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Abstract

This thesis is dedicated todeveloping innovativemethodologies that improveelemental quan-
tification in scanning transmission electron microscopy (STEM) using energy-dispersive
X-ray spectroscopy (EDXS). The primary motivation stems from a geochemistry problem
concerning Si deficiency in the Earth’s upper mantle. To address this, mantle melting experi-
ments were conducted on pyrolite composition under lower mantle conditions, followed by
the characterization of the synthesized mineral phases using STEM-EDXS. The results reveal
that within the investigated lower mantle pressure range, bridgmanite, a silicate mineral,
is the first phase to crystallize during mantle solidification, supporting the hypothesis of a
Si-rich lower mantle that could account for the Si depletion in the upper mantle.

The mineral specimens exhibiting complex phase features provide opportunities for the
development of advanced data processing techniques, including classical machine learning
and deep learning approaches. These techniques have been employed to overcome chal-
lenges in phase segmentation and improve elemental quantification, particularly for trace
elements. Two novel methodologies, non-negative matrix factorization (NMF) aided and
pan-sharpening fused non-negative matrix factorization (PSNMF), have been developed.
These methodologies effectively unmix overlapping phases, enhance chemical sensitivity,
and improve the precision of STEM-EDXS quantification. Additionally, this thesis combines
the complementary techniques of EDXS and EELS (electron energy-loss spectroscopy) using
a deep learning approach to enhance elemental analysis. The preliminary results of this
methodology show promising potential.

In summary, this thesis significantly advances the analytical capabilities of STEM-EDXS and
deepens our understanding of the Earth’s mantle. The proposed methodologies are applica-
ble to the analysis of various materials that exhibit complex volumetric phase relationships,
low signal-to-noise ratios (SNR), or contain vital trace constituents.

Key words: scanning transmission electron microscopy (STEM), energy-dispersive X-ray
(EDX) spectroscopy, phase segmentation, denoising, elemental quantification, machine
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learning, lower mantle, melting relations, mantle differentiation
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Résumé

Cette thèse est consacrée au développement deméthodologies innovantes visant à améliorer
la quantification des éléments dans la microscopie électronique à transmission en balayage
(STEM) utilisant la spectroscopie des rayons X à dispersion d’énergie (EDXS). La motivation
principale provient d’un problème de géochimie concernant la déficience en Si du manteau
supérieur de la Terre. Des expériences de fusion du manteau sur une composition de pyrolite
dans les conditions du manteau inférieur ont été réalisées, suivies de la caractérisation
des phases minérales synthétisées à l’aide de STEM-EDXS. Les résultats révèlent que la
bridgmanite, un minéral silicaté, est la première phase à cristalliser lors de la solidification
du manteau dans la plage de pression du manteau inférieur étudiée, soutenant la possibilité
d’unmanteau inférieur riche en siliciumqui pourrait expliquer la déplétion en Si dumanteau
supérieur.

Les échantillons minéraux présentant des caractéristiques de phase complexes offrent des
opportunités pour le développement de techniques avancées de traitement de données,
notamment des approches d’apprentissage de type ”machine learning” classique et de ”deep
learning”, pour surmonter les défis de segmentation de phase et améliorer la quantification
des éléments, en particulier pour les éléments traces. Deux méthodologies novatrices, la
factorisation matricielle non négative (NMF) simple et assistée par la fusion de données
(pan-sharpening ou aussi PSNMF), ont été développées, permettant de séparer efficace-
ment les phases superposées, d’améliorer la sensibilité chimique et d’accroître la précision
de la quantification de STEM-EDXS. De plus, cette thèse aborde la combinaison les tech-
niques complémentaires de EDXS et EELS (spectroscopie de perte d’énergie électronique)
en utilisant une approche d’apprentissage profond pour améliorer l’analyse élémentaire. Les
résultats préliminaires de cette méthodologie montrent un potentiel prometteur.

En résumé, cette thèse améliore considérablement les capacités analytiques de STEM-EDXS
et approfondit notre compréhension du manteau terrestre. Les méthodologies proposées
sont applicables à l’analyse d’une large gamme de matériaux présentant des relations de
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phase volumétriques complexes, des rapports signal-bruit (SNR) faibles ou des constituants
traces essentiels.

Mots clés : microscopie électronique en transmission à balayage (STEM), spectroscopie
de dispersion d’énergie des rayons X (EDXS), segmentation de phase, débruitage, quanti-
fication élémentaire, apprentissage automatique, manteau inférieur, relations de fusion,
différenciation du manteau

vi



Preface

Motivations and Objectives
Energy-dispersive X-ray spectroscopy (EDXS) and electron energy-loss spectroscopy (EELS)
are widely used techniques in (scanning) transmission electron microscopy ((S)TEM) for
elemental quantification across diverse fields such as materials science, physics, chemistry,
andbiology. Despite their extensive applications, each techniquepossesses distinct strengths
and limitations. Therefore, the initial objective of this project was to develop innovative
methodologies that leverage either EDXS or EELS, or both, to achieve more accurate, precise,
and comprehensive elemental quantification compared to conventional quantification
methods used in the electron microscopy community.

The laboratory where I conducted my doctoral studies has had a longstanding research
partnership with Dr. J. Badro from the Institut de Physique du Globe de Paris (IPGP). At
the outset of my doctoral study, Dr. Badro proposed a research endeavor focusing on a
state-of-the-art geochemistry problem—the Si deficiency in the Earth’s upper mantle. One
hypothesis postulates that the ’missing’ Si might be sequestered in the Earth’s lower mantle,
owing to the fractionation of Si-rich mineral(s) during the early solidification of the Earth’s
mantle [1, 2].

To explore this possibility, Dr. J. Badro led mantle melting experiments using pyrolite, a
composition model representing the average Earth mantle, in laser-heated diamond anvil
cells (LHDAC). These experiments aim to simulate the solidification process of the Earth’s
mantle and determine the crystallization sequence of mineral phase(s) during solidification.

Since the synthesized mineral phases are nanometric in size, their characterization ne-
cessitates high-resolution techniques such as ((S)TEM). For this purpose, Dr. F. Nabiei
prepared four TEM lamellae using the focused ion beam (FIB) technique. My role in the
project involves employing STEM-EDXS to characterize these samples. Once the liquidus
phase(s) is (are) identified and quantified, Dr. Badro could assess the partitioning of trace
elements between the liquidus phase(s) and the coexisting residual silicate melt, providing
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vital geochemical insights into the existence of ’hidden’ reservoirs in the lower mantle. Ad-
dressing this geochemical issue was one of the primary objectives of the project and held
great significance in understanding the Earth’s mantle.
The mineral specimens under investigation exhibit complex and diverse phase features,
which pose analytical challenges for STEM characterization while simultaneously creat-
ing opportunities for the development of innovative quantification methodologies. These
relevant phases contain both heavy and light elements, as well as major, minor, and trace
elements. Moreover, these phases share common elements that result in spectral similarities,
and they overlap spatially along the thickness direction, leading to mixed compositions in
relevant pixels. Additionally, the mineral assemblages are susceptible to beam damage, lim-
iting the signal-to-noise ratio (SNR) of the acquired dataset and increasing the uncertainties
in elemental quantification. Another significant objective of this thesis was to develop ad-
vanced data processing techniques that address the aforementioned challenges and improve
quantification, thus enhancing the analytical capabilities of STEM.
As mentioned earlier, one of the initial propositions of this research was to integrate the
complementary techniques of EDXS and EELS to achieve a more comprehensive elemental
quantification. In the final part of this thesis, the feasibility of this proposition was explored
utilizing a deep learning approach on simultaneously acquired EDXS and EELS data.
To summarize, this thesis is dedicated to developing innovative methodologies that enhance
chemical analysis in analytical STEM, with a primary focus on STEM-EDXS technique; this
research also seeks to address the geochemical problem of Si deficiency in the Earth’s upper
mantle through mantle melting experiments conducted under lower mantle conditions. The
chemical analyses of the synthesized mineral specimens have spurred the development of
advanced data processing methodologies to address challenges in phase segmentation and
elemental quantification inherent in STEM-EDXS. Lastly, the thesis explores the integration
of EDXS and EELS techniques to improve elemental analysis. The preliminary results suggest
considerable promise in this approach.

Thesis Structure
Thefirst three chapters of this thesis offer a comprehensive literature review. InChapter1, the
essential Earth science background information is presented to understand the geochemical
problem under scrutiny. Chapter 2 outlines the fundamentals of analytical STEM, including
the theories of EDXS and EELS quantification, as well as recent methodologies developed
for the synergistic analysis of EDXS and EELS. Chapter 3 reviews classical machine learning
methods and deep learning methods, discussing their principles, advantages, disadvantages,
recent developments, and their applications in analytical STEM data analysis.
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In Chapter 4, we conducted mantle melting experiments on pyrolite at pressures of 47, 55,
71, and 88 GPa, and characterized the resulting melt pocket and solidus mineral assemblages
using STEM-EDXS and the traditional Cliff-Lorimer ratio method. Our findings indicate
that bridgmanite, a silicate, is the first mineral phase to crystallize within the investigated
lowermantle pressure range. This implies that the fractionated crystallization of bridgmanite
during the solidification of Earth’s mantle can result in a Si-rich lower mantle. We also ob-
served the preferential accumulation of Fe in the residual melt, which provides experimental
support for the basal magma ocean theory [3]. Additionally, we investigated the partition-
ing behavior of Fe between solidus ferropericlase and bridgmanite. It is postulated that
variations in Fe content in bridgmanite could be responsible for the observed rheological
variations in the lower mantle.

The objective of Chapter 5 is to enhance the quantification of solidus mineral assemblages
using STEM-EDXS, which plays a crucial role in understanding the mineralogy of Earth’s
lower mantle. This chapter introduces a non-negative matrix factorization (NMF) aided
phase analysis method that effectively unmixes phases with significant spatial and spectral
overlap, and improves the sensitivity and precision of STEM-EDXS quantification. Apply-
ing this method to analyze beam-sensitive solidus mineral assemblages enables retrieving
the true EDX spectra of the constituent phases and their corresponding phase abundance
maps. Furthermore, this method allows for reliable quantification of trace elements at
concentration levels of ∼100 ppm.

Building upon the success of the NMF-aided method and acknowledging its limitations,
such as the requirement for a feasible SNR and reliance on phase size, Chapter 6 proposes
the pan-sharpening fused non-negative matrix factorization (PSNMF) method for a more
resilient and effective STEM-EDXS analysis. This approach enables simultaneous phase
unmixing and dataset denoising. We assess its effectiveness using a variety of STEM-EDXS
datasets, including synthetic datasets with moderate and extremely low SNR, as well as an
experimentally acquired dataset with medium SNR. Our results demonstrate the ability of
PSNMF to accurately extract phase abundance maps and spectra even in the presence of
high levels of noise. Moreover, PSNMF exhibits superior denoising capabilities compared to
the classical principal component analysis (PCA) method. It enables precise quantification
of minor and trace elements, even in datasets with extremely low SNR (i.e., containing an
average of only 15 X-ray counts per pixel).

As stated in the beginning, one of the initial propositions of this research was to integrate the
complementary techniques of EDXS and EELS in order to improve elemental quantification.
Chapter 7 introduces a novel methodology that utilizes a deep learning method, implicit
neural representation (INR), to establish a correlation between simultaneously obtained
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EDXS and EELS datasets. The preliminary results show that by utilizing INR on EELS data
with a suitable SNR and EDXS data with poor statistics, a significant improvement in the
quality of the final output EDXS data can be achieved. This preliminary study, therefore,
raises a number of promising prospects for enhanced elemental analysis via correlative
analytical STEM.
Chapter 8 concludes with insights into the solidification process of the Earth’s mantle,
advanced data processing techniques for STEM-EDXS analysis, and the potential of INR for
improved chemical characterization via analytical STEM data.
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1 Introduction to Earth Science

The history of Earth is long and complex that can be traced back to 4.5 billion years ago
when the planet was first formed from a swirling cloud of dust and gas known as a solar
nebula [4]. Advances in geophysical and geochemical techniques have led to significant
discoveries of Earth’s interior. Today, Earth is still evolving and changing with many open
questions. Where we stand in this process of planetary differentiation is not entirely clear.
Many aspects of Earth’s mantle, including its composition, structure, and dynamics, have
yet to be profoundly understood.

1.1 How to Probe Earth’s interior?

There are a number of methods for exploring the interior of Earth across various disciplines,
and we briefly introduce five general approaches in this section.

1.1.1 Seismic Observation

Seismology could be seen as the geophysical equivalent of medical radiography. Instead
of using X-rays as the probe, seismology uses elastic waves generated by earthquakes and
studies their propagation through the globe. The propagation velocities are determined by
the density and elasticity of the medium that seismic waves travel through. Geophysicists
have therefore established Earth’s seismic wave velocity and density profiles–the Preliminary
Reference Earth Model (PREM) [5]. As illustrated in Figure 1.1, Earth has a layered structure:
the solid inner core, the liquid outer core, the mantle, and the crust. Indeed, little was known
about Earth’s internal structure, but numerous theories until the advent of seismology.

With the expansion of networks of broadband seismometers and open-access availability of
seismic data, global-scale seismology and seismic tomography have made steady progress
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Figure 1.1: a) Preliminary Reference Earth Model (PREM) of the structure of Earth. b)
Corresponding cross-section of Earth and mineral composition. Image from [6].

Figure 1.2: Seismic tomography of the lower mantle. Image from [8].

in the recent two decades to reveal Earth’s interior at a finer scale. For instance, the lower
mantle had suggested to being homogeneous from the PREM model; however, seismic
tomography has permitted to imaging of heterogeneities of the lower mantle, such as large
low-shear-velocity provinces (LLSVPs) and ultra-low velocity zones (ULVZs) (Figure 1.2) that
play crucial roles in Earth’s mantle convection as well as surface plate tectonics [7].

Seismological studies give a global pictureof the current Earth and raisesmanynewquestions.
For instance, how has the layered structure formed? What is the origin of the heterogeneities
in its structure? Geophysics and geochemistry studies will together contribute to answering
all these pending questions.
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1.1.2 Characterization of Terrestrial Rocks

Adirect approach to studying Earth is to characterize the terrestrial rocks coming fromEarth’s
interior. Unfortunately, our ability to directly sample Earth’s interior is limited to drilling,
which reaches, at best, just a few kilometers into the crust. Meanwhile, Earth has provided
some chances of exposing the upper mantle to the surface via tectonic processes or explosive
volcanic eruptions.

Tectonically emplaced mantle rocks include subcontinental, suboceanic, and subarc mantle
rocks thatwere exhumed from theuppermantle andoccur asmassif peridotites [9], ophiolite
bodies[10], and abyssal peridotites [11]. They give geologists a window through which to
study the upper mantle’s properties and composition as well as the processes that have
shaped it. However, their provenances easily fall into debates due to the uncertainties of
original geodynamic settings and complicated deformation and metamorphism during
emplacement into the crust. This limits the ability of the tectonically exposed mantle rocks
to represent the composition of the upper mantle.

Rocks and mineral inclusions of mantle derivation that are transported to the surface via
volcanism are termed ’mantle xenoliths’ or ’mantle nodules’. In contrast to the tectonically ex-
posed mantle rocks, xenoliths are erupted rapidly and freeze the mineralogical signatures of
their depth of origin, and provide direct evidence of the nature of themantle beneath; in addi-
tion, many xenolith suites, particularly those erupted by kimberlites, provide samples from a
considerably greater depth range. However, the small size of many xenoliths makes the accu-
rate estimation of bulkmantle compositions difficult and accentuatesmodal heterogeneities.
Xenoliths derived from depths of 100-200 km indicate that the upper mantle is predominate
of peridotitic composition [12], which contains more than 50% olivine, variable amounts
of orthopyroxene (opx) and clinopyroxene (cpx), plus an aluminous phase whose identity
depends on the pressure (i.e., depth) at which the peridotite equilibrated—plagioclase at
low pressures, spinel at intermediate pressures, and garnet at high pressures.

Besides xenoliths, diamonds that occur in kimberlite alongside xenoliths, often contain
pristine inclusions of mantle minerals and they are an important source for probing the
mantle. Some diamonds are discovered to originate from Earth’s transition zone and the top
of the lower mantle [13], which makes them the deepest natural geochemical probes of the
mantle.

In summary, aside from a few inclusions in diamonds that may have a deeper origin, most
mantle rock samples come from depths less than 200 km (∼ 6 GPa). Therefore studies on
natural terrestrial samples can constrain only the composition of the upper mantle.
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1.1.3 Cosmochemical Estimation

Meteorites are believed to be fragments of the planetesimals that formed Earth. They are
classified into three broad categories: achondrites, stonymeteorites, and chondrites. Among
them, the chondrites were from undifferentiated parent bodies; hence their composition
would be more representative of the primordial composition of the solar system than the
differentiated bodies. Chondrites fall into three groups: enstatite chondrites, ordinary
chondrites, and carbonaceous chondrites. Carbonaceous chondrites are the most primitive
in composition; in particular, CI carbonaceous chondrites have a composition that closely
matches that of the solar photosphere [14] (Figure 1.3) and hence that of the solar nebula.
Due to their assumed primordial nature, the composition of CI carbonaceous chondrites is
frequently used to reflect the composition of the bulk Earth (BE, core + mantle + crust). As
a result, the composition models of Earth’s core are built on comparative studies between
extraterrestrial meteoritic samples and terrestrial samples of bulk silicate Earth (BSE, mantle
+ crust).

Figure 1.3: Solar vs. CI chondrites element abundances. Image from [15].

Meanwhile, the chemical study of primitive upper mantle rocks shows that many ratios of
refractory lithophile elements (RLEs, e.g., rare earth elements, Be, Al, Ca, Sc, Ti, Sr, Y, Zr,
Nb, Ba, Hf, Th, U) are very similar to those observed in CI carbonaceous chondrites [12, 17,
18]. Figure 1.4 displays the abundances of elements ratioed to those in CI carbonaceous
chondrites and normalized to Mg. They are plotted against the temperature by which 50% of
the element would have condensed from a gas of solar composition. This observation has
also indicated that Earth was created from CI carbonaceous chondrites. However, there is
an important exception to the pattern described above. The Mg/Si ratio of the upper mantle
is substantially lower than the ’primordial’ Mg/Si ratio of CI carbonaceous chondrites. The
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Figure 1.4: Elemental abundances between Earth andCI chondrites normalizedwith respect
to Mg ratio. Image from [16].

deficiency of Si in the upper mantle relative to other refractory lithophile elements implies
additional reservoirs of Si that might exist in either the core or lower mantle. The lower
mantle is speculated to be chemically different from the upper mantle, which is a complex
and controversial issue.

1.1.4 Experimental Petrology andMineral Physics

Earth has a layered structure, and it is indeed largely unsampled. Experimental petrology
therefore uses laboratory experiments to study the physical and chemical processes that
occur in Earth’s interior. It involves creating high pressures and temperatures that are similar
to Earth’s interior to study the physical and chemical behavior of relevant rocks and minerals.
Through the development of novel instruments capable of creating greater pressures and
temperatures, our understanding of Earth has continuously evolved. With the invention of
diamond anvil cell (DAC), we are allowed to conduct high-pressure experiments from few
GPa up to∼ 400 GPa which exceeds the pressure at the center of Earth [19]. This field of study
can provide important insights into the petrological processes that lead to the formation of
distinct mineralogy in each layer of Earth, and the evolution of Earth.

1.1.5 Numerical Calculation

The numerical calculation primarily aims to simulate the stability of terrestrial materials
under the conditions relevant to Earth’s interior. Significant computational advancements
have enabled calculations performed at the atomistic level, giving access to the electronic
structure and the energetics of minerals and rocks. It can produce valuable data on possible
mineral phase transitions and the physical properties of mineral phases when the experi-
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mental conditions are too challenging. It helps not only explain the observed transitions
but also predict new phase transitions prior to the experimental studies sometimes [20].
Meanwhile, numerical simulation can be very demanding in computing power and requires
the use of computer clusters.

The methods mentioned above all shed light on the internal structure and composition of
Earth. Earth is essentially composed of a central metallic core that is further divided into an
outer liquid layer and an inner solid part; a silicate mantle surrounds the core and is divided
into several layers, including the upper mantle, the transition zone, the lower mantle, and
the D” layer (Figure 1.1). The boundaries of these layers are defined by discontinuities in
seismic velocities, which correspond to major compositional and structural phase changes
of the minerals and rocks composing them. On top of the silicate mantle lies the crust.

1.2 Lower Mantle

The mantle constitutes 82% of Earth’s volume and 65% of its mass [21], extending from the
base of the crust to the top of the metallic core. Within the mantle, three distinct changes in
seismicwavevelocityhavebeen revealedatdepthsof about 410, 660, and2700km(Figure 1.1).
The 660 km discontinuity separates the lower mantle from the upper mantle. We will focus
on the lower mantle and its mineralogy which is the most relevant background for this thesis.

1.2.1 Bulk Composition andMantle Minerals

Without access to natural samples, the composition of the lower mantle is mainly deter-
mined by melt-residue relations. Ringwood [22] first proposed the concept of a pyrolitic
composition (i.e., pyrolite) representing the composition of the primitive upper mantle
(PUM) before the extraction of magmas that formed the crust (the melt) and left a peridotite
residue (the residue after melting), and is thought to represent the composition of the lower
mantle. Pyrolite was constructed by mixing mantle-derived magma (basaltic or komatiitic)
with refractory residue (peridotites) in proportions [23, 24]. The broad range of chemical
compositions of sampled peridotites led to further refinements of the pyrolite composition.
Moreover, the density of pyrolitic mantle matches that of PREM for the mantle. Pyrolite
composition, therefore, represents a fair average of the bulk composition of the mantle.
Mineral proportions in a pyrolitic mantle [25] are shown in Figure 1.5.

In pyrolitic composition, bridgmanite (Brg), ferropericlase (Fp), and calcium silicate per-
ovskite (CaPv) have been known as the major phases in the lower mantle. Ferropericlase
has a cubic ’rock-salt’ structure (NaCl-type) with the chemical formula (Mg, Fe) O. Its Fe
composition determines the name of the mineral: ferropericlase for Mg-rich minerals and

6



Figure 1.5: Mineral proportions in a pyrolitic mantle. Image from [6].

magnesiowüstite for Fe-rich minerals. Ferropericlase has been shown to incorporate al-
most exclusively Fe2+ [26]. Bridgmanite, which was previously called magnesium silicate
perovskite, was renamed ’Bridgmanite’ in honour to Percy Bridgman, an eminent researcher
in high-pressure mineralogy. It has an orthorhombic structure in the lower mantle condition
with the octahedral and dodecahedral sites occupied by Si4+ and Mg2+ (or Fe2+) respectively.
Bridgmanite incorporates Fe2+ but also Fe3+ in the presence of Al in the chemical system [26].
Calcium silicate perovskite is proportionally minor but is likely the predominant host for
numerous trace elements that record chemical differentiation events [27]. It exhibits cubic
symmetry at the temperature range of the lower mantle (>1900 K) but is possibly distorted
in subducted cold materials [28].

1.2.2 Seismic Heterogeneities

Large Low Shear Velocity Provinces (LLSVPs)
The Large Low Shear Velocity Provinces (LLSVPs) are two anomalously large structures
detected at the bottom of the mantle with a few percent of the shear velocity reduction [8,
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29], and are hotter and denser than the surrounding mantle [8]. The origin of the LLSVPs has
been much debated for many years between purely thermal models [30, 31] and thermo-
chemical models [29, 32]. The locations of LLSVPs are also shown to be correlated with
hotspot volcanoes on Earth [33].

Ultra-low Velocity Zones (ULVZs)
Ultralow velocity zones (ULVZs) [34, 35] are small-scale (with thicknesses of about 5-50 km)
seismic anomalies detected adjacent to the core-mantle boundary (CMB) with significant
velocity reductions up to 25% and 50% for P wave and S wave. The origin of ULVZs is highly
controversial. A number of models have been suggested: the presence of dense Fe-enriched
mantle minerals [36, 37]; chemical reactions between the mantle and core [38]; partial melts
of the lowermost mantle [39, 40]; melt derived by subducting slabs [41, 42]; and recent
observations of the locations of the ULVZs point to an independent origin of the ULVZs from
the LLSVPs [43].

