to-sequence tasks to a continu-

ous embedding-to-embedding regression problem. Our Emb2Emb framework for conditional

generation based on pretrained autoencoders (Figure 3.5) encompasses learning sequence-to-

sequence tasks both where parallel input/output sentence pairs are available (“supervised”)

and where they are not (“unsupervised”). Given a pretrained autoencoder (left of Figure 3.5,

Section 3.2.2) we use its encoder to encode both input and, during supervised training, the

output sequence (Section 3.2.2).

We then learn a continuous mapping Φ from input sequence embeddings to output sequence

embeddings (center of Figure 3.5). In the unsupervised case (Section 3.2.2), the task loss

reflects the objectives of the task, in our experiments consisting of two terms, one to en-

courage content preservation and the other to encourage style transfer. In both supervised
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AE type Contribution Effects
Single-vector Emb2Emb + enables modelling conditional text generation in the

embedding space of an autoencoder
+ performs better on text simplification than Seq2Seq
with a bottleneck
+ substantially reduces the need for labeled data in the
downstream task

adversarial loss
term

+ improves performance in both supervised and unsu-
pervised framework

OffsetNet + useful inductive bias for unsupervised style transfer
BoV-AE Emb2Emb for

BoV-AEs
+ performs better than Emb2Emb for single-vector
AEs if text is too long to be encoded in a single vector

L0Drop regular-
ization

+ effectively smoothens BoV-AE embedding space

modified L0Drop
loss

+ facilitates controlling the amount of vectors that are
dropped, i.e., amount of regularization

differentiable
Hausdorff loss

+ improved performance compared to standard Haus-
dorff loss

Transformer with
copy mechanism

+ facilitates learning of the mapping for some tasks

backprop from
multiple bag sizes

+ can substantially improve performance if hyperpa-
rameters are set correctly

minimal loss
search at infer-
ence time

+ improves inference time performance for some tasks

Table 3.2: An overview of our technical contributions in Section 3.2 and their effects.
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and unsupervised cases, the task-specific loss Ltask is combined with an adversarial term

Ladv that encourages the output vector to stay on the autoencoder’s manifold (see Figure 3.4;

Section 3.2.2), so that the complete loss function is:

L = Ltask +λadvLadv. (3.1)

At inference time (right of Figure 3.5; Section 3.2.2), the decoder from the pretrained autoen-

coder’s decoding function is composed with Φ and the encoder to generate a discrete output

sentence ŷ conditioned on an input sentence x:

ŷ = (dec◦Φ◦enc)(x) (3.2)

Text Autoencoders

The starting point for our approach is an autoencoder A = dec◦enc trained to map an input

sentence to itself, i.e., A (x) = x. Letting X denote the (discrete) space of text sequences, the

encoder enc : X → Z produces an intermediate representation, which is turned back into

a sequence by the decoder dec : Z → X . Note that an autoencoder can, in principle, be

pretrained on a very large dataset, because it does not require any task-related supervision.

While Z can in principle have any form, in the following we assume Z =Rd , i.e., the encoder

produces a single continuous vector (embedding) as intermediate representation. We describe

the framework for multi-vector autoencoders from Section 3.2.5 onwards.

While our framework is compatible with any type of autoencoder, in practice, learning the

mapping Φ will be easier if the embedding space is smooth. How to train smooth text au-

toencoders is subject to ongoing research (S. R. Bowman et al., 2016; J. Henderson & Fehr,

2023; T. Shen et al., 2020). In this work, we will focus on denoising recurrent neural network

autoencoders ((T. Shen et al., 2020; Vincent et al., 2010); see Appendix A.1.1). However, any

advancement in this research direction will directly benefit our framework.

Mapping Function Φ

A common choice for the mapping Φ to learn a regression task would be a k-layer MLP (Rumel-

hart et al., 1986), which transforms the input zx ∈Rd as:

y(0) = zx (3.3)

∀ j ∈ {1, . . . ,k}, y( j ) =σ(W( j )y( j−1)) (3.4)

Φ(zx) = W(k)y(k), (3.5)

where W( j ) ∈Rd×d are linear transformations and σ denotes a non-linear activation function.

The linear transformation at the output layer allows Φ to match the unbounded range of the

regression task. Note that we have suppressed the bias terms of the transformations for clarity.
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(a) MLP (b) ResNet (c) OffsetNet

Figure 3.6: Illustration of the three neural architectures (1 layer) considered in this study.
OffsetNet (b) differs from ResNet (c) in that there is no non-linear activation after the skip-
connection (+), satisfying the notion of computing an offset vector that is added to the input.

In past work (T. Shen et al., 2020), a mapping function was chosen with a specific form,

φ(z) = z−v1 +v2, (3.6)

where the “offset” vectors v1 and v2 correspond to encodings of the input style and the output

style, computed as the average of sentences with the respective style. Because dimensions

not relating to style information cancel each other out, the output remains close to the input.

However, this model lacks generality because the offset vectors are independent of the input.

We propose a mapping which incorporates the notion of an offset vector, but is conditioned

on the input. Each layer of the Φ network moves through the embedding space by an input-

specific offset, computed using a skip connection at each layer:

y( j ) = y( j−1) +V( j )σ(W( j )y( j−1))︸ ︷︷ ︸
offset j

. (3.7)

V( j ),W( j ) ∈Rd×d again denote linear transformations. Unlike the MLP, the skip connections

bias the output to be close to the input. We refer to this architecture as OffsetNet.

Note that a residual network (He et al., 2016) corresponds to Equation 3.7 but with an ad-

ditional non-linear transformation (typically of bounded range) applied to the output of

Equation 3.7, again necessitating a linear transformation at the output layer. However, trans-

forming the output altogether would defeat the purpose of navigating the manifold with

learned offsets. Figure 3.6 illustrates the differences. Our experiments (Section 3.2.3) validate
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the design choice for OffsetNet.

Supervised Task Loss Ltask

For supervised tasks, a collection of parallel sentence pairs
〈

(xi ,yi )
〉N

i =1 is available as supervi-

sion for the conditional generation task. After pretraining the autoencoder, enc is available to

transform the training data into pairs of vectors (zxi =enc(xi ),zyi =enc(yi )), giving us:

Ltask =
1

N

N∑
i =1

Lemb(Φ(zxi ;θ),zyi ). (3.8)

The multivariate regression in Equation 3.8 requires that we specify a loss function, Lemb,

which should reflect semantic relatedness in the autoencoder’s embedding space. For sentence

and word embeddings, past work has concluded that cosine distance is preferable to Euclidean

distance (i.e., mean squared error) in such settings (Bhat et al., 2019; Xing et al., 2015), which

agreed with our preliminary experiments; hence, we adopt cosine distance for the task-specific

loss Lemb.

Kumar and Tsvetkov, 2019 showed that another alternative, the Von Mises-Fisher loss, was

preferable in learning to generate continuous word vector outputs. Their loss is not applicable

in our setting, because the embedding space of an autoencoder is not unit-normalized like

word vectors typically are. Therefore, we employ cosine loss and leave the exploration of other

regression losses to future work.

Unsupervised Task Loss Ltask

In the unsupervised case, we do not have access to parallel sentence pairs (x,y). Instead, we

have a collection of sentences labeled with their style attribute (e.g., sentiment), here denoted

〈(xi , ai )〉N
i =1. The goal of the task is twofold (Logeswaran et al., 2018): preserve the content

of the input and match the desired value for the style attribute. We view this as a tradeoff,

defining Ltask as an interpolation between loss terms for each. With ẑxi =Φ(zxi ;θ), for the

unsupervised case we have:

Ltask =λstyLsty(ẑxi )+ (1−λsty)Lcont(ẑxi ,zxi ). (3.9)

where Lcont and Lsty are described in the following. Lastly, we describe an inference-time

method that can improve the loss after applying the mapping even further.

Content preservation. We encourage the output to stay close to the input, on the as-

sumption that embeddings are primarily about semantic content. To this end, we choose

Lcont(Φ(zxi ;θ),zxi ) to be cosine distance.
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Style. Following previous approaches (Engel et al., 2018; D. Liu et al., 2020; K. Wang et al.,

2019), our style objective requires that we pretrain a (probabilistic) classifier that predicts

the style attribute value from the (fixed) autoencoder’s embedding. The classifier is then

frozen (like the autoencoder) and our minimizing objective requires the output of our method

to be classified as the target style. Formally, in a preliminary step, we train a style classifier

c :Rd → {0,1} on the embeddings of the autoencoder to predict one of the attributes (labeled as

0 and 1, respectively). We then freeze the classifier’s parameters, and encourage Φ to produce

outputs of the target attribute (y=1) via a negative log-likelihood loss:

Lsty(Φ(zxi ;θ),zxi ) = − log(c(Φ(zxi ;θ))).

Inference Time. The mapping Φ is trained to try to optimize the objective equation 3.1. In

the unsupervised case, we can actually verify at test time whether it has succeeded, since

nothing is known at training time that is not also known at test time (i.e., no labeled output).

We propose a second stage of the mapping for the unsupervised case which corrects any

suboptimality. We apply fast gradient iterative modification (FGIM; (K. Wang et al., 2019)) to

improve the predicted embeddings further. Formally, we modify the predicted embedding

ẑxi =Φ(zxi ;θ) as

ˆ̂zxi = ẑxi +ω∇ẑxi
L (ẑxi ,zxi ),

where ω is the stepsize hyperparameter. This step is repeated for a fixed number of steps or

until c(ˆ̂zxi ) > t, where, c is the style classifier from above, and t ∈ [0,1] denotes some threshold.

K. Wang et al., 2019 use this method to modify the input embedding zxi by only following the

gradient of the classifier c, i.e., ˆ̂zxi = zxi +ω∇zxi
− logc(zxi ). In contrast, our variant takes the

entire loss term into account, including the adversarial term that encourages embeddings that

lie on the manifold of the autoencoder, which we explain next.

Adversarial Loss Ladv

Recall that at test time the output of Φ is the input to the pretrained decoding function dec.

Even for supervised training, we do not expect to obtain zero loss during training (or to

generalize perfectly out of sample), so there is a concern that the output of Φ will be quite

different from the vectors dec was trained on (during pretraining). In other words, there is no

guarantee that Φ will map onto the manifold of the autoencoder.

To address this issue, we propose an adversarial objective that encourages the output of Φ

to remain on the manifold. Our method is similar to the “realism” constraint of Engel et

al., 2018, who train a discriminator to distinguish between latent codes drawn from a prior

distribution (e.g., a multivariate Gaussian) and the latent codes actually produced by the

encoder. Instead of discriminating against a prior (whose existence we do not assume), we

40



Plug and Play Autoencoders for Opinion Summarization Chapter 3

discriminate against the embeddings produced by Φ. We build on the adversarial learning

framework of Goodfellow et al., 2014 to encourage the transformation Φ to generate output

embeddings indistinguishable from the embeddings produced by the encoder enc.

Formally, let disc be a (probabilistic) binary classifier responsible for deciding whether a given

embedding was generated by enc or Φ. The discriminator is trained to distinguish between

embeddings produced by enc and embeddings produced by Φ:

max
disc

N∑
i =1

log(disc(zỹi ))+ log(disc(Φ(zxi )) (3.10)

where disc(z) denotes the probability of vector z being produced by enc and disc(z) = 1−disc(z).

The mapping Φ is trained to “fool” the discriminator:

Ladv(Φ(zxi );θ) = − log(disc(Φ(zxi );θ)) (3.11)

Training the discriminator requires encoding negatively sampled sentences, zỹi =enc(ỹi ),

where we want these sentences to contrast with the output of the mapping Φ(zxi ). For the

supervised case, we achieve this by taking the negative samples from the target sentences of

the training data, ỹi =yi . In the unsupervised case, ỹi are sampled randomly from the data.

The mapping Φ is trained according to the objective in equation 3.1, in which Ladv depends on

training the discriminator disc according to equation 3.10. In practice, we alternate between

batch updates to Φ and disc. Our experiments in Section 3.2.3 will explore sensitivity to λadv,

finding that it has a large effect. In practical applications, it should therefore be treated as a

hyperparameter.

Summary

Our framework is plug and play, since it is usable with any pretrained autoencoder. Unlike

previous methods by T. Shen et al., 2020 and K. Wang et al., 2019, which are specific to style

transfer and do not learn a function (like Φ in Emb2Emb), ours can, in principle, be used to

learn a mapping from any sort of input data to text, as long as the desired attributes of the

generated text can be expressed as a loss function that is tied to the autoencoder manifold. In

this study, we apply it to supervised and unsupervised text style transfer. The key component

is the mapping function Φ, which is trained via a regression loss (plus auxiliary losses) to

map from the embedding of the input sequence to the embedding of the output sequence.

Learning the function is facilitated through the proposed OffsetNet and an adversarial loss

term that forces the outputs of the mapping to stay on the manifold of the autoencoder.
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3.2.3 Experiments with Single-Vector Autoencoders

We conduct controlled experiments to measure the benefits of the various aspects of our

approach. First, we consider a supervised sentence simplification task and compare our

approach to others that use a fixed-size representational bottleneck, considering also the

model’s sensitivity to the strength of the adversarial loss and the use of OffsetNet (Section 3.2.3).

We then turn to an unsupervised sentiment transfer task, first comparing our approach to

other methods that can be considered “plug and play” and then investigating the effect of plug

and play when only a little labeled data is available (Section 3.2.3). We note that the current

state of the art is based on very large language models (Reif et al., 2022); since our aim is to

develop a general-purpose framework and our computational budget is limited, we focus on

controlled testing of components rather than achieving state-of-the-art performance.

Autoencoder. In all our experiments, we use a one-layer LSTM as encoder and decoder,

respectively. We pretrain it on the text data of the target task as a denoising autoencoder (DAE;

Vincent et al., 2010) with the noise function from T. Shen et al., 2020. Additional training and

model details can be found in Appendix A.1.1.

Sentence Simplification

Sentence simplification provides a useful testbed for the supervised variant of our approach.

The training data contains pairs of input and output sentences (xi , yi ), where xi denotes the

input sentence in English and yi denotes the output sentence in simple English. We evaluate

on the English WikiLarge corpus introduced by X. Zhang and Lapata, 2017, which consists

of 296,402 training pairs, and development and test datasets adopted from W. Xu et al., 2016.

Following convention, we report two scores: BLEU (Papineni et al., 2002), which correlates

with grammaticality (W. Xu et al., 2016), and SARI (W. Xu et al., 2016), found to correlate well

with human judgements of simplicity. We also compare training runtimes.

Comparison to Sequence-to-Sequence Our first comparisons focus on models that, like

ours, use a fixed-size single-vector encoding of the input. Keeping the autoencoder architec-

ture fixed (i.e., the same as our model), we consider variants of the sequence-to-sequence

model of Sutskever et al., 2014.IV All of these models are trained “end-to-end,” minimizing

token-level cross-entropy loss. The variants are:

• S2S-Scratch: trains the model from scratch.

• S2S-Pretrain: uses a pretrained DAE and finetunes it.

IVOn this task, much stronger performance than any we report has been achieved using models without this
constraint (Mathews et al., 2018; X. Zhang & Lapata, 2017). Our aim is not to demonstrate superiority to those
methods; the fixed-size encoding constraint is of general interest because (i) it is assumed in other tasks such as
unsupervised style transfer and (ii) it is computationally cheaper.
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Model BLEU SARI Time

S2S-Scratch 3.6 15.6 3.7×
S2S-Pretrain 5.4 16.2 3.7×
S2S-MLP 10.5 17.7 3.7×
S2S-Freeze 23.3 22.4 2.2×
Emb2Emb 34.7 25.4 1.0×

Table 3.3: Text simplification performance of model variants of end2end training on the test
set. “Time” is wall time of one training epoch, relative to our model, Emb2Emb.

• S2S-MLP: further adds the trainable mapping Φ used in our approach.

• S2S-Freeze: freezes the pretrained autoencoder parameters, which we expect may help

with the vanishing gradient problem arising in the rather deep S2S-MLP variant.

For all the models, we tuned the learning rate hyperparameter in a comparable way and

trained with the Adam optimizer by Kingma and Ba, 2015 (more details in the Appendix A.1.1).

Table 3.3 shows test-set performance and the runtime of one training epoch relative to our

model (Emb2Emb). First, note that the end-to-end models are considerably more time-

consuming to train. S2S-Freeze is not only more than two times slower per epoch than

Emb2Emb, but we find it to also require 14 epochs to converge (in terms of validation perfor-

mance), compared to 9 for our model. Turning to accuracy, as expected, adding pretraining

and the MLP to S2S-Scratch does improve its performance, but freezing the autoencoder

(S2S-Freeze) has an outsized benefit. This observation may seem counter to the widely seen

success of finetuning across other NLP scenarios, in particular with pretrained transformer

models like BERT (Devlin et al., 2019). However, finetuning does not always lead to better

performance. For instance, M. E. Peters et al., 2019 not only find the LSTM-based ELMo (M.

Peters et al., 2018) difficult to configure for finetuning in the first place, but also observe

performances that are often far lower than when just freezing the parameters. Hence, our

results are not entirely unexpected. To further eliminate the possibility that the finetuned

model underperformed merely because of improper training, we verified that the training loss

of S2S-Pretrain is indeed lower than that of S2S-Freeze. Moreover, the poor performance is

also unlikely to be a problem of overfitting, because we mitigate this via early stopping. This

suggests that the differences are largely due to the generalization abilities coming from the

pretraining, which is partly forgotten when finetuning the entire model on the target task.

Our results thus support the hypothesis of Mathews et al., 2018 that fixed-size bottlenecks

and deeper networks make end-to-end learning harder. In contrast, training Emb2Emb even

outperforms the best end-to-end model, S2S-Freeze.

From these results, we conclude that, when pretraining a fixed-size-representation autoen-

coder for plug and play text generation, learning text transformations entirely in continuous

space may be easier and more efficient than using conventional sequence-to-sequence mod-
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Figure 3.7: Performance on WikiLarge in terms of BLEU score on the development set (higher
is better) by weight for the adversarial term λadv. Note that the x-axis is on a log scale.

els.

Sensitivity Analysis We next explore two of the novel aspects of our model, the adversarial

loss and the use of OffsetNet in the mapping function Φ. We vary the tradeoff parameter λadv

and consider variants of our approach using an MLP, ResNet, and OffsetNet at each value. All

other hyperparameters are kept fixed to default values reported in Appendix A.1.1.

Figure 3.7 plots the BLEU scores, with λadv = 0 as horizontal dashed lines. Each model’s BLEU

score benefits, in some λadv range, from the use of the adversarial loss. Gains are also seen for

SARI (see Appendix A.1.1). OffsetNet is also consistently better than ResNet and, when using

the adversarial loss, the MLP. From this we conclude that OffsetNet’s approach of starting close

to the input’s embedding (and hence on/near the manifold), facilitates (adversarial) training

compared to the MLP and ResNet, which, at the beginning of training, map to an arbitrary

point in the embedding space due to the randomly initialized projection at the last layer.

Sentiment Transfer

We next evaluate our model on an unsupervised style transfer task. For this task, the training

data is given pairs of input sentences and sentiment attributes (xi , ai ), where xi denotes the

input sentence in English and ai denotes its target sentiment, a binary value. For training, we

use the Yelp dataset preprocessed following T. Shen et al., 2017. At inference time, we follow

common evaluation practices in this task (Hu et al., 2017; Lample et al., 2019; T. Shen et al.,

2017) and evaluate the model on its ability to “flip” the sentiment (measured as the accuracy of
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Figure 3.8: Comparison of plug and play methods for unsupervised style transfer on the Yelp
sentiment transfer task’s test set. Up and right is better.

a DistilBERT classifier trained on the Yelp training set, achieving 97.8% on held-out data; (Sanh

et al., 2019)),V and “self-BLEU,” which computes the BLEU score between input and output to

measure content preservation. There is typically a tradeoff between these two goals, so it is

useful to visualize performance as a curve (accuracy at different self-BLEU values). We conduct

four experiments. First, we compare to two other unsupervised sentiment transfer models

that can be considered “plug and play”. Second, we conduct controlled experiments with

variants of our model to establish the effect of pretraining. Third, we confirm the effectiveness

of OffsetNet and the adversarial loss term for the sentiment transfer. Finally, we conduct a

qualitative analysis.

Comparison to Plug and Play Methods To the best of our knowledge, there are only two

other autoencoder-based methods that can be used in a plug and play fashion, i.e., training the

autoencoder and sentiment transfer tasks in succession. These are the method of T. Shen et al.,

2020, which is based on addition and subtraction of mean vectors of the respective attribute

corpora (see Section 3.2.8), and FGIM (see Section 3.2.2); both of them are inference-time

methods and do not learn a function (like Φ in Emb2Emb). Even though these methods are

not specifically introduced with pretraining plug and play in mind, we can consider them in

this way as alternatives to our model. Note that K. Wang et al., 2019 achieve state-of-the-art

on unsupervised sentiment transfer using FGIM, but applied to the latent space of a powerful

transformer autoencoder. Since we want to conduct controlled experiments to find the best

plug and play method, we integrated FGIM into our framework rather than directly comparing

to their results. We treat the method by T. Shen et al., 2020 analogously.

VDue to budget constraints, we evaluate only on transforming sentiment from negative to positive.
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For our learning-based model, we tune λadv on the development set from Yelp. After finding

the bestλadv, we inspect the behavior of the models at different levels of transfer by varyingλsty

({0.1,0.5,0.9,0.95,0.99}), giving a tradeoff curve (more details in Appendix 3.2.3). Analogously,

we vary the multiplier for T. Shen et al., 2020 and the thresholds t for K. Wang et al., 2019 to

obtain different tradeoffs between accuracy and self-BLEU. We also report the computational

overhead each method incurs in addition to encoding and decoding.

Figure 3.8 plots the tradeoff curves for the existing models, and ours with and without FGIM

at inference time. We report accuracy and computational overhead in Table 3.4, for the

most accurate points. Note that our model clearly outperforms that of T. Shen et al., 2020,

confirming that learning the offset vectors in the autoencoder manifold is indeed beneficial.VI

Model Acc. s-BLEU +Time

Shen et al. 96.8 6.5 0.5×
FGIM 94.9 10.8 70.0×
Emb2Emb + FGIM 93.1 18.1 2820.0×
Emb2Emb 87.1 22.1 1.0×

Table 3.4: Self-BLEU (“s-BLEU”) on the Yelp sentiment transfer test set for the configurations
in Figure 3.8 with highest transfer accuracy (“Acc.”). “+Time” reports the inference-time
slowdown factor due to each model’s additional computation (relative to our method).

Our model’s performance is close to that of K. Wang et al., 2019, even without FGIM at

inference time. Consequently, our model has a much lower computational overhead. With

FGIM, our model shows an advantage at the high-accuracy end of the curve (top), increasing

content preservation by 68% while reaching 98% of FGIM’s transfer accuracy, though this

is computationally expensive. This confirms that our training framework, while being very

flexible (see Section 3.2.2), is a strong alternative not only in the supervised, but also in the

unsupervised case.

Pretraining We have argued for a plug and play use of autoencoders because it allows

generation tasks to benefit from independent research on autoencoders and potentially large

datasets for pretraining. Here we measure the benefit of pretraining directly by simulating

low-resource scenarios with limited style supervision. We consider three pretraining scenarios:

• Upper bound: We pretrain on all of the texts and labels; this serves as an upper bound

for low-resource scenarios.

• Plug and play: A conventional plug and play scenario, where all of texts are available for

pretraining, but only 10% of them are labeled (chosen at random) for use in training Φ.

VIIn Appendix 3.2.3, we analyze the differences between these models’ outputs qualitatively.
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Figure 3.9: Sentiment transfer results for different model scenarios. Up and right is better.

• Non plug and play: A matched scenario with no pretraining (“non plug and play”), with

only the reduced (10%) labeled data.

Figure 3.9 shows the tradeoff curves in the same style as the last experiment. The benefit of

pretraining in the low-resource setting is very clear, with the gap compared to the plug and

play approach widening at lower transfer accuracy levels. The plug and play model’s curve

comes close to the “upper bound” (which uses ten times as much labeled data), highlighting

the potential for pretraining an autoencoder for plug and play use in text generation tasks with

relatively little labeled data.

Model Analysis We investigate the effect of OffsetNet and the adversarial training term on

our unsupervised style transfer model with the same experimental setup as previously.

The results in Figure 3.10 show that OffsetNet reaches better transfer accuracy than the MLP

at comparable self-BLEU scores. The performance drops significantly if the adversarial term

is not used. This confirms the importance of our design decisions.

Qualitative Analysis We provide several example outputs of our method in comparison to

the outputs of the baseline by T. Shen et al., 2020 in Tables 3.5, 3.6, and 3.7. Moreover, we show

how the output evolves as the multiplier and λsty (i.e., the level of transfer accuracy) increases.

In our qualitative analysis we generally observe that both models generate similar outputs

when the inputs are short and can be transferred by only changing or deleting single words

(e.g., Table 3.5). We observe that grammaticality degrades in both methods for higher transfer
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Figure 3.10: Ablation of our model components on the Yelp sentiment transfer tasks. Up and
right is better.

levels. However, our method is more often able to preserve the content of the input as the

transfer accuracy increases: At a multiplier of 3.0, the method by T. Shen et al., 2020 outputs

rather general positive statements that are mostly disconnected from the input, whereas

our method is able to stay on the topic of the input statement. This observation matches

the quantitative results from Section 3.2.3, where our method attains substantially higher

self-BLEU scores at comparable levels of transfer accuracy.

However, it is clear that both models mostly rely on exchanging single words in order to change

the sentiment classification. In the example from Table 3.6, our model changes the input “the

cash register area was empty and no one was watching the store front .” to the rather unnatural

sentence “the cash area was great and was wonderful with watching the front desk .” instead

of the more natural, but lexically distant reference sentence “the store front was well attended

”. We think that this is best explained by the absence of large-scale pretraining, which largely

determines the language modelling ability. An additional explanation is given by the fact that

we use a denoising autoencoder with a simple noise function (deleting random words) for

these experiments, which encourages sentences within a small edit-distance to be close to

each other in the embedding space (T. Shen et al., 2020). Denoising autoencoders with a more

sophisticated noise function focused on semantics could possibly mitigate this, but is out of

scope for this study.

