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Abstract

In light of steady progress in machine learning, automatic speech recognition (ASR) is entering

more and more areas of our daily life, but people with dysarthria and other speech pathologies

are left behind. Their voices are underrepresented in the training data and so different from

typical speech that ASR systems fail to recognise them. This thesis aims to adapt both acoustic

models and training data of ASR systems in order to better handle dysarthric speech.

We first build state-of-the-art acoustic models based on sequence-discriminative lattice-free

maximum mutual information (LF-MMI) training that serve as baselines for the following

experiments. We propose the dynamic combination of models trained on either control,

dysarthric, or both groups of speakers to address the acoustic variability of dysarthric speech.

Furthermore, we combine models trained with either phoneme or grapheme acoustic units in

order to implicitly handle pronunciation variants.

Second, we develop a framework to analyse the acoustic space of ASR training data and

its discriminability. We observe that these discriminability measures are strongly linked to

subjective intelligibility ratings of dysarthric speakers and ASR performance.

Finally, we compare a range of data augmentation methods, including voice conversion and

speech synthesis, for creating artificial dysarthric training data for ASR systems. With our

analysis framework, we find that these methods reproduce characteristics of natural dysarthric

speech.

Keywords: automatic speech recognition, dysarthria, pathological speech processing, LF-

MMI, acoustic subword units, data augmentation
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Résumé
Grâce aux progrès constants de l’apprentissage automatique, la reconnaissance automatique

de la parole pénètre de plus en plus dans notre vie quotidienne, mais les personnes atteintes

de dysarthrie et d’autres pathologies de la parole sont laissées pour compte. Leurs voix sont

sous-représentées dans les données d’entraînement et si différentes de la parole typique que

les systèmes de reconnaissance vocale ne les reconnaissent pas. Cette thèse vise à adapter à la

fois les modèles acoustiques et les données d’entraînement des systèmes de reconnaissance

vocale afin de mieux traiter la parole dysarthrique.

Nous construisons d’abord des modèles acoustiques de pointe basés sur l’entraînement

discriminatif des séquences LF-MMI, qui servent de base aux expériences suivantes. Nous

proposons la combinaison dynamique de modèles entraînés soit sur des locuteurs typiques,

soit sur des locuteurs dysarthriques, soit sur les deux groupes de locuteurs, afin d’aborder la

variabilité acoustique de la parole dysarthrique. De plus, nous combinons des modèles entraî-

nés avec des unités acoustiques de phonèmes ou de graphèmes afin de traiter implicitement

les variantes de prononciation.

Deuxièmement, nous développons un cadre pour analyser l’espace acoustique des données

d’entraînement et sa discriminabilité. Nous observons que ces mesures de discriminabilité

sont fortement liées aux évaluations subjectives de l’intelligibilité des locuteurs dysarthriques

et aux performances de reconnaissance vocale.

Enfin, nous comparons une série de méthodes d’augmentation de données, y compris la

conversion de la voix et la synthèse vocale, pour créer des données d’entraînement dysar-

thriques artificielles pour les systèmes de reconnaissance vocale. Grâce à notre cadre d’analyse,

nous constatons que ces méthodes reproduisent les caractéristiques de la parole dysarthrique

naturelle.

Keywords : reconnaissance automatique de la parole, dysarthrie, traitement de la parole

pathologique, LF-MMI, unités de sous-mots acoustiques, augmentation de données
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Zusammenfassung

Angesichts des stetigen Fortschritts im maschinellen Lernen, hält automatische Spracherken-

nung Einzug in immer mehr Bereiche unseres täglichen Lebens, aber Personen mit Dysarthrie

und anderen Sprechstörungen werden zurückgelassen. Ihre Stimmen sind nicht genügend

in den Trainingsdatensätzen repräsentiert und so unterschiedlich, dass typische Spracher-

kennungssysteme sie nicht verstehen. Diese Dissertation zielt darauf ab, sowohl akustische

Modelle, als auch die Trainingsdaten von Spracherkennungssystemen so anzupassen, dass sie

dysarthrische Sprache besser verarbeiten können.

Zunächst entwickeln wir akustische Modelle basierend auf diskriminativem LF-MMI Training,

die als Grundlinien für die folgenden Experimente dienen. Wir schlagen die dynamische

Kombination von Modellen vor, die entweder mit typischen, dysarthrischen, oder beiden

Sprachdaten trainiert worden sind, um die akustische Variabilität der dysarthrischen Sprache

zu adressieren. Weiterhin kombinieren wir Modelle, die entweder mit phonemischen oder mit

graphemischen Subworteinheiten trainiert worden sind, um implizit mit Aussprachevariatio-

nen umzugehen.

Zweitens entwickeln wir ein Rahmenwerk, um die akustischen Einheiten der Trainingsdaten

für Spracherkennung und ihre Unterscheidbarkeit zu analysieren. Wir beobachten, dass

diese Unterscheidbarkeitskriterien eng mit subjektiven Verständlichkeitsbewertungen der

dysarthrischen Sprecher und den Ergebnissen der Spracherkennung zusammenhängen.

Abschliessend vergleichen wir unterschiedliche Datenaugmentationsmethoden, einschlies-

slich Sprachumwandlung und Sprachsynthese, um künstliche dysarthrische Trainingsdaten

für Spracherkennungssysteme zu generieren. Mit unserem Analysesystem ermitteln wir, dass

diese Methoden Eigenschaften natürlicher dysarthrischer Sprache reproduzieren.

Schlüsselwörter: automatische Spracherkennung, Dysarthrie, Verarbeitung pathologischer

Sprache, LF-MMI, akustische Subwort-Einheiten, Datenaugmentation
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1 Introduction

1.1 Motivation

Dysarthria is a motor speech disorder caused by damage to the nervous system that results in

a reduction of control over the muscles involved in speech production. This leads to atypical

breathing, imprecise articulation, lower speaking rates, dysfluencies, and overall reduced

speech intelligibility (Duffy, 2012). Common causes for dysarthria are stroke, cerebral palsy

or neurodegenerative diseases, such as Parkinson’s disease and amyotrophic lateral sclerosis

(ALS).

Often these patients face difficulties not only with speech production, because other parts

of their motor system are affected as well, creating challenges in carrying out everyday tasks.

Assistive technology that recognises such pathological speech and is integrated with a home

automation system could therefore help with daily tasks, such as switching on the light or

changing TV channels, that are otherwise very difficult for people with limited motor control

because input methods like buttons or touch screens are not designed for their needs.

Although considerable progress has been made in the field of automatic speech recognition

(ASR), it has been found that current commercial and open-source ASR systems still perform

poorly on atypical speech, including accented (Hinsvark et al., 2021), children’s (Dubagunta

et al., 2019) and pathological speech (Moore et al., 2018). On the other hand, humans struggle

to understand severely dysarthric speech as well (Mengistu and Rudzicz, 2011b) and better

ASR systems could serve as a communication aid for people not familiar with dysarthric

speech.

This highlights the need for further research on dysarthric ASR that results in tangible im-

provements in mainstream speech technology and thus directly improves the quality of life

for people with speech disorders.

1



Introduction

1.2 Summary of contributions

The main contributions of this thesis are:

• Sequence-discriminative ASR baselines

We build state-of-the-art acoustic models with sequence-discriminative lattice-free

maximum mutual information (LF-MMI) training on the Torgo and UA-Speech corpora

of dysarthric speech as baselines for the following experiments. We also propose a new

evaluation protocol for the Torgo corpus that treats the isolated word and sentence

recognition tasks separately.

• Handling acoustic and lexical variability through model combination

We find that dynamic combination of acoustic models trained on different groups of

speakers improves the handling of acoustic and lexical variability of dysarthric speech.

Furthermore, the combination of models trained with different acoustic units, such as

phonemes and graphemes, implicitly supports pronunciation variations and improves

ASR results on dysarthric and children’s speech.

• Analysis framework to measure acoustic discriminability of speech

We develop an analysis framework to measure the acoustic discriminability of ASR

training data based on Kullback-Leibler (KL) divergences between Gaussian distribu-

tions estimated for acoustic subword units. These measures are well correlated with

subjective intelligibility ratings of dysarthric speech and the performance of dysarthric

speech recognition systems.

• Comparison of data augmentation approaches for dysarthric ASR

We conduct a detailed comparison of different data augmentation methods for dysarthric

ASR, including voice conversion (VC) and text-to-speech (TTS). We evaluate the syn-

thetic speech output from these systems with our proposed analysis framework to

determine how well they reproduce characteristics of the original dysarthric speech.

1.3 Thesis outline

The remainder of this thesis is structured as follows:

Chapter 2 briefly summarises the relevant background on ASR and discusses previous ap-

proaches to dysarthric speech recognition. We also present the datasets used for the experi-

ments in this thesis.

Sequence-discriminative acoustic models trained with the LF-MMI objective function are a

state-of-the-art approach for ASR. In Chapter 3 we investigate why they are also very effective

for dysarthric speech recognition and develop baseline models for the Torgo and UA-Speech

corpora that will be used throughout this thesis.
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1.4 Peer-reviewed publications based on this thesis work

Chapter 4 discusses how the combination of acoustic models trained on different groups of

speakers or with different acoustic unit sets can handle the acoustic and lexical variability

of dysarthric speech. We also evaluate this approach on children’s and non-native children’s

speech as other forms of atypical speech.

In Chapter 5, we propose a framework for analysing and predicting the performance of

dysarthric speech recognition systems based on the acoustic discriminability of the training

data. We also relate this to the variations in intelligibility between different dysarthric speakers

and to intelligibility ratings of TTS systems.

We then compare different data augmentation approaches for improving dysarthric speech

recognition in Chapter 6 with this analysis framework: voice conversion based on signal

processing and generative adversarial networks (GANs), and speech synthesis. We further

investigate whether synthesised dysarthric speech could also be used in a few-shot setting to

build ASR systems for new speakers from very little data.

Finally, Chapter 7 summarises this thesis and suggests directions for future work.

1.4 Peer-reviewed publications based on this thesis work

Chapter 3:

Hermann, E. and Magimai.-Doss, M. (2020). Dysarthric Speech Recognition with Lattice-Free

MMI. In Proceedings of ICASSP, pages 6109–6113

Chapters 4 and 5:

Hermann, E. and Magimai.-Doss, M. (2021). Handling acoustic variation in dysarthric speech

recognition systems through model combination. In Proceedings of Interspeech, pages 4788–

4792

Chapter 6:

Halpern, B. M., Fritsch, J., Hermann, E., van Son, R., Scharenborg, O., and Magimai.-Doss, M.

(2021). An Objective Evaluation Framework for Pathological Speech Synthesis. In Proceedings

of the ITG Conference on Speech Communication

Hermann, E. and Magimai.-Doss, M. (2023). Few-shot Dysarthric Speech Recognition with

Text-to-Speech Data Augmentation. In Proceedings of Interspeech (accepted)
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2 Background

This chapter introduces the relevant technical background for this thesis. We give a general

overview of ASR in Section 2.1, summarise previous works on ASR for dysarthric speech in

Section 2.2, and describe the datasets used throughout this thesis in Section 2.3.

2.1 Automatic speech recognition

ASR is the task of finding the most likely sequence of words w∗ = (w1, . . . , wM ) that corresponds

to a given speech signal, represented by a sequence of acoustic feature vectors X = (x1, . . . , xT ):

w∗ = argmax
w

P (w |X ) . (2.1)

Following Bayes’ theorem we can decompose this into an acoustic model P (X |w ) and a

language model P (w ) that can be trained separately:

w∗ = argmax
w

P (X |w )P (w )

P (X )
(2.2)

= argmax
w

P (X |w )P (w ) . (2.3)

The ASR output can be further processed, for example, a spoken language understanding

system may translate the ASR output “louder” into an intent that leads to increasing the

volume of a loudspeaker.
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Chapter 2. Background
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Figure 2.1: Overview of an ASR system to convert a speech signal X into a word hypothesis.

2.1.1 Overview

Figure 2.1 illustrates the general pipeline of an ASR system. First, the speech signal is converted

into a sequence of acoustic feature vectors with a lower sampling rate. Traditionally, these are

often Mel-frequency cepstral coefficients (MFCCs), but with the advent of neural networks,

representations with fewer processing steps that could lead to information loss are increasingly

preferred, such as Mel spectrograms or just windows of the raw signal itself (Palaz et al., 2019).

The acoustic model P (X |w ), typically a Gaussian mixture model (GMM) or deep neural

network (DNN), is trained on a database of transcribed speech recordings to distinguish

between acoustic units (or states). The most common units are phonemes, context-dependent

triphones or graphemes, exemplified in Table 2.1. Separately modelling triphones for each

possible left and right phoneme context would lead to too many units, many of which would

be seen only rarely or not at all in the data. In practice, acoustically similar context-dependent

triphones are therefore clustered with a decision tree into senones (Young et al., 1994). Unless

graphemes are used directly, a pronunciation lexicon, in conjunction with a grapheme-to-

phoneme conversion system for out-of-vocabulary words, is additionally required to map

from graphemes to phonemes.

Table 2.1: Different choices of acoustic units for the word act. For context-dependent triphones,
the left phoneme context is prefixed with “-” and the right context suffixed with “+”.

Phonemes Context-dependent triphones Graphemes

/æ/, /k/, /t/ /æ+k/, /æ-k+t/, /k-t/ a, c, t

A language model P (w ) is trained on text data to learn which words are likely to follow each

other. No corresponding speech recordings are required for this text, so the language model
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2.1 Automatic speech recognition

training data is usually much larger than what the acoustic model is trained on. For simple

applications, it is also possible to manually create a grammar that describes the possible

output sequences.

Finally, the decoder combines the outputs of the acoustic and language models and the lexicon

and searches for the most likely transcription for the given input speech signal. The decoder

is often based on weighted finite state transducers (Mohri et al., 2002) because they allow

efficient combination of context-dependent hidden Markov model (HMM) models, the lexicon,

and the language model into a single decoding graph.

In this thesis, we focus on improvements to the acoustic models and will not make any

changes to the language models because we are working with small datasets that only contain

a limited number of words. This also corresponds to the real-life use case of an assistive home

automation system developed for a fixed set of commands. We refer the reader to Yue et al.

(2020) for language modelling for unconstrained continuous dysarthric ASR and to Hernandez

et al. (2022) for end-to-end training without any external language model.

The performance of ASR systems is generally evaluated with the word error rate (WER). For

this, the number of insertions, deletions, and substitutions in the ASR output compared to the

correct transcript are obtained with the minimum edit distance algorithm. The WER is then

computed as follows:

Word Error Rate = 100× Insertions+Deletions+Substitutions

Number of words in the correct transcript
(2.4)

It is reported in percent, but values may be greater than one hundred if the number of inser-

tions is high.

2.1.2 Acoustic model training

In this section, we describe common acoustic model training methods that we employ in this

thesis. The acoustic units in ASR are typically modelled with HMMs whose state emission

probabilities are estimated with GMMs or DNNs as illustrated in Figure 2.2.

The basic objective function for generative HMM/GMM acoustic model training is maximum

likelihood (Rabiner, 1989; Hadian et al., 2018b)

FML =
U∑

u=1
log pθ(X u |Qw u ) (2.5)

=
U∑

u=1
log

∑
q∈Qwu

Tu∏
t=1

p(qt |qt−1)p(xu
t |qt ) , (2.6)
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q1

a1,1

q2
a1,2

a2,2

q3
a2,3

a3,3

a3,final

p(x |q1) p(x |q2) p(x |q3)

Figure 2.2: 3-state left-to-right HMM in an ASR system with transition probabilities ai , j from
state qi to q j and emission probabilities p(x |q) modelled by GMMs.

where θ are the trainable HMM parameters, namely transition and emission probabilities,

U is the number of utterances in the training data and X u are the acoustic features of the

uth utterance of length Tu with corresponding transcription w u . Qw u denotes all possible

state sequences for transcription w u – words with multiple possible pronunciations result in

multiple state sequences.

