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Abstract

The thesis at hand is concerned with robots’ navigation in human crowds.
Specifically, methods are developed for planning a mobile robot’s local mo-
tion between pedestrians, and they are evaluated in experiments where a robot
interacts with real pedestrians as well as in simulations of a crowd and a robot.
The thesis is divided in three main contributions.

The first contribution describes a novel method for non-holonomic robots of
convex shape to avoid imminent collisions with moving obstacles. The method
assists navigation by correcting steering from the robot’s path planner or driver.
Its performance is evaluated using a custom simulator, which replicates real
crowd movements from a campus dataset, and corresponding metrics which
quantify agents’ efficiency, the robot’s impact on the crowd, and the number of
collisions. Further, the method is implemented and evaluated on the standing
wheelchair Qolo. In the experiments performed, it drives in autonomous mode
using on-board sensing (LiDAR, RGB-D camera and a system to track pedes-
trians). It avoids collisions with up to five pedestrians and passes through a
door.

The second contribution studies the Acceleration Obstacle (AO) for enabling
a robot’s navigation in human crowds. The AO’s geometric properties are ana-
lyzed and a direct sampling-free algorithm is proposed to approximate its bound-
ary by linear constraints. The resulting controller is formulated as a quadratic
program and evaluated in interaction with simulated bi-directional crowd flow
in a corridor. A comparison to alternative robotic controllers is carried out,
considering the robot’s and the crowd’s performance and the robot’s behavior
with respect to emergent lanes. Results indicate that the robot can achieve
higher efficiency outside lanes.

In the third contribution, the problem for a mobile robot to navigate seam-
lessly in a human crowd is treated by an inverse reinforcement learning (IRL)
approach. A novel feature is proposed to model costs of anticipated collisions
between agents. The feature approximates agents’ pairwise interaction energy,
a function which prior work has derived empirically from crowd data as an inter-
action potential driving pedestrians’ mutual avoidance. Using a recent frame-
work to perform IRL from locally optimal examples in continuous space, cost
functions which incorporate the novel feature are learned efficiently from high-
dimensional examples of real crowd motion. Examples are obtained from two
public datasets containing pedestrians’ and wheelchair users’ trajectories. The
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learned models are evaluated and compared in how accurately their local optima
model the training examples and test examples. Furthermore, predictions based
on test examples’ initial states only are generated similarly by optimization, and
their distance to recorded ground truth is measured. Both models’ predictions
compare favorably to a recent related approach from the literature. Finally, a
control system which computes and executes in real-time an optimal trajectory
according to the learned cost functions is implemented on a robotic wheelchair,
to steer it between pedestrians perceived by an on-board tracking system. The
robot is deployed on campus, where the controller’s performance is evaluated
qualitatively. Results show that the approach often generates apt motion plans,
which complement pedestrians’ motion in an efficient manner, albeit oscillations
between locally optimal solutions may occur.

Finally, a comparison of the proposed methods is carried out in simulation,
and their differences in terms of performance and underlying assumptions are
discussed.



Résumé

La présente thèse porte sur la navigation des robots dans les foules humaines.
Plus précisément, des méthodes sont développées pour planifier le mouvement lo-
cal d’un robot mobile entre les piétons, et elles sont évaluées dans des expériences
où un robot interagit avec des piétons réels ainsi que dans des simulations d’une
foule et d’un robot. La thèse est divisée en trois contributions principales.

La première contribution décrit une nouvelle méthode pour les robots non
holonomes de forme convexe afin d’éviter les collisions imminentes avec des ob-
stacles en mouvement. La méthode aide à la navigation en corrigeant la direc-
tion du planificateur de trajectoire du robot ou du conducteur. Sa performance
est évaluée à l’aide d’un simulateur sur mesure, qui reproduit les mouvements
d’une foule réelle à partir d’un ensemble de données provenant d’un campus,
et des mesures correspondantes qui quantifient l’efficacité des agents, l’impact
du robot sur la foule et le nombre de collisions. En outre, la méthode est mise
en œuvre et évaluée sur le fauteuil roulant Qolo. Dans les expériences réalisées,
il se déplace en mode autonome en utilisant les capteurs embarqués (LiDAR,
caméra RGB-D et système de suivi des piétons). Il évite les collisions avec un
maximum de cinq piétons et franchit une porte.

La deuxième contribution étudie l’Obstacle d’Accélération (OA) pour perme-
ttre la navigation d’un robot dans les foules humaines. Les propriétés géométriques
de l’OA sont analysées et un algorithme direct sans échantillonnage est proposé
pour approximer sa frontière par des contraintes linéaires. Le système de com-
mande qui en résulte est formulé sous la forme d’un programme quadratique et
évalué en interaction avec un flux de foule bidirectionnel simulé dans un couloir.
Une comparaison avec d’autres contrôleurs robotiques est effectuée, en tenant
compte des performances du robot et de la foule, ainsi que du comportement
du robot par rapport aux voies émergentes. Les résultats indiquent que le robot
peut atteindre une plus grande efficacité en dehors des voies émergentes.

Dans la troisième contribution, le problème de la navigation d’un robot
mobile dans une foule humaine est traité par une approche d’apprentissage
par renforcement inverse (ARI). Une nouvelle caractéristique est proposée pour
modéliser les coûts des collisions anticipées entre les agents. Cette caractéristique
se rapproche de l’énergie d’interaction par paire des agents, une fonction que
des travaux antérieurs ont dérivée empiriquement à partir de données de foule
comme un potentiel d’interaction conduisant à l’évitement mutuel des piétons.
En utilisant un cadre récent pour effectuer l’ARI à partir d’exemples locale-
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ment optimaux dans des espacse continus, les fonctions de coût qui intègrent la
nouvelle caractéristique sont apprises efficacement à partir d’exemples à haute
dimension du mouvement réel de la foule. Les exemples proviennent de deux en-
sembles de données publiques contenant des trajectoires de piétons et d’utilisateurs
de fauteuils roulants. Les modèles appris sont évalués et comparés en fonc-
tion de la précision avec laquelle leurs optima locaux modélisent les exemples
d’apprentissage et les exemples de test. En outre, les prédictions basées sur les
seuls états initiaux des exemples de test sont générées de manière similaire par
optimisation, et leur distance par rapport à la vérité de terrain enregistrée est
mesurée. Les prédictions des deux modèles se comparent favorablement à une
approche connexe récente de la littérature. Enfin, un système de contrôle qui
calcule et exécute en temps réel une trajectoire optimale en se basant sur les
fonctions de coût apprises est implémenté sur un fauteuil roulant robotisé, afin
de le diriger entre les piétons perçus par un système de suivi embarqué. Le robot
est déployé sur le campus, où les performances du contrôleur sont évaluées qual-
itativement. Les résultats montrent que l’approche génère souvent des plans de
mouvement appropriés, qui complètent le mouvement des piétons de manière ef-
ficace, bien que des oscillations entre les solutions localement optimales puissent
se produire.

Enfin, une comparaison des méthodes proposées est effectuée par simulation,
et leurs différences en termes de performance et d’hypothèses sous-jacentes sont
discutées.



Zusammenfassung

Die vorliegende Arbeit befasst sich mit mobilen Robotern, welche zwischen
Fussgängern navigieren. Es werden Methoden entwickelt zur Planung von loka-
len Bewegungen eines mobilen Roboters zwischen Fussgängern. Diese Methoden
werden evaluiert in physischen sowie simulierten Experimenten, worin ein Robo-
ter mit Fussgängern interagiert. Die Arbeit ist in drei Hauptbeiträge gegliedert.

Der erste Beitrag beschreibt eine neuartige Methode für nicht-holonome Ro-
boter mit konvexem Grundriss zur Vermeidung bevorstehender Kollisionen. Die
Methode wird in einer Simulation evaluiert, welche auf aufgezeichneten Bewe-
gungen echter Menschenmengen basiert. Zur Evaluation werden Kenngrössen
berechnet, welche die Effizienz des Roboters und der Fussgänger, den Einfluss
des Roboters auf die Geschwindigkeit der Fussgänger und die Anzahl der Kol-
lisionen quantifizieren. Ausserdem wird die Methode auf dem Stehrollstuhl
Qolo implementiert, um damit eine experimentelle Auswertung durchzuführen.
Darin fährt der Stehrollstuhl Qolo autonom zwischen statischen Hindernissen
und Fussgängern, welche er mittels Sensoren (LiDAR und RGB-D Kamera)
wahrnimmt.

Der zweite Beitrag untersucht das Beschleunigungshindernis als ein Konzept
zur Bewegungsplanung für mobile Roboter, welche sich in Menschenmengen be-
wegen. Dessen geometrische Eigenschaften werden untersucht, und ein direkter
Algorithmus zur Konstruktion einer annähernden Halbebene wird vorgeschla-
gen. Davon ausgehend wird zur Steuerung eines Roboters ein quadratisches
Optimierungsproblem formuliert. Die Steuerung wird in Simulationen evaluiert,
worin ein Roboter mit Fussgängerströmen in einem Korridor interagiert. Ein
Vergleich mit alternativen Steuerungsmethoden wird durchgeführt, wobei die
Effizienz des Roboters und der Fussgänger sowie die Interaktion des Roboters
mit dynamisch entstehenden Bahnen ausgewertet werden. Die Resultate zeigen,
dass der Roboter ausserhalb solcher Bahnen eine höhere Effizienz erreicht.

Im dritten Beitrag wird das Problem eines Roboters, sich fliessend in einer
Menschenmenge zu bewegen, durch einen Ansatz des inversen verstärkenden
Lernens behandelt. Ein neues Merkmal zur Modellierung von Kosten antizip-
ierter Kollisionen wird vorgeschlagen. Das Merkmal nähert die paarweise In-
teraktionsenergie an, eine Funktion welche in einer vorangehenden Arbeit em-
pirisch aus aufgezeichneten Menschenmengenbewegungen hergeleitet wurde als
ein Potenzial, welches Fussgänger bei der Kollisionsvermeidung antreibt. Mit-
tels einer kürzlich entwickelten Methode für das inverse verstärkende Lernen
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von lokal optimalen Beispielen in kontinuierlichen Räumen werden Kostenfunk-
tionen, welche das neue Merkmal beinhalten, effizient von hochdimensionalen
realen Beispielen von Fussgängerbewegungen gelernt. Solche Beispiele wer-
den zwei öffentlichen Datensätzen entnommen, welche die Bewegungen von
Fussgängern und Personen in Rollstühlen beinhalten. Die gelernten Modelle
werden evaluiert und verglichen bezüglich der Genauigkeit, mit welcher ihre lo-
kalen Optima die Trainings- und Testbeispiele modellieren. Ausserdem werden
Vorhersagen für Bewegungen gemacht durch Kostenoptimierung bei gegebenem
Anfangszustand, und deren Entfernung von den tatsächlichen Bewegungen wer-
den gemessen. Die Vorhersagen unserer Modelle sind gesamthaft gesehen genauer
als jene einer verwandten Methode aus der Literatur. Schliesslich wird ein
Steuerungssystem, welches eine optimale Trajektorie gemäss der gelernten Kos-
tenfunktionen in Echtzeit berechnet, auf dem Stehrollstuhl Qolo implementiert.
Mit einem LiDAR-basierten Objektverfolgungssystem zur Wahrnehmung von
Fussgängern ausgestattet, fährt Qolo für eine qualitative Evaluation der Steu-
erung autonom durch einen Korridor auf dem Campus. Die Resultate zeigen,
dass die Steuerung oftmals passende Bewegungspläne generiert, welche die Be-
wegungen der Fussgänger effizient ergänzen, obgleich Schwankungen zwischen
lokal optimalen Lösungen auftreten können.

Zuletzt werden die vorgeschlagenen Methoden miteinander verglichen in
simulierten Experimenten, und ihre Unterschiede bezüglich ihrer Leistungsfähig-
keit und der ihnen zugrunde liegenden Annahmen werden diskutiert.
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Chapter 1

Introduction

Public spaces typically serve a variety of populations and purposes in parallel,
which necessitates coordination between different groups or individuals. Fur-
thermore, regulations, societal norms, customs, and informal agreements shape
the ways by which people pursue their objectives in such spaces. When making
decisions there, people consider such external conditions as well as subjective
goals, while reasoning not only about the present situation but also anticipating
their actions’ consequences in the near future. Encounters may lead to interac-
tions of almost arbitrary complexity, involving implicit exchange of information,
explicit communication, cooperation, and speculation about other people’s in-
tentions. The present thesis considers the problem for a mobile robot to navigate
around pedestrians in a manner which is safe and allows all involved agents to
move smoothly and efficiently.

Intelligent ground vehicles of similar diameter and speed as pedestrians have
made their way in human-populated spaces. Smart wheelchairs and delivery
robots are prime examples for such partially or fully autonomous systems. In
contrast to autonomous cars, they operate in close proximity to pedestrians
and use the same pathways, where traffic rules do not apply. Furthermore, in
pedestrian zones, one encounters a much greater variety of floor layouts, human
activity, and stationary objects than on designated pathways for cars. Naviga-
tion in such weakly structured environments involves subtle interactions with
other agents and benefits strongly from situational awareness. Only by contin-
uously monitoring the surrounding, by correctly interpreting its condition, and
by leveraging specific prior knowledge about an environment and its population,
an autonomous system can navigate successfully, safely, and efficiently there.

Since mobility is a fundamental need for humans and instrumental to par-
ticipating in many econonomical and social activities, advances in such vehicles
are of high interest to society. Particularly, persons with disabilities may gain
further access and capabilities with such smart vehicles. While skilled users of
manual wheelchairs can achieve high agility and adapt quickly to their environ-
ment, powered wheelchairs typically exhibit a higher weight and corresponding
inertia, and their control interfaces are more limited in precision and bandwidth.
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2 CHAPTER 1. INTRODUCTION

Therefore, users of powered wheelchairs may be unable to adapt to pedestrians
in dense crowds, which may be too hectic or unpredictable to allow safe naviga-
tion. Thus, technical developments to extend safe and efficient mobility to all
user groups are desirable.

Wheelchair users navigating in a crowded environment face a challenging
task, as they must not only avoid erratic pedestrians who obstruct their way,
but, at the same time, find a path that leads between immobile obstacles to-
wards the goal. Smart wheelchairs feature automatic high-level control systems
to augment their users’ input. Traditionally, they are designed to assist naviga-
tion in environments which are static, for example domestic environments. In
contrast, when navigating in human crowds, one must cope with highly dynamic,
not fully predictable, and interacting agents. They are challenging to perceive,
avoid and coordinate with for a smart wheelchair’s on-board perception and
control system.

A powered wheelchair that moves fast in close proximity to pedestrians
constitutes a hazard, as it may collide with them. A collision may injur the
wheelchair user as well as the involved pedestrians, due to the wheelchair’s high
weight, speed and rigidity. Thus, a smart wheelchair must reliably avoid any
collision when driving in a dense crowd. This becomes even more important in
the presence of vulnerable populations, such as children, pregnant women, and
older adults.

The present thesis aims towards a better understanding of interactions which
occur between pedestrians and which enable them to navigate smoothly and effi-
ciently in close proximity to each other. Similarly, the thesis aims at techniques
which enable mobile robots to navigate among pedestrians with a comparable
level of skill. Thus, the state of the art in mobile robotics, focusing on crowded
environments, is reviewed in the following Section 1.1. There, research gaps in
joint crowd–robot navigation are identified. Finally, the Section 1.2 summarizes
the present thesis’ scientific contributions regarding these open issues. Also,
the main assumptions underlying the thesis are stated. This is followed by a
list of previous publications of the contents presented in the thesis’ subsequent
chapters, and by an explanation of the thesis’ structure.

1.1 Related Work

Several research areas provide useful concepts, models, and techniques for en-
abling robotic systems to navigate in pedestrian zones. These include not only
traditional areas of robotics, such as localization, mapping, object tracking,
motion planning, and obstacle avoidance, but also the sciences of human walk-
ing behavior and crowd dynamics. Before reviewing these individual fields, a
general overview on prior work tackling robotic navigation in crowds is given.
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1.1.1 Robotic Navigation in Crowded Environments

Prior work focused on different challenges associated with robots’ navigation in
human crowds. According to a survey [1], a large body of work has focused on
social aspects, aiming at robots that interact with humans in a comfortable, nat-
ural, and sociable manner while navigating through populated spaces. Another
focus present in many prior works concerns the robot’s navigation itself, i.e. mo-
tion planning between agents that interact with the robot, as documented by
recent surveys [2, 3]. A third important aspect tackled by many works consists
in perceiving and tracking pedestrians, as another recent survey [4] shows.

Different applications motivated researchers to work towards robots capable
of autonomous navigation in crowded environments. On the one hand, appli-
cations as transportation systems have been an important motivation, such as
given by smart wheelchairs [5], intelligent personal mobility devices [6], and de-
livery robots [3,4]. On the other hand, an important application has been seen
in robots that guide pedestrians, e.g. as museum guides [7], which operate under
normal conditions, or as systems for desaster mitigation [8], which guide people
to nearest exits or improve crowd flow dynamics during emergency situations.

1.1.2 Robotic Perception

As a basis for any intelligent behavior, mobile robots must be able to perceive
their own motion, their static environment, and dynamic objects around them.

Ego-motion estimation

As a robot perceives its environment using on-board sensors, such as cameras
and laserscanners, its perception is relative to itself. Therefore, it is vital to
estimate the system’s own motion independently, in order to retrieve any per-
ceived object’s actual motion by subtracting the robot’s own motion from the
perceived motion. Commonly, the robot’s ego-motion is estimated by fusing
and integrating acceleration and velocity estimates over time, obtained from
inertial measurement units and odometers (see e.g. [9]). Integrating these es-
timates results in an estimate of the system’s change of position over time.
However, integration over longer periods of time accumulates errors present in
the velocity and acceleration estimates, and therefore, the estimated trajectory
deviates more and more from the robot’s actual trajectory. To correct for this,
it is necessary to localize the robot with respect to some fixed features of the
environment, as will be discussed next.

Simultaneous Localization and Mapping

The robot can estimate its own location and, at the same time, build a map
of its environment by using e.g. on-board vision [10], laserscans [11] or other
measurements which contain information on the robot’s location relative to
some known references. This process is known as simultaneous localization and
mapping (SLAM).
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The constructed map can then be used to plan a path from the robot’s
current location to its goal. For example, its goal may be a particular landmark
or a particular exit of a room, and the robot needs to continuously monitor its
own position and orientation relative to this goal in order to direct itself towards
the goal and notice when it has reached the goal. A frame of reference can be
given a priori, for example as a map, or it can be constructed by the robot itself
from its perception of the environment. Also, it is possible to build a local map
and to register it to a known map by matching their geometric features [11].
Thus, by simultaneously localizing itself and mapping its environment, the robot
acquires knowledge enabling it to plan an efficient path from its current location
around static obstacles to its goal.

Detection and Tracking of Dynamic Agents

It is crucial for an autonomous system to distinguish between static parts of
its environment, such as walls, pillars, or benches, and dynamic agents, such
as humans, vehicles, or dogs. In doing so, the robot may ensure to include in
its map only really static elements and thereby keep the option of planning a
path through space which is currently occupied by dynamic agents. More im-
portantly, by identifying dynamic agents and observing their individual motion,
the robot may speculate about their behavior in the future and its own inter-
action with them. Finally, the robot may implement specific behaviors with
respect to specific types of agents, for example, it may be additionally cautious
around humans, especially if they are vulnerable populations.

Tracking-by-detection [12] denotes a common paradigm for designing a track-
ing system, where the task is divided in two steps at every update, namely
detection and data association. Given a new frame (e.g. an image), in the
first step, objects of interest are detected in the given frame by hand-crafted
or data-driven techniques. In the second step, detections are associated with
targets that presumably generated those detections, thereby linking detections
in different frames that seem to belong to the same target.

1.1.3 Obstacle Avoidance, Path and Motion Planning

Avoiding obstacles is among the most basic capabilities which a mobile robot
must possess in order to navigate successfully through an environment. Addi-
tionally, completing a navigation task requires to progress towards a given goal
and to reach it eventually, after starting from a given initial location. For en-
abling a mobile robot to achieve both together, i.e. to reach its destination while
avoiding obstacles, different paradigms have been developed in robotics. The list
below defines three important paradigms, and gives examples and explanations,
in order to guide readers through the remainder of this section.

� Under the paradigm of reactive control (or reactive navigation), the robot’s
behavior at any given instant is defined by a closed form rule or an opti-
mization problem, which is formulated with reference to the robot’s and
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obstacles’ states and actions at the current instant only. Typical ap-
proaches in closed form include artificial potential methods [13,14], meth-
ods based on dynamical systems [15–17]. Also vision-based navigation
algorithms [18] can be treated as reactive control, since they respond di-
rectly to visual input. A classical type of optimization-based reactive
control uses the Velocity Obstacles [19,20] to define constraints on admis-
sible choices of the robot’s velocity. We note that VO can be considered
both among reactive techniques and motion planning (see below).

Despite using local information only, global properties of generated trajec-
tories can be guaranteed sometimes, e.g. convergence to the goal [15–17].

We will briefly compare approaches in closed form against optimization-
based approaches.

– Computational complexity for control laws in closed form tends
to be lower than for those relying on optimization. Typically, closed
form rules have a fixed runtime, which scales linearly with the num-
ber of obstacles, whose contributions can be accumulated when com-
puting the control law [13–17]. Optimization-based approaches also
require, in a first step, to compute a contribution by each obsta-
cle, however in the form of a constraint. In a second step, an opti-
mization problem is solved, taking into account each obstacle’s con-
straint [19,20]. Thus, the first step may be of comparable complexity
as computing obstacles’ contributions for closed form rules, whereas
the second step adds an additional burden, which is not negligible
in contrast to algebraic operations by which approaches in closed
form combine obstacles’ contributions. Common solvers for such op-
timization problems may rely on randomization of constraints and
incur an expected runtime that scales linearly with the number of
constraints (see e.g. the algorithm of incremental linear program-
ming [21]). Thus, at least in terms of expected runtime, both classes
of controllers exhibit linear scaling with the number of obstacles,
but the actual runtime in a particular execution of an optimization-
based approach may be longer or shorter than expected, whereas
closed form approaches yield a fixed runtime. Furthermore, it has
to be noted that optimization-based approaches may require addi-
tional computations if the problem turns out to be infeasible due to
conflicting constraints. To handle such a case, a slack variable may
be introduced, which renders constraints soft and thereby guarantees
that the corresponding optimization problem is feasible [20]. Accord-
ingly, the new problem has to be solved after the original problem
was found infeasible, which adds an additional burden, considering
also that the new problem’s dimensionality is increased from two to
three dimensions due to the slack variable. The same solution algo-
rithm can be used, and its expected runtime still scales linearly with
the number of obstacles, although with a higher larger scaling factor
due to the higher dimensionality [21].
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– Guarantees of collision avoidance for approaches in closed form
are often given at the level of positions [13–17], i.e. they guar-
antee that trajectories are collision-free. Optimiziation-based ap-
proaches [19, 20] may try to achieve stronger guarantees, e.g. en-
suring that the robot attains only velocities which it could maintain
for at least a fixed duration before a collision would occur. However,
constraints which are derived from such a principle are not necessar-
ily feasible in the presence of multiple obstacles. As discussed above,
a remedy is found in softening the constraints, which invalidates the
desired guarantees by consequence. In contrast, when constraints
are feasible, the underlying anticipatory principle contributes to the
robot’s safety, as it ensures sufficient time for braking, assuming that
obstacles do not change course towards a collision. While this as-
sumption may be violated e.g. by a pedestrian who overlooks the
robot, such an approach still forces the robot to adapt immediately
and in an anticipatory fashion to unforeseen motions that would lead
to a collision in the near future. For this reason, and also due to the
increased perceived safety that comes with anticipatory behavior, the
present thesis favors such approaches.

– Guarantees of convergence to a goal for closed form approaches
are typically assuming static environments [13–17]. Even if dynamic
obstacles are present and guarantees are only given for static envi-
ronments, convergence can be achieved, assuming that the dynamic
obstacles’ are not actively preventing the robot from passing around
them. Optimization-based approaches [19, 20] tend to neglect this
aspect entierly, i.e. they do not even guarantee convergence in static
environments. This thesis disregards convergence issues as well, since
they are associated with static obstacles rather than dynamic and
interacting obstacles, such as pedestrians, and could be tackled by
integrating any prior approach (e.g. closed form or planning-based)
with the methods for dynamic obstacles considered in this thesis.

To conclude the above comparison, it can be said that closed form and
optimization-based approaches complement each other. Namely, when
computational resources are scarce or it is unnecessary to plan according
to a specific anticipatory principle, closed-form approaches are preferrable.
In contrast, optimization-based approaches are suitable for cases where
powerful computation is available and anticipatory planning is desirable.

� Under the paradigm of path planning, an optimization problem is for-
mulated with reference to the robot’s path (i.e. a sequence of positions
without a specification of time), which is required to connect the given
initial position and the goal while avoiding static obstacles with a suffi-
cient margin. For fast path planning, sampling-based techniques can be
used, such as rapidly exploring random trees [22], where trajectories are
built incrementally by sampling random control inputs. A computation-
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ally heavier approach is given by the A* algorithm [23], which discretizes
space into grid cells and guarantees to find the optimal path.

Note that, since the environment may not be known completely or the
robot’s map may not be fully accurate, the robot may need to update its
plan on the fly, as soon as new information is available. However, even
if a planned path is feasible and optimal, the robot will need to deviate
from it whenever a dynamic agent intercepts it.

� Under the paradigm of motion planning, an optimization problem is for-
mulated with reference to the robot’s and obstacles’ motion over a time
span. By solving this problem, the robot’s trajectory over the time span is
obtained, which defines the robot’s behavior at particular instants. Typ-
ical examples are given by VO [19, 20], which assume linear motion, or
alternative approaches assuming motion on circular arcs [24,25]. Compu-
tationally heavier approaches optimize trajectories over several time steps,
e.g. in the framework of model predictive control [26].

Thus, key characteristics of such approaches consist in anticipation of cur-
rent actions’ effects in the future and the ability to incorporate kinematic
and dynamic constraints. In particular, conflicts between satisfying ac-
celeration limits and avoiding obstacles can be foreseen and avoided, and
spaces of non-linear trajectories can be searched [24,25]. Furthermore, the
robot may account for obstacles’ motion in the near future, if their motion
is known [19,20].

These paradigms can also be combined, e.g. by first planning a path or a
long term motion for the robot, and then using a reactive control policy to
avoid any obstacles which the robot encounters unexpectedly while executing
the plan. It can be argued that reactive control is not clearly distinguishable
from single-step motion planning, which merely extrapolates the current state
in the future dependent on the action chosen, such as in methods based on the
Velocity Obstacle [19,20]. In any case, a reactive controller or a motion planner
with a high update rate is required for a safe system, as it allows the robot to
adapt its motion quickly in situations where a collision is immminent, in order
to deviate to a non-colliding course.