3.2.4 Why We Need Bag-of-Vectors Embeddings

Emb2Emb is a powerful framework, because the AE can be pretrained on unlimited amounts

of unlabeled data before applying it to any downstream application. This concept, transfer
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multiplier / λsty Shen et al. (2019) Ours
1.5 / 0.5 i will be back . i will be back .
2.0 / 0.9 i will be back back i will definitely be back .

2.5 / 0.95 i will definitely be back . i will definitely be back
3.0 / 0.99 i love this place ! i will be back !

Table 3.5: Input: i will never be back .

multi-
plier /
λsty

Shen et al. (2019) Ours

1.5 / 0.5 the cash area was great and the the
best staff

the cash area was great and was
wonderful one watching the front
desk .

2.0 / 0.9 the cash register area was empty and
no one was watching the store front .

the cash area was great and was
wonderful with watching the front
desk .

2.5 /
0.95

the cash bar area was great and no one
was the friendly staff .

the cash area was great and was
wonderful with watching the front
desk .

3.0 /
0.99

the great noda area and great and
wonderful staff .

the cash area was great and her and
the staff is awesome !

Table 3.6: Input: the cash register area was empty and no one was watching the store front .
Reference: the store front was well attended

learning, is arguably one of the most important drivers of progress in machine learning

in the recent decade: These so-called Foundation Models (Bommasani et al., 2021) have

revolutionized natural language understanding (e.g, BERT (Devlin et al., 2019)) and computer

vision (e.g, DALL-E (Ramesh et al., 2021)), among others. Since Emb2Emb was designed to

work with any pretrained AE, it was an important step towards their scalability.

However, as Bommasani et al., 2021 point out, another crucial model property is expressivity,

the ability to represent the data distribution it is trained on. In this regard, single-vector

representations are fundamentally limited; they act as a bottleneck, causing the model to

increasingly struggle to encode longer text (Bahdanau et al., 2015). Here, we extend conditional

text generation methods from single-vector bottleneck AEs to Bag-of-Vector Autoencoders

(BoV-AEs), which encode text into a variable-size representation where the number of vectors

grows with the length of the text. This gives BoV-AEs the same kind of representations as

attention-based models. But this added expressivity comes with additional challenges: First,

it can more easily overfit, leading to a non-smooth embedding space that is difficult to learn

in. Secondly, as illustrated in Figure 3.11, in the single-vector case, an operation Φ in the

vector space consists of a simple vector-to-vector mapping, and a single-vector loss. But with

BoV-AEs, Φ needs to map a bag of vectors onto another bag of vectors, for which the single-

vector mapping and loss are not applicable. In the remainder of this chapter, we demonstrate
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multi-
plier /
λsty

Shen et al. (2019) Ours

1.5 / 0.5 definitely disappointed that i ’m not
my birthday !

definitely disappointed that i could
not use my birthday gift !

2.0 / 0.9 definitely disappointed that i have a
great !

definitely not disappointed that i
could use my birthday gift !

2.5 / 0.95 definitely super disappointed and i ’ll
definitely have a great gift !

definitely disappointed that i could
use my birthday gift !

3.0 / 0.99 definitely delicious and i love the ! definitely disappointed that i could
use my birthday gift !

Table 3.7: Input: definitely disappointed that i could not use my birthday gift ! Reference:
definitely not disappointed that i could use my birthday gift !

how such a mapping can be learned in the context of the Emb2Emb framework by making

the following novel contributions: (i) We propose a regularization scheme for BoV-AEs, (ii) a

neural mapping architecture Φ for Emb2Emb, and (iii) a suitable training loss.

Empirically, we show on two unsupervised sentiment transfer datasets (T. Shen et al., 2017) of

drastically different text lengths that BoV-AEs perform substantially better than standard AEs

if the text is too long to be captured by one vector alone. Our ablation studies confirm that our

technical contributions are crucial for this success.

In the following sections, we introduce BoV-AE (Section 3.2.5) and its integration within

Emb2Emb (Section 3.2.6). The new models are empirically evaluated in Section 3.2.7.

3.2.5 Bag-of-Vectors Autoencoder

Recall that in Emb2Emb, we assume an autoencoder A = dec◦enc to be trained to map an

input sentence from the discrete text space X to an embedding space Z via the encoder

enc : X →Z , and back to X via a decoder dec : Z →X , such that A (x) = x. Previously, we

assumed the embedding to consist of a single continuous vector, i.e., Z =Rd . In the following,

we consider multi-vector autoencoders.

Concretely, we propose Bag-of-Vectors Autoencoders (BoV-AEs) which facilitate learning map-

pings in the embedding space. Following the naming convention by J. Henderson, 2020, we

refer to a bag of vectors as a (multi)-set of vectors that (i) can grow arbitrarily large, and (ii)

where the elements are not ordered (a basic property of sets). A type of BoV representation

that is used very commonly is found in Transformer (Vaswani et al., 2017) encoder-decoder

models, where there is one vector to represent each token of the input text, and the order of

the vectors does not matter when the decoder accesses the output of the encoder. In this work,

we also rely on Transformer models as the backbone of our encoders and decoders. However,

in principle, any encoder and decoder can be used, as long as the encoder produces a bag as
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enc

dec

the food was terrible

the food was amazing

...
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dec

the food was terrible

the food was amazing
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Figure 3.11: Left: In the standard setup, the
representation consists of a single vector,
requiring a simple vector-to-vector map-
ping to do operations in the vector space.
Right: In BoV-AE, the representation con-
sists of a variable-size bag of vectors, re-
quiring a more complex mapping from
one bag to another bag.

enc dec

Text Autoencoder Pretraining

Inference

enc dec

enc

Task Training

Figure 3.12: High-level view of the
Emb2Emb framework. Text Autoencoder
Pretraining: An autoencoder is trained on
an unlabeled corpus, i.e., the encoder enc
transforms an input text x into a continu-
ous embedding zx , which is in turn used
by the decoder dec to predict a reconstruc-
tion x̂ of the input sentence. Task Training:
The encoder is frozen (grey), and a map-
ping Φ is trained (green) on input embed-
dings zx to output predictions ẑy such that
it minimize some loss L (ẑy ). Inference: To
obtain textual predictions ŷ , the encoder
is composed with Φ and the decoder.
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output and the decoder takes a bag as input. Formally, Z = P (Rd ), so the encoder produces a

bag-of-vectors X = {z1, ...,zn} := enc(x), where n is the number of vectors in the induced input

bag.

Regularization

The fact that we use a BoV-based AE presents a major challenge: AEs have to be regularized to

prevent them from learning a simple identity mapping where the input is merely copied to the

output, which does not result in a meaningful embedding space. In fixed-size embeddings,

this is for example achieved through under-completeness (choosing a latent dimension that is

smaller than the input dimension) or through injection of noise, either at the input or in the

embedding space. While there exists a lot of research on regularizing fixed-sized AEs, it is not

clear how to achieve the same goal in a BoV-AE. Here, regularizing the capacity of each vector

is not enough. As long as each vector can store a (constant) positive amount of information, a

bag of unlimited size can still store infinite information. However, it is not clear to what extent

the size of the bag needs to be restricted. By default, a standard Transformer model produces

as many vectors as there are input tokens, but this is likely too many, as it makes copying from

the input to the output trivial. Hence, we want the encoder to output fewer vectors. In the

following we explain how this is achieved in BoV-AEs.

Ideally, we want the model to decide for itself on a per-example basis which vectors it needs

to retain for reconstruction. To this end, we adopt L0Drop, a differentiable approximation to

L0 regularization, which was originally developed by B. Zhang et al., 2021 for the purpose of

speeding up a model through sparsification. The model computes scalar gates gi = g (zi ) ∈ [0,1]

(which can be exactly zero or one) for each encoder output. After the gates are computed, we

multiply them with their corresponding vector. Vectors whose gates are near zero (i.e., smaller

than some ϵ> 0) are removed from the bag entirely. An additional loss term, LL0 (X) =λL0
∑n

i gi

encourages the model to close as many gates as possible, where the hyperparameter λL0

controls the sparsity rate implicitly. However, in initial experiments, we found λL0 difficult

to tune, as it is very sensitive with respect to other hyperparameters. We instead employ a

modified loss that seeks to explicitly match a certain target ratio r of open gates. Similar to

the free-bits objective that is used to prevent the posterior collapse problem in VAEs (Kingma

et al., 2016), the objective becomes

LL0 (X) =λL0 max(r, 1
n

∑n
i gi ). (3.12)

By settingλL0 to a large enough value (empirically, λL0 = 10), we find that this objective reaches

the target ratio r reliably for different r while at the same time reducing the reconstruction

loss. This allows to compare different strengths of regularization while reducing the tuning

effort substantially.
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3.2.6 Emb2Emb with BoV-AEs

In the following we describe how to adapt the Emb2Emb model to BoV-AEs, i.e., how to

generate an output bag X̂ = {ẑ1, . . . , ẑm} given an input bag X = {z1, ...,zn} through the mapping

Φ(X), and how to choose the loss function L (X̂,X). For example, in the case of style transfer,

we want X̂ to be similar to X.

Mapping Φ

When Emb2Emb is applied to autoencoders with single-vector embeddings,Φ can be as simple

as an MLP. However, for BoV-AEs, Φ must be capable of producing a bag of vectors, where the

output bag may contain a different number of vectors than the input bag. The straight-forward

choice forΦ is a Transformer decoder that uses cross-attention on the input BoV, and generates

vectors autoregressively one at a time, formally ẑ = Transformer(zs , ẑ1, . . . , ẑt−1,X), t ≥ 1, where

zs is the embedding of some starting symbol. Since the resulting sequence of vectors is still

interpreted as a bag by the decoder and loss function, the ordering is irrelevant, but generating

vectors autoregressively facilitates modelling the correlations between vectors.

Depending on the difficulty of the task, a generic Transformer decoder may be sufficient

to learn the mapping, but for more difficult mappings and for larger bags (i.e. longer texts)

appropriate inductive biases are needed. Based on the assumption that the output should be

close to the input in embedding space, we previously proposed OffsetNet for the single vector

case, which computes an offset vector to be added to the input. With a similar motivation, we

propose a variant of pointer-generator networks (See et al., 2017), which allows the model to

choose between copying an input vector and generating a new one. Instead of just copying,

however, our model (Transformer++) allows to compute an offset vector to be added to the

copied vector, analogous to OffsetNet. Formally, at each timestep t ,

ẑt = (1−pg en)(zcopy +zoffset)+pg enz′t , (3.13)

where z′t = Transformer(zs , ..., ẑt−1,X). Intuitively, by controlling pg en ∈ (0,1), the model makes

the (soft) decision to either copy a vector from the input and add an offset, or to generate a

completely new vector. Here, pg en is a function of z′t and the starting symbol which we treat

as a context vector, pg en =σ(W[zs ;z′t ]). Similarly, zoffset is a one-layer MLP with [z′t ;zcopy ] as

input. zcopy is determined through an attention function:

zcopy =
|X|∑
i =1
αi zi , K = Wcpy X, (3.14)

αi = softmax(zT
s K)i , (X)i := zi (3.15)

where Wcpy is a learnable weight matrix. We refer to this model as Transformer++.
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Generating Variable Sized Bags

The output bag is generated in an autoregressive manner. In the unsupervised case, it is not

always clear how many vectors the bag should contain. However, due to the unsupervised

nature, all information needed for computing the (task-dependent) training loss L (X̂,X)

are also available at inference time. In this case, we can first generate some fixed maximum

number N of vectors autoregressively, and then determine the optimal bag by computing

the minimal (inference-time) loss value, X∗ = min
l=1,...,N

L (X̂1:l ,X). This can be valuable for tasks

where we do not have a good prior on the size of the target bag. During training, we minimize

the loss locally at every step. But we don’t necessarily care about the loss at very small or big

bags, so we might want to weight the steps as L total(X̂,X) =
∑N

l =1 wl L (X̂1:l ,X). Here, w ∈RN+
could be any weighting, but it is more beneficial for training to only backpropagate from bag

sizes that we expect to be close to the optimal output bag size. For instance, in style transfer,

the output typically has about the same length as the input. Hence, for an input size of length

n, a useful weighting could be

wl =

1 n −k ≤ l ≤ n +k

0 otherwise
, (3.16)

where k is the size of a window around the input bag size.

Aligning Two Bags of Vectors

As described in Section 3.2.2, unsupervised sentiment transfer involves two loss terms, Lst y

and Lsi m . In order to adapt Lst y from the single vector case to the BoV case, we can simply

switch from an MLP classifier to a Transformer-based classifier. For Lsi m , however, we need

to switch to a loss function that is defined on sets. While there are well-known losses for the

single-vector case, in NLP set-level loss functions are not well-studied.

Here, we propose a novel variant of the Hausdorff distance. This distance is commonly used

in vision applications: as a performance evaluation metric in e.g. medical image segmen-

tation (Aydin et al., 2020; Taha & Hanbury, 2015), or in vision systems as a way to compare

images (Huttenlocher et al., 1992; K. Lin et al., 2003; Lu et al., 2001; Takács, 1998). More

recently, variants (different from ours) of the Hausdorff distance have also been used as loss

functions to train neural networks (Fan et al., 2017; Ribera et al., 2019; J. Zhao et al., 2021). In

NLP, its use is very rare (X. Chen, 2019; Kuo et al., 2021; Nutanong et al., 2016). To the best

of our knowledge, our work is the first to present a novel, fully differentiable variant of the

Hausdorff distance as a loss for language learning.

The Hausdorff distance is a method for aligning two sets. Given two sets X and X̂, their
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Hausdorff distance H is defined as

H(X,X̂) =
1

2
align(X,X̂)+ 1

2
align(X̂,X) (3.17)

align(X,X̂) = max
x∈X

min
y∈X̂

d(x, y) (3.18)

Intuitively, two sets are close if each point in either set has a counterpart in the other set that is

close to it according to some distance metric d . We choose d to be the euclidean distance, but

in principle any differentiable distance metric could be used (e.g. cosine distance). However,

the vanilla Hausdorff distance is very prone to outliers, and therefore often reduced to the

average Hausdorff distance (Dubuisson & Jain, 1994), where

align(X,X̂) =
1

|X|
∑
x∈X

min
y∈X̂

d(x, y). (3.19)

The average Hausdorff function is step-wise smooth and differentiable. Empirically, however,

we find step-wise smoothness to be insufficient for the best training outcome. Therefore, we

propose a fully differentiable version of the Hausdorff distance by replacing the min operation

with softmin by modelling align(X,X̂) =

1

|X|
∑
x∈X

∑
y∈X̂

 e(−d(x,y))∑
y ′∈X̂

e(−d(x,y ′))
·d(x, y)

 . (3.20)

This variant is reminiscent of the attention mechanism Bahdanau et al., 2015 in the sense that a

weighted average is computed, which has been very successful at smoothly approximating dis-

crete decisions, e.g., read and write operations in the Differentiable Neural Computer (Graves

et al., 2016) among many others.

3.2.7 Experiments with BoV-AE

Our experiments are designed to test the following two hypotheses. H1: If the input text is too

long to be encoded into a fixed-size single vector representation, BoV-AE-based Emb2Emb

provides a substantial advantage over the fixed-sized model. H2: Our technical contributions,

namely L0Drop regularization, the training loss, and the mapping architecture, are necessary

for BoV-AE’s success.

We evaluate our model on two unsupervised conditional text generation tasks: In Section 3.2.7,

we show that H1 holds even when the single-vector dimensionality is large (d=512). To this

end, we create a new sentiment transfer dataset, Yelp-Reviews, whose inputs are relatively

long. However, training on this dataset is computationally very demandingVII. Therefore, we

turn to a short-text style transfer dataset to test hypothesis H2 (Section 3.2.7).

For each of the experiments in this section, we provide full experimental details in Ap-

VIIPretraining a model of this size until convergence took more than a month on a single 24GB GPU.
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Dataset avg. #words #inputs #outputs
Yelp-Sentences 9.7 / 8.5 177k 267k

Gigaword 27.2 / 8.2 500k 500k
Yelp-Reviews 56.1 / 48.7 500k 500k

Table 3.8: Statistics for each dataset.

pendix A.2. Note that our experiments do not include two components that we previously

used for training Emb2Emb with single-vectors. First, we do not employ the adversarial loss

term Lad v , which we found to be unimportant or even detrimental when applied to BoV-AEs.

While this term can improve the performance of single-vector AEs in the unsupervised case, its

hyperparameter λad v is expensive to tune. We do not perform this additional tuning in order

to ensure comparability in our controlled experiments. Second, we do not employ FGIM (K.

Wang et al., 2019), as it is well-defined only for the single-vector case.

Datasets

We test our model on datasets with short, medium, and long inputs, respectively. Table 3.8

shows some statistics. Yelp-Sentences (T. Shen et al., 2017) is a commonly used sentiment

transfer dataset, the same that we used in single-vector experiments in 3.2.3. It consists of

individual sentences extracted from restaurant reviews on Yelp. For the long input dataset,

we create Yelp-Reviews, which consists of complete restaurant reviews generated from the

original Yelp dataset. Finally, we use the Gigaword corpus (Graff et al., 2003) for training

and evaluating sentence summarization, similar to Rush et al., 2015. This corpus consists

of more than 8.5 million training samples, but we use a random subset of 500k to limit the

computational cost. Details on the generation processes of both datasets can be found in the

appendix.

Evaluation metrics: For sentiment transfer, we use the same evaluation metrics as in our

single-vector experiments (Section 3.2.3): A separately trained style classifier based on Distil-

BERT (Sanh et al., 2019) measures transfer performance, and content retention is measured

via self-BLEU (Papineni et al., 2002). To obtain results at varying levels of transfer ability, we

train the style transfer model with varying λst y . To allow comparison via a single score, we

aggregate content retention and transfer accuracy (Krishna et al., 2020; J. Xu et al., 2018),

per sentence (Krishna et al., 2020), and compute a single scor e = 1
M

∑M
i =1 ACC(ŷ) ·BLEU(ŷ , x)

where x is the input sentence, ŷ is the predicted sentence, and M is the number of data points.

For readability, we multiply all metrics by 100 before reporting.

As is standard practice in summarization, we evaluate performance on this task with ROUGE-

L (C.-Y. Lin, 2004). Note, however, that ROUGE scores can be misleading, because even texts

that are as long or even longer than the input text can yield relatively high scores even though

they are clearly not summaries. For this reason, we also report the average length of outputs
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Figure 3.13: Reconstruction loss on the validation set of Yelp-Reviews for different autoen-
coders. fixed: The bag consists of a single vector obtained by averaging the embeddings at the
last layer of the Transformer encoder. L0-r: BoV-AE with L0Drop target ratio r .

produced by the models as reference.

Yelp-Reviews

Our hypothesis is that AEs with a single vector bottleneck are unable to reliably compress the

text when it is too long. Here, we test if this holds true even for a large single-vector model

with d=512. To this end, we create the dataset Yelp-Reviews, which consists of strongly positive

and strongly negative English restaurant reviews on Yelp (see Appendix A.2.4 for a detailed

description). This dataset is very similar to Yelp-Sentences introduced by T. Shen et al., 2017.

However, while Yelp-Sentences consists of single sentences of about 10 words on average,

Yelp-Reviews consists of entire reviews of 52 words on average. For style transfer, we train a

Transformer++ mapping using the loss described in Section 3.2.2. To obtain results at varying

transfer levels, we train multiple times with varying λst y , resulting in multiple points for each

model in Figure 3.14 and 3.17.

Results: The results in Figure 3.13 indicate that even large single vector models (d=512) are

unable to compress the text well; the NLL loss on the validation set of the fixed-size model is

≈3.9. L0-0.05 is only slightly better than the fixed-size model, whereas L0-0.1 already reaches

a substantially lower reconstruction loss (≈2.1).

We evaluated the downstream sentiment transfer performance of Transformer++with L0-0.1VIII

and the fixed-size model, respectively. Figure 3.14 shows a scatter plot of the results, where

results that are further to the top-right corner are better. We see that at a comparable transfer

level, the BoV is substantially better at retaining the input content. This supports hypothesis

VIIIWe restrict our analysis to L0-0.1 because this dataset have is computationally demanding.
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Figure 3.14: Style transfer on Yelp-Reviews.
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Figure 3.15: Style transfer score depending
on the window size.
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Figure 3.16: Reconstruction loss on the
validation set for different AEs. fixed: A
single vector obtained by averaging the en-
coder output vectors. L0-r: BoV-AEs with
L0Drop target ratio r .

0 20 40 60 80
self-BLEU

0

20

40

60

80

100

ac
cu

ra
cy

fixed
L0-0.2
L0-0.4
L0-0.6
L0-0.8

Figure 3.17: Style transfer performance on
Yelp-Sentences of BoV models compared
to a fixed-size AE for varying λst y . Further
to the top (style transfer) and right (con-
tent retention) is better.

H1 that variable-size BoV models are particularly beneficial in cases where the text length is

too long to be encoded in a single-vector.

Yelp-Sentences

In order to answer research question H2, we perform a large set of controlled experiments

over our model’s components. Due to the high computational demand, we turn to the popular

Yelp-Sentences sentiment transfer dataset by T. Shen et al., 2017. Texts in this dataset are ≈ 10

words on average. As these sentences are much easier to reconstruct, we set the embedding

size to d=32 so that the condition for hypothesis H1 is still valid. Here, we again train BoV-AEs

for a variety of target rates (r = 0.2,0.4,0.6,0.8) and then evaluate their reconstruction and style

transfer ability in the same fashion as for Yelp-Reviews. We also conduct a qualitative analysis

of the generated output, and discuss the computational cost. We investigate the impact of the

differentiable Hausdorff loss and the window size parameter. Finally, we explore if our method

is compatible with the large pretrained BART model (Lewis et al., 2020).
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Reconstruction Ability Figure 3.16 shows the reconstruction loss on the validation set for

the fixed-size model compared to BoV models. The fixed-size AE does not reach satisfactory

reconstruction ability, converging at an NLL loss value of about 3. In contrast, BoV models are

able to outperform the fixed-size model considerably. As expected, higher target ratios lead

to better reconstruction, because the model can use more vectors to store the information.

Models with a higher target ratio also reach their optimal loss value more quickly. While L0-0.6

approaches the best reconstruction value (≈1.0) eventually, the model needs more than 1

million training steps to reach it. In contrast, L0-0.8 needs less than 100k steps to converge,

which could indicate that L0-0.8 learns to copy rather then compress the input, resulting in a

bad latent space. L0-0.4 yields to a higher loss, but is still drastically better than the fixed size

model. L0-0.2 is not enough to outperform the fixed-size model. Overall, these results show

we have the right settings for evaluating H1 and H2, as 10 words is too long to be encoded well

into a single vector of d=32, whereas a BoV-AE with a high enough target ratio r can fit it well.

Style Transfer Ability Results are shown in Figure 3.17. Up to r =0.6, they correspond well to

the reconstruction ability, in that BoV models with higher target ratios yield higher self-BLEU

scores at comparable transfer abilities, outperforming the fixed-size model (H1). However, at

r =0.8, the performance suddenly deteriorates at medium to high transfer levels. This supports

the hypothesis that L0-0.8 lacks smoothness in the embedding space due to insufficient

regularization, which in turn complicates downstream training. This is the first piece of

evidence that L0Drop is necessary for the success of our model (H2).

Qualitative Analysis We hypothesize that standard autoencoders suffer from poor perfor-

mance with Emb2Emb if the text is too long to be encoded into a single vector (H1). BoV-AEs

were designed to alleviate this issue. Here, we conduct a qualitative analysis of 10 randomly

selected model outputs on Yelp-Sentences. For comparability, we select models with similar

levels of style transfer accuracy, namely the fixed size model with a performance of 59% ac-

curacy and 17 points self-BLEU to L0-0.4 with a performance of 55% accuracy and 38 points

self-BLEU. We randomly sample 10 examples and show them in Table 3.9. By design of the

Yelp-Sentences dataset (T. Shen et al., 2017), the inputs are sentences drawn from negative

reviews, whose sentiment are supposed to be changed to positive. Note that due to how the

dataset was constructed, some of the input sentences are already positive (#7) or just neutral

(#2).

We observe several trends: (1) The fixed-sized model has a difficult time retaining the aspect

discussed in the input sentence (#10: staff instead of location, #9: food instead of price),

whereas the BoV-AE stays on topic. This is likely a consequence of the fixed-sized model’s

inability to encode the input well into a single vector, supporting H1. (2) The outputs of

the fixed-sized models are often completely unusable (#1, #2) or nonsensical (#5, #9, #10),

whereas the outputs of the BoV-AE are at least intelligible. (3) In absolute terms, the outputs

of neither model are reliably grammatical or able to flip the sentiment. This is understandable
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Table 3.9: 10 randomly sampled examples from Yelp-Sentences and the outputs from each
model.

# Input sentence Output of fixed-size
model

Output of L0-0.4

1 generally speaking it was
nothing worth coming
back to .

but there here here and it
will enjoy it .

generally remain it was it
worth it and always happy
!

2 then why did n’t they put
some in ?

then she , you ta are the in
the ?

then ’ why n ’ t they put
some delicious !

3 horrible experience ! horrible ! horrible experience !
4 it was a shame because

we were really looking for-
ward to dining there .

it was a a fun , there and
we have been to .

it really nice shame be-
cause we were really look-
ing forward forward and
fantastic !

5 suffice to stay , this is not a
great place to stay .

suffice to to not stay to this
place is a stay .

suffice is not stay , this is
a great place and always
great !

6 the chicken was weird . the chicken was weird . the chicken was weird .
7 my mom ordered the mar-

garita panini which was
pretty good .

my my margarita was or-
dered which was very good
.

my mom ordered the mar-
garita panini which was
pretty good .

8 i ’m not willing to take the
chance .

i will definitely recom-
mend your time or you .

i ’ m not willing to take the
great .

9 i would say for the price
point that it was unin-
spired .

i had this place at the food
, it ’s super .

i would say for the price
point that it was delicious
.

10 the only pool complaint i
have was from the last day
of our stay .

the waitress was the the
the the time here a last
time

the only pool complaint i
have was from the day was
wonderful !

since no large pretrained language model is used. This would be needed to produce coherent

outputs (Brown et al., 2020), which then produces impressive outputs on style transfer (Reif

et al., 2022). As we argue in Section 3.2.4, our work contributes to the foundation for large

scale pretraining of autoencoder models to be used in Emb2Emb.