Hybrid HMM/DNN models are trained discriminatively at the frame level, i.e. the DNN is

trained to distinguish between acoustic units for a given frame of speech. This is achieved by

maximising the negative cross-entropy (CE) (Bourlard and Morgan, 1994; Hadian et al., 2018b)

FC E =
U∑

u=1

Tu∑
t=1

log(yu
t · zu

t ) , (2.7)

where yu
t is the output of the neural network at time t , a probability distribution over HMM

states, and zu
t is a one-hot vector identifying the correct state at time t . This state alignment

zu is obtained from a previously trained HMM/GMM model.

On the other hand, lattice-free maximum mutual information (LF-MMI), and other MMI-

based objective functions, are trained discriminatively at the sequence level. Originally de-

veloped for HMM/GMM model training (Bahl et al., 1986), they can be equally applied in the

context of hybrid HMM/DNN ASR. In addition to maximising the likelihood of the correct state

sequences, MMI minimises the likelihood of any other state sequence. This better matches the

goal of finding the best output sequence and generally leads to improved ASR results (Povey,

2003; Povey et al., 2016). The MMI objective is

FM M I =
U∑

u=1
log

pθ(X u |Qw u )p(Qw u )∑
w pθ(X u |Qw )p(Qw )

, (2.8)
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2.1 Automatic speech recognition

where in the denominator we sum over the likelihoods for all possible state sequences Qw

weighted by their prior probabilities p(Qw ). The language model is assumed to be fixed, so

that only the acoustic model parameters θ need to be trained. The denominator computation

is difficult because it is infeasible to enumerate all possible state sequences for non-trivial

vocabulary sizes. Multiple methods have been proposed to approximate the denominator

for MMI training, including n-best lists (Chow, 1990) and lattices (Valtchev et al., 1996). This

makes the denominator estimation practical by limiting it to the n most likely state sequences

for a given utterance or a lattice containing the most likely sequences. LF-MMI instead

incorporates a complete denominator graph that can be shared across utterances. This is

made possible by using a phone- instead of a word-based language model for the denominator,

which is estimated on the training data.

LF-MMI models are usually trained with frame subsampling for efficiency, where only every

third acoustic frame is used. The training is then repeated with different offsets until all of the

data was seen. To compensate for the lower sampling rate, a special 1-state HMM topology

instead of the usual 3-state topology is used, see Figure 2.3.

q1 q2 q3 q1

Figure 2.3: Regular 3-state and LF-MMI’s 1-state HMM topology (non-emitting final states in
red).

For more details and implementation notes on LF-MMI and other objective functions for

acoustic model training, we refer the reader to Povey et al. (2016) and Hadian et al. (2018b).

Over the course of this thesis work, end-to-end ASR approaches have become competitive with

hybrid HMM/DNN training, especially on large scale datasets. There is no single definition for

end-to-end ASR, but in general these approaches simplify the training and inference pipeline

by combining some or all of the feature extractor, acoustic and language models, and decoder

into a single model. They also reduce the need for external resources, such as pronunciation

lexicons, and for prior training of HMM/GMM models for time alignment and decision tree

building. Some recent studies have also explored end-to-end approaches for pathological

ASR (Hernandez et al., 2022; Hu et al., 2022; Wang et al., 2022; Yue et al., 2022a,b). In this

thesis, we only consider hybrid HMM/DNN acoustic models trained with LF-MMI on MFCC

features. However, LF-MMI has integrated ideas from connectionist temporal classification

(CTC) training, including the 1-state HMM topology and frame subsampling. An end-to-end

version of LF-MMI has also been proposed that does not depend on prior HMM/GMM training

or context-dependency trees (Hadian et al., 2018b,a).
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Chapter 2. Background

2.2 Dysarthric speech recognition

There are three main challenges for the automatic recognition of dysarthric speech. First,

dysarthric speech differs from typical speech in a number of aspects, depending on the

patient and their individual pathology. These in particular include a lower speaking rate, more

dysfluencies, and different, less distinct and unsteady articulation (Duffy, 2012). ASR systems,

which are usually trained mostly on typical speech, need to be able to model these differences.

Second, dysarthric speech itself has a lot of variability. Speech characteristics can vary sig-

nificantly between different dysarthric speakers because of different individual symptoms.

The speech of one speaker can also change over time because of medication, therapy, or

surgery (Tykalová et al., 2015; Tripoliti et al., 2011).

Third, the large variety of different pathologies and their individual manifestations in patients

results in a lack of training data with sufficient coverage. Recording speech for an extended

period of time can also be strenuous for patients and existing dysarthric speech databases are

therefore relatively small. Furthermore, many existing dysarthric speech corpora were not

mainly recorded for the purpose of training ASR systems, but rather for dysarthria detection

and assessment. The recording prompts are therefore not always representative of real-life

ASR applications and recordings were carried out in controlled settings instead of naturalistic

home environments. For example, participants are often asked to read phonetically complex

words to assess their articulation and pronunciation, whereas in practice they might choose a

simpler expression with the same meaning.

Approaches to dysarthric ASR can be grouped into three categories that try to deal with the

unique characteristics and the scarcity of dysarthric speech data in different ways: model

adaptation, feature adaptation, and data augmentation.

2.2.1 Acoustic model adaptation

One approach is to adapt acoustic models that were trained on potentially much larger

quantities of typical speech or to modify the model training procedure to be more suited to

recognising dysarthric speech.

Several studies have evaluated generic adaptation techniques for HMM/GMM acoustic mod-

els, including maximum likelihood linear regression (MLLR) (Leggetter and Woodland, 1995),

constrained MLLR (Gales, 1998), and maximum a posteriori (MAP) (Lee and Gauvain, 1993) to

adapt speaker-independent (SI) models to a target dysarthric speaker (Sharma and Hasegawa-

Johnson, 2010; Mengistu and Rudzicz, 2011a; Christensen et al., 2012, 2013; Mustafa et al.,

2014). Mengistu and Rudzicz (2011a) have further added manually compiled speaker-specific

pronunciation lexicons to explicitly handle lexical variability. Similarly, common adaptation

strategies for hybrid HMM/DNN acoustic models, including i-vectors (Saon et al., 2013), learn-

ing hidden unit contributions (LHUC) (Swietojanski and Renals, 2014) and parameterised
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2.2 Dysarthric speech recognition

activation functions (Zhang and Woodland, 2016), have been applied to dysarthric ASR (Yu

et al., 2018; Liu et al., 2021). Wang et al. (2021) have also explored meta-learning to adapt DNN

acoustic models to unseen dysarthric speakers.

It is also common to include typical speech data directly when training acoustic models for

dysarthric speech. This leads to better ASR results than training on dysarthric speech alone.

Yılmaz et al. (2016) have included typical speech from different varieties of Dutch to better

handle phonetic variability.

Apart from adapting acoustic models trained on typical speech, the training process can be

adjusted in other ways to better handle the characteristics of dysarthric speech. As many

speech disorders affect the movement of articulators in the vocal tract, integrating articulatory

information has been found to be beneficial (Rudzicz, 2011; Hahm et al., 2015; Yılmaz et al.,

2018; Xiong et al., 2018; Yue et al., 2022c; Hu et al., 2022). Modelling the articulators helps to

model the resulting acoustic changes. In this thesis, we train on acoustic features only, but the

presented methods could also be combined with articulatory features.

2.2.2 Feature adaptation

Other works investigated transforming pathological speech to be more similar to typical

speech, for example with speech enhancement methods (Bhat et al., 2018) or by adjusting

speech tempo (Xiong et al., 2019). In this way, no particular adjustments have to be made

to the acoustic model and a generic model for typical speech can be used to also recognise

dysarthric speech. Prananta et al. (2022) investigated GAN-based VC to convert dysarthric to

typical speech in order to improve dysarthric speech recognition. They also compared VC

with simpler time-stretching methods and found that these work just as well.

2.2.3 Data augmentation

Data augmentation describes any method that allows to create additional training data, either

by transforming the original speech or by adapting external speech data to be similar to the

target data. It is commonly used in many low-resource ASR settings. Data augmentation

is also relevant for other pathological speech processing tasks, such as dysarthric speech

detection (Jiao et al., 2018).

Many methods described in the previous section on feature adaptation can also be employed

for data augmentation by applying them in reverse. Instead of adapting dysarthric speech

to be more similar to typical speech for use in generic ASR systems, the opposite is done

and additional dysarthric training data is created from typical speech. Typical speech data

is abundant, so this allows to generate a large amount of data, while the original dysarthric

speech can still be included in acoustic model training as well.
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Chapter 2. Background

Data transformations

The simplest forms of data augmentation are basic transformations of the data that often do

not specifically model the speakers or their pathology. These include speed perturbation (Ko

et al., 2015), where copies of the training data with slightly perturbed speed are created,

and SpecAugment (Park et al., 2019), where random chunks of either time or frequency

information are masked for each utterance. SpecAugment is particularly effective for large

scale datasets (Park et al., 2020) and therefore less suited for dysarthric ASR.

Other transformations specifically aim to create artificial dysarthric speech from typical

speech, for example by adjusting the speed (not preserving the pitch) or tempo (preserving the

pitch) to match the speaking rates of dysarthric speakers (Vachhani et al., 2018; Xiong et al.,

2019).

Voice conversion

VC is the task of converting a speech signal with the voice of one speaker to that of another

speaker while preserving the linguistic content as illustrated in Figure 2.4. It is an attractive

method to improve dysarthric speech recognition because it allows to make dysarthric speech

more similar to typical speech. Alternatively, typical speech may be converted to dysarthric

speech to generate additional training data. Recent deep learning-based VC systems typically

use GANs (Goodfellow et al., 2014) or encoder-decoder architectures (Sisman et al., 2021).

There are parallel VC approaches that require source and target speech samples with matching

linguistic content and non-parallel ones that place no restrictions on the contents of the

training data.

Hello

Voice
conversion

Hello

Figure 2.4: Illustration of the voice conversion task.

Both GAN-based (Jin et al., 2021, 2022a,b) and sequence-to-sequence typical-to-dysarthric

VC (Harvill et al., 2021) have been used as data augmentation for dysarthric ASR in a number

of studies.

Illa et al. (2021) have studied VC between dysarthric speakers. Illa et al. (2021), Halpern et al.

(2021) and Huang et al. (2022) have also compared the generated dysarthric speech outputs

with real dysarthric speech in both subjective and objective tests.
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2.3 Datasets

Speech synthesis

Speech synthesis, or TTS, refers to generating a speech signal from a sequence of words.

Similar to voice conversion, it allows to create additional training data to improve dysarthric

speech recognition.

But unlike VC, which requires existing recordings of the target utterances, we can synthe-

sise speech for arbitrary sentences and therefore quickly adapt an ASR system to new com-

mands and domains and a single model can handle any number of speakers. TTS-based

data augmentation has already been applied to ASR for low-resource languages and children’s

speech (Kadyan et al., 2021). ASR and TTS are also naturally linked, corresponding to speech

perception and speech production, and Tjandra et al. (2017, 2020) have proposed joint training

to emulate the human speech chain and incorporate additional unlabelled data.

Soleymanpour et al. (2022) have introduced a dysarthric TTS system that allows to explicitly

model and generate speech of different severity levels. They showed that it is effective as data

augmentation in a dysarthric ASR system.

2.3 Datasets

In this section, we present the datasets used throughout this thesis. While our main focus is

on dysarthria, we also consider children’s speech and non-native speech as other forms of

atypical speech. We describe the corresponding language models and pronunciations lexicons

in the relevant later chapters.

2.3.1 Torgo

The Torgo corpus of dysarthric speech (Rudzicz et al., 2012b) contains about 15 hours of

recordings from 15 Canadian English speakers (six female, nine male) made with an array and

a headset microphone. There are one ALS and seven cerebral palsy patients aged 16–50 with

mostly severe dysarthria (6 hours of speech in total) and seven age-matched control speakers

without any speech impairment (9 hours of speech in total). Each dysarthric speaker was

assessed by a speech and language pathologist according to the Frenchay Dysarthria Assess-

ment (Enderby, 1980). It comprises evaluations in different categories, including respiration,

tongue, lips, and intelligibility, each of which are rated on a 9-point scale.

Participants were asked to complete different recordings tasks, such as word and sentence

reading, picture descriptions, sustained vowels, and diadochokinetic tasks. For ASR training

we include only the isolated word and sentence recordings in line with previous works (España-

Bonet and Fonollosa, 2016). We further discard utterances that have no transcriptions or that

are too short to contain any speech.
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Table 2.2: Torgo corpus statistics.

Total utterances 16394
Total unique utterances 971
Total multi-word utterances 4161
Total unique multi-word utterances 356

Table 2.2 provides statistics on the utterances that we include for ASR training. It shows that

the number of unique utterances is small, meaning that many are repeated within and across

speakers (Yue et al., 2020). About 75% of utterances consist of isolated words, among which

are many minimal pairs, such as rate and raid without context that would disambiguate them.

In fact, for 88% of isolated words there is at least one other word with a pronunciation within

an edit distance of one. The average closest edit distance is 1.16. This makes the corpus

very useful for automatic assessment of speech intelligibility and similar tasks, but more

challenging for ASR. Even for speakers without any speech disorders correctly distinguishing

the minimal pairs is expected to be difficult.

In addition to the speech recordings, Torgo also contains time-aligned articulatory movement

data recorded with a 3-dimensional electromagnetic articulograph. This allows ASR systems

to incorporate articulatory data, but in this work we only make use of the acoustic data.

2.3.2 UA-Speech

The UA-Speech corpus (Kim et al., 2008) consists of recordings of isolated words made with a

7-channel microphone array from 15 adult dysarthric speakers (four female, 11 male) with

cerebral palsy (about 40 hours in total) and 13 control speakers (four female, nine male)

without any speech impairment (about 30 hours in total). All are speakers of American

English.

We include the data from all microphone channels and use the re-segmented version of the

corpus from Xiong et al. (2019) where excessive portions of silence have been removed via

forced alignment with an HMM/GMM ASR system. The set of words is divided into three

distinct blocks, two of which (Block 1 and 3) are commonly used as the training set, while

models are evaluated on Block 2. 155 words are common across all blocks and then each block

contains a unique set of another 100 words, for a total of 455 different words in the corpus.

The vocabulary includes numbers (e.g., “thirty-five”), computer commands (e.g., “delete”) and

lists of common (e.g., “with”) and uncommon (e.g., “beleaguering”) words.

The intelligibility of the dysarthric speakers was assessed by human listeners with a word

transcription task and is reported in percent. We group our ASR results by speaker severity

based on these intelligibility ratings in the same way as previous works (Xiong et al., 2019;

Hernandez et al., 2022), see Table 2.3.
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Table 2.3: Severity and intelligibility of UA-Speech dysarthric speakers.

Severity Speaker Intelligibility (%)

Severe M04 2
F03 6
M12 7.4
M01 15

Moderate-severe M07 28
F02 29
M16 43

Moderate M05 58
M11 62
F04 62

Mild M09 86
M14 90.4
M10 93
M08 93
F05 95

We note that both Torgo and UA-Speech contain significant amounts of background noise

that further affect ASR results (Schu et al., 2023).