Accounting for Uncertainty

If moving obstacles are present, their behavior in the future may be partially
unknown. Furthermore, any obstacle’s state may be uncertain due to the robot’s
imperfect perception. To achieve safety or performance guarantees in such cases,
motion planning must be based on a model which describes any uncertainty
concerning obstacles’ states and behavior. For example, such a model may
bound obstacles’ acceleration [27] or describe their states and behavior in a
probabilistic fashion [28, 29]. During motion planning, such uncertainty can
then be resolved, e.g., by looking to ensure that the worst possible outcome
does not violate safety constraints [27] or by optimizing a cost’s expectation
value [28,29].
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Accounting for Interactions

If obstacles are also intelligent agents, such as pedestrians, they may interact
with the robot and with each other. There are different ways by which motion
planning can account for such interactions. Naively, one could first predict ob-
stacles’ motion in the future, e.g. by assuming that they will simply maintain
their current velocities, and then perform deterministic motion planning with
respect to the predicted trajectories, e.g. using Velocity Obstacles [19]. A more
elaborate approach would predict obstacles’ behavior still independently from
the robot’s behavior but treat it as uncertain, thereby accounting for their inter-
actions. Thus, the robot’s motion could be planned with respect to the specific
model of uncertainty, e.g. to ensure safety under worst case assumptions [27],
as described in the previous section. However, the underlying idea still exhibits
a fundamental flaw, as it first predicts pedestrians’ trajectories, and then deter-
mines a complementary trajectory for the robot, without considering whether
the robot’s planned trajectory alters the chances of the pedestrians’ predicted
trajectories. Attempting to resolve this issue while performing prediction and
planning in a sequential fashion would result in circular reasoning.

A self-consistent principle for motion planning in the presence of interacting
agents can be found in reasoning jointly about all interacting agents’ motions.
Instead of introducing some hierarchy or sequence in determining individual
motions, a principle is required which allows to find a plausible combination of
individual actions. For instance, one could postulate that all agents will con-
tribute equally to collision avoidance. This idea underlies the approach of Opti-
mal Reciprocal Collision Avoidance (ORCA) [20], which determines individual
actions such that they satisfy constraints that enforce balanced minimum con-
tributions to collision avoidance. Thus, it can be seen that such approaches are
equivalent to assuming the perspective of multi-agent motion planning, where
the robot is considered as just one particular agent among multiple others.

Multi-agent navigation

The perspective of multi-agent navigation is the most adequate for a robot’s
decision making within a system of interacting agents, as argued in the previous
section, as well as by other authors [2]. Then, a navigation problem for the
multi-agent system can be formulated, whose solution determines all agents’
nominal behavior, and the robot’s behavior in particular. Such approaches can
also incorporate uncertainty of individual intentions and actions, e.g. in the
framework of a partially observable markov decision process [29]. The idea to
jointly consider individual agents’ motion and to look for reciprocal or mutually
compatible maneuvers is a key concept for many recent approaches to robots’
navigation in crowds, as will be discussed below.

To tackle multi-agent navigation tasks, centralized and de-centralized meth-
ods have been proposed. While centralized methods determine all agents’ ac-
tions by solving a single, possibly large-scale problem, de-centralized methods
exploit the structure of their underlying problem formulation to allow its de-
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composition into individual sub-problems. Centralized methods include prob-
abilistic models, which describe the system’s behavior by a joint probability
distribution over all agents’ actions [30, 31]. Centralized methods based on
reinforcement learning [32–34], inverse reinforcement learning [35], or game the-
ory [36–38] and inverse game-theoretic optimal control [39] are also common.
De-centralized methods include reciprocal velocity obstacles [20] and other re-
ciprocal control obstacles [40–42], as well as de-centralized approaches based on
reinforcement learning [43,44].

The method of [30, 31], termed as Interacting Gaussian Processes (IGP),
assumes a joint probability distribution over multiple interacting agents’ tra-
jectories, in which the highest probability is assigned to a combination of tra-
jectories that are individually smooth and not colliding with each other. At
runtime, the robot’s and surrounding pedestrians’ motion is predicted based on
the conditional distribution over their trajectories during the near future, given
their trajectory data in the past. The prediction for the robot is considered as
its plan, which is executed subsequently. By planning under the assumption of
mutual adaptation, solutions in which every agent progresses can be found even
in dense conditions, where the robot could not determine a non-colliding way
forward when assuming that other agents will maintain their current velocities.
“Unfreezing” the robot in such situations has been stated as the motivation
behind IGP [30].

Approaches based on ORCA [20] encode multiple agents’ mutual adapta-
tion by pairwise constraints on agents’ velocities, such that admissible velocities
can be maintained over a time horizon without leading to any collision. These
constraints are constructed by approximating the set of non-colliding relative
velocities by a halfplane and defining a pair of constraints on both agents’ abso-
lute velocities, splitting the responsibility for avoiding collisions between them.

Various formulations [33–35] treat multi-agent navigation as the problem to
optimize a reward function in the space of joint multi-agent trajectories, where
the objective function incorporates smoothness, social norms, collision avoid-
ance, and agents’ desired velocities. The objective may be hand-crafted when
performing Reinforcement Learning (RL) [33, 34] or inferred from exemplary
data via Inverse Reinforcement Learning (IRL) [35].

For systems consisting of a robot and multiple pedestrians, one may use
existing models from the field of crowd dynamics to partially describe interac-
tions in such systems (assuming that the robot’s presence does not invalidate
these descriptions), in combination with a separate and distinct specification of
the robot’s behavior. Alternatively, one may utilize a homogeneous description,
which does not distinguish between pedestrians and the robot. It is notewor-
thy that such homogeneous approaches cannot be clearly assigned to one of
the fields of crowd modeling/simulation or robotic motion planning, since both
fields share a set of techniques and frameworks to describe navigation tasks for
multi-agent systems.
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1.1.4 Human Walking Behavior and Crowd Dynamics

The study of pedestrian behavior has been an active research area since several
decades, due to its importance for urban planning and the design of efficient and
safe transportation infrastructure and pedestrian facilities [45–47]. This section
briefly reviews the field’s developments, focusing on those considered the most
relevant for the present thesis.

Empirical Studies

On the one hand, individual characteristics of pedestrians have been measured
statistically. For example, an individual’s energy consumption as a function of
walking speed, and the distribution of individually preferred walking speeds have
been quantified by empirical research [48]. Furthermore, individual acceleration
behavior during transition from standstill to walking has been investigated in
laboratory conditions [49].

On the other hand, studies focused on interactions which occur between
multiple pedestrians who navigate simultaneously through the same area. An
important source of interactions can be seen in pedestrians’ need to avoid colli-
sions and to maintain socially acceptable distances between each other. For such
purpose, pedestrians continuously monitor an elliptic area extending in front of
them to be able to react whenever another pedestrian is approaching them with
a velocity that would lead to a collision in the near future. This process of
continuous observation has been described qualitatively in [50], where it was
termed as scanning. Once two pedestrians register in such way that a collision
between them is imminent, they respond by quickly adapting their velocities
by the smallest extent which will let them pass by each other at an acceptable
distance, as experiments under laboratory conditions have shown [51]. There is
a strong social norm demanding equal contributions in this mutual avoidance,
as could be evidenced by experiments in pedestrian zones [52]. There, experi-
menters approached oncoming subjects without adapting to them, which often
inhibited subjects to adapt to them in turn, until the very last moment, leading
to slight physical contact. Accordingly, this phenomenon has been termed as
brushing [52].

Also, interactions between pedestrians who move as a group have been in-
vestigated. It has been found that such groups of three or four pedestrians often
assume a V- or U-like formation whose ends point in the direction of motion
(i.e. contrary to e.g. birds’ formations), since this facilitates group members to
communicate and maintain eye contact with each other [53,54].

Among the most important quantitative empirical results, fundamental di-
agrams of speed-density relationships are noteworthy. Such fundamental dia-
grams capture the extent to which pedestrians are slowed down by others as a
function of their density, e.g. for pedestrians walking in the same direction on
straight pathways [48] or through bottlenecks [55].
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Crowd Motion Models

Based on such empirical findings as mentioned above, mathematical models
have been developed to simulate and study collective behaviors of many pedes-
trians forming a crowd. A crowd can be defined as a large number of individuals
who are within the same space at the same time, and whose movements last
for a prolonged period of time and depend mostly on local interactions [56].
For sufficiently dense crowds, local interactions may result from physical con-
tact between individuals [46]. In less dense crowds, pedestrians walking close
to each other interact by coordinating their movements in order to avoid colli-
sions, while aiming at smooth and efficient motions [47]. Thus, human crowds
may be seen as self-organized systems, whose local interactions may give rise to
complex behaviors at a global scale [46]. Such global behaviors, often referred
to as emergent patterns, include, e.g., separation of streams heading in oppo-
site directions in a corridor, a phenomenon which is termed as dynamic lane
formation [46, 47,56].

Crowd motion models allow to simulate pedestrian flows under general bound-
ary conditions, as imposed, e.g., by geometric layouts of pathways. Thus, crowd
motion models are particularly interesting from the perspectives of urban plan-
ning [46], but also for computer animation and computer games [56]. A first
major category of crowd motion models is given by continuum models [56],
which describe flow conditions by a velocity field defined in space and time (as
in continuum mechanics). A second major category is given by agent-based
models [20, 46, 47, 57], which explicitly describe individual pedestrians’ trajec-
tories and interactions between them and with static obstacles. The following
discussion is limited to agent-based models, since continuum models can only
describe macroscopic properties, whereas the thesis focuses on pedestrians’ local
interactions with a mobile robot.

Among agent-based models, a major category is given by velocity-based
models [20, 56, 58, 59]. Typically, they determine agents’ velocities such that
anticipated collisions in the near future are avoided. Arguably, this princi-
ple is in agreement with empirical findings on pedestrians’ pairwise avoidance
behavior [51] mentioned in the foregoing section. Moreover, the approach of
ORCA [20] constrains two given agents’ velocities by the same amount with
respect to their current velocities, thereby encapsulating the aforementioned so-
cial norm [52] that both involved agents should contribute equally to avoiding
an anticipated collision.

Force-based models [46, 57, 60] constitute another major category of agent-
based models. They are often inspired by statistical mechanics and model inter-
actions by repulsive forces which are derived from a potential function. Social
Force models [46, 53, 60] may describe both physical and non-physical forces,
which include attractive potentials and anisotropic interactions (giving more
weight to pedestrians ahead, to account for a pedestrian’s scanning direction).
Furthermore, anticipation of collisions has been included via velocity-dependent
repulsive forces [60]. In contrast to such hand-crafted forces, the Universal Power
Law [57] uses a potential whose functional shape has been inferred from real-
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world crowd motion data representing various conditions, yielding a power law
dependent on the time to collision. As a consequence, this model also encapsu-
lates anticipation of and early adaptation to collisions in the future.

Outside these categories, a model based on optimal control and differential
games [47] has been proposed. There, each agent is considered to maximize its
subjective anticipated utility, which accounts for collisions between anticipated
trajectories by a distance-dependent penalty. It is noteworthy that such a game-
theoretic perspective can explicitly account for non-cooperative behavior, such
as one pedestrian not being aware of or ignoring another pedestrian.

Crowd Prediction and Trajectory Forecasting

Recently, the task of predicting individual trajectories of pedestrians in crowded
environments has gained attention of researchers. Both the task to predict
people’s motions in response to an environments layout [61], and the task to
predict their interactions with others [62,63] have been tackled by deep learning
approaches. Typically, the problem to predict interactions between persons is
formulated as a regression problem, i.e. to find pedestrians’ locations in the
near future based on their locations in the near past.

1.1.5 Evaluations of Crowd–robot Interaction

Commonly, simulation-based and real-world experiments yield complementary
insights about a robot’s performance. For robots navigating in human crowds,
simulations typically involve crowd motion models, such as those mentioned in
the previous section.

Simulation-based Evaluations

The method of ORCA [20] is among the most popular crowd simulation models
for evaluating methods of robotic navigation [2, 33, 64, 65]. Social Force mod-
els [46] are similarly popular for such evaluations [2,65,66]. Recent works [2,65]
pointed out the need for a standardized benchmark to compare different ap-
proaches to robotic navigation in crowds. Thus, a simulation-based benchmark
was proposed [65], featuring various crowd motion models in a unifying frame-
work [58].

Most quantitative evaluations report metrics for the robot’s efficiency, smooth-
ness, and safety. Efficiency can be quantified by the time it takes to travel from
an initial to a goal position [65], possibly normalized by the time a straight
motion at the preferred speed would take [64]. Smoothness can be quantified by
the trajectory’s average jerk [65]. Safety can be quantified in terms of minimum
distance to other agents and the number of collisions [64,65]. Sometimes, these
metrics are evaluated not only for the robot, but also for pedestrians [65].

It has been remarked [2] that evaluations based on different crowd simula-
tion methods may yield rather different results in terms of such metrics, e.g.,
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for the robot’s efficiency. A remedy can be seen in performing multiple eval-
uations of the same robotic navigation method under different crowd motion
models [2, 65]. However, such an approach raises additional questions, e.g.,
how to interpret such varying performance across crowd models, or whether a
particular selection of crowd models encompasses sufficient behavioral diversity
to allow robust conclusions. Thus, the models which underly such simulation-
based evaluations define the scope of the conclusions that can be drawn from
their results. If it is not clear whether a model’s assumptions can be extended
to crowd–robot interaction, real-world experiments are certainly necessary.

Evaluations with Real Robots and Pedestrians

Real-world experiments can be performed in laboratory conditions with re-
cruited participants or in open environments with random passersby, where the
latter option typically offers greater variety and better representation of realistic
human behavior. In some works [34], robots are tested for an extended period
of time, i.e. they are operated in a pedestrian zone for hours or even days, and
any incidents are noted and possibly analyzed, which ideally can demonstrate
that the robot is capable of operating continuously and safely under various
real-life conditions.

1.1.6 Challenges Addressed in the Thesis

As outlined in the aforegoing sections, enabling a mobile robot to navigate
safely and efficiently in human crowds constitutes an inter-disciplinary problem.
There, the perspectives of crowd modeling and robotic motion planning can be
seen as equally important and even as coinciding to a certain extent. However,
inevitable differences between pedestrians and mobile robots create new and
challenging problems, which have not been addressed sufficiently by either field
on its own.

Most aforementioned approaches assume that agents form a homogeneous
crowd. Accordingly, they often assume symmetric relations between agents,
e.g. when constructing the conditional probability density (for IGP), velocity
constraints (for ORCA), or the reward function (for RL/IRL). However, the
assumption of a homogeneous crowd constitutes a strong simplification whenever
a robot is present. Often, a robot and pedestrians will differ regarding their
shapes and dynamic and kinematic constraints.

Robots with Non-holonomic Kinematics and Non-circular Shape

Since many mobile robots are based on conventional wheels, which impose non-
holonomic constraints on their kinematics, they do not possess the ability to
move laterally. This fact limits their maneuverability and may hinder their
efficient motion, particularly if they are surrounded by densely spaced obstacles.
The issue is further aggravated if the robot’s shape is not circular but elongated
(from a top view), since rotations may cause collisions with obstacles around the



14 CHAPTER 1. INTRODUCTION

robot’s rear or front parts. Many person carrier robots or small vehicles indeed
exhibit an elongated shape in addition to non-holonomic constraints, and thus,
their agility is limited when driving in a crowded environment. For such cases,
suitable methods of reactive control or motion planning must not only take into
account non-holonomic kinematics, but also work with a tight approximation of
the robot’s shape, in order to be able to exploit small amounts of free space.

Early works [24, 25] addressed non-holonomic kinematics but were limited
to static environments. Several methods [67, 68] have extended ORCA [20] to
account for non-holonomic kinematics. However, they have only considered cir-
cular shapes, and either rely on a computationally heavy search through a finite
number of trajectories (obtained by integration of the robot’s non-linear kine-
matic equations) or use an increased bounding circle to mask non-holonomic mo-
tions [68], which can be prohibitive for entering narrow passages. Furthermore,
the aforementioned works have assumed circular shapes. Elongated shapes are
addressed by similar works [69–71], but only for holonomic agents. Methods
based on model predictive control [26] are general enough to address both non-
holonomic kinematics and non-circular shapes, but they come with high com-
putational costs. Thus, the aforementioned works do not fully address the need
for a computationally lightweight method to plan short term motions in dense
dynamic clutter for a non-holonomic robot whose shape is non-circular.

Control Obstacles’ Geometry

There is a variety of methods [40,42,42,69–71] extending the basic idea behind
VO. They all define a set of inadmissible inputs or commands by assuming a
particular motion model and looking for inputs to this model which result in a
collision before a time horizon. This inadmissible set can be termed as Control
Obstacle (CO) [42]. Notably, general linear dynamic motion models [72] and
heterogeneous multi-agent systems [42] have been addressed in the framework of
CO. These works have enlarged the class of behaviors and interactions that can
be represented by reciprocal CO, which makes them interesting for modeling
pedestrian–robot interactions.

However, prior work has viewed CO mostly from a performance-oriented
perspective, without describing CO in detail from a theoretical viewpoint. Only
little has been said about the geometric properties of the sets which are defined
by CO. For example, important topological properties, such as simple connec-
tivity, have not been established mathematically, but implicitly assumed, to the
best of the author’s knowledge. While such properties are trivial to deduce for
VO, it is less obvious how to prove them for other CO.

While deriving linear constraints for an agent’s velocity from VO is a matter
of a few geometric constructions, the aforementioned extensions to more general
types of CO rely on sampling the boundary of the respective CO to construct
linear constraints. Thus, deeper knowledge of the geometric properties of CO
could aid not only their theoretical understanding, but also their computational
and algorithmic exploitation.
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Motion Planning with Empirical Interaction Models

While IGP, RVO, and centralized reinforcement learning approaches perform
multi-agent motion planning in a self-consistent and principled fashion, it re-
mains largely unclear to which extent the different underlying models of co-
operation may be considered as descriptions of actual pedestrians’ cooperative
behavior. If one assumes a scenario where a robot uses one objective function to
navigate among pedestrians whose actions follow a different objective function,
then the robot and pedestrians would predict each others’ motions incorrectly
and incur higher costs (measured under either of both alternative objectives)
than predicted. Even if pedestrians’ real behavior cannot be easily expressed
by an objective function, it is clear that some objective functions will describe
their behavior better than others, e.g. quantifying better their physical effort
or their notion of risk. Accordingly, more representative objective functions will
yield better predictions and more efficient trajectories by consequence. Thus, an
important challenge can be seen in developing models that adequately describe
mobile robots’ and pedestrians’ interactions which are driven by the objective
to navigate simultaneously in the same space.

1.2 Contributions

The present thesis complements prior work on robots’ navigation in crowds by
three main contributions.

The first contribution (Chapter 3) addresses the need for a reactive control
system suitable for real-world mobile robots operating in dense crowds. Such a
control system is necessary for safety reasons, and therefore, it can be treated as
separate from the topics of cooperation models and multi-agent motion planning,
which were discussed in the Section 1.1.3. Such a reactive controller’s role is to
maintain safety even when pedestrians do not act as predicted by a cooperation
model.

Thus, the Chapter 3 considers non-holonomic robots with non-circular shapes
and proposes a novel reactive control scheme which extends the Velocity Ob-
stacle [20] to such robots. It is implemented as a low-level safety system which
corrects input commands whenever necessary to avoid collisions. Accordingly,
an evaluation is carried out which quantifies the robot’s performance at track-
ing its input trajectory while avoiding collisions. Further, the robot’s impact on
the crowd’s speed is evaluated. These simulations are complemented by robotic
experiments to demonstrate the method’s feasibility.

The second contribution (Chapter 4) sheds light on control obstacles’ geo-
metric analysis by studying the Acceleration Obstacle (AO) as an exemplary
control obstacle. The Chapter 4 develops an approach based on the AO to avoid
collisions in a multi-agent environment. The AO’s geometric properties are ana-
lyzed, and an algorithm is proposed to construct linear approximations thereof.
A novel theoretical perspective is given to describe the shape of the AO and
to reveal its dependence on the involved agents’ initial conditions. In particu-
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lar, its boundaries’ local convexity or concavity are analyzed and their relation
to the two considered agents’ relative position and velocity is established and
proven mathematically. Furthermore, we show that the AO can be obtained as
a limit case of the Acceleration Velocity Obstacle [40]. An evaluation of sim-
ulated crowd–robot interactions in a corridor is presented, where the robot’s
interaction with emergent lanes is studied. Furthermore, simulated phenomena
that are related to differences in the crowd’s and the robot’s controllers are dis-
cussed. The simulation-based evaluation of AO in Chapter 4 is complemented
by an additional simulation study in Chapter 6, which also investigates other
approximation schemes for AO.

The third contribution (Chapter 5) aims towards learning empirically based
models of cooperative navigation. The Chapter 5 models cooperative navigation
as an optimal control problem and applies inverse reinforcement learning (IRL)
to recover a cost function from examples of jointly navigating pedestrians. This
data-driven approach aims at obtaining a cost function which is representative
of pedestrians’ real behavior. In this spirit, a novel reward feature is proposed
for IRL of multi-agent navigation, namely our approximation of the interaction
energy defined in related work [57]. Results show that a meaningful reward
can be learned with the proposed model, whose predictions avoid most colli-
sions successfully and outperform a similar approach reported in the literature
in terms of accuracy. Additionally, a qualitative evaluation of our IRL-based
approach is performed, where a robot navigates in a real crowd.

The aforementioned three main contributions are complemented by a com-
parison of their methods (Chapter 6). In this comparison, the assumption of
constant acceleration underlying AO is shown to be less suitable for longer time
horizons, when navigating in a crowded environment, compared to the assump-
tion of constant velocity, which underlies VO. Further, the main methods from
the three main contributions are compared qualitatively, in order to highlight
their differences and to compare their assumptions. There, it is shown that VO
are more effective than AO at resolving conflicting motions of multiple agents
whose desired ideal motions intersect in a point. In fact, it turns out that, in
this case, the linearizing scheme proposed for AO in the Chapter 4 leads to
stalling movement at the point where agents meet, which is not resolved timely.
The cooperative optimal controller of the Chapter 5 outperforms VO and AO,
since the underlying assumption of coordinated control strongly simplifies the
task compared to the other methods.

1.2.1 Choices and Assumptions Made in the Thesis

The most important choices and assumptions that characterize the present the-
sis’ overall approach are listed below.

� The control methods proposed in this thesis rely on the assumption that
the robot is able to accurately perceive its own position, orientation, linear
and angular velocity. Furthermore, it is assumed that the robot is capable
of perceiving the same state variables for obstacles.
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� In the present thesis, the focus is on reactive control and short term motion
planning. This is due to the fact that human crowds constitute chaotic
systems, such that planning a motion over a longer horizon is not expected
to yield strong additional benefits.

� The present thesis assumes that a path around static obstacles is available,
i.e. path planning is considered outside of the thesis’ scope, since pedes-
trian zones do not pose any further complications for existing methods of
path planning in static environments.

� The robot is modeled either as a non-holonomic vehicle with capsule shape
(Chapter 3), which corresponds to the employed experimental platform
Qolo, or as a holonomic agent with circle shape (Chapters 4, 5, 6). The
latter, simpler model constitutes an abstraction, which allows later chap-
ters to focus on other aspects of navigation in crowds.

� The present thesis focuses on agent-based crowd models, since it is straight-
forward to combine them with any model of a mobile robot which interacts
with the crowd, whereas for continuum models, it is less clear how to incor-
porate such a local anomaly, as given by a mobile robot. Since agent-based
models represent interactions between agents in an explicit fashion, they
can be easily extended to include pedestrian–robot interactions.

� The present thesis focuses on interactions that serve only collision avoid-
ance and maintaining acceptable distances.

� To include a robot in an existing crowd model, the present thesis assumes
that pedestrians react to the robot in the same way as to other pedestrians.
This assumption mainly concerns collision avoidance and acceptable dis-
tances, since the aforementioned crowd models represent only interactions
for these purposes. Considering that they model interactions to depend
only on relative positions and velocities, the assumption is justified if the
following two conditions are met. Firstly, pedestrians need to be able to
perceive the robot’s position, velocity and physical dimensions similarly
well as with regard to other pedestrians. Secondly, pedestrians need to ac-
cept similar distances to the robot as to other pedestrians. While the first
condition seems plausible in general, the second condition may depend
on the crowd’s familiarity with the robot as well as the robot’s perceived
safety.

� The crowd models used in the present thesis are given by ORCA [20]
(Chapter 3), the Social Force Model (SFM) [46] (Chapter 4), and the
Universal Power Law (UPL) [57] (Chapter 6). For the Chapter 3, the
macroscopic behavior is defined by a crowd’s original reference trajectories.
This choice is motivated by the focus on short term reactive control with
given high-level input. Thus, the choice of local avoidance is considered
less important, but RVO is chosen mainly because it does not interfere with
the reference motion unless necessary for avoiding collisions. Furthermore,
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it suits the velocity-based simulation framework. The SFM is chosen for
its ability to generate dynamic lanes, which allows the Chapter 4 to study
possible interactions between the robot and such lanes. The UPL is chosen
in the Chapter 6 to complement the similar experiments of the Chapter 4
by a different crowd model, which also yields dynamic lanes.

1.2.2 Publications of Individual Thesis Chapters

The work reported in this thesis has been previously published or submitted for
publication in the following individual articles.

� D. J. Gonon, D. Paez-Granados and A. Billard, ”Reactive Navigation in
Crowds for Non-Holonomic Robots With Convex Bounding Shape,” in
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4728-4735,
July 2021, doi: 10.1109/LRA.2021.3068660.

� D. J. Gonon, D. Paez-Granados and A. Billard, ”Robots’ Motion Plan-
ning in Human Crowds by Acceleration Obstacles,” in IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 11236-11243, Oct. 2022, doi:
10.1109/LRA.2022.3199818.

� D. J. Gonon and A. Billard, ”Cooperative Navigation in Crowds by Inverse
Reinforcement Learning,” manuscript submitted to the IEEE Robotics and
Automation Letters.

1.2.3 Thesis Structure

The next Chapter 2 introduces additional concepts used in later chapters. Then,
the three main contributions are presented in the subsequent Chapters 3, 4, and
5. These are followed by a comparison in Chapter 6, where the methods from
previous chapters are compared with each other. The final Chapter 7 gives the
thesis’ conclusions.



Chapter 2

Background

This chapter briefly introduces important modeling concepts and methods that
are referred to in the subsequent chapters.

2.1 Kinematic and Geometric Modeling of Mo-
bile Robots

In this thesis, we consider navigation on flat ground, which is very common in
urban areas. Thus, space is modeled as two-dimensional. A mobile robot is
described as a an area of fixed shape, which can translate and rotate in space.
Accordingly, the robot’s configuration is defined by its position x ∈ R2 and its
orientation ϕ ∈ R. The position’s and orientation’s first derivatives with respect
to time define the robot’s linear velocity v := ẋ and angular velocity ω := ϕ̇,
respectively. The second derivatives define the linear acceleration a := ẍ and
angular acceleration α := ϕ̈, respectively.