Computation time Our experiments have shown that bag-of-vector representations are

more powerful than single-vector representations. However, the increased capacity of BoV-

AE comes at the expense of higher computation time. The size of the latent representation

impacts the computation time in two places: During cross-attention in the decoder and

when computing the mapping. Asymptotically, the decoder’s cross-attention mechanism

computes O (n · |s|) dot-products, where n is the number of vectors in the latent representation

and |s| is the length of the text sequence s. When computing the mapping, both at training

and inference time, we produce a fixed number N of vectors autoregressively, but in most
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Table 3.10: Asymptotic computation time in the Emb2Emb framework as a function of the
latent representation size n and the length of the input text |s|, depending on the type of
autoencoder.

AE type Cross-Attention Decoding Mapping
in general O (n · |s|) O (n2)

fixed O (|s|) O (1)
BoV-AE O (|s|2) O (|s|2)

applications, N can reasonably be bound by a linear function of n (e.g., 2n in style transfer or

0.5n in summarization). The mapping is essentially a Transformer decoder, so both the cross

attention and self attention parts compute O (n2) dot-products. Given that n = 1 for single-

vector AEs and n = O (|s|) for BoV-AEs with L0Drop, we obtain the asymptotic complexities as

shown in Table 3.10.

To assess the empirical impact, we measure the wallclock time of Emb2Emb’s "Inference"

stage (cf. Figure 3.12). We take separate measurements for encoding, mapping, and decoding,

respectively. Since decoding speed depends on the quality of generation (e.g., when the end-

of-sequence symbol is generated late due to repetitions), we do the following to enable fairer

comparisons. We enforce the same fixed number of decoding steps (10) in all models. The

mapping is set to produce as many output vectors as input vectors. We use a batch size of 1,

but note that the results would largely extend to larger batch sizes when binned batching is

used. The results are shown in Table 3.11.

Both the encoding and the mapping stages of Emb2Emb are more expensive in BoV models

than in the fixed-size model. The difference in the encoding stage can be explained by the

overhead through the L0Drop layer, which includes identifying near-zero gates and discarding

their respective vectors. The difference in the mapping grows with higher L0Drop target

ratios. This is expected since the number of autoregressive steps decreases with the target

ratio. Finally, we do not observe any meaningful speed differences between the models at

decoding time. This is somewhat surprising, but could be explained by two factors. First,

the self-attention part of the decoder already has a complexity of O (|s|2), which probably

dominates the total computation time. Secondly, the computation of the dot-product is

easy to parallelize. In summary, we find that BoV models are slower overall, especially in

the mapping. However, since our L0Drop implementation prunes near-zero vectors, lower

target rates mitigated the additional computation overhead. This is especially evident when

comparing training speeds. While L0-0.8 processes 15 sentences per second, L0-0.4 processes

can process 21 (fixed-size: 42).

Ablation on Differentiable Hausdorff In Section 3.2.6, we argue that the min operation

should be replaced by softmin in order to facilitate backpropagation. Here, we test if the

differentiable version is really necessary, that is, we compare Eq. 3.19 to Eq. 3.20. Like above,

we train the two variants with different λst y , and then select the best style transfer score on
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Table 3.11: The number of seconds it takes to process 5% of the validation set (1264 samples)
with a batch size of 1. Lower is better.

Model Encoding Mapping Decoding
fixed 4.8 2.4 51.7

L0-0.4 7.2 12.6 50.1
L0-0.8 7.3 20.6 50.3

the validation set. The difference is substantial: Average Hausdorff reaches 14.6, whereas

differentiable Hausdorff reaches 24.2. We hypothesize that this discrepancy is due to the

difficult nature of the style transfer problem, which requires carefully balancing the two

objectives, content retention (via Hausdorff) and style transfer (via the classifier). This is easier

when the objective functions are smooth, which is the advantage of differentiable Hausdorff.

Ablation on Window Size The window size k determines which bag sizes around the input

bag size we backpropagate from (cmp. Section 3.2.6). Here, we investigates its influence on

the model’s performance. Since the λst y hyperparameter is very sensitive to other model

hyperparameters, we train with varying λst y for each fixed window size and report the best

style transfer score for each window size. In Figure 3.15, we plot the style transfer score as a

function of the window size. Our results indicate that increasing the window size from zero

(score 28.2) is beneficial up to some point (k=5, score 35.8), whereas increasing by too much

(k=20, score 21.2) is detrimental to model performance even compared to a size of zero. We

hypothesize that backpropagating bags that are either very small or very large is detrimental

because it forces the model to adjust its parameters to optimize unrealistic bags, taking away

capacity for fitting realistic bags.

Using Pretrained Autoencoders The Emb2Emb framework is in principle compatible with

any autoencoder. This enables us to leverage large-scale pretraining, which has proven to

be a very powerful method in NLP recently, e.g. with BERT (Devlin et al., 2019). Due to

the extremely high computational cost, training a large BoV-AE on a large general-purpose

corpus is out of scope for this work. However, given the plug and play nature of Emb2Emb,

we can build on top of BART Lewis et al., 2020, which uses similar resources as BERT, but is

trained via a denoising autoencoder objective. We can use this model either as is, or add an

L0Drop layer between the encoder and decoder and finetune the model on our target dataset

Yelp-Sentences.

For finetuning, we use the same training scheme as for our models, namely a denoising

objective where we delete 10% of the input tokens from the input at random. The model is

trained through Adam with a learning rate of 0.00005. We use an L0Drop target rate of 0.4.

Our experimental results show that, when no L0Drop is used, the BART-based model gets to a

validation reconstruction loss of 0.05 after only 5k training steps. This is a strong improvement

over our best BoV models trained from scratch, which plateau at a loss of 1.0, demonstrating
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the power of large scale pretraining. With L0Drop, the model converges at roughly 0.29 after

only 100k of finetuning, despite a relatively low target rate of 0.4.

When training on sentiment transfer downstream, we find the same pattern as for the models

trained from scratch. If we don’t finetune BART at all or finetune without L0Drop, downstream

training is unable to learn to both retain a high self-BLEU score and achieve high transfer

accuracy. Whenever the transfer accuracy goes above 50%, self-BLEU goes to very small scores

(< 1). However, when L0Drop is used, the model achieves 35 points in self-BLEU at a target

accuracy of 61%. This confirms again our hypothesis that L0Drop regularization is needed

to make the model work. In quantitative terms, BART with L0Drop is comparable to the

BoV model L0-0.4, which was trained from scratch and achieves 55% accuracy and 38 points

self-BLEU. Qualitatively, however, we observe that the pretrained model generates more fluent

text. In Table 3.12, we show 10 randomly sampled examples of the model trained from scratch

versus BART finetuned with L0Drop and a target rate of 0.4. While both models are relatively

good at retaining words from the input text, the pretrained model generally produces text that

is more grammatical and coherent than the model trained from scratch (see examples #1, #2,

#3, #6, #9, #10). This can be attributed to the language model of BART, which was pretrained

to generate human-written text from a large general-purpose corpus. Yet, the model outputs

could clearly be improved further. We hypothesize that finetuning on a very domain-specific

target dataset like Yelp-Sentences leads the model to quickly forget knowledge learned during

pretraining, a phenomenon often observed with pretrained language models (Yogatama et al.,

2019). In the future, we would like to train a large BoV-AE model with L0Drop on a large

general-purpose corpus, so that it can be used out of the box in the Emb2Emb framework for

any task.

Sentence Summarization

Experimental Setup In sentence summarization (Rush et al., 2015), the goal is to capture

the essence of a sentence in fewer words. We evaluate on the Gigaword corpus (Graff et al.,

2003) similar to Rush et al., 2015. This corpus consists of more than 8.5 million training

samples, but we use a random subset of 500k to limit the computational cost. Inputs are

on average 27 words long, which is medium length compared to the other two datasets in

this study. We use moderately sized vectors of d=128 and again train different BoV-AEs with

target ratios r = 0.2,0.4,0.6,0.8. When applying the model to the sentence summarization

downstream task, we train using the loss term L (ẑy ) = Lsi m(zx , ẑy )+λlenLlen(ẑy ). This

loss term is conceptually similar to the loss term used for style transfer, except that Llen

denotes the prediction of a regression model trained to predict the length of the input text

from the text’s latent representation (the shorter the better). We train with varying values

of λlen = 0.1,0.2,0.5,1,2,5,10 and select the best model (ROUGE-L) on the development set.

Intuitively, this model learns to retain as much from the input as possible while minimizing

the output length. Note that this model of summarization could certainly be improved further,

e.g. by accounting for relevancy and informativeness of the output (Peyrard, 2019). However,
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Table 3.12: 10 randomly sampled examples from Yelp-Sentences, evaluated on a BoV model
trained with an L0Drop target rate of 0.4 from scratch versus a model initialized with BART
and finetuned with L0Drop of 0.4.

# Input sentence Output of L0-0.4 Output of BART with
L0Drop

1 the restroom situation
alone is enough for any
woman to go crazy .

the restroom situation
alone is enough for the
woman to always good !

great restroom and that
alone is worth it.

2 she would push my moms
hands out of the way and
just plain rude !

she would gain out my
hands out of the way and
so wonderful !

wow, they keep the ladies
hands out!

3 i hate it when it takes
_num_ minutes to get a
cup of coffee .

i makes maggie pointing it
she mr. r ( , and wonderful
!

love it when it takes _num_
minutes to get.

4 see update below . see an frustrating . see update below.
5 the way they submitted

the loan was false which
caused the decline on pur-
pose .

the receptionist they al-
ways the inspection and
she caused the stage is al-
ways !

the way they made the sale
was very.

6 another bad italian take
out story .

another bad italian of take
new notch .

great, good italian pizza.

7 if you want a refrigerator ,
that ’ll be _num_ extra .

if for ajo sons picky ’ ’ ’
mien hemmed and huge !

great place, you ’ll get a
great.

8 get new staff , they were
just terrible !

get the new staff , they
were always terrible !

great food, great staff!

9 i recently visited while
searching for a venue for
a commitment ceremony
and reception .

i found brake while select
for venue for a workout
and and wonderful !

wow, i recently visited this
location for a wedding.

10 this place is why yelp
should allow zero stars .

this place is that yelp who
should not great !

this place is great if you
love starbucks.
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Figure 3.18: Reconstruction loss on the validation set of Gigaword for different autoencoders.
fixed: The bag consists of a single vector obtained by averaging the embeddings at the last
layer of the Transformer encoder. L0-r: BoV-AE with L0Drop target ratio r .

Table 3.13: Results on Gigaword sentence summarization. Scores represent ROUGE-L with
average output words in parentheses. T and T++ denote Transformer and Transformer++,
respectively.

Model T T++
fixed 13.1 (18.3) 13.2 (17.6)

L0-0.2 19.8 (23.2) 18.3 (10.7)
L0-0.4 8.0 (18.7) 16.4 (12.5)
L0-0.6 6.6 (83.5) 14.7 (51.1)
L0-0.8 9.3 (5.1) 13.2 (48.6)

our goal is not to create the best task-specific model possible, so these considerations are out

of scope for this thesis.

The input texts in this task are relatively long. Due to the higher number of vectors in a BoV, it

may be difficult to learn the mapping, especially for large target ratios r . We experiment with

Transformer++ to observe to what extent this can facilitate learning.

Results Figure 3.18 shows the development of the reconstruction loss on the validation set

over the course of 2 million training steps. Despite the moderately large vector dimensionality,

the single-vector bottleneck model achieves only considerably lower reconstruction perfor-

mance than the BoV models. Again, larger target rates r lead to faster convergence, and all BoV

models converge to approximately the same validation loss value (0.9). The only exception is

L0-0.2, which converges to a higher loss value (1.25), but is still vastly stronger than the fixed

size model (3.01).
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However, as shown in Table 3.13, L0-0.2 performs the best on the downstream task, out-

performing the single-vector model by more than 5 ROUGE-L points while simultaneously

requiring much fewer output words. BoV models with higher target ratios than r =0.2 perform

worse. Moreover, the Transformer++ architecture tends to improve results, particularly with

target rates r > 0.2. The ROUGE-L score itself does not improve for r =0.2, but note that this

comes at the expense of more than doubling the output length. Also note that L0-0.6 and

L0-0.8 only obtain relatively high scores because they produce long outputs that even exceed

the length of the input. In fact, for r = 0.6,0.8 no value of λl en produces outputs that are

reasonably good (> 10 ROUGE-L) and short (< 20 BLEU) at the same time.

The above results confirm both our hypotheses: First (H1), it is beneficial to use a BoV model

over a single-vector model to reduce the compression issues induced by the fixed-size bottle-

neck. Secondly (H2), when using a BoV model, it is imperative to regularize the number of

vectors in the bag as a way of smoothing the embedding space, making it easier to learn the

mapping for unsupervised text generation tasks. Moreover, if the number of vectors in the bag

is large, our Transformer++ architecture can substantially facilitate learning the mapping.

3.2.8 Related Work

Unsupervised conditional text generation: Modern unsupervised conditional text generation

approaches are based on either (a) language models (LMs) or (b) autoencoders (AEs). (a)

One type of LM approach explicitly conditions on attributes during pretraining (Keskar et al.,

2019), which puts restrictions on the data that can be used for training. Another type adapts

pretrained LMs for conditional text generation by learning modifications in the embedding

space (Dathathri et al., 2020). These approaches work well because LMs are pretrained with

very large amounts of data and compute power, which results in exceptional generative

ability (Brown et al., 2020; Radford et al., 2019) that even enables impressive zero-shot style

transfer results (Reif et al., 2022). However, in contrast to AEs, LMs are not designed to have

a latent space that facilitates learning in it. We therefore argue that AE approaches could

perform even better than LMs if they were given equal resources. This motivates our research.

(b) A very common approach to AE-based unsupervised conditional text generation is to

learn a shared latent space for input and output corpora that is agnostic to the attribute of

interest (e.g., sentiment transfer (T. Shen et al., 2017), style transfer (Lample et al., 2019),

summarization (P. J. Liu et al., 2019), machine translation (Artetxe et al., 2018)). However, in

these approaches, the decoder is explicitly conditioned on the desired attribute that must be

available for all data points, complicating pretraining on unlabeled data.

In contrast to previous methods, Emb2Emb can be combined with any pretrained autoencoder

even if it was not trained with target attributes in mind. It is therefore very close in spirit to

plug and play language models by Dathathri et al., 2020 who showed how to use pretrained

language models for controlled generation without any attribute conditioning (hence, the

name). It is also similar to pretrain-and-plugin variational autoencoders Duan et al., 2020,
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who learn small adapters with few parameters for a pretrained VAE to generate latent codes

that decode into text with a specific attribute. However, these models cannot be conditioned

on input text, and are thus not applicable to style transfer.

Text Style Transfer The most common approach to text style transfer is to learn a disen-

tangled shared latent space that is agnostic to the style of the input. Style transfer is then

achieved by training the decoder conditioned on the desired style attribute (Fu et al., 2018;

Hu et al., 2017; Lample et al., 2019; D. Li et al., 2019; J. Li et al., 2018; Logeswaran et al., 2018;

T. Shen et al., 2017; Yang et al., 2018; J. J. Zhao et al., 2018), which hinders their employment in

a plug and play fashion. Most methods either rely on adversarial objectives (Fu et al., 2018; Hu

et al., 2017; T. Shen et al., 2017), retrieval (J. Li et al., 2018), or backtranslation (Lample et al.,

2019; Logeswaran et al., 2018) to make the latent codes independent of the style attribute.

Notable exceptions are Transformer-based (N. Dai et al., 2019; Sudhakar et al., 2019), use

reinforcement learning for backtranslating through the discrete space (D. Liu & Liu, 2019),

build pseudo-parallel corpora (Jin et al., 2019; Kruengkrai, 2019), or modify the latent-variable

at inference time by following the gradient of a style classifier (D. Liu et al., 2020; K. Wang et al.,

2019). Similar to our motivation, D. Li et al., 2019 aim at improving in-domain performance

by incorporating out-of-domain data into training. However, because their model again con-

ditions on the target data, they have to train the autoencoder jointly with the target corpus,

defeating the purpose of large-scale pretraining.

Textual Autoencoders Autoencoders are a very active field of research, leading to constant

progress through denoising (Vincent et al., 2010), variational (B. Dai & Wipf, 2019; Higgins

et al., 2017; Kingma & Welling, 2014), adversarial (Makhzani et al., 2016; J. J. Zhao et al., 2018),

and, more recently, regularized (Ghosh et al., 2020) autoencoders, to name a few. Ever since

S. R. Bowman et al., 2016 adopted variational autoencoders for sentences by employing a

recurrent sequence-to-sequence model, improving both the architecture (Gagnon-Marchand

et al., 2019; D. Liu & Liu, 2019; Prato et al., 2019; Semeniuta et al., 2017) and the training

objective (J. Henderson & Fehr, 2023; T. Shen et al., 2020; J. J. Zhao et al., 2018) have received

considerable attention. The goal is typically to improve both the reconstruction and generation

performance (Cifka et al., 2018).

Our general framework is in principle completely agnostic to the type of autoencoder that

is used, as long as it is trained to reconstruct the input. Hence, our framework directly

benefits from any kind of modelling advancement in autoencoder research. However, if the

type of embedding changes, e.g., when moving from single-vector AEs to BoV-AEs, concrete

implementations, such as the mapping or the loss, have to be made with the type of embedding

space in mind.

Manipulations in latent space: Besides Emb2Emb, latent space manipulations for textual

style transfer are performed either via gradient descent (D. Liu et al., 2020; K. Wang et al., 2019)
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or by adding constant style vectors to the input (Montero et al., 2021; T. Shen et al., 2020). In

computer vision, discovering latent space manipulations for image style transfer has recently

become a topic of increased interest, in both supervised (Jahanian et al., 2020; Zhuang et al.,

2021) and unsupervised ways (Härkönen et al., 2020; Voynov & Babenko, 2020). While these

vision methods are similar to Emb2Emb conceptually, they differ from our work in important

ways. First, they focus on the latent space of GANs (Goodfellow et al., 2014), which work

well for image generation but are known to struggle with text (Caccia et al., 2020). Secondly,

images typically have a fixed size, and consequently their latent representations consist of

single vectors. Our work focuses on data of variable size, which may have important insights

for modalities other than text, e.g. videos and speech.

3.2.9 Conclusion

This work addresses a fundamental research question from representation learning: How

do we learn text representations in such a way that NLP tasks, specifically conditional text

generation, can be learned in the latent space? We present Emb2Emb, a framework that

reduces conditional text generation tasks to learning in the embedding space of a pretrained

autoencoder. For learning in a single-vector latent space, we propose an adversarial method

and a neural architecture that are crucial for our method’s success by making learning stay on

the manifold of the autoencoder. For Bag-of-Vectors Autoencoders, we proposed L0Drop regu-

larization, Transformer++, and differentiable Hausdorff to facilitate training in its embedding

space. Controlled experiments revealed that BoV-AEs perform substantially better at learning

in their embedding space when the text is too long to be encoded into a single vector.

The state-of-the-art in practically all language-related tasks relies heavily on large-scale pre-

training, so called Foundation Models (Bommasani et al., 2021) like BERT, BART, and GPT-3,

which requires large amounts of resources. Our study is fundamental in nature; we system-

atically demonstrate the benefits of learning in the embedding space of an autoencoder via

controlled experiments. Nevertheless, our model is in principle fit for the future. A unique

advantage of the Emb2Emb framework is its compatibility with pretrained autoencoders, and

we showed that it benefits immensely from unlabeled data. Moreover, in Section 3.2.7, we dis-

cuss promising results of an initial study that makes the pretrained autoencoder BART (Lewis

et al., 2020) compatible with Emb2Emb by further finetuning it with L0Drop regularization.

This indicates that, given enough compute and data for large-scale pretraining from scratch,

Bag-of-Vectors Autoencoders could have the potential to become a foundation model like

BERT, BART, and GPT-3.
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3.3 Consensus Inference via Emb2Emb

3.3.1 Introduction

In Section 3.1.3, we discussed that Emb2Emb could be a suitable model for unsupervised

opinion summarization of datasets of type B , where inputs and outputs are significantly

different. This is because the autoencoder can, in principle, be trained on a large general-

purpose corpus, which we assume to include text similar to opinion consensus statements.

This gives us a way to generate the desired output from its latent representation. However, a

significant challenge remains: Given only the embeddings of the opinion statements as input,

how do we get to the output’s latent representation?

In this section, we try to develop an Emb2Emb-based model for consensus inference, i.e., a

model that generates the opinion consensus text from multiple opinion statements that are

assumed to have a non-trivial consensus. In doing so, we propose several novel components

that address challenges unique to this task: How do we map from multiple inputs to a single

output? How do we model the relationships between the opinion statements and consensus

statements in the embedding space?

Regarding the former, we propose a straight-forward adaptation of OffsetNet (3.2.2) to multiple

inputs, where we compute an offset vector to be added to the average of input vectors (rather

than the single input vector). Regarding the latter, we propose several losses designed to

capture the characteristics of a consensus, in particular the fact that it should be entailed by

the inputs.

We conduct an experimental evaluation on the IDebate dataset, which we argued to be a

suitable type B dataset (Section 3.1.2). Since our computational budget does not allow for

actual large-scale pretraining of the autoencoder on a general corpus, we train only on the

IDebate data alone (including outputs). This approach yields mixed results. While some of

our proposed components are effective, the absolute quality of the outputs is very low; our

method is unable to improve over simple baselines that just copy the longest / shortest input,

respectively.

Finally, we discuss the reasons for our methods poor performance, and how to improve in the

future.

3.3.2 Method

Task Description

Let X := V ∗ be the discrete space of sequences that can be generated from the vocabulary. We

are given a variable number of n input statements x1, ...,xn ∈X , and the task is to generate a

consensus opinion y ∈X that most of x1, ...,xn can probably agree on, i.e., we need to learn a

function f of the form y = f (x1, ...,xn).
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Figure 3.19: High-level overview of our Emb2Emb-based approach to consensus inference.

Approach Overview

Our approach is based on Emb2Emb, with few modifications needed to adapt to the consensus

inference task. Figure 3.19 provides an overview (cmp. with Figure 3.12). By employing

Emb2Emb to the problem above, we model f as consisting of three components f := Enc◦Φ◦
Dec, where the encoder Enc : X → Z is applied independently to each of x1, ...,xn . The

mapping Φ : Z ∗ →Z produces a latent representation ẑy , which is plugged into the decoder

Dec : Z →X .

Text Autoencoders

In this work, we restrict our experiments to single-vector autoencoders, i.e, zx ∈Rd , as opposed

to multi-vector autoencoders (BoV-AEs). This has several reasons: First, we will evaluate our

model on the IDebate dataset, whose input and output texts are rather short. Since multi-

vector latent representations are most useful when the text cannot be represented by a single

vector, the benefit would be marginal. Second, as our work on Bag-of-Vectors Autoencoders

has shown (3.2.4), the Emb2Emb model becomes more complex in this case.

The idea of modeling unsupervised consensus inference via Emb2Emb relies on the ability

of the autoencoder to model both the input text (opinion statements) and the output text
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(opinion consensus). Conceptually, we believe that a large-scale autoencoder model trained

on a general-purpose corpus would be able to model both. However, training such a model is

expensive and beyond the computational resources available in this thesis. But since IDebate

is a supervised dataset, where both input and output data is available, we can obtain an

autoencoder with the required modeling ability by training it on the concatenation of inputs

and outputs.

Mapping Φ

The biggest conceptual difference between Emb2Emb for consensus inference and Emb2Emb

for single-input conditional text generation lies in the mapping Φ. Formerly, the Φ : Rd →
Rd was a one-to-one mapping, which can be easily modeled via an MLP. But in consensus

inference, Φ : P (Rd ) → Rd ; (zx1 , . . . ,zxn ) 7→ ẑy becomes a mapping from many inputs to one

output, so that a simple MLP is no longer suitable.

Transformer When using BoV-AEs, we also need to condition on inputs in P (Rd ), for which

we use a Transformer decoder. However, the decoder is only needed when generating multiple

output vectors autoregressively. In this case, we only need to generate a single output. Hence,

the straight-forward solution is to use a Transformer encoder architecture. Conveniently,

Transformers treat the inputs as an unordered set and can take in an arbitrary number of

inputs, which are both qualities of consensus inference. For brevity, we refer to this model as

ΦT.

OffsetNet with Transformers Learning the function to abstract from input vectors to the out-

put vector might be difficult for a plain Transformer model. Similar to OffsetNet in Emb2Emb,

we may inject an inductive bias into the model that suggests one of the inputs as a good

starting point, and the learning task reduces to finding an offset vector. But since we have

multiple inputs that are all equally important, we choose their average as the starting point.

Formally, we define

ẑy =ΦOff(zx1 , ...,zxn ) =
1

n

n∑
i =1

zxi +ΦT(zx1 , ...,zxn ).

Loss Function for Consensus Inference

Recall the general Emb2Emb loss (Equation 3.1)

L = Ltask +λadvLadv,
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where Ltask is the task-specific loss and Ladv ensures that the outputs are pushed onto the

manifold of the autoencoder.

Ltask needs to be carefully hand-crafted in order to capture the desired characteristics of an

opinion consensus text. Specifically, our loss consists of the following terms:

Ltask

=λembLemb (make output close to input in embedding space)

+λs⇒iLs⇒i (summary should entail the inputs)

+λi⇒sLi⇒s (each input should entail the summary)

+λBoWLBoW (summary should contain frequent words among inputs)

+λlenLlen (summary should be rather short)

with λemb,λs⇒i,λi⇒s,λBoW ,λlen ∈ [0,∞] being hyperparameters. In the following we discuss

each loss term.

Embedding distance loss The opinion consensus text should be semantically close to the

inputs in the sense that it should be about the same topic. Analogous to style transfer, we

encourage this by minimizing their distance in the embedding space as follows:

Lemb(ẑy ) =
1

n

n∑
i =1

1−cos(zxi , ẑy ) (3.21)

While we are primarily interested in the unsupervised case, it is useful to assess the perfor-

mance from supervised learning, where parallel pairs (x1, . . . ,xn ,y) are available as supervision,

as an upper bound, or for ablations in preliminary experiments. In this case, we can set

Lemb(ẑy ,zy ) = 1−cos(ẑy ,zy ). (3.22)

Entailment Losses In Textual Entailment (Dagan et al., 2006), we are given a textual premise

p ∈X and a textual hypothesis h ∈X and need to determine whether p entails h. Identifying

entailment relations has long been argued to be crucial for (multi-document) summariza-

tion (Dagan et al., 2006; Lacatusu et al., 2006). In the deep learning era, the availability of

large textual entailment datasets (S. Bowman et al., 2015; Williams et al., 2018) has made it

possible to train neural network classifiers, which in turn have been used to guide models in

the summarization task (Pasunuru & Bansal, 2018) and even in the opinion summarization

task (Louis & Maynez, 2022).