To understand the seismic heterogeneities in the lower mantle, it is crucial to understand
the melting relationships in the lower mantle, and this will be one of the focuses of Chapter
4 of this thesis.

1.3 Magma Ocean Crystallization andMantle Differentiation

Planets progressively grow from the aggregation of matter in the protoplanetary disk is called
accretion. Earth itself has formed from the accretion of several proto-planets following their
impacts. Indeed, it is believed that theMoonwas formedby a giant impact betweenEarth and
aMars-sized body inHadean [44]. The energy transferred to Earth completely (or extensively)
melted the planet, formed a magma ocean, and induced an efficient differentiation of Earth.
The layered structure of Earth was shaped through the crystallization of this melt.

Although no rock samples from the Hadean are preserved, radiogenic isotope analysis on
Archean rocks (3.8-2.5 Ga) supports the early mantle differentiation during the Hadean [46,
47] It is possible that early mantle differentiation events were related to magma ocean
processes. Liebske et al. [45] proposed that thedeepmagmaoceanmayhave led to significant
chemical differentiation and possibly stratification of the mantle by crystal fractionation, as
depicted in Figure 1.6.

Suppose a magma ocean extended well to the present-day lower mantle or possibly to the
core-mantle boundary (Figure 1.6); the most likely candidates for crystal fractionation are
the lower mantle phases Brg, Fp, and CaPv. Thus, understanding the melting relations in this
pressure range is crucial for investigating the effects of deep magma ocean crystallization
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on mantle differentiation. Furthermore, once the most likely liquidus phase(s) is(are) de-
termined, the partitioning of trace elements between crystallizing phases and the residual
silicate melt provides significant geochemical constraints on how much of a crystal reservoir
may exist in the chemically distinct reservoir in the lower mantle [27], without violating the
chondritic pattern of RLEs of the upper mantle. Particularly, the fractionation of Brg would
produce a Si-enriching lower mantle and help explain the upper mantle’s elevated Mg/Si
ratio.
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Figure 1.6: Possible process during magma ocean crystallisation. Crystal fractionation at
lower mantle pressure took place and resulted in the formation of a chemically distinct
reservoir in the lower mantle. Image from [45].
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2 Chemical Quantification in STEM

2.1 Scanning Transmission ElectronMicroscopy

Since its invention in the 1930s [48], transmission electron microscopy (TEM) has become
one of the most important techniques for analyzing various materials [49–51]. As was
first proposed by Rayleigh [52], the minimum resolvable distance between two objects is
proportional to the wavelength of the illuminating source. The smallest wavelength of light
that we can reach using optical systems is about 400 nm, leading to the resolution limit of
traditional visible light microscopes being about 200 nm. By contrast, electron wavelengths
are typically on the order of 1×10−3 nm for typical transmission electronmicroscope energies
(100-300 keV) and therefore have the potential to resolve not only nanometre-size features
but further down to the atomic level.

Two modes of operation are commonly used in TEM: conventional TEM (CTEM) and scan-
ning (STEM). CTEM is similar to a traditional light microscope, for they both use a broad
parallel illumination. In STEM, a focused probe is scanned across a sample in a pixel-by-pixel
manner (Figure 2.1(a)). The two modes are indeed interrelated by the principle of reciprocity.
A significant advantage of STEM is that, at each point of the scan, multiple signals can be
collected simultaneously by different detectors. The raster-scanned approach is particularly
useful in spectroscopy, where a single spectrumcan be collected at each pixel using spectrum
imaging (SI).

2.1.1 Electron-matter Interactions

Practically all of the detected signals in TEM stem from how the fast incident electrons that
pass through the sample interact with the nuclei and shell electrons of the atoms constituting
the sample. The interactions can be broadly classified as elastic or inelastic scattering,

11



Figure 2.1: a) Illustration of the components of a scanning transmission electronmicroscope
and the associated signals. b) A range of signals generated by interaction of the high-energy
electron beam with the sample.

depending on whether energy is transferred during the scattering process. In inelastic
scattering, the incident electrons lose a significant amount of energy, whereas in elastic
scattering, they are deflected without energy loss. In reality, elastic scattering also results in
a transfer of energy, but this energy is negligible in comparison to the energy of the incident
electrons (< 1 eV vs. 100-300 keV) [53]. Figure 2.1(b) summarizes the most important signals
that arise from electron-matter interactions in TEM.

Elastic Scattering
Electrons that are elastically scattered interact with atoms through Coulomb forces, which
includeelectron-electron interactions andelectron-nucleus interactions. Generally, electron-
electron interactions lead to relatively small scattering angles and coherent scattering. In
contrast, electron-nucleus interactions dominate for larger scattering angles and are known
as Rutherford scattering. Its differential cross-section—the probability of scattering into a
small solid angle dΩ at an angle 𝜃, is defined by

𝑑𝜎(𝜃)
𝑑Ω

=
𝑒4𝑍 2

16(𝐸0)2(sin 𝜃
2 )4

(2.1)

where𝑒 is theunit electric charge,𝑍 is the atomicnumber of thenucleus and𝐸0 is the incident
electron beam energy [54]. It can be seen that the scattering cross-section is proportional
to 𝑍 2 of the nucleus at a fixed beam energy 𝐸0. This is the fundamental principle behind
high-angle annular dark-field (HAADF) imaging in STEM, also known as Z-contrast imaging.
In practice, the screening effect of the electron cloud modifies the scattering cross-section
to some degree and itself also exhibits a dependency on 𝑍.
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Inelastic Scattering
Incident electrons experience energy loss in inelastic scattering events due to electron-
electron collisions or a collective excitation with outer-shell electrons. As displayed in
Figure 2.1(b), such collisions result in the transfer of energy from the incident electron to
the sample, which subsequently produces a variety of observable signals such as x-rays, sec-
ondary electrons, visible light, etc. The lost energies of incident electrons and the probability
of these events contain information about the properties of the studied sample, such as
its chemical composition, electronic structure, etc. Furthermore, improvements in TEM
instruments over the past few decades havemade it possible to (near)-simultaneously record
the energy-loss spectrum of the incident electrons that pass through the sample and the
spectrum of the secondary signals, providing an excellent opportunity for a thorough inves-
tigation of the materials.

2.2 High-angle Annular Dark-field Imaging

As the name suggests, HAADF imaging uses an annular detector to collect scattered electrons
over a threshold scattering angle (Figure 2.1(a)). As we mentioned, the primary interaction
between the incident electrons and the specimen is Rutherford scattering at high scattering
angles. For a single nucleus, the probability of scattering is proportional to its atomic number
𝑍 1.6−2, which underlies the elemental sensitivity of this imaging technique. However, for the
sample as a whole, the total scattered intensity scales with the total number of atoms in the
interaction volume and, therefore, with the density and projected thickness of the sample.
That is often referred to as the ”mass-thickness contrast”.

Although HAADF imaging is frequently used to study the elemental distribution in bimetallic
nanoparticles [55–57] due to the intensity dependence on the atomic number, in many
other cases, it is insufficient. The main issue arises from the sensitivity of HAADF to both
mass-density as well as the projected thickness of the sample. We cannot determine a priori
from an observed bright area whether it is made of a heavy substance or simply has a high
thickness. Also, it is challenging to distinguish between materials with similar densities 𝑍.

For these reasons, HAADF imaging is not always sufficient to conduct a chemical analysis of
materials. In a nutshell, HAADF is primarily used for answering qualitative questions—for
example, to confirm the presence of a core-shell nanostructure or to identify elements on
atomic resolution images. To unambiguously determine and quantify elements present
within a sample, spectroscopic techniques, such as energy-dispersive X-ray spectroscopy
(EDXS) or electron energy-loss spectroscopy (EELS), are more appropriate.
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2.3 Energy-dispersive X-ray Spectroscopy

2.3.1 X-ray Generation

Characteristic X-rays
High-energy incident electrons in TEM can ionize the atoms in the sample by displacing
their inner-shell electrons (Figure 2.2(a)). The electron vacancies created in this manner
are energetically unfavorable. Three atom de-excitation processes can occur after the inner-
shell ionization: X-ray emission, Auger electron emission, and Coster-Kronig transition
(Figure 2.3). When an outer-shell electron fills the inner-shell vacancy, a characteristic X-ray
photon is released with an energy equal to the energy difference between the inner and outer
electron shells.

Alternatively, it is possible that the energy will be transferred into another atomic electron,
resulting in the ejection of that electron (i.e., the Auger electron). This process becomes
a Coster-Kronig transition if the ejected electron and the outer-shell electron that fills the
vacancy are in the same shell. The probability of X-ray versus Auger emission is described
by the fluorescence yield, 𝜔, which is the ratio of X-ray emissions to inner-shell ionizations.
The 𝜔 is a strong function of atomic number and decreases at a rate proportional to 𝑍 4 as 𝑍
decreases [54]. For carbon (𝑍 = 6), 𝜔 is ∼ 10−3; it hence requires ionizations of 1000 carbon
atoms to produce a single C Ka X-ray. Therefore, EDXS is not suitable for analyzing light
elements. Instead, EELS could be used becausewe can always detect the energy-loss electron
whether or not it has generated an X-ray.

Different types of characteristic X-rays may be generated for a given vacancy depending
on which subshell the filling electron is from. Figure 2.2(b) gives a diagram of the possible
electron transitions in the atom with associated X-rays labeled. Since each chemical element
has a unique set of characteristic X-ray energies, they can be used to identify the atoms
comprising the materials unambiguously. Moreover, the total intensity of the generated
X-rays is proportional to the number of atoms interacting with the electron beam, which
allows for quantifying the elemental composition of the studied materials.

Bremsstrahlung X-rays
Another type of X-ray is bremsstrahlung, which can be translated as ”braking radiation.”
When the incident electron interacts with the Coulomb field of the nucleus, it experiences a
substantial change inmomentum, and during this process, itmay emit an X-ray. The incident
electron may lose any amount of energy, depending on the strength of the interaction, and
release X-rays with continuous energy up to the beam energy.

It is common to use the Kramers cross-section [59] to predict the bremsstrahlung production
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Figure 2.2: a) Diagram of the process in which an incident electron causes a characteristic
X-ray to be emitted from an atom. b) Diagram of the possible electron transitions in the
atom with associated X-rays labelled. Image from [54].

Figure 2.3: a) X-ray emission, b) Auger electron emission, c) Coster-Kronig transition as
possible de-excitation processes after the K- or L-shell ionization. Image from [58].
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rather than the probability of interaction. The approximate expression used is

𝑁(𝐸) =
𝐾𝑍(𝐸0−𝐸)

𝐸
(2.2)

where𝑁(𝐸) is the number of bremsstrahlung photons of energy 𝐸 (i.e., the intensity) pro-
duced by electrons of energy 𝐸0, 𝐾 is Kramers’constant, and 𝑍 is the atomic number of the
ionized atom.

The bremsstrahlung is continuous, on which the characteristic X-rays are always superim-
posed. In contrast to the isotropic emission of the characteristic X-rays, the bremsstrahlung
is highly anisotropic and shows strong forward scattering. X-ray spectrometers are, therefore,
generally placed at large scattering angles to collect many more useful characteristic X-rays
than relatively useless bremsstrahlung X-rays.

The bremsstrahlung intensity depends on the average Z of the sample, which is useful to
biologists or polymer scientists who are interested in this aspect of their samples. However,
materials scientists are often troubled by this signal as it may obscure characteristic X-ray
lines that offer more accurate quantitate chemical information.

Spurious X-rays and Common Artifacts
Many different artifacts are introduced to the spectrum due to the scattering of X-rays after
their initial creation, the signal processing of electronics, or the characteristics of the detector.
Some of these are automatically corrected by the acquisition software, while some need to be
examined and corrected manually. The most common artifacts are summarized in Table 2.1.

Common system X-rays may come from the support grid and sample holder (Cu), the pole
piece (Fe and Co), the detector (Si and Pb), and, counterproductively, the X-ray collimator
(Zr in the case of the Super-X detector system). It is possible to avoid the production of
some of these system X-rays by using holders and grids manufactured from Be, which only
produce low-energy X-rays that neither can be resolved by the EDX detector nor fluoresce
higher-energy X-rays elsewhere.

2.3.2 X-ray Absorption

When characterizing thin TEM samples, X-ray absorption effects are usually ignored as
they are considered small. However, this is not the case for all specimens. The absorption
effects can be pronounced for light elements with the energy of X-ray lines being less than 2
keV, such as O. The absorption of X-rays in matter follows the exponential attenuation law
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Table 2.1: Common artifacts in EDXS.

Spurious X-rays X-rays come from the specimen but are not generated by
the electron probe in the chosen analysis region.

System X-rays X-rays that come from parts of TEM other than the speci-
men.

Coherent bremsstrahlung A bremsstrahlung spectrum that contains small, Gaussian-
shaped peaks due to the coulomb interaction between the
electron beam and the periodically spaced nuclei in the
crystal specimen.

Sum peak Two X-rays enter the detector at exactly the same time. The
analyzer then registers an energy corresponding to the sum
of the two X-rays.

Escape peak An incomingX-rayof energy𝐸fluoresces a SiK𝛼X-raywhich
escapes from the intrinsic region of the detector. The detec-
tor then registers an apparent X-ray energy of (𝐸−1.74) keV

Internal fluorescence peak Si K𝛼 X-rays generated in the dead layer of the detector

proposed by Beer and Lambert for light, where X-ray intensity is given by

𝐼 = 𝐼0 exp[−(
𝜇
𝜌
)𝜌𝑙] (2.3)

where 𝐼 is the X-ray intensity after absorption, 𝐼0 is the incident X-ray intensity, 𝜇𝜌 is the mass
absorption coefficient, 𝜌 is the density of the sample and 𝑙 refers to the absorption path
length. The density and mass attenuation coefficient both strongly depend on the atomic
number, so materials with a higher atomic number typically absorb X-rays more strongly.
The mass attenuation coefficient also depends on the energy of the X-ray. Lower-energy
X-rays, therefore, are more easily absorbed and attenuated than those of higher energy.

In a thin film, the X-ray path length is given by 𝑙 = 𝑧csc𝛼 [60], where 𝑧 is the depth of the
X-ray produced in the sample and 𝛼 is the take-off angle. Under the assumption that the
X-rays are generated uniformly through the depth of the thin film, the absorption correction
factor (ACF) becomes

𝐴𝑖 =
(𝜇/𝜌)𝑖𝑐𝑜𝑚𝑝𝜌𝑡csc𝛼

1−exp[−(𝜇/𝜌)𝑖𝑐𝑜𝑚𝑝𝜌𝑡csc𝛼]
(2.4)

where (𝜇/𝜌)𝑖𝑐𝑜𝑚𝑝 is the mass absorption coefficient of X-ray 𝑖 in a compound, and 𝜌𝑡 is the
mass-thickness of the sample. The ACF term (Equation 2.4) can be incorporated into the
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𝜁-factor method for elemental quantification, which we will introduce later.

X-ray Fluorescence
As a result of photoelectric absorption, the atom will undergo a de-excitation process. If the
energy of the electron-induced X-ray is greater than the excitation energy of a certain shell of
the targeted atom, a secondary X-ray will be produced, which is termed X-ray fluorescence.
Generally, fluorescence corrections are negligible, except in the rare case where they are
crucial for accurate specimen analysis.

2.3.3 X-ray Detection

The proportion of generated X-rays that are ultimately collected is determined by several
factors: the solid angle that the detector subtends, the absorption of X-rays in the sample,
and the detector characteristics. Many studies have been conducted to increase this X-ray
”collection efficiency.”

Detector Development
Most commercial X-ray detectors for TEM are silicon semiconductors. When X-rays traverse
the detector, a number of electron-hole pairs proportional to the X-ray energy are generated.
They create a current signal (electron cloud), which is amplified by a field-effect transis-
tor, and then digitally encoded and stored in the proper energy channel. Noise, whether
electronic or thermal, is also detected as small changes in voltage in the same manner as
characteristic X-rays. The noise may be isolated and assigned to channels with energies
around 0 eV, causing a large peak at this value, or it may be detected on top of a step of a
characteristic X-ray, leading to the broadening of the characteristic X-ray peak and hence
limiting the energy resolution of the technique (typically 125-135 eV). The detector may also
contribute to the spectrum’s artifacts, as summarized in Table 2.1. In addition, detectors
may also suffer from incomplete charge collection, resulting in a shoulder on the low-energy
side of characteristic peaks.

Most modern TEMs use silicon-drift detectors (SDDs), as opposed to Lithium-drifted silicon
detectors (Si(Li)) that are commonly used for older generations of microscopes. The SDD
features a large n-doped silicon crystal with concentric p-doped rings embedded on the back
side of the detector. This design shortens discharge times, leading to faster processing and a
higher X-ray count rate and hence better counting statistics than that of the Si(Li) detector.
One disadvantage of SDD is that it is typically thinner than Si(Li) detectors, implying that
they do not detect all incident X-rays above a certain energy level. As a result, the detection
efficiency of SDD decreases as X-ray energy increases.
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Detector Geometry
Traditional EDXS detector geometry in STEMconsists of a single detectorwith a solid angle of
0.1-0.3 sr, implying that only 0.8-2.4% of the emitted X-rays are collected. The poor collection
efficiency makes EDXS a very inefficient method. Therefore, an important portion of the
EDXSmethodology development has been centered on extending the solid angle of detectors
to boost the collection efficiency.

The debut of SDD has allowed for larger detector sizes and enabled the detector to be placed
closer to the sample, both extending the solid angle of detectors. Meanwhile, novel detector
geometrieshavealsobeenproposed, includingadual detector setup [61], anannulardetector
placed above the sample [62], and a 𝜋 steradian detector placed after the sample [63]. The
Super-X detector, which is a component of FEI’s ChemiSTEM technology, has unquestionably
achieved the most commercial success and is the one that is used in this thesis [64]. In this
setup, four separate SDDs are positioned symmetrically within the polepiece of the STEM,
which increases the solid angle up to 0.9 sr [64].

More recently, the electron microscopy community has witnessed a significant improvement
in collection efficiency utilizing novel configurations of X-ray detectors. Notably, the X-
ray Perimeter Array Detector (XPAD) [65], developed by the distinguished researcher N.
Zaluzec, demonstrates an impressive collection solid angle of 4.5 sr. Based on this concept,
Thermo Fisher Scientific has introduced a state-of-the-art commercial detector, Ultra-X,
which provides a solid angle of 4.45 sr in un-shadowed condition and 4.04 Sr with a double
tilt analytical holder. These developments open up new capabilities in STEM-EDXS analysis
of beam-sensitive materials and faster mapping for more stable specimens.

2.3.4 X-ray Shadowing

In EDXS, X-ray signals can be prevented from being detected by the penumbra of the spec-
imen holder, which is known as X-ray shadowing and is illustrated in Figure 2.4(a). The
shadow cast onto a detector leads to a loss of X-ray signals, resulting in systematic errors
in EDXS quantification. The extent of detector shadowing depends on the geometry of the
sample holder and the EDXS detector, and varies with the sample tilt angle. Tilting the
sample is therefore desirable for some detector-holder setups in order to minimize the X-ray
shadowing, as illustrated in Figure 2.4(b).

In EDXS tomography, X-ray shadowing has been shown to introduce artefacts into the
reconstruction of a tilt series in a manner similar to the missing wedge effect [66]. Various
efforts have been made to address this issue, such as using a needle-shaped sample to
avoid missing projections due to X-ray detector shadowing [67, 68] and using a sample
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Figure 2.4: a) Cross-section of a STEM-EDXS geometry illustrating the X-ray shadowing of
a side mounted X-ray detector by the penumbra of the holder. b) Tilting of the specimen
holder to mitigate shadowing of the detector by the holder body allowing the full collection
angle to be realized. Image from [54].

holder that minimizes or eliminates detector shadowing [69, 70]. When needle specimens or
low-profile EDXS holders are not available, it is desirable to correct for shadowing-induced
intensity variations either during acquisition or through post-processing methods. Yeoh et
al. [71] proposed a simple model to predict and correct for X-ray shadowing, which requires
two shadow angle inputs (an upper and lower shadow angle) to define the limits of the
shadow. These parameters, combined with the knowledge of detector geometry, are used
to characterize the shadowing of an EDX detector over a full sample tilt range, assuming a
circular detector geometry in the model. This approach can also be applied to other types of
detectors and associated geometries.

2.3.5 QuantificationMethods

Cliff-Lorimer Method
The approach established by Cliff and Lorimer [72] has traditionally been used for the el-
emental quantification of EDXS. This method uses a sensitivity factor (𝑘𝐴𝐵) to relate the
intensity of a pair of X-ray peaks (𝐼𝐴 and 𝐼𝐵) to their weight fraction (𝐶𝐴 and 𝐶𝐵).

𝐶𝐴
𝐶𝐵

=𝑘𝐴𝐵
𝐼𝐴
𝐼𝐵

(2.5)

The composition can easily be determined in a binary system combining 𝐶𝐴 + 𝐶𝐵 = 100%
(i.e., the sum-to-one rule) with Equation 2.5. For more complicated material systems, this
can easily be expanded by adding extra equations in the same form as Equation 2.5 and
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combined with the sum-to-one rule.

The k-factor can be calculated using Equation 2.6 [73], where 𝑄 is the ionization cross-
section, 𝜔 is the fluorescence yield, 𝑎 is the line weight (relative transition probability), 𝜖 is
the detector quantum efficiency, and 𝐴 is the atomic weight of the element that emitted the
X-ray line.

𝑘𝐴𝐵 =
(𝑄𝜔𝑎)𝐴𝐴𝐵𝜖𝐴
(𝑄𝜔𝑎)𝐵𝐴𝐴𝜖𝐵

(2.6)

However, the uncertainties of the ionization cross-section calculation result in large errors
in the k-factor calculation (15-20%) [54]. A more accurate method is to experimentally
measure the k-factors using standard samples of known composition [74]. Unfortunately, the
experimental procedure is extremely time-consuming and tedious. Moreover, the procedure
must be redone if anything changes in the instrumental setup. Also, multi-component thin
film standards required may not always be available.

𝜁-factor Method
A relatively recent technique for EDXS quantification in TEM is the 𝜁-factor method. It was
first introduced byWatanabe et al. in 1996 [75] and later modified in 2006 [76]. It proposes
utilizing thin films of pure-element as standards. Additionally, the mass-thickness and
composition are determined simultaneously in the 𝜁-method, allowing absorption effects to
be corrected using EDXS data alone.

The 𝜁-factor method is based on the assumption that the intensity of an X-ray line from an
element A in a thin film sample is proportional to the mass-thickness and composition and
can be expressed as

𝐼𝐴 =
𝑁𝑣𝑄𝐴𝜔𝐴𝑎𝐴

𝑀𝐴
𝐶𝐴𝜌𝑡(Ω/4𝜋)𝜖𝐴𝐷𝑒 (2.7)

Where𝑄𝐴,𝜔𝐴, 𝑎𝐴, 𝜖𝐴 are the ionization cross-section, fluorescence yield, transition probabil-
ity, and detector quantum efficiency of the X-ray line,𝑁𝑣 is Avogadro’s number,𝑀𝐴 is the
atomic weight of the element A, 𝐶𝐴 represents the weight percent of the element A, 𝜌 is the
density of the sample, (Ω/4𝜋) is the fraction of characteristic X-rays that reach the detector
withΩ as the collection solid angle. 𝐷𝑒 is the total electron dose that is expressed as

𝐷𝑒 =
𝐼𝑝𝜏
𝑒

(2.8)

where 𝐼𝑝 is the in-situ beam current, 𝜏 is the acquisition time and 𝑒 is the electron chagre.
When we define the 𝜁-factor as

𝜁𝐴 =
𝑀𝐴

𝑁𝑣𝑄𝐴𝜔𝐴𝑎𝐴(Ω/4𝜋)𝜖𝐴
(2.9)
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we obtain
𝜌𝑡 = 𝜁𝐴

𝐼𝐴
𝐶𝐴𝐷𝑒

(2.10)

By combining Equation 2.10 and the sum-to-one rule for total concentration, the composi-
tion and mass-thickness of all the elements are given as

𝜌𝑡 =
𝑁
∑
𝑗

𝜁𝑗𝐼𝑗
𝐷𝑒

, 𝐶𝐴 =
𝜁𝐴𝐼𝐴
∑𝑁
𝑗 𝜁𝑗𝐼𝑗

, ..., 𝐶𝑁 =
𝜁𝑁𝐼𝑁
∑𝑁
𝑗 𝜁𝑗𝐼𝑗

, (2.11)

As mentioned earlier, the ACF term can be incorporated into Equation 2.11 to achieve an
easier absorption correction than the Cliff-Lorimer method.