If a robot’s linear velocity’s components and angular velocity are indepen-
dent of each other, the robot is said to have holonomic kinematics. This is
the case e.g. for robots with omni-wheels. In contrast, if the velocity vari-
ables are not independent, the robot’s kinematics are said to be non-holonomic.
Usually, their dependence is described by an equality involving the robot’s ori-
entation and velocity variables, which is termed as a non-holonomic constraint
and which assumes that there is no slip occuring between the robot’s wheels
and the ground. Non-holonomic constraints typically apply to mobile robots
which are based on conventional wheels. Many such robots’ kinematics can be
modeled as differential drive, unicycle, or bicycle models [40,73]. As depicted in
the Fig. 2.1, these models have in common that the robot’s velocity state can
be fully described by its forward velocity v, defined as one particular point’s
velocity’s component in the direction aligned with its orientation, and by its
angular velocity ω. The subsequent Chapter 3 will assume that this point is
chosen on the wheel axle of the differential drive robot considered there.

19
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Figure 2.1: The unicycle (a), the differential drive (b), and the bicycle (c) are
common non-holonomic kinematic models to describe mobile robots. For each
model, the robot’s velocity state can be characterized by the forward velocity
v and the angular velocity ω, where v is defined with respect to one particular
point (e.g. chosen as depicted), whose velocity’s component in the direction of
the robot’s orientation defines v.

Any mobile robot’s velocity and acceleration are subject to physical limita-
tions, since actuators can neither move at infinite speeds nor exert infinite forces
or torques. Furthermore, safety and stability considerations will often impose
restrictions (e.g. to avoid tipping over). Thus, a model of a mobile robot needs
to include such bounds in order to represent only realistic and safe motions. A
suitable characterization of these bounds depends on the type of robot (partic-
ularly its kinematics). Generally speaking, a bound on one particular velocity
or acceleration variable can depend on others’ values at the given instant.

A mobile robot’s shape is commonly modeled by an area which contains the
projection of its three-dimensional body on the ground plane, sometimes termed
as its footprint or baseprint, as illustrated by the Fig. 3.2. Circles, ellipses, and
polygons constitute common models. Another common model for elongated
bodies is given by a capsule, which is defined as the area swept by a circle as
its center moves over a line segment (cf. Fig. 3.2). Generally, convex shapes are
more common, since they are often sufficiently accurate and easier to handle
from an algorithmic viewpoint. For example, there is a unique solution to the
problem of choosing two points from two respective disjoint convex areas such
that they have the smallest possible distance to each other.
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2.2 Velocity Obstacle

The approach proposed in the Chapter 3 relies on a concept termed as Velocity
Obstacle (VO) to avoid collisions between the robot and moving obstacles. The
VO constitutes a geometric construction which allows to algorithmically find
velocities that do not lead to collisions, assuming that agents maintain their
velocities in the (near) future. The term VO has been introduced in [74], but
earlier works [75, 76] similarly used equivalent concepts. For defining VO, we
consider two agents A and B of circular shape with respective radii rA and rB
and the relative position p := pA − pB , as depicted in the Fig. 2.2-a. The
agents’ relative VO for a given time horizon τ is defined as [20]

V OτA|B := {v | ∃t ∈ (0, τ ] : |p + tv| ≤ R} (2.1)

where R := rA+rB denotes the combined radius. Thus, the set V OτA|B contains
all relative velocities v := vA − vB that would lead to a collision at some point
in time no later than τ from now.

Any constant relative velocity from the complement of V OτA|B guarantees

collision avoidance in the near future (defined by τ). Accordingly, if the velocity
vB of B was known, then A would need to choose a velocity vA from the
complement of V OτA|B ⊕ {vB}, where ⊕ denotes Minkowski addition. Since

V OτA|B ⊕ {vB} is simply the relative VO shifted by B’s velocity, we may term
this shifted VO as the absolute velocity obstacle which B induces on A’s velocity.

It may be practical to approximate a VO by a conservative halfplane, which
contains the original VO. The complementary set of admissible velocities is then
convex, as it is defined by a linear constraint. Furthermore, after we construct
such a constraint for the absolute V O induced by B on A, we may repeat the
same procedure for a different agent C’s VO induced on A, and so on for more
agents. This results in a convex set of admissible velocities for A that satisfy
the constraints due to all surrounding agents.

The VO is constructed as shown in the Fig. 2.2-a [19,20,74,76], first assuming
an infinite time horizon. In [20, 76], it has been proposed to truncate VO by
assuming a finite time horizon (cf. Fig. 2.2-a). The cone’s spherical truncation
and linearization as a halfplane according to [20] is shown in the Fig. 2.2-b.

2.3 Acceleration Velocity Obstacle

The approach proposed in the Chapter 4 closely relates to an extension of VO
to second order dynamics, termed as the Acceleration Velocity Obstacle (AVO).
In prior work [40], AVO has been proposed as a concept similar to VO but
capable of planning smooth motions, i.e. generating continuous velocity profiles
while guaranteeing collision-free motion. Namely, for two agents A and B with
the relative position p and the relative velocity v, the AVO is defined as the
set of all relative reference velocities v̄ that will lead to a collision before a
given time horizon when being tracked by the proportional control rule v̇ =
(v̄ − v) /δ, where 1/δ > 0 defines a gain. Thus, the AVO defines a set of
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Figure 2.2: (a) The Velocity Obstacle with infinite time horizon is shown. (b)
For a finite time horizon τ , the Velocity Obstacle is linearized by a halfplane H
that maximizes the admissible space around the current velocity v.

inadmissible reference velocities, which is derived based on the assumption of a
continuous transition from the current velocity towards the reference velocity.
In contrast to the VO, the AVO’s boundary does not contain any straight parts,
which makes it more difficult to handle from a computational viewpoint. The
Chapter 4 investigates a concept which is closely related to AVO, termed as the
Acceleration Obstacle (AO). It turns out that the AO can be obtained from
AVO by taking the limit δ →∞.

2.4 Inverse Reinforcement Learning

The Chapter 5 turns towards learning navigation from observations of pedestrian
behavior. The field of Inverse Reinforcement Learning (IRL) is concerned with
inferring an objective function from observed behavior, such that the behavior
is close to optimal under the found objective function. These observations are
also called demonstrations, and it is assumed that they have been performed by
an expert. Thus, IRL addresses the inverse problem of Reinforcement Learn-
ing (RL), since RL looks to generate optimal behavior under a given objective
function. However, IRL needs to impose some additional restrictions in order to
have meaningful solutions only. Otherwise, a constant objective function (which
is not informative at all) would be a valid solution to any IRL problem.

Different perspectives [77, 78] have been developed to define more strictly
what constitutes a meaningful solution to the problem of IRL. Max-margin
IRL [77] samples behavioral policies and chooses an objective function that
maximizes the gap between the expert’s and the sampled policies’ performance.
However, this approach does not yield a unique objective function. In contrast,
Maximum Entropy (MaxEnt) IRL [78] finds the unique policy which has maxi-
mum entropy while achieving the same average performance as the expert under
any hypothetical objective function. As shown in [78], this policy is found by
maximum likelihood estimation of the objective function’s parameters. Below,
we discuss an extension of MaxEnt IRL to continuous state and action spaces.

We assume that observations are generated by a dynamic system’s evolution
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over K time steps. Let x(k) ∈ Rm denote the system’s state at time step k.
We assume that the action u(k+1) ∈ Rn taken there determines the state at the
next time step according to

x(k+1) = Ax(k) + Bu(k+1), k = 0, . . .K − 1 (2.2)

where A ∈ Rm×m and B ∈ Rm×n are constant matrices. Then, each observation

is given by a state sequence X :=
{
x(k)

}K
k=0

and an action sequence U :={
u(k)

}K
k=1

, which together satisfy (2.2).
As objective functions, we consider cost functions of the form

J(X ,U ; w) :=

K∑
k=1

wTf
(
x(k),u(k)

)
, (2.3)

where the feature vector f(x,u) ∈ Rq consists of pre-defined functions that
describe quantities contributing to costs, and where w ∈ Rq is the vector of the
features’ unknown weights to be determined by IRL.

As discussed in [79], applying MaxEnt IRL [78] to such continuous state
and action spaces would mean to learn the parameters w by maximizing the
likelihood of observed trajectories under the exponential policy

p(U|w) =
1∫

RKn exp{−J(U ; w)}dU
exp{−J(U ; w)} (2.4)

where the shorthand J(U ; w) is based on the fact that U determines X . However,
computing the denominator is intractable due to the integral’s high dimension-
ality.

As a remedy, it has been proposed to approximate J in the denominator by a
second-order taylor expansion around U , yielding the approximate likelihood [79]

p(U|w) ≈ exp
{
gTH−1g/2

}
(det{−H})1/2(2π)−n/2, (2.5)

where g := −∂J/∂U and H := −∂2J/∂U∂U denote the negative cost’s gradient
and Hessian evaluated at an observed action sequence U . Accordingly, the
approximate log likelihood is given by

L(U|w) = gTH−1g/2 + log(det{−H})/2− log(2π)n/2. (2.6)

For maximizing the log likelihood, an efficient algorithm to evaluate its gradient
∂L/∂w with respect to the parameters w was proposed in [79].

An interesting side-effect of this approximation is that it relaxes the assump-
tion of globally optimal demonstrations to local optimality only. The Chapter 5
uses the approach [79] described above to recover objective functions of coop-
eratively navigating pedestrians.
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Chapter 3

Reactive Navigation in
Crowds for Non-holonomic
Robots with Convex
Bounding Shape

Note: this chapter’s contents are based on the following publication.
D. J. Gonon, D. Paez-Granados and A. Billard, ”Reactive Navigation in
Crowds for Non-Holonomic Robots With Convex Bounding Shape,” in IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4728-4735, July 2021, doi:
10.1109/LRA.2021.3068660.

For this chapter, a supplementary video is available online1.

Abstract This chapter describes a novel method for non-holonomic robots of
convex shape to avoid imminent collisions with moving obstacles. The method
assists navigation by correcting steering from the robot’s path planner or driver.
Its performance is evaluated using a custom simulator, which replicates real
crowd movements from a campus dataset, and corresponding metrics which
quantify agents’efficiency, the robot’s impact on the crowd, and the number of
collisions. Further, the method is implemented and evaluated on the standing
wheelchair Qolo. In the experiments performed, it drives in autonomous mode
using on-board sensing (LiDAR, RGB-D camera and a system to track pedes-
trians). It avoids collisions with up to five pedestrians and passes through a
door.

1https://ieeexplore.ieee.org/ielx7/7083369/9399748/9385856/supp1-3068660.mp4?

arnumber=9385856
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Figure 3.1: The robot Qolo is passing between pedestrians using the proposed
reactive controller (from right to left).

3.1 Introduction

This work considers robots that need to navigate within crowds to reach their
goal (as in Fig. 3.1), such as e.g. electric wheelchairs and delivery robots (see
also Fig. 3.2). This is challenging because individual pedestrians’ decisions are
uncertain and also, pedestrians expect cooperative behaviour, as they anticipate
and leave space for each other’s future motion. Thus, robots need to coordinate
with pedestrians but also to adapt quickly to surprising behaviour and avoid
imminent collisions that can endanger humans. When evaluating such a robot’s
controller, one needs to take into account its impact on pedestrians to quantify
the robot’s social performance.

This chapter is about avoiding imminent collisions between pedestrians and
a mobile robot that is non-holonomic (e.g. having wheels preventing sideways
motion) and non-circular (e.g. being of elongated shape). We propose the
method Reactive Driving Support (RDS) for such robots to correct nominal
commands (from the driver or high-level planner) as far as necessary for avoid-
ing previously unanticipated yet imminent collisions. RDS employs Velocity
Obstacles (VO) [19,80], whose basic concept we describe in detail in Sec. 3.2.1.
RDS constructs VO between each obstacle and the robot’s closest subpart and
constrains its velocity accordingly to avoid collisions locally. This constitutes a
novel way to extend VO to non-holonomic robots of non-circular shape. This
chapter formulates RDS for a capsule, which is a generic shape that fits many
delivery robots and robotic wheelchairs (see Fig. 3.2). RDS does not require
pre-processing which merges overlapping obstacles (in contrast to e.g. [16, 81])
and is computationally lightweight itself even for very many obstacles. Its im-
plementation is publicly available at https://github.com/epfl-lasa/rds/.
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Figure 3.2: Qolo (left) and Starship’s delivery robot (right) have footprints
which capsules can bound well tightly (red) or more conservatively (green) and
still yield a smaller width than the tightest bounding circle (blue).

3.1.1 Related Work

There have been diverse research efforts about robotic navigation in crowds
recently. They have mostly modeled robots as circles that can move omni-
directionally, thereby idealizing the shape and kinematics to ease investigating
the specific properties and challenges which crowds create. Particularly, they
have explored navigating cooperatively and according to social norms [33, 34,
66, 82], predicting the surrounding crowd’s future motion [29], planning the
robot’s motion beyond the interactions with its immediate neighbours [83], and
conservative collision avoidance under incomplete knowledge about obstacles’
position and behaviour [27].

Several approaches exist for circular [24] or even non-convex [25] robots to
avoid static obstacles by optimizing over discrete candidate trajectories under
dynamic and kinematic constraints. Vector Field Histogram Plus [84] is another
optimization-based method, which identifies narrow passages for the robot, but
it also assumes static environments. The method in [27] guarantees that the
robot is at rest when a collision happens for any behaviour of obstacles, which
can be prohibitive in crowds. Another method [85] aims at increasing the fea-
sible command space by conditioning on surrounding agents’ most probable
maneuvers, but it also assumes a circular robot.

Methods using VO are suitable for short-term planning in dynamic envi-
ronments such as crowds. The classical VO [19] and its derivatives, e.g. Op-
timal Reciprocal Collision Avoidance (ORCA) [80], assume circular holonomic
agents. Some frameworks enable their application to non-holonomic robots,
including [68] and a simple approach that shifts the center (which we discuss
in Sec. 3.2.2). However, they artificially increase the robot’s radius and thus
reduce the capability to plan through narrow passages. An extension of the
VO concept to non-linear motion control models [67] can directly treat non-
holonomic circular vehicles. However, this relies on forward-integration to yield
trajectory candidates from a discretized solution space, which is computation-
ally expensive. Other methods [70,71] treat non-circular robots with holonomic
kinematics, where they separate the step for computing rotations from the step
applying VO to find translations. Such an approach is not applicable to robots
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with non-holonomic constraints, where translation and rotation are coupled. [86]
introduce a velocity-continuous formulation of VO which is applicable to non-
holonomic but only circular robots.

Crowd simulations have been common as tools to evaluate and study meth-
ods for navigation in crowds [27, 33, 64, 66]. Many such evaluations assign a
fixed goal to each agent and evaluate the ability to find an efficient trajectory to
the goal by suitable metrics. Very common metrics include agents’ path length
and time for traveling from their starting to their goal positions for quantify-
ing efficiency, the rate of success (reaching the goal without collision), and the
number of collisions or minimum separation of agents for quantifying safety (e.g.
in [31, 33, 34, 64, 66, 87]). The evaluation in [88] has the most similar perspec-
tive to ours, as it measures the robot’s deviations from the high-level planner’s
(time-independent) reference path by the squared deviation integral.

3.1.2 Contributions

Our method RDS extends VO to non-holonomic non-circular robots for reactive
control in crowds. This chapter presents RDS and its evaluation tailored to this
context, where we employ a custom simulator and four novel metrics for quanti-
tative evaluation. The simulator combines original time-dependent trajectories
of video-tracked pedestrians (from [89]) with local collision avoidance such that
agents incorporate high-level planning, social coordination, and local collision
avoidance. By using empirical reference trajectories, we aim at making agents’
arrangements and motion patterns representative of the original crowd. Corre-
sponding to these time-varying goals, we introduce the robot’s and the crowd’s
average deviation from their reference trajectories as metrics to quantify how
efficient a reactive controller’s corrections are at avoiding collisions while con-
tinuing tracking of the reference motions. Thus, our first two metrics reflect
the task’s focus on complementing high-level motion plans. Further, we intro-
duce two metrics that directly measure how a robot’s presence and its controller
impact other agents’ velocities. While it is common to consider velocities, mea-
suring one specific agent’s impact on others is far less common. Both of these
metrics relate to the compatibility between a robot’s and pedestrians’ different
ways of navigation.

Complementing this evaluation by experiments with the standing wheelchair
Qolo [90] (in Fig. 3.1, 3.2, 3.3), on which we have implemented our method, we
demonstrate the method to be effective at avoiding collisions and feasible in
practice. The comparison with another method shows that our approach is
more advantageous in crowds due to its ability to lead through narrow gaps
between obstacles. The next section (Sec. 3.2) provides the concepts underlying
this chapter’s techniques. The method’s description (Sec. 3.3), its evaluation in
simulation (Sec. 3.4) and with the robot Qolo (Sec. 3.5) follow. Finally, Sec. 3.7
concludes this work.
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Figure 3.3: The capsule approximation (solid green) fits through gaps which are
not accessible with an abstracting circle (dotted green) centered ahead of the
wheel axle (yellow).

3.2 Background

This section reviews important technical prerequisites.

3.2.1 Velocity Obstacles for Circular Holonomic Robots

The original VO [19] describes for each circular obstacle the corresponding cone-
shaped set of constant velocities for the circular robot that will eventually lead to
a collision (as Fig. 3.4 shows). ORCA [80] uses VO for multi-agent navigation
as follows (see also Fig. 3.4). It disregards collisions after the time horizon
τ and thus spherically truncates the VO cone. Further, ORCA conservatively
approximates the relative VO by the halfplane H̄rel whose boundary touches the
relative VO boundary at its point closest to the previous relative velocity v−rel.
Then, it obtains the reciprocal absolute VO for the first agent A by shifting
the relative VO by the second agent B’s previous velocity plus its reciprocal
contribution cB ∈ R2, which accounts for the second agent’s contribution to
collision avoidance, and vice-versa for the second agent. ORCA thus generates
a linear constraint for an agent’s velocity due to each other agent, where each
constraint is characterized by its normal n and offset b. Finally, it solves a
quadratic program to find the velocity closest to the preferred one while adhering
to the constraints.

3.2.2 Abstraction from the Robot’s Shape and Kinematics

We define for comparison with our method later on the baseline method as
using ORCA [80] (assuming no reciprocity, i.e. cB = 0) for the given non-
holonomic non-circular robot by the following abstracting technique (from [91]).
We consider a generic robot’s kinematic model which is conceptually equivalent
to an axle with two wheels that rotate independently around it and roll on a
plane without slip. The model views the robot as a rigid body which moves
in the plane and is subject to the non-holonomic constraint which requires its
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Figure 3.4: In relative velocity space (left), ORCA truncates and linearizes
the relative VO (dark gray) between the robot A (blue) and the obstacle B
(gold) around the previous relative velocity v−rel. Shifting the resulting halfplane
H̄rel by the obstacle’s previous velocity v−B yields the halfplane H̄A of avoiding
velocities in the robot’s velocity space (right), if B keeps its velocity. Shifting by
B’s reciprocal contribution cB yields the halfplane HA of reciprocally avoiding
velocities.

instantaneous center of rotation to be on the infinite line that contains the wheel
axle.

For abstracting from such non-holonomic kinematics and the robot’s possibly
non-circular shape, [91] defines the control point as a point on the robot’s body
that does not lie on the wheel axle. The control point’s cartesian velocity has
degree of freedom two and thus it serves to receive velocity commands that
address a holonomic robot. Further, a circle whose center is the control point
and which contains the robot serves to mask its true shape such that one can
apply conservatively to this virtual circle a method that avoids collisions for a
circular robot. We note that the control point needs to be ahead of the wheel
axle in the robot’s preferred direction of travel (if it exists) to yield proper signs
of angular velocities when avoiding obstacles, i.e. rotating clockwise/counter-
clockwise when passing on the right/left, respectively. Consequentially, the
virtual circle for this abstraction is particularly conservative when the robot is
longer in the rearward than in the forward direction from the wheel axle (as
Fig. 3.3 shows for Qolo).

3.3 Method

The method avoids collisions by constructing constraints for the velocity of a
particular robot-fixed point, which we refer to as the reference point, according
to Fig. 3.5. Each obstacle is taken into account by determining the robot’s
incircle which is closest to it and constructing the VO that the obstacle induces
for the incircle. A linear constraint is derived for the incircle center’s velocity
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Figure 3.5: The method constructs the velocity obstacles (light grey) for ob-
stacles (gold) and the robot’s closest incircle (dark blue), linearizes them as Hi

(red) and re-maps them as H̃i (dark red) to the reference point’s velocity space.

and transformed into the equivalent constraint for the reference point’s velocity
via the robot’s kinematic relation between different points’ velocities.

3.3.1 Definitions

We assume the robot to have non-holonomic kinematics according to Sec. 3.2.2.
The robot’s fixed right-handed coordinate system is defined such that the y-axis
separates the wheels symmetrically and points forward and the x-axis coincides
with the wheel axle’s line. Any cartesian vector components in the method’s
description refer to this coordinate system. The method’s description here as-
sumes the robot’s shape as a capsule which is symmetric in the y-axis and
corresponds to sweeping a circle of radius r with its center on x = 0 from the
rear end yrear < 0 to the front end yfront > 0. An incircle is any circle with its
center on the line between the endpoints and radius r.

The command vector u = [v, ω]T defines the robot’s linear and angular ve-
locity command v and ω in such a way that positive values yield forward trans-
lations and counter-clockwise rotations around the origin, respectively. Given
any point (x, y), its cartesian velocity v corresponding to u can be expressed
via the Jacobian J(x, y) as v = J(x, y)u. One can show that

J(x, y) =

[
0 −y
1 x

]
, J−1(x, y) =

[
x/y 1
−1/y 0

]
, (3.1)

where J−1 exists for any point (x, y) with y 6= 0. Finally, (xref , yref ) defines the
reference point with yref 6= 0. Alternatively to u, its velocity vref can describe
via the inverse of its Jacobian Jref the robot’s motion, as u = J−1

refvref .
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3.3.2 Velocity Constraints for Local Incircles

Assuming circular obstacles (with known radii, positions and velocities), the
method constructs for each obstacle Oi the VO which it induces for the respec-
tive closest incircle, located at (0, yi). The VO’s construction, truncation by the
time horizon τ , and linearization around the incircle center’s and the obstacle’s
previous relative velocity are identical to the approach in [80] (as in Sec. 3.2.1)
apart from reciprocity, i.e. the method assumes the obstacle to maintain its
velocity (corresponding to cB = 0 in Fig. 3.4). Thus, each obstacle Oi creates
for the velocity vi of the point (0, yi) the linear constraint

nTi vi ≤ bi, (3.2)

which describes the feasible halfplane Hi(ni, bi) with the outwards unit normal
ni and the offset from the origin bi.

3.3.3 Optimization Problem

The method aims at optimizing the command vector u for the robot to execute
such that it minimally deviates from the nominal command ū = [v̄, ω̄]T e.g.
by the driver. The optimization problem is formulated in the reference point’s
velocity space, wherein the nominal command is mapped as v̄ref = Jref ū. Fur-
ther, the method maps in this space the constraints for the incircles’ velocities
due to N obstacles by expressing the local velocity in each constraint (3.2) as
vi = J(0, yi)J

−1
refvref using (3.1). We incorporate these constraints and the

objective in the quadratic program

v∗ref = arg min
vref

|vref − v̄ref |2 (3.3)

s.t. nTi J(0, yi)J
−1
refvref ≤ bi ∀i ∈ 1, ..., N (3.4)

nTv,jvref ≤ bv,j ∀j ∈ 1, ..., 4 (3.5)

nTa,kvref ≤ ba,k ∀k ∈ 1, ..., 4 (3.6)

where the additional constraints in (3.5), (3.6) represent the robot’s velocity
and acceleration limits, respectively. We assume that they result respectively
from four fixed constraints for u and from the four box constraints around the
previous command [v−, ω−]T which encode |v−v−| ≤ â∆t and |ω−ω−| ≤ α̂∆t,
with â and α̂ denoting the maximum absolute linear and angular acceleration,
respectively, and the control cycle time ∆t. These constraints’ normals are
multiplied by J−Tref and their offsets are adopted to yield nv,j , bv,j ,na,k, ba,k in
(3.5), (3.6). However, one can employ any given number and arrangement of
constraints instead.

3.3.4 Solution and Command Computation

The method employs an incremental algorithm very similar to [92], [21] to solve
the quadratic program (3.3)-(3.6) or determine that its constraints are infeasible.
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Importantly, the maximum number of obstacles bounds a priori the number
of iterations which the algorithm requires. If the constraints are feasible, the
solution defines the velocity command according to u∗ = J−1

refv
∗
ref . Otherwise,

the pre-defined maximum linear and angular braking decelerations â > 0 and
α̂ > 0 define the command according to v∗ = h(v−, â) and ω∗ = h(ω−, α̂), where
h(u,m) := u− sign(u) min(|u|,∆tm).

3.3.5 Discussion and Generalizations

Two simplifying approximations underlie the method. First, it reduces the
robot’s shape to the closest incircle for each obstacle. Second, it approximates
the incircles’ motions over the planning horizon as straight with individual con-
stant velocities such that they only initially verify a rigid body’s velocity dis-
tribution. Consequentially, the method requires a high control frequency to
prevent collisions, i.e. it must update the robot’s velocity command not just
as the time horizon elapses but early enough such that both approximations
remain valid. However, this is also necessary as obstacles may change their
velocities faster than the horizon.

The choice (xref , yref ) defines the relative costs for deviating from ū along
different axes in the command space. When viewing u as the optimization vari-
able in (3.3) by plugging in vref = Jrefu, the objective becomes the quadratic
form defined by JTrefJref , whose principal axes and eigenvalues can be tuned
via (xref , yref ).

The expression (3.4) maps each halfplane Hi(ni, bi) (constraining the local
velocity vi) to the corresponding constraint for the reference point’s velocity
vref . With M(x, y) := J−TrefJ(x, y)T , the latter constraint can be geomet-
rically interpreted, if M(0, yi)ni 6= 0, as the transformed feasible halfplane
H̃i(ñi, b̃i) with the unit normal ñi = M(0, yi)ni/||M(0, yi)ni|| and the offset
b̃ = b/||M(0, yi)ni|| (see also Fig. 3.5). In the case M(0, yi)ni = 0, the con-
straint reads 0 ≤ bi, which occurs if and only if yi = ni,y = 0 (e.g. when an
obstacle approaches the static robot along the line y = 0). There, the local
VO constrains vi,x independently (of vi,y) while kinematically any command
must yield vi,x = 0. Thus, vref does not enter the constraint, which makes
the optimization infeasible and triggers braking if bi < 0. This effect limits the
ability to escape close and fast obstacles approaching along y ≈ 0.

The method’s formulation here assumes a capsule-shaped robot. However,
any convex shape which a convex polygon and a sweeping circle generate to-
gether can replace the capsule. This only requires a routine to compute for a
given obstacle the robot’s corresponding subpart as the closest instance of the
sweeping circle.