2.3.3 PF-STAR

We use the PF-STAR corpus (Batliner et al., 2005) for experiments on children’s speech recogni-

tion. It recorded a mix of sentences and isolated words in British English from 152 children

aged 4 to 14 years with two different microphones. The training set contains 15 hours of

speech from 80 speakers with the data from both microphones.

2.3.4 Non-native children’s speech (FBK and ETS)

We participated in the Interspeech 2021 Shared Task on ASR for Non-Native Children’s Speech

(Gretter et al., 2021) and used their provided data. For English, 50 hours of recordings from

an English proficiency test of 800 speakers aged 11 and above were provided by ETS. The

German data consists of 5 hours of recordings from a proficiency test of 300 Italian students

collected by FBK (Gretter et al., 2020). Additional untranscribed German data was available

for semi-supervised training that we did not use. Separate development and test sets were

also given for both languages.
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2.3.5 Librispeech

It is important to avoid excessive hyperparameter tuning on the relatively small dysarthric

speech corpora to avoid overfitting because they do not have designated validation sets. Unless

otherwise mentioned, we therefore base our acoustic models on the well-tuned Kaldi recipes

for the 5-hour subset of the Librispeech corpus (Panayotov et al., 2015) of read speech from

audiobooks.1

1https://github.com/kaldi-asr/kaldi/tree/master/egs/mini_librispeech
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3 Sequence-discriminative training for
dysarthric speech recognition

3.1 Introduction

Until recently, most works on dysarthric speech recognition have been in the framework of

maximum likelihood-trained HMM/GMM models or hybrid HMM/DNN models trained with

a frame-level cross-entropy (CE) objective. However, as ASR is a sequence modelling problem,

recent state-of-the-art systems are increasingly trained with sequence-discriminative loss

functions, especially LF-MMI (Povey et al., 2016) and CTC (Graves et al., 2006). The use of

such sequence-discriminative criteria has not been sufficiently explored in the context of

pathological speech yet. LF-MMI has previously been applied to dysarthric speech (Xiong

et al., 2019), but its performance in comparison with other methods has not yet been analysed

in detail.

Multiple now common techniques employed for performance or efficiency reasons in LF-MMI

training and other state-of-the-art models, such as frame subsampling (Sak et al., 2015) and

speed perturbation (Ko et al., 2015), potentially also give performance benefits especially on

dysarthric speech. For frame subsampling, only every third frame is preserved during training

and decoding for a substantial speedup. At training time, this sampling is repeated with

different offsets, so that eventually the model still sees every frame. Similarly, for dysarthric

speech recognition it was suggested to increase the frame shift of dysarthric speakers during

feature extraction to compensate for their lower speaking rates (España-Bonet and Fonollosa,

2016). Speed perturbation augments the training data with multiple (usually 2) copies of

itself with slightly modified speed to make models more robust to different speaking rates

and to increase the amount of training data, which is crucial for neural network training on

small corpora. It could thus also help with the much larger speaking rate variability found in

dysarthric speech. We therefore focus our analysis on these techniques.

We evaluate our systems on the Torgo and UA-Speech corpora. Unlike previous works, we

report the Torgo results separately for isolated and multi-word utterances to make them

more informative. We show that time-delay neural network (TDNN) acoustic models trained

with the LF-MMI objective give state-of-the-art results and especially reduce the number of
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insertion errors. ASR systems commonly insert many spurious words when encountering

dysarthric speech (Moore et al., 2019) because it is often much slower than the speech they

are typically trained on. These LF-MMI models serve as baselines throughout this thesis.

The remainder of this chapter is organised as follows. Section 3.2 describes our experimental

setup for training ASR systems and the evaluation protocol. In Section 3.3, we present our

results and analyse the strong performance of LF-MMI systems. Section 3.4 summarises the

main contributions of this chapter.

3.2 Experimental setup

3.2.1 Systems

In Figure 3.1 we provide a schematic overview of the acoustic models trained in this thesis and

how we refer to them. We train SI models, where we train a single model on either all dysarthric,

all control, or both sets of speakers. We note that for UA-Speech these nonetheless include the

training data of the target dysarthric speakers from blocks 1 and 3. For completeness, we also

compare these with fully SI models trained on all data except that of the target speaker. There

is no speaker overlap between training and test data for Torgo because of a cross-validation

evaluation protocol, described in more detail in Section 3.2.2.

Furthermore, we train two sets of speaker-dependent (SD) models, where separate acoustic

models are trained on only the training data of the target dysarthric speaker from UA-Speech

or that speaker’s data and all control speech (SD + Control).

Speaker-independent

1 model for all speakers

Dysarthric Control

Both

Speaker-dependent

15 models, 1 per dysarthric speaker

SD

SD + Control

Figure 3.1: Overview of speaker-independent and speaker-dependent (SD) acoustic models
trained in this thesis.

HMM/GMM

We use the open-source Kaldi speech recognition toolkit (Povey et al., 2011) for all our ASR

experiments. We followed the typical pipeline of successively training monophone, triphone,

speaker adaptive training (SAT), and subspace GMM (SGMM) (Povey et al., 2010) baseline
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models on 39-dimensional MFCC+∆+∆∆ features. We use the hyperparameters and provided

Kaldi recipe1 of España-Bonet and Fonollosa (2016) for the Torgo corpus and the recipe2 of

Xiong et al. (2019) for UA-Speech as a basis.

We use the CMU pronunciation dictionary and its Arpabet phone set for both corpora, gen-

erating missing pronunciations with the Phonetisaurus grapheme-to-phoneme conversion

toolkit (Novak et al., 2016) and subsequent manual verification. In contrast to established

procedures for typical speech, we also chose to model phones independent of their position

in words as suggested by Joy and Umesh (2018) because of data sparsity and because the lower

speaking rates of dysarthric speech lead to reduced coarticulation effects.

HMM/DNN

The main system for Torgo that we analyse below is a 13-layer factorised TDNN model (Povey

et al., 2018) trained with the sequence-discriminative LF-MMI objective function. We use

regular LF-MMI that requires alignments from a previously trained GMM model. Throughout

this thesis, we use the SAT model for this. For comparison, we also trained a 9-layer TDNN-

LSTM model with a conventional frame-wise CE objective. As is the default in Kaldi, we trained

the HMM/DNN models on speed perturbed data for which the training data is augmented by

perturbed versions at 0.9 and 1.1 times the original speed (Ko et al., 2015).

For UA-Speech, we train a LF-MMI model with six convolutional neural network (CNN) layers

followed by nine factorised TDNN layers, also using speed perturbation, adapted from Xiong

et al. (2019). We also compare this with training the same model with a frame-wise CE objective

function instead.

3.2.2 Evaluation protocol

Because Torgo contains only eight dysarthric speakers and their degree of dysarthria varies

significantly, we maintain the leave-one-out cross-validation training procedure of España-

Bonet and Fonollosa (2016), where each of the 15 speakers is evaluated separately and models

are trained on the remaining 14 speakers.

Unlike previous works, we split the evaluation of isolated- and multi-word utterances by treat-

ing the two tasks separately. Otherwise the results would be less informative because of the

different challenges in these two tasks. Most prior research on dysarthric speech recognition

has focused on isolated words because of the lack of datasets that include continuous speech.

However, we do not see this as a limitation. Speaking can require a significant effort from

severely dysarthric speakers and to maximise communication efficiency they might choose to

use shorter utterances. For example, the homeService (Nicolao et al., 2016) and EasyCall (Tur-

risi et al., 2021) corpora were recorded in realistic home environments and contain simple

1https://github.com/cristinae/ASRdys
2https://github.com/ffxiong/uaspeech/tree/master/s5_segment
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commands of one or two words, such as “Volume up”. Most other pathological speech corpora

are not recorded specifically for ASR, but for speech assessment purposes, which explains why

the sentences in the Torgo corpus are often long and unnatural.

The language models (LMs) are different for the two evaluation tasks. For isolated word

recognition it is a unigram model containing all 615 possible words, which may be preceded

or followed by silence. In Section 3.3 we also evaluate the effect of constraining the decoding

grammar so that the output is always a single word. For sentences we use a bigram LM that is

trained on all the sentence data. In both cases we train the LMs on the data of all speakers,

they thus also include that of the test speaker. This is impossible to avoid because there is very

high text overlap between speakers as explained in Section 2.3.1 and in this way we focus on

improving the acoustic model. Improvements on the LM side could only be obtained with

LMs trained on large external corpora because the Torgo corpus is so small. This has been

studied in more detail by Yue et al. (2020). The language model weight for decoding in each

experiment was set to the average of the best values obtained for each control speaker.3

For UA-Speech, we simply follow the standard protocol of training on blocks 1 and 3 of the

data and evaluating on block 2. We use a decoding grammar that only contains the possible

output words and restricts the output to a single word, similar to Xiong et al. (2019).

3.3 Results and analysis

Table 3.1 shows the results for evaluating the Torgo baseline systems described in Section 3.2.1

separately on isolated-word and multi-word utterances. The WERs are aggregated across

dysarthric and control speakers for readability, but there can be substantial variation between

individual speakers depending on their severity as illustrated in Figure 3.3 and as we will show

in more detailed breakdowns for UA-Speech.

As predicted in Section 2.3.1, WERs on the isolated word task are high even for the control

speakers because of the inherent challenge in distinguishing minimal pairs without further

context. Figure 3.2 highlights that most mistakes in the ASR output for the isolated word

task on control speech are close calls with a Levenshtein distance of one or two phonemes to

the reference transcript. The majority of errors on dysarthric speech, however, involve more

phoneme changes.

On the other hand, the sentences are recognised with only very few errors for the control group

and mildly dysarthric speakers because the strong LM renders this task quite easy. Despite this

advantage, WERs for moderate to severely dysarthric speakers are much higher in this case.

3In Kaldi it is common to perform a grid search for language model weight and word insertion penalty at
decoding time even on test data because differences are often small, but with the cross-validation setup on the
Torgo corpus it is important to avoid tuning any parameters on a specific dysarthric speaker’s data because the
impact might be much larger.
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3.3 Results and analysis

Table 3.1: WER on Torgo for SGMM, CE, and LF-MMI systems, averaged for dysarthric and
control speakers, respectively. Every second row shows the effect of restricting the output to a
single word during isolated word recognition.

1-word Isolated Sentences
LM Dysarthric Control Dysarthric Control

SGMM ✗ 56.1 19.4 41.5 4.4
✓ 47.2 18.7 – –

CE ✗ 53.6 24.6 38.0 9.3
✓ 44.9 24.0 – –

LF-MMI ✗ 49.2 24.0 25.9 7.9
✓ 43.0 22.0 – –
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Figure 3.2: Distribution of Levenshtein distances between the phoneme sequences of the
reference transcripts and the ASR errors on the Torgo isolated word task of the LF-MMI
acoustic model trained on both dysarthric and control speakers.

This highlights that there is still a lot of room for improvement just on the acoustic modelling

side.

LF-MMI training always helps for dysarthric speech except for one speaker compared to both

SGMM and CE-based models. However, the SGMM outperforms the neural network models

on the control speakers, perhaps because on such a small corpus the neural networks are

more sensitive to the additional variability in the training data introduced by the dysarthric

speech. Indeed, if the LF-MMI system is trained for the same number of epochs and with

the same hyperparameters on the control speech only, it performs much better, with WERs

of 18.3% on the isolated words and 2.9% on the sentences averaged over all control speakers.
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The large improvements of LF-MMI models on the sentences are because they make much

fewer insertion errors, indicating that they are better equipped to handle very low speaking

rates. Figure 3.3 shows how speaking rate and WER are correlated. We approximate speaking

rate information by computing mean phoneme durations from forced alignments of the

training data with the methodology of Xiong et al. (2019). It can be seen that dysarthric

speakers have the lowest speaking rates and also the highest WERs. There are another three

mildly dysarthric speakers that have normal or even slightly shorter phoneme durations that

the ASR system recognises very well.

100 120 140 160 180
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Mean phoneme duration (ms)
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R
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Dysarthric (LF-MMI)
Control (LF-MMI)
Dysarthric (SGMM)
Control (SGMM)

Figure 3.3: Relationship between mean phoneme duration and WER for dysarthric and control
speakers. The WER results are from the LF-MMI and SGMM models on the Torgo sentence
task. Mildly dysarthric speakers also achieve very low WER. Dashed lines connect results from
the same speaker.

For the sake of completeness, we also evaluated all speech grouped together and with the

methodology of España-Bonet and Fonollosa (2016). We substantially outperform their best

results obtained with hybrid HMM/DNN systems that were the previous state of the art on

this corpus.

In the following sections, we analyse the performance of LF-MMI in more detail.

3.3.1 Constrained language model

Every second row in Table 3.1 also shows the results of forcing the decoder to output only

a single word for the isolated-word utterances. This consistently improves results across

speakers, in particular for the most severely dysarthric ones because their very low speaking

rate otherwise leads to a large number of insertion errors. This suggests that the WER on

the sentence task where the number of words is not known a priori could also be reduced by
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appropriately tuning the word insertion penalty during decoding for each speaker or utterance.

However, this penalty would need to be set in an unsupervised manner by automatically

estimating speaking rates.

3.3.2 Speed perturbation

As mentioned in Section 3.2, the training data for the hybrid HMM/DNN systems was aug-

mented with two speed-perturbed copies. To test the effects of this we trained LF-MMI models

on the original data only, but increasing the number of epochs by a factor of three to com-

pensate for the lower amount of training data. Results, shown in Table 3.2, are overall still

better than SGMMs and cross-entropy models, maintaining a big reduction in insertion errors

as indicated by the sentence results. This suggests that this reduction can at least in part be

attributed to the sequence-discriminative objective function.

However, the performance on control speech is better when no speed perturbation is applied.

It is then on par with the SGMM results, but still worse than training on speed-perturbed

control speech only as observed above. This is perhaps because applying further distortions to

dysarthric speech makes the training data too variable to perform well on unimpaired speech.

Table 3.2: LF-MMI systems trained without speed perturbation still outperform SGMMs on
Torgo. The isolated word results use the constrained LM.

Speed Isolated Sentences
perturbation Dysarthric Control Dysarthric Control

SGMM ✗ 47.2 18.7 41.5 4.4
LF-MMI ✓ 43.0 22.0 25.9 7.9

✗ 46.4 21.4 30.2 4.2

3.3.3 Frame shift

Previous work (España-Bonet and Fonollosa, 2016) proposed to apply a frame shift of 15 ms to

the dysarthric data during MFCC extraction while maintaining the usual 10 ms for the control

speech to compensate for the lower speaking rates of dysarthric speakers. However, the good

performance of the LF-MMI systems suggests that it might not be necessary in these models.

Our results in Table 3.3 confirm that a constant frame shift of 10 ms for the entire data does not

reduce performance on dysarthric speech. This is useful because the constant frame shift does

not require prior knowledge about the speaker or any special processing and we maintain this

throughout all following experiments in this thesis.
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Table 3.3: Applying a 15 ms frame shift to dysarthric and 10 ms to control speakers compared
with a constant 10 ms shift throughout on Torgo. The isolated word results use the constrained
LM.

Frame shift Isolated Sentences
Dysarthric Control Dysarthric Control

LF-MMI 15/10 ms 43.0 22.0 25.9 7.9
10 ms 42.9 22.5 25.9 8.1

3.3.4 UA-Speech

Results for the baseline systems on UA-Speech can be found in Table 3.4. We compare SD

and SI systems and training on all dysarthric, all control, or both sets of speakers for SGMM,

CE, and LF-MMI models. We show aggregate results for each severity group, and for the

dysarthric and control speakers overall. For reference, we also include directly comparable

results of Xiong et al. (2020) that were obtained from LF-MMI acoustic models with a similar

Kaldi recipe as in our work.