Although this approach necessitates thickness calibration and beam current measurements,
it is more accurate than the Cliff-Lorimer method. In addition, it allows benchmarking the
analytical capabilities of different microscopes.

Partial Scattering Cross-sectionMethod
In theory, the measured intensities from HAADF, EDXS, and EELS can be interpreted as
appropriate partial scattering cross-sections [77–80]. Similar to the estimation of HAADF
scattering cross-section [78], it is possible to determine the partial scattering cross-sections
for EDXS [79] and EELS [53, 81]. The scattering cross-section approach has been shown
to simplify the quantification procedure in HAADF, demonstrating robustness to a wide
range of imaging parameters, including tilt, defocus, the field of view, source size, and
astigmatism [78]

For thin samples, where absorption, fluorescence, multiple scattering, and channeling [82]
can be neglected, the EDXS partial scattering cross-section for a single atom of element A is
given by

𝜎𝐸𝐷𝑋𝑆
𝐴 =

𝐼𝐴𝑒
𝑖𝜏𝑛𝐴𝑡

(2.12)

where 𝐼𝐴 is the X-ray counts detected from the sample, 𝑒 is the electron charge, 𝑖 is the probe
current, 𝜏 is the exposure time, 𝑛𝐴 is the volumetric number density of the elements being
detected, 𝑡 is the sample thickness.

The partial cross-section method is similar to the 𝜁-factor method, and it can be mathemati-
cally transformed as

𝜎𝐸𝐷𝑋𝑆
𝐴 =

𝑀𝐴

𝑁𝑣𝜁𝐴
(2.13)

where𝑀𝐴 is the atomic mass of element A, and𝑁𝑣 is Avogadro’s constant. Thus, the partial
cross-section method gives the composition in number of atoms rather than weight percent.

This method requires the parameters of the microscope to be meticulously characterized
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in order to reach a good agreement with the theory, yet discrepancies still exist [83, 84].
Importantly, representing EDXS signals using a partial scattering cross-section gives us a
chance to use HAADF, EDXS, and EELS signals in a correlative way to quantify challenging
samples accurately.

2.4 Electron Energy-loss Spectroscopy

EELS is a technique for collecting and analyzing electrons that have lost energy due to
inelastic scattering processes that occurred during the electron-matter interaction. The
EEL spectrometer operates similarly to a light prism, using a magnetic prism to disperse
electrons of different energy spatially onto an array of detectors—for example, a CCD camera
(Figure 2.1(a)).

Figure 2.5 gives an example of a typical EELS spectrum. The spectrum is generally divided
into two main regions: the low-loss region, which contains energy losses associated with
phonons and plasmons, and the core-loss region, which contains energy losses associated
with ionization events.

Figure 2.5: (Fe,Mg)O spectrum. Zero loss (red), low-loss (yellow) and core-loss (blue) regions
are highlighted. Image from [85].

2.4.1 The Zero-loss Peak

The first feature of a EELS spectrum is the zero-loss peak (ZLP), which contains all of the
unscattered and elastically scattered electrons. ZLP has an extremely high intensity com-
pared to all other features of the spectrum, and its width gives an estimation of the energy
resolution of the system.
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Additionally, its intensity (𝐼𝑍𝐿𝑃) can be related to the thickness of the specimen (𝑡).

𝑡
𝜆
= 𝑙𝑛(

𝐼𝑇
𝐼𝑍𝐿𝑃

) (2.14)

where 𝜆 is the mean free path of electrons in the sample and 𝐼𝑇 is the intensity of the whole
spectrum. On the other hand, the position of ZLP is frequently used to calibrate any offsets
of the system.

2.4.2 The Low-loss Spectrum

The low-loss region is typically defined from 0-50 eV, and Table 2.2 lists the interactions
exhibited in this region along with their energy ranges. The dominating features are plasmon
peaks. These and other features of the low-loss region are excited by the interactions between
fast-moving electrons and weakly bound outer-shell electrons.

Table 2.2: Spectral features in the low-loss spectrum.

Transition Energy loss (eV)

Vibrational excitations 0.05-0.5

Surface Plasmon 1-5

Band Gap 0-10

Bulk Plasmon peak 7-50

Bulk plasmonic excitations appear as a broad and intense peak or series of peaks. The feature
helps determine composition as its position canbe inferred from thenumber of valence band
electrons and other composition-related parameters [53]. Also, the plasmon peak’s width
correlates with the excitation’s lifetime. Furthermore, the whole low-loss is related to the
imaginary part of the dielectric function. As a result, the relationship can be utilized to study
the material’s dielectric property in the framework of Kramers-Kronig transformations [53].

In addition to the collective plasmon excitation, valence electrons can also be excited indi-
vidually by a fast electron and be lifted to a higher energy state. In semiconductors, these
excitations can be, in principle, used to obtain information about their band structures [86].
The surface plasmon is created by surface charge oscillation in the material influenced by
the incident electrons. A nanostructure’s surface plasmon distribution can be attributed to
the effects of size and quantum confinement and some of its optical characteristics [87, 88].
Several transitions, such as phonon generation and other vibration excitations on crystalline
lattices, give rise to small energy losses at a few meV. It was until just recently that these

24



features were resolved due to the energy resolution improvement of EELS [89].

2.4.3 The Core-loss Spectrum

Thecore-loss regime is typically defined as energy losses above 100 eV.These transitions often
result via atom ionizations. Since the energy loss of incident electrons in these ionizations is
distinctive for a specific element and shell type, they can be used to identify elements. The
ionization edges are usually denoted by the atomic shells, such as 𝐾, 𝐿1, 𝐿2,3, or𝑀4,5 edges.

Depending on the shape, ionization edges can be grouped into three categories (Figure 2.6):
white lines, hydrogenic edges, and delayed edges. The shape relates to not only the type of
elements and the shell of excitation but also the density of states in the initial and final energy
levels of the ionized atomic electron. Analysis of the shape of ionization edges is known as
energy-loss near-edge structure (ELNES). It can probe the electronic structure and, thereby,
the structural and chemical environment of atoms [82]. For example, the oxidation state of
many transition metals can be determined by the relative intensity or the position of their
white line peaks [90, 91]. However, in the core-loss regime, the measured chemical signals
of interest are often superimposed on a background dominated by single and collective
low-loss electron excitations, rendering the target spectral features obscured.

Figure 2.6: EELS spectrum ofWNdO, showing a hydrogenic O K edge, Nd M edge white lines
and a delayed w M edge. Image from [85].

2.4.4 Dual EELS

Dual EELS is anacquisitionmode thatwasdeveloped recently. As thename implies, it enables
the low-loss and core-loss parts of the spectrum to be recorded at each pixel separately [92,
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93]. A fast beam switch (i.e., fast shutter) was integrated into the system to record the dual-
spectrum separately with individual time ratios, thus overcoming the limited dynamic range
of the CCD detectors [92, 94]. The fast shutter has a microsecond response time, enabling
rapid deflection of the beam and allowing awide range of exposure times for data acquisition.
A core-loss spectrum at each pixel will be recorded after a low-loss spectrum with the same
electron optical conditions but in a different area of the CCD detector. The two spectra can
later be spliced to give a full loss spectrum, including ZLP. The ZLP can be used to normalize
the core edge intensities, allowing an absolute quantification [95], which is one of the most
important advantages of Dual EELS over classic EELS. It is also possible to apply Fourier
logarithmic deconvolution [96], which gives the single scattering distribution of all core loss
edges.

2.4.5 QuantificationMethods

The IntegrationMethod
R. Egerton first proposed this method for EELS elemental quantification in 1978 [97]. More
than forty years later, it is still the method of choice for most EELS elemental analysis. The
integration method adopts a practical approach: instead of constructing a detailed model of
the acquired EELS signal, which may be cumbersome in many cases, the method performs
an edge-by-edge simplified analysis to obtain the quantitative elemental information.

The elemental concentration is calculated from the intensity of relevant ionization edges.
Background subtraction is required in order to extract the net intensity caused by the speci-
fied transition. In general, this background is fitted with a power law function (𝐴𝐸−𝑟) where
the fitting region is a window before the core-loss edge. The function is then extrapolated to
the region above the ionization edge to model the background of the ionization edge. After
background subtraction, the areal density of an element can be approximated as

𝐼𝐶𝐿(𝛽,Δ) ≈𝑁𝐼𝐿𝐿(𝛽,Δ)𝜎(𝛽,Δ) (2.15)

if acquired with a collection angle 𝛽 and integrated over an energy window Δ. 𝜎(𝛽,Δ) is a
partial cross-section for a specific element and edge, which can be either calculated from
simulations or measured experimentally. 𝑁𝐼𝐿𝐿(𝛽,Δ) is the integral over the low-loss spec-
trum up to an energy rangeΔ including the ZLP. 𝐼𝐶𝐿(𝛽,Δ) is the integral over the same energy
range of the ionization edge after background subtraction. The concentration of a specific
element can be calculated if the thickness of the sample 𝑡 is known as 𝑛 =𝑁/𝑡.

While Equation 2.15 provides absolute quantification, relative quantification comparing
the ratio between elements is also useful. The ratio of the concentration of two different
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elements 𝐶𝐴/𝐶𝐵 can be calculated as

𝐶𝐴
𝐶𝐵

=
𝐼𝐶𝐿,𝐴(𝛽,Δ)𝜎𝐵(𝛽,Δ)
𝐼𝐶𝐿,𝐵(𝛽,Δ)𝜎𝐴(𝛽,Δ)

(2.16)

Despite the popularity of the method, it suffers from several drawbacks that preclude or limit
its usage in many practical situations:

• This method usually performs well for thin samples where the ionization edge is above
100 eVwith a high SNRandnooverlapwith other edges [98]. However, these conditions
are generally not met all the time.

• The cross-sections for ionization excitations are usually determined from atomic cal-
culations; therefore, they do not consider solid-state effects like ELNES. Using energy
windows greater than 100 eV is advised to reduce the effect of the ELNES on quantifi-
cation; however, this is often not feasible due to the presence of other ionization edges
in the same energy range.

• It can be exhaustive to manually perform the ”integration approach” pixel by pixel
while analyzing SIs. If we do it lazily and use the same windows to analyze the entire SI
data ”easily”, the compositional differences may result in artifacts that are challenging
to identify. Meanwhile, the analysis is user-dependent, and the reliability of the results
will strongly depend on the user’s skills.

TheModel Fitting Method
To overcome some of the drawbacks of the integration method, Steele et al. [99] proposed
to build a parametric model of the full core-loss spectrum without considering the mul-
tiple scattering and use curve fitting to determine the unknown parameters. A number
of model fitting methods have been used to measure trace quantities [100] and quantify
overlapping edges [101]. However, this method can be complex for routine use, as the model
is either experimentally obtained, requiring the acquisition of reference spectra under the
same experimental conditions, or is theoretically computed that needs intensive statistical
modeling [64, 102–104].

2.5 EDXS-EELS Synergistic Analysis

EDXS and EELS are indeed complementary techniques. When the probability of character-
istic X-rays generation is reduced for lighter elements, EELS instead contains intense and
sharp edges even for elements located at the beginning of the periodic table, such as Be
and B, making it a suitable technique for characterizing materials containing light elements.
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While EELS is always complicated by an intense background resulting from the long tails
of the low-loss signals, EDXS usually has a low background intensity and a high peak-to-
background ratio. As a result, EDXS is preferred when the concentration of the element
of interest is low and the elemental ionization edge energy is high, both of which make it
challenging to separate the signal from the background in EELS.

2.5.1 Partial Scattering Cross-sectionMethod

With recent developments in hardware and software in TEM, it is now possible to acquire
the EDXS and EELS signals (near)-simultaneously at high speed for accurate elemental
quantification. The first attempt at linking EDXS and EELS signals was made by Kothleitner
et al. [105], where the 𝜁-factor of EDXS and the partial scattering cross-section of EELS were
linked to their respective measured intensities as follows:

𝜁×𝜎𝐸𝐸𝐿𝑆 =
𝐼𝐸𝐸𝐿𝑆𝐶𝐿

𝐼𝐸𝐸𝐿𝑆𝐿𝐿 𝐼𝐸𝐷𝑋𝑆
×
𝑀𝐴

𝑁𝑣
×𝐷𝑒 (2.17)

For a compound of two elements A and B, the expression comes down to

𝜁𝐴
𝜁𝐵

×
𝜎𝐸𝐸𝐿𝑆
𝐴

𝜎𝐸𝐸𝐿𝑆
𝐵

=
𝐼𝐸𝐷𝑋𝑆𝐵

𝐼𝐸𝐷𝑋𝑆𝐴
×
𝑀𝐴

𝑀𝐵
×
𝐼𝐸𝐸𝐿𝑆𝐴

𝐼𝐸𝐸𝐿𝑆𝐵
×
𝐴𝐵
𝐴𝐴

(2.18)

where 𝐴𝐵 and 𝐴𝐴 are X-ray absorption terms.

In Equation 2.17, the expression is rather cumbersome to deal with, as a density conversion
from 𝑘𝑔/𝑚3 to 𝑎𝑡𝑜𝑚𝑠/𝑚3 is required. Writing the EDXS signal in partial scattering cross-
section notation would result in

𝜎𝐸𝐸𝐿𝑆 =
𝐼𝐸𝐸𝐿𝑆𝐶𝐿

𝐼𝐸𝐸𝐿𝑆𝐿𝐿
×

𝐷𝑒

𝐼𝐸𝐷𝑋𝑆
×𝜎𝐸𝐷𝑋𝑆 (2.19)

For thin samples, if 𝐼𝐸𝐸𝐿𝑆𝐿𝐿 and 𝐷𝑒 are expressed by the same total number of electrons
interacting with the sample (derived from the full beam current), 𝐼𝐸𝐸𝐿𝑆𝐿𝐿 and𝐷𝑒 cancel out. As
a result, the relationship of the partial scattering cross-section of EDXS and EELS is obtained:

𝜎𝐸𝐸𝐿𝑆

𝜎𝐸𝐷𝑋𝑆 =
𝐼𝐸𝐸𝐿𝑆

𝐼𝐸𝐷𝑋𝑆
(2.20)

For thin samples with thickness less than 10 nm, Equation 2.20 provides an easy conver-
sion between the intensities of EDXS and EELS signals and their partial scattering cross-
sections [106].

Combining EDXS and EELS in this manner provides an efficient and accurate chemical
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analysis. Therefore, it is potentially helpful for the chemical characterization of thin samples
such as nanoparticles. For example, in the case of bimetallic Pt-Co nanoparticles [107], the
Co 𝐿2,3 edge has well-defined white lines and is easier to acquire. In contrast, the Pt𝑀4,5

edge of higher energy is difficult to measure; instead, Pt L and M peaks are measured by
EDXS for quantification.

2.5.2 Coincidence Spectroscopy

The concept to measure the time coincidence between X-rays and inelastic electrons has
been applied by Kruit et al. [108] in 1984 where a gating circuit was developed which only
collects electrons/X-rays when an X-ray/electron is detected within a short time interval.
Recent developments in electron and X-ray detector technology have made it possible
to identify single events whose time of arrival could be determined within nanosecond
accuracy [109]. This better facilitates us to observe time correlations related to the excitation
andde-excitation of atoms in amaterial, thus providing extra information than the individual
EELS or EDXS spectra.

Figure 2.7 gives an example setup of the coincidence experiment [109]. It uses an SDD
detector and a digital pulse processor [110, 111] to measure X-rays events, and a delay line
detector [112, 113] (a Timepix detector [114, 115] alternatively can be used) mounted on
the back of the EELS spectrometer to record electron events. This method provides EELS
with a significantly suppressed background, overcoming many difficulties that exist in the
conventional parametric background fitting, as it makes no assumptions about the shape of
the background, requires no user input, and does not suffer from counting noise originating
from the background signal. Coincidence spectroscopy has proven to improve the sensitivity
for detecting trace elements compared to conventional EELS and EDXS [109].
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Figure 2.7: A sketch of a coincidence detection setup. Image from [109].

2.5.3 Multimodal Data Fusion

Coincidence spectroscopy explores the time correlation between EDXS and EELS, while
’data fusion’ [116] opens another opportunity to link the two complementary spectroscopies
in STEM. Data fusion refers to a category of established techniques of coupling multiple
datasets via shared factors to uncover correlations between them. It is commonly used
in various scientific fields [117–119] but has only been sparingly applied to multimodal
hyperspectral TEM datasets [120, 121].

Thersleff et al. [122] propose a low-level data fusionmethod to jointly analyze simultaneously-
acquired EELS and EDXS datasets (Figure 2.8). The framework that links EDXS and EELS
data blocks is similar to that of Smilde et al. [123]. It consists of an asymmetrical block-
weighted matrix concatenation that extends the spectral dimension of the fused dataset.
Maximizing the explanatory power of the joint experiment can be achieved via appropriate
data block weighting to maximize the explained variance of the fused dataset. The method
has proven to give a rich descriptive model for estimating both transition metal valency
and full chemical composition for core-shell nanoparticles [122]. Moreover, multimodal
data fusion can also be complemented with other statistical methods, such as blind source
separation (BSS) techniques [124], to permit the dissection of complex functional materials
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Figure 2.8: Schematic of a low-level data fusion approach to couple EELS and EDXdatacubes
via their shared spatial dimensions. Image from [122].

into their constituent morphological, compositional, and electronic components [125].
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3 Machine Learning and Its Applica-
tion to Analytical STEM Data

Electron microscopy is a powerful imaging and analytical technique that has revolutionized
our understanding of the natural world at nanoscale and atomic levels. However, with the
increasing complexity of data generated by electron microscopy, it has become difficult for
humananalysts to extractmeaningful information from the collecteddata in a timelymanner.
Machine learning, a branch of artificial intelligence, has emerged as a promising tool for
not only automating but also enhancing the analysis of electron microscopy data. In this
chapter, I will introduce the fundamentals of machine learning and review its applications
to analytical STEM data STEM, i.e., EDXS and EELS.

The effective application ofmostmachine learningmethods to analytical STEMdata requires
certain conditions to be met. One of the key requirements is that the data must be linearly
dependent on the sample’s properties and have noise that can be modeled as Gaussian or
Poissonian. While EDXS data is more likely to meet this requirement than EELS data, the
use of a direct electron detector can help EELS data to meet it. If the data diverges from this
requirement, the results of the analysis are more likely to suffer from artifacts.

3.1 Introduction to Machine Learning

Machine learning is a rapidly growing field of artificial intelligence that focuses on developing
algorithms and statistical models to learn patterns and relationships from data, and make
predictions or decisions without being explicitly programmed [126]. The field has experi-
enced tremendous growth in recent years due to the explosion of data, and the development
of powerful computing hardware and open-source software tools.

There are several types of machine learning [127], including supervised learning, unsuper-
vised learning, and reinforcement learning. In supervised learning, the algorithm learns
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from labeled data, i.e., data that has already been categorized or classified. The goal of the
algorithm is to learn a mapping function from the input data to the output data. A common
example of supervised learning is image classification, where an algorithm is trained on a
dataset of images labeled with their corresponding categories. The algorithm then uses this
training data to predict the category of new, unseen images. In contrast, the unsupervised
learning learns from unlabeled data. It aims to find patterns in the data without any prior
knowledge of what the data represents. A common example of unsupervised learning is
clustering, where an algorithm groups similar data points together based on their features.
In reinforcement learning, the algorithm learns through trial and error, receiving feedback in
the form of rewards or penalties based on its actions. The algorithm learns to make decisions
that maximize its reward over time, and it is widely used on tasks such as game playing [128]
and autonomous driving [129].

Alternatively, machine learning can be divided into classical and deep learning methods
because the field of machine learning has been evolving rapidly over the past decade, with
new techniques and algorithms constantly being created. Classical machine learning meth-
ods [130] are well-established techniques that have a solid theoretical foundation and are
based on statistical principles. Linear regression [131], logistic regression [132], principal
component analysis [133], support vector machines [134], and k-means clustering [135] are
all examples of classical machine learning methods. These methods are generally simpler
and easier to implement than deep learning methods, and they can be effective in a wide
range of applications. Deep learning methods [136], on the other hand, have emerged in
recent years, driven by advances in computing power and the availability of large amounts of
data. These methods involve training deep neural networks with multiple layers to perform
a given task, such as image or speech recognition. Common examples of deep learning
methods include convolutional neural networks (CNNs) [137], recurrent neural networks
(RNNs) [138], generative adversarial networks (GANs) [139], and autoencoders [140]. These
methods aremore computationally intensive than classicalmethods and require significantly
more data to train, but they have proven to be effective in handling complex and diverse
data [141–144]. Overall, both classical and deep learning methods have their advantages and
disadvantages, and the choice of method depends on the specific problem being tackled. In
the subsequent sections, I will delve deeper into some of these methods and discuss their
applications to analytical STEM data.
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3.2 Classical Machine LearningMethods andTheir Applications

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used unsupervised learning method in the
field of data analysis [133, 145]. It is a dimensionality reduction technique used to transform
high-dimensional data into a lower-dimensional space. PCA works by finding the principal
components of the data, which account for the majority variance of the dataset and are
orthogonal to each other. These principal components can be thought of as new axes in
the lower-dimensional space, and the data can be projected onto these axes to create a
lower-dimensional representation. Furthermore, the obtained reduced-dimensional data is
often used as input to other machine learning algorithms, such as clustering, classification,
and regression. Another advantage of PCA is that it is a relatively fast and computationally
efficient algorithm, making it suitable for large datasets and real-time applications.

PCA was first demonstrated for aiding EELS analysis in the 1990s and, a decade after, it
started to be widely used in the electron microscopy community [146–148]. An EDXS or
EELS SI dataset can be written as a matrix𝐷 composed of𝑚 pixels and 𝑛 energy channels
and is decomposed by PCA as follows:

𝐷 =𝑇𝑃𝑇 (3.1)

where𝑇 is the scorematrix (i.e., the distributionmaps), and𝑃𝑇 is the transpose of the loading
matrix (i.e., the spectra). In particular,𝐷here needs to beweighted before the decomposition
to account for the Poisson noise of counting events [149].

From Equation 3.1,𝐷 is represented as a linear combination of 𝑇 and 𝑃. Components (𝑇+𝑃)
are sorted according to their eigenvalues, representing the amount of variance expressed by
a component. Ideally, most information contained in the dataset is represented by a small
number of principal components, with the rest regarded as noise for their insignificant con-
tributions to the variance. Thus, the dataset can be reconstructed using only the ’meaningful’
components, leaving apart the noise.

PCA is used for twomainaims: 1) as anoisefilter to improvequantitative analysis of EDXSand
EELS via the dataset reconstruction of the principal components [150–153]; and 2) as a data
mining technique by interpreting the principal components in a qualitative manner [154].
For the first application, components for the reconstruction need to be carefully selected,
relying on an empirical scree plot of principal components; notably, this reconstruction can
introduce artifacts [155, 156]. For the latter, a main drawback is that loadings and scores can
include negative values, and moreover have no intrinsic physical meaning [157]. Note that
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some methods, such as factor rotation [158, 159], have been attempted to overcome this
drawback in order to recover components with physical meaning.

3.2.2 Independent Component Analysis

Independent component analysis (ICA) [160] is a special case of the blind source separation
technique [161], in which a linear mixture of signals is separated under the assumption
that they are mutually statistically independent. It is also an unsupervised learning, as it
find patterns and relationships in data without any labeled examples. One of the primary
applications of ICA is in the field of signal processing. For example, in audio signal processing,
ICA can be used to separate different sources of sound that are mixed together, such as
different instruments in a musical recording [162].