3.4 Experiments in Simulation

The simulations in this section compare our method, RDS, to the baseline
method (from Sec. 3.2.2). The comparison in Sec. 3.4.3 additionally includes
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Algorithm 1 In each simulation update, pedestrians compute their velocities
via ORCA, and the robot reacts via RDS.

for i = 1, ..., Np do

vpi,t = ORCA
(
v̄pi,t,x

p
i,t, {xj,t,vj,t−∆t}

Np+Nc

j=1 6=i

)
end for
urt = RDS

(
ūrt ,u

r
t−∆t,x

r
t , ϕ

r
t ,
{
xpj,t,v

p
j,t

}Np

j=1

)
xpi,t+∆t = xpi,t + ∆tvpi,t
(xrt+∆t, ϕ

r
t+∆t) = (xrt + ∆tvr(urt , ϕ

r
t ), ϕ

r
t + ∆t ωr(urt ))

the method “Blank”, which is defined as outputting directly its input, such that
the robot executes the nominal command, i.e. setting u∗ = ū. With the method
“Blank”, only the nominal command and other agents contribute to coopera-
tive navigation, allowing to estimate a compared reactive controller’s additional
contribution.

We define the control point for all methods and the reference point for RDS
to coincide (for simplicity), where the control point (whose velocity the baseline
method acts on) additionally represents the robot’s position for tracking the
reference trajectory given by the experiment. We choose the robot’s parame-
ters as xref=0, yrear=-0.5 m, yfront=yref=0.18 m, r=0.45m (corresponding to
Qolo’s conservative capsule in Fig. 3.2), and τ=1.5 s, â=2 m/s2, α̂=3 rad/s2.

The following Sec. 3.4.1 introduces the simulation framework and its specific
performance metrics. A qualitative comparison follows in Sec. 3.4.2. A test
series for quantitative comparison follows in Sec. 3.4.3, whose source code is
available in the provided repository.

3.4.1 Simulation Framework and Performance Metrics

This section describes our framework for simulating how the robot navigates
in environments with pedestrians. We represent them by circular agents (of
radius 0.3m) which track individual reference trajectories while avoiding colli-
sions with each other and the robot by applying ORCA (assuming reciprocity,
and τ=1.5 s). The robot also tracks a reference trajectory and in turn uses
the method RDS (or baseline) to avoid collisions with the pedestrians, react-
ing to their current position and updated velocities (or not, with the method
“Blank”). The simulation’s update scheme (for the case with RDS) is given in
Algorithm 1, with ∆t=0.05 s being its time step and also the cycle time for RDS
and other agents’ controllers. The following paragraphs introduce the notation
and explain the simulation framework.

For each pedestrian i, let xpi,t, vpi,t ∈ R2 denote respectively the global posi-

tion and velocity at time t. Let xrt ∈ R2 and ϕrt denote respectively the robot’s
position (i.e. where its control point is) and orientation at time t. Accordingly,
let vrt ∈ R2 and ωrt denote respectively the robot’s global cartesian velocity (of
its control point) and angular velocity at time t. Let urt denote the robot’s com-
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mand vector [v∗, ω∗]T at time t, whose components are respectively the forward
and angular velocity which result from the method for collision avoidance. They
prescribe the robot’s global velocities, which are thus functions vrt = vr(urt , ϕ

r
t )

and ωrt = ωr(urt ).
Pedestrians perceive the robot as a collection of Nc virtual circular agents,

which are attached to the robot, covering its actual capsule. When simulating
with the baseline method for collision avoidance, the collection includes the
enlarged bounding circle, otherwise it contains only several tightly fitting circles.
The virtual agents adopt the position and velocity of their respective point of
attachment on the robot. Let xj,t,vj,t ∈ R2 denote the position and velocity
for a generic circular agent (i.e. a pedestrian or a virtual agent).

The robot’s reference trajectory x̄rt : R → R2 defines the robot’s reference
position at each time t and prescribes the nominal velocity v̄rt for the robot’s
control point according to

v̄rt =
dx̄rt
dt

+ k (x̄rt − xrt ) . (3.7)

Therein, the reference trajectory’s derivative forms a feedforward term and the
tracking error is added as a feedback term (with the gain k > 0). For pedes-
trians, the reference trajectories x̄pi,t : R → R2 prescribe the corresponding
nominal velocities v̄pi,t in analogy to (3.7). Both terms in (3.7) together achieve
a vanishing tracking error over time such that agents converge to their (moving)

reference position even after perturbations. A set
{

x̄rt , x̄
p
1,t, ..., x̄

p
Np,t

}
which con-

tains the robot’s and Np pedestrians’ reference trajectories over a time window
[t1, t2] defines a particular simulation configuration.

Our metrics rely on the following definitions. The static area of evaluation A
defines where relevant interactions are expected (Sec. 3.4.3). Let the indicator

function I{B} equal 1 if B is true or 0 otherwise. Further, let 〈·〉 =
∫ t2
t1

(·)dt/(t2−
t1) and 〈〈·〉〉 =

∑Np

i=1〈·〉/Np denote respectively averaging over the sample’s time
window and averaging over both the time window and the crowd. We use the
following metrics.

� The robot’s mean tracking error Er = 〈|x̄rt − xrt |〉.

� The pedestrians’ mean tracking error Ep = 〈〈|x̄pi,t−xpi,t|wi,t〉〉, with wi,t ∝
I{x̄p

i,t∈A} and 〈〈wi,t〉〉 = 1.

� The crowd’s velocity reduction due to the robot Vc = Vc,0/Vc,r, where
Vc,r = 〈〈|vpi,t|ŵi〉〉 denotes the crowd’s weighted average velocity for the
case with the robot, and Vc,0 denotes the analogous quantity for the case
without a robot. Herein, the pedestrians’ weights ŵi ∝ 〈I{xp

i,t∈A}〉 are

proportional to their actual time in A and normalized as 〈〈ŵi〉〉 = 1.

� The neighbours-to-crowd velocity ratio Vn = Vn,r/Vc,r, where Vn,r =
〈〈|vpi,t|w̆i〉〉 and w̆i ∝ 〈I{|xp

i,t−xr
t |<D}〉 are weights proportional to pedestri-

ans’ time D-close to the robot (D = 3m) and normalized as 〈〈w̆i〉〉 = 1.
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Figure 3.6: The robot (moving to the right) and a pedestrian (moving upwards)
cross with variable relative head starts, resulting in the corresponding (color-
coded) trajectories and the particular crossing order. The robot uses either RDS
(left) or the baseline method (right) for collision avoidance.

� Cr counting collisions with the robot’s capsule.

The metric Vc compares the crowd’s speed when the robot is not present (leaving
its place to a regular agent instead) to the crowd’s speed when the robot is
present. Thus, evaluating Vc for a given simulation configuration and method
(e.g. RDS) requires to execute one simulation without and one with the robot.
The metric Vn compares the speed of the robot’s neighbours to the entire crowd’s
speed. If the robot tends to slow down pedestrians, we expect that Vc > 1 and
Vn < 1.

3.4.2 Crossing with Variable Head Start

The following experiment lets the robot and a pedestrian cross while both con-
tribute to collision avoidance according to our simulation framework (Sec. 3.4.1).
Their reference trajectories move at the same speed 1.3 m/s and their paths
cross orthogonally, however, the pedestrian starts from a variable distance to
the crossing point. The pedestrian’s head start tphs denotes the time difference
between the moment when the pedestrian’s reference trajectory reaches the
crossing point and the moment when the robot’s reference trajectory reaches
it. Fig. 3.6 shows both agent’s trajectories that result respectively for different
values of the pedestrian’s head start in the range tphs ± 1.5 s. The result shows
for both methods how the crossing order changes around tphs = 0. Over the
test series, the pedestrian’s mean tracking error is similar with both methods
to control the robot (Erdsp = 0.10 ± 0.12m, Eb.l.p = 0.09 ± 0.06m), whereas

the robot’s tracking error is clearly lower with RDS (Erdsr = 0.20 ± 0.05m,
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Table 3.1: The metrics’ mean and standard deviation (or for Cr, the sum)
is shown over the sparse crowd simulations for the three methods. Between
the baseline method and RDS, superior mean values are marked in bold and
significant differences by asterisks (except for Cr).

Method Er [m] Ep [m] Vc [-] Vn [-] ΣCr [-]
RDS 0.8∗±0.9 0.20∗±0.09 0.999∗±0.007 1.07±0.24 0
Baseline 2.2∗±2.0 0.21∗±0.09 0.994∗±0.010 1.08±0.25 0

“Blank” 0.0±0.0 0.20±0.09 0.996±0.009 1.07±0.23 6

Eb.l.r = 0.35± 0.14m).

3.4.3 Navigating in a Sparse Crowd

For quantitative comparison, this experiment series evaluates RDS, the baseline
method, and the trivial method “Blank” (that adopts nominal commands) in
simulations that are driven by original crowd movements (from a pedestrian
intersection on a campus) which are available in the “Crowds-by-Example”
dataset [89] as timed waypoint sequences. We use these original trajectories
to generate 430 different sample simulation configurations by replacing a dif-
ferent original pedestrian by the robot and simulating the remaining original
pedestrians via regular agents. For each agent (including the robot), we define
its reference trajectory as the two cubic splines fitting the respective original
pedestrian’s 2D-waypoints over time. The area of evaluation A is chosen as a
tight bounding box of all the waypoints. The time window [t1, t2] for a given
sample configuration’s simulations matches the time window of the waypoints
for the robot’s original pedestrian. Other agents’ trajectories outside their origi-
nal waypoints’ time windows are linear extrapolations (which are mostly outside
A). For each sample configuration, we evaluate the metrics from Sec. 3.4.1 for
each method (simulating once without a robot). Fig. 3.7 shows for an exemplary
sample configuration the robot’s and the surrounding crowd’s motion during se-
quential time windows for RDS and the baseline method, respectively. These
motion snippets exemplify how the robot can often follow closely its nominal
motion with RDS, whereas the baseline method leads it on detours around dense
groups.

Table 3.1 reports the metrics’ sample averages and standard deviations over
the 430 sample configurations for the three methods (or for Cr, the sum over all
configurations). For all the metrics except Cr we compare their distributions
for RDS against the baseline using a two-sample t-test with a significance level
α = 0.05. We find p < α, i.e. significant differences in the mean values, for all
the metrics except Vn.

In comparison to the baseline method, we attribute RDS’ significantly lower
tracking error for the robot and the pedestrians (i.e. Erdsr < Eb.lr , Erdsp < Eb.lp )
to the tighter shape representation. It allows the robot to maneuver through
narrow gaps between pedestrians and requires less deviations from them. On
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Figure 3.7: The robot uses RDS (left) or the baseline method (right) to traverse
the dynamic crowd in this empirically based simulation example. For three
sequential time windows, the initial state of the robot (green capsule) and crowd
(black circles) and their future motion (yellow to red) and future nominal motion
(dashed lines) are shown.
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the other hand, the circular shape representation with the baseline method
encourages agents to maneuver around the robot with increased velocity (as
typical for ORCA), whereas the multi-circle shape representation they perceive
for the robot with RDS often traps them between two such circles, thus V b.l.n >
V rdsn . While the assumption that other agents perceive the enlarged bounding
circle for the robot with the baseline method is not realistic, we observe that
it is actually favourable for the baseline method’s performance, since otherwise
the robot frequently experiences virtual collisions (with its bounding circle),
and while trying to resolve them, it is prone to colliding truly, as it does not
represent the robot’s true capsule shape.

With RDS or the baseline method, collisions do not occur for the robot
throughout the simulations. This is due to contributions from both the robot’s
reactive controller and the pedestrians’ cooperative controller. The robot’s con-
tribution is still necessary sometimes to avoid collisions, as the method “Blank”
(which does not contribute) leads to a few collisions (ΣCr > 0).

Comparing Ep, Vc, and Vn between RDS and the method “Blank”, we find
that RDS does not facilitate other agents to follow their references and generally
reduces the crowd’s velocity in our simulation framework. However, also with
the method “Blank” the robot already receives high-level guidance via the ref-
erence trajectory (which avoids other agents original positions) and therefore,
this result mainly shows that the smaller holonomic pedestrians can resolve ef-
ficiently the slight collisions due to the robotic agent’s larger shape even when
the robot does not contribute.

In summary, these results show that RDS successfully corrects the robot’s
motion to account for its capsule shape (whose potential collisions the reference
motion does not avoid) while at the same time achieving a low tracking error
for the robot and the crowd.

3.5 Experiments with the robot Qolo

The robot Qolo [90] is an electrically powered standing wheelchair (in Fig. 3.1,
3.2, 3.3). In this section’s experiments, Qolo is driven by RDS which receives
a constant forward-pointing command (i.e. with vanishing nominal angular ve-
locity) simulating a driver’s primitive input. RDS uses the same parameters’
values given already for the experiments in simulation (Sec. 3.4), except for
â=1.5 m/s2, α̂=1.5 rad/s2. The experiments’ videos are available in the chap-
ter’s supplementary material.

3.5.1 Implementation

The robot’s sensors include a front and a rear LiDAR and a front RGB-D
camera. They inform the modules for SLAM, person detection tracking and
collision avoidance.
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SLAM

The robot estimates its own trajectory by matching scans from the rear LiDAR
using the ROS package hector_slam [93], which allows the tracker to transform
the sensors’ spatial data into a static fixed reference frame and to estimate
obstacles’ absolute velocities.

Person detection tracking

The module tracks persons’ positions from both LiDARs and the camera’s RGB
images (using the pipeline in [94]).

Collision avoidance

The module implements RDS or the baseline method (as in Sec. 3.4). It treats
every scanpoint from both LiDARs as a separate circular obstacle with a small
radius and zero velocity. Further, every person track is perceived as a circular
obstacle with 0.3 m radius and with the track’s estimated velocity.

3.5.2 Test in a Static Environment

The test (in Fig. 3.8, top) compares how RDS and the baseline method can
assist passing through a door. As the nominal command would drive the robot
forward into the door frame, correction is necessary to avoid the collision and
ideally lead through the door. The trajectories for the baseline method and
RDS in Fig. 3.8 right and left, respectively, show that among both methods,
only RDS can lead the robot through the door due to the tighter capsule shape
representation.

3.5.3 Tests with Pedestrians

The following two tests evaluate the robot’s ability to overtake pedestrians that
move in the same direction but are distributed ahead of and around the robot.

Row of pedestrians

The experiment (in Fig. 3.8, middle row) involves three pedestrians walking
next to each other, forming a line with a larger gap between two of them such
that the robot could pass in between while respecting a comfortable distance.

With the baseline method (Fig. 3.8, right), the robot approaches the moving
pedestrians and then alternates between different angles while attempting to
pass through the gap, which is due to the fact that the perceived orientation of
the gap oscillates as the foot patterns and relative advancement of the pedes-
trians vary slightly over time. Using RDS (Fig. 3.8, left), the robot adjusts its
orientation early towards the gap in order to avoid colliding with the middle
pedestrian, and then it moves straight forward and passes through the gap.
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Figure 3.8: The robot Qolo uses RDS (left) or the baseline method (right) to
pass through a door (top), overtake three pedestrians (middle) or a surround-
ing crowd (bottom). Its trajectory and the tracker’s estimates of persons are
shown (blobs and triangles, respectively, encoding time in yellow-red). Also,
the robot’s footprint (green capsule), tracked persons’ footprints (circles) and
LiDAR scanpoints (blobs) are shown at the beginning (in cyan) and at the end
(in blue).
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Unidirectional crowd

In the experiment (in Fig. 3.8, bottom), there are five pedestrians surrounding
the robot. With the baseline method, the robot’s motion is heavily constrained
and it moves always towards small free areas created randomly by small irregu-
larities in the crowd motion. With RDS, the robot adjusts its orientation early
to avoid colliding with one pedestrian ahead, and subsequently it converges to
a collision-free course and overtakes the surrounding crowd.

3.6 Discussion

The presented experimental results demonstrate the method’s capability to ma-
neuver through gaps and to avoid collisions with moving obstacles. As a base-
line for comparison, we chose an ORCA-based method, which masks the robot’s
non-circular shape and non-holonomic kinematics by a circle. This choice is
due to the focus on computationally lightweight methods that are applicable to
such robots and address navigation in dynamic environments, which excludes
most other methods based on velocity obstacles or more general control obsta-
cles, as argued in the chapter’s introduction. Methods which check candidate
trajectories for collisions were not considered due to their increased computa-
tional burden or lack of continuity (if controls are sampled sparsely). Clearly,
the chosen baseline method’s performance is particularly negatively affected by
the fact that the exemplary robot’s bounding shape is rather elongated and to
a large extent behind the wheel axle. However, many non-holonomic vehicles
are indeed rather elongated, and in the case of Qolo, the robot’s shape indeed
extends more rearward than forward.

The simulations have been based on the “Crowds-by-Example” dataset [89]
due to its high local densities of pedestrians, which allows to test the method’s
capability to maneuver through tightly spaced obstacles. Furthermore, the high-
level reference trajectories given by the dataset have been used in order to focus
solely on the task of local collision avoidance. If we compared our approach
with the baseline without providing high-level reference trajectories, the base-
line would possibly perform better than our approach, in sufficiently sparse
crowds, since the baseline’s enlarged bounding circle and abstraction from non-
holonomic kinematics in combination with ORCA constitute an efficient plan-
ning method as long as space is not too constrained for such an approach.

To simulate the crowd’s behavior for local collision avoidance, ORCA has
been chosen. This choice is mainly due to the fact that ORCA, as a constraint-
based method, does not interfere with the high-level reference trajectories unless
a collision is imminent. Thus, the simulated crowd’s motion remains close to
the one given by the dataset, which is desirable for evaluating our approach
under the most realistic conditions, as given by original arrangements of stand-
ing pedestrians and original patterns of crowd motion. Furthermore, this idea
also underlies the metrics Er and Ep, which measure agents’ deviations from
their reference trajectories. Assuming that agents would make the same choices
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as recorded in the dataset unless there is an obstruction, these metrics serve
to measure the robot’s ability to blend in the crowd and find its way without
obstructing pedestrians, despite its limited maneuverability and larger bound-
ing shape (compared to the pedestrian whose place the robot is taking in the
simulation).

Similarly, the metrics Vc and Vn, which measure the robot’s impact on the
crowd’s speed serve to assess to which extent the robot obstructs pedestrians. As
noted previously, the robot’s enlarged bounding circle for the baseline method
leads to unrealistic behavior of pedestrians, since they would not be aware of
the enlarged bounding circle in reality. While this creates a bias towards larger
values of the crowd’s tracking error Ep, the metrics Vc and Vn are positively
affected since the larger circle encourages efficient maneuvers around the robot’s
flat sides. Due to these effects, our simulations may not be conclusive regarding
the obstruction which the modeled robot would constitute for pedestrians if
deployed in a real crowd.

3.6.1 Limitations

The proposed method RDS has been presented in this chapter without giving
guarantees for a minimum duration of collision-free motion. Its ability to guide
the robot around obstacles has been demonstrated on a purely experimental ba-
sis, both in simulations and robot experiments. Thus, deriving such a guarantee
for the proposed approach could be an interesting venue for future work. Also,
the method relies on high-level guidance (e.g. to not get stuck in concave parts
of obstacles’ boundaries) and does not come with any guarantee of performing
optimal maneuvers.

For its robotic implementation on the standing wheelchair Qolo, the method
relies on the robot’s on-board perception systems, which combine LiDAR and
RGB-D cameras and include a pedestrian detection and tracking system. How-
ever, due to the tracking system’s limited performance, obstacles’ velocities
could not be estimated reliably, and LiDAR scanpoints were used directly as
obstacles with zero velocity to provide redundancy in case of tracking failure.
While this introduces conservativeness in the robot’s behavior with respect to
moving obstacles, it is considered as an implementation-related issue that can be
overcome in future work by using e.g. a faster but less selective object tracking
method.

3.7 Conclusion

We have developed a method to apply the Velocity Obstacle (VO) to non-
holonomic capsule-shaped robots and highlighted its effectiveness at avoiding
collisions with static obstacles and interacting pedestrians, both in simulation
and physical experiments with the robot Qolo. The comparison with another
method using VO has demonstrated our method’s advantage due to allowing
maneuvers through narrow gaps. Our simulations of agents tracking real crowds’
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motions show that the method avoids collisions efficiently such that the robot
and pedestrians remain close to their references. We have described and evalu-
ated four novel metrics to support this analysis.
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proposing the metrics that quantify the robot’s impact on the crowd’s speed.



Chapter 4
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Human Crowds by
Acceleration Obstacles

Note: this chapter’s contents are based on the following publication.
D. J. Gonon, D. Paez-Granados and A. Billard, ”Robots’ Motion Plan-
ning in Human Crowds by Acceleration Obstacles,” in IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 11236-11243, Oct. 2022, doi:
10.1109/LRA.2022.3199818.

For this chapter, a supplementary video is available online1.

Abstract This chapter develops the theory of the Acceleration Obstacle (AO)
as a mathematical construction for planning a robot’s motion in dynamic envi-
ronments (e.g. human crowds). The AO is analogous to the Velocity Obstacle,
employed in the previous chapter, but assumes constant acceleration instead of
velocity. The geometric properties of AO are analyzed and a direct sampling-
free algorithm is proposed to approximate its boundary by linear constraints.
The resulting controller is formulated as a quadratic program and evaluated in
interaction with simulated bi-directional crowd flow in a corridor. A comparison
to alternative robotic controllers is carried out, considering the robot’s and the
crowd’s performance and the robot’s behavior with respect to emergent lanes.
Results indicate that the robot can achieve higher efficiency outside lanes.

4.1 Introduction

The aforegoing chapter proposed a method to correct a robot’s input velocity
commands such that it avoids collisions, based on the assumption that the

1https://doi.org/10.1109/LRA.2022.3199818/mm1
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robot and obstacles move with constant velocities in the near future. This
chapter assumes constant accelerations instead, in order to tackle more dynamic
maneuvers and to account more naturally for agents’ acceleration bounds.

Robots that navigate in human crowds as seamlessly as pedestrians are a
persistent goal of recent work in robotics due to applications as delivery robots
or smart wheelchairs. Some works [29, 95] focus on predicting pedestrians’ mo-
tion in the near future, which allows to choose a complementary action for a
robot amidst them. Other methods [27,96] model the crowd’s uncertain behav-
ior to find motions for the robot that are safe under worst case assumptions.
Geometric approaches, such as the Velocity Obstacle (VO) [19, 20], allow to
command the robot such that it avoids collisions with obstacles whose motion
is known in the near future. In this chapter, we investigate the Acceleration
Obstacle (AO) in analogy to VO, assuming that the robot and obstacles main-
tain constant relative acceleration (instead of velocity as for VO) over a short
time span. Our choice to assume constant acceleration is motivated by the
mathematical simplicity of this motion model, which facilitates our analysis of
AO.

The AO for a given obstacle defines a set of relative accelerations whose
constant application will lead to a collision before reaching a time horizon. In
comparison to the VO, whose shape can be described as a cone with a round
truncated tip, the AO exhibits a more complex shape, whose entire boundary is
curved in general. Similar shapes have been defined in prior work [40,42], where
typically, the boundary is approximated by a linear constraint, which is imposed
on the robot’s command. However, the boundary’s geometric properties and
dependence on initial conditions (i.e. the relative position and velocity for AO)
has not been studied in depth in prior work. Our analysis reveals how the
geometric properties of AO emerge (Sect. 4.2). Exploiting this analysis, a novel
algorithm is proposed which derives a linear approximation of the AO via a few
geometric and algebraic computations in closed form (Sect. 4.3).

Previous work [40] has conceived the AO without studying it further, arguing
that constant accelerations are rarely maintained over extended time spans,
and proposing instead the related concept of the Acceleration Velocity Obstacle
(AVO), which assumes exponential adoption of a target velocity. However, our
experiments of navigation in human crowds show that a small time horizon
is sufficient to avoid collisions under realistic acceleration capabilities. As an
advantage over AVO, the AO requires the smallest peak deceleration for braking
in front of an obstacle, which we illustrate in simulation. We also show that the
AO can be expressed via the AVO and a limit operation. Therefore, the theory
and algorithm presented in this chapter appear to generalize to AVO.

Acceleration bounds are also considered by another geometric approach
termed as the forbidden velocity map [97], which specifies for any given di-
rection the largest speed which still allows the robot to brake before a collision
occurs. The AO is a more general approach as its motion model includes curved
trajectories and thus allows to plan maneuvers which apply maximum accelera-
tion to avoid collisions by passing at the side of an obstacle rather than braking
in front of it.
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The experimental evaluation in this chapter focuses on navigation in bi-
directional crowd flow through a corridor. On the one hand this scenario is
a standard and well studied case in crowd simulation (see e.g. [56, 65]), for
which standard metrics have been defined to quantify efficiency and interaction
intensity with oncoming agents [98]. On the other hand, it is also a case of high
practical relevance, considering that urban environments often exhibit a network
of corridors, sidewalks, and promenades, on which motion is predominantly bi-
directional. We simulate such bi-directional flows by the Social Force Model
(SFM) [46]. The SFM is chosen due its ability to reproduce the phenomenon of
dynamic lane formation and due to its simple formulation in terms of position-
dependent repulsive forces.

We show that the AO with the proposed algorithm enables the robot to
navigate efficiently and avoid almost all collisions, outperforming pedestrians,
which are simulated by the SFM [46]. As a baseline, we use the SFM to control
the robot like a pedestrian, in order to compare the case of a robot whose
behavior is rather different from the crowd and the case of a robot with the
same behavior as the crowd. To gain further insight in the two behaviors’
specific characteristics and their possible interactions, our evaluation includes a
third method, which combines the AO-based approach and the SFM to obtain a
controller for the robot. Since both the AO and the SFM refer to accelerations,
it is straightforward to combine them.

We also study the robot’s behavior with respect to emergent lanes in the
crowd’s motion. Lanes lead to more efficient motions [98] and have been shown
to emerge under a variety of interaction laws, including the SFM [46, 98] and
the reciprocal VO [20,99], which implements local pairwise collision avoidance.
However, a robot’s interaction with emergent patterns (such as lanes) arising in a
crowd of agents whose characterstics differ from the robot, has rarely been eval-
uated, to the best of our knowledge. We systematically evaluate how the robot’s
method for navigation affects its own and the crowd’s performance (Sect. 4.4).
Specifically, we count collisions and near misses between the robot and the crowd
and quantify the robot’s and the crowd’s efficiency of motion in terms of velocity
and path length. Additionally, we measure the robot’s integration in lanes and
its interaction intensity with the counter flow.

Notation: Let p × q := p1q2 − p2q1 denote the cross product for vectors
p,q ∈ R2. For a set G ⊂ R2, let ∂G ⊂ R2 denote its boundary and |G| its
cardinality. Let D(p, %) :=

{
z | % ≥ |z− p|2

}
⊂ R2 denote the closed disk with

radius % centered on p. We use ẋ := dx/dt.