Inspired by this prior work, we leverage an entailment classifier as follows. We train a textual

entailment classifier cTE :Rd×Rd → (0,1) that takes two sentence embeddings zp = Enc(p),zh =
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Enc(h) produced by the autoencoder’s encoder, and produces a probability estimate of the

premise p to entail the hypothesis h. The classifier uses the so-called heuristic matching

features (Mou et al., 2016) as input to an MLP classifier, which has been the de-facto standard

for models with siamese neural network approaches (Conneau et al., 2017; Karimi Mahabadi

et al., 2019; Kim et al., 2019). Concretely,

cTE(zp ,zh) =σ(MLP([zp ;zh ;zp −zh ;zp ⊙zh])), (3.23)

where ⊙ denotes element-wise multiplication and σ denotes the sigmoid activation function.

Note that the encoder’s parameters have to be frozen in order to use the classifier within

Emb2Emb later. After training, the classifier itself is frozen.

In Emb2Emb, we leverage entailment signals to guide the predicted embedding via two loss

terms. The first loss, Ls⇒i, is supposed to help the model produce an output that contains the

information from all the inputs:

Ls⇒i(ẑy ) = − 1

n

n∑
i =1

cTE(ẑy ,zxi )

Conversely, the second loss, Ls⇒i, reflects the intuition that the summary comprises of the

information that all inputs can agree on:

Li⇒s(ẑy ) = − 1

n

n∑
i =1

cTE(zxi , ẑy )

These objectives may appear contradictory since entailment in both directions usually implies

equivalence. However, since the inputs are numerous, the output cannot be equivalent to the

input, but must instead produce a condensed version of all the inputs.

Bag-of-Words Seq2Seq models can often fail to remember the exact content of the input in

the fixed-size embedding. This issue may be particularly prevalent in smooth autoencoder

latent spaces, where nearby embeddings might, despite being similar, still differ in important

key words.

To retain key words in particular, we propose the following LBoW, which has also been used

(D. Liu et al., 2020). We assume a Bag-of-Words transformation bow : X → {0,1}|V | that turns a

textual input into a binary vector, where each dimension denotes the presence of a particular

word in the input. We then train a classifier cbow :Rd → (0,1)|V | that predicts the words bow(x)

occurring in the input x ∈X from its embedding Enc(x). Finally, we again freeze that classifier.

When training the consensus inference model, we want to encourage it to produce outputs

that contain the words prevalent in multiple inputs, which we assume to be key words. To this

end, we create an artificial target bag-of-words btarget by retaining the words that appear in at
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least p% of the inputs, where p is a hyperparameter. The additional loss term then results as

LBoW (ẑy ) = CrossEntropyLoss(cbow(ẑy ),btarget).

Length regularization In general, a consensus opinion text should distill the semantics that

all inputs agree with. The more inputs there are, the smaller this overlap will be. By that

observation, it appears natural to assume that opinion consensus texts are relatively short.

Indeed, our analysis of the IDebate dataset has shown that the outputs are shorter than the

average input (cmp. Figure 3.3). Motivated by this observation, we encourage the model to

produce short outputs through a length penalty term. Analogous to previous regularizers,

we train a regression model clen : Rd → R+ that predicts the length of a sentence from their

embeddings. The additional loss term becomes:

Llen(ẑy ) = clen(ẑy ).

3.3.3 Experiments

The purpose of the experiments in this section is to answer two questions: (i) Are our proposed

components effective? (ii) What absolute performance does our Emb2Emb-based model for

consensus inference achieve?

Experimental Setup

Since our method is motivated by its suitability for type B datasets, in these experiments, we

work with the IDebate dataset, which we identified to be of such nature (cmp. Section 3.1.2).

L. Wang and Ling, 2016 crawled this dataset from www.idebate.org and extracted 676 debates

with 2,259 claims and 17,359 arguments in total. We do an 80-20 split of the debates into

training and validation sets. In the terminology of our example Figure 3.1, a debate is akin to a

topic ("free college education"), a claim is akin to a major consensus opinion ("An educated

public benefits our society.") and an argument is akin to an utterance ("Our country needs

more academics.").

As noted before, large-scale pretraining on a general-purpose corpus is very resource-intensive,

and we therefore try to simulate the availability of a large-scale corpus that likely contains

the desired outputs by training the autoencoder on both arguments (i.e., inputs) and claims

(i.e., outputs). We use a 512-dimensional LSTM-based denoising autoencoder with a drop-

probability of 0.1, the same configuration as in our single-vector experiments for Emb2Emb

(3.2.3, Appendix A.1.1). We train it using the Adam optimizer (Kingma & Ba, 2015) for 110,000

steps with an initial learning rate of 0.00001 and a batch size of 64. We use the same pretrained

autoencoder for all experiments.

In all experiments, we train the mapping for 200 epochs via Adam with an initial learning rate
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of 0.0001 and batch size 64. We randomly subsample at most 10 of the inputs, which we found

to work best in preliminary experiments. Moreover, we project all input embeddings to 4096

dimensions before applying Φ. Despite the potential danger for overfitting, we found this to

be helpful for training.

Unless specified otherwise, we report results in terms of BLEU (Papineni et al., 2002), since

this was the main metric used during validation by L. Wang and Ling, 2016, who introduced

the IDebate dataset. Note that although BLEU numbers are reported on a scale from 0 to 100,

they are often very low (< 1).

Supervised Experiments

We first run supervised experiments using the loss in Equation 3.22 in order to investigate the

effect of some components and their best hyperparameter values. Figure 3.20 and Table 3.20.b

show the results in terms of BLEU score on the validation set, which we discuss in detail in the

following.

Adversarial loss term We first test whether the adversarial loss term Ladv can effectively

lead to better outputs as well. We use the same configuration for the discriminator as specified

in Appendix A.2.

Figure 3.20.a shows that, with a good hyperparameter value, the adversarial loss term has

a beneficial effect on the performance. In the following supervised experiments, we use

λadv = 0.008, which we found to work best here.

Effect of Mapping Reducing the mapping to learning an offset vector was previously shown

to be a helpful principle in both the single-vector experiments (OffsetNet, Section 3.2.3) and

the multi-vector experiments (Transformer++, Section 3.2.7). Here, we compare the results

of Random (returns a randomly selected input embedding), Mean (returns the average over

input embeddings), ΦT , and ΦOff .

The results in Table 3.20.b suggest that the offset vector principle is helpful for consensus

inference as well, as ΦOff outperforms ΦT . Moreover, the improvement over Mean shows that

this is the result of learning, and is not merely due to computing the average input embedding,

which is no better than selecting a Random input.

Effect of LBoW Even when parallel input-output pairs are provided, learning to predict the

correct output embedding in Emb2Emb is difficult, and can easily lead to hallucination even

if the predicted embedding is close to the true embedding. To counteract this, we apply the

LBoW loss as an auxiliary loss term in conjunction with supervised learning.
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Figure 3.20: Effect of model components when used with the supervised model.

Figures 3.20.c and 3.20.d show the effects of the hyperparameters λbow and p when training

the ΦT mapping. Compared to not using this loss term, LBoW doubles the performance, with

relatively low sensitivity to the concrete value of λbow. However, the performance deteriorates

when setting p too low or too high. This is expected: When p is too low, too many words will

be considered as key words in the target BoW. When it is too high, the target BoW becomes so

small that the loss does not have an effect.

Unsupervised Experiments

We next turn to unsupervised experiments. The goal here is to understand which loss terms in

the proposed framework are beneficial (Figure 3.20), and put the absolute performance of the

framework in context of simple baselines (Table 3.14). The experimental setup is the same as

in the supervised experiments, except that ΦOff is used by default.

Adversarial loss term As in the supervised experiments, we first test whether the adversarial

loss term Ladv improves performance (Figure 3.21.a). All experiments use λemb = 1,λBoW =

0.025 and p = 0.25, as BoW seemed to be most effective in the supervised case. Figure 3.21.a
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indicates that the adversarial loss is effective in the unsupervised case as well, however, the

benefit is noticably smaller. This mirrors the finding from our previous single-vector Emb2Emb

experiments (Section 3.2.3).

Effect of LBoW Figure 3.21.b shows the effect of LBoW in the unsupervised case when

λemb = 1. Although the effect is mildly beneficial, we observe that it is substantially lower than

in the supervised case. This indicates that Lemb is responsible for most of the performance.

Effect of entailment losses Entailment is often regarded as a crucial element to (multi-

document) summarization. In this experiment, we test whether our proposed Li⇒s and Ls⇒i

have an effect. To this end, we train the classifier cTE on the concatenation of the SNLI (S.

Bowman et al., 2015) and MNLI (Williams et al., 2018) datasets with a learning rate of 0.0001

for 10 epochs, which achieves a validation accuracy of 64.4%.

Figures 3.21.c and 3.21.d show the effects of the losses when training with λemb = 1,λBoW =

0.025. Both losses have a strongly detrimental effect. This can be explained in several ways:

First, the validation accuracy of the entailment classifier is rather weak, considering that even

non-pretrained siamese models achieve 70% accuracy and more (Conneau et al., 2017). How-

ever, this is expected due to the fact that the encoder was not pretrained on entailment data

and frozen thereafter. Second, there is no reason to expect that the entailment classification

abilities of cTE will generalize to out-of-distribution data. In fact, McCoy et al., 2020 find

that models with similar test set performances generalize in unpredictable ways to out-of-

distribution data depending on the local minimum they find during training. As a result, it is

conceivable that the loss of cTE , which is used as a guiding signal in our experiments, shifts

the output embedding in meaningless directions.

Effect of the length regressor We train the length regressor for 10 epochs on data from IDe-

bate with a learning rate of 0.0001. Figure 3.21.e shows the impact of using Llen downstream

as a function of λlen. Best results are achieved with moderate amounts of length regularization,

which improves from 0.74 without regularization to 1.05 with length regularization. Too much

regularization has a detrimental effect, however. This is expected, as the output embeddings

are pushed to contain no information.

Comparison to simple baselines Finally, we compare our model to simple baselines in order

to put its absolute results in context. Concretely, we compare our model to simply selecting the

longest input as output, which is a common baseline in multi-document summarization, and

was also used as a baseline on IDebate by L. Wang and Ling, 2016. However, our analysis has

shown that IDebate outputs are in general shorter than the inputs. Therefore, we also compare

to the shortest input baseline. For our model, we use the hyperparameters that we found to

work best in each of the previous experiments. Following L. Wang and Ling, 2016, we report
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Figure 3.21: Effect of model components when used with the unsupervised model.
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Model BLEU R(OUGE)-L R-1 R-2 R-3 R-4 METEOR
Longest Input 0.7 16.2 20.6 4.0 1.3 0.4 6.5
Shortest Input 3.0 14.8 16.8 5.2 2.5 1.6 10.0

Ours 0.9 14.6 17.2 2.5 0.6 0.2 8.1

Table 3.14: Test set results in comparison to simple baselines.

results on multiple metrics apart from BLEU (Papineni et al., 2002), namely ROUGE (C.-Y. Lin,

2004) and METEOR (Banerjee & Lavie, 2005).

The results are shown in Table 3.14. While our method produces better results than the longest

input according to most metrics, it is worse than the shortest input. Since our method cannot

outperform such simple baselines, it is clear that it performs rather poorly in absolute terms.

In the next section, we discuss possible reasons and how to address them in future work.

3.3.4 Discussion

The results from our experiments are mixed. On the one hand, they demonstrate that several

of our proposed model components are effective: First, we again confirm the effectiveness of

the adversarial loss term on consensus inference. Although the effect is smaller when training

in an unsupervised way, the strong effect in the supervised case (cmp. Figure 3.20.a) shows

that the adversarial loss term is crucial to the success of Emb2Emb, at least when working with

single-vector representations. Second, the inductive bias of learning an offset vector to be

added to the input representation, which we initially proposed for style transfer and sentence

simplification in Emb2Emb, also proves effective in consensus inference (cmp Table 3.20.b),

suggesting some level of generality of this idea for conditional text generation. Third, we

proposed two consensus inference specific losses, LBoW and Llen, which have beneficial

effects on the output.

On the other hand, it is clear from the comparison with simple baselines that our model does

not perform at a satisfactory level (cmp. Table 3.14). This could have multiple reasons. First,

we are not able to model entailment well enough. Although identifying entailment relations is

crucial to the task of consensus inference, our proposed loss terms only decrease performance.

We attribute this to the generally poor performance of our trained entailment classifier. Note,

however, that our results are equally poor in the unsupervised case and the supervised case.

Therefore, our way of modeling the consensus inference task does not appear to be the core

problem.

Instead, we believe that the autoencoder, whose performance affects both supervised and

unsupervised training, is too weak to produce good results. Since it was trained on data from

only the IDebate dataset, which contains less than 20,000 utterances in total, the autoencoder’s

ability to embed an input into a semantically meaningful embedding space and simultane-

ously reconstruct well is very limited. We hypothesize that without large-scale autoencoder
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pretraining, which is infeasible with the resources available for this study, we cannot train

a reasonably good model a type B dataset, which contains almost no data with the desired

output characteristics.

Finally, the use of metrics that are primarily based on n-gram overlap, like BLEU and ROUGE,

may be considered a limitation of our study, since they are not well-suited for measuring perfor-

mance in opinion summarization, as was also observed by recent studies on this task (Bhaskar

et al., 2022; Bilal et al., 2022). Metrics such as BERTScore (T. Zhang et al., 2020) or BLEURT (Sel-

lam et al., 2020), which measure semantic similarity, would likely be better suited. However,

these were only popularized after the experiments in this study were conducted. Moreover,

we do not expect that different metrics would change the conclusions from this study, since

the observation that our method is unable to beat very simple baselines is consistent across

several metrics, as Table 3.14 shows.

3.4 Conclusion

Powered by their amenability to scale, large language models have shown that optimizing for a

single, generic objective, namely predicting the next token in the sequence, can result in text

representation models of unprecedented performance and generality. In this chapter, however,

we have argued that their applicability is not universal: To date, there is no convincing scalable

text representation learning method to tackle a task like large-scale opinion summarization.

In this pursuit, we proposed Emb2Emb, a method for learning conditional text generation

tasks in the embedding space of an autoencoder. Emb2Emb possesses the characteristics that

we aspire to in this thesis:

(1) Generality: It is a general text representation learning method for conditional text gen-

eration tasks. If parallel data is available, it can be trained on any task out of the box

by learning to map the embedding of the input to the embedding of the output. Some

components of our framework, like the adversarial loss term and the idea of learning

offset vectors, appear to also be generally applicable, as we have shown them to be

helpful for multiple tasks.

(2) Cost reduction: Due to the plug and play nature of Emb2Emb, our framework can be

used with any trained autoencoder. In principle, a single autoencoder pretrained on a

general-purpose corpus could be used for a variety of tasks, analogous to foundation

models (e.g., BERT). Our experiments revealed that this reduces the amount of labeled

data required downstream, i.e., factor D in the Green AI equation.

(3) Amenability to scale: The performance of Emb2Emb depends largely on the quality

of the pretrained autoencoder. For consensus inference, where only little data for

pretraining is available, our proposed model has shown poor absolute performance. On

sentiment transfer datasets, however, where more than half a million text inputs are

available, our model has shown decent results comparable to the state-of-the-art at the
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time when the research was conducted. This suggests that our method becomes better

with increasing scale.

Unfortunately, in this study, it was not feasible to test the potential of Emb2Emb at a large

scale due to the high computational cost of pretraining. In the future, we would like to train a

large autoencoder model on a general-purpose corpus such as Wikipedia and the book corpus,

and test it in conjunction with Emb2Emb on several downstream tasks.

Of course, the method itself also has room for improvement. First, while denoising autoen-

coders worked well for our experiments on style transfer, we did not thoroughly study the

potential of different types of autoencoders, e.g., variational (S. R. Bowman et al., 2016; J. Hen-

derson & Fehr, 2023) or adversarial autoencoders (Makhzani et al., 2016). As our experiments

based on BoV-AEs with L0Drop regularization have shown, the type and amount of regulariza-

tion strongly influences downstream performance. Moreover, we believe that the ability to

learn conditional text generation tasks in the latent space would be a useful evaluation metric

for autoencoders that complements existing ways of evaluation. Second, in the unsupervised

case, our method still requires hand-designing loss functions suitable for the specific task,

which can also be difficult to balance. Finally, it is unclear how well our proposed consensus

inference model would perform even with large scale training. While many components of the

training loss seem to improve performance, future research will have to focus on how to train

a strong and robust entailment classifier such that it provides a useful signal in our framework.
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4 Tuning Efficient Optimization of Neu-
ral Networks

Chapter summary

When a deep learning practitioner faces a new dataset or a new architecture, they need

to decide on an optimizer for training their network. Since they want to achieve a

performance R with as low cost Cost (R) ∝ E ·D ·H as possible, they need to consider two

aspects: 1) What performance will an optimizer yield, and 2) how many hyperparameter

configurations H do they need to try? In this chapter, we propose the first optimizer

benchmarking protocol that takes both these aspects into account. We assume that

every optimizer specifies a distribution over admissible hyperparameter values. For each

optimizer, we then tune hyperparameters via random search, where configurations are

drawn independently, and compute the expected validation performance after a budget

of K trials. Evaluating a variety of optimizers on an extensive set of standard datasets and

architectures, our results indicate that Adam is the most practical solution, particularly

in low-budget scenarios.

Publication(s) in this chapter

This chapter is based on the following paper:

• Sivaprasad*, P. T., Mai*, F., Vogels, T., Jaggi, M. & Fleuret, F. (2020). Optimizer Benchmarking

Needs to Account for Hyperparameter Tuning. ICML 2020.

* : Equal contribution
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4.1 Introduction

First-order stochastic optimizers (Robbins & Monro, 1951) are general learning methods for

any scale: They can be used to fit any number of parameters of a differentiable function, and

mini-batching enables training on datasets of any size. Today, virtually every deep learning

system is trained via a variant such as Adam (Kingma & Ba, 2015). The specific choice of

optimizer can be a determining factor in the success of training. Hence, a multitude of first-

order stochastic optimizers have been proposed. They have varying algorithmic components

like momentum (Sutskever et al., 2013) and adaptive learning rates (Duchi et al., 2011; Kingma

& Ba, 2015; Tieleman & Hinton, 2012). As the field grows with newer variants being proposed,

the standard method to benchmark the performance of these optimizers has been to compare

the best possible generalization performance. In Section 1.1.2 we argue that in practice an

even more important characteristic is the performance achievable with available resources.

The performance of optimizers strongly depends on the choice of hyperparameter values such

as the learning rate. In the machine learning research community, the sensitivity of models to

hyperparameters has been of great debate recently, where in multiple cases, reported model

advances did not stand the test of time because they could be explained by better hyperpa-

rameter tuning (Dodge et al., 2019; Dodge et al., 2020; P. Henderson et al., 2018; Lucic et al.,

2018; Melis et al., 2018). This has led to calls for using automatic hyperparameter optimization

methods (HPO) with a fixed budget for a fairer comparison of models (Eggensperger et al.,

2019; Hutter et al., 2019; Sculley et al., 2018). This eliminates biases introduced by humans

through manual tuning. For industrial applications, automated machine learning (AutoML,

(Hutter et al., 2019)), which has automatic hyperparameter optimization as one of its key con-

cepts, is becoming increasingly more important. In all these cases, an optimization algorithm

that achieves good performances with relatively little tuning effort is arguably substantially

more useful than an optimization algorithm that achieves top performance, but reaches it only

with a lot of careful tuning effort. Hence, we advocate that benchmarking the performance

obtained by an optimizer must not only avoid manual tuning as much as possible, but also

has to account for the cost of tuning its hyperparameters to obtain that performance. This

mirrors the call for Green AI (Schwartz et al., 2020), as described in Section 1.1.2, who propose

to measure the cost Cost (R) of achieving a result (i.e., performance) R as Cost (R) ∝ E ·D ·H :

The processing time E is largely determined by the forward and backward passes through the

model rather than the optimizer. The dataset size D is kept fixed when comparing different

optimizers. In contrast, the amount of hyperparameter tuning H necessary to reach R is

substantially impacted by how easy it is to tune the optimizer.

Works that propose optimization techniques show their performance on various tasks as

depicted in Table 4.1. It is apparent that the experimental settings, as well as the network archi-

tectures tested, widely vary, hindering a fair comparison. The introduction of benchmarking

suites like DEEPOBS (Schneider et al., 2019) have standardized the architectures tested on,

however, this does not fix the problem of selecting the hyperparameters fairly. Indeed, recent

papers studying optimizer performances may employ grid search to select the best values,
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Table 4.1: Experimental settings shown in the original papers of popular optimizers. The large
differences in test problems and tuning methods make them difficult to compare. γ denotes
learning rate, µ denotes momentum, λ is the weight decay coefficient.

Method Datasets Network architecture Parameter tuning methods

SGD with momentum (Sutskever
et al., 2013)

Artificial datasets Fully-connected µ = 0.9 for first 1000 updates

MNIST LSTM then µ ∈ {0,0.9,0.98,0.995}.
other schedules for µ are used
& log10(γ) ∈ {−3,−4,−5,−6}

Adagrad (Duchi et al., 2011) ImageNet ranking Single layer Perfomance on dev-set
Reuter RCV1 Handcrafted features
MNIST Histogram features
KDD Census

Adam (Kingma & Ba, 2015) IMDb Logistic regression β1 ∈ {0,0.9}
MNIST Multi-layer perceptron β2 ∈ {0.99,0.999,0.9999}
CIFAR 10 Convolutional network log10(γ) ∈ {−5,−4,−3,−2,−1}

AdamW (Loshchilov & Hutter,
2019)

CIFAR 10 ResNet CNN log2(γ) ∈ {−11,−10 · · ·−1,0}

ImageNet 32×32 l og2(λ) ∈ l og2(10−3)+ {−5,−4, . . . ,4}

but the search spaces are still selected on a per-dataset basis, introducing significant human

bias (Choi et al., 2019; Schneider et al., 2019; Shah et al., 2018; Wilson et al., 2017). Moreover,

as only the best obtained performance is reported, it is unclear how a lower search budget
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Figure 4.1: Hyperparameter optimization budget affects the performance of optimizers. We
show the probability of finding a hyperparameter configuration for an optimizer that performs
the best at a given search budget on any task (sampled from our benchmark). This is encoded
by the height of the respective area in the chart. Generally, we see that tuning more hyperpa-
rameters becomes more useful with higher budgets. On our 9 diverse tasks that include vision
problems, natural language processing, regression and classification, tuning only the learning
rate for Adam is the most reliable option, even at large budgets.
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would impact the results. This leads us to the question: how easy is an optimizer to use, i.e.

how quickly can an automatic search method find a set of hyperparameters for that optimizer

that result in satisfactory performance?

In this work, we introduce a simple benchmarking procedure for optimizers that addresses

the discussed issues. By evaluating on a wide range of 9 diverse tasks, we contribute to the

debate of adaptive vs. non-adaptive optimizers (J. Chen et al., 2021; Choi et al., 2019; Shah

et al., 2018; Wilson et al., 2017). To reach a fair comparison, we experiment with several SGD

variants that are often used in practice to reach good performance. Although a well-tuned

SGD variant is able to reach the top performance in some cases, our overall results clearly

favor Adam (Kingma & Ba, 2015), as shown in Figure 4.1.

4.2 The Need to Incorporate Hyperparameter Optimization into

Benchmarking

The problem of optimizer benchmarking is two-fold as it needs to take into account

1. how difficult it is to find a good hyperparameter configuration for the optimizer,

2. the absolute performance of the optimizer.

To see why both are needed, consider Figure 4.2.a, which shows the loss of four different

optimizers as a function of their only hyperparameter θ (by assumption). If we only consider

requirement #1, optimizer C would be considered the best, since every hyperparameter

value is the optimum. However, its absolute performance is poor, making it of low practical

value. Moreover, due to the same shape, optimizers A and B would be considered equally

good, although optimizer A clearly outperforms B. On the other hand, if we only consider

requirement #2, optimizers B and D would be considered equally good, although optimizer

D’s optimum is harder to find.

As we discuss in Section 4.3, no work on optimizer benchmarking conducted prior to ours takes

both requirements into account. Here we present a formulation that does so in Procedure 1.

We have already established that fairly comparing optimizers needs to account for how easy

it is to find good hyperparameter values. When proposing new optimization methods, most

often algorithm designers only specify the permissible set of values the hyperparameters can

take, and informally provide some intuition of good values. For example, for Adam, Kingma

and Ba, 2015 boundβ1,β2 to [0,1) and specify that they should be close to 1. These are valuable

information for users of their algorithm, but they do not allow to formally incorporate that

information into a benchmarking procedure. Instead, we argue that we need to redefine what

constitutes an optimizer in such a way that prior knowledge over reasonable hyperparameter

values is included.
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4.2.a: Illustration. It is important to consider
both the absolute performance of optimizers as
well as the tuning effort to get to good perfor-
mances.

Hyperparameter θ

E
xp

ec
te

d
lo

ss
L

(θ
)

Optimizer F
Optimizer E

θ⋆F
θ⋆E

4.2.b: Illustration. While optimizer E can achieve
the best performance after careful tuning, opti-
mizer F is likely to provide better performance
under a constrained HPO budget.

Procedure 1 Benchmark with ‘expected quality at budget’

Input: Optimizer O, cross-task hyperparameter prior ΘO , task T , tuning budget B
Initialization: Pre-compute a library of size ≫B with validation losses achieved on task T
with optimizer O using hyper-parameters sampled from ΘO .
Initialize l i st ← [ ].
for R repetitions do

Simulate hyperparameter search with budget B :
– S ← sample B elements from library.
– l i st ← [BEST(S), . . . l i st ].

end for
return MEAN(l i st ), or other statistics

Definition. An optimizer is a pair M = (UΘ, p(z)Θ), which applies its update rule U (St ;Θ) at

each step t depending on its current state St . It is parameterized through N hyperparameters

Θ = (θ1, . . . ,θN ) with respective permissible values θi ∈ Hi ∀i , and p(z)Θ : (Θ→ R) defines a

probability distribution over the hyperparameters.