While ICA is a powerful technique for separating multivariate signals into independent
components, its performance can suffer when the underlying assumptions of the data
change. To address this issue, various methods have been proposed, such as Robust ICA,
Nonlinear ICA, and Kernel ICA. Robust ICA [163] aims to minimize the impact of noise
or outliers on the estimation of the independent components. Nonlinear ICA [164] can
handle situations where the independent components are not necessarily linear. Kernel
ICA [165] uses kernel methods to transform the data into a higher dimensional space where
the independent components can be more easily separated, making it particularly useful
when the independent components are highly non-linear.

ICA was first proposed for EELS analysis by N Bonnet et al. in 2004 [166, 167], and afterward
became greatly popularized in the electron microscopy community by its inclusion in the
HyperSpy program package [168]. The method has been used on a wide variety of EELS
measurements from samples ranging from perovskite-based solar cells [169] to III-V semi-
conductor nanostructures [170] or to relate ICA components to surface plasmon resonance
modes in nanocubes [171]. It has been noticed that the performance of ICA on EELS data is
greatly enhanced by working with the derivative of the signal instead of the signal itself [172],
due to the derivative acting as a high-pass filter and diminishing the effect of the slowly
varying features in the EELS signal (e.g., the background of core-loss signals). However, the
success of this enhancement is limited to caseswithout overlapping fine structures [120]. ICA
has also been applied to EDXS to determine the chemical composition of many materials,
such as core−shell nanoparticles [173] and precipitates in a superalloy [174].
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3.2.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a technique that decomposes one non-negative
matrix into two non-negative matrices [175]. The goal of NMF is to find a low-dimensional
representation of the original matrix that captures the underlying structure and patterns
of the data. In NMF, the original matrix is factorized into two matrices: a matrix of basis
vectors and a matrix of associated coefficients. The basis matrix represents the underlying
features or components of the data, and the coefficient matrix represents the weighting
of each component for each data point. The NMF problem is often solved using iterative
optimization techniques, such as the alternating least squares algorithm or gradient descent.
These algorithms update the basis and coefficient matrices iteratively, thus minimizing the
difference between the original matrix and the approximation.

For EELS and EDXS data, the non-negative requirement is valid. Due to this, NMF has
been successfully applied to many EDXS and EELS cases [176–178]. For example, NMF
differentiated signals from three source components in a SEM-EDXS case [176]: supported
metal nanostructures, a bulk semiconductor signal, and a carbon background.

However, compared to PCA, NMF is generally more computationally expensive and requires
guessing the number of components to reach a subjectively good result. Additionally, NMF
is sensitive to noise in the data, which can lead to inaccurate basis and coefficient matrices,
as well as spurious basis vectors or coefficients that do not represent meaningful features
of the data. This can be especially problematic for EDXS data analysis, where low counting
statistics is common. To mitigate the impact of noise, algorithms such as robust NMF [179]
have been developed using 𝐿2,1-norm as loss function. This approach has been shown to
handle noise and outliers effectively, resulting in more faithful basis factors and consistently
better outcomes as compared to standard NMF.

Moreover, the non-uniqueness of NMF solutions can also be a challenge. In some cases, the
algorithm may converge to a local minimum, rather than the global minimum of the loss
function, leading to a non-unique outcome. To improve the uniqueness and accuracy of the
decomposition, one can perform an exhaustive search over local minima or apply additional
constraints (e.g., orthogonality [180], sparsity [181] of components, or minimum volume
constraints [182]) to customize NMF for improved uniqueness and better decomposition.

In addition, NMF is a linear method and may not be optimal for non-linear EELS data. While
it is still possible to utilize NMF for EELS analysis, it may not deliver the most precise decom-
position. To cope with the non-linearity of data, Zhang et al. [183] proposed kernel NMF
(KNMF), which can extract more useful features hidden within the original data than regular
NMF, through kernel-induced non-linear mappings. Aternatively, Dobigeon et al. [184]
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have extended the NMF model by introducing an additional term that accounts for possible
non-linear effects. These solutions for non-linearity are certainly worth trying to improve
EELS analysis.

3.2.4 Cluster Analysis

Cluster analysis is a method aimed at grouping similar objects or observations into clusters.
Its purpose is to identify groups of objects or observations that are alike to each other but
distinct from those in other clusters. Cluster analysis has a wide range of applications,
including market research [185], image processing [186], and bio-informatics [187]. For
example, in bio-informatics, cluster analysis was used to identify subgroups of cells based
on gene expression data [188].

There are several types of cluster analysis, including hierarchical clustering and k-means clus-
tering. Hierarchical clustering [189] is a method that involves recursively dividing the data
into smaller and smaller clusters until a stopping criterion is met. k-means clustering [135]
is a method that involves randomly assigning the data to k clusters and then iteratively
optimizing the assignment to minimize the distance between each point and its assigned
cluster centroid. The choice of cluster analysis method depends on the specific problem and
the characteristics of the data. In general, hierarchical clustering is useful when the number
of clusters is not known in advance, while k-means clustering is useful when the number of
clusters is known or can be estimated.

Several cases have proven that cluster analysis improves the analysis of EELS data. For
instance, k-means clustering was used to extract the representative spectral endmembers of
an EELS SI dataset, which were later used in a multiple-linear least-squares (MLLS) fitting
process to improve the accuracy of the obtained results [190]. Also, combiningng clustering
with non-linear least-squares (NLLS) fitting has been proven as a promising solution to
improve the stability of the latter [191], which facilitates an in-depth ELNES analysis for
materials with changing oxidation states. Furthermore, Blanco-Portals et al. [192] developed
an entirely data-driven methodology for ELNES analysis using state-of-the-art clustering
algorithms (i.e., Hierarchical density-based spatial clustering of applications with noise
(HDBSCAN) and uniform manifold approximation and projection (UMAP)).

3.3 Deep LearningMethods andTheir Applications

Having briefly introduced several classical machine learning methods and their applications
to analytical STEM data, now I turn my attention to deep learning methods, which have
gained increasing attention and popularity in recent years.
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3.3.1 Neural Networks and Deep Learning

Neural Networks
A neural network (NN) is a machine learning model that is designed to recognize patterns in
data. It is modeled after the structure and function of the human brain, consisting of inter-
connected nodes (neurons) that process information in a parallel and distributed manner. A
NN can be formulated as:

𝑦 = 𝑓𝑁𝑁(x) (3.2)

𝑓𝑁𝑁 is a nested function. For example, for a 3-layer neural network that returns a scalar
output, 𝑓𝑁𝑁 can be expressed as follows:

𝑦 = 𝑓𝑁𝑁(x) = 𝑓3(𝑓2(𝑓1(x))) (3.3)

where 𝑓1 and 𝑓2 are vector functions of the following form:

𝑓𝑛(z) = 𝑔𝑛(Wnz+bn) (3.4)

where 𝑛 is the layer index, and z is the input vector to the 𝑛th layer of the neural network. 𝑔𝑛
is called an activate function that introduces non-linearity into a neural network, allowing
the network to model complex relationships between the input and output data. Wn is the
weight matrix and bn is the bias vector. The function 𝑓3 here is a scalar function, but can also
be a vector function depending on the problem concerned.

An optimizer is needed to adjust the values of the Wn and bn of each layer during training, in
a way that minimizes the defined loss function. The loss function measures the discrepancy
between thepredictedand trueoutput values for a given set of input data. Commonexamples
of loss function include mean squared error (MSE) [193] that measures the average squared
difference between the predicted and true output values, and Kullback-Leibler Divergence
(KL divergence) [194] that measures the difference between the probability distributions of
the predicted and true output values. The choice of loss function depends on various factors,
such as dataset characteristics (e.g., distribution, dimensionality, sparsity, and noise type),
task type (e.g., regression, classification, and segmentation), and the architecture of the
neural network. The choice of optimizer is also important and can affect the performance
and speed of the network. Some optimizers, such as stochastic gradient descent (SGD) [195],
can converge to a suboptimal solution if the learning rate is set too high or too low, while
other optimizers, such as Adam [196], are less sensitive to the choice of learning rate.

Deep Learning

Deep learning refers to training neural networkswithmultiple hidden layers (more than two),
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which allows them to learn representations of data with multiple levels of abstraction. These
methods have dramatically improved the state-of-the-art in speech recognition [197], image
recognition [137], and many other domains such as drug discovery [198] and genomics [199].

The ability of deep learning to learn intricate nonlinear relationships between inputs and
outputs is regarded as one of its principal advantages, thereby enabling the modeling of
highly complex phenomena. In addition to this, deep learning facilitates automated feature
engineering, which diminishes or eliminates the need for manual feature extraction. This
considerably reduces the time and effort involved in themodel development process,making
it an appealing option for large scale datasets. Moreover, the pre-training of deep learning
models on large datasets allows for efficient transfer of knowledge to smaller, domain-specific
datasets.

Despite its numerous advantages, deep learning presents several challenges. One of themain
challenges is the need for large amounts of labeled data, which can be expensive and time-
consuming to acquire. Another challenge is the high computational requirements, which
can limit the scale of deep learning applications. Additionally, deep learning models can be
difficult to interpret, and their internal workingsmay not be transparent or easily understood.
Notwithstanding the challenges that deep learning poses, its potential advantages make it
an influential technique for addressing intricate problems across numerous domains. In
the next section, a selection of applications of deep learning techniques on analytical STEM
data will be presented.

3.3.2 Deep Learning Applied to Analytical STEMData

Over the past decade, deep learning has been actively applied to the analysis of various elec-
tron microscopy data. These applications include diffraction pattern characterization [200–
203], phase retrieval [204–206], and the denoising [207, 208], inpainting [209], and semantic
segmentation [210–213] of TEM/STEM images.

Compared to the electron microscopy techniques stated above, the application of deep
learning methods in EDXS and EELS analysis is not as prevalent. To facilitate EELS analysis,
Chatzidakis and Botton [214] implemented a deep learning method for calibration-invariant
EELS spectrum analysis, which enabled the identification of spectral peaks based on their
shape while maintaining translation invariance. There are several cases of deep learning im-
proved EDXS, with a particular focus on improving STEM-EDXS tomography. These include
denoising of 2D elemental maps before performing a classical 3D reconstruction [215–217],
and denoising of 3D data after the classical reconstruction [216]. An additional advantage of
the former approach is that 2D image deep learning-based denoising has already been exten-
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sively studied in other fields, which can serve as a foundation for the development of novel
methodologies. Given deep learning’s aptitude for processing intricate, high-dimensional,
andnonlinear data, it therefore holds promise as ameans of developingnewanalysismethod-
ologies for EDXS and EELS. In this thesis, I test such an approachwith the correlative analysis
of simultaneously acquired EDXS and EELS data in Chapter 7.
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4 Melting Experiments in Lower Man-
tle Conditions

This chapter is the result of a collaborative effort led by J. Badro and C. Hébert. J. Badro
conceptualized the ideas for this research project based on the state-of-the-art geochemistry
problem, while C. Hébert offered technical guidance throughout the project. J. Badro and F.
Nabiei worked together to synthesize the samples in the laser-heated diamond anvil cell. F.
Nabiei also prepared the TEM lamellae using the focused ion beam. H. Chen conducted the
electron microscopy characterization of the samples and analyzed the resulting data.

43



4.1 Introduction

Similar toother terrestrial planets, theEarthexperiencedgiant impactsduring its growth [218].
Previous studies have shown that the mantle was extensively molten due to a giant impact
which also created Moon [44]. The solidification and fractionated crystallization of the re-
sulting magma ocean (i.e., primitive molten silicate mantle) play a significant role in the
differentiation of the Earth [219]. Many present-day seismic and geochemical observations
could be linked to this process which produced phases of distinct composition and density
that are prone to gravitational segregation and geochemical isolation [220, 221]. For example,
the ultra-low velocity zones (ULVZs), a seismic structure above the core-mantle boundary
(CMB), have been considered remnants of the primitive magma ocean [3].

In order to advance our understanding of the observations of the Earth’smantle, it is essential
to conduct melting experiments that serve as an analog to the magma ocean solidification
process. There have been significant efforts to study mineral-melt phase relations and trace
element partitioning in mantle rocks to pressure up to 26 GPa (i.e., a depth of 700 km in the
mantle) [2, 27, 222, 223]. However, modeling shows that the putative conditions of magma
ocean crystallization on Earth are significantly deeper [224], which goes from ~1500 km
depth all the way to the core-mantle boundary where rare experiments on phase relations
have been carried out.

The present limitation of these experiments corresponds to the pressure limit of the multi-
anvil press using tungsten carbide anvils, which is the standard tool to investigate phase
relations at high pressures and temperatures [225]. Typically in those experiments, a bulk
starting composition is chosen, compressed and melted, and then cooled down to crystallize,
and finally quenched, recovered, and analyzed chemically and mineralogically using stan-
dard analytical tools such as the electron microprobe or scanning electron microscope [226].
The mineral-melt phase relations and melting phase diagram of the chosen starting compo-
sition are derived from the chemical characterization.

Besides the routine experimental protocol using large-volume presses, another emerging
methodology for conducting such an experiment is the laser-heated diamond anvil cell (LH-
DAC) which provides higher pressures and temperatures that covers all plausible conditions
of magma ocean crystallization on Earth. However, the melting experiments in LHDAC are
challenging due to: 1) the inability to accurately control the temperature required to slowly
crystallize the melt and attain controlled degrees of crystallization (e.g., fractions of residual
melt); 2) the size of the phases produced is nanometric, whose characterization requires
high-resolution analytical techniques.

Here, we employ the LHDAC approach and STEM-EDXS to study the melting relations of a
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pyrolite composition [12], which is a fair estimation of the average composition of the Earth’s
mantle. We unambiguously determined the mineralogy and composition of the liquidus
phase (i.e., the first mineral phase to crystallize in a cooling magma ocean at considered
pressures) and probed a Fe-enriching phenomenon in the residual liquid. In addition,
the chemical analysis of solidus phases produced from the experiment supports the idea
that variation of affiliation of Fe in mineral phases is responsible for rheological variations
observed in the Earth mantle.

4.2 Materials andMethods

Four melting experiments (i.e., partial crystallization experiments) were performed in LH-
DAC at 46, 55, 71, and 88 GPa, using pyrolite that was doped with a trace amount of Nd,
Sm, and U as starting materials (Table 4.1). Pyrolitic glass was produced in a gas-mixing
aerodynamic levitation laser furnace at 2050 ∘C. All samples were compressed to the targeted
pressure, then heated and molten using double-sided laser heating. The samples were then
allowed to cool down at a rate of 90 K/s over a course of several seconds. The samples are then
quenched by shutting off laser power and decompressed, unloaded from the LHDAC, and
transferred to a focused ion beam (FIB) instrument for sample recovery. A thin slice of the
center of the heated spot was prepared using the FIB lift-out technique with a Zeiss NVision
40 dual-beam instrument and finally transferred to a copper TEM grid. The STEM imaging
and EDXS measurements were performed on a FEI Tecnai Osiris microscope operated at
200 kV. This microscope is equipped with four windowless Super-X SDD EDXS detectors and
Esprit 1.9 acquisition software from Bruker.

Atomic % Mg Si Al Ca Fe Nd (ppm) Sm (ppm) U (ppm) O

average 19.30 16.65 1.75 0.83 2.44 477 455 130 58.83
std dev 0.83 0.51 0.16 0.03 0.05 19 15 14 0.27

Table 4.1: The nominal composition of the starting material with standard deviation.

4.3 Results and Discussion

A representative FIB lamella synthesized at 88 GPa is displayed in Figure 4.1. As the figure
shows, the lamella has rich phase features and is divided into five zones. The part of the
sample that was molten and recrystallized is called the‘melt pocket’, and consists of
mineralogically differentiated concentric ensembles (i.e., liquidus phase (LP), equilibrium
solids (ES)), and residual melt (RM). The outermost part is unheated and untransformed
glassy material of the starting composition (i.e., untransformed area (UA)), and the glass is
crystallized into nanometer‐scale mineral assemblages (i.e., subsolidus phases (SP)) when it
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approaches the edge of the melt pocket with increasing temperature. The HAADF overviews
of the rest three samples are attached to the Appendix 1, 2, 3.

Figure 4.1: The overview (HAADF image) of the sample produced at 88 GPa.

Before performing a thorough study of the samples, we performed an ”integrity” check on all
four samples. By comparing the composition of mineral assemblages of the SP area to that
of the UA area (i.e., the two parts should share the same composition in a closed system),
we identified a degree of Fe loss in the sample synthesized at 71 GPa. Thus, this particular
sample is of limited geochemical interest and will be discarded from further analysis in
this chapter. Appendix 5a, 6a, 7a contains an index and compilation of all the STEM-EDXS
maps acquired for the three geochemically significant samples. Meanwhile, we utilized the
data acquired from the excluded sample to some extent, using it as a playground to develop
innovative data processing techniques, which will be discussed in the upcoming chapter.

4.3.1 Evolution of Melt Pocket

Liquidus Phase and Compositional Gradient of Equilibrium Solids

Three samples were successfully synthesized at 46, 55, and 88 GPa, which correspond to
conditions in the middle-to-lower mantle. Figure 4.2 illustrates the STEM-EDXS elemental
maps of the equilibriumsolids that crystallized from themelt. Textural and chemical analyses
were conducted on them to understand the solidification of the liquid melt, which is an
analog to the crystallization of the magma ocean.

Here, we take the 55 GPa sample as an example to demonstrate the chemical evolution of
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Figure 4.2: Representative views (HAADF image and EDXS maps) of the equilibrium solids
of samples produced at 46, 55, and 88 GPa.

melt pocket from the rim to the center. The rim of the molten region has a distinct and
constant composition in comparison to the rest of the melt pocket areas (Figure 4.3). This is
identified to be the liquidus phase, which initially crystallized from the melt and is analyzed
to be Brg in the case of 55 GPa sample. Adjacent to the liquidus phase, there exist equilibrium
solids. They start with a ferropericlase (Fp) shell, followed by cotectic solids comprised of Fp
and Brg, and then Ca-perovskite (CaPv) appears when further approaching the residual melt
(Figure 4.2).

The liquidus Brg, and the Brg and Fp in the equilibrium solids are quantified using the
traditional Cliff-Lorimer ratio method, and the k-factors from Esprit are used. It is found that
the molar ratio of Fe/Fe+Mg of Fp, as depicted in Figure 4.3, increases monotonically when
approaching the center. The outermost Fp shell exhibites a value of approximately 0.13-0.14,
whereas that of the innermost Fp precipitates reaches as high as 0.30-0.35. This suggests
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Figure 4.3: Compositional gradient of Fp in the equilibrium solids, and the liquidus phase is
identified to be bridgmanite in the sample synthesized at 55 GPa.

Figure 4.4: Compositional gradient of Brg in equilibrium solids of the sample synthesized at
55 GPa.

a Fe-enrichment phenomenon towards the residual melt, which will be further discussed
later. Based on the results of quantification, it is observed that the chemical evolution trend
of Brg in the equilibrium solids is similar to that of Fp. The Brg compositions around the
long axis of the elliptic molten volume, starting from the Brg reaches the residual melt and
ending with the liquidus Brg, are depicted in Figure 4.4. It is observed that the closer the Brg
is located to the residual melt, the higher the Fe and Al content and the lower the Mg and Si
content in its composition. Notably, for the sample synthesized at 46 GPa, CaPv is absent in
the ES area; instead, Brg becomes more Ca-enriched when approaching the residual melt.

In all three samples, the liquidus phase is consistently identified as Brg (as shown in Ap-
pendix 5e, 6d, 7c). The compositions of these liquidus Brg are listed in Table 4.2. It is worth
noting that trace amounts of Nd and Sm are present in the Brg. The reliability of their quan-
tifications is attributed to the integration of X-ray signals over large areas. The reported error
corresponds to the standard deviation of quantifications conducted on multiple regions.

Previous studies have shown that many ratios of refractory lithophile elements (RLEs, e.g.,
rare Earth elements, Be, Al, Ca, Sc, Ti, Sr,Y, Zr, Nb, Ba, Hf, Th, U) in the primitive uppermantle
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rocks are very similar to those observed in CI chondrite meteorites [12, 17, 18]. However, the
Mg/Si ratio of the uppermantle is significantly higher than that of chondriticmeteorites, with
a value of 1.12 compared to 1.0 [227]. Therefore, it has been suggested that the lower mantle
may be enriched in Si relative to the upper mantle, possibly due to the crystal fractionation
of lower mantle phases during magma ocean solidification. Meanwhile, any fractionation
occurred in a crystallizing magma ocean should not cause the ratio of RLEs of the upper
mantle to shift outside their chondritic bounds within a 10% uncertainty. If the fractionation
of the liquidus phase (i.e., Brg in our case) formed a chemically distinct reservoir thatmay still
exist in the lower mantle today without violating the chondritic pattern of RLEs in the upper
mantle, it could contribute to the enrichment of Si in the lower mantle. Our collaborator
Dr. J. Badro, will perform mass-balance calculations [228] to determine the extent of Brg
fractionation based on the compositions of the liquidus Brg and coexisting melt.

Liquidus Brg B-C2-46 GPa C-C5-55 GPa C-C4-88 Gpa
Atomic % Error Atomic % Error Atomic % Error

Mg 40.45 0.440 41.79 0.519 42.07 0.557
Al 3.94 0.131 3.72 0.238 3.59 0.115
Si 51.07 0.590 49.61 0.256 50.77 0.656
Ca 1.98 0.174 2.33 0.248 1.98 0.190
Fe 2.27 0.175 2.28 0.251 1.38 0.119
Nd 0.059 0.017 0.062 0.016 0.033 0.014
Sm 0.079 0.017 0.094 0.017 0.052 0.015
U 0.007 0.010 0.003 0.010 0.001 0.007

Table 4.2: Chemial compositions of the liquidus phase Brg.

Fe Enrichment in Residual Melt

Having observed that Fp and Brg of equilibrium solids exhibit a tendency of Fe enrichment
towards the residual melt core across all three samples, we now characterize the residual
melt. Figure 4.5 illustrates the EDXS elemental maps of the residual melt and implies a
heavily Fe-enrichment effect in the RM. Since the lamella represents a slice of the reaction
volume, the composition quantified from the RM area may not be identical to but can be
indicative of that of the RM itself. When the pressure increases, the Fe concentration of the
RM undergoes a substantial rise, from roughly 10 at.% in the 46 GPa sample to over 70 at.%
in the 55 and 88 GPa samples. The observation of a strong Fe enrichment in the residual
melt lends support to the concept of gravitational stability of the melt at the bottom of the
mantle. This finding additionally reinforces the proposal of the basal magma ocean theory
as presented by by Labrosse et.al. [3].
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Figure 4.5: Representative views (HAADF image and EDXS map) of the melt residual of
samples produced at 46, 55, and 88 GPa, respectively.

4.3.2 Fe Partition in Solidus Phases

We now shift our attention to the solidus mineral assemblages, which bear resemblance to
the mineral assemblages in the lower mantle. Figure 4.6 illustrates the EDXS elemental maps
of solidus assemblages formed from 46 GPa to 88 GPa. Quantitative analysis of the STEM-
EDXS data reveals the evolution of the lower mantle mineralogy with increasing mantle
depths (i.e., pressures). Throughout the pressure range, Fp and Brg are found, whereas Ca
perovskite (CaPv) only emerges at higher pressures. Table 4.3 summarizes the quantification
of the mineral phases, with the concentration of O being deconvolved. The quantifications
are based on the STEM-EDXS data, as demonstrated in Appendix 5h, 6e, 7d . The reported
error is the standard deviation of quantifications that were performed on multiple maps. It
is observed that the solidus Brg also contains trace amounts of Nd and Sm. Nevertheless,
the reliability of their concentrations is reduced as a result of their significantly reduced size
compared to the liquidus Brg. Moreover, the acquisition parameters of STEM-EDXS data, in
our cases, are considerably restricted due to the sensitivity of these minerals to long beam
exposure.
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Figure 4.6: (a),(e),(i) the HAADF image; (b),(f),(j) the Si K𝛼; (c),(g),(k) the Mg K𝛼 ; (d),(h),(l)
the Ca K𝛼map of the subsolidus assemblages synthesized at 46 GPa, 55 GPa, and 88 GPa,
respectively. Each elemental map’s intensity scale is self-referential, with a linear scaling
from 0 fractional intensity for the pixel spectrum with the lowest integrated peak counts to
a value of 1 for the pixel spectrum with the highest integrated counts. As a result, the Brg
appears dark in the Mg map despite its richness in Mg, as the Fp is even richer in Mg.