4.2 Acceleration Obstacles

For a mobile robot and an obstacle (cf. Fig. 4.1) with the respective positions
x1,x2 ∈ R2, we consider the task of collision-free navigation. Let x := x1 − x2

define the relative position. The two agents’ bodies’ shapes are bounded by
two circles whose radii are given by r1, r2, and whose centers are at x1, x2,
respectively. With the combined radius R := r1 + r2, a collision is said to occur
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Figure 4.1: The state of the robot and the obstacle with the respective positions
x1, x2 and velocities v1, v2 is represented for AO by the relative position x and
velocity v and the collider with the combined radius R = r1 + r2. A motion
(cyan) over time t with constant acceleration of x(t) is shown.

if |x| ≤ R.
For defining the AO, we consider the motion model of constant relative

acceleration a = const. The family of relative trajectories satisfying ẍ = a is
given by

x(t; a) := xo + vot+ at2/2 (4.1)

with the parameter a, for given initial conditions x(0) = xo and ẋ(0) = vo. The
model ẍ = const can represent two agents applying constant forces (to avoid
each other) and thereby approximate pedestrians’ behavior over a short time
window. The AO is the set of accelerations a that lead to a collision before a
time horizon τ . It is formalized as follows.

Definition 1 (Acceleration Obstacle) The Acceleration Obstacle with the
time horizon τ for the robot and a given obstacle with the relative position and
velocity xo and vo, respectively, and the combined radius R is the set

AOτ (xo,vo, R) := {a | ∃t ∈ [0, τ ] : |x(t; a)| ≤ R} . (4.2)

We note that |x(t; a)| ≤ R ⇐⇒ a ∈ D(c(t), r(t)) with

c(t) := −2 (xo + tvo) /t
2, r(t) := 2R/t2, (4.3)

due to (4.1). Thus, we express the AOτ given by (4.2) as

AOτ = {a | ∃t ∈ (0, τ ] : a ∈ D(c(t), r(t))}

=
⋃

t∈(0,τ ]

D(c(t), r(t)) =
⋃

t∈(0,τ ]

Dt (4.4)

with Dt := D(c(t), r(t)). The final expression (4.4) describes the AO as a union
of disks defined over the time span (0, τ ] (cf. Fig. 4.2-a), i.e. a planar shape
analogous to a canal (i.e. a union of spheres) in R3 [100]. The last disk’s
boundary ∂Dτ ∩∂AOτ is associated with collisions at the time horizon, whereas
the remaining boundary corresponds to grazing motions. It is generally curved,
since the acceleration term in (4.1) is combined with the growing translation
tvo, such that a must rotate to reach the collider at different times.
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Figure 4.2: (a) Showing an AOτ , its sweeping disk Dt with center c(t) and
radius r(t) for some time t ∈ (0, τ ], the local boundary’s elements bλt and bρt ,
which are left and right with respect to the center’s derivative ċ(t), and their
unions Bλ and Bρ, respectively, up to the time horizon’s disk Dτ . (b) Showing
the (normalized) extrapolation x̂(t)/R from xo/R over [0, τ ] in the space of
the normalized relative position coordinates x/R and y/R. The unit circle’s
tangents through x̂(t)/R are orthogonal to the AOτ ’s local normals nλt and nρt
at any given time t ∈ (0, τ ] with |x̂(t)| > R.

4.2.1 Geometric Properties of Acceleration Obstacles

For discussing the shape of the AO, we first define precise notions of its boundary
and normals (cf. also Fig. 4.2).

Definition 2 (Local Boundary/Normals) For an AOτ , the local boundary
at t ∈ (0, τ ] is the set

Bt := lim
∆t→0

∂Dt ∩ ∂Dt+∆t. (4.5)

The set of (outwards) normals at t ∈ (0, τ ] is defined as

Nt := {u |u = (bt − c(t))/r(t),bt ∈ Bt} . (4.6)

Thus, we associate with any given element bt ∈ Bt a normal nt ∈ Nt. If
|Nt| = 2, the two normals are denoted by nλt and nρt , such that ċ × nλt > 0
and ċ×nρt < 0, and termed as left and right (relative to ċ), respectively. Their
corresponding boundary points are denoted by bλt , bρt , accordingly.

The normals Nt can be constructed via the extrapolation x̂(t) := xo + vot/2
according to the following proposition (cf. Fig. 4.2), which is proven in the
Appendix 7.A.

Proposition 1 (AO-normals) For the AOτ (xo,vo, R), the set of normals at
any t ∈ (0, τ ] is given by

Nt =
{
u
∣∣uT x̂(t)−R = 0, |u| = 1

}
. (4.7)
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Figure 4.3: The tangents through the (normalized) extrapolation x̂(t)/R touch
the unit circle at the respective AOτ ’s normals. Thereby, the left and right
normals’ unions Nλ and Nρ are generated, respectively, as t varies over (0, τ̃).
The reduced time horizon τ̃ can be (a) equal to the time horizon τ or (b) smaller
than τ (if the line from xo to x̂(τ) intersects the unit circle).

Thus, the normals are constructed from tangents to the unit circle (i.e. the nor-
malized collider) through the normalized extrapolation x̂(t)/R as the Fig. 4.2-b
illustrates. One can also use x̂ instead of ċ as reference to identify which is the
left or right normal, since ċ(t) = 4x̂(t)/t3 holds, as can be derived from (4.3),
i.e. the two references differ only by scaling.

Since |Bt| = |Nt|, the local boundary exists at a given t if (4.7) admits any
solutions, which is the case iff |x̂(t)| ≥ R. Thus, assuming that the initial state
is not in collision, the AOτ ’s local boundary exists from time zero up to the
reduced time horizon τ̃ defined as (cf. Fig. 4.3-(b))

τ̃ := max {t|∀t′ < t : |x̂ (t′) | > R, t ≤ τ} . (4.8)

Further, τ̃ is sufficient as a horizon, in the sense of the following proposition,
which is proven in the Appendix 7.B.

Proposition 2 (AO-reduction) The interval (0, τ̃ ] already generates the com-
plete AOτ , i.e. AOτ̃ = AOτ .

Accordingly, we define the left local boundary’s union Bλ := {z|z = bλt , t ∈
(0, τ̃)} and the left normals’ union Nλ := {u|u = nλt , t ∈ (0, τ̃)}, uniting el-
ements up to τ̃ . The right local boundary’s union Bρ and the right normals’
union Nρ are defined analogously. The Fig. 4.2 and 4.3 illustrate respectively
the local boundaries’ and normals’ unions.

We partition the AOτ ’s boundary ∂AOτ into the left boundary L ⊆ Bλ, the
right boundary R ⊆ Bρ, and the cap C ⊂ ∂Dτ̃ , where C contains at least a single
point and connects L and R. As Bλ or Bρ can form a self-intersecting curve,
a point on Bλ or Bρ does not necessarily belong to the AOτ ’s actual boundary
∂AOτ .
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Figure 4.4: Each plot (a-f) shows an AOτ , its left and right boundaries L and R,
respectively, the underlying relative initial position xo (fixed) and velocity vo
(varying), the final disk Dτ , and the halfplane H by the Algorithm 2, normalized
via the combined radius R and the unit acceleration ac. The initial course is
post-colliding (d), left-passing (b), and pre-colliding (f), or an edge case, if the
dashed line through xo/R and parallel to vo touches the unit circle (a, c) or
vo = 0 (e).

The Proposition 3 below characterizes the AOτ ’s local convexity or concavity
on its boundary’s partitions L and R dependent on the following definition’s
terminology.

Definition 3 (Initial Course) The initial course defined by the tuple (xo,vo, R)
is termed as

� pre-colliding if ∃t > 0 : |x̂(t)| < R

� post-colliding if ∃t < 0 : |x̂(t)| < R

� left-passing if ∀t : vo × x̂(t) > 0 ∧ |x̂(t)| > R

� right-passing if ∀t : vo × x̂(t) < 0 ∧ |x̂(t)| > R.

The Fig. 4.4 illustrates the following proposition, which is proven in the
Appendix 7.C.

Proposition 3 (AO-shape) The AOτ is locally convex on its left boundary, iff
the initial course is left-passing or pre-colliding, or it is locally concave there iff
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it is right-passing or post-colliding. And the analogous statement interchanging
the words “left” and “right” holds as well.

4.2.2 Connection to Acceleration Velocity Obstacles

The family of relative trajectories x(t; v) underlying AVO [40] results from pro-
portional velocity control with some gain 1/δ > 0 and setpoint v = const, i.e.
the motion satisfies

ẍ = (v − ẋ) /δ = a− ẋ/δ (4.9)

with a := v/δ. When δ → ∞ and |v| → ∞ while maintaining a given value of
a, (4.9) approaches the motion model underlying AO, namely ẍ = a. Indeed, it
holds

lim
δ→∞

AV Oτ (δ)/δ → AOτ (4.10)

in the following sense. Denoting the AVO’s center and radius functions by c̃
and r̃, respectively, it holds that c̃(t; δ)/δ → c(t) and r̃(t; δ)/δ → r(t) as δ →∞,
for any fixed t > 0. The proof is given in the Appendix 7.D.

4.3 Method

The technique we propose for a robot’s navigation between multiple agents uses
the AO and the theoretical results from the previous Sect. 4.2.

4.3.1 Construction Scheme for AO-constraints

From the AOτ between the robot and a given obstacle, a linear constraint is
constructed for the robot’s acceleration. Let H(n, b) :=

{
z |nT z ≤ b

}
denote

the closed halfplane with the outwards normal n and its boundary’s offset b from
the origin (along n). For shorter notation, let x̃ := x̂(τ̃). Given the parameters
defining an AOτ , the Algorithm 2 constructs a halfplane H which covers the
AOτ and whose boundary touches its cap C, as illustrated by the Fig. 4.4 for
various AOτ .

The Fig. 4.5 illustrates the geometric constructions performed by the Al-
gorithm 2. To explain its steps and understand why the resulting halfplane is
always conservative, we first note that for any n, choosing b as in Line 4 ensures
that ∂H touches Dτ̃ . As the Fig. 4.5 indicates, the algorithm constructs n such
that the left and right boundary’s normals are to its left and right, respectively,
i.e. n × n′ > 0,∀n′ ∈ Nλ and n × n′ < 0,∀n′ ∈ Nρ. Thus, ∂H can neither
intersect Bλ nor Bρ, leading to the following proposition.

Proposition 4 (Conservative Halfplane) The halfplane H constructed by
the Algorithm 2 is a conservative approximation of the AOτ , i.e. H ⊇ AOτ .
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Algorithm 2 Conservative Approximation of AOτ

Input: xo, vo, R
Output: H(n, b) ⊃ AOτ (xo,vo, R)
1: OC ← occlusion cone OC(xo, R)
2: x̄← x̃’s orthogonal projection on ∂OC
3: n← OC’s outwards normal at x̄
4: b← nT c(τ̃) + r(τ̃)
5: return H(n, b)

A more formal proof is given in the Appendix 7.E.
As AO may cover an infinitely large radius around the origin, we impose an

upper bound bmax >> amax on b, i.e. we actually compute the limited offset
b̂ := min (b, bmax), where b is defined by the Algorithm 2. This step ensures

that the resulting halfplane Ĥ := H(n, b̂) can serve as a (soft) constraint in
a numerical optimization and also, from a theoretical point of view, does not
dominate entirely the optimization’s solution (Sect. 4.3.3). In this work, we
assume the obstacle’s acceleration to be zero, such that Ĥ can be treated as in
the space of the robot’s absolute acceleration.

4.3.2 Limits of Acceleration and Velocity

Assuming that the robot’s acceleration and velocity are restricted to given fea-
sible convex sets A and V , respectively, our approach represents them as well by
linear constraints on the robot’s acceleration. This work sets A = D(0, amax)
and V = D(0, vmax), for simplicity, with amax=2 ms−2 and vmax=1.7 m/s.
Since V is in the space of velocity, it is transformed into the set of accelera-
tions that keep the velocity within V over some time horizon Tv > 0, chosen
as Tv=0.25 s. Thus, let Ṽ := (−v1(0)⊕ V ) /Tv, where v1(0) is the robot’s
current velocity and ⊕ denotes Minkowski addition. Then, A and Ṽ are under-
approximated by the convex polygons A ⊆ A and V ⊆ Ṽ , respectively. In
this work, we define both approximations as the intersection of 16 respective
halfplanes.

4.3.3 Command Optimization

Denoting the halfplane’s parameters computed for the i-th obstacle by ni, b̂i,
we combine these constraints from M obstacles with the objective of applying
a given nominal acceleration ā1 in the quadratic program

a∗1 := arg min
a
|a− ā1|2

s.t. nTi a ≥ b̂i, i = 1, ...,M

a ∈ A ∩ V

whose solution a∗1 defines the robot’s command. For the case that the above
problem turns out to be infeasible, the control law is defined by the alternative
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Figure 4.5: Left: The Algorithm 2 projects the point x̃ on the boundary ∂OC
of the occlusion cone OC for the collider of radius R and the relative position
xo. There at x̄, the surface normal n is extracted (shown for three x̃ in purple,
green, orange). The point x̃ is the halftime prediction at the time horizon x̂(τ)
if the latter is outside OC (green, orange cases), else x̃ is at the intersection
xox̂(τ) ∩ ∂OC (purple case). Right: the AOτ̃ ’s left and right local boundaries’
normals are constructed by drawing tangents to the circle and through x̂(t) as t
varies over (0, τ̃ ], and their resulting orientations’ respective intervals are shown
and labeled by λ and ρ, respectively.

problem to minimize the largest violation of an obstacle’s constraint, as in prior
work using VO [20]. This corresponds to the linear program

a∗1, ξ
∗ := arg min

a,ξ
ξ

s.t. nTi a ≥ b̂i − ξ, i = 1, ...,M

a ∈ A ∩ V

whose feasibility is that of A ∩ V. If it is infeasible, the robot must be moving
with a velocity outside V, which may happen in practice. In the infeasible case,
the command is chosen as a∗1 = −amaxv1/|v1| (opposed to the current velocity).

4.4 Experiments

The next Sect. 4.4.1 compares AO with AVO. Robots’ navigation using AO and
the SFM in bi-directional crowd flow simulations is evaluated in the Sect. 4.4.2.
We provide videos of the crowd simulations in the supplementary material.

4.4.1 Comparison with AVO

In this experiment, the robot approaches a flat wall and brakes to avoid a
collision. Since the obstacle is conceptually equal to a circle with infinite radius,
the corresponding AVO and AO are halfplanes and one can directly interpret
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Figure 4.6: A robot’s braking acceleration ax (top) and position x (bottom)
over time are shown as it perpendicularly approaches a flat wall and avoids a
collision (at x = 0) using AVO (with different relaxation times δ) or AO.

them as a linear constraint, which we then impose on the robot’s motion. The
largest absolute acceleration which the robot applies when braking in front of
an obstacle is smaller for AO than for AVO with any finite relaxation time δ,
as the Fig. 4.6 illustrates.

4.4.2 Crowd–robot interaction in a Corridor

In the simulations, the robot travels in a corridor amidst two streams of pedestri-
ans which move in mutually opposite directions (cf. Fig. 4.7) and are governed
by the Social Force model (SFM) for pedestrian dynamics [46].

The Social Force Model (SFM)

The SFM describes a pedestrian as a body with position xi and velocity vi.
Its acceleration is described as the sum of a driving force fi towards the pre-
ferred velocity and repelling forces fi,j , f̃i,k due to other pedestrians and walls,
respectively. The driving force is defined as

fi := (vdes,i − vi) /γ, (4.11)

where vdes,i denotes the desired velocity and γ is the relaxation time. We
denote by ei,j the unit vector pointing from the j-th to the i-th pedestrian and
by di,j the distance between them (minus their radii). The force due to other
pedestrians comprises long-range interactions with strength A1 and range B1



56 CHAPTER 4. NAVIGATION BY ACCELERATION OBSTACLES

and short-range (physical) interactions with strength A2 and range B2 according
to

fi,j = ei,j

(
A1e

−di,j/B1w(ϕi,j) +A2e
−di,j/B2

)
, (4.12)

with w(ϕi,j) := λ+(1−λ)(1+cosϕi,j)/2 and cosϕi,j = −ei,j ·vi, where λ ∈ [0, 1]
can be chosen below 1 to reduce interactions with pedestrians not in the viewing
direction.

Similarly for walls, we denote by ẽi,k the unit vector pointing from the k-th

wall’s nearest point to the i-th pedestrian and by d̃i,k the distance between them
(minus the pedestrian’s radius). The interaction force due to walls is defined as

f̃i,k = ẽi,kAe
−d̃i,k/B . (4.13)

with A and B specifying the repulsion’s strength and range, respectively. Thus
the i-th pedestrian’s acceleration is given by

ẍi = fi +
∑
j 6=i

fi,j +
∑
k

f̃i,k. (4.14)

In our simulations, we set the SFM parameters as [46,101] to γ = 1 m/s, A1 =
0.42 m/s2, B1 = 1.65 m, A2 = 3 m/s2, B2 = 0.2 m, λ = 0.75, A = 5 m/s2, B =
0.2 m.

Control of the robot

For controlling the robot, we compare the method using the Acceleration Ob-
stacle (AO) as defined in the previous Sect. 4.3 to two alternative methods.
The first alternative applies the SFM to determine the robot’s acceleration in
the same way as for pedestrians. The second alternative combines the SFM
and AO by computing the robot’s nominal acceleration ā1 from the SFM and
executing the method of AO to determine the actual acceleration a∗1 taking into
account constraints due to pedestrians. We abbreviate the three methods for
controlling the robot as AO, SF, and SF-AO, respectively. For AO, the nominal
acceleration ā1 is computed according to (4.11).

Experimental Protocol

To obtain diverse states of the crowd in the corridor for initializing the experi-
ments, we run a preliminary simulation of a system comprising 200 pedestrians
(100 per direction) for a long duration. Starting from two separated streams (cf.
Fig. 4.7), the system’s state becomes less ordered after two minutes (in simula-
tion), when we start to periodically take a snapshot of the system’s state, with
period ∆t=20 s, until a set of K states is obtained (K=48). Due to chaotic fluc-
tuations and spontaneous congestion, the crowd’s density in the corridor varies
across snapshots (from 0.28 to 0.5 persons per square meter).

In each snapshot, one particular pedestrian is chosen to be replaced by the
robot, whereas the others serve to initialize the crowd in the actual experiments.
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r = 3 m

40 m

5 m 0.5 m

Figure 4.7: The crowd forms two streams (blue and yellow) through a corridor.

For each snapshot, we carry out one simulation of duration ∆t for each method
to control the robot and for three different preferred speeds for the robot, namely
1.1, 1.3, and 1.5 m/s. A radius of 0.25 m is assumed for both the robot and
pedestrians. Each pedestrian’s preferred speed is constant throughout all exper-
iments and sampled from the normal distribution with mean 1.3 and standard
deviation 0.3 m/s. For AO and SF-AO, we set the time horizon to τ=1 s.

Metrics

We compute the following metrics by considering only the time span when the
robot is inside the corridor.

The robot’s efficiency is quantified in two ways. Firstly, the metric vr is
defined as the ratio of its average velocity in its preferred direction over its
preferred speed [98]. Secondly, the metric pr is defined as the ratio of its change
in position in its preferred direction over its path length. Thus, pr measures the
path’s efficiency independent from the velocity. The metrics vc and pc measure
the analogous quantities’ averages over pedestrians’ trajectories in the corridor.

The robot’s integration in lanes is measured by the metric L, which de-
notes the temporal average of the number of pedestrians around the robot (i.e.
5 m close) that have the same preferred direction of motion and differ in the
transversal coordinate (in the direction orthogonal to the walls) by at most
0.5 m from the robot. The metric I measures for pedestrians heading the other
way than the robot the average acceleration induced by the robot via (4.12) in
the component opposed to their preferred direction.

When two agents’ distance falls below the sum of their radii, a collision
is counted. A near miss is defined similarly as the event that the distance
between two agents becomes lower than the sum of their radii plus 0.1 m but no
collision occurs while this condition is present. The metrics C and NM count
pedestrian-robot collisions and near misses, respectively, only considering events
in the corridor.

Results

Comparing the robot’s control methods SF, AO, and SF-AO, the Table 4.1 gives
separate results for the robot’s three different preferred velocities. It gives the
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mean and standard deviation over the K executions for the velocity and path
efficiency metrics, and the sum over the K executions for the collision and near
miss metrics. Asterisks (∗) indicate that a t-test rejects the null-hypothesis that
the expected value of the difference between the respective metric of AO and
SF-AO is equal to zero (p-value< 0.05). In this case, the difference is considered
significant. Values in bold indicate the best performance.

When the robot uses AO, both the robot and the crowd move more efficiently
in their preferred direction (and also faster), as the values of vr, vc, pr, and pc
show. On the other hand, the method SF-AO leads to the smallest number of
collisions and near misses between the robot and the crowd. The robot’s ten-
dency to integrate itself in lanes as measured by L is higher with SF-AO than
with AO. However, its interaction intensity with the opposite stream as mea-
sured by I is lower with AO than with SF-AO. With SF, the robot’s efficiency’s
mean value and the number of near misses are between SF-AO and AO. The
largest number of collisions is reported for SF.
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Table 4.1: Results of simulated bi-directional crowd flow in a corridor including a robot that uses SF, AO, or SF-AO.

vr [-] vc [-] pr [-] pc [-] L [-] I [m/s2] C [-] NM [-]
robot’s preferred speed = 1.1 m/s

SF 0.80 ±0.24 0.73 ±0.14 0.92 ±0.13 0.919 ±0.059 4.1 ±1.8 0.008 ±0.011 30 64

AO 0.87∗±0.16 0.74∗±0.13 0.98∗±0.03 0.921∗±0.056 3.7∗±1.9 0.007 ±0.009 2 89∗

SF-AO 0.76∗±0.28 0.73∗±0.14 0.88∗±0.31 0.918∗±0.060 4.1∗±1.8 0.008 ±0.011 1 36∗

robot’s preferred speed = 1.3 m/s
SF 0.72 ±0.19 0.73 ±0.14 0.93 ±0.10 0.918 ±0.059 4.1 ±1.7 0.008 ±0.009 32 55

AO 0.85∗±0.18 0.74∗±0.13 0.98∗±0.03 0.920 ±0.057 3.6∗±1.8 0.007∗±0.008 3 98∗

SF-AO 0.67∗±0.25 0.73∗±0.14 0.87∗±0.30 0.919 ±0.060 4.0∗±1.7 0.009∗±0.012 2 50∗

robot’s preferred speed = 1.5 m/s
SF 0.65 ±0.19 0.73 ±0.14 0.92 ±0.13 0.918 ±0.060 3.9 ±1.9 0.009 ±0.011 36 67

AO 0.83∗±0.19 0.74 ±0.13 0.99∗±0.03 0.919 ±0.057 3.4∗±1.8 0.006∗±0.009 4 99∗

SF-AO 0.62∗±0.23 0.73 ±0.14 0.91∗±0.17 0.920 ±0.057 3.9∗±1.9 0.009∗±0.014 1 54∗
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Discussion

The robot progresses faster with AO because it can use any free space to navi-
gate, in particular the corridor’s middle, which is often free because pedestrians
repell each other on a long range and therefore tend to stay close to the walls
(cf. Fig. 4.8). In contrast to both other methods, AO lets the robot come
arbitrarily close to pedestrians, which is reflected by the large number of near
misses. Pedestrians tend to restore the distance since the robot repells them
like a pedestrian. Therefore, the robot also makes pedestrians progress faster by
pushing them forward when approaching from behind. This happens frequently
because the crowd tends to form lanes and the robot is initialized in place of a
pedestrian and thus often in a lane.

With SF-AO, the robot maintains a similar distance to pedestrians as they do
among each other, as indicated by the smaller number of near misses than with
AO. The distance margin leaves the robot more time to react to pedestrians’
changing velocities, which explains why fewer collisions occur than with AO.
Since a higher number of near misses implies a higher (actual and perceived)
risk of collisions, navigation with AO is riskier but more efficient than with SF-
AO, while only very few actual collisions occur, comparing to SF. Thus, the two
methods AO and SF-AO represent different priorites on the safety–efficiency
spectrum, which has been described in prior work [65] as trade-off inherent to
navigation in a crowd.

While related work often uses efficiency to quantify lane formation [98,102],
the robot in our simulations can achieve higher efficiency outside lanes. The
fact that AO achieves higher values of vr, vc, pr, and pc while exhibiting lower
values of L and I than SF-AO can be explained as follows. The robot with
AO may leave lanes earlier than with SF-AO and avoid the opposite stream
successfully by exploiting narrow gaps without decreasing the opposite stream’s
efficiency. Thus, the robot’s superior performance at avoiding oppositely headed
pedestrians by AO (also reflected by low interaction intensity I) seems to over-
compensate being less often in lanes. Considering that the crowd’s efficiency
is positively affected by AO (considering vc, pc), the robot does not seem to
obstruct lane formation, even when not participating in it. The efficiency met-
rics exhibit larger standard deviations with SF-AO and SF, since the robot is
repelled by the crowd and thus more sensitive to its fluctuating density.

The simplicity of the SFM, particularly the fact that it does not avoid col-
lisions in a reliable manner, arguably render the robot’s navigation task more
difficult than under a more sophisticated crowd model. On the other hand,
simulations are started from steady state conditions in the sense that lanes
have been established already, which compensates for this lack of reliable colli-
sion avoidance in pedestrians’ behavior, and which facilitates navigation for the
robot.

An important qualitative difference between the SFM and AO can be seen
in the fact that the SFM makes agents spread out over the entire space available
to them, whereas AO in itself only generates motions to avoid collisions. Thus,
navigating in a crowd governed by the SFM is particularly easy for an agent us-
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Figure 4.8: Both snapshots show a simulation from the same initial condition
once with AO (top) and SF-AO (bottom). Pedestrians (blue/yellow) tend to
form lanes close to the walls due to mutual repulsion. The robot (large black-
green circle) has the same tendency with SF-AO, whereas it can navigate in the
free middle between lanes when using AO. Its path is shown by connecting four
past waypoints (dashed line/small black-green circles).

ing AO, since the crowd will tend to be distributed evenly in space and leave free
gaps, which the robot can pass through. In contrast, if the crowd was governed
by a velocity constraint-based approach, such as ORCA [20], agents would not
repell each other, and thus, higher local crowd density could occur and hinder
the robot’s motion. The combination SF-AO is particularly conservative, as it
combines the territorial effect of repulsion with anticipatory collision avoidance.

Limitations

The presented results obtained in simulation for AO and SF-AO are based on
a model of a heterogeneous system, consisting of a homogeneous crowd and
a robot. The crowd’s behavior is described by the Social Force Model (SFM),
whereas the robot’s behavior is described by controllers based on AO. While this
combination leads to observing counter-intuitive effects, such as the fact that
the robot can be more efficient outside of dynamic lanes, the heterogeneous
model is not based on empirical observations. Thus, it does not readily describe
a real robot’s interactions with a crowd, whereas it can point out the theoretical
possibility for the simulated effects. For example, a robot which is more agile
than pedestrians and accepted in close proximity could indeed exploit the space
between lanes to progress faster.