We observe the same pattern of strong improvements of LF-MMI over SGMMs as on Torgo.

However, differences between CE and LF-MMI are relatively small here. This is probably

because of the short utterances of isolated words in UA-Speech, whereas LF-MMI showed

a clearer benefit over CE on the Torgo sentence data. Nonetheless, LF-MMI excels on more

severely dysarthric speech. Again, we see that SGMMs outperform the other methods on

control and mildly dysarthric speech.

We also experimented with i-vectors for speaker adaptive neural network training, but found

they only provide minor benefits if at all. For simplicity, all models for Torgo and UA-Speech

in this thesis are therefore trained without i-vectors. Findings from Liu et al. (2021) indicate

that LHUC can lead to bigger improvements than i-vectors on dysarthric speech.

3.4 Summary

The goal of this chapter was to evaluate whether state-of-the-art LF-MMI acoustic model

training could also be applied to dysarthric ASR. We demonstrated that it indeed yields strong

results on such small and atypical datasets, in particular for more severely dysarthric speakers.

On mildly dysarthric and control speakers, SGMMs remained competitive. Our results were

a new state of the art on the Torgo corpus that can serve as strong baselines for further

research. When analysing these improvements we found that especially insertion errors are

reduced, which are otherwise very frequent due to the low speaking rates of dysarthric speakers.

Contributing factors to this are the frame subsampling of LF-MMI, data augmentation with

speed perturbed speech and the sequence-discriminative objective function itself. Further

analysis is required to determine the importance of each of these factors. While hybrid
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Table 3.4: Word error rates (WER) on the UA-Speech corpus for each group of speakers. Our
best results in each column are highlighted in bold.

Systems Dysarthric Control

Severe Mod.-Severe Moderate Mild Overall

SGMM
SD 86.4 60.5 74.7 41.8 62.5 -
SI 91.0 75.8 56.6 29.9 58.7 -
Dysarthric 77.1 42.6 38.1 17.6 40.5 20.4
Control 96.1 83.4 62.0 20.8 59.3 10.2
Both 78.0 43.8 34.9 14.2 39.0 9.8

CE
SD 66.6 36.9 34.5 18.9 36.6 -
SI 92.5 77.8 56.8 33.3 60.7 -
Dysarthric 64.1 33.6 27.9 16.7 33.2 23.9
Control 95.7 82.3 65.0 26.8 61.7 10.8
Both 66.0 36.3 27.7 16.6 34.2 12.3

LF-MMI
SD 70.3 42.7 38.2 24.0 41.3 -
SD + Control 65.5 32.8 25.8 15.7 32.6 -
SI 89.0 67.7 49.7 31.3 55.7 -
Dysarthric 62.4 32.2 29.2 19.0 34.0 24.0
Control 96.2 74.5 55.1 23.2 56.9 14.0
Both 62.8 35.7 28.7 17.7 33.9 15.5

LF-MMI from Xiong et al. (2020)
SD 70.9 33.7 31.4 14.6 34.8 -
SD + Control 67.1 34.4 25.7 13.3 32.4 -
SI 90.8 71.3 51.9 32.4 57.7 -
Dysarthric 63.0 30.9 28.2 18.9 33.3 -
Control 97.2 78.5 56.4 19.3 56.8 -

HMM/DNN systems reduce the number of errors on dysarthric speech, we observed that

they do not work as well for control speakers as systems trained only on control speech or a

traditional HMM/GMM system. In the next chapter we propose a solution for this in order to

improve speech recognition for everyone.
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4 Model combination for dysarthric
speech recognition

4.1 Introduction

In this chapter we propose to overcome the acoustic- and pronunciation-level mismatch be-

tween dysarthric and typical speech through a unified acoustic model combination approach.

While we have shown in the previous chapter that adding control speech to the training data

leads to improved results on dysarthric ASR, we argue that simply adding even more of it

cannot be sufficient because data scarcity is not the only reason for poor performance of ASR

systems on dysarthric speech. The specific differences of dysarthric speech also need to be

accounted for.

The variation in dysarthric speech with respect to control speech lies at acoustic level as well

as at pronunciation level. Dealing with those two variations separately is not a trivial task for

two main reasons. First, the lexicon is based on control speech, i.e. highly intelligible, typically

native speech. Second, the set of acoustic units is determined by phonotactic constraints

enforced by the lexicon, even though dysarthric speech may be unintelligible and the phoneme

sequences not clearly identifiable. We further illustrate these issues with our proposed analysis

framework in Chapter 5.

One possible way to handle this challenge is to manually update the lexicon with pronunci-

ation variants (Mengistu and Rudzicz, 2011a). This is still challenging as dysarthric speech

intelligibility varies with the level of severity, with severely dysarthric speech being almost

unintelligible, so that it would be difficult even for human expert listeners to transcribe the

phone or sound sequence in a consistent manner. Another option is to automatically build

speaker-specific pronunciation dictionaries based on mispronunciation analysis (Sriranjani

et al., 2015). In this work, however, we are interested in speaker-independent methods. Also, as

noted earlier, even speech of the same speaker can vary due to medical condition or therapy.

Saraçlar and Khudanpur (2004) have shown that pronunciation variation in conversational

speech with respect to dictionary forms can be handled implicitly by ASR systems through

informed clustering of HMM states. Furthermore, pronunciation models that dynamically
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adapt based on contextual information, e.g. surrounding words or speaking rate, can help

in handling pronunciation variation of spontaneous speech (Fosler-Lussier, 1999a,b). We

build upon these two aspects to propose two approaches to implicitly handle acoustic- and

pronunciation-level mismatch between control speech and dysarthric speech: combination of

models trained on different speaker groups and combination of models trained with different

subword units.

Previously, we assumed the pronunciation lexicon to be based on phonemes, but graphemes

are a popular alternative choice of subword unit. For low-resource languages, they obviate

the need for manually created phoneme lexicons (Gales et al., 2015). Alternatively, grapheme-

based methods may also enable to build pronunciation lexicons in resource-constrained

scenarios in the first place (Rasipuram and Doss, 2012; Rasipuram et al., 2013). Recent end-to-

end ASR methods are trained almost exclusively with graphemes both for convenience and

because they often perform better than phonemes (Irie et al., 2019).

Particularly languages with a deep orthography, like English, do not have a clear correspon-

dence between graphemes and phonemes. This gives another motivation to use graphemic

units in ASR systems for atypical speech, namely relaxing constraints imposed by a phoneme-

based lexicon and allowing the acoustic model to learn how to map phonemes to graphemes

on its own (Tejedor et al., 2008).

We propose to train separate acoustic models on different speaker subsets of the data and

combine them by dynamic acoustic model selection during decoding. Thus, each model is

specialised for the acoustic characteristics of its training speakers, but with model combina-

tion we can still recognise a variety of speech conditions without requiring prior information

about the speaker. We then further extend this approach to also handle pronunciation vari-

ation by combining models trained with different acoustic subword units like phonemes

and graphemes and evaluate this also on children’s and non-native children’s speech. Our

proposed approach is also related to multi-stream ASR (Hermansky, 2013), which integrates

multiple parallel information streams and where the model falls back to more reliable streams

when multiple streams present conflicting information.

4.2 Proposed approach

Mathematically, we consider an HMM-based ASR system to estimate the joint probability of

a word hypothesis w u = (w1, . . . , wM ) and the observed sequence of acoustic feature vectors

X = (x1, . . . , xT ) by summing over all possible sequences Q of HMM states. These are commonly

decomposed into an acoustic and a language model (see also Section 2.1):
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p(w u , X ) =
∑

q∈Q
p(w u , X , q) (4.1)

=
∑

q∈Q
p(X , q |w u)p(w u) . (4.2)

As elucidated in Rasipuram and Magimai.-Doss (2015), the acoustic model likelihood estima-

tion p(X , q |w u) combines the HMM state emission and transition probabilities at each of T

time steps, which, after i.i.d and first order Markov assumption, can be written as:

p(X , q |w u) =
T∏

t=1
p(xt |qt ) P (qt |qt−1) (4.3)

=
T∏

t=1

(
D∑

d=1
p(xt |ad ) P (ad |qt )

)
·P (qt |qt−1) , (4.4)

where {ad }D
d=1 is the set of D acoustic units, whose likelihood p(xt |ad ) can be estimated with

a GMM or neural network. In this work we follow the common strategy of using clustered

context-dependent states, or senones, as the acoustic units, where p(ad |qt ) is a Kronecker

delta distribution determined by a decision tree that maps HMM states modelling context-

dependent subword units to senones in a one-to-one manner. A more complex, probabilistic

mapping from HMM states to acoustic units would also be possible though and is employed

in the Kullback-Leibler divergence based hidden Markov model (KL-HMM) approach (Aradilla

et al., 2007, 2008), which has also been successfully applied to dysarthric ASR (Kim et al., 2016)

on a Korean speech corpus.

4.2.1 Model combination

To handle acoustic and lexical variation, we train acoustic models on different speaker subsets

of the data and combine them by dynamic acoustic model selection during decoding. Formally,

this can be expressed as

p(w u , X ) = max
j

p(w j ,k , X ) , (4.5)

where j ∈ {control,dysarthric,both} denotes the subset of data used for training the acoustic

model. This yields different estimators for p(xt |ad ) and P (ad |qt ), so we can write the acoustic

model likelihood estimation as
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p(X , q j |w k, j ) =
T∏

t=1

(
D j∑

d=1
p(xt |ad , j ) P (ad , j |qt )

)
P (qt |qt−1) , (4.6)

In this way, the acoustic characteristics of each group of speakers can be modelled separately.

The decision tree clustering also results in distinct sets of senones for each model, capturing

lexical variability to a certain degree.

4.2.2 Alternative pronunciation models

In our alternate pronunciation models approach we build upon the understanding that

grapheme units could relax the constraints imposed by phoneme lexicons on acoustic models

for dysarthric speech and train two separate acoustic models with phoneme and grapheme

lexicons, which are then selected dynamically during decoding (as in Equation (4.5)). We can

formally express the acoustic model likelihood estimation in this case as

p(X , q j |w k, j ) =
T∏

t=1

(
D j∑

d=1
p(xt |ad , j ) P (ad , j |q j

t )

)
P (q j

t |q
j
t−1) , (4.7)

where j ∈ {phoneme lexicon,grapheme lexicon}.

4.3 Experimental setup

Dysarthric speech

We use the UA-Speech and Torgo dysarthric speech corpora for our experiments in this chapter

to ensure that the results are not specific to a single dataset. The baseline systems are the

SGMM and LF-MMI models from the previous chapter, trained on only dysarthric, only control,

or both sets of speakers.

We combine the trained acoustic models by computing the union of the decoding lattices

with subsequent minimum Bayes risk (MBR) decoding as it is implemented in Kaldi through

the lattice-combine binary (Xu et al., 2011). During lattice combination, the total proba-

bility of each path is normalised, which allows to combine any two models even when they

are trained with different acoustic unit sets as in our case. Recogniser output voting error

reduction (ROVER) (Fiscus, 1997) is another common method to combine decoding hypothe-

ses from multiple ASR systems and has been used in a similar way to combine different

pronunciation models (Fosler-Lussier, 1999a).

On UA-Speech, we also experiment with alternative pronunciation models, where we addi-

tionally train systems with grapheme units instead of phonemes as before. We create such

a graphemic lexicon for the words in the UA-Speech corpus by representing each letter as
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a grapheme. We then proceed to train GMM and LF-MMI models exactly like we did for

phonemes, including both dysarthric and control speech in the training data. We then also

combine the outputs from the phoneme and grapheme system with lattice combination and

subsequent MBR decoding as above.

Children’s speech

We further evaluate the alternative pronunciation model approach on children’s and non-

native children’s speech. For this we use the PF-STAR children’s speech corpus and German

and English data from the Interspeech 2021 Shared Task on ASR for Non-Native Children’s

Speech (Gretter et al., 2021).

For the PF-STAR baseline, we first train a GMM system from an existing recipe (Dubagunta

et al., 2019), using the BEEP pronunciation lexicon.1 With the GMM alignments, we then

train a LF-MMI model with six CNN layers followed by nine factorised TDNN layers. We use

i-vectors, speed perturbation and SpecAugment data augmentation (Park et al., 2019). We

use the two language models of Dubagunta et al. (2019), which were trained on the PF-STAR

training set transcriptions and additional data from the MGB challenge (Bell et al., 2015) and

then interpolated. The eval/adapt portion of the corpus serves as a development set. We

report the results from the two microphones (test-A and test-B) separately.

Baseline LF-MMI Kaldi recipes for the shared task were provided for both languages and are

described in more detail by Gretter et al. (2021). We re-train these baselines ourselves, but

do not make any modifications. The English language model is trained only on the training

transcriptions, the German one on the provided additional text data.

For both of these datasets we also create grapheme lexicons as above and train grapheme-

based models in the same manner.

4.4 Results and discussion

4.4.1 Baselines

Table 4.1 shows the WERs of the Torgo baseline models on the isolated word and sentence

recognition tasks. As we have shown in the previous chapter, ASR systems trained with a

LF-MMI loss function bring significant improvements over traditional SGMM based systems

for most dysarthric speakers. For best results, control speech should be added to the training

data. However, LF-MMI models then perform worse on control speakers than GMMs or a

system trained on control speakers alone for both tasks. This might not be desirable, for

example when developing general purpose ASR systems where the target audience is more

likely not known a priori.

1http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Lexical/beep.html
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Chapter 4. Model combination for dysarthric speech recognition

Table 4.1: WER results on Torgo, averaged over dysarthric and control speakers, respectively.
The acoustic models were trained either on both dysarthric and control speakers, or only one
of those sets.

Training data Isolated Sentences
Dysarthric Control Dysarthric Control

SGMM Both 56.1 19.4 41.5 4.4

LF-MMI Both 49.2 24.0 25.9 7.9
Dysarthric 55.0 41.9 42.1 18.4
Control 52.9 17.9 48.7 2.9

We observe similar patterns in our experiments on UA-Speech as shown in Figure 4.1. The

LF-MMI system overall performs better than the GMM, except for the mildly dysarthric and

control speakers. In this case there is not a big performance difference on dysarthric speech

between training on only dysarthric or all of the speakers, probably because UA-Speech

contains much more data than Torgo. However, on control speech there is still a drop in WER

when training on both sets of speakers compared to a control-only system.
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Figure 4.1: WER results on UA-Speech: Training only on dysarthric speakers, only on control
speakers, or both sets for SGMM (orange) and LF-MMI (green) systems.

4.4.2 Model combination

Table 4.2 shows the results of model combination of the different LF-MMI systems for Torgo

from Table 4.1. We find that the combined systems improve substantially on dysarthric speak-

ers for isolated word recognition and are better than any of the individual results. Combining

all three systems is best with a WER of 42.2% compared to the previous best of 49.2% in the sys-

tem trained on both dysarthric and control speech. There are no improvements for dysarthric

speech on the sentence task, but as long as the system trained on both sets of speakers is
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4.4 Results and discussion

included, the results are close to the previous one. As hypothesised, the model combination

approach allows to also improve on the control speakers, in one instance even outperforming

the previous best result. As long as the model trained only on control speakers is included in

the ones to combine, the results are better than from that system alone.

Table 4.2: WER results on Torgo, averaged over dysarthric and control speakers, respectively.
Lattice combination of the LF-MMI models from Table 4.1.