P (GPa) 46 55 88
T (K) ∼3000 ∼3200-3500 ∼3500-3700

Phase Fp Brg Fp Brg Fp Brg Ca-Pv
Mean Error Mean Error Mean Error Mean Error Mean Error Mean Error Mean Error

Mg 82.83 1.27 39.32 0.77 83.35 1.03 40.46 0.85 84.44 1.43 40.96 0.48 - -
Al 1.15 0.28 4.86 0.15 1.04 0.18 4.76 0.21 0.91 0.26 4.95 0.19 8.87 0.62
Si - - 49.04 0.61 - - 48.38 0.39 - - 48.9 0.26 37.7 1.42
Ca - - 2.33 0.1 - - 2.4 0.14 - - 1.87 0.23 39.95 0.81
Fe 16.04 1.2 4.03 0.19 15.51 1.18 3.63 0.51 14.33 1.35 3.08 0.44 0.47 0.4
Nd - - 0.137 0.026 - - 0.122 0.025 - - 0.052 0.016 6.78 0.41
Sm - - 0.138 0.025 - - 0.129 0.026 - - 0.068 0.019 5.14 0.27
U - - 0.018 0.022 - - 0.009 0.014 - - 0.001 0.008 0.51 0.18
𝐾𝑒𝑓𝑓 0.53 0.52 0.45

Table 4.3: Synthesis conditions of samples and quantification results of solidus mineral
assemblages.

In the lower mantle, Fe is the sole transition element entering the major composition of Brg
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and Fp, which are the most and the second most abundant minerals, respectively. The parti-
tioning of Fe between these minerals is a crucial factor in controlling the physical properties
of the lower mantle, such as density, elasticity, and viscosity. As such, extensive research has
been undertaken to determine the distribution of Fe between mantle minerals [229–233]. In
this study, we evaluated the partitioning of Fe between Fp and Brg under conditions of lower
mantle. We found that Fe prefers partitioning into Fp over Brg. This partitioning behaviorwas
assessed by computing the effective equilibrium constant (𝐾𝑒𝑓𝑓), which represents the molar
concentration ratio of Fe to Mg in Brg relative to that in Fp: 𝐾𝑒𝑓𝑓 (𝐾𝑒𝑓𝑓 =𝑋𝐵𝑟𝑔

𝐹𝑒 𝑋𝐹𝑝
𝑀𝑔/𝑋

𝐹𝑝
𝐹𝑒 𝑋

𝐵𝑟𝑔
𝑀𝑔 ).

Higher values of 𝐾𝑒𝑓𝑓 imply Fe-rich Brg, while lower values indicate Fe-rich Fp. Notably, the
values of 𝐾𝑒𝑓𝑓 remain constant at 46 and 55 GPa (0.53 and 0.52, respectively), but drops to
0.45 at 88 GPa. Moreover, the trend of the𝐾𝑒𝑓𝑓 with respect to pressure is observed to be anti-
correlated with the radial viscosity profile reported previously [234]. Previous experiments
conducted on olivine and Fp have shown an inverse correlation between Fe content and the
measured viscosity [235, 236], with higher Fe concentrations being less viscous. Given that
Brg is the dominant mineral in the lower mantle, variations in Fe content in Brg are likely to
be responsible for the observed rheological variations in the lower mantle.

In addition to analyzing the partitioning behavior of Fe, investigating the interphase parti-
tioning behavior of trace elements such as La, Nd, Sm, Gd, Lu, and U in the Earth’s mantle
minerals is of great interest to geochemists, as it offers insights into different chemical dif-
ferentiation events in the mantle [27, 237]. However, conventional quantification methods
have proven inadequate in precisely determining trace element concentrations in Brg, such
as Nd and Sm. In fact, the quantification of mineral phases in solidus areas is a highly intri-
cate process, given the spatial overlap of these phases in the thickness direction and their
similarities in composition. Overcoming these challenges in STEM-EDXS quantification
therefore represents a significant aspect of my Ph.D. project. As such, the subsequent two
chapters will focus on the development of novel data processing techniques to address these
issues.

4.4 Conclusion and Outlook

In this study, pyrolite samples were subjected to partial melting at pressures of 47, 55, and
88 GPa, and the resulting melt pocket and solidus mineral assemblages were characterized
using STEM-EDXS. Our findings indicate that bridgmanite is the first mineral phase to
crystallize from the melt within the investigated lower mantle pressure range. Therefore, the
fractionated crystallization of Brg during the solidification of the magma ocean can result in
a Si-rich lower mantle (i.e., an observed Si-depleted upper mantle). To further validate this
hypothesis, mass balance calculations will be conducted in future studies to determine the
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extent of this crystal fractionation.

Additionally, we observed the preferential accumulation of Fe in the residual melt, which
provides experimental support for the basalmagmaocean theory. We further investigated the
partitioning behavior of Fe between solidus ferropericlase and bridgmanite, and postulated
that variations in Fe content in Brgmay be responsible for the observed rheological variations
in the lower mantle.

53





5 NMF Aided Phase Unmixing and
Quantification with STEM-EDXS

This chapter is a pre-submission version of a manuscript entitled ”Non-negative matrix
factorization aided phase unmixing and trace element quantification with STEM-EDXS”
authored by H. Chen, F. Nabiei, J. Badro, D.T.L. Alexander, and C. Hébert.

H. Chen developed the project ideas with C. Hébert. J. Badro developed the idea for the
sample based on state-of-the-art geochemical knowledge. J. Badro and F. Nabiei synthesized
the sample in the laser-heated diamond anvil cell. F. Nabiei prepared the TEM lamella
in the focused ion beam. H. Chen characterized the sample using electron microscopy,
developed the python code for data processing, and wrote the manuscript. C. Hébert and
D.T.L. Alexander participated in discussing the results and the scientific output and provided
writing advice throughout the project.
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Abstract

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission elec-
tron microscope (STEM) is commonly used for chemical characterization of materials. How-
ever, STEM-EDXS quantification becomes complicated or even problematic when the con-
stituent phases share common elements and overlap spatially. In this paper, we present a
methodology to identify, segment, and unmix phases which have a substantial spectral and
spatial overlap in an automated fashion, which combines non-negative matrix factorization
with a priori knowledge of the sample. We illustrate the methodology using a sample of
electron beam-sensitive mineral assemblages that represent the deep Earth mantle. With it,
we retrieve the true EDX spectra of the constituent phases and their corresponding phase
abundance maps. It further enables us to achieve a reliable quantification for trace elements
with concentration levels of ∼ 100 ppm. Our approach can be adapted to aid the analysis of
many materials systems that produce STEM-EDXS datasets having phase overlap and/or
limited signal-to-noise ratio in spatially-integrated spectra.

5.1 Introduction

A scanning transmission electron microscope (STEM) equipped with a silicon drift X-ray de-
tector (SDD) is a fast, robust and widely-used tool for the chemical analysis of materials from
microscale to nanoscale. With the spectrum imaging (SI) technique, an energy-dispersive
X-ray (EDX) spectrum is acquired at each scanned point and stored to enable chemical
analysis to be performed for every pixel in the SI dataset. The comprehensive chemical
information contained in a STEM-EDXS SI dataset allows a detailed chemical analysis of
materials [238–240]. However, if the sample is made of several phases overlapping in the
thickness of the specimen, the technique cannot deliver an individual quantification of
each phase upon analyzing relevant pixels, but only an average composition of a mixture of
phases. This is even more problematic when the phases share some elements. For example,
identifying chemically similar multiphase nanoprecipitates in complex fission products
remains difficult when characterizing irradiated nuclear fuels using EDXS mapping inside a
STEM [241].

Another drawback of STEM-EDXS is the low counting statistics due to the limited thickness
of samples used for STEM characterization, which is typically around or less than 100 nm.
It is a key factor limiting the precision of STEM-EDXS when quantifying minor elements
and makes the trace element quantification incredibly challenging. Technically, using large
electron probes with a strong beam current or counting for a long time can help reduce
quantification errors. However, there is then an increased risk of specimen drift, contamina-
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tion, or damage. Furthermore, if the material of interest is highly sensitive to electron doses,
such as macromolecules and polymers [242, 243], metal-organic frameworks [244, 245], and
low-dimensional materials [246, 247] etc., STEM-EDXS measurement would hardly attain
sufficient signal-to-noise ratio (SNR) for an accurate and precise quantification.

In the past decade, machine learning (ML) algorithms, such as principal component analysis
(PCA) [155, 248, 249], independent component analysis (ICA) [172–174], and non-negative
matrix factorization (NMF) [176, 177, 181] etc., have been exploited to aid analyzing various
electron microscopy datasets. PCA is widely used for denoising. However, its bias can induce
artifacts into the reconstructed data [152, 156]. NMF stands as a promising technique to
separate different components of a complex sample because it assumes a non-negativity
for all the collected signals that is physically sound, and the returned results are more easily
interpretable [181]. Nonetheless, the components extracted by NMF are not identical to the
characteristics of the true physical phases, and the component spectra cannot directly be
used for the quantification of phases [176]. Also, the abundance maps are not equal to the
true quantitative distributions of phases, the revealing of which is helpful for understand-
ing multiple properties of materials, such as mechanical properties [250, 251], transport
properties [252, 253], or magnetic properties [254, 255].

In this paper, we propose a new method that combines NMF with a priori knowledge of the
sample, to retrieve thephysical EDXspectra of phases aswell as their quantitativedistribution
maps under significant spatial and spectral superimposition of phases. Furthermore, the
signals of trace elements contained in the relevant phase spectrum are remarkably increased;
allowing us to quantify trace elements at the concentration level of ∼ 100 ppm.

5.2 Experiment Procedures

5.2.1 Sample Synthesis and Preparation

The material studied in this paper is Earth mantle mineral assemblages synthesized in a
laser-heated diamond anvil cell (LHDAC) [Institut de Physique du Globe de Paris (IPGP)], an
experimentation tool for investigating the phase behavior of materials at thermodynamic
conditions comparable to the deep interior of the Earth. The starting material was a pyrolite
glass [24], with a composition chosen to represent the typical composition of the average
Earth mantle in terms of major elements. Additionally, a trace amount of Nd, Sm, and U (0.3
wt.% for each) was added to the starting material. The nominal composition of the starting
material was measured by EDXS in a scanning electron microscope and is listed in Table 5.1.

The specimen was first compressed to 71 GPa, then heated to ∼ 4500 K and held in a molten
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state for 2 minutes using double-sided laser-heating, followed by fast cooling to∼ 3900 K at a
rate of around 90 K/s. The specimenwas then quenched by switching off the laser power, and
slowly decompressed, unloaded from the LHDACand transferred to a focused ion beam (FIB)
instrument for sample preparation. A thin slice of the center of the heated spot was prepared
using the FIB lift-out technique with a Zeiss NVision 40 dual beam instrument [Centre
Interdisciplinaire de Microscopie Électronique (CIME), École Polytechnique Fédérale de
Lausanne (EPFL)].

Atomic % Mg Si Al Ca Fe Nd (ppm) Sm (ppm) U (ppm) O

average 19.30 16.65 1.75 0.83 2.44 477 455 130 58.83
std dev 0.83 0.51 0.16 0.03 0.05 19 15 14 0.27

Table 5.1: The nominal composition of the starting material with standard deviation.

5.2.2 STEM-EDXS SI Acquisition

The STEM imaging and EDXS measurements were performed on an FEI Tecnai Osiris micro-
scope (CIME, EPFL) operated at 200 kV. This microscope is equipped with four windowless
Super-X SDD EDXS detectors and Esprit 1.9 acquisition software from Bruker. The EDXS SI
data of 512 ×512 pixels were acquired with a nominal beam current of 750 pA, a pixel dwell
time of 60 𝜇s, and frame counts of 46, leading to a total time of 12 minutes per SI map. The
EDXS acquisition parameters yield ∼ 160 counts per pixel for all X-rays, which ensures an
appropriate SNR for characterizing the minor elements (i.e. Al K𝛼, Fe K𝛼, Ca K𝛼) without
causing severe damage to the specimen.

5.3 Results and Discussion

5.3.1 Conventional STEM-EDXS Analysis

At first, we conducted a conventional STEM-EDXS analysis on the FIB sample. Figure 5.1
illustrates the high-angle annular dark-field (HAADF) image and EDXS elemental maps
of a representative solidus mineral assemblage synthesized at the set-up condition. We
identify three mineral phases from the qualitative analysis of the elemental maps, which
are bridgmanite (MgSiO3 with minor amount of Fe, Al, and Ca, 𝑎𝑏𝑏𝑟. Brg), ferropericlase
((Mg,Fe)O, 𝑎𝑏𝑏𝑟. Fp), and Ca-perovskite (CaSiO3 with minor amount of Al, Nd, Sm, and U,
𝑎𝑏𝑏𝑟. CaPv). Three regions of interest (i.e., ROI_1, ROI_2, ROI_3) are selected to study the
three phases as indicated in Figure 5.2(a), and their spectra are displayed in Figure 5.2(b)-(d).
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Figure 5.1: HAADF image and EDXS elemental intensity maps of integrated peak counts of a
representative mineral assemblage of the pyrolite specimen. Each elemental map’s intensity
scale is self-referential, with a linear scaling from 0 fractional intensity for the pixel spectrum
with the lowest integrated peak counts to a value of 1 for the pixel spectrum with the highest
integrated counts. As a result, the Brg appears dark in the Mg map despite its richness in Mg,
as the Fp is even richer in Mg.

Figure 5.2: ROIs of Brg, Fp, and CaPv (i.e., ROI_1, ROI_2 and ROI_3, respectively) are selected
and indicated in (a), the corresponding spectra are presented in (b), (c), and (d), respectively.
The two insets of (b) show the X-ray signals of U Mα, Nd Lα and Sm Lα in the ROI of Brg (i.e.,
ROI_1). The inset of (a) shows the X-ray signals of U Mα in the ROI of CaPv (i.e., ROI_3).
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A vital geochemical interest for geoscientists is to investigate the interphase partitioning
behavior of trace elements in the Earth’s mantle, such as La, Nd, Sm, Gd, Lu, U, and others,
which evidences different chemical differentiation events in the mantle [27, 237]. CaPv
is proportionally a minor phase but is the predominant host for trace elements [256], as
illustrated by the Nd L𝛼, Sm L𝛼, and U M𝛼 in the spectrum of ROI_3. Meanwhile, Mg K𝛼 is
found in the same spectrum. SinceMg cannot exist in CaPv [256], this signalmust come from
Brg that is superimposed with the CaPv in the electron beam path. Similarly, we observe
the Si K𝛼 peak in the spectrum of ROI_2, which indicates that Fp and Brg also overlap [256].
In fact, the two precipitates were identified to co-overlap with Brg in general after selecting
more ROIs and inspecting their spectra.

Quantifying each relevant phase is essential for studying the interphase chemical partitioning
behavior. The chemical composition of Brg can be directly quantified from the spectrum of
ROI_1 if given sufficient SNR. Regarding the compositions of Fp and CaPv, they cannot be
straightforwardly quantified from ROI_2 and ROI_3 since both of them share many elements
with Brg and always spatially overlap with Brg. Geochemists usually follow a three-step
procedure to obtain the compositions of precipitates in the overlapping scenario, which relies
on the unique element in each pair of precipitate-matrix, namely Si in the Fp-Brg pair andMg
in the CaPv-Brg pair. Once the composition of Brg and the phase-mixture are characterized,
the overlapping coefficient between each precipitate-matrix pair can be calculated, and
the composition of the precipitate is then attained by subtracting the proportion of Brg
in the phase-mixture. Therefore, we employed the Cliff-Lorimer ratio method to obtain
the three phases’ compositions from ROI_1, ROI_2, and ROI_3. To accomplish this, we
utilized k-factors that were derived from X-ray emission cross-sections generated through
state-of-the-art calculations with ’emtables’ (Electron Microscopy Tables) library [257]. The
quantification results are presented in Table 5.2 and Table 5.4.

However, given the complicated overlap between phases, selecting ROIs of Fp, CaPv, and
Brg is an exacting process. On the one hand, we want to make large ROIs of the phases to
gain a sufficient SNR for a precise quantification; on the other hand, we have to avoid the
troublesome two-precipitate-overlapping areas (i.e., the three-phase-overlapping areas)
where no distinct element is available to differentiate the phases. Another difficulty is the
trace element measurements in Brg, which are usually conducted by inductively coupled
plasma mass spectrometry (ICP-MS).While this offers phenomenal elemental sensitivity
with detection limits in the low parts-per-trillion (ppt, 10−12) for many elements [258], its
spatial resolution is limited to several micrometers [259]. In comparison, the superior spatial
resolution of STEM-EDXS enables a detailed analysis of the mineral phases towards this goal.
We inspected the X-ray signals of Nd L𝛼, Sm L𝛼, and U M𝛼 in a relatively large area of Brg,
(i.e., ROI_1). Unfortunately, as depicted in the insets of Figure 5.2(b), the U M𝛼 is hardly
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discernible, and the Nd L𝛼 and Sm L𝛼 are rather noisy for reliable quantification.

In order to address these challenges and limitations, in the next section we will present
a method for segmenting overlapped phases in an automated manner. This is used to
generate high SNR spectra for improved phase quantification, particularly for detecting and
quantifying trace elements included in relevant phases.

5.3.2 NMFDecomposition and NMF Aided Phase Unmixing

Our segmentationmethod is baseduponNMF.TheEDXS signal in eachpixel of a STEM-EDXS
SI dataset can be regarded as a linear combination of a number of individual phase spectra.
Under this assumption, unmixing the phases is defined as the problem of determining
a) the individual spectrum of each phase and b) the abundance map which indicates the
local weighting of each phase spectrum. While matrix factorization [260] is a popular linear
unmixing technique that matches the proposed assumption, its non-negative variant—NMF,
applies a further non-negativity constraint that particularly suits EDXS data. Therefore, we
started with NMF for phase unmixing and performed NMF on the mineral assemblage using
Hyperspy [168].

Before conductingNMFdecomposition, PCAwasfirst applied to thedataset to guideus about
the number of outputted components that must be specified in the NMF decomposition.
According to the PCA scree plot (Figure 5.3(a)), the first three components account for
the vast majority of variances of the dataset. Also, conventional EDXS analysis identifies
three physical phases. Based on this consistency, we decomposed the assemblage into
three components using NMF. Figure 5.3(b)-(c) shows the resultant component spectra
and corresponding abundance maps. All the spectra are normalized by their maximum
peak intensity. Figure 5.3(b) exhibits that the three component spectra correctly capture
the chemical features of the three phases. The spectrum of NMF#0 contains all the essential
elements comprising Brg; and peaks such as Si K𝛼 and Ca K𝛼 disappear in the spectrum of
NMF#1, and the Mg K𝛼 peak is absent in the spectrum of NMF#2, which are consistent with
the true spectrum of Fp and CaPv, respectively. Besides, Figure 5.3(d) demonstrates that
the spatial distribution of NMF#0 is similar to that of the matrix phase, Brg, and the spatial
distribution of NMF#1 and NMF#2 is concentrated on Fp and CaPv precipitates, respectively.
At first glance, the three NMF components therefore chemically represent the three mineral
phases in the assemblage.

However, a closer examination of the spectra of the components reveals that they do not
completely coincide with the true spectra of the physical phases. As depicted in Figure 5.3(c),
we first notice ditches approaching zero intensity around the Si K𝛼 andCaK𝛼 energy range in
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Figure 5.3: (a) The scree plot of PCA decomposition; (b) the three component spectra of
NMF decomposition; and (c) their regional zoom-in spectral features; (d) the abundance
maps of NMF decomposition.

the spectrum of NMF#1, and a ditch present around the Mg K𝛼 energy range in the spectrum
of NMF#2. A similar phenomenon from NMF decomposition was observed previously [177].
Physically, we understand that EDXS is composed of a continuum X-ray spectrum (i.e.,
bremsstrahlung background) and characteristic X-ray peaks. However, without additional
constrains, a mathematical decomposition via NMF fails to account for the bremsstrahlung
background, and returns zero when it assigns no element in a given energy range. We further
notice that the spectrum of NMF#0 fails to recover signals of trace elements such as Nd L𝛼
and Sm L𝛼 that are proven to be in Brg (Figure 5.2(b)). After quantifying the three spectral
components using the Cliff-Lorimer ratio method, we also find that their compositions
do not match the compositions of phases. For example, NMF#0 has a significantly lower
concentration ratio of Mg to O than that of Brg (from ROI_1), and NMF#1 has an inversely
enhanced ratio compared to that of Fp (from ROI_2); also, NMF#2 is excessively enriched
in Ca and deficient in Si when compared to the composition of CaPv (from ROI_3). This
is not surprising: the mathematical formulation of NMF cannot guarantee an accurate
decompositionwhen themultiple relevant phases overlap spatially and sharemany common
elements at the same time.

While the NMF-derived component spectra show these inaccuracies compared to the actual
phase spectra, the spatial loading maps are similar to the true phase distributions to some
extent, as inferred from the elemental maps in Figure 5.1. Here, we exploit this resemblance
for unmixing phases spatially. Demonstrated in Figure 5.4, two binary masks covering two
precipitates, mask#1 and mask#2 (Figure 5.4(c)-(d)), are generated from the abundance
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Figure 5.4: Abundancemaps of the second and thirdNMF components; (c)-(d) binarymasks
generated from (a) and (b), respectively; the binary mask of (e) Brg, (f) the mixture of Fp and
Brg, (g) the mixture of CaPv and Brg.

maps of NMF#1 and NMF#2 (Figure 5.4(a)-(b)), respectively. The union of the two masks
covers all the precipitates. Consequently, the complement of the union is mask#Brg (Fig-
ure 5.4(e)), which covers all the available pure Brg areas. The intersection of mask#1 and
mask#2 represents the problematic three-phase-overlapping areas; then, mask#Fp+Brg and
mask#CaPv+Brg (Fig. 4(f)-(g)) are attained by subtracting the three-phase-overlapping areas
from mask#1 and mask#2. We thus obtain a pure Brg mask and two masks represent the
mixtures of Fp+Brg and CaPv+Brg. It is impossible to spatially segment Fp or CaPv from Brg
since it is a matrix phase that distributes everywhere.

It is a critical step to create mask#1 and mask#2 that cover precipitates, and we adapted
a graph-based algorithm (GrabCut) [261] to perform the segmentation task in a fast and
accurate manner. Traditional algorithms such as histogram thresholding [262], edge-based
segmentation [263], and region-based method such as watershed transform [264] not only
require careful human superintendence, they further do not return a satisfying segmentation
in our case, which does not always have a good background-to-foreground contrast ratio. In
contrast, GrabCut views an image as a graph: every pixel is a vertex, and constraints between
neighboring pixels are viewed as edges. Each edge is weighted by the computed affinity or
similarity between two vertices. Pairs of vertices (pixels) within a subgraph have high affinity,
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Figure 5.5: (a) The normalized spectrum of Brg (solid curve), (b) the normalized spectrum
of Fp+Brg mixture (dashed curve), and (c) the normalized spectrum of CaPv+Brg mixture
(dashed curve); the insets are the map of Brg, Fp+Brg mixture, and CaPv+Brg mixture, re-
spectively.

Figure 5.6: Phase spectrum of Brg (a), Fp (b), and CaPv (c), and the distribution maps of Brg
(d), Fp (e), and CaPv (f).

while those from different subgraphs have low affinity. The partition of vertices into different
subsets is therefore conducted by minimizing the cost of cutting edges [265, 266]. Each
subgraph is then an image segment. The method does not solely utilize boundary or regional
information but both to achieve optimal global segmentation. Moreover, it simply requires a
user-specified rectangle drawn loosely around the object of interest as the input to realize a
satisfying segmentation. As a result, we found that it produces a good segmentation.