Furthermore, it has to be noted that the SFM does not represent realis-
tic behavior of individual pedestrians, but rather allows to reproduce realistic
crowd dynamics on a more macroscopic level. As a consequence, evaluating the
robot’s performance in a simulated crowd governed by the SFM corresponds to
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evaluating its ability to cope with obstacles whose macroscopic distribution in
terms of positions, densities, and velocities can be representative of real crowds,
whereas individual interactions cannot be expected to be realistic. Particu-
larly, the presented simulations are not informative of systematic effects arising
from the robot’s interaction with pedestrians. For example, the robot’s navi-
gation task could be easier in real crowds than in simulation if, hypothetically,
all pedestrians were to avoid it proactively upon noticing its apparent lack of
agility.

The presented simulations focus specifically on the practically important
case of bi-directional flow, and accordingly, the environment has been chosen
as a corridor, and the metrics have been chosen to characterize agents’ motion
and interaction under these conditions, as proposed in prior work [46, 98]. As
pointed out in the previous section, this type of flow and environment simplify
collision avoidance for the robot due to emerged lanes. Thus, the presented
results do not allow to assess the proposed AO-based method’s performance in
more general conditions.

Since the simulated conditions render the robot’s task of navigation rather
easy, the small time horizon of τ=1 s for the AO-based method has been suf-
ficient for efficient navigation and for avoiding most collisions. However, the
simulations’ results presented in this chapter do not allow any conclusions about
the AO-based method’s performance with larger time horizons. Furthermore,
the simulations have not investigated how the utilized scheme for determining
an approximate halfplane for a given AO affects the AO-based method’s perfor-
mance. The Chapter 6 investigates navigation based on AO with a larger time
horizon and with alternative schemes to choose approximating halfplanes.

4.5 Conclusion

In this chapter, we have studied Acceleration Obstacles (AO) in the context
of robotic navigation in human crowds, focusing particularly on bi-directional
flow in corridors. We have described the AO geometrically and analyzed how
its shape depends on parameters. We have related the Acceleration Velocity
Obstacle (AVO) to the AO via a limit case, which requires the least braking
deceleration. A method has been proposed for a robot’s navigation using AO
via a novel algorithm which exploits our geometric analysis of AO to compute
conservative linear approximations of AO in closed form. For the experimental
evaluation, we have used the Social Force Model (SFM) to simulate crowds
which interact with a robot. Applying our method, the robot progresses faster
and undergoes very few collisions in comparison to pedestrians. Since many
near misses still indicate a risk of collision, future work could address this issue
e.g. by adaptive distance margins or objective functions that include social
norms. The combination of the SFM and the AO has been evaluated as an
alternative robotic controller, which was found to be significantly less efficient.
Furthermore, we have shown that the robot could achieve higher performance
when being less often in lanes.



Chapter 5

Cooperative Navigation in
Crowds by Inverse
Reinforcement Learning

Abstract In this chapter, the problem for a mobile robot to navigate seam-
lessly in a human crowd is treated by an inverse reinforcement learning (IRL)
approach. A novel feature is proposed to model costs of anticipated collisions
between agents. The feature approximates agents’ pairwise interaction energy,
a function which prior work has derived empirically from crowd data as an
interaction potential driving pedestrians’ mutual avoidance. Using a recent
framework to perform IRL from locally optimal examples in continuous space,
cost functions which incorporate the novel feature are learned efficiently from
high-dimensional examples of real crowd motion. Examples are obtained from
two public datasets, which have been recorded on a university campus and in
a shopping mall, respectively, and which contain pedestrians’ and wheelchair
users’ trajectories.

The learned models are evaluated and compared in how accurately their
local optima model the training examples and test examples. Furthermore,
predictions based on test examples’ initial states only are generated similarly
by optimization, and their distance to recorded ground truth is measured. Both
models’ predictions compare favorably to a recent related approach from the
literature.

Finally, a control system which computes and executes in real-time an op-
timal trajectory according to the learned cost functions is implemented on a
robotic wheelchair, to steer it between pedestrians perceived by an on-board
tracking system. The robot is deployed on campus, where the controller’s per-
formance is evaluated qualitatively. Results show that the approach often gen-
erates apt motion plans, which complement pedestrians’ motion in an efficient
manner, albeit oscillations between locally optimal solutions may occur.

63



64 CHAPTER 5. LEARNING COOPERATIVE NAVIGATION

5.1 Introduction

The geometric approaches presented in the two previous chapters allow a robot
to avoid collisions in an anticipatory fashion by considering agents’ motion in
the near future, as defined by a time horizon τ . In this chapter, the same
idea is employed to model and execute cooperative collision avoidance with
anticipation. However, instead of using constraints to define collision-prone
velocities, the approach in this chapter associates a measure of risk with relative
velocities, which becomes higher, the sooner a collision would happen. This risk
or interaction energy [57] is incorporated in a cost function. While the time
horizon τ needs to be adapted to the density of a crowd for best performance of
the previous approaches, the cost function in the approach here can naturally
account for different densities.

For navigating smoothly and safely in human crowds, robots need to take
into account how their own actions affect surrounding humans. Furthermore,
cooperative navigation requires to reason about each involved agent’s individual
costs and benefits. We propose to consider such factors in a collective cost func-
tion, which describes how desirable any particular combination of individual
trajectories is, from the collective point of view of all involved agents. However,
such a cost function can provide useful guidance to a robot navigating in a pop-
ulated environment only if it captures actual characteristics of human behavior.
Thus, a principled approach to design a suitable cost function and to calibrate
or learn its parameters from empirical data is instrumental.

The problem to recover a cost function underlying observed behavior is at the
heart of inverse optimal control (IOC) and inverse reinforcement learning (IRL).
Traditional methods in this field assume that observations are globally optimal,
which makes their computational cost scale exponentially with the number of
state dimensions. Thus, they are not well suited to a system with many agents
and respective state dimensions. Furthermore, human crowds may evolve in
multiple qualitatively different ways with similar probabilities. For example, a
pedestrian may pass another pedestrian on the left or on the right side, whereas
trajectories in between the two alternatives are of high costs, as they lead to
a collision. Thus, the two alternatives can be described as local optima, since
they are separated by trajectories with higher costs. Consequentially, it is more
reasonable to consider navigation in multi-agent systems as a local optimization
problem and to assume that observed behavior is only locally optimal.

Fortunately, more recent approaches to IOC/IRL have been developed which
drop the assumption of global optimality and, in doing so, free themselves from
the curse of dimensionality by restricting their attention to parts of the state
space in the neighborhood of observed examples. We employ the framework [79]
to perform IOC from examples of up to 13 simultaneously navigating agents,
which corresponds to 52 state dimensions in our formulation. To the best of our
knowledge, approaches to IOC assuming local optimality have not been applied
so far to navigation problems involving more than three agents.

Despite promising algorithms being available, designing appropriate features
for the problem of multi-agent navigation IOC/IRL remains a challenging and
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critical step for achieving a cost function that generalizes in a meaningful way
and proves useful in real-world situations. To extend the set of available fea-
tures for IOC/IRL of cooperative navigation and collision avoidance, we propose
a novel feature which approximates an interaction energy [57] between agents.
This interaction energy has been derived empirically from crowd data as an in-
teraction potential driving pedestrians’ mutual avoidance [57]. As it constitutes
an important development for the state of the art in modeling and simulating
human crowds, it seems worthwhile to incorporate a corresponding feature in
an IRL approach to learning navigation in crowds.

We obtain the training samples for our approach from the dataset DI-
AMOR [54], containing bi-directional motions in a corridor. We focus again
on this scenario, as in the previous chapter, as it constitutes an important mo-
tion base case [56] for urban environments, and as it allows to simplify modeling
of agents’ preferred velocities, which can be assumed to be aligned with the cor-
ridor’s axis. We evaluate our approach on the dataset ETH [103], which is a
common benchmark for data-driven crowd modeling and prediction methods
(e.g. [62, 63,104]).

The chapter’s main contributions are:

� The use of a novel feature quantifying agents’ interaction energy [57] to
formulate cost functions for IRL of navigation in pedestrian crowds.

� An approximation of the original discontinuous interaction energy [57] by
a smooth formula, which provides Hessian matrices and gradients for local
IRL [79] and local optimization.

� A quantitative evaluation of the approach [79] for IRL of navigation in
crowds, demonstrating more accurate and smoother predictions of pedes-
trians’ trajectories in comparison to a state-of-the-art alternative [35].

� A qualitative evaluation of our IRL-based approach’s performance at con-
trolling a mobile robot navigating in a real crowd.

5.2 Related Work

5.2.1 Models of Optimal Crowd Behavior

Many works [33–38,43,47,57,95,105,106] in the context of crowd modeling/simulation
and robotic motion planning describe interacting agents’ navigation behavior as
a result of inter-dependent optimization processes.

Approaches using (inverse) reinforcement learning often consider a crowd of
agents as a single system aiming at maximizing a scalar reward function [33–35,
43,106]. Similarly, optimization-based techniques for crowd simulation [57,105]
consider a single cost function which is jointly minimized over all agents’ actions
to determine their behavior. Formulating a joint optimization problem in such a
way is appealing since it allows to model agents’ reciprocal actions, i.e. actions
that complement each other.
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To model interactions that reflect competing interests and imperfect infor-
mation, some works [36–38, 47] adopt a game theoretic perspective instead.
However, as has been argued in [47], for the important case of two agents ap-
proaching each other, both their interests are aligned, such that a game theoretic
perspective coincides with single-objective models. Bearing this in mind, and
since IOC/IRL techniques are less developed for game theoretic models than for
single objectives, this chapter assumes a single objective.

5.2.2 Frameworks for IRL of Navigation

For learning navigation in crowds, several previous works have employed IRL.
Some works [66,107–110] use discrete state and action spaces. For learning a re-
ward, these approaches operate on grid representations of the entire state space,
and thus, they cannot easily incorporate multiple agents due to exponentially
increasing computational cost. Instead, they typically consider pedestrians as
exogeneous inputs which affect the cost/reward features only. While such an
approach may yield sensible behavior, it cannot produce a model which reasons
about interactions between agents, since other agents’ behavior is treated as a
given input to the model.

In contrast, the works [35, 79, 95, 106] have adapted the popular method of
Maximum Entropy IRL [78] to continuous state and action spaces. In the works
on continuous spaces, trajectories are either parametrized by the control actions
at each discrete point in time [111] or as splines [35, 95, 106]. For dealing with
the high dimensionality of the space of possible multi-agent trajectories, [111]
resort to a local approximation [79] of the exponential policy for Maximum
Entropy IRL, whereas [35, 95, 106] simplify the policy by discretizing it into
toplogical variants (who is passing on which side of who) and/or use Monte
Carlo techniques for performing IRL.

5.2.3 Cost/Reward Features for IRL of Navigation

Different cost/reward structures have been employed in prior work. In [66,110,
112], a robot-centric approach is adopted, where the space around the robot is
partitioned in areas, with corresponding features being activated e.g. by the
presence of pedestrians in these areas. This structure is tailored to the single-
agent representation treating pedestrians as exogeneous inputs.

For multi-agent state representations, other works [35, 95, 106, 111] define
features that depend on each agent or on each pair of agents, similarly as in
our approach. Common features to account for collisions include f = d−2 [35]
and f = exp(−d2/σ2/2) [111], where d denotes the distance between agents’
centers. Both are only position-dependent, and thus, they do not encapsulate
any anticipatory behavior for avoiding collisions. They can still generate such
behavior, but only due to optimizing a trajectory’s cost over an extended time
horizon. In summary, we believe that these and similar position-based features
do not reflect empirically known characteristics of human walkers, such as early
adaptation and regulation of the minimum predicted distance.
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Finally, some works [110,112] use deep neural networks as cost/reward mod-
els which are more flexible than traditional linear combinations. However, such
an approach yields a cost/reward function which is more difficult to interpret,
since the learned weights are not directly linked to single features anymore.

5.3 Method

5.3.1 System Model

For a system comprising n agents, let pi,vi,ai ∈ R2 denote the i-th agent’s
position, velocity, and acceleration, respectively, where i ∈ {1, 2, . . . n}. Let the
system’s state

x :=
[
pT

1 pT
2 . . . pT

n vT
1 vT

2 . . . vT
n

]T
(5.1)

contain all positions and velocities. The system’s action

u :=
[
aT

1 aT
2 . . . aT

n

]T
(5.2)

is defined by all accelerations, on the other hand.
The system’s transition from one state x(k) to another state x(k+1), under an

action u(k+1) over a time step of duration h, is described by the linear dynamic
system

x(k+1) = Ax(k) + Bu(k+1), (5.3)

A :=

[
I hI
0 I

]
, B :=

[
(h2/2)I
hI

]
,

where I ∈ R2n×2n denotes the identity matrix. The above dynamic model (5.3)
corresponds to applying constant accelerations over a duration h.

A state–action trajectory S := (X ,U , T ) is defined by a state sequence X :={
x(k)

}K
k=0

and an action sequence U :=
{
u(k)

}K
k=1

which satisfy the dynamic
model (5.3) for 0 ≤ k < K with a uniform time step h, and by a time sequence

T :=
{
t(k)
}K
k=0

, where each t(k) denotes the time at which the state x(k) is

attained, and t(k+1) − t(k) = h,∀k.

5.3.2 Forward Optimal Control Problem

We assume that there is a scalar cost function J (X ,U) which reflects the con-
sidered multi-agent system’s collective objectives, e.g. navigating efficiently and
without any collision. Given such a cost function J , a sequence T of K+1 time
instants with time step h, and an initial state xo, we define a finite horizon
optimal control problem

min
X ,U

J (X ,U) (5.4)

s.t. x(k) = Ax(k−1) + Bu(k), k = 1, . . .K

x(0) = xo.
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Then, any locally optimal solution X ∗, U∗ of (5.4) is considered as a suitable
choice of behavior for the system, and the corresponding locally optimal state–
action trajectory is defined as S∗ := (X ∗,U∗, T ).

5.3.3 Framework for Inverse Reinforcement Learning

Let E := {Sl}Ll=1 denote a given set of L state–action trajectories recorded from
a crowd of agents. We assume that the behavior recorded in the examples
E is locally optimal with respect to some unknown cost function J . Inverse
reinforcement learning (IRL) aims at identifying a meaningful cost function
such that observed behavior can be understood as attempts to minimize the
corresponding cost. We consider cost functions of the form

J(X ,U ; w) :=

K∑
k=1

wTf
(
x(k),u(k)

)
, (5.5)

where the features f(x,u) ∈ Rq are specified a priori to describe relevant proper-
ties for the system dependent on its current state and action, and where w ∈ Rq
is the vector of the features’ unknown weights to be determined by IRL. We use
a linear technique as we hypothesize that our features describe non-interacting
cost components.

In the original maximum entropy (MaxEnt) framework [78], the weights are
learned by maximizing the examples’ likelihood under the policy

p (U|xo,w) =
exp (−J (X (U ,xo) ,U ; w))

Z (x0,w)
, (5.6)

which assigns a probability density to an action sequence in proportion to the
exponential of its negative cost (i.e. reward), where Z is the partition function,
which normalizes the distribution. Note that X (U ,xo) is the state sequence
that results when starting from xo and applying the action sequence U . Com-
puting Z requires integration over the space of U , which is intractable for more
than a few action dimensions and time steps per example. Therefore, we adopt
the framework [79], where the policy (5.6) is approximated as a Gaussian in U
around the examples, which relaxes the original MaxEnt framework’s assump-
tion of their global optimality to local optimality only.

5.3.4 Cost Features for Cooperative Navigation

This section defines the features, i.e. functions that we use as components of
f . Since the present work models multiple agents as a single system optimizing
a collective reward, its features are defined to receive contributions from all
agents or all pairs of agents. Thus, individual and pairwise feature contributions
are defined in the following two respective sections. For simplicity, we employ
only four features, which we consider as the most essential ones for multi-agent
navigation, describing respectively individual effort and goal-directed motion,
and pairwise distance and anticipatory collision avoidance.
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Individual feature contributions

An agent’s effort is described by the feature contribution

f
(a2)
i = |ai|2/2 (5.7)

where ai denotes the agent’s acceleration. As an alternative to measuring effort
by squared acceleration, we define

f
(a1)
i = |ai|+ (log(1 + exp(−2λ|ai|))− log(2)) /λ (5.8)

as a feature contribution smoothly approximating |ai|, where λ > 0 controls the
function’s sharpness at the origin.

An agent’s deviation from its desired motion is described by the feature
contribution

f
(v)
i = |vi − v̆i|2/2 (5.9)

where vi and v̆i denote the agent’s actual and desired velocity, respectively.

Pairwise feature contributions

We employ a simple pairwise feature contribution commonly found in related
work, namely a gaussian function of both agents’ distance [111]

f
(c)
ij = exp

(
−|pij |2/(2σ2)

)
, (5.10)

where σ > 0 controls the activation distance, and pij := pi − pj denotes the
pair’s relative position.

In [57], two agents’ interaction energy has been defined as E := ητ−2 exp(τ/τo),
where τ denotes the time to collision, τo denotes a time horizon, and η is an ar-
bitraty constant setting the units of energy. The Fig. 5.1 plots E as a function of
the relative velocity v for a pair of agents with a given relative position p, where
we set their radius’ sum R=0.4 m, τo=3 s, and η=1 s2 to obtain a dimension-
less energy. E has been derived empirically from crowd data as an interaction
potential which drives pedestrians’ mutual avoidance [57]. The technique for
crowd simulation proposed in [105] updates agents’ velocities at each time step
by minimizing a continuous approximation of E. Since τ is defined to take a
finite value when agents are on a colliding course, and to be +∞ otherwise, E
rises discontinuously from zero to a finite positive value as the two agents enter
a colliding course (cf. Fig. 5.1).

In order to use E as a feature for IRL in the continuous framework [79]
adopted in the present work, an approximation of E is required, which is not
only continuous but also twice differentiable. Thus, we approximate E as

Ẽ :=ητ̃−2g (5.11)
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Figure 5.1: Top: two agents A and B are shown at exemplary positions. The
cone of colliding relative velocities V O∞ is constructed dependent on their rel-
ative position and their combined radius R. Bottom: for the two agents’ given
relative position, their interaction energy E is shown as a function of their
relative velocity v. E is uniformly zero at velocities outside V O∞ and rises
discontinously at its edge.
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Figure 5.2: Top: for the two agents from the Fig. 5.1, the minimum predicted
distance dmp and the free relative path length D for an exemplary relative

velocity v are shown. Bottom: the agents’ approximate interaction energy Ẽ is
shown as a function of their relative velocity. At the edge of the cone of colliding
relative velocities V O∞, Ẽ is smooth, unlike E (cf. Fig. 5.1).
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where g is an activation function which rises from almost zero to almost one as
the relative velocity enters the cone of colliding velocities V O∞. We define g as

g(z) := (1 + exp (−sz))−1

z :=− pTv −
|p|2|v|√
|p|2 +R2

where s > 0 controls the sigmoid activation’s steepness. Note that the activation
function’s argument z can be written as z = |p| |v| (cos(ψ)− cos(ψc)), with ψ :=
∠(−p,v) and ψc denoting half the opening angle of the cone V O∞, respectively.
Thus, it holds z = 0 if the relative velocity is on the edge of V O∞, which becomes
the activation threshold.

For relative velocities in V O∞, τ̃ := D̃/|v| approximates the time to collision,
where D̃ approximates the distance D which the relative position p can travel
along the relative velocity v before entering the disk of radius R centered at the
origin (cf. Fig. 5.2). We define D̃ as

D̃2(p,v) :=ε1 + (|p| −R)
2

+ 2 (|p|/R− 1) d2
mp(p,v)

d2
mp(p,v) :=|p|2 −

(
pTv

)2
|v|2 + ε2

ε1 :=0.22R2

where ε2 > 0 prevents division by zero. The function d2
mp denotes the squared

minimum predicted distance (cf. Fig. 5.2), and the constant ε1 ensures that D̃2

remains positive even when |p| < R, i.e. during a collision. The Fig. 5.2 shows
the resulting approximation for the same configuration as for the Fig. 5.1, where
we set s=10 and ε2=0.01 m2/s2.

Accordingly, we define the pairwise feature contribution

f
(e)
ij := Ẽ (pij ,vij) (5.12)

where vij := vi − vj denotes the pair’s relative velocity.

Feature vectors

We consider two alternative vectors

f(L2) :=
[
f (a2) f (v) f (c) f (e)

]T
, (5.13)

f(L1) :=
[
f (a1) f (v) f (c) f (e)

]T
, (5.14)

which differ only in their first component, which is proportional to either the
L2- or the L1-norm of the system’s accelerations, respectively. Any feature f
collecting individual contributions (with superscripts a2, a1, v) is defined as
f := (1/n)

∑n
i=1 fi. And any feature f collecting pairwise contributions (with

superscripts c, e) is defined as f := (1/n)
∑n
i=1

∑n
j=i+1 fij .
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5.3.5 Dimensionless Features and Weights

In order to obtain dimensionless features and weights, and to facilitate assessing
their relative importance, we define their normalized counter parts as follows.
Let f̃(E) := P E80 {f} define the normalizer for any feature f as its 80-th percentile
over a sample set E . Then, for any feature f and respective weight w, we
define the corresponding normalized feature as φ := f/f̃ and the corresponding
normalized weight as θ := wf̃ , such that the corresponding term of the cost
function can be written equally as wf = θφ.

5.4 Learning experiments

Using the framework [79] for IRL in conjunction with the multi-agent model
and the features described in the previous section, a corresponding cost func-
tion is learned from examples of real multi-agent trajectories from the public
dataset DIAMOR [54]. This dataset has been recorded in a shopping mall
and contains mostly pedestrians’ but also wheelchair users’ data. The re-
sulting model is evaluated on a separate test set of samples from DIAMOR
and, additionally, on the public dataset ETH [103], which has been recorded
on a university campus and contains pedestrians’ data only. In the remain-
der of this section, our approach is termed NavIOC. Our code is available at
https://github.com/epfl-lasa/navioc.

5.4.1 Data Pre-processing

Fitting individual trajectories

An agent’s trajectory data as given originally in a dataset is denoted as
{
t̄(i), p̄(i)

}M
i=1

,

consisting of M sequential time values t̄(i) and corresponding positions p̄(i). A
state–action trajectory S describing the single agent at hand (n=1) according
to Sect. 5.3.1 is fit to the data by solving the following quadratic program. We

jointly optimize X , U and a sequence of interpolated positions P̂ :=
{
p̂(i)

}M
i=1

in the problem

min
X ,U,P̂

M∑
i=1

∣∣∣p̂(i) − p̄(i)
∣∣∣2 + α

K∑
k=1

∣∣∣u(k)
∣∣∣2 (5.15)

s.t. x(k+1) = Ax(k) + Bu(k+1), k = 0, . . .K − 1

p̂(i) =
[
I hiI

]
x(κ(i)) +

h2
i

2
u(κ(i)+1), i = 1, . . .M,

where α > 0 is a regularizer controlling smoothness, κ(i) := floor((t̄(i)− t(0))/h)
indicates for each t̄(i) the temporally closest foregoing state/action extrapolating
p̂(i), and hi := t̄(i) − t(0) − hκ(i) denotes each extrapolation’s time step.

To keep the dimensionality of the optimization problem (5.15) at an effi-
ciently tractable level, for any trajectory longer than 100 h, multiple temporally
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Figure 5.3: Showing (a) original tracks from the dataset DIAMOR and (b) the
corresponding fit trajectories. The exemplary area delineated in red is magnified
for better visibility only.
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overlapping state–action trajectories of 100 time steps each are fit sequentially
to sub-sequences of the original trajectory’s data, with additional constraints
enforcing continuity at stitching points. The Fig. 5.3 shows original tracks from
DIAMOR, and the corresponding fit trajectories for h = 0.05 s and α = 0.01s4.

Estimating desired velocities

To estimate time-varying desired orientations ϕ̆(k), for any agent from DI-
AMOR, ϕ̆(k) at any instant k is estimated to be left/right for a negative/positive

actual velocity v
(k)
x , where we restrict our attention to agents in the corridor

aligned with the x-axis (cf. Fig 5.3). For any agent from ETH, firstly, the
agent’s goal is identified among the dataset’s four designated goals by choosing
the one which the agent is facing mostly during the later half of its trajectory.
Secondly, ϕ̆(k) is set in the direction from the agent to the goal at each instant
k.

Assuming that any particular agent’s desired speed v̆ is constant over time,
its value is estimated as the mode of the agent’s speed histogram, disregarding
speeds below a threshold vmin=0.3 m/s. Finally, for each agent, the desired
velocity is defined as v̆(k) := v̆[cos ϕ̆(k) sin ϕ̆(k)]T, if |v(k)| > vmin, or as zero,
else. Thus, for each agent, a sequence V̆ := {v̆(k)}Kk=0 of desired velocities is
obtained.

Sampling multi-agent trajectories

For each dataset, the union of individually fit trajectories’ time domains is di-
vided into adjacent intervals of uniform duration T=4.8 s, by convention [35].
For each such interval, all individual trajectories’ sub-sequences which are de-
fined on the entire interval are aggregated into a multi-agent state-action trajec-
tory. For DIAMOR, sub-sequences that do not overlap with the area of interest
in the main corridor (shown partially in the Fig. 5.3) are disregarded, whereas
for ETH, all agents are considered.

Defining training and test sets

We inspect each multi-agent sample obtained from DIAMOR and discard those
containing agents whose desired motion does not seem aligned with the x-
direction, e.g. agents who traverse the corridor along the y-direction or di-
agonally due to intrinsic motives and not to perform avoidance maneuvers. To
group the remaining samples from DIAMOR in a training set E1 and a test set
E2, they are sorted in their temporal order and then assigned in an alternating
fashion to E1 or E2, to ensure that the two sets reflect similar crowd conditions.
In contrast, all multi-agent samples obtained from ETH are grouped in the set
E3, without performing any manual selection. The Fig. 5.4 shows histograms
of the number of agents n in a given sample over the three datasets. Their
respective sizes are |E1|=22, |E2|=21, and |E3|=99.
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Figure 5.4: For the three datasets E1, E2, and E3, histograms of the number of
agents n in a given sample are shown.

Table 5.1: Features’ normalizers f̃ and learned normalized weights θ

f 10f̃ θ(L2) θ(L1) Parameters

f (a2) 0.185 m2/s4 1.0000 n.a. –
f (a1) 1.039 m/s2 n.a. 1.0000 λ=10 s2/m
f (v) 0.131 m2/s2 0.0385 7.5471 –
f (c) 0.635 0.0007 0.0976 σ=0.5 m

f (e) 0.021 0.0137 0.6593

{
η=1 s2, s=25s2/m2

R=0.4 m, ε2=0.01 m2/s2

5.4.2 Training

We have adapted the publicly available software package1 by [79] to learn from
examples of varying dimensionality (due to varying numbers of agents) and
complemented the package with our system and feature definitions. Training
on the dataset E1 takes around 4 and 7 minutes for the feature vectors f(L2)

and f(L1), respectively. The resulting models are termed as NavIOC-L2 and
NavIOC-L1, respectively.