Combinations of systems Isolated Sentences
from Table 4.1 Dysarthric Control Dysarthric Control

Dysarthric + Both 44.0 26.9 27.1 10.3
Control + Both 45.1 16.6 27.3 4.3
Dysarthric + Control 48.0 21.3 38.1 5.9
All 3 models 42.2 19.1 29.0 7.4

Similarly, Figure 4.2 shows absolute WER improvements over the baseline LF-MMI model

trained on both dysarthric and control speakers of UA-Speech from Figure 4.1. We observe that

when we include the system trained on only control speakers in the ones to combine, the good

performance on those speakers is again maintained. The performance on dysarthric speakers

can even improve slightly and we see the best results when combining all three LF-MMI

systems from Figure 4.1 (32.7% WER across the dysarthric speakers, 13.8% on control).
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Figure 4.2: WER results on UA-Speech: Lattice combination (orange and purple) of the LF-
MMI systems from Figure 4.1, which were trained on only dysarthric speakers, only control
speakers, or both sets (green). Shown is the absolute WER difference to the model trained on
both dysarthric and control speech (solid green line).

4.4.3 Severity-conditioned models

It appears tempting to take this model combination strategy further and not only combine

separate acoustic models trained on dysarthric and control speakers. We also consider training
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Chapter 4. Model combination for dysarthric speech recognition

5 separate severity-specific models on only the data of the respective severity (or the con-

trol speech), bridging the gap to fully speaker-dependent systems. We evaluate each of the

5 models on the corresponding test data, which assumes knowing the test speaker’s severity

in advance. As Table 4.3 shows (5 separate), except on the less variable control and mildly

dysarthric speech, these individual models perform worse than the models trained on all

dysarthric or all data. We hypothesise that this is because the Dysarthric and Both models

benefit both from having more data overall and from similarities between the different severity

levels that they can exploit.

Table 4.3: WER results on UA-Speech: We train 5 separate acoustic models for each severity
and the control speakers and evaluate them on the corresponding test data. This is better than
combining these 5 models. Neither of these beat the LF-MMI systems from Figure 4.1 (green).

Model Sev. Mod.-sev. Mod. Mild Control

Baselines
Both 62.8 35.7 28.7 17.7 15.5
Dysarthric 62.4 32.2 29.2 19.9 24.0
Control 96.2 74.5 55.1 23.2 14.0

Severity-specific models
5 separate 70.4 36.8 31.1 18.0 14.0
5 combined 78.4 43.6 35.2 19.7 16.2

However, in this case there is also no improvement from combining these 5 models (5 com-

bined). This is easily explained because the individual models do not generalise well to other

data and yield high error rates on speakers of different severity, which does not leave much

room for improvement in the combined model.

4.4.4 Alternative pronunciation models

Dysarthric speech

The previous models were all trained with a phonemic pronunciation lexicon. Figure 4.3 now

compares systems for the UA-Speech corpus trained with either a phoneme or grapheme

dictionary on both dysarthric and control speech. While phonemes clearly are better suited

for the GMM systems, there is only a small gap between phonemes and graphemes with LF-

MMI models, with WERs of 33.9% and 35.4%, respectively, on the dysarthric speakers. When

we combine these two acoustic models, we obtain our best results so far (31.2% across the

dysarthric speakers) and also see a lower WER on control speakers, although still not matching

the GMM systems.
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Figure 4.3: WER results on UA-Speech: Comparison of phoneme- and grapheme-based
systems and lattice combination of the two. All models are trained on both dysarthric and
control speech.

Children’s speech

Table 4.4 shows the results of this approach for the PF-STAR children’s speech corpus. Our

results are significantly better than previous work that is directly comparable (Dubagunta

et al., 2019) even though they train on additional adult speech data from the WSJCAM0

corpus (Robinson et al., 1995). When we do the same for our phoneme-based system, our

results improve further. We report the rest of our results without external data.

Here, phonemes slightly outperform graphemes by 0.2–0.6% absolute. Model combination of

the phoneme- and grapheme-based systems shows only marginal improvements on the test

sets. However, it should be noted that the baseline is already very strong — these are among

the best results reported on PF-STAR, although direct comparisons are not always possible

because of different splits or evaluation protocols.

Table 4.4: WER results for the PF-STAR corpus, comparing phoneme- and grapheme-based
systems and lattice combination of the two. For reference, we include the best results of Duba-
gunta et al. (2019).

Model dev test-A test-B

Dubagunta et al. (2019) 12.0 13.8

Phonemes 4.9 6.8 7.2
+ WSJCAM0 4.4 6.5 6.9

Graphemes 5.5 7.0 7.5
Combination 5.0 6.7 7.1

35
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Non-native children’s speech

Table 4.5 shows the WERs for the Interspeech 2021 shared task on ASR for non-native children’s

speech. For English, phonemes clearly perform better than graphemes (by 3.2% absolute).

This indicates that despite the non-native speech the relationship between graphemes and

phonemes might be too weak in English. For German, which has a more direct mapping

from graphemes to phonemes, it is the opposite. Graphemes outperform phonemes by 5.8%

absolute. However, model combination of the two does not offer any advantage in either

language.

Table 4.5: WER results for the Interspeech 2021 shared task on ASR for non-native children’s
speech, comparing phoneme- and grapheme-based systems and lattice combination of the
two.

Model English German
dev test dev test

Phonemes 13.3 33.2 49.8 45.8
Graphemes 15.5 36.4 43.7 40.0
Combination 13.3 33.3 43.7 41.9

4.5 Summary

In this chapter, we aimed to address the acoustic and lexical variability of dysarthric speech

with model combination. We found that combining ASR systems trained on different groups

of speakers can improve recognition results on dysarthric speech and partially offset the drop

in performance on control speech observed when training models on only dysarthric or both

dysarthric and control speakers compared to a model trained on control speakers only. We

found this to be the case for isolated word recognition on the Torgo and UA-Speech corpora,

but on the Torgo sentence task we did not see further improvements on dysarthric speech.

Dysarthric speech, children’s speech and non-native speech all have high pronunciation vari-

ability. For languages with a shallow orthography like German, grapheme-based ASR systems

help to address this, while for English it is not beneficial. Our alternative pronunciation model

approach, where phoneme- and grapheme-based systems are combined dynamically during

decoding, improves ASR performance in certain cases, especially for dysarthric speech. We

also obtain state-of-the-art results on the PF-STAR corpus of children’s speech.

Model combination thus provides a good method to handle the acoustic and lexical variations

between dysarthric and control speakers and could pave the way for ASR systems that can

deal well with a wider range of speech conditions.
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5 Discriminability analysis

5.1 Introduction

A successful ASR system needs to discriminate words and word sequences. For this, an acoustic

model also has to be able to discriminate individual acoustic units. The decision tree employed

in HMM-based ASR approaches aids with this by learning a mapping from phonemes to a

discriminable set of clustered, context-dependent phonemes. However, some types of speech

data can make this task more challenging. Dysarthric speakers have less control over their

articulation and in this chapter we analyse whether this results in a less discriminable acoustic

unit space by building upon the findings from the previous chapters.

Razavi and Magimai.-Doss (2015) and Razavi et al. (2018) proposed a method for automatically

deriving acoustic subword units and pronunciations from graphemes, for example for low-

resource languages where pronunciation dictionaries are not available. To validate that

their derived subword units are similar to phonemes, they compared Gaussian distributions

estimated for each type of unit with the KL divergence and visualised the resulting confusion

matrix. We adopt this analysis approach to compare the acoustic space for the same set of

units obtained from different sets of data, such as different groups of speakers.

Rudzicz et al. (2012a) analysed the acoustic and articulatory unit space in a similar manner

to assess the similarity of the spaces obtained from different types of features and different

subsets of the data. They estimated two Gaussian distributions per phoneme, separately for

dysarthric and for control speakers and computed the mean of the KL divergences between

each pair of Gaussians. They found that the unit spaces of dysarthric and control speakers were

more similar to each other with articulatory features than with acoustic features. Furthermore,

they showed that transforming control speaker features to match those of dysarthric speakers

increased the similarity of the resulting unit spaces.

We follow the approach of Razavi and Magimai.-Doss (2015) and Razavi et al. (2018) to compare

two sets of acoustic units, represented as Gaussian distributions, where we compute the KL di-

vergence between each unit to obtain a confusion matrix. This represents the discriminability
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Chapter 5. Discriminability analysis

of the acoustic unit space and can be summarised by its median value. Acoustic models are

trained to distinguish between acoustic units, so we expect them to perform better when their

training data is more discriminable. In this way, we compare the data from only dysarthric

speakers, only control speakers, and the combined speaker set. We further extend this to a

more realistic task of comparing words, represented by their acoustic unit sequences. We

relate the proposed measures to differences in dysarthric speakers’ intelligibility and analyse

whether they could also be used to compare TTS systems, which are commonly evaluated for

intelligibility as well.

We further elaborate on our proposed approach in Section 5.2 and discuss the results in

Section 5.3.

5.2 Approach

5.2.1 Comparison of acoustic units

As explained in Section 2.1.1, the set of acoustic units is commonly determined by clustering

acoustically similar HMM states with a decision tree. To analyse these units, we then estimate

simple Gaussian distributions without mixture components for these units from a given set of

training data because the KL divergence between GMMs does not have a closed form solution.

The KL divergence DKL( f ||g ) between two multivariate Gaussian distributions N f (µ f ,Σ f )

and Ng (µg ,Σg ) with mean vectors µ, covariance matrices Σ, and dimensionality d is (Durrieu

et al., 2012)

DKL( f ||g ) = 1

2
log

|Σg |
|Σ f |

+ 1

2
Tr(Σ−1

g Σ f ) + 1

2
(µ f −µg )TΣ−1

g (µ f −µg )− d

2
. (5.1)

We compute the KL divergences between all units, resulting in a confusion matrix that we can

summarise with the median KL divergence. This allows to compare different sets of acoustic

units. We choose the median because the KL divergence is potentially unbounded and we

found that large values can sometimes skew the mean. We note that this analysis is only

based on the training data and forced alignments, which can be obtained from any basic

HMM/GMM acoustic model. It does not require training a dedicated model for the given

data and can therefore be carried out before training more resource-intensive neural network

models.

5.2.2 Comparison of unit sequences

To better quantify these differences, we demonstrate their effect on a more applied word

discrimination task by comparing acoustic unit sequences of word pairs. This closely mirrors
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5.3 Results and discussion

what is expected from ASR systems, especially in the case of sequence-discriminative LF-

MMI training, which explicitly learns to discriminate acoustic sequences. We pick a set of

words from the training data and find the acoustic unit sequences corresponding to their

pronunciation for a given data subset based on the lexicon and decision tree. For each

possible pair of two different words, we then compute the dynamic time warping (DTW)

distance between the sequences with the KL divergence between the corresponding Gaussians

as the local distance, illustrated in Figure 5.1.

The word pair generation and DTW computation is based on code of Kamper (2019).1
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Figure 5.1: Comparison of acoustic unit sequences with dynamic time warping. The local
distance is the KL divergence between the Gaussian distributions estimated for the units.

5.3 Results and discussion

5.3.1 Comparison of acoustic units

We first compute the KL divergences between all units for the data from either dysarthric,

control, or both sets of speakers from the Torgo corpus that we compared in the previous

chapters. In the resulting confusion matrices in Figure 5.2, we observe that the KL divergences,

and thus the state and phoneme discriminability, are the highest for control speech. The

phonemes are most confusable in dysarthric speech, visible as an increase in darker regions

of high similarity, and the combined data falls between the two. Dysarthric speakers are less

intelligible and have articulation difficulties, so it is expected that acoustic subword units

derived from dysarthric speech are more confusable than those from control speech.

For Figure 5.2, we used the set of acoustic units obtained from decision tree clustering of

context-dependent triphones. However, this clustering itself is data-driven and the number of

resulting units can vary depending on the amount and the discriminability of the data. For a

fair comparison with a consistent number of units, we therefore use monophone units in the

1github.com/kamperh/recipe_bucktsong_awe_py3/tree/master/samediff
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Figure 5.2: Confusion matrices of clustered context-dependent acoustic units for data from
only control, only dysarthric, or both sets of speakers of the Torgo corpus. Units are grouped
by manner of articulation and then by phoneme, from consonants in the upper left, to semi-
vowels and vowels in the bottom right corner. Darker regions indicate higher similarity and
lower KL divergence. Values above 50 are clipped. Including dysarthric speech data results in
a less discriminative acoustic unit space where units are more similar to each other.

following analyses, with three Gaussians per phoneme, based on the 3-state HMM topology,

resulting in a total number of 122 acoustic units. Table 5.1 shows the median KL divergences

obtained in this way from the three data subsets of both Torgo and UA-Speech. It confirms

the visual analysis above with the lowest KL divergences, and thus lowest discriminability, on

dysarthric speech, highlighting the challenges for dysarthric ASR systems. We observe a bigger

difference between dysarthric and control speech on UA-Speech than on Torgo. The effect on

the KL divergences of adding speed-perturbed data is negligible. These minor perturbations

do not significantly affect the acoustic space, while the additional training data does improve

WERs as we showed in Chapter 3.

Table 5.1: Median KL divergences between acoustic units obtained from only dysarthric, only
control, or both sets of speakers.

Speakers Speed perturbation Torgo UA-Speech

Dysarthric 12.9 11.9
Dysarthric ✓ 12.7 11.7
Control 17.5 23.4
Control ✓ 17.3 23.0
Both 14.5 16.3
Both ✓ 14.3 16.0

In the case of grapheme units, the median KL divergences are lower than with phonemes,

but the overall pattern between different groups of speakers remains, see Table 5.2. This can
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5.3 Results and discussion

be explained by the fact that then there are only 88 total units instead of 122, reducing the

overall discriminative power. Nonetheless, we showed in the previous chapter, that WERs of

phoneme and grapheme systems trained with LF-MMI are comparable and further improve

after model combination.

Table 5.2: Median KL divergences between phoneme and grapheme acoustic units obtained
from only dysarthric, only control, or both sets of speakers on UA-Speech.

Speakers Phonemes Graphemes

Dysarthric 11.9 10.0
Control 23.4 16.6
Both 16.3 11.8

5.3.2 Comparison of unit sequences

For the word discrimination task, we pick subsets of 289 words from the UA-Speech training

data and 1378 words from Torgo with at least four characters and compute the DTW distances

between all possible word pairs for monophone acoustic units from the same three subsets of

the data as above. Figures 5.3 and 5.5 show histograms of the DTW distances. It is harder to

discriminate between words with acoustic units derived from dysarthric speech than those

from control speech and combining the data leads to a middle ground. For UA-Speech the

differences between speaker groups are more pronounced than for Torgo, mirroring the dif-

ferent ranges of median KL divergences observed in Table 5.1. As described in Section 2.3.1,

the Torgo corpus contains many minimal pairs, so it is expected that it is harder in general

to discriminate between the words from Torgo than from UA-Speech. In Figures 5.4 and 5.6

we additionally repeat the same word discrimination task with clustered context-dependent

instead of monophone units. This allows the decision tree to find a more discriminable set of

acoustic units. In this case, the differences between dysarthric and control speech are also

clearly apparent on the data from Torgo. This confirms that our previous analysis on dis-

criminability of acoustic units also translates to applied settings like this work discrimination

task.

Figure 5.7 shows that also according to the word discrimination task speed perturbation has

no significant effect on the acoustic space.