Applying the GrabCut generated mask#Brg, mask#Fp+Brg, and mask#CaPv+Brg to the orig-
inal EDXS SI dataset produces a map of pure Brg, a map of Fp+Brg mixture, and a map of
CaPv+Brg mixture, as shown in the insets in Figure 5.5(a)-(c). The spectrum of Brg is readily
obtained in Figure 5.5(a), and the spectra of Fp+Brg mixture and CaPv+Brg mixture are
displayed as dashed curves in Figure 5.5(b)-(c). As mentioned earlier, the a priori knowledge
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that Brg is a silicate while Fp is an oxide without Si enables us to separate the spectrum of
Fp from the spectrum of Fp+Brg mixture. To do this, we normalized the spectrum of Brg
and Fp+Brg mixture by their Si K𝛼 intensity, as shown by Brg_norm and Fp+Brg_norm in
Figure 5.5(b); next, we obtained the spectrum of Fp by subtracting the portion of Brg from
the spectrum of Fp+Brg mixture. Then, in view of the fact that CaPv is a Ca-enriched silicate
tolerating zero Mg in its crystal structure, an analogous routine is applied to extract the CaPv
spectrum from that of the CaPv+Brg mixture, now based on normalization by the Mg K𝛼
intensity.

Having obtained the true spectra of all the three phases (Figure 5.6(a)-(c)), we leverage
them to identify their spatial abundances. Calculating the abundances of phases can be
considered as a problem of linear spectral mixture analysis (LSMA) with predefined end-
members. The LSMA is often solved based on a least-squares criterion. In order to produce
meaningful abundances of materials, we choose a fully constrained least squares LSMA
(FCLS-LSMA) [267] that imposes two constraints on the weights of endmembers in each
pixel: the abundance sum-to-one constraint and the abundance nonnegativity constraint.
The obtained abundance maps of Brg, Fp, and CaPv are displayed in Figure 5.6(d)-(f).

5.3.3 Quantification of Trace Elements: Reduced Uncertainties and Enhanced
Sensitivity

In Section 3.1, we quantified Brg from ROI_1. Its composition is listed in Table 5.2. However,
the Nd signal and Sm signal are noisy and the U signal is undetected. When integrating
over the masked pure Brg areas (Figure 5.7(b)), the U M𝛼 peak becomes visible, and the
Nd L𝛼 peak and Sm L𝛼 peak are smoother and well distinguished from the background, as
illustrated by the blue spectrum in Figure 5.7(c). We hence calculated the composition of
Brg from the masked Brg area using the Cliff-Lorimer ratio method and show the results in
Table 5.2.

Atomic % Mg Si Al Ca Fe Nd Sm U O
(ppm) (ppm) (ppm)

Brg of ROI_1 18.30 21.33 2.20 0.87 1.81 285 334 - 55.30
Brg of map 1 18.30 21.12 2.21 0.83 2.05 252 314 101 55.32

Table 5.2: Compositions of Brg obtained by selecting a ROI and by using NMF aided method.

To demonstrate the improvement of SNRs of trace elements with increasing signal (i.e., the
number of summed pixels), we additionally selected another three ROIs of Brg (Figure 5.7(a)).
Figure 5.7c) visually proves that the SNR of U M𝛼, Nd L𝛼, and Sm L𝛼 are substantially
enhanced comparing their spectra and also sum spectrum with that of Brg mask 1. To further
improve the SNR of U signal, we applied the NMF-aided phase unmixing method to another
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two maps (Figure 5.8(a)-(b)) located in neighboring areas and containing the same mineral
assemblages. Figure 5.8(c)-(d) are the two segmented pure Brg maps, and Figure 5.8(e)
displays the U signal summed from the three respective masks as well as their summation.
When integrating over the masked Brg areas of the three maps, U M𝛽 differentiates itself
from the background, as illustrated by the brown spectrum in Figure 5.8(e).

Figure 5.7: (a) 3 Brg ROIs; (b) the masked Brg map; (c) the spectral comparison between the
masked Brg and 3 Brg ROIs.

We now calculate the SNRs of U M𝛼, Nd L𝛼, and Sm L𝛼 of all the Brg ROIs and list them
in Table 5.3, in order to quantitatively evaluate the SNR improvement with the increasing
signals (i.e., number of pixels). Specifically, we define the net elemental signal (𝑆) as the area
of the peak above the background and take the noise (𝑁) as the standard deviation (𝜎) of the
background close to the actual or expected peak [268], which therefore yields: SNR= 𝑆

𝑁 = 𝑆
𝜎 .

When comparing X-ray peak signals of Brg mask 1 with that of Brg roi 1, the SNR of Nd L𝛼
and Sm L𝛼 is improved by 10.2 times and 8.3 times, respectively. As for the SNR of U M𝛼, it
increases by a factor of 5.5 from the signal of Brg roi 3 to that of Brg mask sum. Figure 5.9
exhibits that the SNRs of trace elements approximately follow a square root relationship
with the number of summed pixels. Phenomenologically, the SNRs of trace elements should
approach around 10 in order to distinguish their signals from the background. The SNR of
Nd L𝛼 increases from 3.9 in Brg roi 1 (orange curve in Figure 5.7(c)) to 9.8 in Brg roi 2 (green
curve in Figure 5.7(c)), resulting in the Nd L𝛼 peak emerging from the background. Similarly,
the SNR of Sm L𝛼 increases from 7.1 in Brg roi 1 (orange curve in Figure 5.7(c)) to 12.9 in Brg
roi 2 (green curve in Figure 5.7(c)), leading to a more identifiable Sm L𝛼 peak. Also, the SNR
of U M𝛼 jumps from 2.2 in Brg roi 3 (purple curve in Figure 5.7(c)) to 9.7 in Brg mask 1 (blue
curve in Figure 5.7(c)), differentiating the U M𝛼 peak from the background.
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Figure 5.8: (a), (c) The HAADF images; (b), (d) the masked Brg maps of two neighboring
mineral assemblages; (e) the spectral comparison of the masked Brg areas.

Figure 5.9: The SNRs of Nd L𝛼, Sm L𝛼, and U M𝛼 and their square root fit with the number
of summed Brg pixels.

Areas roi 1 roi 2 roi 3 roi sum mask 1 mask 2 mask 3 mask sum

Number of pixels 3,922 5,980 24,360 34,262 170,081 142,030 132,096 444,207
Nd Lα 3.9 9.8 14.6 16.4 40 36 33.8 53.5

SNR Sm Lα 7.1 12.9 27 33.1 59 51 48.9 83.9
U Mα - - 2.2 2.3 9.7 6 4.5 12.2

Table 5.3: The SNRs of trace elements in Brg when integrating over different number of
pixels.
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By improving the SNRs of trace elements signals, two aspects of uncertainties for the quan-
tification are reduced. First and foremost, we have a better spectrum fitting with reduced
fitting error. Figures 5.10(a)-(c) illustrate the spectrum fitting of U M𝛼 of Brg roi 3, Brg mask
1, and Brg mask sum, using Gaussians to model X-ray peaks and taking the variance of error
as Poissonian. Reduced chi-squared (𝜒2𝑟𝑒𝑑) is a general method for assessing the goodness of
fitting. If a model is fitted to data and the resulting 𝜒2𝑟𝑒𝑑 is larger than one, it is considered a
“bad”fit; whereas if 𝜒2𝑟𝑒𝑑 < 1, it is considered an overfit. The‘best’fitting is the one whose
value of 𝜒2𝑟𝑒𝑑 is closest to one. The 𝜒2𝑟𝑒𝑑 of Brg roi 3 is 1.24, and the value improves to 0.95
when integrating over the areas of Brg mask 1. Furthermore, the 𝜒2𝑟𝑒𝑑 of Brg mask sum is 0.97
that is the closest to one, indicating a satisfying fitting. Since the emission and subsequent
detection of a characteristic X-ray can be regarded as statistically independent events, the
number of x-rays detected during any finite time interval is governed by the Poisson law.
Under this approximation, we calculated quantification errors of the trace elements using
the Cliff-Lorimer ratio method and show them in Figure 5.10(d)-(e). By increasing the signal
intensities of the trace elements, the Poisson error ofNd concentration and Smconcentration
has reduced from ±25 ppm and ±19 ppm in Brg roi 3 to ±3 ppm in Brg mask 1. Similarly, the
Poisson error of U concentration has decreased from ±3.4 ppm in Brg mask 1 to ±2.0 ppm
in Brg mask sum.

Figure 5.10: Spectrum fitting of (a) Brg roi 3, (b) Brg mask 1, and (c) Brg mask sum; concen-
tration with Poisson errors of (d) Nd and Sm, (e) U.

TheproposedNMF aided phase quantification not only reduces the quantification uncertain-
ties of trace elements, but also pushes further the limit of detection (LOD) (i.e., sensitivity)
of EDXS. In this part, we will take the spectra of Fp as an example to discuss the LOD im-
provement. The LOD, as defined by American Chemical Society [269, 270], is the lowest
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concentration of an analyte that can be determined to be statistically distinct from a blank.
In other words, LOD is equal to the concentration of an analyte at which the SNR equals
three. We normalized the spectra of Fp subtracted from an ROI in map 1 (i.e., ROI_2 in
Figure 5.2(a)), all of the Fp areas in map 1, and all of the Fp areas in three maps, respectively,
by their maximal intensities. Figure 5.11 presents the spectrum signal from 4.8 keV to 6.0
keV which covers the energy range of Nd L𝛼 and Sm L𝛼. No elemental signal is detected
which fits the fact that neither Nd nor Sm can be incorporated into the crystal structure of
Fp. Notably, the noise level is significantly reduced for the spectrum of Fp obtained from
the NMF aided phase unmixing. If we take the concentration of Mg (45.48 ± 0.13 at. %) as
a reference and use the Cliff-Lorimer ratio method, the LOD of Sm (calculated on Sm L𝛼
position ranging from 5.45 keV to 5.90 keV) could be converted from units of counts to units
of concentration. The LOD of Sm in Fp (if Sm were in Fp) decreases from 176 ppm to 106
ppm, and further to 65 ppm when we obtain Fp by applying NMF aided quantification to
the three maps.

Figure 5.11: Comparison of the noise levels of Fp when subtracting from ROI_2, map 1, and
all three relevant maps.

5.3.4 Quantification of Overlapped Phases

As we mentioned earlier, the traditional method for quantifying chemically similar and
spatially overlapped phases requires at least one distinctive element between a pair of
overlapped phases. This is also the prerequisite for NMF to unmix overlapped phases. NMF
decomposition will fail if the concerned phases contain identical elements. Furthermore,
in order to generate a true phase spectrum that provides the basis for unmixing the other
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phases, the proposed NMF aided method needs that at least one of the overlapped phases
has several pure pixels. Compared with the traditional method that demands meticulous
ROI selections, the proposed method unmixes overlapped phases in an automated manner,
which boosts the data processing efficiency. Another significant advantage of the method
for phase quantification, as demonstrated in the previous section, is that it offers improved
precision as well as enhanced sensitivity. It is more pronounced for the quantification of
trace elements, and also improves the quantification of minor elements included in each
phase with increasing SNRs. In Table 5.4, we compare the compositions of Fp and CaPv
obtained from the ROI selections and the NMF aided method. The two methods output
similar quantifications, but with more precise Al concentration in Fp and U as well as Fe
concentration in CaPv for the NMF aided method.

Atomic % Mg Si Al Ca Fe Nd Sm U O

Fp of ROI_2 44.81 - 0.20 - 6.54 - - - 48.44
Fp of map 1 45.31 - 0.42 - 7.11 - - - 47.14
CaPv of ROI_3 - 17.55 3.85 20.21 0.86 2.73 1.53 0.50 52.40
CaPv of map 1 - 18.12 4.05 21.00 0.55 3.00 1.69 0.63 51.20

Table 5.4: Compositions of Fp and CaPv obtained by selecting a ROI and by using NMF aided
method.

5.4 Conclusion

In this paper, we introduced an NMF aided phase analysis method that successfully un-
mixes phases with substantial spatial and spectra overlap, and increases the sensitivity and
precision of STEM-EDXS quantification. We have applied the method to studying Earth
mantle phases (i.e., Brg, Fp, and CaPv) in beam-sensitive mineral assemblages. Despite
having many elements in common and experiencing significant spatial overlap, the physical
phase spectra and phase abundance maps were obtained. Using the developed method,
we revealed and quantified the trace element signature, Nd, Sm, and U in Brg. STEM-EDXS
combined with the proposed method is suitable to analyze a wide variety of materials that
have complex volumetric phase relationships, restricted SNR and beam sensitivity, or vital
trace constituents. Moreover, the presented strategy should also be applicable to other
spectroscopic mapping techniques, such as electron energy-loss spectroscopy.

70



6 Beyond NMF: Enhancing STEM-EDXS
Analysis with Pan-sharpening

This chapter presents the results of a research work in collaboration with D.T.L. Alexander
andC.Hébert, and ismeant to be submitted for a publication. Author contributions: H. Chen
conceived the idea, performed the experimental data acquisition and the synthetic data
simulation, developed the python code for data processing and wrote the manuscript. D.T.L.
Alexander and C. Hébert participated in discussing the results and provided constructive
advice throughout the course of this project. The samples utilized in this chapter were
synthesized and prepared by J. Badro and F. Nabiei.
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6.1 Introduction

In this chapter, we continue to explore advanced methods for enhancing the analytical
capabilities of STEM-EDXS, building upon the success of the NMF aided method discussed
in the previous chapter. Although the NMF aided method proved to be effective, its per-
formance relies on an initial decomposition with NMF to obtain the masks required for
integrating counts. Such a process is only feasible if the signal-to-noise ratio (SNR) of the
data meet an appropriate threshold. Furthermore, the NMF aided method improves trace
element quantification by summing more signal to boost the SNR of the target phases. The
effectiveness of the method is, therefore, heavily influenced by the size of the target phase,
potentially rendering it insufficient for target phases with limited size. To overcome these
constraints and to minimize the dependence on phase size, in this chapter we propose a
robust and effectivemethod for unmixing overlapped phases and quantifying trace elements,
by incorporating a data fusion technique known as pan-sharpening (PS) [271].

Originally developed for satellite imaging, PS combines datasets with complementary prop-
erties, producing a single dataset that retains the benefits of both. It is a typical approach
for fusing the spatial information of a high-resolution panchromatic (pan) image and the
spectral information of a low-resolution multispectral image to generate a high-resolution
multispectra image. The recent work of Borodinov et al. [272] applied PS to hyperspectral
EELS analysis, generating an enhanced dataset with improved SNR and without sacrificing
spatial resolution. As related to the characteristics of their EELS detector, their implementa-
tion made use of two hyperspectral dataset recordings: first, a high spatial resolution (HSR)
dataset, recorded with a large number of pixels but a short acquisition time per pixel; second,
a high spectral fidelity (HSF) dataset, recorded with a few pixels but a long acquisition time
per pixel. Inspired by this approach, we here introduce the PSNMF method, which fuses
PS with NMF. Unlike the EELS method of Borodinov et al., owing to the Poissonian noise
characteristics of EDXS detection, it requires only a single HSR STEM-EDXS dataset. The HSF
dataset is obtained from the HSR one by a binning operation. With it, we simultaneously
achieve phase unmixing, quantification improvement, and denoising.

We evaluate the performance of the proposed PSNMF method using both simulated and
experimental STEM-EDXS datasets. The experimental data were obtained from the solidus
mineral assemblages synthesized at 88 GPa, as detailed in Chapter 4. The acquisition param-
eters for the experimental dataset remain consistent with those employed in the previous
chapter, giving an average of 120 X-ray counts per pixel. In addition to the experimental
data, we make use of synthetic datasets based on the characteristics of the experimental
data. These incorporate various SNRs to comprehensively assess the effectiveness of the
PSNMF method. Indeed, these synthetic datasets with a known ground truth allow us to sys-
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tematically investigate the performance of the proposed method under different conditions,
thereby providing a more robust evaluation of its capabilities in addressing the challenges
associatedwith overlapped phase unmixing and trace element quantification in STEM-EDXS
analysis. The results and discussions of these evaluations are presented in the subsequent
sections of this chapter.

6.2 Simulation of STEM-EDXS Data

In order to simulate STEM-EDXS datasets, we employ a Python library called ’espm’ (Electron
Spectro-Microscopy) [257], developed inour groupbyDr. A.Teurtrie. espm is anopen-source
tool developed for generating synthetic STEM-EDXSdatasets basedonuser-definedchemical
compositions and spatial abundancemaps of the constituent phases. The simulation process
relies on X-ray emission cross-sections generated using state-of-the-art calculations with
the accompanying ’emtables’ (Electron Microscopy Tables) library [257]. emtables is an
open source and user editable library of EDXS cross-sections for STEM-EDXS. To simulate
the Bremsstrahlung background, a semi-empirical model is incorporated. Considering our
phases of interest are composed of lower mantle minerals, we simulate the three phases,
Fp, CaPv, and Brg with compositions as listed in Table 6.1. While Cu was not included in
the starting experimental composition, we add 1.0 at.% Cu to the composition of Fp due to
its importance in influencing the electrical conductivity of the Earth’s mantle. The CaPv is
designed to contain minor amounts of Fe, Nd, Sm, U (1.0 at.% for each), and Al (2.5 at.%).
Finally, the Brg includes 1.0 at.% Fe and Ca, as well as 1.5 at.% Al, and trace amounts of
Nd and Sm (0.1 at.% for each). The composition design was based on the results obtained
from the NMF aided decomposition presented in the previous chapter. In terms of the
spatial distribution, both Fp and CaPv phases always overlap with the matrix phase Brg in
the simulated dataset. Furthermore, there exist areas where Fp and CaPv phases overlap
with each other.

The simulation process can be summarized in several steps. Initially, pure spectra for each
phase are created with the desired chemical composition and Bremsstrahlung parameters.
Subsequently, an abundance map is generated for each phase. The two quantities are com-
bined using a tensorial product, resulting in a noiseless datacube, which also serves as the
ground truth. Figure 6.1 depicts these ground truth abundance maps and noiseless spectra
utilized to generate noisy datasets. Brg acts as a matrix phase that overlaps with the Fp and
CaPv precipitates; the Fp and CaPv also share some spatial common areas. Noisy datacubes
are then constructed by designating an average number of counts per pixel and sampling
from the noiseless data. Specifically, noisy pixel spectra are created by randomly sampling
X-ray events from each normalized spectrum of the noiseless dataset according to a Poisson
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distribution. For further details, the reader is referred to [257]. Herein, two datasets were
simulated, one with a medium SNR averaging 147 counts per pixel (i.e., C147 dataset) and
the other with a low SNR averaging 15 counts per pixel (i.e., C15 dataset), as displayed in
Figure 6.2. The C147 dataset has a statistical profile that is comparable to that of the exper-
imental dataset, while the C15 dataset exhibits an extremely low number of counts. Both
simulated datasets have a spatial size of 180 by 180 pixels (1 nm pixel size) and an energy
scale ranging from 0.3 keV to 10 keV (100 eV per energy channel). The electron beam energy
is set to 200 keV, with the simulated sample thickness and density set at 100 nm and 4.5
g/cm3, respectively.

Atomic % Mg Fe O Ca Cu Si Al Sm U Nd

Fp 39.00 10.00 50.00 - 1.00 - - - - -
CaPv - 1.00 60.00 16.20 - 17.50 2.50 1.00 1.00 1.00
Brg 18.50 1.00 60.00 1.00 - 18.20 1.50 0.10 - 0.10

Table 6.1: Compositions of the three simulated phases used for generating the synthetic
datasets.

Figure 6.1: The first column: ground truth abundance maps; and the second column:
noiseless spectra of the three simulated phases Fp, CaPv and Brg, respectively, derived with
the compositions shown in Table 6.1.
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Figure 6.2: MgK𝛼, Al K𝛼 andNd L𝛼maps, and pixel spectra at [0,0] of the simulated datasets:
noiseless ground truth, C147 dataset, and C15 dataset.

6.3 PSNMF

6.3.1 Methodology

Thepotential of NMF to unmix signals is affected by a variety of factors, including noise levels,
initial values, loss functions, and, critically, the signals themselves. Before exploring a range
of algorithmic parameter tuning strategies, it is essential to establish the limits of NMF’s
ability to unmix spatially overlapping and spectrally similar signals under ideal conditions.
By utilizing noiseless simulated data, we were able to address this question in a series of
simulations not presented in this thesis. Specifically, we simulated a pair of phases, where
MgSiO3 acted as the matrix phase, and a spherical precipitate overlapped spatially with the
matrix. We tested the effectiveness of NMF decomposition in cases where the spherical
precipitate was composed of FeO, MgO, CaSiO3, and Ca0.9Mg0.1SiO3, respectively. Based on
our findings, we concluded that NMF can effectively unmix a pair of spatially overlapped
phases, provided that they possess at least one distinct element and sufficient SNR. This
is in contrast to real-world scenarios, particularly in the context of STEM-EDXS datasets
with low count rates. For such cases, we find that NMF often fails to retrieve components
accurately. This is due to the fact that the loss function of NMF has multiple local minima
in the presence of noise, producing suboptimal decomposition results [273]. As the noise
level increases, the task of NMF to converge to the global minimum becomes more arduous,
leading to greater difficulty in accurately identifying the underlying component vectors. We
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also conducted more tests on NMF decomposition using the same phase settings mentioned
above but adding different levels of noise. We found that NMF decomposition on high SNR
datasets yields more accurate NMF spectral components than on low SNR ones. Moreover,
we discovered that, when the SNR of the dataset meets an appropriate threshold, it results in
NMF spectral components that are as accurate as those obtained from noiseless datasets.
Although these results are not presented in the thesis, they provide valuable insights for our
following research.

Given the above discussion, it is clear that improving the SNR of a dataset can improve the ef-
fectiveness of NMF decomposition. Starting from a fixed STEM-EDXS dataset, binning pixels
in the spatial dimension is a possible strategy to enhance the SNR of its spectra. Specifically,
if we have one single noisy dataset with a large number of pixels but a short acquisition time
per pixel (i.e., a HSR dataset), spatial binning can produce a dataset with fewer pixels but an
improved SNR per binned pixel (i.e., a HSF dataset). Clearly, spatial binning will reduce the
spatial dimension of the original dataset. Therefore, our concept is to use the PS approach
to ally the improved NMF spectral decomposition of a binned dataset with the high spatial
resolution of the original dataset. The strategy involves several steps. First, NMF is applied to
the binned HSF dataset, producing more accurate spectral components and corresponding
spatial abundance maps with reduced spatial dimensionality. To recover the high spatial
resolution of the abundance maps, a second NMF decomposition is performed on the HSR
dataset, using the higher quality spectral components and their abundance maps obtained
from the previous step as initialization values. Prior to the decomposition, these spatial
abundance maps are upsampled to match the dimensions of the HSR dataset. Because NMF
is a heuristic algorithm sensitive to initial values, the improved initialization significantly
enhances the quality of the decomposition results compared to random initialization on the
HSR dataset. However, the spectral components from the second NMF decomposition are
not necessarily superior to those from the first decomposition, as it is influenced more by
the SNR of the HSR dataset. The fundamental aim of the second NMF decomposition is to
recover the the high spatial resolution abundance maps. We, therefore, obtain the high qual-
ity component spectra that are representative of the underlying phases’ spectral signatures
in the dataset from the first NMF decomposition, and recover the high spatial resolution
abundance maps that indicate the spatial distribution of these spectral signatures from the
second NMF decomposition. By combining these two sets, it is possible to reconstruct a
high quality dataset with improved SNR. Through NMF decomposition, we thereby fuse the
advantages of the two datasets (HSR and HSF) into a single dataset with the benefits of both.
As explained earlier, we name this method PSNMF. Its corresponding flowchart is illustrated
in Figure 6.3, and a detailed mathematical explanation is presented next, as based on the
papers by Borodinov et al. [272] and Loncan et al. [274].
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Figure 6.3: PSNMF method: a graphical overview of the workflow.

Webeginwith the original noisyHSRdataset (𝑌) of size (𝑦, 𝑒), where 𝑒 is the number of energy
channels (spectral features) and 𝑦 is the number of pixels (spatial dimensions). Through
spatial binning, we create the HSF dataset (𝑋) of size (𝑥, 𝑒), where 𝑥 is the number of pixels
and is calculated as 𝑥 = 𝑦

𝑛2 , with 𝑛 being the bin size (e.g. a bin size of 5 results in 𝑥 = 𝑦
25 ).