In the example above, we could describe the intuition that β1,β2 should be close to 1 by the

random variables β̂1 = 1−10c1 , β̂2 = 1−10c2 , where c1,c2 ∼U (−10,−1).

Let L (Θ1) refer to the performance (say, test loss) of M with the specific hyperparameter

choice Θ1.

Let us assume that there are two optimizers E & F, both with a single hyperparameter θ, but no

prior knowledge of particularly good values, i.e., the prior is a uniform distribution over the

permissible range. Let their loss surface be LE and LF , respectively. As Figure 4.2.b shows,

the minimum of LE is lower than that of LF (denoted by θ⋆E and θ⋆F ) i.e. LE (θ⋆E ) <LF (θ⋆F ).
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However, the minimum of LE is much sharper than that of LF , and in most regions of the

parameter space F performs much better than E. This makes it easier to find configurations that

perform well. This makes optimizer-F an attractive option when we have no prior knowledge

of the good parameter settings. Previous benchmarking strategies compare only θ⋆E and θ⋆F . It

is obvious that in practice, optimizer-F may be an attractive option, as it gives ‘good-enough’

performance without the need for a larger tuning budget.

We incorporate the relevant characteristics of the hyperparameter optimization surface de-

scribed above into benchmarking through Procedure 1. In the proposed protocol, we use

Random Search (Bergstra & Bengio, 2012) with the optimizers’ prior distribution to search

the hyperparameter space. The quality of the optimizers can then be assessed by inspecting

the maximum performance attained after k trials of random search. However, due to the

stochasticity involved in random search, we would usually have to repeat the process many

times to obtain a reliable estimate of the distribution of performances after budget k. We

instead use the bootstrap method (Tibshirani & Efron, 1993) that re-samples from the empiri-

cal distribution (termed l i br ar y in Procedure 1). When we need the mean and variance of

the best attained performance after budget k, we use the method proposed by Dodge et al.,

2019 to compute them exactly in closed form. We provide the details of the computation in

Appendix B.4.

Our evaluation protocol has distinct advantages over previous benchmarking methods that

tried to incorporate automatic hyperparameter optimization methods. First, our evaluation

protocol is entirely free of arbitrary human choices that bias benchmarking: The only free

parameters of random search itself are the search space priors, which we view as part of the

optimizer. Secondly, since we measure and report the performance of Random Search with

low budgets, we implicitly characterize the loss surface of the hyperparameters: In terms

of Figure 4.2.b, optimizer-F with its wide minimum will show good performance with low

budgets, whereas optimizer-E can be expected to show better performance with high budgets.

Such characterizations would not be possible if one only considered the performance after

exhausting the full budget. Finally, our evaluation protocol allows practitioners to choose the

right optimizer for their budget scenarios.

Discussion of alternative choices In theory, our general methodology could also be applied

with a different hyperparameter optimization technique that makes use of prior distributions,

e.g., drawing the set of initial observations in Bayesian methods. However, those usually

have additional hyperparameters, which can act as potential sources of bias. Moreover, the

bootstrap method is not applicable when the hyperparameter trials are drawn dependently,

and repeating the hyperparameter optimization many times is practically infeasible.

In our protocol we consider the number of random search trials as the unit of budget, and

not computation time. This is done so as to not violate the independence assumption in the

method by Dodge et al., 2019 in Appendix B.4. We, empirically, show in Appendix B.6 that the
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conclusions of this work are still valid when time is used as the unit of budget as well.

4.3 Related Work

Benchmarking of optimizers is a relatively unstudied subject in literature. Schneider et al.,

2019 recently released a benchmark suite for optimizers that evaluates their peak performance

and speed, and the performance measure is assessed as the sensitivity of the performance to

changes of the learning rate. Our work primarily takes its genesis from the study by Wilson

et al., 2017 that finds SGD-based methods as easy to tune as adaptive gradient methods. They

perform grid search on manually chosen grids for various problems and conclude that both

SGD and Adam require similar grid search effort. However, their study lacks a clear definition

of what it means to be tunable (easy-to-use) and tunes the algorithms on manually selected,

dataset dependent grid values. The study by Shah et al., 2018 applies a similar methodology

and comes to similar conclusions regarding performance. Since both studies only consider

the best parameter configuration, their approaches cannot quantify the efforts expended to

find the hyperparameter configuration that gives the best setting; they would be unable to

identify the difference between optimizer among B and D in Figure 4.2.a. In contrast, the

methodology in our study is able to distinguish all the cases depicted in Figure 4.2.a.

There exist few works that have tried to quantify the impact of hyperparameter setting in ML

algorithms. For decision tree models, Mantovani et al., 2018 count the number of times the

tuned hyperparameter values are (statistically significantly) better than the default values.

Probst et al., 2019 define tunability of an ML algorithm as the performance difference between

a reference configuration (e.g., the default hyperparameters of the algorithm) and the best

possible configuration on each dataset. This metric is comparable across ML algorithms,

but it disregards entirely the absolute performance of ML algorithms; thereby being unable

to differentiate between optimizers B and D in Figure 4.2.a. After the publication of our

study, Xiong et al., 2020 argue that random search does not accurately reflect the practice

of hyperparameter tuning. They propose to use the HPO algorithm HyperBand (L. Li et al.,

2017) instead, which terminates unsuccessful runs early, similar to how a human would

manually tune hyperparameters. The authors show that empirically HyperBand finds good

hyperparameter values at a similar speed as humans. However, HyperBand comes with new

hyperparameter of its own, re-introducing sources of potential bias which we aim to eliminate

with our protocol. Moreover, trials are not independent, requiring to repeat the process several

times, which can be prohibitively expensive.

In a concurrent study, Choi et al., 2019 show that there exists a hierarchy among optimizers

such that some can be viewed as specific cases of others and thus, the general optimizer

should never under-perform the special case (with appropriate hyperparameter settings).

Like in our study, they suggest that the performance comparison of optimizers is strongly

predicated on the hyperparameter tuning protocol. However, their focus is on the best possible

performance achievable by an optimizer and does not take into account the tuning process.
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Also, the presence of a hierarchy of optimizers does not indicate how easy it is to arrive at the

hyperparameter settings that help improve the performance of the more general optimizer.

Moreover, while the authors claim their search protocol to be relevant for practitioners, the

search spaces are manually chosen per dataset, constituting a significant departure from a

realistic AutoML scenario considered in our work. Since, the focus is only on the best attainable

performance, it construed as being benchmarking theoretically infinite budget scenarios.

Dodge et al., 2019 propose to report the performance on the validation set along with the test

set performance. They note that the performance conclusions reached by previously estab-

lished NLP models differ widely from the published works when additional hyperparameter

tuning budget is considered. They recommend a checklist to report for scientific publications

that includes details of compute infrastructure, runtime, and more importantly the hyperpa-

rameter settings used to arrive at those results like bounds for each hyperparameter, HPO

budget and tuning protocols. They recommend using expected validation performance at a

given HPO budget as a metric, along with the test performance. After our study was conducted,

R. Tang et al., 2020 show that the estimator by Dodge et al., 2019 is biased and propose an

unbiased estimator. Comparing both estimators empirically, Dodge et al., 2021 find that the

biased estimator still leads to fewer incorrect conclusions because the unbiased estimator has

a substantially higher variance.

There has been recent interest in optimizers that are provably robust to hyperparameter

choices, termed the APROX family (Asi & Duchi, 2019a, 2019b). Asi and Duchi experimentally

find that, training a Residual network (He et al., 2016) on CIFAR-10, SGD converges only for

a small range of initial learning rate choices, whereas Adam exhibits better robustness to

learning rate choices; their findings are in line with our experiments that it is indeed easier to

find good hyperparameter configurations for Adam.

Metz et al., 2020 propose a large range of tasks, and propose to collate hyperparameter

configurations over those. They show that the optimizer settings thus collated, that are

problem agnostic like us, generalize well to unseen tasks too.

4.4 Optimizers and Their Hyperparameters

In §4.2, we argued that an optimizer is a combination of update equation and the probabilistic

prior on the search space of the hyperparameter values. Since we are considering a setup akin

to AutoML with as little human intervention as possible, these priors have to be independent

of the dataset. As we view the hyperparameter priors as a part of the optimizer itself, we argue

that they should be prescribed by algorithm designers themselves in the future. However, in

the absence of such prescriptions for optimizers like Adam and SGD, we provide a simple

method to estimate suitable priors in §4.4.2.

90



Tuning Efficient Optimization of Neural Networks Chapter 4

4.4.1 Parameters of the Optimizers

To compare the tunability of adaptive gradient methods to non-adaptive methods, we chose

the most commonly used optimizers from both the strata; SGD and SGD with momentum for

non-adaptive methods, and Adagrad and Adam for adaptive gradient methods. Since adaptive

gradient methods are said to work well with their default hyperparameter values already, we

additionally employ a default version of Adam where we only tune the initial learning rate and

set the other hyperparameters to the values recommended in the original paper (Kingma & Ba,

2015) (termed Adam-LR). Such a scheme has been used by Schneider et al., 2019 too. A similar

argument can be made for SGD with momentum (termed SGD-M): thus we experiment with

a fixed momentum value of 0.9 (termed SGD-MC ), which we found to be the most common

momentum value to lead to good performance during the calibration phase.

In addition to standard parameters in all optimizers, we consider weight decay with SGD too.

SGD with weight decay can be considered as an optimizer with two steps where the first step

is to scale current weights with the decay value, followed by a normal descent step (Loshchilov

& Hutter, 2019). Therefore, we conduct two additional experiments for SGD with weight-

decay: one where we tune weight-decay along with momentum (termed SGD-MW), and one

where we fix it to 10−5 (termed SGD-MC WC ) along with the momentum being fixed to 0.9,

which again is the value for weight decay we found to be the best during calibration. We

incorporate a “Poly” learning rate decay scheduler (γt = γ0 × (1− t
T )p ) (W. Liu et al., 2015) for

SGD-MC WC (termed SGD-MC D). This adds only one tunable hyperparameter (exponent p).

We also experimented with Adam with learning rate decay scheduler (termed Adam-WC D),

but reserve this discussion for the Appendix B.2, as it did not yield sizeable improvements over

Adam-LR or Adam in the problems tested. The full list of optimizers we consider is provided in

Table 4.4, out of which we discuss Adam-LR, Adam, SGD-MC WC , SGD-MW, and SGD-MC D in

the main body. The rest of them are presented in Appendix B.2.

Manually defining a specific number of epochs can be biased towards one optimizer, as one

optimizer may reach good performance in the early epochs of a single run, another may reach

higher peaks more slowly. In order to alleviate this, it would be possible to add the number of

training epochs as an additional hyperparameter to be searched. Since this would incur even

higher computational cost, we instead use validation set performance as stopping criterion.

Thus we stop training when the validation loss plateaus for more than 2 epochs or if the

number of epochs exceeds the predetermined maximum number as set in DEEPOBS.

4.4.2 Calibration of Hyperparameter Prior Distributions

As mentioned previously, we use random search for optimizing the hyperparameters, which

requires distributions of random variables to sample from. Choosing poor distributions to

sample from impacts the performance, resulting in unfair comparisions, and may break

requisite properties (e.g. learning rate is non-negative). For some of the parameters listed in

Table 4.2, obvious bounds exist due their mathematical properties, or have been prescribed
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by the optimizer designers themselves. For example, Kingma and Ba, 2015 bound β1,β2 to

[0,1) and specify that they are close to 1. In the absence of such prior knowledge, we devise a

simple method to determine the priors.

We use Random Search on a large range of admissible values on each task specified in DEEP-

OBS to obtain an initial set of results. We then retain the hyperparameters which resulted

in performance within 20% of the best result obtained. For each of the hyperparameters in

this set, we fit the distributions in the third column of Table 4.2 using maximum likelihood

estimation. Several recent works argue that there exists a complex interplay between the

hyperparameters (Shallue et al., 2019; Smith et al., 2018), but we did not find modelling these

to be helpful (appendix B.8). Instead, we make a simplifying assumption that all the hyper-

parameters can be sampled independent of each other. We argue that these distributions

are appropriate; the only condition on learning rate is non-negativity that is inherent to the

log-normal distribution, momentum is non-negative with a usual upper bound of 1, βs in

Adam have been prescribed to be less than 1 but close to it, ϵ is used to avoid division by zero

and thus is a small positive value close to 0. We did not include p of the learning rate decay

schedule in the calibration step due to computational constraints, and chose a fixed plausible

range such that the value used by W. Liu et al., 2015 is included. We report the parameters of

the distributions obtained after the fitting in Table 4.2. The calibration step is not included in

computing the final performance scores, as the calibrated priors are re-usable across tasks

and datasets.

Table 4.2: Optimizers evaluated. For each hyperparameter, we calibrated a ‘prior distribution’
to give good results across tasks (Section 4.4.2). U [a,b] is the continuous uniform distribution
on [a,b]. Log-uniform(a, b) is a distribution whose logarithm is U [a,b]. Log-normal(µ,σ) is a
distribution whose logarithm is N (µ,σ2).

Optimizer Tunable parameters Cross-task prior

SGD Learning rate Log-normal(-2.09, 1.312)
Momentum U [0,1]
Weight decay Log-uniform(-5, -1)
Poly decay (p) U [0.5,5]

Adagrad Learning rate Log-normal(-2.004, 1.20)

Adam Learning rate Log-normal(-2.69, 1.42)
β1,β2 1 - Log-uniform(-5, -1)
ϵ Log-uniform(-8, 0)

4.5 Experiments and Results

To assess the performance of optimizers for the training of deep neural networks, we bench-

mark using the open-source suite DEEPOBS (Schneider et al., 2019). The architectures and

datasets we experiment with are given in Table 4.3. We refer the reader to Schneider et al.,
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Table 4.3: Models and datasets used. We use the DeepOBS benchmark set (Schneider et al.,
2019). Details are provided in Appendix B.1.

Architecture Datasets

Convolutional net FMNIST, CIFAR10/100
Variational autoencoder FMNIST, MNIST
Wide residual network SVHN
Character RNN Tolstoi’s War and Peace
Quadratic function Artificial datatset
LSTM IMDB

Table 4.4: Optimizers and tunable parameters. SGD(γ,µ,λ) is SGD with γ learning rate,
µ momentum, λ weight decay coefficient. Adagrad(γ) is Adagrad with γ learning rate,
Adam(γ,β1,β2,ϵ) is Adam with learning rate γ,

Optimizer label Tunable parameters

SGD-LR SGD(γ,µ=0,λ=0)
SGD-M SGD(γ,µ,λ=0)
SGD-MC SGD(γ,µ=0.9,λ=0)
SGD-MC WC SGD(γ,µ=0.9,λ=10−5)
SGD-MC D SGD(γ,µ=0.9,λ=10−5) + Poly Decay(p)
SGD-MW SGD(γ,µ,λ)

Adagrad Adagrad(γ)
Adam-LR Adam(γ, β1=0.9, β2=0.999, ϵ=10−8)
Adam Adam(γ,β1,β2,ϵ)
Adam-WC D Adam-LR + Poly Decay(p)

2019 for specific details of the architectures. To obtain a better balance between vision and

NLP applications, we added an LSTM network with the task of sentiment classification in the

IMDB dataset (Maas et al., 2011), details of which are provided in Appendix B.1.

We aim at answering two main questions with our experiments: First, we look at the perfor-

mance of various optimizers examined. Related to this, we investigate what effect the number

of hyperparameters being tuned has on the performance at various budgets (§4.5.1). Second,

we consider a problem typically faced in an AutoML scenario: If no knowledge is available a

priori of the problem at hand, but only the tuning budget, which optimizer should we use

(§4.5.2)?

4.5.1 When to Tune More Hyperparameters

To answer the question at which budgets tuning more hyperparameters is preferable, we

compare Adam-LR to Adam, and SGD-MW to SGD-MC WC (Table 4.4). To this end, we show

performance for increasing budgets K in Figure 4.3. Plots for the other optimizers and budgets
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are given in Figure B.1.
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Figure 4.3: Performance of Adam-LR, Adam, SGD-MC WC , SGD-MW, SGD-MC D at various
hyperparameter search budgets. Image is best viewed in color. Some of the plots have been
truncated to increase readability.

On all classification tasks, Adam-LR and SGD-MC WC obtain higher performances on average

than Adam and SGD-MW, respectively, till the budget of 16. Moreover, the first quartile is

often substantially lower for the optimizers with many hyperparameters. For higher budgets,

both outperform their counterparts on CIFAR-100 and FMNIST on average and in the second

quartile, and Adam outperforms Adam-LR on IMDB as well. However, even for the largest

budgets, Adam’s first quartile is far lower than Adam-LR’s.

On the regression tasks, tuning more hyperparameters only helps for SGD-MW on MNIST-VAE.

In all other cases, tuning additional hyperparameters degrades the performance for small
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Figure 4.4: Aggregated relative performance of various optimizers across datasets

budgets, and achieves similar performance at high budgets.

4.5.2 Summarizing across datasets

We, now, turn to the question of how our choice of optimizer would change in a setting where

nothing is known about the problem, à la AutoML. To this end, we summarize performances

across all datasets. First, for a given budget, we compute the probability that an optimizer

outperforms the others on a randomly chosen task. In Figure 4.1, we compare Adam, Adam-LR,

SGD-MC WC , and SGD-MC D, because we found them to yield the overall best results. First, the

results reflect the findings from Section 4.5.1 in that tuning more hyperparameters (Adam)

becomes a better relative option the more budget is available. However, throughout all tuning

budget scenarios, Adam-LR remains by far the most probable to yield the best results.

Figure 4.1 shows that Adam-LR is the most likely to get the best results. However, it does not

show the margin by which the SGD variants underperform. To address this issue, we compute

summary statistics for an optimizer o’s performance after k iterations in the following way:

S(o,k) =
1

|P |
∑

p∈P

o(k, p)

max
o′∈O

o′(k, p)

where o(k, p) denotes the expected performance of optimizer o ∈ O on test problem p ∈ P

after k iterations of hyperparameter search. In other words, we compute the average relative

performance of an optimizer to the best performance of any optimizer on the respective task,

at budget k.

The results are in Figure 4.4 which show that Adam-LR performs very close to the best optimizer
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for all budgets. In early stages of HPO, the SGD variants perform 20% worse than Adam-LR.

This gap narrows to 10% as tuning budgets increase, but the flatness of the curves for high

budgets suggest that they are unlikely to improve further with higher budgets. Adam on the

other hand steadily improves relative to Adam-LR, and only leaves a 2-3% gap at high budgets.

4.6 Discussion

The key results of our experiments are two-fold. First, they support the hypothesis that

adaptive gradient methods are easier to tune than non-adaptive methods: In a setting with low

budget for hyperparameter tuning, tuning only Adam’s learning rate is likely to be a very good

choice; it doesn’t guarantee the best possible performance, but it is evidently the easiest to

find well-performing hyperparameter configurations for. While SGD (variants) yields the best

performance in some cases, its best configuration is tedious to find, and Adam often performs

very close to it. Hence, in terms of Figure 4.2.b, SGD seems to be a hyperparameter surface

with narrow minima, akin to optimizer E, whereas the minima of Adam are relatively wide,

akin to optimizer F. We investigate the empirical hyperparameter surfaces in Appendix B.7

to confirm our hypothesis. We, thus, state that the substantial value of the adaptive gradient

methods, specifically Adam, is its amenability to hyperparameter search. This is in contrast

to the findings of Wilson et al., 2017 who observe no advantage in tunabilty for adaptive

gradient methods, and thus deem them to be of ‘marginal value’. This discrepancy is explained

by the fact that our evaluation protocol is almost entirely free of possible human bias: In

contrast to them, we do not only avoid manually tuning the hyperparameters through the use

of automatic hyperparameter optimization, we also automatically determine the HPO’s own

hyperparameters by estimating the distributions over search spaces.

Secondly, we find that tuning optimizers’ hyperparameters apart from the learning rate be-

comes more useful as the available tuning budget goes up. In particular, we find that Adam

approaches the performance of Adam-LR for large budgets. This is, of course, an expected

result, and in line with recent work by Choi et al., 2019, who argue that, with sufficient hy-

perparameter tuning, a more general optimizer (Adam) should never under-perform any

particular instantiation thereof (Adam-LR). Choi et al., 2019 claim that this point is already

reached in ‘realistic’ experiments. However, in their experiments, Choi et al., 2019 tune the

search spaces for each problem they consider, thereby assuming apriori knowledge of what

constitutes meaningful hyperparameter settings for that specific problem. Our results, which

are obtained with a protocol that is arguably less driven by human bias, tell a different story:

Even with relatively large tuning budget, tuning only the learning rate of Adam is arguably the

safer choice, as it achieves good results with high probability, whereas tuning all hyperparam-

eters can also result in a better performance albeit with high variance. These observations

suggest that optimizers with many tunable hyperparameters have a hyperparameter surface

that is less smooth, and that is the reason why fixing e.g. the momentum and weight decay

parameters to prescribed ’recipe’ values is beneficial in low-resource scenarios.

96



Tuning Efficient Optimization of Neural Networks Chapter 4

Our study is certainly not exhaustive: We do not study the effect of a different HPO like

a Bayesian HPO on the results, due to prohibitively high computational cost it incurs. By

choosing uni-variate distribution families for the hyperparameters to estimate the priors, we

do not account for complex relationships between parameters that might exist. We explore

this in Appendix B.8 where we use the notion of ‘effective learning rate’ (Shallue et al., 2019),

and we find that it helps improve the performance in the lower budgets of hyperparameter

optimization. We attribute this to the fact that SGDElrW is effective at exploiting historically

successful (γ,µ) pairs. However, the literature does not provide methods to incorporate these

into a probabilistic model that incorporates the causal relationships between them.

In the future, we suggest that optimizer designers not only study the efficacy and convergence

properties, but also provide priors to sample hyperparameters from. Our study demonstrates

this to be a key component in determining an optimizer’s practical value.

4.7 Conclusion

In this work, we propose to include the cost of hyperparameter optimization in the bench-

marking of deep learning optimizers. Our work demonstrates that an emphasis on reducing

the cost of general learning methods, as we target throughout this thesis, can be particularly

impactful: Stochastic optimizers are the engine of deep learning; they are the default choice

for training neural networks of all sizes. Hence, new insights regarding the cost-effectiveness

of optimizers are relevant to every deep learning practitioner. Given a new task or architecture,

our analysis suggests that tuning only the learning rate of Adam is most likely to yield good

results quickly. Of course, these recommendations are subject to change as the field advances

by developing new optimizers. However, we hope to inspire long-lasting change by encourag-

ing other researchers to evaluate their optimizers from a more holistic perspective by building

on our benchmarking protocol.
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5 HyperMixer: An MLP-based Low Cost
Alternative to Transformers

Chapter summary

In this chapter, we turn our attention to Transformers, which are at the core of the

recent rise of foundation models such as BERT. Equipped with the right inductive biases,

Transformers are a general architecture that can scale easily in terms of model and data

size. However, Transformers incur a high cost Cost(R) ∝ E ·D · H : They take a long

time to process long inputs, require a lot of data to be trained, and are difficult to tune

hyperparameters for. In the previous three chapters, we propose methods that each

reduce one of these three factors. In this chapter, we propose a neural architecture

called HyperMixer, which is based on multi-layer perceptrons and which reduces all

three factors simultaneously. To this end, we take inspiration from the inductive biases

of Transformers, which previous MLP-based solutions were lacking. By generating the

token mixing MLP dynamically as a function of the input via hypernetworks, our token

mixing module treats the input as a variable-size set, like the self-attention module in

Transformers. Empirically, we find that HyperMixer performs better than other MLP-

based models and competitive to Transformers on text classification tasks while incurring

substantially lower cost.

Publication(s) in this chapter

This chapter is based on the following paper:

• Mai, F., Pannatier, A., Fehr, F., Chen, H., Marelli, F., Fleuret, F. & Henderson, J. (2023).

HyperMixer: An MLP-based Low Cost Alternative to Transformers. ACL 2023.
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5.1 Introduction

Attention-based architectures, such as the Transformer (Vaswani et al., 2017), have accelerated

the progress in many natural language understanding tasks. Part of their success is a result

of a parallelizable training scheme over the input length. This improves training times and

allows for larger volumes of data which makes these models amenable to pretraining at large

scale (Devlin et al., 2019; Radford et al., 2018). Since large pretrained Transformers are a

general-purpose tool that can be applied to a large variety of downstream tasks, many current

state-of-the-art models are fine-tuned extensions thereof (Bommasani et al., 2021).

However, these models come at a significant computational cost. They require considerable

resources for pretraining, which induces high energy consumption (Strubell et al., 2019). Some

models, like BERT (Devlin et al., 2019), still require substantial amounts of labeled data even

for finetuning (Yogatama et al., 2019), and often require several restarts before a successful

set of hyperparameters is found (Devlin et al., 2019; Dodge et al., 2020). In the spirit of the

cost reduction principle of our thesis (Section 1.1.3), we are interested in lowering the cost

Cost (R) (Schwartz et al., 2020) of Transformers while still retaining competitive results R.

Figure 5.1: The figure outlines a general model layer consisting of a token mixing component
and a feature mixing component (MLP). For token mixing, MLPMixer uses an MLP with a
fixed size, maximum input length N and position-specific weights. In contrast, HyperMixer
generates an appropriately sized MLP based on the variable size of the input in a position-
invariant way, similar to the attention mechanism. When using attention as token mixing the
whole layer is equivalent to a Transformer encoder layer.
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To achieve a cost reduction, this chapter proposes a simpler alternative to Transformers. We

take inspiration from the computer vision community, which has recently seen a surge of

research on multi-layer perceptrons (MLPs). Most prominently, MLPMixer (Tolstikhin et al.,

2021), which is a simple architecture based on two MLPs: one for token mixing and one for

feature mixing. However, the token mixing MLP learns a fixed-size set of position-specific

mappings, arguably making MLPMixer’s architecture too detached from the inductive biases

needed for natural language understanding, in contrast to Transformers (J. Henderson, 2020).