The Table 5.1 reports, for any feature f , the normalizer f̃(E1 ∪ E2), which
has been computed with respect to all the selected samples from DIAMOR, and
the learned normalized weights θ(L2) and θ(L1), which have been obtained for
the feature vectors f(L2) and f(L1), respectively. Note that each learned weight
vector has been scaled such that the acceleration feature’s normalized weight
equals one.

1https://graphics.stanford.edu/projects/cioc/
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Choice of hyper parameters

The weights θ are initialized as random noise with zero mean and standard
deviation 0.01, except for the acceleration weight, which needs to be negative
for convergence and thus is set to -1. We observe that for too small α, only a
negligible weight is learned for the interaction feature f (e). The sharpness s for
the feature f(a1) strongly affects the learned behavior, as for both very small
or large s, acceleration is penalized more strongly relative to the velocity error,
such that agents slowly adopt their target velocity.

5.4.3 Evaluation

We evaluate the learned models’ accuracy on the dataset DIAMOR, and their
predictive capability on the dataset ETH, both in terms of the euclidean distance
between actual trajectories from a dataset and the corresponding trajectories
generated by optimizing the learned cost functions. Examples of actual and
generated trajectories are shown in the Fig. 5.5.

To evaluate accuracy on a given example, local optimization is performed,
initialized at the example’s actual trajectory (ground truth), to compute a lo-
cally optimal solution to the problem (5.4). Then, the modeling error is com-
puted as the euclidean distance between the obtained locally optimal trajectory’s
positions and the actual trajectory’s corresponding positions (ground truth).
The Fig. 5.6 plots the modeling error as a function of the time relative to the
considered trajectory’s initial time, both for the training and test sets E1 and
E2 from DIAMOR. As a baseline, a model assuming constant velocity (termed
as CV) is evaluated as well.

In contrast, for evaluating the models’ predictive capability, we do not pro-
vide any informative initialization, and start optimizing from U ≡ 0. Further-
more, predictions are not informed by the non-causal state fits but instead by
a causal state estimate of each trajectory’s state at its initial time, which is
provided in the ETH dataset. The prediction error is calculated similarly as the
modeling error by computing the euclidean distance between agents’ actual and
predicted positions. The Fig. 5.7 reports our models’ prediction error for the
ETH dataset [103] in comparison to the baseline model, which assumes constant
velocity over the prediction horizon, and the results reported by [35] for their
IRL approach.

Furthermore, the Table 5.2 compares our results on the dataset ETH to those
reported in [63] for their deep learning approach. The reported metrics are the
Average Displacement Error (ADE) and the Final Displacement Error (FDE).
The ADE at a given time is defined as the prediction error’s average over all
values up to this time of prediction, whereas the FDE at a given time is defined
simply as the prediction error at this time. Thus, the ADE can be computed by
averaging a given curve in the Fig. 5.7 up to a specific time, whereas the FDE
can be read directly as the curves’ values at specific times.

However, it has to be noted that our models and their models [63] rely on
different information, since ours rely on non-causal knowledge of pedestrian’s
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preferred velocities as well as a causal initial state estimate, whereas theirs rely
on (causal) knowledge of positions measured during the last 4.8 s.
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Figure 5.5: The plots show multi-agent trajectories from the example sets (left column) and their optimized counter parts
generated from our two models NavIOC-L2 (middle column) and NavIOC-L1 (right column). Agents are depicted by their
bounding circles of diameter R centered at their positions over time, such that circles for later instants are drawn on top of
earlier circles and in more saturated colors. Red arrows indicate the most recent velocity, whereas black arrows indicate the
assumed desired velocity for each agent. The examples in (1.a, 2.a, 3.a) belong to the sets E1, E2 and E3, respectively.
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Table 5.2: Comparison with the deep learning approach SGAN [63] at prediction
on the dataset ETH. The column SGAN collects the best values reported for
different models by [63]. The best value per row is set in bold.

Metric SGAN NavIOC-L2 NavIOC-L1 CV

ADE at 3.2 s 0.60 0.30 0.35 0.34
ADE at 4.8 s 0.81 0.47 0.49 0.55
FDE at 3.2 s 1.19 0.58 0.60 0.68
FDE at 4.8 s 1.52 0.97 0.87 1.16

Table 5.3: Number of collisions

Dataset Ground truth NavIOC-L2 NavIOC-L1 CV

E1 0 0 0 5
E2 0 0 0 5
E3 2 4 0 38

For making a prediction, each agent’s desired velocity at the instant when
the prediction is issued is provided to our model. We provide this information
to our model for comparison with related work [35], which similarly leverages
knowledge of goals, even though, in practice, one can only estimate such infor-
mation based on past observations.

As an additional metric, we count the number of collisions in the learned
model’s generated multi-agent trajectories, as reported in the Table 5.3 in com-
parison with the baseline assuming constant velocity and ground truth trajec-
tories. Here, any isolated period in which the distance between two agents is
below their combined radius R=0.4 m counts as a single collision.

5.4.4 Discussion

It can be seen from the Fig. 5.6 that both learned models provide a more accurate
description of pedestrians’ trajectories than the baseline model CV assuming
constant velocity, and that good generalization from the training to the test
set is achieved for both models NavIOC-L2 and NavIOC-L1. In terms of mean
modeling error, NavIOC-L2 outperforms NavIOC-L1 especially at low ∆t.

Similarly, the Fig. 5.7 shows that our models generate more accurate pre-
dictions than the baseline. For ∆t <4 s, our models’ predictions are also more
accurate than those by [35]. Comparing NavIOC-L2 and NavIOC-L1, it is again
visible that for low ∆t, predictions by NavIOC-L2 are more accurate on average
than those by NavIOC-L1, whereas for high ∆t, the opposite can be said. For
∆t >4 s, it seems that the approach by [35] would yield the most accurate pre-
dictions, considering the trend in the error curve (which remains speculation,
however, due to missing data in this regime).

Regarding the Fig. 5.7, it is noteworthy that the error curves’ sense of curva-
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Figure 5.6: The modeling error is calculated as the distance between agents’
observed and re-optimized positions as a function of time ∆t from the trajec-
tory’s initial time. The modeling error’s sample mean and the interval between
its lower and upper quartiles (shaded area) are shown for our two models, as
well as the sample mean for a baseline model assuming constant velocity. They
are evaluated on (a) the training set E1 and (b) on the test set E2, which are
both sampled from the dataset DIAMOR [54].
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Figure 5.7: The prediction error is calculated as the distance between agents’
observed and predicted positions as a function of time ∆t from the instant at
which the prediction is issued. The plot shows the prediction error’s sample
mean and the interval between its lower and upper quartiles (shaded area) for
our two models, as well as the sample mean reported in [35] for their IRL
approach and the sample mean for a baseline assuming constant velocity, all for
the test set E3 sampled from the dataset ETH [103].
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ture differs across models, namely, the curves for NavIOC-L2 and CV bend up-
wards, whereas the curve by [35] bends downwards, and the curve for NavIOC-
L1 is rather straight. This observation is linked to how the different approaches
take into account, on the one hand, agents’ desired velocities or goals, and on
the other hand, their initial velocities. In the framework of [35], trajectories’
endpoints are specified a priori. Thus, when accurate estimates of agents goals
are available, predicted and actual trajectories will tend to converge again for
later points in time with their method. On the other hand, our models con-
sider desired velocities and trade off following them versus keeping accelerations
small. Since NavIOC-L2 gives higher weight to accelerations than NavIOC-L1

(cf. Table 5.1), it leads to slower adoption of desired velocities in favor of main-
taining initial velocities (similarly as CV). This difference can also be observed
in the generated trajectories, comparing e.g. the ones shown in the Fig. 5.5-(2.b,
2.c).

However, in contrast to the baseline model CV, which generates a large
number of collisions, ours generate very few (NavIOC-L2) or zero (NavIOC-L1)
collisions, as indicated in the Table 5.3. Our models can therefore be used to
generate avoiding trajectories in collision-prone situations, which can guide an
autonomous mobile robot, as shown in the next section.

Based on the Table 5.2, our approach appears to generate better predictions
than the deep learning approach [63]. This comparison does not allow to identify
one method as superior to the other, however, due to the different information
given to the respective models. First of all, a key information which we provide
to ours and which is not leveraged by theirs consists in knowing the direction in
which a pedestrian’s goal lies relative to the pedestrian’s initial position. This
clearly helps for long term predictions. Secondly, a good estimate of initial
velocities helps short term prediction, which we exploit as provided in the form
of causally filtered estimates given in the dataset, but which they do not exploit,
since their approach is only based on positions during the past 8 time steps, i.e.
4.8 s. It is not clear how well one could estimate an agent’s velocity based
on these few steps, but since the estmitate provided by the dataset is likely
obtained via Kalman filtering, it can be expected to be optimal and containing
the trajectory’s entire history.

On the other hand, our choice of comparison with the related IRL ap-
proach [35] is motivated by its similarity with our framework, as both are based
on Maximum Entropy IRL in continuous spaces. Thus, the comparison pre-
sented here mainly serves to highlight differences within the class of such IRL
approaches, and to show that an IRL approach based on the assumption of local
optimality is suitable for modeling multi-agent navigation problems.

5.4.5 Limitations

According to the above discussion, our approach can only be used as a means
to predict or interact with pedestrians if provided with an estimate of their
desired velocity. For practical purposes, a pedestrian’s observed velocity may
be used as an estimate of the desired velocity, but this will likely diminish long
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term prediction accuracy. On the other hand, the task to estimate pedestrians’
desired velocities or goals on-line based on past observations has been tackled
in prior work [104], which could be combined with our approach.

As another practical limitation, the current models do not include any infor-
mation about the environment. Such information could be added in our frame-
work by creating additional features describing the environment. This would be
necessary for avoiding collisions with walls or other static obstructions.

Further, The chosen training and test data contains mostly bi-directional
crowd flow. It is therefore not clear how well the learned models would generalize
to more complex flow conditions. The focus on bi-directional flow is in agreement
with the aforegoing chapter, but constitutes a limitation of the presented work.
We note that pedestrians’ desired direction of motion can be estimated more
easily if they are moving in a corridor. Accordingly, our choice here to focus on
such data is mostly motivated by the need for consistent training data.

Again, the learned models’ capability to describe human–robot interactions
rather than human–human interactions is not validated, given that they were
trained and evaluated on the latter kind of data. Thus, the proposed approach
only provides a technique that could also be applied to modeling human–robot
interactions and possibly extended with additional features that capture their
specific relations. The implicit assumption that position and velocity are suffi-
ciently descriptive of such interactions also represents a limitation of the current
approach. By leveraging additional sensing capabilities that a robot could be
endowed with, a richer set of interactions could be modeled and learned from
empirical data.

Finally, even if a representative pedestrian–robot interaction model could be
learned by our approach, its scope would be limited to typical and cooperative
behavior. Pedestrians who are not behaving according to the model will always
remain a non-negligible challenge for a robot relying on such a model that is
based on a single collective cost function. Therefore, such models can only
reflect cooperative aspects of interactions, whereas behavior due to conflicting
or unrelated individual objectives would need to be considered as well to obtain
a wholistic approach, for example via a game theoretic model.

5.5 Robot Experiments

We implement a controller for the automated wheelchair Qolo [90], which we
refer to as the robot (cf. Fig. 5.8), based on solving the forward optimal control
problem (5.4) on-line, where the initial state xo is specified in each control cycle
by the robot’s and surrounding pedestrians’ estimated states of motion. The
cost function is defined by the model NavIOC-L1, i.e. by the feature vector f(L1)

and the corresponding learned weights. We evaluate the implemented method’s
performance in a series of tests where the robot drives autonomously through a
busy corridor of EPFL campus (cf. Fig. 5.8).
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Figure 5.8: The robot Qolo is driving autonomously on EPFL campus.

5.5.1 Implementation

For our approach, three specific domains of functionality are essential, namely, 1)
estimating the robot’s state of motion, 2) detecting and tracking pedestrians and
estimating their state of motion, and 3) computing and executing the optimal
trajectory dependent on these estimates.

Odometry

The robot’s linear and angular position and velocity are estimated by a com-
mercially available on-board camera with integrated inertial sensors and a cor-
responding software which fuses inertial and optical flow measurements.

Pedestrian tracking system

We implement a tracking system on the robot to track pedestrians who are
perceived by a LiDAR sensor (mounted on the robot’s front), which delivers
planar range measurements (in total 900 points on 360◦) at a frame rate of 20
Hz. We make the tracking system’s source code in C++ publicly available2.

Following the paradigm of tracking-by-detection, we implement a fast algo-
rithm which detects legs in range measurements. It first segments a frame’s
scanpoints by passing over them in angular order and setting breakpoints wher-
ever the line between two consecutive scanpoints defines a too shallow angle
with the rays from the sensor to the respective scanpoints [113]. Then, circles
are fit to segments with endpoints at most 0.3 m apart, using the approach
in [114]. Fit circles with a radius below 7 cm are retained as detections, and the
circles’ centers define the detections’ positions.

2https://github.com/epfl-lasa/fast-pedestrian-tracker
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Figure 5.9: A cost function, which is parametrized by weights w, is learned
offline via IRL from a set E of multi-pedestrian trajectories. The robot navigates
on-line by seeking collective actions u∗ which optimize the learned cost, given
the robots’ and tracked pedestrians’ estimated state xo.

This detector is operated at 20 Hz and robustly identifies peoples’ legs, but
it also detects various other objects having a slightly curved outline. However,
falsely identifying objects as persons turns out to be beneficial for navigation
around obstacles. Using the robot’s estimated ego-motion, detections’ positions
are transformed from the moving LiDAR sensor’s frame of reference to a static
world frame, for further processing by the tracking system.

Our greedy approach to data association links detections over time by assign-
ing each new detection to the track with the closest predicted position within a
search radius of 0.75 m, or by initiating a new track if there is no existing suf-
ficiently close track. Our track management removes tracks whose most recent
associated detection is older than 1s. For each track, we update its estimate
of position and velocity by fusing their predictions (assuming constant veloc-
ity) with the average position of the track’s new associated detections using an
α-β-filter (α=0.15, β=0.02).

Control system

The model NavIOC-L1 is chosen for on-line prediction and motion planning,
since it gives sufficient weight to desired velocities, such that the robot can
be commanded via its desired velocity. Comparing to the learning phase, we
increase the time step to h=0.4 s and use only K=12 steps to obtain the same
planning time horizon of 4.8 s at lower computational cost. To account for the
robot’s larger diameter, we set R=0.6 m for the interaction energy feature.

Two asynchronous control loops are implemented, where the first loop com-
putes a reference trajectory by solving the forward optimal control problem (5.4),
operating at around 8–10 Hz, and the second loop computes velocity commands
at 20 Hz for the robot’s low-level velocity control system by evaluating the afore-
mentioned reference trajectory’s velocity at the current time and at the agent’s
index representing the robot. We use the package MinFunc3 to optimize a cost
over the robot’s and tracked pedestrians’ actions on-line (cf. Fig. 5.9).

The position and velocity variables in the initial state xo are defined by the
robot’s and pedestrians’ position and velocity estimates. We set pedestrians’
desired velocities equal to their estimated velocities. To estimate the robot’s
velocity, we assume that it perfectly adopts the given velocity commands as

3https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Figure 5.10: The robot’s estimated trajectory is shown (black circles) as it
avoids a static obstacle (red/blue), which it detects and tracks using its on-
board tracking system. Darker colors indicate later points in time. Note that
the obstacle is not moving and that its apparent motion is due to errors in the
robot’s self-localization. (a) The robot follows a reference trajectory (green)
planned on-line by our approach NavIOC-L1. (b) The robot uses a Velocity
Obstacle approach based on [20] to determine its velocity command, where the
time horizon is set to τvo=7 s.

long as they are within its acceleration bounds, since the velocity estimated by
our odometry module is too noisy to yield smooth performance.

The number of pedestrians included in xo is limited to 3 in order to keep
the time to compute the robot’s reference trajectory, i.e. to solve (5.4), lower
than around 0.15 s, which is still practically useful for responding to pedestri-
ans, considering that the solution incorporates a non-linear prediction of their
motion. For each tracked pedestrian, a score is computed as

score = −|y| − 0.25 max(x, 0) + 3 min(x, 0) (5.16)

where x and y denote the pedestrian’s position relative to the robot in its forward
and lateral direction, respectively. The 3 highest scoring pedestrians, typically
those directly in front of the robot, are selected.

Due to the robot’s non-holonomic differential drive kinematics, its velocity
command space is only two-dimensional and represented here by the linear for-
ward velocity v (of its wheel axle’s midpoint) and its angular velocity ω. The
linear reference velocity is interpreted as the desired velocity for a reference
point located 0.25 m ahead of the robot’s wheel axle, which is mapped via the
non-holonomic constraints on ω and v.

5.5.2 Experimental Protocol

Static obstacle

First, a preliminary experiment was performed involving only the robot and
a static obstacle, chosen as a cylindrical shape such that it would trigger the
robot’s leg detector and could be tracked as if it was a pedestrian. In each trial,
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Figure 5.11: Exemplary motions recorded during our experiments with the robot
Qolo on EPFL Campus are visualized. The robot (black) and pedestrians (var-
ious colors) are depicted by circles of diameter 0.4 m, such that circles for later
instants are drawn on top of earlier circles and in more saturated colors. Red
arrows indicate the most recent velocity. Similarly, the robot’s recently planned
paths are drawn (green, dotted), where more saturated colors indicate later
plans, and its current plan is drawn as well (green, solid). Each row of subfig-
ures depicts a different situation, where time increases from left to right.
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the robot was positioned around 15 meters away from the obstacle and oriented
such that it was facing the obstacle as precisely as possible. Then a constant
desired velocity of 1 m/s aligned with its initial orientation was issued to the
robot, and the robot used either our method NavIOC-L1 or a Velocity Obstacle
approach based on [20] to determine its velocity command. Motions were also
recorded by an external camera. One trial per method was performed.

Human crowds

Experiments with pedestrians were performed in a corridor on EPFL campus.
For each trial, the robot was positioned at the same starting point and received
a constant desired velocity aligned with the corridor and of magnitude 1 m/s. It
then drove autonomously over a distance of around 20 m and was then stopped
by a supervisor, or earlier if necessary for pedestrians’ safety. In total, 6 trials
were performed, where one trial involved interaction with the supervisor, which
is shown in the Fig. 5.11-(d.1-2), and other trials only involved interactions with
uninformed pedestrians. Interactions were recorded by an external camera and
the robot’s on-board systems for sensing and tracking pedestrians.

5.5.3 Results

The Fig. 5.10 shows the robot’s motion in the preliminary experiments with the
static obstacle. It successfully avoids a collision and passes the obstacle on the
left side in both trials.

For the experiments involving pedestrians, we first report qualitative obser-
vations of the robot’s behavior and its interactions with pedestrians, which are
illustrated by the Fig. 5.11.

Qualitative description of interactions

The Fig. 5.11 shows selected interactions between the robot and pedestrians,
which are briefly described here. (a.1) The robot starts to move and immedi-
ately avoids a pedestrian (green) heading the other way. (a.2) The robot has
joined a lane of pedestrians, and one of them (green) steps away from the robot.
(b.1) The robot attempts to avoid a pedestrian (red) on the less efficient side.
(b.2) The pedestrian (red) has avoided the robot on the more efficient side, and
the robot attempts to avoid a standing pedestrian (blue). (b.3) The robot at-
tempts to pass in between the two standing pedestrians (blue and green/purple)
and is about to be stopped by the supervisor. (c.1-2) At first, the robot plans
to avoid a pedestrian (green), but the pedestrian changes course faster, such
that the robot’s plan changes back to a straight path. (d.1-2) The robot and
a pedestrian (the supervisor) reciprocally avoid each other. (e) A pedestrian
(red) overtakes the standing robot and then changes direction away from the
robot as it starts moving; subsequently, the robot shows slight adaptation to
approaching pedestrians (green, purple).
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Reciprocal avoidance

We generally observe that, in order to prevent imminent collisions, pedestrians
adapt more to the robot than vice-versa. Nonetheless, the robot’s contribution
to collision avoidance is mostly constructive, i.e. it changes direction in such
a way that the minimum predicted distance increases. This is exemplified by
the situations depicted in the Fig. 5.11-(a.1, b.3, c.2, d.2, e). We also observe
one case where the robot’s response to an imminent collision does not match
that of the involved pedestrian, as the robot plans to avoid the pedestrian on
the right, whereas the pedestrian plans to avoid the robot on the left, which is
depicted in the Fig. 5.11-(b.1, b.2). In this particular case, at a time when the
pedestrian has already changed course such that their paths would not cross,
the robot rotates, attempting to cross the pedestrian’s future path.

Unilateral avoidance

We observe one case where a distracted pedestrian stands in the robot’s way,
such that the robot needs to avoid a collision by itself, which is depicted in
the Fig. 5.11-(b.3). Here, the robot exhibits the correct tendency but does not
achieve sufficient clearance, and thus, the supervisor needs to stop it before the
robot’s right-hand wheel runs over the pedestrian’s foot.

Backwards interactions

We observe two cases where a pedestrian actively increases clearance to the robot
which is driving behind the pedestrian, which are depicted in the Fig. 5.11-(a.2,
e).

Quantitative results

In 5 out of 6 trials, the robot arrived at the end, whereas in one trial, the su-
pervisor had to stop it to guarantee a pedestrian’s safety. The robot’s speed’s
average and standard deviation over all trials are 0.81±0.16 m/s. For the dis-
tance traveled along the corridor’s axis and the duration of a trial, the mean and
standard deviation are given by 14.68±4.74 m and 18.00±5.02 s, respectively.

5.5.4 Discussion

The robot’s contribution to collision avoidance is often constructive, as shown
by the examples in the Fig. 5.11, but relatively small, in comparison to pedes-
trians’ contributions. On the one hand, the robot’s ability to execute planned
trajectories is limited by the robot’s acceleration bounds and the absence of
position-feedback for tracking the trajectory (since our system’s position esti-
mates were found to be too unreliable for feedback control). On the other hand,
in the example depicted in the Fig. 5.11-(b.1), it is visible that planned trajecto-
ries may lack consistency over time, i.e. they may fluctuate between alternative
plans, such as avoiding someone on the left or on the right. It is clear that the
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robot will not execute either of the alternative plans properly as long as it keeps
switching between them. A related issue becomes apparent when considering
the situation depicted in the Fig. 5.11-(b.3). There, the robot plans its path be-
tween two pedestrians, but they do not stand far enough apart and one of them
does not see the robot. However, since the robot performs a local optimization,
it sticks to the plan to pass between them, which has a lower cost than driving
head on into either of them. A remedy for both aforementioned issues could
be found in restricting solutions to some admissible set, or in performing some
global analysis to guarantee that a suitable local minimum is chosen in a unique
fashion.

The case where the robot had to be stopped by the supervisor not only
highlights the issue of local minima discussed above. It also shows that our
current approach is insufficient for modeling non-cooperative behavior as in
the present case, where a pedestrian is talking to another pedestrian and not
giving way to the robot. This framework generates motion plans in which all
agents contribute to minimizing a collective cost by adapting to some extent
to each other. Thus, such plans entail incorrect predictions of non-interacting
agents’ motion, and only by updating its plan at a high frequency, the robot can
successfully avoid completely passive agents or objects (as in the preliminary
experiment, cf. Fig. 5.10).

5.5.5 Limitations

A technical limitation stems from assuming agents’ desired velocities to equal
their current velocities, which could be overcome by a more elaborate probabilis-
tic estimation technique. Arguably, this would help to predict crossing order in
situations as in Fig. 5.11-(b.1, b.2).

The presented experimental results are by no means systematic or repre-
sentative of interactions that are likely to occur between mobile robots and
pedestrians. On the one hand, a corridor in a campus environment has been
chosen for practical reasons, which introduces a bias towards over-representing
younger adult populations, and which does not contain particularly challenging
or dangerous elements that mobile robots need to cope with in open environ-
ments, e.g. staircases going down, roads next to sidewalks, open train tracks,
traffic lights, etc. On the other hand, the amount of collected results is too
small to allow to infer any statistically significant tendencies or characteristics
of such human–robot interactions.

The results can, at best, point out pertinent issues and directions for further
research. In this respect, they show that autonomous mobile robots driving
seemingly unsupervised alert pedestrians to a certain degree, as evidenced by
the case where a pedestrian actively increased the distance to the robot, without
a collision being imminent. Further, it becomes evident that a robot needs to
correctly assess whether a person is attentive to it or not. Lastly, considering
that pedestrians who noticed early that the robot was in their way adapted to it
much more than vice versa, a clear challenge can be seen in working towards a
robot’s capability to be proactive in such cases, which is not only an algorithmic
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challenge, but also a challenge for robotic hardware and system engineers.

5.6 Conclusion

In this chapter, we have applied a framework [79] for inverse reinforcement
learning (IRL) to recover a cost function from examples of jointly navigating
pedestrians. This cost function includes a novel feature for IRL of multi-agent
navigation, namely our approximation of an interaction energy defined in re-
lated work [57]. Our results show that a meaningful cost function can be learned
with the proposed model, which yields collision avoidance in combination with
smooth transitioning from the initial to the desired velocity. Our models’ pre-
dictions outperform the most closely related approach’s predictions [35] on test
samples from the dataset ETH [103], and we attribute this fact partially to
slower adoption of the desired velocity. Interestingly, the results of learning
strongly depend on the feature employed to penalize for acceleration, where
penalty by the L2 norm yields a cost function which gives much lower weight
to tracking the desired velocity, in comparison to the L1 norm.

Experiments with the robot Qolo have demonstrated that our approach can
plan reasonable trajectories on-line in real-world interactions with pedestrians.
However, the robot’s hardware limits the actual performance at executing those
plans. Also, issues associated with local minima require further developments
to ensure that the robot safely avoids contact. Thus, we have validated that the
approach holds the potential to smoothly guide a robot in human crowds, once
local minima are handled appropriately and given that the robot is equiped with
sufficiently accurate state estimation and trajectory tracking control.



Chapter 6

Comparisons of Methods

This chapter presents a comparison in simulation of methods proposed or used
in previous chapters, in order to facilitate readers to view their individual pros
and cons. For this purpose, a system description is established in the follow-
ing section, which allows to compare the different methods within a common
framework. Then, we briefly describe the methods’ implementation details for
the comparisons in this chapter, before presenting the experiments that were
performed.

6.1 System Definition

We consider a crowd of n agents in a given environment. We characterize
each agent’s motion as the motion of a point with holonomic kinematics. Let

pi :=
[
pi,x pi,y

]T
denote the i-th agent’s position. We assume disk-shaped

agents, i.e. that the space occupied by the i-th agent is a disk of radius ri,
centered at pi. We assume that agents attempt to avoid collisions of their
bounding shapes. In other words, for any two agents with indices i and j, we
assume that they aim to ensure that |pi − pj | > ri + rj always holds.