Our aim is to combine the beneficial properties of 𝑌 and𝑋 into a new dataset 𝑍. 𝑍 is a matrix
of size (𝑦,𝑒) that possesses improved SNR while maintaining high spatial resolution. The
relationships between the datasets 𝑋, 𝑌, and 𝑍 are described as follows:

𝑋 = 𝑍𝑆 +𝐸𝑠 (6.1)

𝑌 = 𝑅𝑍 +𝐸𝑟 (6.2)

where 𝑆 and 𝑅 are transformation matrices, 𝑆 is a spatial transformation matrix dictating
the transformation of spatial features in 𝑍 for the low dimension dataset, and 𝑅 is a spectral
transformation matrix converting the spectral features in 𝑍 to match those in the lower
spectral fidelity dataset. 𝐸𝑠 and 𝐸𝑟 are residuals. The data fusion problem is to estimate 𝑍,
which can be done via NMF:

𝑍 =𝑊𝐻 +𝜖 (6.3)

where𝑊 denotes spectral components, and𝐻 represents corresponding abundance maps;
𝜖 is the residual (error) that is assumed to be zero if𝑊 and𝐻 are accurately obtained.

The 𝑋 and 𝑌 can be approximated similarly as follows:

𝑋 ≈𝑊𝐻ℎ (6.4)

𝑌 ≈𝑊𝑚𝐻 (6.5)
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where𝐻ℎ is the spatially reduced abundance matrix, and𝑊𝑚 is the spectrally deteriorated
component matrix.

We first unmix the HSF dataset to retrieve an estimate for𝑊 and𝐻ℎ; then we initialize the
decomposition of the HSR dataset using𝑊 and upsampled𝐻ℎ to obtain𝐻. The two matrices
𝑊 and𝐻 can be multiplied to obatin the fused dataset, 𝑍. To implement this, we utilize the
NMF from scikit-learn library. Note that, comparedwith the standardNMF (also employed in
Hyperspy [168]), we impose a ’sum-to-one’ constraint on the abundance matrix; a constraint
which is appropriate for the nature of STEM-EDXS data.

6.3.2 PerformanceMeasure

When testing the PSNMF methodology, it is crucial to be able to properly assess its effec-
tiveness. While a visual inspection of the spectra and abundance maps produced by the
decomposition may be useful for this, a metric is also necessary to quantitatively compare
the decomposition results with the ground truth. Here, two metrics are used to measure the
quality of the decomposed spectra and abundances.

For spectra, the angle between the decomposition result and the ground truth is calculated
as:

𝜃 = arccos(
𝑣1 ⋅ 𝑣2

‖𝑣1‖×‖𝑣2‖
) (6.6)

where 𝑣1 and 𝑣2 are two spectral vectors of the same dimension. An angle of 0∘ represents a
perfect agreement between the two spectra, and an angle of 90∘ means two fully different
spectra.

For abundance maps, the mean squared error (MSE) between the decomposed maps and
the true maps is calculated as:

𝑀𝑆𝐸 =
‖𝑚1−𝑚2‖2

𝑃𝑥𝑃𝑦
(6.7)

where𝑚1 and𝑚2 are two maps of dimension 𝑃𝑥×𝑃𝑦. The MSE takes values between 0 and 1,
and 0 represents a perfect agreement between the two maps.

To assess the effectiveness of the dataset denoising, the average map spectral angle metric is
utilized. This metric compares the spectral similarity between the reconstructed dataset and
the noiseless dataset on a pixel-by-pixel basis, and calculates the average spectral angle of
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the reconstructed dataset. The calculation is performed as follows:

𝜃avg =
1

𝑃𝑥×𝑃𝑦

𝑃𝑥×𝑃𝑦
∑
𝑖=1

𝜃(𝑖) (6.8)

where 𝜃(𝑖) denotes the spectral angle between the pixel spectral vectors at position 𝑖, and
𝜃avg is the mean value of the spectral angles between all pixel pairs of the reconstructed
dataset and the noiseless dataset.

6.4 Evaluation of PSNMF on Simulated Data

6.4.1 Medium SNRDataset: C147

Overlapped Phase Unmixing

In this section, we test our PSNMF method on the synthetic dataset, starting with the C147
dataset with moderate counts. Before applying PSNMF, we first conduct a ’classical’ NMF
decomposition such that we can benchmark its capability. Figure 6.4 presents the outcomes
of applying NMF directly to this C147 dataset. We specified the number of decomposition
components to be three, and we observe that the first two components closely resemble
Brg and Fp, respectively. Quantifying this resemblance, the first NMF spectral component
has a spectral angle of 5.80∘ when compared with the Brg ground truth spectrum, and the
second NMF spectral component has a spectral angle of 4.30∘ when compared with the Fp
ground truth spectrum. In comparison, the spectrum and spatial abundance map for the
third component are strongly different from the ground truths of CaPv. This discrepancy
shows that the extraction of the CaPv phase was unsuccessful, likely due to inadequate SNR
in the raw dataset.
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Figure 6.4: Abundance maps and spectra of NMF decomposition compared to ground truths
on C147 dataset.

Having identified this failing of the direct NMF decomposition, we now conduct a series of
binning experiments on the C147 dataset to generate HSF datasets, and apply the proposed
PSNMF to them to assess the effect of increasing binning numbers on the accuracy of the
decomposition results. Specifically, we performed binning numbers of 2 by 2, 4 by 4, 12 by
12, 15 by 15, and 30 by 30. We then analyzed the corresponding spectral angle and MSE
of each component as well as the average spectral angle and the average MSE of the three
components, with increasing binning numbers. These results are presented in Figure 6.5.
Upon applying 4 by 4 binning, we now successfully extract the CaPv phase, with a spectral
angle of 1.78∘, which shows that the decomposed spectrum closely approximates the ground
truth spectrum of CaPv. Also, the spectral angles for Brg and Fp decrease to 0.27∘ and
2.08∘, respectively, indicating an improvement in the accuracy of the decomposition results.
Therefore, consistent with our expectation, the increase in bin size lead to a more accurate
decomposition. When the binning number increases to 12, the spectral angles of Brg, Fp, and
CaPv further decrease to 0.25∘, 1.52∘, and 1.73∘, respectively. Their corresponding spectra
closely approximate the ground truth spectra, as depicted in Figure 6.6. Similarly, a binning
number of 15 produces comparable results, with spectral angles of 0.25∘, 1.59∘, and 1.76∘

for Brg, Fp, and CaPv, respectively.

80



Figure 6.5: Spectral angles and MSEs of Brg, Fp, and CaPv components and their averages
with increasing bin size for the C147 dataset.

Upon further increasing the binning number to 30, while we observe a stable spectral angle
of 0.25∘ for Brg, the spectral angles for Fp and CaPv increase notably to 1.71∘ and 5.70∘,
respectively. This suggests that, beyond a certain binning number, further increases in bin
size has a negative impact on the unmixing of phases with smaller spatial sizes. This is due to
the fact that, as the bin size increases, the smaller phases become less distinct in the relevant
pixels, thereby making it more challenging to accurately unmix them. Conversely, for larger
phases, the noise mitigation effect of binning becomes more pronounced as the bin size
increases. Notably, the spectral angle always remains larger than 0. This is due to the fact
that, as discussed in the previous chapter, when NMF assigns no signal in a particular peak
position, it produces a ditch approaching zero in that energy range rather than following a
physical bremsstrahlung background.

From Figure 6.5, we also observe that MSE values of the PSNMF decomposed abundance
maps follow a similar trend to the values of spectral angle, as the bin size increases. Notably,
at the bin size of 12, the MSE values of the Brg, Fp, and CaPv components reduce to 0.0024,
0.0013, and 0.0011, respectively. These values indicate a remarkable match to the truth
phase abundances, highlighting the effectiveness of PSNMF in retrieving phase distributions.
Supplementary results of PSNMF decomposition on the HSF2, HSF4, HSF15, and HSF30
datasets are provided in the Appendix 8.
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Figure 6.6: Abundance maps and spectra of PSNMF decomposition (12x bin) compared
to ground truths on C147 dataset. The inset figure shows a localized magnification of trace
elements Nd and Sm in the Brg component, proving accurate phase unmixing.

Given the good unmixing results of the 12x binning experiment, we now quantify the corre-
sponding three spectral components and compare their compositions with the ground truth
phase compositions. These results are shown in Table 6.2. The Brg component exhibits an
impressive match to the ground truth Brg composition, with a maximum relative compo-
sition error being less than 3.0%. In the case of the Fp component, the minor element Cu
shows the highest relative composition error of 16%, with a value of 1.16 at.% in contrast to
the ground truth value of 1.00 at.%. For the CaPv component, its minor element Al shows the
highest relative composition error of 12%, with a value of 2.20 at.% in contrast to the ground
truth value of 2.50 at.%. Besides these, the relative composition errors for other elements
in the Fp and the CaPv component are all less than 4.5%. The obtained quantification of
components demonstrates an accurate identification and unmixing for the three spatially
overlapping and chemically similar phases via PSNMF with a bin size of 12.

Summarizing on this evaluation, in this section, we have studied the effectiveness of PSNMF
on a dataset that has an average of 147 X-ray counts per pixel. The ground truth comprises
three phases with significant spectral similarity, as indicated by the spectral angle between
the Brg-Fp pair (36.1∘) and the Brg-CaPv pair (32.0∘). Additionally, these phases exhibit a
significant spatial overlap. As we saw first, direct application of NMF on the C147 dataset fails
to accurately retrieve CaPv, the phase with the smallest proportion. By instead performing
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Atomic % Mg Si Al Ca Fe Nd Sm U O Cu
Brg / GT 18.50 18.20 1.50 1.00 1.00 0.10 0.10 - 60.00 -
Brg / HSF12 18.49 18.10 1.47 1.01 0.99 0.10 0.10 - 59.72 -
Fp / GT 39.00 - - - 10.00 - - - 50.00 1.00
Fp / HSF12 39.53 - - - 10.46 - - - 48.84 1.16
CaPv / GT - 17.50 2.50 16.20 1.00 1.00 1.00 1.00 60.00 -
CaPv / HSF12 - 17.42 2.20 16.57 0.98 0.99 0.96 0.99 59.81 -

Table 6.2: Composition comparison between the ground truth and PSNMF decomposed
components through the 12x bin experiment.

PSNMF with the HSF12 dataset generated by 12 by 12 binning, we extract the phase abun-
dancemaps and spectrawith high accuracy. Overall, binning-based PSNMF is clearly a useful
approach for phase unmixing. However, the impact of binning on phase unmixing accuracy
is not necessarily monotonic. As for instance shown by the HSF12 vs HSF30, selecting an
optimal binning number is crucial to balance the trade-off between SNR improvement and
the distinguishability of each phase in relevant pixels, particularly for smaller phases.

Dataset Denosing

Having looked at the use of PSNMF for phase unmixing, now we consider its use for dataset
denoising. NMFassumes that the concerneddata canbe represented as a linear combination
of non-negative components. The quality of data reconstruction via NMF hence depends on
the accuracy of the decomposed components. As previously discussed, the accuracy of the
decomposed components is largely dependent on the noise level of the dataset, with noisier
data resulting in less faithful components. Indeed, data reconstruction using unfaithful
componentshas a large chanceof containingartifacts. Through theexperiments andanalyses
presented above, we demonstrate that PSNMF results in high quality component spectra
and abundance maps. With these, it is possible to reconstruct a high quality dataset with
improved SNR.

PCA remains the ’gold standard’ of spectrum image denosing technique in the EM com-
munity, so it is taken as a comparative reference. Applying PCA to the C147 dataset, the
scree plot (Appendix 9) indicates the presence of three major components within the dataset.
These are used to reconstruct the dataset. In Figure 6.7, these PCA results are compared
to our proposed denoising alternative using PSNMF on the 12x binned dataset. For the
comparisons, we present the elemental maps of integrated peak counts of Mg K𝛼, Al K𝛼,
and Nd L𝛼 to illustrate the major, minor, and trace elements, respectively. It is evident that
both PCA and PSNMF denoise the dataset effectively, particularly for the minor and trace
elements. However, unlike PSNMF, PCA cannot ensure non-negativity in the reconstructed
dataset, resulting in negative counts that cannot be quantified. For example, the elemental
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map of Mg K𝛼 exhibits a minimum intensity of negative four counts. Furthermore, we
calculate the average map spectral angle for both the PCA reconstructed dataset and PSNMF
reconstructed dataset in reference to the ground truth dataset. The spectral angle value
for the PSNMF reconstructed dataset is 1.14∘, whereas the value for the PCA reconstructed
dataset is 2.49∘. In addition to the non-negativity advantage, PSNMF therefore demonstrates
superior denoising performance compared to PCA for the C147 dataset.

To further assess the effectiveness of PSNMF in denoising the dataset, we selected three
small regions of interests (ROIs) located on Fp, CaPv, and Brg, as illustrated in Figure 6.8.
Each ROI comprises four pixels. For each of them, Figure 6.8 shows a comparison of the
summed spectra between the raw dataset and the PSNMF reconstructed dataset. Minor and
trace elements, such as Cu in Fp (1.0 at.%), U in CaPv (1.0 at.%), and Nd and Sm in Brg (0.1
at.% for each) are present as mere counts in the raw spectra, and could not be identified. In
contrast, PSNMF successfully denoised the dataset, accurately revealing these signals.

Figure 6.7: Elemental maps of Mg K𝛼, Al K𝛼, and Nd L𝛼 for ground truth dataset, C147
dataset, PCA reconstructed dataset, and PSNMF reconstructed dataset through 12x bin
experiment. The colorbar scales range from the minimum to the maximum value for each
map.
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Figure 6.8: First column: Mg intensity maps of integrated peak counts reconstructed by
PSNMF through the 12x bin experiment. The orange square indicates the Fp ROI, the green
square indicates theCaPvROI, and theblue square indicates theBrgROI. Secondcolumn: raw
spectra of theCuK𝛼, UM𝛼, NdL𝛼, andSmL𝛼 signals from the respectiveROIs. Third column:
comparison of these signals between the ground truth dataset and PSNMF reconstruction
through the 12x bin experiment.
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6.4.2 Low SNRDataset: C15

Overlapped Phase Unmixing

In this section, we extend our evaluation of the PSNMF method by testing its effectiveness
on the C15 dataset, which has an extremely low SNR with an average of only 15 X-ray counts
per pixel. We first apply NMF directly to the C15 dataset, and present the results in Figure 6.9.
Clearly, NMF fails to correctly retrieve any phase due to the high noise level in the dataset.
Specifically, the spectral angle of the first component compared with the ground truth
spectrum of Brg is 29.7∘, and the spectra for the other two components show only some
spikes at the energy range of some elements. Furthermore, the component abundance
maps do not reflect the distribution of phases in the dataset. These results demonstrate the
limitations of the classical NMF algorithm for phase unmixing in the presence of a very high
noise level.

Figure 6.9: Abundance maps and spectra of NMF decomposition compared to ground truths
on C15 dataset.

Similar to the previous section, we conduct a series of binning experiments on the C15
dataset and perform PSNMF on each of them. The PSNMF decomposition results for all
bin sizes are included in the Appendix 10. The corresponding values of spectral angle and
MSE and their averages are plotted in Figure 6.10. As mentioned earlier, the higher noise
level within the data makes it more difficult for the decomposition to converge to a global
minimum. For the C15 dataset, the decomposition results of 2x bin and 4x bin end up in
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different local minima, resulting in incorrect phase extraction and large values of spectral
angle and MSE. Only when we increase the bin size to 12, do we start to correctly extract
the three phases, with spectral angles of 0.68∘, 2.68∘, and 5.23∘, and MSEs of 0.055, 0.025,
and 0.021 when compared with the ground truths of Brg, Fp, and CaPv, respectively. The 15x
bin experiment produces similar decomposition results, with spectral angles of 0.64∘, 2.72∘,
and 5.04∘, and MSEs of 0.054, 0.025, and 0.021 for the three components, respectively. When
further increasing the bin size to 30, the spectral angles of the Brg and Fp components remain
stable at 0.65∘ and 2.65∘. However, the spectral angle of the CaPv component increases to
6.89∘. As discussed earlier, the increase in the spectral angle of the CaPv component is related
to the reduced distinctiveness of the CaPv phase in the relevant binned pixels. Meanwhile,
we observe that the MSEs of the three components are slightly improved, with values of
0.048, 0.025, and 0.016. This can be attributed to the fluctuation of local minima during
the decomposition of the HSR dataset that was aimed at obtaining abundance maps with
recovered high spatial resolution. Here, we believe that a bin size of 15 is optimal for the
phase unmixing of the C15 dataset out of the investigated binning numbers. The PSNMF
results for the 15x bin experiment are presented in Figure 6.11.

Figure 6.10: Spectral angles and MSEs of Brg, Fp, and CaPv components and their averages
with increasing bin size for the C15 dataset.
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Figure 6.11: Abundance maps and spectra of PSNMF decomposition (15x bin) compared
to ground truths on C15 dataset. The inset figure shows a localized magnification of trace
elementsNd and Sm in theBrg component, proving accurate phase unmixing in the presence
of high noise level.
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Next, we quantify the spectral components of the 15x bin experiment, and compare their
compositions with the ground truth compositions of phases. These results are summarized
in Table 6.3. Once again, we observe that the concentrations of minor and trace elements in
the three unmixed phases are more prone to errors. For example, the nominal concentration
of Nd in Brg is 0.10 at.%, whereas the extracted Brg component overestimates it by 23%,
exhibiting 0.12 at.%. TheCu concentration in the Fp component is also overestimated by 30%,
with a nominal value of 1.00 at.% but exhibiting 1.26 at.%. As for the CaPv component, the Sm
concentration is underestimated as 0.91 at.% with a nominal value of 1.00 at.%, while the U
concentration is overestimated as 1.08 at.% with a nominal value of 1.00 at.%. Besides these,
the relative composition errors for the remaining elements in the three unmixed phases are
below 5%. Based on the above quantification, we conclude that the PSNMF method remains
effective in unmixing spatially overlapping and chemically similar phases in the presence of
high noise levels.

Atomic % Mg Si Al Ca Fe Nd Sm U O Cu
Brg / GT 18.50 18.20 1.50 1.00 1.00 0.10 0.10 - 60.00 -
Brg / HSF15 18.47 18.29 1.43 1.01 0.99 0.10 0.12 - 59.55 -
Fp / GT 39.00 - - - 10.00 - - - 50.00 1.00
Fp / HSF15 39.65 - - - 10.36 - - - 48.63 1.26
CaPv / GT - 17.50 2.50 16.20 1.00 1.00 1.00 1.00 60.00 -
CaPv / HSF15 - 17.43 2.41 15.47 1.05 0.99 0.91 1.08 60.25 -

Table 6.3: Composition comparison between the ground truths and PSNMF decomposed
components through the 15x bin experiment.

Dataset Denosing

Having tested the effectiveness of PSNMF for phase unmixing for the C15 dataset, we now
evaluate its effect on dataset denoising. We also perform PCA on the C15 dataset, as we
did in the analysis of the C147 dataset. The scree plot (included in the Appendix 9) also
suggests the existence of three major components within the dataset. These components are
subsequently utilized for the reconstruction of the dataset. Meanwhile, we also reconstruct
the dataset by using the component spectra and their abundance maps obtained through
the PSNMF decomposition of the 15x bin, and the 30x bin experiment. The average map
spectral angle for the PCA reconstructed dataset is 8.33∘. In contrast, those values of the
PSNMF reconstructed dataset from the 15x bin and 30x bin experiments are both lower
than that of the PCA one, with values of 6.00∘ and 6.05∘, respectively. This suggests that the
proposed PSNMF method has a superior denoising ability compared to the classical PCA
method. In Figure 6.12, we further demonstrate the denoising effect of PCA and PSNMF
on representative major, minor, and trace elements (i.e., Mg K𝛼, Al K𝛼, and Nd L𝛼). From
those elemental maps of integrated peak counts, it is evident that both PCA and PSNMF
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can denoise the dataset effectively. However, as previously discussed, PCA cannot ensure
non-negativity in the reconstructed dataset. This is reflected in the fact that the minimum
intensities of the three elemental maps are all negative in the PCA reconstructed dataset.

Figure 6.12: Elemental maps of Mg K𝛼, Al K𝛼, and Nd L𝛼 for ground truth dataset, C15
dataset, PCA reconstructed dataset, and PSNMF reconstructed dataset through 15x bin
experiment. The colorbar scales range from the minimum to the maximum value for each
map.

To further validate the effectiveness of PSNMF in improving the quality of the dataset, three
small regions of interests (ROIs) located on Fp, CaPv, and Brg were selected, each containing
25 pixels as illustrated in Figure 6.12. Figure 6.13 compares their summed spectra for the raw
dataset and the PSNMF reconstructed dataset from the 15x bin experiment. Minor and trace
elements, such as Cu in Fp (1.0 at.%), U in CaPv (1.0 at.%), and Nd and Sm in Brg (0.1 at.% for
each) are present as mere counts in the raw spectra, and could not be identified. In contrast,
the PSNMF reconstruction successfully denoises the dataset and reveals these weak signals.
Therefore, by leveraging the non-negativity constraint and the ability of PSNMF to generate
high quality component spectra and abundance maps, we are able to detect minor and trace
elements even in the presence of extremely low SNR.
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Figure 6.13: First column: Mg intensity maps of integrated peak counts reconstructed
by PSNMF through the 15x bin experiment. The orange square indicates the Fp ROI, the
green square indicates the CaPv ROI, and the blue square indicates the Brg ROI. Second
column: raw spectra of the Cu K𝛼, U M𝛼, Nd L𝛼, and Sm L𝛼 signals from the respective ROIs.
Third column: comparison of the ROI signals between the ground truth dataset and PSNMF
reconstruction through the 15x bin experiment.

91



6.5 Application to Experimental Data

6.5.1 Overlapped Phase Unmixing

In this section, we aim at evaluating the effectiveness of the PSNMF method on the ex-
perimental STEM-EDXS data, specifically the C120 dataset, following our validation of the
PSNMF method on synthetic datasets. The C120 dataset features a spatial size of 512 by
512 and an average of 120 X-ray counts per pixel, therefore closely resembling the counting
statistics of the synthetic dataset, C147, which has a medium SNR.

Initially, we apply NMF to decompose the C120 dataset into three components and present
the results in Figure 6.14. The Brg and Fp components are revealed with spectral angles of
5.09∘ and 8.94∘, respectively, while the CaPv component remains undetected. Note that the
ground truth spectra of the phases utilized here were obtained using our NMF aided method
presented in the previous chapter.

Figure 6.14: Abundance maps and spectra of NMF decomposition of the C120 dataset, and
the spectra are compared to ’ground truth’ phase spectra obtained with the NMF aided
method.

Next, we conduct a series of PSNMF experiments on the C120 dataset with bin sizes of 2,
4, 8, 16, 32, and 64. Since our ground truths provided by the NMF aided method consist
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only of phase spectra, we focus on the comparison of spectral angles. Figure 6.15 plots
the component spectral angles and their average numbers. Similar to the results observed
for the C147 synthetic dataset, increasing the bin size to 4 allows for the correct spectral
identification of the three phases, with spectral angles of 0.21∘, 1.04∘, and 3.93∘ for Brg, Fp,
and CaPv, respectively. The spectral angles decrease further to 0.15∘, 0.96∘, and 2.64∘ upon
increasing the bin size to 8. The average spectral angle now reaches a value of 1.25∘ that is
the lowest among all tested binning experiments for the C120 dataset. Figure 6.16 presents
the full PSNMF results of the 8x bin experiment. As we increase the bin size to 16, 32, and
64, the Fp and Brg component remain accurately unmixed. However, the CaPv component,
being the smallest phase, becomes less accurately unmixed with increasing bin size. This
is evidenced by the spectral angle values in Figure 6.15 and the decomposed spectra in the
Appendix 11.

Figure 6.15: Spectral angles of Brg, Fp, and CaPv components and their averages with
increasing bin size for the PSNMF decomposition on C120 dataset.