In this work, we propose a simple variant of MLPMixer, HyperMixer (Figure 5.1), which creates

a token mixing MLP dynamically using hypernetworks (Ha et al., 2017). This variant is more

appropriate, as it learns to generate a variable-size set of mappings in a position-invariant

way, similar to the attention mechanism in Transformers (Vaswani et al., 2017). In contrast

to Transformer’s quadratic complexity, HyperMixer’s complexity is linear in the input length.

This makes it a competitive alternative for training on longer inputs.

Transformer MLPMixer HyperMixer

Complexity O (N 2) O (N ) O (N )
Pos. invariance ✓ ✗ ✓

Variable-length ✓ ✗ ✓

Table 5.1: Properties of models under consideration. N denotes the length of the input
sequence.

Empirically, we demonstrate that HyperMixer works substantially better on natural language

understanding tasks than the original MLPMixer and related alternatives. In comparison to

Transformers, HyperMixer achieves competitive or improved results at a substantially lower

cost Cost (R) ∝ E ·D ·H : improved inference speeds (E), especially for long inputs; favorable

performance in the low-resource regime (D); and efficient tuning for hyperparameters (H).

We attribute HyperMixer’s success to its ability to approximate an attention-like function.

Further experiments on a synthetic task demonstrate that HyperMixer indeed learns to attend

to tokens in similar pattern to the attention mechanism.

In summary, our contributions can be enumerated as follows:

1. A novel all-MLP model, HyperMixer, with inductive biases inspired by Transformers.

(Section: 5.2)

2. A performance analysis of HyperMixer against competitive alternatives on the GLUE

benchmark. (Section: 5.4.3)

3. A comprehensive comparison of the cost Cost(R) of HyperMixer and Transformers.

(Sections: 5.4.5, 5.4.6, 5.4.7)

4. An analysis on a toy task demonstrating that HyperMixer learns attention patterns

similar to Transformers. (Section: 5.4.8)
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5.2 Method

5.2.1 Inductive Biases in NLP Models

In machine learning, the inductive biases of a model reflect implicit modeling assumptions

which are key to facilitate learning and improve generalization on specific tasks. In NLP,

well-known models with strong inductive biases include: recurrent neural networks (Elman,

1990), which assume the input to be a sequence; and recursive neural networks (Socher et

al., 2013), which assume a tree-structure. While both these inductive biases are reasonable,

empirically, Transformers have been more successful in recent years. Furthermore, we reiterate

the arguments of J. Henderson, 2020 for inductive biases in language and apply them to our

model design. J. Henderson, 2020 attributes the Transformer’s success to two concepts:

variable binding and systematicity. Variable binding refers to the model’s ability to represent

multiple entities at once. This is arguably challenging in single-vector representations such

as recurrent neural networks. However, Transformers represent each token with its own

vector which accounts for variable binding as each token can be interpreted as an entity.

Systematicity refers to the models ability to learn generalizable rules that reflect the structural

relationship between entities (Fodor & Pylyshyn, 1988). Transformers achieve systematicity

through the attention mechanism, which is a learnable set of functions that determines the

interaction between entities by matching query representations to key representations (as

shown in Figure 5.1). The mechanism modulates, for every position in the sequence, how to

functionally process any other position. Moreover, these function parameters are learnable

and shared across all entities.

5.2.2 MLPMixer

A general layer of MLPMixer is shown in Figure 5.1. Similarly to Transformers, each token is

represented as a vector of features, which undergo (non-linear) transformations in multiple

layers. MLPMixer employs two MLPs at each layer, one for feature mixing and one for token

mixing. The feature mixing component is applied to each token vector independently, which

models the interactions between features. The Token Mixing MLP (TM-MLP) is applied

to each feature independently (i.e. its vector of values across tokens), which models the

interactions between spatial locations or positions. This could be interpreted as a global

attention mechanism which is static and position-modulated. Practically, this is achieved

by transposing the dimension representing the features and the dimension representing the

positions. Each vector xT
i ∈RN , representing feature i ≤ d , of some input of fixed length N , is

input into TM-MLP, which has the following form:

TM-MLP(xT
i ) = W1(σ(WT

2 xT
i )), (5.1)

where W1,W2 ∈RN×d ′
, and σ represents the GELU non-linearity (Hendrycks & Gimpel, 2016).

Finally, to facilitate learning, layer normalization (Ba et al., 2016) and skip connections (He
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et al., 2016) are added around each MLP, respectively.

Considerations for NLP The token mixing MLP assumes an input of fixed dimension, which

is necessary as the parameters need to be shared across all examples. However, unlike images,

textual input is generally of a variable dimension. Therefore, to apply MLPMixer to texts of

variable length, a simplistic approach is to assume a maximum length (e.g. the maximum

in the dataset). Thereafter, all inputs are padded to the maximum length and masks are

applied in the token mixing MLP. This model is able to do variable binding, since each token

is represented by its own vector. However, this model lacks systematicity because the rules

learned to model interactions between tokens (i.e. the MLP’s weights) are not shared across

positions.

5.2.3 HyperMixer

HyperMixer includes systematicity into the MLPMixer architecture through the use of hyper-

networks. They are used to generate the weights W1,W2 of TM-MLP (Equation 5.1) dynamically

as a function of the input. Let x j ∈Rd , j ≤ N , where N is the (variable) dimension of the input,

represent token j . We use the following parameterized functions:

h1,h2 :RN×d →RN×d ′
,

to generate W1 and W2, respectively.

Theoretically, h1 and h2 could be any function, including sophisticated networks that consider

non-linear interactions between tokens, such as the attention mechanism. However, this

would defeat the purpose of our model, which is simplicity. Therefore, we choose to generate

the rows of the weight matrices from each token independently via another MLP. Concretely, a

hypernetwork function can be defined as

hi (x) =


MLPWi (x1 +p1)

...

MLPWi (xN +pN )

 ∈RN×d ′
,

where MLPW1 ,MLPW2 : Rd → Rd ′
are themselves multi-layer perceptrons with GELU non-

linearity. p j ∈Rd is a vector that can encode additional information such as the position. In

practice, we use the same absolute position embeddings as in Transformers (Vaswani et al.,

2017).

Intuitively, for each token x j , h1 decides which information to send to the hidden layer of

TM-MLP, where the information from all tokens are mixed, and h2 decides for each token

how to extract information from the hidden layer. Note that, even though h1 and h2 only

consider one token at once, non-linear interactions between tokens are still modeled through

103



Chapter 5 HyperMixer: An MLP-based Low Cost Alternative to Transformers

the hidden layer of TM-MLP.

Tying h1 and h2 In order to reduce the number of parameters and operations in the model,

and thereby the complexity, we found it useful to tie h1 and h2 as by setting W2 = W1.

Considerations for NLP In comparison to the MLPMixer defined in Section 5.2.2, the use

of hypernetworks overcomes two challenges. Firstly, the input no longer has to be of fixed

dimensionality. The hypernetwork generates a token mixing MLP of appropriate dimension

as a function of the input. Secondly, the hypernetwork models the interaction between tokens

with shared weights across all positions in the input. Hence, systematicity is ensured.

5.3 Related Work

5.3.1 Green AI

Schwartz et al., 2020 challenges the current pursuit for higher accuracy at the cost of larger

computation with the notion of "Green AI". Moreover, Strubell et al., 2019 estimated the

monetary and environmental cost of large model pretraining. Apart from being problematic

environmentally, they argue that the monetary cost of pretraining is too high to be widely

accessible for most researchers. In a research community that focuses on task performance,

low resourced researchers would be disadvantaged. Therefore, metrics that take the cost of

reaching a result are important to consider (Schwartz et al., 2020). The metric Cost(R) ∝
E ·D ·H , is proposed and discussed in Section 5.1. However, reporting a single metric Cost (R)

is often ambiguous. Therefore, in our experiments, we consider the factors E , D , and H .

To measure the computational cost per example E , Schwartz et al., 2020 propose a count of

the floating point operations (FPOs) required. In our experiments, we adopt this metric and

further include wall clock time for a practical application. The component D evaluates the

quantity of training data needed to reach a given accuracy or the performance of a model in a

low-resource scenario (J. Chen et al., 2023; Hedderich et al., 2021). Finally, the component H

measures the cost associated with hyperparameter tuning. This is reported using expected

validation performance introduced by Dodge et al., 2019, 2021, which computes the valida-

tion performance one would yield in expectation after k hyperparameter trials of random

search (Bergstra & Bengio, 2012).

Current literature does not focus on all facets of Green AI as formalized as Cost (R). Typically,

improving efficiency involves making existing models more accessible, for example through

model distillation (Sanh et al., 2019) or adapter modules (Houlsby et al., 2019). Another avenue

involves reducing the computational complexity via prompt-tuning (Schick & Schütze, 2021)

or by reducing the complexity of self-attention in Transformers (Beltagy et al., 2020; Child et al.,

2019; Katharopoulos et al., 2020). The latter approach is similar to our work. However, they
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focus only on the processing time of a single example E . In our work, we focus on MLP-based

approaches, which we argue will have improvements in all facets of Green AI due to their

simplicity.

5.3.2 MLP-based Models

The vision domain has seen promising results with purely MLP-based models (Tolstikhin et al.,

2021), however, they lack the desired inductive biases for NLP. Some desirable properties for

modeling language include: i) position invariance, which is important for generalization, ii)

adaptive size for variable-length inputs, iii) a global receptive field, which allows interactions to

not be limited to small token neighborhoods, iv) learnabilty to enable universal applicablility

to various tasks, and v) dynamicity which implies that the output is conditioned on the input.

MLP-based models are typically not used for NLP as including the inductive biases of position

invariance, adaptive size and global receptive field are non-trivial for MLPs.

Several methods try to overcome the lack of adaptivity to size by introducing shifting opera-

tions and local windows. T. Yu et al., 2022 and Lian et al., 2022 use spatial shifting to pass the

information of adjacent tokens through an MLP. C. Tang et al., 2022 uses a circular shifting

operator. However, the position invariance is violated because positional information is re-

quired in the decision of which tokens are included in the neighborhood. The aggregation of

local information itself is done via a (relative) position-specific MLP. Global interactions are

modeled only through the inclusion of enough layers or through a hierarchical layout (Guo

et al., 2022; T. Yu et al., 2022).

For vision tasks it can be useful to exploit the fact that 2D images consist of two axes. Tatsunami

and Taki, 2022 make use of this fact by integrating a respective inductive bias. Tu et al., 2022

achieve linear complexity by applying a gMLP (H. Liu et al., 2021) to only a single axis.

A global receptive field in MLP-based models is achieved through token mixing and a weighted

summation of the inputs, similar to self-attention. This allows for interaction between tokens.

H. Liu et al., 2021 propose the model gMLP, where the mixing weights are determined by

a fixed learnable interaction matrix between positions. However, this comes at the cost of

violating position-invariance, size adaptivity, and dynamicity. DynaMixer (Z. Wang et al., 2022)

enables dynamicity by estimating the mixing weights from the concatenation of the inputs via

a linear layer. This is efficient due to a dimensionality reduction step, but the concatenation

still implies position-dependence and fixed-sized inputs. Lee-Thorp et al., 2022 proposes the

model FNet to use static Fourier transformations to model token interactions. This model

made significant improvements in computation cost, although the functions lack learnability

and are position dependent.
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5.3.3 Hypernetworks

A hypernetwork uses a network to generate the weights for another, often larger, network (Ha et

al., 2017). Tay et al., 2021 leveraged task-conditioned hypernetworks for the GLUE benchmark.

They achieved paralleled performance to the state-of-the-art at the time, whilst being more

parameter efficient. Karimi Mahabadi et al., 2021 applied hypernetworks to Transformers to

allow for parameter sharing in multitask learning. Their results showed parameter efficiencies

and improved out of domain generation. Zhmoginov et al., 2022 combine hypernetworks

and transformers in the vision domain for few shot generalization. LambdaNets are strongly

related to our work, as they generate linear functions from context, in a similar capacity to

a hypernetwork (Bello, 2021). Their model is similar to the standard attention mechanism

where the weights of three matrices Q,K ,V are learned. In contrast, HyperMixer uses the

inputs to create non-linear transformations by generating an MLP. Features are combined

based on their locations - a comparison can be found in Appendix C.4.

Combining MLPMixer and hypernetworks allows for an efficient and simple MLP-based model

to have all the necessary inductive biases for NLP. The MLPMixer provides a simple token

interaction backbone. By deploying hypernetworks to build the weights of the token mixing

MLP, the missing inductive biases of position invariance and size adaptation are obtained.

5.4 Experiments

Our experiments are designed to test the following three hypotheses. H1 (Section 5.4.3): Since

HyperMixer reflects more inductive biases that are adequate for NLP, our hypothesis is that

HyperMixer performs better at NLP tasks than MLPMixer and similar MLP-based alternatives,

specifically at those tasks that require to model the interactions between tokens. H2: Since Hy-

perMixer has similar inductive biases as transformers but is considerably simpler conceptually

and in terms of computational complexity, it can be seen as a low cost alternative to Trans-

formers, reducing the cost in terms of single example processing time (Section 5.4.5), required

dataset size (Section 5.4.6), and hyperparameter tuning (Section 5.4.7). H3 (Section 5.4.8):

Due to its inductive biases mirroring those of Transformers, HyperMixer also learns similar

patterns as the attention mechanism.

5.4.1 Datasets

We evaluate on four sentence-pair classification tasks and one single-sentence classification

task. The sentence-pair tasks are QQP (Iyer et al., 2017), QNLI (Rajpurkar et al., 2016), MNLI

(Williams et al., 2018) and SNLI (S. Bowman et al., 2015). For uniformity, datasets are formatted

as in the GLUE benchmark (A. Wang, Singh, et al., 2019). We choose these tasks for two proper-

ties: firstly, they have large training datasets (Table 5.2) enabling reasonable performances

without pretraining; secondly, solving these tasks requires good modeling of the interactions

between tokens from different sentences, which is the main focus of this work. As a control,

106



HyperMixer: An MLP-based Low Cost Alternative to Transformers Chapter 5

we experiment on the single-input dataset SST2 (Socher et al., 2013), which is a sentiment

classification task. Many examples in this dataset can be solved by identifying key sentiment

words, rather than modeling the token interaction.

Dataset # Train # Valid # Test
MNLI 392,702 9,815 9,796
SNLI 549,367 9,842 9,824
QQP 363,846 40,430 390,965
QNLI 104,743 5,463 5,463
SST 67,349 872 1,821

Table 5.2: Number of examples in each dataset.

5.4.2 Baselines

The following baselines can be categorized into MLP-based (to support H1) and not MLP-based

(e.g., Transformers, to support H2). Note that our study is about the design of the token mixing

module. Therefore, we only compare to models that fit into the general framework displayed

in Figure 5.1, where there is a feature mixing module and a token mixing module for textual

inputs. As a result, models such as RNNs are excluded. To enable a controlled experiment, we

use the same feature mixing module in all models; the models only differ in their token mixing

module.

MLP-based The conceptually closest baseline is MLPMixer (Tolstikhin et al., 2021), which

combines both token and feature mixing using fixed dimensional MLPs, as described in

Section 5.2.2. Concurrently, H. Liu et al., 2021 proposed gMLP, in which token mixing is

achieved through weighted summation of all other inputs, similar to the attention mechanism.

However, rather than computing weights as function of the inputs like in attention, in gMLP

the weights are fixed learnable parameters. Additionally, linear gating initialized close to one

is introduced to facilitate training. The original gMLP method does not employ feature mixing

modules, as their token mixing module is capable of modeling feature interactions as well

in a single gMLP block. However, for comparability we inject gMLP blocks as token mixing

modules in our general architecture and keep feature mixing modules as well.

Not MLP-based Transformers (Vaswani et al., 2017) are used in the current state of the art

in virtually all NLP tasks. Their key component is the softmax-based self-attention module,

which we use for token mixing. Linear Transformer (Katharopoulos et al., 2020) replaces

softmax attention with a feature-map based dot-product attention. Finally, FNet (W. Yu et al.,

2022) replaces the self-attention part of Transformers with a fixed, non-learnable set of Fourier

transforms for token mixing.
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5.4.3 Performance

Initially we compare the performance of HyperMixer in comparison to our baselines. There-

after, we conduct an ablation analysis and further explore the model’s benefits with respects

to its cost.

Experimental Setup To ensure a fair comparison, we aim to compare models of approxi-

mately the same number of parameters (≈11 M parameters). All models have 6 layers with

token embedding size d = 256 and hidden size d ′ = 512. For MLPMixer and gMLP we set the

size of the token mixing modules to N = 250 and N = 100, respectively. These lengths are cho-

sen to match the number of parameters of the other models (11 M). The hidden layer size is set

to 512 in all models. We use dropout at the input to each layer with a probability of 0.1. For all

models, including the ablations, we first tune the learning rate of Adam (Kingma & Ba, 2015) us-

ing a logarithmically spaced grid of 7 values α ∈ {0.001,0.0005,0.0002,0.0001,0.00005,0.00002,

0.00001} on the validation set. For our baselines, we then evaluate 10 different seeds and

report the mean accuracy and standard deviation on the validation set. On the test set, we

only report the results of the model yielding the best results on the validation set, as the GLUE

benchmark (A. Wang, Singh, et al., 2019) has a hidden test set with limited access.

Results Validation and test set results are shown in Table 5.3. On the test and the validation

set, HyperMixer performs the best among MLP-based models on all datasets, although for

SST the difference on the validation set is smaller than one standard deviation. MLPMixer

generally achieves good performances, outperforming Transformers on two datasets.

Comparing to non-MLP-based methods, HyperMixer also outperforms vanilla Transformers

on all datasets. The differences are generally small (≤ 2 points), except on QNLI, where

the difference is 3.9 points. We suspect that this discrepancy is due to the relatively small

training set of QNLI. We investigate low-resource behavior of Transformers in comparison

to HyperMixer in Section 5.4.6. FNet performs substantially worse than the other methods,

particularly on SNLI and QQP. Linear Transformers achieve excellent performance on MNLI

and SNLI, but perform poorly on QNLI and QQP.

5.4.4 Ablations

In order to better understand what impact some components of our model have on its perfor-

mance, we conduct an ablation analysis. In the following, we first describe model variations

apart from tying the weights of the token mixing MLP (which was described in Section 5.2),

before we present the results.

Feature Mixing Only The most simplistic MLP architecture is one that doesn’t use token

mixing, i.e., the token mixing module is set to the identity function. The outputs at the last
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Model MNLI SNLI QQP QNLI SST # Pms
Baselines Validation set results (avg. accuracy / std. over 10 seeds)

FNet 59.7 (0.27) 75.3 (0.46) 79.4 (0.28) 59.9 (0.46) 79.7 (0.71) 9.5 M
Lin. Transformer 66.9 (0.48) 82.7 (0.22) 81.7 (0.28) 61.3 (0.29) 80.5 (0.46) 11 M

Transformer 65.4 (0.51) 80.9 (0.40) 82.8 (0.22) 67.3 (2.03) 79.0 (0.86) 11 M
MLPMixer 63.9 (0.34) 79.6 (0.11) 83.7 (0.42) 68.1 (2.10) 80.1 (0.67) 11 M

gMLP 60.8 (0.95) 80.5 (0.55) 82.8 (0.21) 60.5 (0.49) 78.7 (0.74) 11 M
HyperMixer 66.2 (0.21) 81.9 (0.27) 85.6 (0.20) 78.0 (0.19) 80.7 (0.84) 11 M

Baselines Test set results (best model)
FNet 59.8 75.3 78.4 59.6 80.0 9.5 M

Lin. Transformer 66.9 83.0 82.3 61.7 80.8 11 M
Transformer 65.8 80.7 82.4 73.2 79.4 11 M
MLPMixer 62.9 80.1 83.5 70.5 81.2 11 M

gMLP 61.2 80.9 82.5 60.2 79.5 11 M
HyperMixer 66.1 81.7 84.1 77.1 81.4 11 M

Table 5.3: Top: Mean validation set accuracy and standard deviation over 10 different seeds
of the best hyperparameter configuration. Results are printed in bold font if they exceed the
second best result by at least one standard deviation. Underline marks the best MLP-based
model. Bottom: Test set results on natural language understanding tasks when using the best
model on the validation set. We evaluate on a single seed due to the limited test set access of
GLUE.

layer are aggregated via average pooling before plugged into the linear classifier. This allows a

baseline where the token interactions are not modeled. Therefore, this architecture serves as a

control for how important token mixing is in any given task.

Token Mixing Only A simplistic single layer MLP architecture ablation. This model consists

of a variable dimension MLP where the weights are generated using a hypernetwork which

only allows for location interaction. This model is included to argue that the best simple model

requires both location and feature mixing to efficiently model textual inputs.

Shared Weight-Vector A simple way to obtain a variable size location-mixing MLP is by

weight-sharing. Concretely, we use a single learnable weight vector w1 ∈Rd ′
, which we copy N

times to create a weight matrix W1 ∈RN×d ′
. Analogously, we create W2 from a separate vector

w2. Note that this baseline does not support dynamicity, as the weight vector is independent

of the inputs. This baseline thus shows the importance of dynamicity in our model.

All methods are tuned in the same way as described in Section 5.4.3, except that we evaluate

on the validation set only.
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Model MNLI SNLI QQP QNLI SST # Pms
Ablations Validation set results (avg. accuracy / std. over 10 seeds)

Feature Mixing only 54.5 (0.25) 67.0 (0.14) 75.9 (0.06) 60.8 (0.42) 79.7 (0.64) 9 M
Token Mixing only 59.0 (0.79) 74.5 (5.53) 79.5 (4.63) 61.8 (1.29) 76.3 (4.94) 10 M

Shared Weight-Vector 57.1 (2.38) 74.3 (1.96) 82.9 (0.10) 65.9 (0.42) 79.8 (0.52) 9.5 M
HyperMixer (untied) 65.8 (0.46) 81.7 (0.30) 84.8 (0.23) 73.3 (0.53) 80.3 (0.35) 12 M

HyperMixer (tied) 66.2 (0.21) 81.9 (0.27) 85.6 (0.20) 78.0 (0.19) 80.7 (0.84) 11 M

Table 5.4: Mean and standard deviation of HyperMixer ablations on the validation set.

Results Results are shown in Table 5.4. Untying the hypernetworks in HyperMixer leads

to slightly decreased performance on all datasets. We hypothesize that without pretraining,

the model cannot benefits from more capacious token interaction modeling introduced by

untying. Nonetheless, the untied model still performs as good or a little better than vanilla

Transformers.

While the introduction of MLPMixer and similar models follows a trend towards conceptually

more simplistic models, our ablations show, perhaps unsurprisingly, that simplicity is not

better when it leads to discarding information, as both the Feature-Mixing only and Location-

Mixing only models perform substantially worse than the full HyperMixer model. Moreover, it

is not enough to use the same learnable weight vector for all positions (Shared Weight-Vector),

indicating the importance of generating the MLP based on the input.

The simplistic Feature-Mixing only model performs poorly on all datasets except SST, where it

performs as well as the other models. This indicates that many instances in SST can be solved

by looking at individual tokens alone, rather than modeling their interactions.

5.4.5 Time per Example

In order to assess the efficiency of our model, we measure the wallclock time of processing

a single input (repeated 1,000 times) through the token mixing stages of HyperMixer and

Transformer, respectively. As Schwartz et al., 2020 point out, wallclock time has the downside

of being dependent on the specific implementation, and they therefore recommend reporting

the number of floating point operations (FOPs) required by one forward pass. Due to the lack

of reliable software to measure FOPs in PyTorch, we calculate these numbers manually. Our

process is described in Appendix C.3. In Figure 5.2, we show wallclock time and theoretical

FOPs of a single layer with d = 256,d ′ = 512 (as used in our experiments) as a function of the

input length N . For short input sequences, the number of FOPs is dominated by the size of

the hidden layer and hence slightly lower for Transformers than for HyperMixer. However, in

practical terms we observe that HyperMixer is still faster than Transformers. At longer input

sequences, the size of N starts to dominate the total complexity of Transformers, so that it

becomes exceedingly slower than HyperMixer.
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Figure 5.2: WCT / FOPs of propagating a single example through the token mixing of Hyper-
Mixer vs. Transformer depending on the input length.

5.4.6 Low Resource Performance

Like MLPMixer, HyperMixer is a conceptually simple architecture, as it only applies multi-layer

perceptrons at its core. Simpler architectures often make for better performance on smaller

scale datasets. We investigate this by varying the number of examples used for training on the

three large datasets MNLI, SNLI, and QQP. For these experiments, we use the best performing

learning rate found in the grid search from Section 5.4.3. In Figure 5.3, we plot the relative

performance change of HyperMixer compared to Transformers as a function of subsample

size. On all datasets, the relative improvement of HyperMixer over Transformers is larger when

training with 10% of the dataset than with the full dataset. While the effect is small on QQP, it

is particularly large on SNLI and MNLI, where HyperMixer performs almost 12-14% better

with 10% of the data, while the relative improvement with the full dataset is less than 2%.

5.4.7 Ease of Hyperparameter Tuning

MLP-based token mixing has the advantage that it is conceptually simpler than self-attention,

and that it is well-known how to facilitate training via mechanisms such as skip-connections

and layer normalization. Both these aspects suggest that it might be easier to find hyper-

parameter configurations that yield good performances. In these experiments, we compare

HyperMixer (with tied hypernetworks) to Transformers in this regard. As recommended in

Schwartz et al., 2020, we perform a random search to tune hyperparameters and compute the
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Figure 5.3: Relative improvement of HyperMixer over Transformer depending on what per-
centage of the training set is used.

expected validation performance (Dodge et al., 2019, 2021). Specifically, we tune the learning

rate, whose logarithm is drawn from U (−8,−1), and the dropout probability drawn from

U (0,0.5) for 20 trials.

Results In Figure 5.4, we show the relative expected validation performance, i.e., the relative

performance change of HyperMixer compared to Transformer, for all five datasets. With

the notable exception of QNLI, the relative improvement of HyperMixer is higher at smaller

budgets than at larger budgets on all datasets. The effect is particularly strong on SNLI, where

HyperMixer is 6.5% better at small tuning budgets, but less than 2% better at high budgets.

These results indicate that HyperMixer is substantially easier to tune than Transformers.