Tables 4.1 and 3.4 showed that while including control speech into LF-MMI training is crucial

to perform well on dysarthric speakers, we observed the lowest WERs on control speech when

training without any dysarthric speech data. These analyses explain that this is due to the

dysarthric speech adding too much variability for the neural network training. This affects

the acoustic unit space and reduces the model’s discriminative power. We were able to offset

this in the previous chapter with model combination. Similarly, we showed in Chapter 3 that

data augmentation by speed perturbation — which we use in all our LF-MMI experiments

— helps for dysarthric speakers, but not introducing this additional source of variability is

41



Chapter 5. Discriminability analysis

0 100 200 300 400 500 600 700 800 900

DTW distance

0.000

0.001

0.002

0.003

0.004

0.005

0.006

p
(D

T
W

d
is

ta
n

ce
)

Dysarthric

Both

Control

Figure 5.3: Histograms of DTW distances between word pairs with monophone units from
only dysarthric, only control, or both sets of speakers of UA-Speech.
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Figure 5.4: Histograms of DTW distances between word pairs with clustered context-
dependent units from only dysarthric, only control, or both sets of speakers of UA-Speech.
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Figure 5.5: Histograms of DTW distances between word pairs with monophone units from
only dysarthric, only control, or both sets of speakers of Torgo.
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Figure 5.6: Histograms of DTW distances between word pairs with clustered context-
dependent units from only dysarthric, only control, or both sets of speakers of Torgo.
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Figure 5.7: Histograms of DTW distances between word pairs with acoustic units from
dysarthric and control speech from UA-Speech with and without speed perturbation (SP).

better for control speakers when training on both sets. Our observations are also consistent

with the literature, where reduction of vowel space area or effects on related metrics have

been observed in dysarthric speech (Turner et al., 1995; Lansford and Liss, 2014). Instead of

focusing only on the vowels, we cover all phonemes with our analysis approach.

5.3.3 Relationship to speaker severity and intelligibility

We showed that the acoustic unit space of control speech is more discriminable than that

of dysarthric speech. We now examine whether our analysis also picks up on the more fine-

grained differences in intelligibility between different dysarthric speakers. We further review

whether this approach could also be applied to the comparison of TTS systems for typical

speech, which are also commonly evaluated for intelligibility.

Dysarthric speech

We estimate Gaussian distributions for all monophone acoustic units separately for each

dysarthric speaker from UA-Speech. We observe a strong correlation (Pearson’s r = 0.90)

between the resulting median KL divergences and the human intelligibility ratings provided

in the corpus, see Figure 5.8. Similarly, higher acoustic discriminability is strongly correlated

with lower WERs (Pearson’s r = -0.89) in the SD LF-MMI acoustic models that we trained in

Chapter 3 on the corresponding speaker’s data. For reference, we also show the overall results

for control speakers, which fall in the same region as mildly dysarthric speakers in terms of

discriminability and ASR results for the LF-MMI model trained only on control speech.

When we additionally add all control speech to each dysarthric speaker’s data, the KL di-

vergences increase across the board, in particular for the more severely dysarthric speakers,

as shown in Figure 5.9. The ASR performance of the SD + Control systems from Chapter 3

improves accordingly. While the differences in discriminability between speakers are now

much smaller, there is still a strong correlation with the human-rated intelligibility (Pearson’s

r = 0.82).
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Figure 5.8: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings and WER for each dysarthric speaker from UA-Speech. Higher median KL
divergence is strongly correlated with higher intelligibility (Pearson’s r = 0.90) and lower WER
(r = -0.89).
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Figure 5.9: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings and WER for each dysarthric speaker from UA-Speech with added control
speech. Higher median KL divergence is strongly correlated with higher intelligibility (Pear-
son’s r = 0.82) and lower WER (r = -0.88).

The intelligibility of dysarthric speakers from Torgo was assessed according to the Frenchay

Dysarthria Assessment (Enderby, 1980) by a speech and language pathologist. This evaluation

was done for words, sentences and in conversation, assigning scores on a 9-point scale. We take

the average of these three scores and convert it to percent for consistency with the UA-Speech

intelligibility ratings. We then compute the median KL divergence for each speaker in the same

way as for UA-Speech above. Figure 5.10 shows their relationship to the human intelligibility

ratings (Pearson’s r = 0.37) and ASR results on the isolated work task (r = -0.36) of the SI

LF-MMI models from Chapter 3. In this case, these measures are only lightly correlated, but

we note that there are only eight dysarthric speakers in Torgo as opposed to 15 in UA-Speech.
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Figure 5.10: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings and WER for each dysarthric speaker from Torgo. The WERs are from
speaker-independent LF-MMI models on the isolated word task. Higher median KL divergence
is lightly correlated with higher intelligibility (Pearson’s r = 0.37) and lower WER (r = -0.36).

Synthetic speech

Can this approach be used to not only analyse the intelligibility of dysarthric speech, but also

that of synthesised speech? The Blizzard Challenge is an annual event where TTS systems

are evaluated on a shared task. We ran our analysis on the synthetic speech outputs of the

16 systems submitted to the Blizzard Challenge 2016 (King and Karaiskos, 2016). These are

based on a variety of TTS methods, including concatenative, statistical HMM, and hybrid

DNN synthesis, but do not include the most recent fully neural architectures that can produce

very high quality speech. The training data for all systems was 5 hours of English speech from

audiobooks for children read in an expressive style. A fixed list of outputs had to be generated,

which were then evaluated by human listeners on a range of measures, including naturalness

and intelligibility. The latter was evaluated by computing the WER of the listeners’ transcrip-

tions of semantically unpredictable sentences (SUS) (Benoît et al., 1996). For each submission,

we estimate the Gaussian distributions for monophone units from all the synthesised speech,

not only the outputs generated for the SUS task, to ensure there is sufficient data. We also

include the provided human recordings of the target outputs as a reference point, which do

not have any intelligibility rating. Based on our previous experiments on dysarthric speech,

we would expect systems with a lower human-annotated WER, i.e. higher intelligibility, to

have higher KL divergences.

Figure 5.11 shows the relationship of median KL divergence between acoustic units and

WER on the SUS task. The Pearson correlation coefficient is -0.30, indicating only a low

negative correlation, compared to the higher correlations observed on dysarthric speech.

We assume this is because the reasons why a TTS system is not intelligible can be manifold

and depend on the nature of the system. The Blizzard Challenge submissions are based

on many different methods that result in a variety of output characteristics. On the other
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hand, reductions in intelligibility in dysarthric speech are more clearly linked to the dysarthria

severity and associated articulation difficulties, which is better captured by the acoustic space

discriminability.
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Figure 5.11: Median KL divergence between acoustic units and WER on the semantically
unpredictable sentence (SUS) task of 16 TTS systems from the Blizzard Challenge 2016. Higher
median KL divergence is only lightly correlated with a decrease in WER (Pearson’s r = -0.30).

5.3.4 Analysis of children’s speech

We have demonstrated the suitability of our analysis framework for dysarthric speech and the

relationship between acoustic discriminability, speaker intelligibility, and ASR performance in

the previous sections. It could potentially also be applied to other kinds of atypical speech

where the acoustic unit space is affected. For example, children gain phonetic ability and

articulatory skills over time (Dodd et al., 2003). Therefore, we hypothesise that the acoustic

unit space of younger children is less discriminable than that of older ones.

We take the data of the 80 children from the training set of the PF-STAR corpus and estimate

Gaussian distributions for all monophone acoustic units separately for each child. Figure 5.12

shows the resulting median KL divergence for each child and its age. KL divergences are

spread widely for children aged 8–10 years. Children younger than 7 have slightly reduced and

children older than 11 slightly increased acoustic discriminability, but the dataset contains

only few children in these age groups.

There is overall no clear correlation between the KL divergences and age, with a Pearson

correlation coefficient of -0.05. This is likely because most children in the dataset are at least

8 years old, when their articulation is already well developed (Dodd et al., 2003). This analysis

should therefore be repeated with a dataset of younger children.
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Figure 5.12: Median KL divergence between acoustic units and age of 80 children from the
PF-STAR corpus. There is no correlation between the median KL divergences and children’s
age (Pearson’s r = -0.05, Spearman’s ρ = 0.05).

5.4 Summary

In this chapter we analysed the acoustic discriminability of different kinds of speech based on

KL divergences between acoustic subword units. We found that, as expected, typical speech

is much more discriminable than dysarthric speech. Furthermore, our experiments showed

that our proposed analysis approach is a good predictor of dysarthric speech intelligibility

and of ASR performance and can explain difference between individual dysarthric speakers.

However, it does not necessarily extend to intelligibility analysis in other domains, such as

TTS, where the reasons for reduced intelligibility are different than for dysarthric speech. More

research is required to investigate whether the proposed discriminability measures are also

related to other factors, such as age or foreign accent.
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speech recognition

In the previous chapters, we investigated different methods to better adapt the acoustic model

for dysarthric ASR. However, mismatches between dysarthric and typical speech can occur

at multiple levels. While some of these can be addressed at the model level, others should

be considered at the data level. Recording large amounts of data can also be exhausting for

speakers with dysarthria. Model adaptation is therefore not always sufficient because of the

inherent scarcity of dysarthric training data. As discussed in Section 2.2.3, data augmentation

is an additional option. In Chapter 3, we have already demonstrated speed perturbation

as an effective data augmentation method, where we simply add additional copies of the

training data that are speed-perturbed by a small factor. In this chapter, we now consider

more sophisticated voice conversion (VC) and text-to-speech (TTS) approaches that directly

model the specific characteristics of a target speaker and of dysarthric speech.

In Section 6.1, we start with an interpretable signal processing VC baseline that transforms

general attributes related to the speaker identity, such as formants, but ignores paralinguistic

aspects like pathological conditions. We then evaluate GAN-based VC in Section 6.2, which

allows to learn a wider range of speaker characteristics and specifically model dysarthric

speech. Finally, in Section 6.3 we consider dysarthric speech synthesis, which does not require

source data at synthesis time, so that speech for a wider range of domains can be generated.

We additionally evaluate the use of dysarthric TTS in a few-shot learning scenario, where an

acoustic model is trained with only very little data from a target speaker. We further analyse

the generated speech and corresponding acoustic subword units from these three approaches

with the framework developed in the previous chapter to verify if the generated outputs have

similar characteristics as the original dysarthric speech.

6.1 Dysarthria-agnostic voice conversion by pseudonymisation

We begin with an interpretable VC baseline based on signal processing (Dubagunta et al.,

2020, 2022).1 It computes a range of statistics for each speaker, including formant values,

1https://github.com/robvanson/PseudonymizeSpeech
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fundamental frequency and speaking rate, and then transforms the source speech to match

the target speaker’s statistics. It does not take into account paralinguistic aspects and focuses

on changing the speaker identity, so pathological conditions are not affected by VC. In the pre-

vious chapters we learned that including control speech when training dysarthric ASR systems

helps to improve their acoustic discriminability and performance. Several studies (Vachhani

et al., 2018; Xiong et al., 2019; Geng et al., 2020) have also found minor benefits from addition-

ally adjusting the speaking rates of control speakers to match those of the target dysarthric

speaker. In this section, we evaluate whether it is further beneficial to also transform the

source speakers’ identity to match that of a target dysarthric speaker.

6.1.1 Background

Dubagunta et al. (2020, 2022) developed this VC method for the VoicePrivacy 2020 Chal-

lenge (Tomashenko et al., 2022). Its aim is pseudonymisation, i.e. a reversible anonymisation

of the source speech for privacy-sensitive applications. For example, the voice of a patient

with dysarthria could be recorded as part of a research study, but would then only be shared

publicly in pseudonymised form. If necessary, the original speech could be recovered by

authorised persons with a hidden set of parameters.

The pseudonymisation pipeline is illustrated in Figure 6.1. A set of speaker characteristics,

including formant values, fundamental frequency, and speaking rate, is estimated from the

speech of source speaker A. The pseudonymiser then transforms the speech of speaker A

based on their characteristics and those of another target speaker B to sound like speech from

speaker B . This process can be repeated in reverse to recover speech sounding like that of

speaker A by someone with access to that speaker’s parameters.

Speech of
speaker A

Characteristics
estimator

Pseudonymiser

Speaker A
characteristics

Speaker B
characteristics

Anonymous
speech

Pseudonymiser

Speech
sounding like

speaker A

Source Target TargetSource

Pseudonymisation De-pseudonymisation

Figure 6.1: Overview of signal processing-based speech pseudonymisation. Figure adapted
from Dubagunta et al. (2022).

The pseudonymisation procedure is implemented in Praat (Boersma and Weenink, 2021). It

changes the speaking rate and fundamental frequency of the speech and then simulates a

different vocal tract length based on the source and target speaker’s characteristics with signal
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6.1 Dysarthria-agnostic voice conversion by pseudonymisation

processing algorithms. The pseudonymiser does not require training and all its parameters

are interpretable. The output can also be manipulated by manually setting the target speaker

characteristics. For further details, we refer the reader to Dubagunta et al. (2022).

We note that one of the explicit aims of this pseudonymisation method is to preserve paralin-

guistic aspects of the source speech, so that dysarthria characteristics of the source speaker

should not be affected when adapting the voice to an unimpaired target speaker. Conversely,

when transforming from a control to a dysarthric speaker’s voice, we would not expect to

introduce dysarthria characteristics, other than changes to the speaking rate. Dubagunta et al.

(2022) confirmed this by evaluating the pseudonymised output with a dysarthria classification

model.

6.1.2 Experimental setup

In this section, we use SD LF-MMI acoustic models trained on UA-Speech as described in

Chapter 3. We compare the SD models on their own, with added control speech, with added

tempo-matched control speech, and with added pseudonymised control speech. Furthermore,

we compare with dysarthric speech from the other speakers as source speech for pseudonymi-

sation instead of control speech. Speed perturbation with factors {0.9,1.0,1.1} is additionally

used for all models.

To obtain tempo-matched control speech, we compute the mean duration Ti of non-silence

phonemes for each speaker i from forced alignment of the training data with the SD HMM/GMM

ASR system, following Xiong et al. (2019). Across all control speakers, the mean duration is

135 ms, compared to 209 ms for dysarthric speakers. Figure 6.2 additionally shows the as-

sociation between mean phoneme duration and the subjective intelligibility ratings of each

dysarthric speaker. For each dysarthric speaker d , we then calculate the speech tempo ratio

RC→d = TC

Td
(6.1)

between the mean duration TC of all control speakers and the mean of speaker d . With

these ratios and the sox command line tool, we can adjust the tempo of the control speaker

utterances to match that of a target dysarthric speaker, while preserving the original pitch and

spectral characteristics.

We compute the required speaker statistics for pseudonymisation from each UA-Speech

speaker with the provided Praat script. For each dysarthric speaker, we then convert the data

with the pseudonymiser from all other dysarthric and control speakers towards this target

speaker. This speaker-specific pseudonymised data can be added when training SD acoustic

models. We do not modify the default settings of the pseudonymiser. Additionally, we analyse

the acoustic units of the pseudonymised data with the framework developed in Chapter 5.
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Figure 6.2: Mean phoneme durations and subjective intelligibility ratings for each UA-Speech
dysarthric speaker. The dashed black line shows the mean phoneme duration across all control
speakers.

6.1.3 Results and analysis

The ASR results are shown in Table 6.1. We first include three baselines from Chapter 3:

SD acoustic models trained only on speech from the target dysarthric speaker, SD models

additionally trained on all control speech, and a single model trained on all dysarthric speech.

Table 6.1: WERs of LF-MMI acoustic models for each group of dysarthric speakers of
UA-Speech when augmenting the training data with dysarthria-agnostic voice conversion
(pseudonymisation).