As the 8x bin experiment results in the optimal phase unmixing, we use them to quantify the
three spectral components and compare their compositions with the assumed ground truth
compositions obtained from the NMF aided method. These results are listed in Table 6.4
and Table 6.5. We find that the PSNMF unmixed Brg reveals trace elements (i.e., Nd and Sm
at a concentration level of around 200 ppm) but underestimates them. For Fp and CaPv, the
relative composition errors of major elements remain less than 1.3%, and those of minor
ones remain below 25%. Overall, our evaluation demonstrates the potential of the PSNMF
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method in accurately unmixing the phases on experimental STEM-EDXSdatawith amedium
SNR.While the accuracy of Nd and Sm concentration in Brg may not be as high as that of the
other elements, we anticipate that the PSNMF reconstruction will enhance the data quality,
enabling us to precisely quantify the trace elements in Brg. The subsequent subsection will
delve into this aspect in detail.

Figure 6.16: Abundance maps and spectra of PSNMF decomposition (8x bin) of the C120
dataset; the spectra are compared to ’ground truth’ phase spectra obtained with the NMF
aided method. The inset figure shows a localized magnification of trace elements Nd and
Sm in the Brg component.

Atomic % Mg Si Al Ca Fe Nd Sm U O
(ppm) (ppm)

Brg / NMF aided 17.27 20.04 2.18 0.71 1.54 180 238 - 58.11
Brg / PSNMF (HSF8) 17.26 20.03 2.18 0.61 1.55 66 162 - 58.23

Table 6.4: Composition comparison between the Brg from NMF-aided method (that serves
as ground truth) and PSNMF decomposed Brg component through the 8x bin experiment.
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Atomic % Mg Si Al Ca Fe Nd Sm U O
Fp / NMF aided 39.53 - 0.59 - 8.23 - - - 51.65
Fp / PSNMF (HSF8) 40.05 - 0.43 - 8.25 - - - 51.27
CaPv / NMF aided - 14.93 3.53 21.15 0.53 3.93 3.11 0.40 51.35
CaPv / PSNMF (HSF8) - 15.12 3.55 21.38 0.43 3.87 3.14 0.30 51.37

Table 6.5: Composition comparison between the Fp and Brg from NMF-aided method (that
serve as ground truths) and PSNMF decomposed Fp and Brg components through the 8x
bin experiment.

6.5.2 Dataset Denosing for Improved Quantification

Utilizing the three high-quality spectral components and abundance maps obtained from
the 8x bin experiment, we then reconstruct the C120 dataset to assess the denoising effect of
PSNMFon the experimental dataset. This reconstruction is compared to a PCA reconstructed
dataset. The PCA scree plot, depicted in the Appendix 9, highlights three major components
within the dataset, as subsequently used for its reconstruction. Figure 6.17 displays the
elemental maps of integrated peak counts for Mg K𝛼, Al K𝛼, and Nd M𝛼 of the raw, noisy
dataset, as well as the datasets reconstructed using both PSNMF and PCA. This comparison
proves the denoising capabilities of both techniques, especially forminor and trace elements.
Nevertheless, as observed in the synthetic dataset, the PCA reconstructed data here also
exhibits negative counts in the Mg and Nd maps, indicating a common artifact of dataset
denoising via PCA.

In previous analyses, we detected Nd and Sm within the Brg component from the 8x bin
experiment, but were unable to quantify them accurately. In this section, we demonstrate
the advantage of PSNMF denoising, which facilitates the accurate quantification of these
trace elements incorporated within phases. As indicated by the blue squares in the maps
shown in Figure 6.18, we select 3 ROIs situated in the Brg area. Each ROI includes 16 pixels.
Figure 6.18 illustrates that the raw spectra do not exhibit any distinct features, while the
PSNMF reconstructed data successfully uncovers both Nd and Sm. On the other hand, PCA
struggles to consistently and accurately retrieve Nd and Sm. We further quantified the three
PSNMF denoised spectra and list their compositions in Table 6.6. The quantifications from
the three ROIs and the NMF aided quantification demonstrate consistency. By employing
PSNMF,weeffectively reconstruct andhencedenoise theC120dataset and so enable accurate
trace element quantification, as exemplified by the Nd and Sm in Brg.
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Figure 6.17: ElementalMaps ofMgK𝛼, Al K𝛼, andNdL𝛼 for C120 dataset, PCA reconstructed
dataset, and PSNMF reconstructed dataset through 8x bin experiment. The colorbar scales
range from the minimum to the maximum value for each map.
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Figure 6.18: First column: Mg intensity maps of integrated peak counts reconstructed by
PSNMF through the 8x bin experiment. The blue squares indicate three Brg ROIs. Second
column: raw spectra of theNd L𝛼, and SmL𝛼 signals from the respective ROIs. Third column:
comparison of these signals between the PCA reconstruction and PSNMF reconstruction
through the 8x bin experiment.
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Atomic % Mg Si Al Ca Fe Nd Sm U O
(ppm) (ppm) (ppm)

Brg/ NMF aided 17.27 20.04 2.18 0.71 1.54 180 238 - 58.11
Brg/ PSNMF (ROI 1) 17.03 20.04 2.21 0.82 1.53 200 231 - 58.17
Brg/ PSNMF (ROI 2) 17.12 20.04 2.20 0.81 1.54 188 215 - 58.12
Brg/ PSNMF (ROI 3) 17.21 20.02 2.22 0.78 1.52 191 227 - 58.00

Table 6.6: Composition comparison between the Brg from NMF aided method and Brg from
16 pixles of PSNMF reconstructed dataset.

6.6 Conclusion

In this chapter, we presented PSNMF, a novel technique for processing STEM-EDXS datasets,
which allows simultaneous phase unmixing and denoising. We evaluated the effectiveness
of PSNMF on various STEM-EDXS datasets, including synthetic dataset C147 with moderate
SNR, synthetic dataset C15 with extremely low SNR, and experimental dataset C120 with
medium SNR. All of these datasets comprise three phases, namely Brg, Fp, and CaPv, exhibit-
ing considerable spectral similarity and spatial overlap. We observe that under a sum-to-one
constraint the classical NMF technique often fails to retrieve the CaPv phase, which has the
smallest proportion. In contrast, by performing a series of binning experiments, PSNMF
extracts the phase abundance maps and spectra with high accuracy for the datasets with
moderate SNR. Furthermore, PSNMF remains effective in unmixing phases even in the pres-
ence of high noise levels. Our results therefore indicate that binning-based PSNMF offers
a useful approach for phase unmixing. However, selecting an optimal binning number is
crucial to balance the trade-off between SNR improvement and the distinguishability of
each phase in relevant pixels with increasing bin size. Our analysis further demonstrates
the superior denoising ability of PSNMF in comparison to the classical PCA method. By
exploiting the non-negativity constraint and the capacity of PSNMF to generate high quality
component spectra and abundance maps, the resulting reconstructed dataset by PSNMF is
of high quality. As a result, minor and trace elements can be detected and reliably quantified
even in the presence of extremely low SNR. The proposed PSNMF method presents signifi-
cant potential for wide-ranging applications in the study of materials that are challenging to
be chemically characterized by STEM-EDXS, such as those with complex volumetric phase
relationships, restricted SNR and beam sensitivity, or vital trace constituents.

98



7 Correlative EDXS-EELS Analysis via
Implicit Neural Representations

In this chapter, we explore the use of implicit neural representations for correlative EDXS-
EELS analysis and present some preliminary results. Our experimental data were acquired
with the support of the ESTEEM3 (Enabling Science and Technology through European
Electron Microscopy) project, and we received valuable assistance from Prof. G. Kothleitner
and Dr. D. Knez from Technische Universität Graz. By leveraging the power of emerging
neural networks, we are motivated to develop a new approach that can provide a more
comprehensive chemical understanding of materials. Although our results are preliminary,
they offer promising evidence of the potential of our approach and provide a foundation for
future developments in this subject.
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7.1 Improved Chemical Analysis via Simultaneously Acquired
EDXS and EELS

EDXS and EELS are both useful techniques for the chemical characterization of materials.
In this thesis, we present a comprehensive analysis of the strengths and weaknesses of the
two techniques in Chapter sections 2.3 and 2.4. EELS is particularly effective for analyzing
light elements, such as C and O, whereas EDXS is better suited for analyzing heavier ele-
ments. EELS is often complicated by an intense background, while EDXS typically has a low
background intensity and a high peak-to-background ratio. When the concentration of the
element of interest is low and the elemental ionization edge energy is high, EDXS is preferred
because it can more easily separate the signal from the background than EELS. However, it
has limitations when it comes to analyzing elements of low atomic number due to the strong
absorption of their X-rays. Moreover, when the elemental concentration is too low (e.g., less
than 0.1 at.%), the low counting statistics of EDXS limits its ability to accurately detect and
quantify the elements of interest.

At their core, there is an implicit link between the the generation of the signal dataset in EELS
and EDXS, since they both derive from atomic ionisation. This link raises the prospect of
synergistic analyses, in which both signals are recorded, for improved elemental analysis. In
Chapter 2.5, a summary of existing methodologies for the synergistic analysis of these two
complementary techniques has been provided. The development of high temporal resolu-
tion detectors has allowed researchers like Jannis et al. [109, 275] to employ the temporal
correlation of the underlying physics behind these two techniques to obtain additional infor-
mation beyond individual spectra. Meanwhile, recent advancements in electron microscopy
have enabled the simultaneous acquisition of EDXS and EELS data in STEM mode [276].
Researchers, including Kothleitner et al. [105] andVarambhia et al. [107], have explored the
partial cross-section conversion of EELS and EDXS in order to achieve a more thorough
analysis of materials. The former method necessitates the acquisition of accurate thickness
measurements, whereas the latter method requires the synthesis of standards. More recently,
Thersleff et al. [122] employed a data fusion approach to amalgamate both datasets into a
unified dataset based on shared spatial factors. This method aims to expand the spectral
dimension and augment the analytical explanatory power of the fused dataset; however,
it demands a meticulous selection of a weighting factor for the concatenation of the two
datasets and requires repeated assessment of the fused dataset’s variance. We were therefore
motivated to develop an effective and easy-to-use method for the co-analysis of simulta-
neously obtained EDXS and EELS datasets. In this chapter, we propose a novel framework
for the synergistic analyses by harnessing the potential of neural networks. This approach
capitalizes on the powerful descriptive capabilities of neural networks to complement the
EDXS dataset with its EELS counterpart.
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7.2 TheMotivation for Using Neural Networks

In recent years, neural networks have established themselves as a formidable tool for an-
alyzing massive datasets. They can process high-dimensional, diverse, and complex data
in an automatic and efficient manner while revealing intricate patterns and relationships
within the data. One type of neural network that has gained attention in recent years is
the implicit neural representation (INR). INRs facilitate learning and generate continuous
representations of data input, such as objects or scenes, without need of explicit geometric
or parametric models. Prominent INR methods include SIREN (SInusoidal REpresentation
Networks) [277], NeRF (Neural Radiance Fields) [278], and GPT (Generative Pre-trained
Transformer) [279–281]. Overall, INR allows deep learning neural networks to efficiently
process, encode, and represent information. Under the assumption that EELS contains
complementary information compared to its simultanouelsy acquired EDXS counterpart,
here I propose that converting EELS data into EDXS data (i.e., EELS-represented EDXS data)
via INR should result in an enhanced EDXS dataset compared to the raw EDXS data. This
fundamental concept forms the basis of the current chapter.

7.3 Materials andMethodology

7.3.1 Materials and Data Acquisition

In this chapter, we utilize solidus mineral assemblages that are similar to those tested in
Chapter 6 of this thesis. These assemblages were synthesized at 88 GPa and were composed
of three distinct phases, namely Brg, Fp, and CaPv. In our initial attempt to simultaneously
acquire EELS and EDXS data for these phases, we employed a Titan Themis microscope,
housed at the CIME (Centre Interdisciplinaire de Microscopie Electronique) at EPFL. This
microscope is equipped with a Gatan GIF Quantum ERS spectrometer featuring a charge-
coupled device (CCD) detector for EELS data acquisition, and four silicon drift detectors
(SDD) for EDXS data acquisition. However, we encountered issues related to the correlated
channel noise present in the EELS data obtained using the CCD detector. This noise intro-
duces inherent challenges for data processing algorithms such as PCA. Via the acquisition of
preliminary data with a GIF Quantum fitted with a K2 camera in Institut des Matériaux Jean
Rouxel of Nantes (IMN), we identified that direct electron detection (DED) sensors, which
can count individual electrons, effectively circumvent this problem.

Through the support of the ESTEEM3 project, we successfully acquired both EDXS and EELS
data using the ASTEM (Austrian Scanning Transmission Electron Microscope) at Technische
Universität Graz. The EELS data was collected using a Gatan GIF Quantum spectrometer
with a K2 camera, which employs a DED sensor, This type of sensor is crucial as it guarantees
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that the noise can be assumed to be Lorentzian. EDXS data were acquired simultaneously
using four SDD X-ray detectors.

We conducted a series of systematic tests to determine an optimal condition for collecting
EDXS and EELS data. The goal was to acquire the two types of data with suitable statistics
while minimizing sample damage under the single scan mapping constraint that was effec-
tively imposed by the EELS detector. (As compared to the multi-frame mapping used with
STEM-EDXS elsewhere in this thesis). We ultimately settled on the following parameters: a
high-tension voltage of 300 kV, a beamcurrent of 150 pA, a spot size of 11, a semi-convergence
angle of 19.6 mrad and a scan size of 100 by 100 with a pixel size of 3 nm. Each pixel was
exposed for 0.05 s, resulting in a total acquisition time of 8 minutes for each spectrum
imaging datacube. For EELS acquisition, we utilized a dispersion value of 0.5 ev/ch, an
entrance aperture of 5 mm, and a collection angle of 30.74 mrad. Additionally, for good EELS
signal-to-background, the chosen regions for sampling had to be thinner than for the EDXS
measurement of previous chapters. Given the optimization of conditions for acquiring EELS
data in thin regions, the counting statistics of the obtained EDXS data yields an average of
only 92 X-ray counts per pixel. The quality and SNR of the EDXS dataset is therefore inferior
than the one tested in the previous chapter which has an average of 120 X-ray counts per
pixel.

7.3.2 Network Architecture and Implementation

We first need to learn an implicit neural representation that maps the EELS data (𝑔(𝑥))
to EDXS data (𝑓(𝑥)) at spatial location 𝑥 and outputs EELS-predicted EDXS data 𝑓′(𝑥). To
achieve this, I employ a multi-layer perceptron (MLP) architecture. After multiple testing,
I developed a neural network whose schematic representation is shown in Figure 7.1. The
network consists of three layers, with each layer comprising 128, 128, and 1024 neurons,
respectively. The activation functions utilized in the neural network consist of PReLU (para-
metric rectifier linear units) [282] in the first two layers and Sigmoid [283] in the last layer. The
network is trained using backpropagation with the mean squared error (MSE) loss function
to minimize the difference between the predicted EDXS spectra 𝑓′(𝑥) and the acquired EDXS
spectrum 𝑓(𝑥).

Prior to feeding the training data to the network, several data preprocessing steps were
carried out. We first normalize 𝑔(𝑥) and 𝑓(𝑥) to [0,1], and then carry out multiple spatial
binning with bin sizes of 2, 4, 8, 12, 20, and 24. These binned datasets are contributed into
an augmented training dataset. Their increased SNR facilitates the representation learning.

We implement the network in Pytorch [284] and train it on an NVIDIA RTX8000 GPU using

102



Figure 7.1: Schematic illustration of the neural network architecture used in this work.

the Adam optimizer [196] with a learning rate of 1×10−4 and a mini-batch size of 1. The
training process contains 10 epochs and each epoch takes less than one minute. The network
converges to a good solution after 3.5×106 iterations. Finally, the obtained derivative 𝑓′(𝑥)
is renormalized to ensure that its maximum intensity is equivalent to that of the original
function 𝑓(𝑥).

7.4 Validation on Simultaneously Acquired EDXS-EELS Dataset

Having established the INR method, it was applied to output the EDXS dataset. In order to
demonstrate its effect, here we present the elemental maps integrated from the Si K𝛼 (with
the concentration of 17.27 at.%), Fe K𝛼 (with the concentration of 1.54 at.%), Nd L𝛼 and
Sm L𝛼 (with the concentration of around 200 ppm) X-ray peaks, as shown in Figure 7.2 (the
middle column). These three elements serve as representatives for major, minor, and trace
elements, respectively. An observable denoising effect is noted for all the three elements in
the neural network reconstructed dataset.

Additionally, a PCA decomposition was performed on the raw EDXS dataset. The screeplot
of this decomposition is depicted in Figure 7.3, revealing the presence of three major com-
ponents within the dataset, which were subsequently utilized to reconstruct the dataset.
Figure 7.2 also presents the resulting three elemental maps from the PCA reconstruction.
Consistent with the findings of the PCA reconstructed elemental maps in Chapter 6, negative
counts were detected in these three maps, implying potentially unfeasible quantification in
certain areas. In contrast, the INR method ensures non-negativity for the outputed EDXS
dataset, as neither EDXS data nor EELS data involved contain negative signals. Moreover, the
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maps from the INR output show distinctively better denoising and sharper spatial features
than those from the PCA reconstruction.

Figure 7.2: Elemental maps of Si K𝛼, Fe K𝛼, and Nd L𝛼 for raw EDXS dataset, INR outputed
dataset, and PCA reconstructed dataset. The colorbar scales range from the minimum to the
maximum value.

Figure 7.3: The scree plot of PCA decomposition of the EDXS dataset.
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To further compare the denoising effects between the PCA reconstruction and the INR
method, we select two regions of interest (ROIs), as illustrated in Figure 7.4. The smaller ROI
contains 4 pixels, while the larger ROI consists of 16 pixels. It is noted that both methods
successfully retrieve the Si K𝛼 peak summing only 4 pixels. In the summed spectra of 16
pixels, the signals of aminor element, Fe K𝛼 peak, are correctly retrieved using bothmethods.
Furthermore, the signals of trace elements, Nd L𝛼 peak and Sm L𝛼 peak, are detected using
both methods, while the raw spectra do not display any discernible meaningful signals.
Notably, the spectra generated by our method appear noisier than those produced by the
PCA reconstruction.

Figure 7.4: First column: Si intensity maps of integrated peak counts reconstructed by
our method. The blue square indicates the smaller ROI, and the orange and green squares
indicate the larger ROI. Second column: raw spectra of the Si K𝛼, Fe K𝛼 signals, and Nd L𝛼
and Sm L𝛼 from the respective ROIs. Third column: comparison of these signals between
the PCA reconstructed dataset and the INR learned dataset.

7.5 Discussion

The results shown in Figure 7.2 and Figure 7.4 indicate that both INR and PCA are effective
in denoising EDXS dataset in both spatial and spectral domains. However, the results also
suggest that each method has its strengths in different domains. Specifically, INR performs
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better on spatial denoising, while PCA is more effective at spectral denoising. The superior
performance of PCA in spectral denoising can be attributed to its ability to analyze the
principal components of a signal and remove noise in the frequency domain. In contrast,
the strength of neural networks such as INR lies in their ability to learn patterns in training
data and use this knowledge to denoise images in space. This preliminary analysis strongly
suggests that they are better suited for removing spatial noise.

7.6 Conclusion and Outlook

In this chapter, a novelmethodology is proposed that leverages implicit neural representation
to establish a linkage between simultaneously acquired EDXS and EELS datasets. It is proved
that the synergistic utilization of INR on EELS data with a suitable SNR and EDXS data with
poor statistics results in a significant improvement in the quality of the final output EDXS
data. We believe that the robust representation between the two modalities of spectroscopic
data is rooted in their fundamental physical relationship. Once identified and applied to all
concerned data points, such a robust representation can contribute to a global enhancement
of the dataset’s quality.

Furthermore, investigations are underway to test the proposed methodology’s effectiveness
when the EELS dataset exhibits poor statistical quality. In such cases, the proposed strategy
involves mapping EDXS data to EELS data to improve the latter’s quality. In the near future,
synthetic EDXS and EELS datasets with various SNRs and composing materials will be sim-
ulated to conduct a comprehensive investigation on the potential of INR. Potentially, the
methodology can be further improved by combining spectral denosing techniques such as
PCA with INR to achieve a superior denoising in both the spatial and spectral domains. Over-
all, this preliminary study therefore raises a number of promissing prospects for improved
elemental analysis using correlative analytical STEM.
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8 Conclusions and Perspectives

8.1 Melting Experiments in Lower Mantle Conditions

In conclusion, this study provides insights into the solidification process of the Earth’smantle
and the lower mantle mineralogy. The melt pocket’s characterization has elucidated the
crystallization of bridgmanite from the melt, which may have led to the formation of a Si-
enriched lower mantle and thus a Si-depleted upper mantle, consistent with present-day
observations. Additionally, our findings suggest that Fe accumulates preferentially in the
residualmelt, which supports the basal magma ocean theory. Furthermore, the investigation
of the partitioning behavior of Fe between solidus ferropericlase and bridgmanite reveals
that the Fe content in bridgmanite may contribute to the observed rheological variations
in the lower mantle. Subsequent research endeavors should concentrate on exploring the
partitioning of trace elements among the liquidus phase, bridgmanite, and the coexisting
residual silicate melt. Such investigations could yield crucial geochemical constraints on the
magnitude and characteristics of the enigmatic reservoir within the lower mantle.

8.2 AdvancedDataProcessing forEnhancedSTEM-EDXSAnalysis

The proposed NMF aided phase analysis methodology presents a promising avenue for
overcoming the constraints of traditional phase quantification approaches in the context
of complex materials. This method has been effectively employed for the quantification of
phases characterized by considerable spatial and spectral overlap, as well as for the detec-
tion of trace elements in beam-sensitive mineral assemblages. The method is suitable for
analyzing a wide variety of materials that have complex volumetric phase relationships and
vital trace constituents.

PSNMF presents a more robust and effective methodology for phase unmixing and de-
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noising in STEM-EDXS datasets. Our results demonstrate the effectiveness of PSNMF in
accurately unmixing phases, even in the presence of extremely high noise levels. Moreover,
PSNMF surpasses the classical PCA method in terms of denoising capabilities and can ef-
fectively reconstruct high-quality datasets for accurate trace element quantification. The
proposed methodology holds considerable potential for extensive applications in the char-
acterization of materials that pose challenges for chemical characterization via STEM-EDXS.
Future research perspectives encompass the development of automated binning methods
for optimizing the number of bins, and the extension of the PSNMF approach to alternative
spectroscopic data types.

We also underscore the potential of employing implicit neural representations (INR) for
correlating simultaneously acquired EDXS and EELS datasets, facilitating improved chemical
analysis. The proposed methodology effectively denoises EDXS data within the spatial
domain, while PCA proves more effective for spectral denoising. In the near future, synthetic
EDXS and EELS datasets with various SNRs and comprising materials will be simulated to
investigate the potential of INR comprehensively. Also, a method that combines PCA and
INR for superior denoising in both the spatial and spectral domains will be developed.
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Figure 1: Overview images (HAADF) of the 46 GPa sample.

Figure 2: Overview images (HAADF) of the 55 GPa sample.
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Figure 3: Overview images (HAADF) of the 71 GPa sample.

Figure 4: Overview images (HAADF) of the 88 GPa sample.
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Figure 5: Scanned STEM-EDXS maps of the 46 GPa sample.
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Figure 6: Scanned STEM-EDXS maps of the 55 GPa sample.
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Figure 7: Scanned STEM-EDXS maps of the 88 GPa sample.
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Figure 8: NMF and PSNMF decomposition results of the C147 dataset.
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Figure 8: NMF and PSNMF decomposition results of the C147 dataset (continued).
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Figure 8: NMF and PSNMF decomposition results of the C147 dataset (continued).
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Figure 9: The scree plots of PCA decomposition of the C147, C15, and C120 dataset, respec-
tively.
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Figure 10: NMF and PSNMF decomposition results of the C15 dataset.

128



Figure 10: NMF and PSNMF decomposition results of the C15 dataset (continued).
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Figure 10: NMF and PSNMF decomposition results of the C15 dataset (continued).
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Figure 11: NMF and PSNMF decomposition results of the C120 dataset.

131



Figure 11: NMF and PSNMF decomposition results of the C120 dataset (continued).
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Figure 11: NMF and PSNMF decomposition results of the C120 dataset (continued).
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