5.4.8 HyperMixer Learns Attention Patterns

We hypothesized that the token mixing layer of HyperMixer offers a mechanism similar to

attention. To show this, we consider a toy problem with 2D shape pairs of different heights

that are represented, as described in Fleuret, 2019. The target value is the average height in

each pair of shapes. An example input-output pair is shown in Figure 5.5.

To solve the task well, for each position, the model must attend to other positions with the

same shape. Please refer to Appendix C.1.2 for a detailed description of the experimental

setup.
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Figure 5.4: Relative expected validation performance of HyperMixer compared to Transformer
after tuning the learning rate and dropout via random search.

Models We compare the token mixing layer of HyperMixer to three other models: i) None

does not model token interactions. All predictions are thus only made based on local informa-

tion. This model should thus fail. ii) MLPMixer does model token interactions. Still, since its

token mixing weights are position-specific, each position has to learn to recognize each shape,

which we expect to be difficult, especially with little data. iii) Self-attention can be considered

the upper bound, as it models the interaction between every two positions explicitly.

Results Figure 5.6 shows the mean squared error on the test examples depending on the

number of training examples. As expected, None fails on this task. While all other models are

able to solve the task with enough training data, MLPMixer is considerably less data-efficient

than the other two models, requiring 5-10 times more data to reach the same performance.

This is expected, since in contrast to HyperMixer and self-attention, MLPMixer’s token mixing

module is not position-invariant. HyperMixer and self-attention reach approximately the same

performance when training on 100k examples. However, HyperMixer is more data-efficient

than self-attention, which we attribute to the simpler model architecture.

Visualization of (pseudo-)attention weights We can measure the interactions between two

tokens via input-gradients (Simonyan et al., 2014), which we refer to as pseudo-attention

here. This method computes the gradient of the output sequence with respect to the input

sequence, giving the corresponding saliency map, which can then be recombined into a

pseudo-attention matrix where the i -th column corresponds to the saliency maps of the i -th

output token. A large value in the (i , j ) entries of the pseudo-attention matrix means that the
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Figure 5.5: Example from the synthetic task. The input is a vector x ∈ RT (T = 100), where
values in x are such that they represent two rectangles and two triangles each when plotting
like in the figure. The object positions are chosen at random, but they cannot overlap. Finally,
the shapes differ in randomly chosen height, and the goal is to predict the average height of
the two triangles and two rectangles, respectively.
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Figure 5.6: Test loss depending on number of examples. While all three models can learn to
solve this toy task with enough data, MLPMixer requires an order of magnitude more data to
reach the same performance as HyperMixer. We attribute this to HyperMixer’s attention-like
inductive biases.
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5.7.b: Pseudo-attention map of Attention
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5.7.d: Pseudo-attention map of HyperMixer

Figure 5.7: Results and pseudo-attention maps on the synthetic task (Fleuret, 2019).

output token i strongly depends on the input j , and we can thus compare it to an attention

matrix. Figures 5.7.d and 5.7.b show the pseudo-attention maps of all models (trained on

25k examples) in comparison to the true attention weights from the attention model. First,

it should be noted that pseudo-attention weights offer a somewhat blurry version of true

attention weights, where high weights occur at positions that correspond to the same shape

(cmp. 5.7.a to 5.7.b). Second, we observe that the pseudo-attention weights of HyperMixer

and attention (cmp. Figure 5.7.d to 5.7.b) are similar. This indicates that HyperMixer indeed

learns an attention-like transformation. Third, MLPMixer also shows a similar pattern, but the

relevant positions have weak connections. This confirms our finding that MLPMixer requires

substantially more training data to learn strong connections.
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5.5 Discussion

HyperMixer was designed as an MLP-based architecture with similar inductive biases as

Transformers, which are beneficial for natural language understanding. Our hypothesis (H1)

is that this leads to improvements over other MLP-based methods. Our experimental results

support this hypothesis, as we find HyperMixer to outperform all MLP-based baselines on all

datasets (Section 5.4.3).

The main motivation for an MLP-based architecture is the efficiency benefits induced by

its simplicity. Therefore, we hypothesized (H2) that HyperMixer would reduce the cost

Cost(R) ∝ E ·D · H to obtain an AI result R. This hypothesis is supported by our experi-

ments. While HyperMixer yields results that are on par with or better than Transformer’s

results, it reduces the cost of all three cost factors: i) The cost of processing a single example

(E) is lower, particularly for long inputs due to its linear complexity compared to the quadratic

complexity of self-attention (Section 5.4.5). ii) The number of required training examples (D)

is reduced, as HyperMixer’s relative performance improvement is larger in the low-resource

scenario (Section 5.4.6). iii) HyperMixer requires less hyperparameter tuning than Transform-

ers to reach good results, which is demonstrated by HyperMixer’s higher expected relative

improvements at low tuning budgets (Section 5.4.7).

Finally, our experiments on a synthetic task indicate that HyperMixer can learn very similar

attention patterns as the self-attention mechanism in Transformers (Section 5.4.8), supporting

hypothesis H3. While MLPMixer can also learn similar patterns given enough training data,

we believe that it is the introduction of adequate biases that allows HyperMixer to learn these

patterns efficiently. These biases were chosen based on an analysis of Transformer’s success

by J. Henderson, 2020. HyperMixer’s own success hence supports that analysis.

In summary, in our study, HyperMixer is the best-performing MLP-based architecture, and

shows comparable performance and behavior as self-attention at substantially lower cost.

HyperMixer can thus be considered a low cost alternative to Transformers.

It is important to note, however, that our study is limited to the small resource scenario: Our

models are small, not pretrained on large general-purpose corpora, and trained on datasets

with fewer than 1 million examples. It is unclear if our results will also hold on larger scale. For

example, while gMLP and FNet perform poorly in the low-resource scenario as demonstrated

in our experiments, both models are able to narrow the gap to Transformer-based models

as the resources for pretraining increase (Lee-Thorp et al., 2022; H. Liu et al., 2021). We

hypothesize that with enough resources, these models are able to overcome their shortcomings

in terms of inductive biases. However, there is no reason to believe that HyperMixer, being

equipped with useful inductive biases, wouldn’t perform on par with Transformers in high-

resource scenarios while retaining its lower overall cost. Quite the contrary, HyperMixer’s linear

complexity in sequence length perhaps makes it more appropriate for large-scale pretraining

on long contexts than vanilla Transformers.
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Future work will seek to expand HyperMixer to these use cases, including large-scale pretrain-

ing and adaptation to text generation tasks.

5.6 Conclusion

In this thesis, we strive towards general learning methods that can be easily scaled to web-size

data and incur lower cost compared to existing methods. Transformers are the backbone of

large pretrained language models, which have led to impressive progress in NLU precisely

because they are a general-purpose architecture that becomes predictably better with larger

scale (Hoffmann et al., 2022), making them the foundation for a wide variety of downstream

applications (Bommasani et al., 2021).

In this work, we have proposed an MLP-based method, HyperMixer, that, in contrast to

previous MLP-based methods, is equipped with the same inductive biases that made Trans-

formers so successful for natural language understanding. While it performs on par with

Transformers, it incurs substantially lower cost in terms of processing time, training data, and

hyperparameter tuning. However, due to resource constraints, the scope of our experimental

evaluation is limited to the small-scale scenario and text classification tasks. Because the

core of HyperMixer consists of a drop-in replacement for the self-attention component of

Transformer encoders, many existing Transformer-based algorithms for pretraining and other

downstream applications can be adapted for HyperMixer in a straight-forward manner. This

includes the popular masked language modeling objective used in BERT and its adaptation to

non-classification tasks tasks such as span detection (Devlin et al., 2019), and even different

modalities such as images (Dosovitskiy et al., 2021). Unfortunately, a single study, or even a

complete thesis, cannot provide the empirical evidence needed for proving that our method is

as general and scalable as Transformers, whose versatility has been shown over the course

of hundreds of papers. Hence, we cannot say with certainty that our method will perform as

well as Transformers in all cases. However, since we designed HyperMixer to exhibit many of

the same inductive biases as Transformers, we have good reason to believe that our findings

will generalize to many different size and task scenarios, making HyperMixer a general and

scalable architecture like Transformers.

Nonetheless, there are some aspects of Transformers whose adaptation to HyperMixer was

not studied in this work. First, Transformers commonly employ multi-head attention, which

allows the model to view the information from different representation subspaces. Second,

language models such as the GPT family (Radford et al., 2018) typically employ a Transformer

decoder only architecture, which is efficient to train due to the causal attention masking

mechanism. Adopting both these features for HyperMixer is not straight-forward and requires

significant modeling advancements, constituting promising future work.
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6 Conclusion

In the past decade, rapid advancements in artificial intelligence, specifically in natural lan-

guage understanding, have been primarily driven by substantially scaling up general learning

methods. To sustain this growth, the field needs to find ways for the entire community to

contribute, even for those with limited resources. Hence, as we reach the end of this thesis,

we must remind ourselves of the initial research question: How can we conduct long-lasting,

impactful research in natural language understanding? We answer this constructively by

proposing three principles for new methods. They should be 1) general learning methods,

continuing the trend from recent years, 2) scalable to web-size data, which has proven to be a

key driver in performance, and 3) targeted towards cost reduction, as this facilitates sustainable

scaling and provides an accessible metric for researchers who cannot afford to train large-scale

systems.

The topics in our thesis exemplify how these principles may manifest: All methods explored

in our thesis are scalable general learning methods: CMOW, Emb2Emb, and HyperMixer are

text representation learning methods that can, in principle, be trained on web-scale data. Our

evaluation protocol for deep learning optimizers covers methods that are used for training

virtually all neural network systems. Each chapter is dedicated to reducing one or multiple

factors in the cost equation Cost(R) ∝ E ·D ·H : CMOW has low single-example processing

time E . Pretraining an autoencoder once and using it with the Emb2Emb framework reduces

the amount of labeled data D required. Our evaluation protocol for optimizers leads to new

insights that reduce the hyperparameter tuning effort H . Finally, HyperMixer is empirically

shown to reduce all three factors simultaneously.

Our research demonstrates that it is indeed possible to make significant strides in the field

without relying on extensive computational resources. In fact, none of the training runs in

this thesis utilized more than one GPU at a time. Hence, we demonstrated how shifting

to an efficiency-centric view may "ensure any inspired undergraduate with a laptop has

the opportunity to write high quality papers that could be accepted at premier research

conferences.", as Schwartz et al., 2020 aspire for Green AI.
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Since we focus on general learning methods, our contributions have the potential for long-

lasting impact: The CBOW-CMOW hybrid can replace CBOW-based systems, which are par-

ticularly useful in low-resource scenarios and time-critical applications. HyperMixer can

be viewed as an efficient drop-in replacement for attention, which is a core component in

many neural networks, and specifically the ubiquitous Transformer architecture. Our opti-

mizer evaluation protocol leads to new insights regarding the cost-effectiveness of optimizers,

which is of immediate interest to every deep learning practitioner. The Emb2Emb framework

differs substantially from the most prominent approaches to unsupervised conditional text

generation. In contrast to large language models, Emb2Emb operates in a compact latent

space rather than the text space. This makes it, in theory, more suitable for a task like opinion

summarization, as we argue in Chapter 3. If remaining issues can be solved, Emb2Emb has

the potential to become a foundation model for unsupervised conditional text generation.

While our methods are in principle suitable for scaling to web-scale data, verifying their

amenability to pretraining empirically requires substantial computing resources that were

not available for this thesis. However, our methods are closely related to existing ones that are

known to scale well. Hence, we have no good reason to doubt the scalability of our methods.

We conclude that our formula based on the three principles - generality, scalability, and cost

reduction - offers promising paths forward. By highlighting the importance of these three

principles and demonstrating their feasibility, this thesis has contributed to the ongoing

efforts to make the field of natural language understanding more accessible and sustainable

for researchers, regardless of their available resources. We hope that our findings will inspire

further exploration of scalable general learning methods and drive continued innovation in

the field.

6.1 Future Work

There are several directions in which the work presented in this thesis can be extended and

improved:

With advancements in both hardware (faster GPUs) and software (e.g., DeepSpeed (Rasley et al.,

2020)), it is now possible to train small pretrained models using consumer GPUs. Initiatives like

the "Cramming" challenge (Geiping & Goldstein, 2022), and the BabyLM challenge (Warstadt

et al., 2023) focus on maximizing performance in low-compute and small data pretraining

settings, respectively. To confirm the scalability of our methods, it would be interesting to

pretrain our methods on the datasets used in these challenges.

For the CBOW-CMOW method, while CMOW improves over CBOW by considering word

order, its representational capacity is still fundamentally limited since it only combines word

embeddings linearly. This limitation could be addressed by computing representations over

few but multiple layers and applying non-linearities between them. Additionally, we would

like to develop an efficient CMOW implementation that makes effective use of the associativity
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of matrix multiplication, which enables parallelization.

As we have shown in Chapter 3, Emb2Emb with single-vector autoencoders is not suitable

for long inputs. On the other hand, the representations of BoV-AEs grow linearly in size,

which may be prohibitively expensive in downstream tasks, especially with many inputs

like in opinion summarization. A compromise is needed. For example, we may develop an

autoencoder whose representation grows sublinearly. Another option is to allows the model

to ignore or forget certain parts of the input. This would require a weighted reconstruction

objective rather than the standard autoencoder objective.

Our HyperMixer architecture serves as a replacement for Transformer encoders. However,

to train a decoder-only language model, as is currently the default (e.g., GPT-3 (Brown et al.,

2020)), it is necessary to adapt the causal masking mechanism, which makes pretraining with

Transformers highly parallelizable, to the HyperMixer architecture.

We believe that these directions for future work can be pursued with relatively limited re-

sources, and we invite the next generation of PhD students to work on them, following the

same principles that guided us throughout this thesis.

121





A Appendix for Chapter 3

123



Chapter A Appendix for Chapter 3

A.1 Plug and Play Autoencoders for Conditional Text Generation

A.1.1 Experimental Details

We first describe the experimental details that are common to the experiments on both

datasets. Dataset-specific choices are listed in their respective subsections.

Preprocessing and Tokenization

We do not apply any further preprocessing to the datasets that we obtain. We use BPE for

tokenization, and restrict the vocabulary to 30,000. We truncate all inputs to 100 tokens at

maximum.

Experimental Setup

Computing Infrastructure. For all of our experiments, we relied on a computation cluster

with a variety of different GPUs with at minimum 12GB GPU memory and 50GB RAM. For the

text simplification experiments where we measure training speed, we ran all experiments on

the same machine (with a GeForce GTX 1080 Ti) in succession to ensure a fair comparison.

Implementation. We used Python 3.7 with PyTorch 1.4 for all our experiments. Our open-

source implementation is available at https://github.com/florianmai/emb2emb.

Adversarial Training. We employ a 2-layer MLP with 300 hidden units and ReLU activation

as discriminator, and train it using Adam with a learning rate of 0.00001 (the remaining

parameters are left at their PyTorch defaults). We train it in alternating fashion with the

generator Φ, in batches of size 64.

Neural Architectures

Encoder For encoding, we employ a one-layer bidirectional LSTM as implemented in Py-

Torch. To obtain the fixed-size bottleneck, we average the last hidden state of both directions.

The input size (and token embedding size) is 300.

Decoder For decoding, we initialize the hidden state of a one-layer LSTM decoder as imple-

mented in PyTorch with the fixed size embedding. During training, we apply teacher forcing

with a probability of 0.5. The input size is 300. We use greedy decoding at inference time.
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Transformation Φ. We train all neural network architectures with one layer. The hidden size

is set to the same as the input size, which in turn is determined by the size of the autoencoder

bottleneck. Hence, the MLP and OffsetNet have the same number of parameters. Due to its

extra weight matrix at the output-layer, the ResNet has 50% more parameters than the other

models. All networks use the SELU activation function. All training runs with our model were

performed with the Adam optimizer.

Text Simplification

Dataset Details We evaluate on the WikiLarge dataset by X. Zhang and Lapata, 2017, which

consists of sentence pairs extracted from Wikipedia, where the input is in English and the

output is in simple English. It contains of 296,402 training pairs, 2,000 development pairs,

and 359 pairs for testing. The 2,359 development and test pairs each come with 8 human-

written reference sentences to compute the BLEU and SARI overlap with. The dataset can be

downloaded from https://github.com/XingxingZhang/dress.

Experimental Details We use a fixed learning rate of 0.0001 to train our model for 10 epochs.

We evaluate the validation set performance in terms of BLEU after every epoch and save the

iteration with the best validation loss performance.

For all S2S models we compare against in Section 3.2.3, we select the best performing run on

the validation set among the learning rates {0.001,0.0005,0.0001,0.00005,0.00001,0.000005},

and also assess the validation set performance after each of the 20 epochs. Training is per-

formed with the Adam optimizer.

We use a 1-layer bidirectional LSTM with a memory size of 1024 and an input size of 300.

All models share the same encoder and decoder architecture, consisting of 34,281,600 pa-

rameters in total. The mappings MLP, OffsetNet, and ResNet have 2,097,132, 2,097,132, and

3,145,708 parameters, respectively. We report total numbers for the models used in the experi-

mental details below.

For computing BLEU, we use the Python NLTK 3.5 library.I For computing SARI score,

we use the implementation provided by W. Xu et al., 2016 at https://github.com/cocoxu/

simplification/blob/master/SARI.py.

SARI Score by λadv We measure the performance of our model on the development set of

WikiLarge in terms of SARI score. These results are for the same training run for which we

reported the BLEU score, hence, the stopping criterion for early stopping was BLEU, and we

report the results for all 10 exponentially increasing values of λadv. The best value when using

BLEU score as stopping criterion is λadv = 0.032.

Ihttps://www.nltk.org/api/nltk.translate.html#module-nltk.translate.bleu_score
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The results in Figure A.1 show the same pattern as for the BLEU score, although with a smaller

relative gain of 23% when using the adversarial term.

Figure A.1: Performance on WikiLarge in terms of SARI score (higher is better) by weight for
the adversarial term λadv.

Development Set Results for Comparison to S2S Models In Table A.1, we report the develop-

ment set performances corresponding to the experiments reported in Section 3.2.3. For each

model, we also specify the best learning rate, if applicable, and the number of parameters in

the model

Model BLEU SARI LR |Θ|
S2S-Scratch 3.2 14.3 0.0001 34.3m

S2S-Pretrain 5.9 15.1 0.0005 34.3m

S2S-MLP 8.6 16.0 0.0001 36.4m

S2S-Freeze 17.4 20.1 0.00005 36.4m

Ours 26.7 23.5 - 36.4m

Table A.1: Text simplification performance of model variants of seq2seq training on the
development set. |Θ| denotes the number of parameters for each model.
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Sentiment Transfer

Dataset Details We evaluate on the Yelp dataset as preprocessed by T. Shen et al., 2017,

which consists of sentences with positive or negative sentiment extracted from restaurant

reviews. The training set consists of 176,787 negative and 267,314 positive examples. The

development set has 25,278 negative and 38,205 positive examples, and the test set has

50,278 negative and 76,392 positive examples. The dataset can be downloaded from https:

//github.com/shentianxiao/language-style-transfer/tree/master/data/yelp.

We use a fixed learning rate of 0.00005 to train our model for 10 epochs (for the ablations) or 20

epochs (for the final model). We evaluate the validation set performance in terms of self-BLEU

plus transfer accuracy after every epoch and save the iteration with the best validation loss

performance.

For all models involving training the mapping Φ (including the ablation below), we perform

a search of λadv among the values {0.008,0.016,0.032,0.0640.128}. We select them based

on the following metric:
5∑

i =1
(BLEU (λadv,λi

sty)+accur ac y(λadv,λi
sty), where λi

sty corresponds

to the i -th value of λsty that we have used to obtain the BLEU-accuracy tradeoff curve. By

BLEU (λadv,λi
sty) and accur ac y(λadv,λi

sty), respectively, we mean the score resulting from

training with the given parameters.

We use a 1-layer bidirectional LSTM with a memory size of 512.

All models again share the same encoder and decoder architecture, consisting of 22,995,072

parameters in total. The mappings MLP, OffsetNet, and ResNet have 524,288, 524,288, and

786,432 parameters, respectively. Hence, the total number of parameters for our models is

23.5m, whereas the variants we report as Shen et al. and FGIM have 23m parameters.

For binary classification, we train a 1-layer MLP with a hidden size of 512 with Adam using

a learning rate of 0.0001. For regularization, we use dropout with p = 0.5 at the hidden and

input layer, and also add isotropic Gaussian noise with a standard deviation of 0.5 to the input

features.

The DistilBERT classifier is trained using the HuggingFace transformers library.II We train it

for 30 epochs with a batch size of 64 and a learning rate of 0.00002 for Adam, with a linear

warm-up period over the first 3000 update steps. We evaluate the validation set performance

every 5000 steps and save the best model.

Implementation of Wang et al. Baseline We reimplemented the Fast Gradient Iterative

Modification method by K. Wang et al., 2019 to either i) follow the gradient of the sentiment

classifier from the input, or ii) from the output of Φ, follow the gradient of the complete loss

IISpecifically, we use the run_glue.py script in from https://github.com/huggingface/transformers and only re-
place the SST-2 dataset with the Yelp dataset. We used the commit “11c3257a18c4b5e1a3c1746eefd96f180358397b”
for training our model.
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function of training Φ.

Following the implementation by K. Wang et al., 2019, in all runs, we repeat the computation

for weights ω ∈ {1,10,100,1000} and stop at the first weight that leads to the classification

probability exceeding a threshold t . For each weight, we make 30 gradient steps at maximum.

The K. Wang et al., 2019 baseline is generated from choosing t = {0.5,0.9,0.99,0.999,0.9999},

i.e., we choose lower thresholds to stop the gradient descent from changing the input too

much towards the target attribute, leading to lower transfer accuracy performances.

When we apply FGIM to the output of Φ in our model (with the more sophisticated loss

function, where we set λsty = 0.5), we apply the same thresholds.

Development Set Result for Comparison of Plug and Play In Figure A.2, we report the

development set result corresponding to the test set results of the experiments presented in

Section 3.2.3. These results are shown for λadv = 0.008, which performed the best in terms of

the development score metric introduced in the training details.
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Figure A.2: Comparison of plug and play methods for unsupervised style transfer on the Yelp
sentiment transfer task’s development set. Up and right is better
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A.2 Bag-of-Vectors Autoencoders for Unsupervised Conditional Text

Generation

Here, we describe the experimental setup used in our experiments.

A.2.1 Implementation

We implemented BoV-AEs and fixed-sized AEs within the same codebase. Neural networks

are implemented via PyTorch (Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin,

Gimelshein, Antiga, et al., 2019a). For each dataset, we train a new BPE tokenizer (Sennrich

et al., 2016) via Huggingface tokenizer library (Wolf et al., 2020). We limit the vocabulary to

the 30k most frequent tokens. We use NLTK (Bird et al., 2009) for computing sentence-wise

BLEU scores and a Python-based reimplementation of ROUGE-1.5.5. for all ROUGE scoresIII.

We run our experiments on single GPUs, which are available to us as part of a computation

grid. Specific GPU assignment is outside of our control, and the specific GPUs vary between

GeForce GTX Titan X and RTX 3090 in power.

We estimate the total computational cost of the experiments reported in this work to be 7530

GPU hours. The majority of this cost is on autoencoder pretraining, which accounts for 6640h

(cmp. 890h for downstream training). Due to the long inputs and relatively large models,

pretraining on Yelp-Reviews is by far the most costly (5760h).

Note that a sufficiently large and generic model has to be pretrained only once and could be

applied to a wide range of downstream tasks, as is the case for e.g. BERT. In our experiments,

we had to pretrain on each corpus separately.

We estimate the computational budget over the whole development stage of this study to be

around 25,000 GPU hours.

A.2.2 Autoencoder Pretraining

All autoencoders consist of standard Transformer encoders and decoders (Vaswani et al.,

2017), with 3 encoder and decoder layers, respectively. The Transformers have 2 heads and

the dimensionality is set to the same as the latent vectors (Yelp-Reviews: 512, Yelp-Sentences:

32, Gigaword: 128). The total number of parameters of each model is shown in Table A.2.

BoV-AEs are marginally larger due to the L0Drop layers. In case of the fixed sized model, the

representations at the last layer are averaged. Otherwise we perform L0Drop as described

in Section 3.2.5. We set λL0 = 10 for all BoV models and only vary the target ratio. All models

are trained with a dropout (Srivastava, Hinton, et al., 2014) probability of 0.1 and a denoising

objective, i.e, tokens have a chance of 10% to be dropped from the sentence. We train the

model with the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of l r =

IIIhttps://pypi.org/project/rouge-score/
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Yelp-Reviews Yelp-Sentences Gigaword
Fixed-size AE 14.578m 0.958m 2.758m

BoV-AE 15.1m 0.960m 2.725m

Table A.2: Number of parameters of pretrained autoencoders.

0.00005 (Yelp-Reviews and Gigaword) or l r = 0.0001 (Yelp-Sentences) and a batch size of

64. We experimented with other learning rates (0.00005,0.0005) for the fixed-size model

on Yelp-Reviews, but the results did not improve. Models are trained for 2 million steps

on Gigaword and Yelp-Reviews and for 1.5 million steps on Yelp-Sentences. We check the

validation set performance every 20,000 steps and select the best model according to validation

reconstruction performance.

All the above hyperparameters were set once and not changed during the development

of BoV-AEs, except for the learning rate of Adam. BoV-AE in particular is sensitive to this

hyperparameter on the Yelp-Review dataset. We hence conducted a small grid search on

l r ∈ {0.0005,0.0002,0.0001,0.00005} for L0-0.2 to determine the best value reported above. We

then used that same learning rate to all other configurations on Yelp-Reviews.

A.2.3 Downstream Task Training

After the autoencoder pretraining, we train downstream by freezing the parameters of the

encoder and decoder. The dimensionality of the one-layer mapping Φ (a Transformer decoder

with 4 heads) is set to the same as the latent representation (Yelp-Reviews: 512, Yelp-Sentences:

32, Gigaword: 128). We set the maximum number of output vectors to N = 250 on Yelp-Reviews

and Gigaword, and N = 30 on Yelp-Sentences. The batch size is 64 for Yelp-Sentences and

Gigaword and 16 on Yelp-Reviews. We train for 10 epochs on Yelp-Sentences and Gigaword,

and for 3 epochs on Yelp-Reviews. The validation performance is evaluated after each epoch.