Systems Severe Mod.-Severe Moderate Mild Overall

Baselines from Chapter 3
SD 70.3 42.7 38.2 24.0 41.3
SD + Control 65.5 32.8 25.8 15.7 32.6
Dysarthric 62.4 32.2 29.2 19.0 34.0

Data augmentation
SD + Tempo-matched Control 70.3 33.0 28.2 17.2 34.8
SD + Pseudo-Control 68.6 32.9 30.7 17.7 35.1
SD + Pseudo-Dysarthric 65.9 34.8 37.5 23.2 38.2

When adjusting all control speech to match the target dysarthric speaker’s speech tempo (SD +

Tempo-matched Control), we observe slightly worse results than adding the original control

speech although it is still better than the SD model alone. This is different from Xiong et al.

(2019), who observed a small absolute WER improvement of 0.6%. Adding pseudonymised

control speech (SD + Pseudo-Control), which not only matches the speaking rates, but also

the speaker identity, performs similar to tempo-matched control speech. Pseudonymised
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6.2 GAN-based voice conversion

dysarthric speech performs even worse than pseudonymised control speech when added

to the SD models (SD + Pseudo-Dysarthric). It is also worse than just adding the remaining

dysarthric speech without any transformation (Dysarthric).

We compute the median KL divergences between monophone acoustic units as described

in Chapter 5 for speech pseudonymised from either control or dysarthric speech to each

dysarthric speaker. Figure 6.3 shows the relationship between these median KL divergences

and the subjective intelligibility rating of each speaker. As expected, converting from control

speakers results in more discriminable speech with higher KL divergences. There are no major

differences in discriminability between each target speaker within either group, confirming

that pseudonymisation does not affect paralinguistic aspects related to the pathological

condition.
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Figure 6.3: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings of control and dysarthric speech from UA-Speech that was converted to
other dysarthric speakers via pseudonymisation.

6.2 GAN-based voice conversion

Neural network-based VC is another increasingly popular data augmentation method for

dysarthric speech recognition. A mapping from unimpaired control to dysarthric speakers or

between different dysarthric speakers is learned, so that additional speech for ASR training

can be generated. This requires that recordings of these target utterances are available as a

source. However, depending on the type of VC system, parallel training data is not always

necessary. Non-parallel methods can be trained without source and target speaker recording

the same utterances. Existing applications to dysarthric ASR have been restricted to VC models

that convert only between single pairs of speakers, although in general many-to-many VC

approaches also exist (Kaneko et al., 2019b).

We note that VC can also be used as a form of feature adaptation, where the voice of dysarthric

speakers is converted to that of control speakers, so that it could be fed into an existing ASR

system trained only on control speech. Prananta et al. (2022) conclude that in this case most

of the benefits from GAN-based VC can already be achieved by simple time stretching of the

dysarthric speech to match control speakers’ speaking rates. We do not consider this in this
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thesis and only convert from control to dysarthric speech. Another approach could be to

convert between different dysarthric speakers (Illa et al., 2021), which has not been used for

data augmentation in dysarthric ASR yet.

6.2.1 Background

For our experiments, we choose the MaskCycleGAN-VC (Kaneko et al., 2021) architecture2

that is based on CycleGAN-VC (Kaneko and Kameoka, 2018) and its extension CycleGAN-

VC2 (Kaneko et al., 2019a), based on prior comparisons of the output quality of these sys-

tems (Prananta et al., 2022). All of these architectures are similar and trained with an adver-

sarial (Goodfellow et al., 2014) and a cycle-consistency loss (Zhu et al., 2017) on non-parallel

data, illustrated in Figure 6.4.

Original A

Mask A

G A→B

Converted B

Cycle-consistency loss

DB

GB→A

Reconstructed A

D ′
A

Adversarial
loss

Second ad-
versarial loss

Figure 6.4: Overview of MaskCycleGAN voice conversion training between speakers A and B
with generators G A→B and GB→A and discriminators DB and D ′

A . Figure adapted from Kaneko
et al. (2021).

More precisely, MaskCycleGAN-VC consists of two generator and two discriminator models.

The generator G A→B converts the speech from speaker A to sound like that of speaker B and

the second generator GB→A reconstructs the original speech signal of speaker A based on

the converted sample. The discriminator DB then tries to distinguish converted samples

from real samples of speaker B , while the second discriminator D ′
A tries to distinguish the

reconstructed from real samples of speaker A. Each discriminator is trained to minimise

their respective adversarial loss while the generators are trained to increase it and produce

more convincing outputs. Because there is no parallel training data, the discriminators focus

only on the speaker identity. The cycle-consistency loss is added in order to still preserve the

linguistic content – it ensures that the reconstructed signal is as close as possible to the original

one. MaskCycleGAN-VC additionally masks a portion of the input to G A→B along the time axis,

which the generator is then forced to fill in, as a form of self-supervised learning for improved

2https://github.com/GANtastic3/MaskCycleGAN-VC
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modelling of time-frequency structure in the output (Kaneko et al., 2021). For further details

on the model architecture and training procedure, we refer the reader to Kaneko et al. (2021).

6.2.2 Experimental setup

We continue to use UA-Speech for these data augmentation experiments. In line with prior

work (Prananta et al., 2022), we only convert from male control to male dysarthric and from

female control to female dysarthric speakers to simplify the task. This means that there is

overall more additional training data for male dysarthric speakers due to the gender imbalance

of UA-Speech.

Our VC method only takes into account the changes in speech characteristics between speak-

ers. It does not adjust the duration of an utterance, although we know that the speaking rates

of dysarthric speakers can be significantly lower than those of typical speakers. Therefore,

we add a separate time stretching step before VC training, similar to previous work (Halpern

et al., 2021). We compute speech tempo ratios based on mean phoneme durations for each

dysarthric speaker and averaged over all control speakers as described in Section 6.1.2. We

then adjust the speech tempo of control speech specifically for each dysarthric speaker based

on these ratios with the sox command line tool.

We train a separate MaskCycleGAN-VC model for each male-male and female-female pair

of control and dysarthric speakers from UA-Speech on all data of block 1 for 100 epochs

with a batch size of 1. The input and output features are normalised 80-dimensional Mel

spectrograms. We generate waveforms from the voice-converted outputs for both blocks 1

and 3 with a pre-trained MelGAN vocoder (Kumar and Kumar, 2019) model3 at a sampling

rate of 22050 Hz that we downsample to 16 kHz for ASR training.

For ASR, we again train LF-MMI acoustic models on UA-Speech as described in Chapter 3. We

compare the previous baselines with adding voice-converted data to them. Speed perturbation

with factors {0.9,1.0,1.1} is applied in all models. Finally, we analyse the acoustic units of

the voice-converted data with the framework developed in Chapter 5 to determine whether

dysarthric speech characteristics are reproduced.

6.2.3 Results and analysis

We first train SD acoustic models only on the data that was voice-converted from control to

dysarthric speakers (Table 6.2, VC only). These lead to lower WERs on more severely dysarthric

speakers compared to a model trained only on the original control speech (Control), while

WERs for mild to moderate dysarthric speech increase.

We then train SD models where we augment the target speaker’s speech with the VC data

converted from all same-gender control speakers to the target speaker (SD + VC). This performs

3https://github.com/descriptinc/melgan-neurips
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Table 6.2: Word error rates (WER) for each group of dysarthric speakers from UA-Speech for
data augmentation with MaskCycleGAN-VC.

Systems Severe Mod.-Severe Moderate Mild Overall

Baselines from Chapter 3
SD 70.3 42.7 38.2 24.0 41.3
SD + Control 65.5 32.8 25.8 15.7 32.6
Dysarthric 62.4 32.2 29.2 19.0 34.0
Control 96.2 74.5 55.1 23.2 56.9
Both 62.8 35.7 28.7 17.7 33.9

Data augmentation
SD + Tempo-matched Control 70.3 33.0 28.2 17.2 34.8
VC only 90.8 67.9 57.6 32.3 58.1
SD + VC 69.2 37.9 36.5 25.3 40.2
SD + Control + VC 65.4 35.0 29.9 20.5 35.6
Dysarthric + VC 74.0 45.0 40.9 30.8 45.6
Both + VC 74.5 45.6 38.8 27.9 44.4

Both-MelGAN 74.9 37.8 36.0 22.8 40.4

considerably worse than just adding all original control speech (SD + Control), with an overall

WER of 40.2% compared to 32.6% across all dysarthric speakers. Additionally adding the

original control speech (SD + Control + VC) also still performs worse at 35.6%. Next, we

combine all original dysarthric and all converted data (Dysarthric + VC). Finally, we also add

the original control speech to this (Both + VC). In both cases, adding the VC data leads to

worse results than the baseline.

To understand the source of these poor results, we measure the effect of the MelGAN vocoder

in the VC experiments. We convert both the control and dysarthric UA-Speech training data to

Mel spectrograms and feed these through the MelGAN vocoder. Then we train a model on this

data (Both-MelGAN) and compare it to the one trained on the original speech (Both). Across

all dysarthric speakers, we observe an absolute WER increase of 6.5% that we can also expect

when training on voice-converted data.

The median KL divergences between monophone acoustic units of the converted control

speech are strongly correlated with the subjective intelligibility ratings for the respective target

dysarthric speaker (Pearson’s r = 0.92), as can be seen in Figure 6.5. This highlights that the

VC models learn meaningful mappings from control to dysarthric speech and reproduce

the differences in acoustic space discriminability between speakers that we observed in the

original dysarthric speech (r = 0.90). The median KL divergences of tempo-matched control

speech, which is the source speech for VC, are also correlated with the subjective intelligibility

ratings (r = 0.53), but they are still clustered close around the value of the original control

speech, indicating no significant reduction in discriminability.
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Figure 6.5: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings of control speech from UA-Speech that was converted to dysarthric
speakers with MaskCycleGAN-VC (Pearson’s r = 0.92), of tempo-matched control speech (r =
0.53), and of the original dysarthric speech (r = 0.90). The dashed line shows the median KL
divergence across all the original control speech.

6.3 Speech synthesis

In this section we investigate augmentation of the training data with a TTS system. In contrast

to VC, which requires existing recordings of the target utterances, we can synthesise speech

for arbitrary sentences and therefore quickly adapt an ASR system to new commands and

domains. TTS-based data augmentation has already been applied to ASR for low-resource

languages and children’s speech (Kadyan et al., 2021). We go beyond using TTS only for data

augmentation, but also explore it in a few-shot scenario where we synthesise dysarthric speech

based on only a few recordings of a target speaker that was not seen during TTS training.

Few-shot and even zero-shot approaches to pathological speech recognition can be suc-

cessful (Xiao et al., 2022; Green et al., 2021; Tobin and Tomanek, 2022). Out of the box, a

very large acoustic model with up to 10 billion parameters trained on 4.5 million hours of

speech (Xiao et al., 2022) reaches state-of-the-art performance on AphasiaBank (MacWhinney

et al., 2011), a database of aphasic speech. Fine-tuning on this data gives a further 50% relative

improvement. However, such amounts of training data are only available to a few private

companies. Even fine-tuning and applying a pretrained model with so many parameters is

challenging and storing personalised models for each speaker is costly (Tomanek et al., 2021).

It is therefore desirable to also investigate more moderately sized models and alternative

few-shot approaches.

In this section we build upon previous work on TTS for dysarthric speech (Soleymanpour

et al., 2022) based on the FastSpeech 2 TTS system (Ren et al., 2021). It is a multi-speaker TTS

model that is trained on many speakers and is thus better able to capture their diversity. It

also simplifies the training procedure with respect to VC-based data augmentation where we

trained over one hundred separate models to cover all speaker pairs. A further advantage is

that FastSpeech 2 directly learns to model the speech duration and a separate time stretching

step to adjust control speech to dysarthric speaker’s speaking rates is not required.
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Soleymanpour et al. (2022) introduced a dysarthria embedding into FastSpeech 2 that allows

to explicitly model and generate speech of different severity levels. They demonstrated that

this synthetic dysarthric speech can augment the training data for dysarthric ASR on the Torgo

corpus. We reproduce their findings on UA-Speech. We then ask whether dysarthric TTS could

also be used to generate ASR training data for a new speaker based on just 5 or 100 recordings

in a few-shot scenario.

6.3.1 Approach

In this section we describe the works on which our dysarthric TTS pipeline is based and any

modifications that we have made.

Controllable TTS

FastSpeech 2 (Ren et al., 2021) is a transformer-based non-autoregressive TTS system that

allows for fast training and inference. Figure 6.6 illustrates the architecture of the model, which

comprises a phoneme encoder and a Mel-spectrogram decoder. In between, it has a variance

adaptor block to model different sources of variance in the speech signal and to control the

TTS output. The variance adaptor contains multiple variance predictors. These are small

neural networks that are trained to predict attributes like pitch, energy and phoneme duration.

A length regulator expands the encoded input from phoneme- to frame-level based on the

durations, while embeddings from the other predictors are added to the input. At training

time, ground-truth values are used instead of the predictions. At inference time, the pitch,

duration, and energy values can be adjusted to create variability in the synthesised speech.

The original FastSpeech 2 (Ren et al., 2021) predicts pitch spectrograms obtained from the

continuous wavelet transform, but we use an implementation that directly predicts pitch

values (Chien et al., 2021). We also follow their approach of placing the length regulator after all

other variance predictors. Chien et al. (2021) also extended FastSpeech 2 to multiple speakers

by adding a speaker embedding to the encoded input. The following variance predictors are

thus conditioned on the speaker identity. We train this speaker embedding jointly with the

rest of the network.

Dysarthric TTS

Soleymanpour et al. (2022) added a dysarthria severity predictor before the other variance

predictors, so that their embeddings are conditioned on the severity of dysarthria of the

speaker. Due to the controllable nature of FastSpeech 2, speech of different severity levels

can then be generated, which they used for data augmentation in a dysarthric ASR system.

As severity depends only on the speaker and cannot be predicted from text, we just use a

severity embedding here that is learned jointly with the rest of the model, instead of a separate
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Phonemes
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Figure 6.6: Our adapted FastSpeech 2 architecture (figure adapted from Ren et al. (2021)). LR in
subfigure (b) denotes the FastSpeech 2 length regulator and LN in subfigure (c) denotes layer
normalisation. The speaker embeddings are obtained from a pretrained model and remain
fixed.

predictor network. We group the speakers into the same 3 groups that each get their own

embedding: unimpaired control speech, mild to moderate dysarthria, severe dysarthria.

Soleymanpour et al. (2022) developed heuristics to insert additional pauses into the synthetic

speech for data augmentation experiments with continuous speech from the Torgo corpus.

We do not add such heuristics because we only synthesise isolated words for UA-Speech.

Few-shot TTS

Chien et al. (2021) found that speaker embeddings from a generative VC system performed bet-

ter than jointly trained ones or embeddings trained on a discriminative speaker classification

task like x-vectors (Snyder et al., 2018). They chose embeddings from the AdaIN-VC system for

one-shot voice conversion (Chou and Lee, 2019), so that the TTS would also support speakers

not seen during training.

AdaIN-VC (Chou and Lee, 2019) is able to convert an utterance to an unseen speaker’s voice

from a single sample by separately encoding speaker and content. Speaker labels are not

required for training, the speaker identity is assumed to be in the constant information

throughout an utterance, while the content information is changing. An adaptive instance

normalisation (AdaIN) (Huang and Belongie, 2017) layer means that no parameters have to be

learned for a new speaker.
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Following Soleymanpour et al. (2022), we train speaker embeddings jointly with the Fast-

Speech 2 model in the data augmentation experiments. This limits the set of speakers for

which speech can be synthesised to those present in the training data. For the few-shot ex-

periments, we have no such restriction because of the one-shot capable AdaIN-VC speaker

embeddings and we investigate how little data is required from a target speaker to synthesise

dysarthric speech and build a speaker-dependent ASR system for them.