Losses: In all tasks we have two loss components. For Lsi m , we use differentiable Hausdorff

unless specified otherwise (in the ablation). Lst y and Ll en depend on classifiers / regressors,

which we train separately after the autoencoder pretraining as a one-layer Transformer en-

coder. The embeddings are then averaged and plugged into a one-layer MLP whose hidden

size is half of the input size and uses the tanh activation function. These classifiers are trained

via Adam (l r = 0.0001) for 10 epochs and we evaluate the validation set performance after

each. The total loss depends on a window size as described in Equation 3.16. For performance

reasons (multiple computations of the loss), we set k = 0 unless specified differently.

130



Appendix for Chapter 3 Chapter A

A.2.4 Yelp-Reviews

Dataset

The dataset was obtained from https://www.yelp.com/dataset in May 2021. Our goal is to

obtain texts long enough such they cannot be reconstructed by a reasonably sized autoen-

coder with a single-vector bottleneck. We find that to be the case when limiting ourselves to

reviews of maximum 100 words. We apply this limit due to the computational complexity

of Transformers on long texts. Otherwise, we stick with similar filtering criteria as T. Shen

et al., 2017: We only consider restaurant businesses. We consider reviews with 1 or 2 stars

as negative, and reviews with 5 stars as positive. We don’t consider reviews with 3 or 4 stars

to avoid including neutral reviews. We subsample 400,000 positive and negative reviews for

training, respectively, and use 50,000 for validation and test set each.

In order to demonstrate the usefulness of our model on long texts, we turn to the original

Yelp datasetIV. Our goal is to obtain texts long enough such they cannot be reconstructed by

a reasonably sized autoencoder with a single-vector bottleneck. We find that to be the case

when limiting ourselves to reviews of maximum 100 wordsV. Otherwise, we stick with similar

filtering criteria as T. Shen et al., 2017: We only consider restaurant businesses. We consider

reviews with 1 or 2 stars as negative, and reviews with 5 stars as positive. We don’t consider

reviews with 3 or 4 stars to avoid including neutral reviews. We subsample 400,000 positive

and negative reviews for training, respectively, and use 50,000 for validation and test set each.

Downstream Training

For both the fixed-size model and the BoV model (L0-0.1), we choose the best learning rate

among l r = 0.0001 and l r = 0.0005 on the validation set and report test set results. We train

with Lst y ∈ {0.1,0.2,0.5,1,2,5,10}, resulting in the scatter plot in Figure 3.14.

A.2.5 Yelp-Sentences

Dataset

Yelp-Sentences consists of the sentiment transfer dataset created by T. Shen et al., 2017, who

made their data available at https://github.com/shentianxiao/language-style-transfer/tree/

master/data/yelp. We use their data as is without further preprocessing. Table 3.8 presents

some basic statistics about this dataset.

IVThe dataset was obtained from https://www.yelp.com/dataset in May 2021.
VWe apply this limit due to the computational complexity of Transformers on long texts.
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Downstream Training

We train BoV models with λst y ∈ {1,2,5,10,20,50,100}. To make sure that our results are

not due to insufficient tuning, for the fixed-sized model, we use the following larger range:

{0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100}. All configurations are trained with l r = 0.0005.

These results produce the scatter plot in Figure 3.17.

Ablations

For the ablations on differentiable Hausdorff distance and the window size, we use the L0-

0.6 model. For each option, we train with Lst y ∈ {0.1,0.2,0.5,1,2,5,10,20,40,60,80,100} and

report the best value in terms of style transfer score on the validation set.

A.2.6 Sentence Summarization

Dataset

The dataset is based on the Gigaword corpus (Graff et al., 2003). We largely follow the pre-

processing in Rush et al., 2015, which we obtained from the paper’s GitHub repository at

https://github.com/facebookarchive/NAMAS. Different from them, we convert all inputs and

outputs to lower case and use a smaller split (1 million examples). We provide the scripts for

constructing the dataset from a copy of the Gigaword corpus (which can be obtained from the

Linguistic Dataset Consortium) together with the rest of our code.

Downstream Training

We train all models with l r = 0.00005. For each target ratio r and each of Transformer and

Transformer++, we select the best λlen ∈ {0.1,0.2,0.5,1,2,5,10} in terms of ROUGE-L on the

validation set and report test set results in Table 3.13.
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B.1 Architectures of the Models Used in Experiments

Along with the architectures examined by Schneider et al., 2019, we experiment with an addi-

tional network and dataset. We included an additional network into our experimental setup, as

DEEPOBS does not contain a word level LSTM model. Our model uses a 32-dimensional word

embedding table and a single layer LSTM with memory cell size 128, the exact architecture is

given in Table B.1. We experiment with the IMDB sentiment classification dataset (Maas et al.,

2011). The dataset contains 50,000 movie reviews collected from movie rating website IMDB.

The training set has 25,000 reviews, each labeled as positive or negative. The other 25,000

form the test set. We split 20% of the training set to use as the development set. We refer the

readers to DEEPOBS (Schneider et al., 2019) for the exact details of the other architectures

used in this work.

Table B.1: Architecture of the LSTM network used for IMDb experiments

Layer name Description

Emb

 Embedding Layer
Vocabulary of 10000

Embedding dimension: 32



LSTM_1

 LSTM
Input size: 32

Hidden dimension: 128


FC Layer Linear(128 −→ 2)

Classifier Softmax(2)

B.2 Performance Analysis

We show the full performance plots of all variants of SGD, Adam, and Adagrad we experimented

with in Figure B.1.

B.3 How Likely Are We to Find Good Configurations?

In Figure 4.1 we showed the chance of finding the optimal hyperparameter setting for some of

the optimizers considered, in a problem agnostic setting. Here we delve into the case where

we present similar plots for each of the problems considered in §3.2.3.

A natural question that arises is: Given a budget K , what is the best optimizer one can pick?

In other words, for a given budget what is the probability of each optimizer finding the best

configuration? We answer this with a simple procedure. We repeat the runs of HPO for a
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budget K , and collect the optimizer that gave the best result in each of those runs. Using the

classical definition of probability, we compute the required quantity. We plot the computed

probability in Figure B.2. It is very evident for nearly all budgets, Adam-LR is always the best

option for 4 of the problems. SGD variants emerge to be better options for CIFAR-100 and

Char-RNN at later stages of HPO. For some of the problems like VAEs, LSTM, it is very obvious

that Adam-LR is nearly always the best choice. This further strengthens our hypothesis that

adaptive gradient methods are more tunable, especially in constrained HPO budget scenarios.

B.4 Computing the Expected Maximum of Random Samples

The following is a constructive proof of how to compute the expected value that the bootstrap

method converges to in the limit of infinite re-sampling. It is a paraphrase of Section 3.1 in

Dodge et al., 2019, but due to inaccuracies in Equation B.1 in their paper, we repeat it here for

clarity.

Let x1, x2 . . . xN ∼ X be N independently sampled values. Let the random variable Y be the

maximum of a random subset of size S from x1, x2 . . . xN where S ≤ N . For representational

convenience, let them be the first S samples. So, Y = max{x1, . . . , xS}. We are interested in

computing E[Y]. This can be computed as

E[Y] =
∑

y
y ·P (Y = y)

for discrete Y, with P (Y = y) be the probability mass function of Y. We can write

P (Y = y) = P (Y ≤ y)−P (Y < y)

As xi ∀i are iid sampled,

P (Y ≤ y) = P ( max
i =1...S

xi ≤ y)

=
S∏

i =1
P (xi ≤ y)

= P (X ≤ y)S

P (X ≤ y) can be empirically estimated from data as the sum of normalized impulses.

P (X ≤ y) =
1

N

N∑
i =1
Ixi≤y (B.1)
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Thus,

E[Y] =
∑

y
y(P (X ≤ y)S −P (X < y)S) (B.2)

A very similar equation can be derived to compute the variance too. Variance is defined as

V ar (Y) = E[Y 2]−E[Y ]2. The second operand is given by Equation B.2. The first operand (for

discrete distributions) can be computed as

E[Y2] =
∑

y
y2(P (X ≤ y)S −P (X < y)S) (B.3)

Given the iterates (not incumbents) of Random Search, the expected performance at a given

budget can be estimated by Equation B.2 and the variance can be computed by Equation B.3.

B.5 Aggregating the Performance of Incumbents

In Procedure 1, we propose returning all the incumbents of the HPO algorithm. Here we

propose the use of an aggregation function that helps create a comparable scalar that can

used in a benchmarking software like DEEPOBS to rank the performance of optimizers that

takes the ease-of-use aspect into account, too.

B.5.1 Aggregating Function

For the aggregation function discussed, we propose a simple convex combination of the

incumbent performances and term it ω-tunability. If Lt be the incumbent performance at

budget t , we define ω-tunability as

ω-tunability =
T∑

t=1
ωt Lt ,

where wt > 0 ∀ t and
∑

t wt = 1.

By appropriately choosing the weights {ωt }, we can interpolate between our two notions of

tunability in §4.2. In the extreme case where we are only interested in the peak performance

of the optimizer, we can set ωT = 1 and set the other weights to zero. In the opposite extreme

case where we are interested in the "one-shot tunability" of the optimizer, we can setω1 = 1. In

general, we can answer the question of "How well does the optimizer perform with a budget

of K runs?" by setting ωi = 1i=K. Figure 4.3 and Figure B.1 can also be computed as ωi = 1i=K.

While the above weighting scheme is intuitive, merely computing the performance after

expending HPO budget of K does not consider the performance obtained after the previous

136



Appendix for Chapter 4 Chapter B

K −1 iterations i.e. we would like to differentiate the cases where a requisite performance is

attained by tuning an optimizer for K iterations and another for K1 iterations, where K1 ≫ K .

Therefore, we employ a weighting scheme as follows: By setting ωi ∝ (T − i ), our first one

puts more emphasis on the earlier stages of the hyperparameter tuning process. We term this

weighting scheme Cumulative Performance-Early (CPE). The results of the various optimzers’

CPE is shown in Table B.2. It is very evident that Adam-LR fares the best across tasks. Even

when it is not the best performing one, it is quite competitive. Thus, our observation that

Adam-LR is the easiest-to-tune i.e. it doesn’t guarantee the best performance, but it gives very

competitive performances early in the HPO search phase, holds true.

For a benchmarking software package like DEEPOBS, we suggest the use of CPE to rank opti-

mziers, as it places focus on ease-of-tuning. This supplements the existing peak performance

metric reported previously.

Optimizer FMN CF10 CF100 IMDb WRN 16(4) C-RNN MN-VAE FMN-VAE QD

Metric Accuracy (%) ↑ Loss ↓
Adam-LR 91.6 78.8 42.0 85.9 95.3 56.9 28.9 24.3 89.9
Adam 91.3 77.3 38.1 83.4 94.5 54.2 33.1 25.7 95.4
SGD-MC WC 90.8 81.0 38.8 78.7 95.3 53.9 54.0 27.9 87.4
SGD-MW 90.5 79.6 33.2 75.2 95.0 44.4 35.2 26.5 87.5
SGD-MC D 91.1 82.1 39.2 80.5 95.2 49.6 54.3 29.8 87.5

Adagrad 91.3 76.6 29.8 84.4 95.0 55.6 30.7 25.9 90.6
Adam-WC D 91.6 79.4 35.1 86.0 95.1 57.4 28.6 24.3 92.8
SGD-LR 90.4 76.9 30.6 68.1 94.7 39.9 53.4 26.2 89.3
SGD-M 90.5 77.8 39.8 73.8 94.9 50.7 37.1 26.3 88.2
SGD-MC 90.7 78.8 42.0 79.0 95.0 55.5 54.1 28.5 88.1

Table B.2: CPE for the various optimizers experimented. It is evident that Adam-LR is the most
competitive across tasks.

B.6 Results for Computation Time Budgets

Using number of hyperparameter configuration trials as budget unit does not account for the

possibility that optimizers may require different amounts of computation time to finish a trial.

While the cost for one update step is approximately the same for all optimizers, some require

more update steps than others before reaching convergence.

To verify that our results and conclusions are not affected by our choice of budget unit, we

simulate the results we would have obtained with a computation time budget in the following

way. For a given test problem (e.g., CIFAR-10), we compute the minimum number of update

steps any optimizer has required to finish 100 trials, and consider this number to be the

maximum computation budget. We split this budget into 100 intervals of equal size. Using

the bootstrap (Tibshirani & Efron, 1993), we then simulate 1,000 HPO runs, and save the

best performance achieved at each interval. Note that sometimes an optimizer can complete
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multiple hyperparameter trials in one interval, and sometimes a single trial may take longer

than one interval. Finally, we average the results from all 1,000 HPO runs and compute the

same summary across datasets as in Section 4.5.2.

Figure B.3 shows that the conclusions do not change when using computation time as budget

unit. In fact, the graphs show almost the exact same pattern as in Figure 4.4, where number of

hyperparameter trials is the budget unit.

B.7 Plotting Hyperparameter Surfaces

In Section 4.2, we hypothesize that the performance as a function of the hyperparameter,

e.g., learning rate, of an optimizer that performs well with few trials has a wider extremum

compared to an optimizer that only performs well with more trials.

In Figure B.4, we show a scatter plot of the loss/accuracy surfaces of SGD-MC WC and Adam-

LR as a function of the learning rate, which is their only tunable hyperparameter. The plots

confirm the expected behavior. On MNIST VAE, FMNIST VAE, and Tolstoi-Char-RNN, Adam-

LR reaches performances close to the optimum on a wider range of learning rates than

SGD-MC WC does, resulting in substantially better expected performances at small budgets

(k = 1,4) as opposed to SGD-MC WC , even though their extrema are relatively close to each

other. On CIFAR10, the width of the maximum is similar, leading to comparable performances

at low budgets. However, the maximum for SGD-MC WC is slightly higher, leading to better

performance than Adam-LR at high budgets.

B.8 Interplay between momentum and learning rate

We ran an additional experiment using ‘effective learning rate’ (Shallue et al., 2019) that

combines learning rate γ, and momentum µ of SGD to compute the effective learning rate γeff.

Intuitively, γeffquantifies the contribution of a given minibatch to the overall training. This is

defined as

γeff =
γ

1−µ

We designed a variant of SGD-MW, called SGD-LReff, where we sampledγ andγeffindependently

from lognormal priors calibrated as usual, and compute the momentum(µ) as µ = max(0,(1−
γ

γeff )), hence accounting for interplay between learning rate and momentum. We plot the

performance comparisons between SGD-MW and SGD-LReff in Figure B.5, and provide a plot

of the aggregated relative performance in Figure B.6. The results show that indeed SGD-LReff

improves over SGD-MW in the low-budget regime, particularly on classification tasks. We at-

tribute this to the fact that SGD-LReff is effective at exploiting historically successful (γ,µ) pairs.

For large budgets, however, SGD-LReff performs increasingly worse than SGD-MW, which can
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be explained by the fact that SGD-MW has a higher chance of exploring new configurations

due to the independence assumption. Despite the improvement in low-budget regimes, SGD

variants, including the new SGD-LReff variant, remain substantially below Adam-LR in all

budget scenarios. Hence, our conclusion remains the same.
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Figure B.1: Adagrad, Adam-LR, Adam, Adam-WC D, SGD-LR, SGD-M, SGD-MC , SGD-MW,
SGD-MC WC , and SGD-MC D
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Figure B.1: Adagrad, Adam-LR, Adam, Adam-WC D, SGD-LR, SGD-M, SGD-MC , SGD-MW,
SGD-MC WC , and SGD-MC D
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Figure B.1: Adagrad, Adam-LR, Adam, Adam-WC D, SGD-LR, SGD-M, SGD-MC , SGD-MW,
SGD-MC WC , and SGD-MC D
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Figure B.1: We show the performance of Adagrad, Adam-LR, Adam, Adam-WC D, SGD-LR,
SGD-M, SGD-MC , SGD-MW, SGD-MC WC , and SGD-MC D over all the experiments. We plot
the on the x-axis the number of the hyperparameter configuration searches, on the y-axis the
appropriate performance.
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Figure B.2: Which optimizer for which budget? Given a tuning budget K (x-axis), the stacked
area plots above show how likely each optimizer (colored bands) is to yield the best result after
K steps of hyperparameter optimization. For example, for the IMDB LSTM problem, for a
small budget, Adam-LR is the best choice (with ∼ 0.8 probability), whereas for a larger search
budget > 50, tuning the other parameters of ‘Adam’ is likely to pay off.
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Figure B.3: Aggregated relative performance of each optimizer across datasets.
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Figure B.4: Scatter plot of performance of Adam-LR and SGD-MC WC by learning rate value.
For better visibility, we shift the learning rate values of SGD-MC WC in such a way that the
minima of both optimizers are at the same position on the x-axis.
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Figure B.5: Performance of SGD-MW, SGD-LReff, at various hyperparameter search budgets.
Image is best viewed in color. Some of the plots have been truncated to increase readability.
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Figure B.6: Aggregated relative performance of SGD-LReff compared to other optimizers.
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C.1 Experimental Details

C.1.1 General Information

Implementation We implemented all models within the same general framework based on

PyTorch (Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga,

et al., 2019b). For tokenization, we use the pretrained tokenizer from BERT-Base (Devlin et al.,

2019). Datasets are downloaded directly from HuggingFace Datasets (Lhoest et al., 2021). As

such, they are directly downloaded by our training script. We apply no further preprocessing.

For computing expected validation performance, we use the public implementation by Dodge

et al., 2019.

We run our experiments on single-GPU servers available to us as part of a computation grid,

ranging between GeForce GTX Titan X and RTX 3090. Apart from Transformers on SNLI and

MNLI, which take about 4 hours on slower GPUs, all experiments finished within 3 hours.

C.1.2 Toy Task (Section 5.4.8)

This section gives more detail about how we set up the synthetic example (Fleuret, 2019) for

evaluating whether the different models were able to learn some attention-like transformation.

We have a dataset made of 1D sequences that contain two rectangular and two triangular

shapes. Each of these shapes has a different height taken at random in the input sequence.

The output sequence has the same shapes in the same positions, but the heights of triangular

shapes should be the mean of the two triangular shapes in the input sequence. Similarly, the

height of the rectangular shapes in the output sequence is the mean of the height of the two

rectangular shapes in the input sequence.

So the model should be able to see across the sequence and compute the mean of the two

different shapes to succeed at the task. All the models considered for this task have a similar

structure: they consist of a particular layer (MLPMixer, HyperMixer, or Attention) surrounded

by two pairs of 1D-convolutional layers with kernels of size five and a symmetric zero-padding

of size two so that the output shape is constant. We made an ablation to ensure that this layer

was mandatory by changing it with another similar 1D convolutional layer, which corresponds

to None in the figure 5.6.

Before visualizing the pseudo-attention maps, all models were trained on 25,000 training

examples. We use input-gradients (Simonyan et al., 2014) to evaluate whether models could «

attend » to the different shapes. This method computes the gradient of the output sequence

with respect to the input sequence, giving the corresponding saliency map, which can then be

recombined into a pseudo-attention matrix where the i -th column corresponds to the saliency

maps of the i -th output token. A large value in the (i , j ) entries of the pseudo-attention matrix

means that the output token i strongly depends on the input j , and we can thus compare it to

an attention matrix.
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Model MNLI SNLI QQP QNLI SST # Pms
Baselines (accuracy / learning rate)

FNet 59.6 / 5e-4 75.1 / .001 79.7 / .001 59.2 / 5e-4 80.4 / .001 9.5 M
Linear Transformer 66.2 / .001 82.2 / 0.001 81.7 / 5e-4 61.1 / 1e-4 80.7 / 2e-4 11M

Transformer 66.0 / 2e-4 81.2 / 2e-4 82.9 / 2e-4 65.4 / 5e-4 78.9 / 5e-4 11 M
MLPMixer 64.2 / .001 80.5 / .001 83.6 / .001 68.7 / 5e-5 82.3 / .001 11 M

gMLP 61.5 / .001 80.9 / 2e-4 83.0 / 5e-4 61.1 / 5e-5 79.2 / 1e-4 11 M

HyperMixer (tied) 66.5 / 1e-4 81.8 / 2e-4 85.4 / 1e-4 77.5 / 5e-5 81.3 / 5e-4 11 M
Ablations (accuracy / learning rate)

Feature Mixing only 54.4 / .001 67.2 / 5e-4 75.9 / .001 61.0 / .001 81.8 / 5e-4 9 M
Token Mixing only 59.5 / 2e-4 73.6 / 2e-4 81.7 / 2e-4 61.8 / 2e-4 80.1 / 5e-4 9 M

Shared Weight-Vector 53.7 / 5e-4 68.1 / .001 83.0 / .001 66.4 / 5e-5 80.5 / .001 9.5 M
HyperMixer (untied) 66.0 / .001 82.3 / .001 84.6 / .001 72.2 / 5e-5 81.3 / .001 12 M

Table C.1: Best validation set results on natural language understanding tasks after tuning the
learning rate on a grid.

Model MNLI SNLI QQP QNLI SST # Params
Baselines

FNet 58.8 75.2 78.4 59.0 80.2 9.5 M
Lin. Transformer 67.0 81.9 82.3 61.0 82.5 11 M

Transformer 64.9 81.1 82.1 67.1 77.7 11 M
MLPMixer 62.6 79.7 83.2 69.1 80.8 11 M

gMLP 62.9 79.9 82.3 60.0 78.5 11 M

HyperMixer (tied) 64.9 81.0 83.9 76.8 80.9 11 M

Table C.2: Test set results on natural language understanding tasks, when using the median
seed.

C.2 Further Results

C.2.1 Validation Set Results

In Table C.1, we show the best scores on the validation set that we obtained from the grid

search (using a fixed seed), alongside the learning rate that yielded that score.

In Section 5.4.3, we reported the test set results of all models when using the best-performing

seed. In Table C.2, we show test set results when using the median seed.

C.3 Comparison of #FOP

We want to compute the number of floating-point operations needed in self-attention vs.

HyperMixing for a single example. Let N be the sequence length, d be the embedding size of

each token, and d ′ the hidden dimension.

For simplicity, we will assume basic mathematical operators like exp,tanh,
p

x and division
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to be equal to one floating operation. However, their actual cost is higher but depends on

implementation and hardware.

C.3.1 Basic Building Blocks

We first compute the number of operations infrequently occurring in basic building blocks of

neural networks.

Matrix Multiplication Multiplying matrix A ∈RN×d A ∈Rd×M takes 2d(N M) operations, as

2d operations are needed for a single dot-product and there are N M entries in the resulting

matrix.

Linear Layer Passing a single vector of size d through a linear layer without bias of size (d ,d ′)
is the multiplication of a single vector with a matrix, i.e., incurs 2dd ′ operations in total.

GELU GELU is usually approximated as

GELU(x) = 0.5x
[

1+ tanh
(p

2/π(x + cx3)
)]

So in total, GELU is computed for every of the d features and every of the N vectors, meaning

the GELU activation layer takes 9d N operations.

MLP (input = output size) Given hidden size d ′ and input/output size d , we have two linear

layers of size (d ,d ′) and (d ′,d), respectively, plus a GELU layer on d ′ dimensions, incurring

4dd ′+9d ′.

MLP (input /= output size) Given hidden size d ′, input size d and output size d ′′, we have

two linear layers of sizes (d ,d ′) and (d ′,d ′′), incurring 2dd ′ + 2d ′d ′′+9d ′.

Softmax Softmax is applied over N values, each of which goes through an exp and a division

by the normalization value. The normalization value requires N additions. So in total, the

number of operations is 3N .

C.3.2 HyperMixer

HyperNetwork (tied case) In the tied case, we have one MLP that generates an output for

each vector, so the number of operations needed for an MLP of input and hidden size d and

output sizes d ′: N (2d 2 +2dd ′+9d)
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Mixing MLP The mixing MLP has input and output size N and hidden size d ′, which is

applied to each of the d embedding dimensions (i.e., after transposition), incurring d(4d ′N +
9′) operations in total.

Total: The total number of operations in HyperMixer is d(4N d ′+9d ′)+N (2d 2 +2d ′d +9d)

C.3.3 Self-attention

Multi-head self-attention with h heads applies self-attention independently to each head

consisting of vectors of size d/h, respectively.

Self-attention consists of

• 3 linear layers to transform queries, keys, and values: 6h(d/h)2

• h matrix multiplications with sizes N (d/h), totalling 2h(d/h)N 2 operations

• softmax: 3N

• a weighted average for each of the inputs, consisting of (2d N 2) operations.

In total: 6h(d/h)2 +hN 22(d/h)+3N + (2d N 2)

C.4 Connection with Lambda Layers and Linear Transformer

We saw in Section 5.4.8 that HyperMixer was able to allow a form of attention without comput-

ing an attention matrix directly and thus scaling only linearly with the input length. In that

regard, this method is similar to other methods such as Bello, 2021 or Katharopoulos et al.,

2020. We will describe here the difference between these approaches and our method. Let us

write the standard attention formula and the HyperMixer layer under the following form:

Attention(Q ,K ,V ) = softmax(QK T )V (C.1)

HyperMixer(X ) = W1σ(W T
2 X ) (C.2)

where Q ,K ,V ,W1,W2 ∈RN×d ′
, X ∈RN×d and W1,W2 are the weights generated by the hyper-

network.

We can notice that the two operations differ mainly in the non-linearity location and the uses

of linear or non-linear projection of the input. Indeed, attention applies a non-linearity to

QK T and uses linear projection of the input (Q ,K ,V ) to construct the attention map. On
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the contrary, HyperMixer uses two linear mapping of the input (W1,W2) and applies a non-

linearity to W T
2 X , which is similar in a way to K T V . The quadratic cost of the attention

layer comes from the place of the non-linearity as it requires the explicit computation of

QK T ∈RN×N which is quadratic with respect to the input size. Most of the strategies used to

overcome this quadratic cost generally find a way of moving this non-linearity. This is the case

of Katharopoulos et al., 2020 which applies non-linearities φ independently to Q and K and

Bello, 2021 that applies softmax only to K . In that regard, these two methods can be compared

with HyperMixer as they all scale linearly with the input size due to the non-linearity location.

Still, HyperMixer is conceptually different because it uses a non-linear transformation of the

input and because it uses, in our opinion, a simpler and more understandable design entirely

based on MLPs.
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