6.3.2 Experimental setup

The audio files have a sampling rate of 16 kHz. For compatibility with existing code and

pretrained models, we upsample the data to 22050 Hz in the TTS pipeline, while all ASR

models are trained on 16 kHz.

TTS

We use synthetic speech for data augmentation, where we assume that training data for a

target speaker is available, and in a few-shot setting, where we apply a trained TTS model on

unseen speakers.

For data augmentation, we train one TTS model on all the training data from UA-Speech.

For the few-shot experiments, we train 15 different models in a leave-one-speaker-out setup,

i.e. on all control and the 14 other dysarthric speakers. We then use different amounts of

dysarthric speech from blocks 1 and 3 of UA-Speech to obtain the speaker embeddings and as

additional sources of ASR training data.

In each case, we train a phoneme-based FastSpeech 2 TTS model4 with a batch size of 16

for 500k iterations in the default configuration. The input features are 80-dimensional Mel

spectrograms. We obtain ground-truth phoneme durations for the duration predictor from

forced alignment with a HMM/GMM ASR system trained on the same data. For the data

augmentation experiments, speaker embeddings are trained jointly with the rest of the net-

work. For the few-shot scenario, speaker embeddings are obtained from the AdaIN-VC model

described in the next section.

For vocoding, we use the pretrained universal HiFi-GAN (Kong et al., 2020) model5 and

downsample its 22050 Hz output to 16 kHz for ASR training. We experimented with fine-

tuning the vocoder on UA-Speech, but did not observe consistent benefits.

We again analyse the acoustic units of the synthesised dysarthric speech with the framework

developed in Chapter 5.

4https://github.com/ming024/FastSpeech2
5https://github.com/jik876/hifi-gan

60

https://github.com/ming024/FastSpeech2
https://github.com/jik876/hifi-gan
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Speaker embeddings

For the few-shot scenario, we train AdaIN-VC models6 on the same data as the TTS models with

a batch size of 128 for 200k iterations using the default configuration, also with a leave-one-

speaker-out setup. We train on the same Mel spectrograms that we extracted for FastSpeech 2

training, following Chou and Lee (2019). We take the 128-dimensional output of the speaker

encoder as embeddings for FastSpeech 2 training and inference. We do not further fine-tune

these embeddings during TTS training.

For the few-shot experiments, we select subsets of 5 and 100 words from the UA-Speech

training blocks 1 and 3. We do not sample randomly, but instead choose words that offer the

broadest phoneme coverage, emulating a scenario where target speakers are asked to record a

small list of words with the biggest performance benefit. For each speaker, we pick a random

utterance of each word, extract the AdaIN-VC embedding for it and take their average as the

speaker embedding for speech synthesis, following Chou and Lee (2019). The TTS model is not

trained or fine-tuned on these few-shot utterances, although fine-tuning could be explored in

the future.

ASR

We train speaker-dependent LF-MMI acoustic models as described in Chapter 3 on only the

data of the target dysarthric speaker, possibly augmented with synthetic speech. Although

it is otherwise commonly done in LF-MMI training, we do not apply speed perturbation to

the synthesised speech in these experiments because we can already manipulate the speed

during TTS data augmentation.

6.3.3 Results and analysis

Data augmentation

As in the VC experiments, we first analyse the effect of the HiFiGAN vocoder by feeding the

training data of both control and dysarthric speakers through the vocoder and training an

LF-MMI model on it (Both-HiFiGAN in Table 6.3). Across dysarthric speakers, we only observe

an absolute increase of 1.5% in WER. This is better than the MelGAN vocoder used for VC,

indicating that this is the better option for future experiments.

For reference, we show the performance of an ASR system trained only on the control speech

from UA-Speech (Control). The SD acoustic models trained on all speech of a given speaker

from block 1 and 3 of UA-Speech represent the theoretical upper limit we can reach through

data augmentation from a subset of that data. For comparison, we also show the results of SD

models that additionally include all control speech (+ Control).

6https://github.com/cyhuang-tw/AdaIN-VC
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Chapter 6. Data augmentation for dysarthric speech recognition

Table 6.3: Word error rates (WER) on UA-Speech for each group of dysarthric speakers. For
clarity, we also indicate whether the target speaker was seen during TTS training or not, where
applicable (the baselines do not involve any TTS training).

Systems Seen Severe Mod.-sev. Moderate Mild Overall

Baselines from Chapter 3
Dysarthric – 62.4 32.2 29.2 19.0 34.0
Control – 96.2 74.5 55.1 23.2 56.9
Both – 62.8 35.7 28.7 17.7 33.9
Both-HiFiGAN – 67.6 36.0 29.2 18.5 35.4
SD (Top-line) – 70.3 42.7 38.2 24.0 41.3
+ Control – 65.8 34.3 25.3 15.4 32.8

Data augmentation
TTS-augmented ✓ 70.8 38.7 33.6 18.5 37.6
+ Control ✓ 67.7 32.6 26.1 14.9 32.8

TTS-augmented4x ✓ 68.5 36.9 32.4 19.2 36.7
+ Control ✓ 68.6 30.9 27.4 15.1 33.0

Few-shot
F5-ctl ✗ 99.6 99.1 98.1 92.0 96.5
+ Control ✗ 94.9 75.9 55.8 22.3 56.7

F100-ctl ✗ 98.8 99.0 92.5 83.3 91.7
+ Control ✗ 93.8 75.6 51.7 21.8 55.4

F5-dys ✗ 99.4 99.6 98.5 95.4 97.8
+ Control ✗ 94.4 76.1 53.9 22.5 56.8

F100-dys ✗ 99.3 99.2 95.6 91.3 95.6
+ Control ✗ 94.5 72.7 52.4 20.6 54.6

F5-mix ✗ 99.3 99.1 98.3 92.1 96.5
+ Control ✗ 94.7 75.8 55.6 21.4 56.3

F100-mix ✗ 98.6 97.1 92.7 82.6 91.3
+ Control ✗ 93.7 72.7 50.7 20.9 54.2

Synthetic data only
TTS-only ✓ 98.2 93.9 87.8 85.1 90.5
TTS-only4x ✓ 98.0 92.6 86.5 79.7 87.9

First, we generate a set of synthetic speech for data augmentation with the same words

and number of utterances as the original UA-Speech training data. In order to generate

multiple variants of the same word, we sample random pitch factors from {0.1, 0.6, 1.2, 1.75},

energy factors from {0.1, 1.0, 2.0}, duration factors from {1.0, 1.3, 1.6, 1.8} and the dysarthria

embedding from {control, mild, severe} like Soleymanpour et al. (2022). First, we confirm their

findings that augmenting the training data with synthetic dysarthric speech (TTS-augmented)

improves speech recognition. We also confirm that adding four times as much synthetic

speech further lowers the WER (TTS-augmented4x). However, when also adding the control

speech itself, there is no further benefit from data augmentation.

62



6.3 Speech synthesis

Few-shot

We compare estimating the speaker embedding from 5 (F5) and 100 (F100) single-word

utterances of the target speaker. These utterances are then also included for the training of the

acoustic model. In either case, the total number of ASR training utterances is matched with

the baseline. All of these models perform poorly with average WERs in the nineties, not even

coming close to the control speech model. Nevertheless, we can observe certain patterns, e.g.

estimating the speaker embedding from more utterances improves results.

We either set the dysarthria embedding to generate control speech (F5/100-ctl), speech of

the same severity as the target speaker (F5/100-dys) or a mix of control, mild, and severely

dysarthric speech (F5/100-mix). Curiously, we find that this mix or generating only control

speech works better than matching the target severity. This could be because synthesising

dysarthric speech introduces some dysarthria-like characteristics that are nonetheless not rep-

resentative of the target speaker and more detrimental for ASR because the speaker embedding

is only designed to capture general speaker information.

We also see slight improvements when combining the F100 data with control speech (+ Con-

trol). This indicates that while the synthetic speech on its own is not yet of sufficient quality, it

can still yield benefits in combination with other data. To further evaluate this, we train an-

other set of SD models on only the synthesised portion of the data used in the TTS-augmented

experiments, where the target speakers were already seen during TTS training (TTS-only).

Indeed, even these results are very poor although the speakers were seen and the TTS output

was beneficial for ASR data augmentation. This suggests that no significant improvements can

be expected in the few-shot setting before the TTS quality in general is not further increased.

Listening to synthesised speech samples also indicates that the TTS model sometimes has

difficulties finding the right alignment between phonemes and the audio.

Analysis

We evaluate the quality of the synthetic dysarthric speech by analysing the discriminability of

the monophone acoustic units. In the future, it would be also worthwhile to apply the objective

evaluation measures proposed by Halpern et al. (2021). Figure 6.7 (a) shows the relationship

between median KL divergences of the synthetic speech used in the data augmentation

experiments for each dysarthric speaker and their subjective intelligibility ratings (Pearson’s r

= 0.85), compared with the original dysarthric speech (r = 0.90). In terms of acoustic space

discriminability, the synthetic speech is correctly showing the same patterns as the original

dysarthric speech.

For data augmentation, we synthesised speech with the dysarthria embedding set to a different

random value for each utterance. But how does the TTS output change when we set the

dysarthria embedding to generate control, mild, or severely dysarthric speech? For each

embedding value, we synthesise one utterance for each word in the UA-Speech training data.
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Figure 6.7: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings of (a) synthetic dysarthric speech used for data augmentation experiments
on UA-Speech (Pearson’s r = 0.85) and of the original dysarthric speech (r = 0.90). (b) shows
the same relationship for speech synthesised with the dysarthria embedding set to control,
mild, or severe.

We find that the dysarthria embedding learns to correctly influence the length regulator,

with average utterance durations of 1.2s for control, 1.9s for mildly dysarthric and 2.6s for

severely dysarthric synthesised speech. Figure 6.7 (b) shows the relationship between median

KL divergences of these three sets of synthesised speech and the subjective intelligibility

ratings of each dysarthric speaker. Indeed, the median KL divergences decrease for mild and

severely dysarthric synthesised speech, indicating reduced discriminability. We note that

when synthesising with the dysarthria embedding set to control, there is still a correlation

between median KL divergences and subjective intelligibility ratings. This is due to the speaker

embedding that inevitably also captures dysarthria characteristics of the speaker, so it is not

expected that this synthesised control speech sounds like a control speaker without dysarthria.

However, in the few-shot experiments we synthesised speech for new speakers that were not

seen during TTS training. We again generate a set of control, mild, and severely dysarthric

speech by setting the dysarthria embedding accordingly with the few-shot model for each

unseen speaker. Figure 6.8 shows that there are meaningful differences in the acoustic space

between the three severity levels for these unseen speakers as well, both for speaker embed-

dings obtained from 5 and from 100 utterances of that speaker.

6.4 Summary

The aim of this chapter was to compare different data augmentation methods both in terms

of ASR performance and the characteristics of the generated speech. In all cases, VC with
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Figure 6.8: Relationship between the median KL divergence of acoustic units and subjective
intelligibility ratings of synthetic dysarthric speech used for few-shot experiments on UA-
Speech with the dysarthria embedding set to control, mild, or severe. The speaker embeddings
are estimated from (a) 5 and (b) 100 utterances from the target speaker, but their speech is not
included during TTS training.

signal processing and GAN-based models and TTS, our results suggest that the overall acoustic

quality of the generated outputs is not sufficient for accurate speech recognition yet. While

it helped to add the generated data to dysarthric speech, it was even better to just add the

original control speech. For GAN-based VC, the poor results could to some degree be explained

by the effect of the vocoding step.

However, we found that both GAN-based VC and TTS learn to model dysarthric speech

characteristics and reproduce differences in acoustic space discriminability between speakers

of different severity that are observed in the original dysarthric speech.
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7.1 Conclusions

In this thesis we investigated methods to improve dysarthric ASR systems and make them

more resistant to the acoustic and lexical variability of dysarthric speech by considering the

relationship between the acoustic model and its training data.

We developed strong baselines for the Torgo and UA-Speech corpora of dysarthric speech

based on sequence-discriminative LF-MMI training. We found that frame subsampling and

data augmentation with speed perturbation are important factors for their success. The

resulting models in particular reduce insertion errors, which can otherwise be frequent due to

the low speaking rates of dysarthric speakers.

We observed that adding unimpaired control speech to the training data is always beneficial

for dysarthric ASR. However, for LF-MMI training, it led to worse results on control speakers

compared to models trained only on control speech or to SGMMs. We were able to compensate

for this by dynamically combining acoustic models trained on different groups of speakers.

This model combination approach also improved WERs of dysarthric speakers. We further

extended it to the combination of models trained with either phoneme or grapheme acoustic

units in order to implicitly handle pronunciation variants in dysarthric speech.

To better understand the differences in performance of different acoustic models, we pro-

posed an analysis framework based on the acoustic discriminability of the training data by

computing KL divergences between Gaussian distributions estimated for each acoustic unit.

When comparing dysarthric speakers, this analysis showed high correlations between discrim-

inability of the acoustic unit space and both subjective intelligibility ratings and ASR results of

SD acoustic models, underlining the viability of this approach.

Finally, we compared multiple data augmentation approaches for dysarthric ASR, including

VC and TTS, within this analysis framework. We observed that synthetic dysarthric speech

at different severity levels generated with both GAN-based VC and TTS shows similar effects
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on the acoustic unit space as the original dysarthric speech. Data augmentation with the

generated speech also improved WERs with respect to acoustic models trained only on the

original dysarthric speech. However, in each case we found it to be even better to just augment

with the original control speech instead, concluding that the output quality of these systems

needs to be further improved before they are applied to dysarthric ASR.

7.2 Directions for future research

We suggest the following directions for future research:

• In this thesis we restricted ourselves to sequence-discriminative LF-MMI training in the

hybrid HMM/DNN ASR framework. In the meantime, end-to-end approaches, such

as CTC or RNN transducer (RNN-T), have gained in popularity and competitiveness.

They could be compared to the acoustic models presented in this work. They also

facilitate the integration of other types of acoustic features, such as pretrained speech

representations, and multi-task training.

• Our work has mainly focused on dysarthric ASR, but it could be extended to other speech

pathologies. While we also briefly evaluated our model combination approach to handle

lexical variability in children’s and non-native children’s speech, more comparisons with

other kinds of atypical speech could be carried out. Similarly, our analysis framework

should be validated on other forms of atypical speech as well. For example, it could

analyse acoustic differences in children’s, elderly, or accented speech.

• VC and TTS data augmentation for dysarthric ASR proved to be promising in that

the generated speech samples successfully reproduced characteristics of the original

dysarthric speech. It turned out to be better to just augment the training data with the

original control speech than any voice-converted or synthesised samples, but further

improvements in the output quality of these systems are possible. The vocoding also had

a negative effect on ASR performance and in the future this step could be circumvented

by training acoustic models directly on the generated Mel spectrograms.

• Few-shot dysarthric ASR approaches are likely to become more widespread. We con-

cluded that adding control speech when training acoustic models on dysarthric speech

is always beneficial. But we can consider the opposite question: how little dysarthric

speech is required to adapt a general purpose ASR system trained on larger corpora

to an unseen speaker with dysarthria? This could gain wider adoption than training

dysarthria-specific models from scratch because typical speech models and data are

widely available.
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