Let vi :=
[
vi,x vi,y

]T
denote the i-th agent’s velocity. We define the sys-

tem’s state as

x :=
[
p1,x p1,y . . . pn,y v1,x v1,y . . . vn,y

]T ∈ R4n, (6.1)

consisting of all individual positions and velocities. Furthermore, let ai :=[
ai,x ai,y

]T
denote the i-th agent’s acceleration. We define the system’s action

(or control input) as

u :=
[
a1,x a1,y . . . an,y

]T ∈ R2n, (6.2)

assembling individual accelerations. We model the system’s dynamics as

x(k+1) =

[
I hI
0 I

]
x(k) +

[
h2I/2
hI

]
u(k+1), (6.3)

93
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denoting by 0 ∈ R2n×2n the matrix with all elements equal to zero, by I ∈
R2n×2n the identity matrix, and by h > 0 the discrete time step. Accordingly,
we assume that each agent updates its acceleration at the beginning of each
time step and maintains a constant acceleration until the next time step. This
assumption of a constant control input over each time step is common in the
context of digital control systems (where it is termed as “zero-order hold”), as it
approximates how such systems update their commands at every control cycle.
We therefore consider it a reasonable assumption for modeling robots, whereas
for modeling pedestrians, we can only see it as a practical assumption without
a particular connection to actual human motor control, whose complexity is
beyond the scope of this work.

6.2 Methods

We consider several alternative strategies for avoiding collisions, corresponding
to the methods presented in aforegoing chapters. To simplify a comparison, we
assume a holonomic robot with circular bounding shape. Thus, the method
Reactive Driving Support (RDS) from Chapter 3 will be used here in a form
equivalent to the method of Optimal Reciprocal Collision Avoidance [20], which
will be termed generically as VO in this chapter. Further, the Acceleration
Obstacle (AO) from Chapter 4 will be used in three variants, which employ
different techniques to approximate the curved shape of acceleration obstacles.
The first variant, termed as AO-0, is identical to the method presented in the
Chapter 4, Section 4.3.1. The other two variants, termed as AO-1 and AO-2, will
be described briefly in the following sections. Furthermore, the method proposed
in Chapter 5 will be included in the qualitative comparison in Section 6.3.2.

6.2.1 VO (RDS)

Considering that VO are formulated in velocity space, it is necessary to map the
command computed via VO on accelerations, as we use a second order simula-

tion framework for comparing different control approaches. Let v̂
(k)
i denote the

optimal new velocity computed via VO for the i-th agent. We assume that it is

mapped on a corresponding acceleration according to a
(k)
i =

(
v̂

(k)
i − v

(k−1)
i

)
/γ,

where γ > 0 defines an inverse gain. We use γ=0.5 s for all experiments in this
chapter.

6.2.2 AO-1

For obtaining a linear constraint approximating a given AO, we consider an al-
ternative approach which is more similar to the technique for obtaining a normal
vector when approximating VO by linear constraints. Namely, the constraint’s
normal vector n is computed in exactly the same way as for VO by projecting
the previous relative velocity on the VO’s boundary. However, the offset b is
computed such that the constraint’s linear boundary touches the AO (in the
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Figure 6.1: The figure illustrates a technique [40,42,72] employed by the method
AO-2 to derive a convex constraint which tightly approximates the acceleration
obstacle’s locally concave boundary. Instead of the entire free acceleration space,
a local search region Csearch around the previous acceleration command is con-
sidered. Then, a linear constraint is computed whose boundary ∂H touches the
convex hull of the intersection of Csearch with a circles-based over-approximation
of the acceleration obstacle AOτ .

space of relative acceleration). Thus, the alternative scheme to obtain the nor-
mal vector differs from the one in the Section 4.3.1, firstly, by computing the
extrapolation to the time horizon (rather than only half of it), and secondly,
by projecting the computed extrapolation on the closest point of the occlusion
cone’s boundary even if it is inside the occlusion cone (rather than computing
the point at which its ray enters the occlusion cone).

Since with this approach, the point at which the linear constraint’s boundary
touches the AOτ can tend towards infinity, it is necessary to impose an upper
bound on the constraint’s boundary’s offset from the origin, as already discussed
in the Chapter 4 for AO-0. For AO-1, this happens when two agents’ anticipated
trajectories graze each other. Thus, AO-1 generates the maximum acceleration
around the transition from colliding to non-colliding anticipated motions.

6.2.3 AO-2

As a third way to obtain a linear approximation, we implement an approach sim-
ilar to the one proposed in prior work on Acceleration Velocity Obstacles [40],
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which is illustrated in the Fig. 6.1. It limits the search for relative accelera-
tions to a circle around the relative acceleration from the previous time step,
and computes the convex hull of this circle’s intersection with the acceleration
obstacle. This convex hull is then replaced by a linear constraint which touches
the hull and has maximum distance from the circle’s center. Note that the
same principle has also been used by other works on more general control ob-
stacles [42, 72]. Our approach differs from these works by first generating a
circles-based over-approximation which is used in place of the AO, whereas we
do not sample the AO’s boundary. However, it is considered beyond the scope
of this investigation how these implementation details affect performance.

Among the three variants of AO considered here, AO-2 is the only one
which allows to plan maneuvers into visually occluded regions behind obsta-
cles (cf. Fig. 6.3). Such maneuvers correspond to accelerations that are inside
the acceleration obstacle’s convex hull but outside of the acceleration obstacle.
The variant AO-2 can access admissible accelerations inside the acceleration
obstacle’s convex hull, because it only computes the local convex hull around
the intersection of its circular search region with the acceleration obstacle. The
ability of AO-2 to operate close to the acceleration obstacle’s locally non-convex
boundary motivates its inclusion in the comparison here.

6.2.4 NavIOC-L1

For the qualitative experiments in this chapter, the optimal control method
proposed in Chapter 5 with the learned objective NavIOC-L1 is used. At each
simulation step, an optimization problem over the horizon is formulated and
solved, which yields trajectories for all agents, whose first actions are applied at
the current time step. This is repeated at the next time step, such that a form
of model predictive control is implemented.

6.3 Experiments

The Sections 6.3.1 and 6.3.2 compare the aforementioned methods quantita-
tively and qualitatively, respectively.

6.3.1 Quantitative Study

To compare RDS/VO and AO regarding their suitability for navigation in
crowded environments, a quantitative simulation study is performed. To fa-
cilitate comparisons with previous chapters, particularly with the Chapter 4, a
corridor environment is chosen again for the simulations in this section. The
corridor environment is defined on a rectangle of width and height equal to 25 m
and 8 m, respectively (cf. Fig. 6.2), whose vertical limits define walls that agents
may not surpass.

To simulate pedestrians moving in both directions of the corridor, we use
the Universal Power Law (UPL) [57] as crowd motion model. On the one hand,
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Table 6.1: Quantitative results for the corridor flow experiments are shown,
with best values set in bold. Significant differences (p < 0.05) from the best
mean value(s) per sub-table and per column are marked by asterisks (∗).

Method Efficiency [-] Acceleration [m/s2] Collisions [-]

Robot with time horizon τ=1 s

VO 0.98∗±0.04 0.03∗±0.03 0.43∗±0.84
AO-0 0.94∗±0.05 0.17∗±0.08 0.12∗±0.37
AO-1 0.97∗±0.04 0.11∗±0.09 0.12∗±0.37
AO-2 0.88∗±0.24 0.20∗±0.13 0.17±0.45

Robot with time horizon τ=6 s

VO 0.91∗±0.21 0.08∗±0.06 0.35±0.65
AO-0 0.52∗±0.22 0.12∗±0.05 0.22∗±0.52
AO-1 0.53∗±0.46 0.41∗±0.19 0.23±0.59
AO-2 0.20∗±0.37 0.49∗±0.14 0.67∗±1.06

Pedestrian

UPL 0.95±0.05 0.20±0.12 0.18±0.39

this choice allows to gain insight in how the crowd’s motion model influences
results by comparing with the simulations from the Chapter 4. On the other
hand, the UPL defines a highly efficient behavior, which can be considered as a
baseline to compare the robot’s performance with.

The UPL generates repulsive forces due to anticipated collisions with other
agents and the corridor’s walls. Recall that the potential whose spatial gradient
defines the repulsive forces for UPL is given by E := ητ−2 exp(τ/τo). Here, the
parameters chosen for UPL are η=1 J and τo=3 s.

Each trial involves 50 agents. The crowd is initialized at random positions
in the corridor environment, with a random choice of preferred direction (left
or right) and individual preferred speeds sampled uniformly from the interval
1.33±0.4 m/s. Upon leaving the corridor on one side, agents are re-inserted at
the other side. Thus, the crowd’s spatially averaged density in the corridor is
constant and equals 0.25 P/m2. Each agent’s radius equals 0.25 m. Agents are
subject to radial bounds on velocity and acceleration, which are set to 1.5 m/s
and 2 m/s2, respectively.

Four methods to control the robot were tested, namely VO (RDS), AO-0,
AO-1, and AO-2. For each method, two time horizons were considered, namely
a very short one given by τ=1 s and a medium one equal to τ=6 s. Apart from
pedestrians, the walls are also encoded as obstacles for all methods controlling
the robot. The diameter of Csearch for AO-2 is set to 1 m/s2. Per method and
time horizon, 60 trials were performed, where each trial’s duration is 20 s.
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Figure 6.2: Simulated agents are shown in the corridor environment, where walls
confine agents in the area between y = 0 and y = 8 m. They are either heading
to the right (blue) or left (yellow), and the robot (black) is also heading to the
right in this example. In the depicted situation, horizontal lanes have emerged.

Results

To quantify performance, three metrics are evaluated for the robot, namely
average efficiency, average acceleration effort, and the number of collisions in a
given trial. The Table 6.1 reports each metric’s average and standard deviation
over all trials, for each method and for both time horizons. It also reports the
metrics’ values measured for an arbitrary pedestrian, as a reference to compare
with the robot.

The robot’s efficiency is measured as its average velocity in the preferred
direction divided by its preferred speed. Acceleration effort is measured simply
by the robot’s acceleration’s average magnitude. Collisions are counted as iso-
lated periods of inter-penetration between the robot and any pedestrian, where
only the time after the first two seconds have passed is considered, in order to
disregard collisions at initialization.

The results in the Table 6.1 can be summarized as follows. In terms of
efficiency and acceleration effort, VO outperforms all other methods controlling
the robot, for both time horizons. In contrast, regarding the expected number of
collisions per trial, AO-0 and AO-1 are superior to VO and AO-2, also for both
time horizons. Among the three variants of AO, the variant AO-2 consistently
achieves the lowest performance with respect to all metrics. It is also important
to notice that the reference pedestrian undergoes fewer collisions than the robot
with any controller with a time horizon of τ=6 s. Furthermore, it can be seen
that increasing the time horizon leads to fewer collision for VO, but to more
collisions for AO.

Discussion

The results presented above and in the Table 6.1 contain expected but also
possibly surprising observations. For VO, as the time horizon is increased,
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the robot undergoes fewer collisions but also becomes slightly less efficient and
spends more effort. This is not surprising, as the robot will contribute more to
avoiding collisions and behave more conservatively with a larger time horizon,
whereas pedestrians will need to make major contributions if the robot’s time
horizon is small. On the other hand, for AO, the robot undergoes more collisions
with a larger time horizon. Therefore, it has to be assumed that the larger
time horizon often leads to infeasibility of the set of constraints obtained from
all surrounding agents, which is handled by introducing a slack variable as
described in the Chapter 4, and which reduces the robot’s safety. In AO-2, this
issue is aggravated by restricting the search to Csearch, which limits the robot’s
maximum jerk. The fact that all three variants of AO are drastically less efficient
than VO for the larger time horizon can be explained by considering that each
obstacle gives rise to a halfplane which the robot must avoid throughout the
time horizon. If the horizon is large, the robot’s accelerations are limited to
very small values since the robot must be able to maintain them for a long
period without colliding. This has been noted in prior work on the Acceleration
Velocity Obstacle (AVO) [40], where large inverse gains δ where associated with
slow response by the robot, which applies to AO, since AO are equivalent to
AVO with δ →∞ (cf. this thesis, Sec. 4.2.2).

Comparing with the results reported for AO-0 in Chapter 4, which were also
obtained with τ= 1s, we obtain similar results here in the sense that the robot is
relatively efficient and capable of avoiding collisions. This can be explained to
some extent by the phenomenon of lane formation and pedestrians’ efficient way
of avoiding collisions in the simulations here. In the simulations in Chapter 4,
pedestrians are controlled by the Social Force Model [46], which is inferior to
UPL at avoiding collisions, but due to the phenomenon of lane formation and
the fact that these simulations were started from a steady state (in contrast to
those in this chapter), individual collisions are less likely there.

6.3.2 Qualitative Comparisons

For the experiments in this section, the time horizon for VO and all AO variants
is set to τ=8 s, whereas all other parameters are chosen as in the quantitative
evaluation given in the previous section.

First, the Fig. 6.3 illustrates the different planning assumptions of constant
velocity and constant acceleration for VO and AO, respectively. In the shown
example, the robot needs to avoid a large circular obstacle to reach its goal on
the right-hand side.

To gain further insights in qualitative differences between VO/RDS and
AO, but also between the different variants AO-0, AO-1, and AO-2, a standard
experiment [20,40] for reciprocal collision avoidance is performed in this section.
Here, six agents are positioned on a circle (cf. Fig. 6.4), and we assign them
goals on the circle opposite to their respective initial positions. Thus, they will
meet in the middle and need to resolve the conflicts in their desired motions. In
addition to VO/RDS and the three variants of AO, we include the crowd model
UPL used in the previous section, and the cooperative optimal control method
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which was proposed in the Chapter 5 with the learned cost function termed as
NavIOC-L1.

Results

The coordination experiments’ results are documented in the Fig. 6.4. It can
be seen that for all methods except AO-0, agents succeed at resolving their
conflicting desired motions and reaching their goals. While the motions for VO
are characterized by early adaptations and mostly straight segments, those for
UPL adapt later and in a more successive fashion. In contrast, the motions
for NavIOC-L1 appear as the smoothest and as the most symmetric ones. The
trajectories for AO-1 are similar to the ones as for VO, but use more space for
avoiding each other. Finally, with AO-2, some trajectories exhibit oscillations,
and their conflicts are resolved relatively late but in a more dynamic fashion.

Discussion

In the experiment depicted in the Fig. 6.3, the difference between planning with
constant velocity (VO) or acceleration (AO) can be seen by comparing the re-
spective paths’ shapes. For VO, the robot moves almost straight to the the
obstacle’s furthest visible point, and then traces its boundary until the goal is
in sight. Thus, the anticipated point of contact remains the same until the robot
touches the obstacle at that point. Accordingly, the distance decreases to (al-
most) zero and remains constant while the robot traces the boundary. For AO,
in contrast, the robot anticipates contact at points which are not visible from
its current position, and thus, the robot never touches the obstacle’s boundary
but keeps getting closer to it for a longer time.

In the second experiment, depicted in the Fig. 6.4, it is not surprising that
the smoothest and most symmetric motions result with NavIOC-L1, considering
that it finds the commands for all agents by solving a single joint optimization
problem, that the cost favors smoothness, and that the problem is formulated
over a time horizon. Thus, agents are allowed to resolve conflicts and to coordi-
nate in a single time step, whereas for other methods, agents need to coordinate
based on observed individual motions, such that their motions always remain
sub-optimal, unless some form of steady state could be found, which is not the
case in the given example until each agent has converged to its goal.

Comparing the different variants of AO in the Fig. 6.4, it becomes evident
that the technique to determine an approximate linear constraint strongly in-
fluences agents’ behavior. First of all, the stalled motion for AO-0 is a direct
consequence of the scheme presented in Chapter 4 to determine the normal vec-
tor, which only reluctantly responds to an established sense of passing by an
obstacle (i.e. left or right). In contrast, the scheme for AO-1 adopted from VO
is effective for AO as well. For AO-2, an issue can be seen in the visible oscil-
lations, which can be explained as follows. Once an agent’s velocity exhibits a
tendency to pass by another agent on one side (e.g. to the right), the nominal
acceleration will point in the other direction (i.e. to the left), since the desired
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Figure 6.3: The plots (a,b) show a robot’s simulated motion around an obstacle
(magenta), where the robot uses either VO (a) or AO-2 (b). The robot’s path
(black curve) and its final position (black circle), which roughly coincides with
its goal, are shown. Using VO, the robot moves tangentially with respect to
the obstacle until the goal is in sight. Using AO-2, the robot plans parabolic
trajectories that may enter regions which are visually occluded by the obstacle.
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Figure 6.4: Each plot(a-f) shows six agents’ motions, aiming to reach the point
opposed to their initial position on a circle of radius 7 m. Later positions are
drawn on top of earlier positions and with higher saturation. The initial con-
dition is the same for each plot, whereas the control method, which all agents
apply, is varied. The methods VO (a), UPL (c), and NavIOC-L1 (e), which
are illustrated in the left column, embed anticipation of collisions based on the
assumption of constant velocity. The methods AO-0 (b), AO-1 (d), AO-2 (f),
which are shown in the right column, anticipate collisions by assuming constant
accelerations.
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velocity (which points to the goal) is on that side of the current velocity. Then,
the agent’s acceleration will tend in this direction and the acceleration obsta-
cle’s boundary will be locally approximated around a point corresponding to
passing on the other side. This process repeats until the moment when agents
actually pass by each other at whichever side is currently favored. Thus, the
scheme adopted from AVO [40] turns out to be ineffective for AO here. How-
ever, the choice of nominal acceleration law strongly affects the results, due to
interactions with the approximation scheme of AO-2 as described above.

6.4 Conclusion

Based on the quantitative results and their discussion in this chapter, we can
conclude that in crowded environments, AO is only suitable for very short term
motion planning, but ineffective at avoiding collisions with longer anticipation,
as shown for all three variants investigated here. While to some extent, the un-
derlying schemes to determine linear approximations of AO could be improved,
a basic issue remains due to the assumption of constant acceleration, which
renders even small accelerations inadmissible in the presence of many obstacles.

The qualitative comparison has shown that the optimal control approach
from Chapter 5 performs equally well as or even better than VO or UPL at co-
ordinating agents, but the underlying assumption of centralized control needs to
be viewed critically. In practice, some degree of understanding among pedestri-
ans beyond pure observation of each others’ motions can be expected. However,
it remains an open research question how to model, possibly encourage, and ex-
ploit such forms of understanding between humans and robots, for the purpose
of smoother and more efficient navigation.
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Chapter 7

Conclusion

The thesis at hand has studied different problems related to robots navigating
in crowded environments. In the introduction Chapter 1, recent approaches
to planning such robots’ motions have been reviewed and related to insights
from crowd motion science. The Chapter 2 introduced some prerequisites for
later chapters, including Acceleration Velocity Obstacles (AVO) and Inverse
Reinforcement Learning (IRL).

The Chapter 3 has proposed a reactive control scheme developed for non-
holonomic robots of non-circular shape to respond quickly to any imminent
collisions with obstacles nearby. The quantitative evaluation in simulation has
shown that the scheme is effective at avoiding collisions and suitable to com-
plement a motion planner. Experiments on the standing wheelchair Qolo have
confirmed the method’s feasibility and shown that it allows to avoid collisions
based on raw sensor data while following the given commands otherwise.

The Chapter 4 has investigated a technique for motion planning based on
the Acceleration Obstacle (AO). It has shown how the AO’s qualitative shape,
particularly its boundary’s sense of curvature, can be characterized dependent
on the two involved agents’ relative motion. Furthermore, the AVO has been
shown to become equivalent to the AO under a limit operation. A method has
been proposed for a robot’s navigation using AO via a novel algorithm which
exploits a geometric analysis of AO to compute conservative linear approxima-
tions of AO in closed form. The Social Force Model (SFM) has been employed
to simulate crowds which interact with a robot using AO. The robot with AO
progresses faster and undergoes very few collisions in comparison to the sim-
ulated pedestrians. Furthermore, it has been shown that the robot does not
strongly interact with lane formation in the simulations and tends to move in
between lanes rather than as part of them.

In the Chapter 5, models based on IRL have been developed to describe
jointly navigating pedestrians. An approximation of the interaction energy de-
fined in related work has been developed as part of the models. Predictions
generated by the models are mostly collision-free and transition smoothly from
the initial to the desired velocity. The predictions outperform the most closely
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related approach’s predictions on test samples from the dataset ETH. Further-
more, our models’ predictions are more accurate than those by a recent deep
learning approach to trajectory forecasting, but our approach relies on addi-
tional prior information in the form of non-causal estimates of desired veloc-
ities. Finally, the method has been implemented on the standing wheelchair
Qolo, and a qualitative evaluation in real crowds has been performed. Its re-
sults show that the approach is capable of generating reference trajectories for
the robot that exhibit complementary contributions to collision avoidance with
respect to pedestrians’ maneuvers around the robot.

The Chapter 6 presented a comparison across methods from previous chap-
ters. The chapter’s quantitative study has shown that AO are only suitable for
motion planning with very short time horizons, whereas for larger time horizons,
AO-based methods yield poor performance while Velocity Obstacles (VO) per-
form well. The chapter’s qualitative comparison illustrated that the proposed
centralized IRL method can coordinate multiple agents more efficiently than
de-centralized approaches, such as VO or AO, which is expected, considering
that it solves a joint optimization problem for all agents.

7.1 Limitations

The work presented in this thesis has not fully overcome the following issues
and the proposed methods are subject to the following limitations.

Robot–pedestrian interaction The techniques have been developed under
consideration of how humans interact with each other in crowds. Specific knowl-
edge of how humans interact with robots has not been taken into account.
Similarly, the evaluations performed in simulation are based on models of in-
teractions between humans only. On the other hand, experiments with the
robot Qolo in real interactions with pedestrians have provided some evidence
that pedestrians tend to avoid robots similarly as other pedestrians obstructing
their preferred motion. Accordingly, a limitation of this work consists in the
assumption that pedestrians will not distinguish strongly between the type of
agent they encounter. The methods do not address e.g. how to interact with
pedestrians who are curious and actively pursue the robot.

Non-cooperative navigation For the IRL approach presented in the last
chapter, it is assumed that pedestrians cooperate with the robot. This assump-
tion excludes interactions with distracted persons or persons who are reluctant
to adapt to the robot for some other reasons. However, the techniques presented
in the Chapters 3 and 4 can address such cases by assuming that other agents’
velocities remain constant over the planning horizon. Their limitation consists
in the inability to reason about non-cooperative behaviors beyond short time
horizons, which would likely violate the assumption of constant velocity.
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Complex environments The focus in this work has been on simple environ-
ments, e.g. corridors or open squares, that do not contain specific hazards or
features that strongly affect pedestrians’ behavior, as opposed to e.g. a plat-
form in a train station or a road crossing with traffic lights. Thus, the presented
methods would not be sufficient to yield reasonable and safe behavior in such
complex environments.

7.2 Future work

The approach presented in the Chapter 4 to analyze the geometric properties of
AO could likely be extended to other types of control obstacles. More sophis-
ticated iteration-free algorithms to construct constraints from control obstacles
could be devised. Particularly, constructing convex admissible sets that contain
some points of the curved boundary (apart from the circular cap) would be
interesting for achieving higher efficiency of the robot’s maneuvers.

To fully exploit the potential of IRL for modeling navigation in crowds ac-
cording to our approach in Chapter 5, it appears worthwhile to develop and
investigate other features, in addition to the ones in our work. Features that
model pairwise, triplet-wise or even n-wise relations are straightforward to in-
corporate in our approach, and sufficient amounts of data can be found in the
orignial dataset we used for training. Also, simple features to account for static
obstacles and more sophisticated, even time-dependent features to account for
other environmental factors can be considered.

As a general promising direction to advance the field of robotic navigation
in crowds, the author considers the establishment of a common taxonomy of
capabilities which contribute to successful navigation in crowded environments.
Accordingly, a series of benchmarks to evaluate these skills one by one as well as
in combination could be developed. It is also conceivable to adopt a certification-
oriented perspective, and to evaluate robotic systems as a whole, rather than
individual components or algorithms. In either way, the most crucial question
is probably how to define a suitable set of skills or respective test criteria, such
that they represent a robot’s actual performance in a real crowded environ-
ment of interest. They could be divided e.g. in individual pedestrians’ state
estimation (moving/standing, robot-aware/distracted, etc.), group state esti-
mation, interaction-aware motion planning, environment recognition, and task-
and environment-specific metrics (e.g. point-to-point motion efficiency). Con-
sidering that the difficulty and algorithmic solution of the associated problems
depends strongly on the entire robotic system’s hardware equipment and on
environmental conditions, it appears more sensible to adopt a wholistic system
perspective for evaluating and benchmarking the developments to come.
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Appendices

7.A Proof of Proposition 1 (AO-normals)

With f(z, t) := |z − c(t)|2 − r2(t), the intersection of infinitesimally close cir-
cles (4.5) is expressed by the two equations f(z, t) = 0 and f(z, t+dt) = 0 in the
unknown z ∈ R2. Subtracting the first from the second equation and dividing
by dt yields ∂f(z, t)/∂t = 0 as dt→ 0, or

0 = −
1

2r(t)

∂f(z, t)

∂t
=

(z− c(t))
T

ċ

r(t)
+ ṙ. (7.1)

With nt = (z− c) /r according to (4.6), one has equivalently

nTt ċ + ṙ = 0, |nt| = 1. (7.2)

Computing derivatives from (4.3), one obtains

nTt
4

t3
(xo + vot/2)−

4R

t3
= 0

nTt (xo + vot/2)−R = 0, |nt| = 1.

Thus, the proof is complete. In [100], the condition given for a canal’s boundary
to exist is |ċ| ≥ |ṙ|, which corresponds to (7.2) admitting any solution.

7.B Proof of Proposition 2 (AO-reduction)

In the non-trivial case that τ̃ 6= τ , the line segment from xo to x̂(τ) intersects
the disk D(0, R) at the point x̂(τ̃). According to the Proposition 1, at every
t < τ̃ , there are two distinct normals and boundary points, whereas at t = τ̃ ,
there is only one normal and boundary point. Since (4.7) is continuous in t,
it follows that the local boundary forms two distinct branches for t < τ̃ which
meet when t = τ̃ . Hence, it remains to show that the local boundary over (0, τ̃ ]
delimits a shape which contains the canal for any t′ > τ̃ . By the Definition 2,
the local boundary point for any time t with a given normal nt is

bt = c(t) + ntr(t) = 2 (Rnt − xo − vot) /t
2.
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Figure 7.C.1: For a given t and small increment dt, an AOτ ’s disks Dt and
Dt+dt are shown with their left and right local boundaries bλ, bρ, the associated
normals nλ, nρ, and the tangent halfplanes Hλ, Hρ, respectively. One side’s
boundary is locally convex (concave) when each disk’s tangent halfplane does
(not) contain the other disk’s tangent point as dt→ 0.

Let Ht denote the halfplane with normal nt whose boundary ∂Ht touches the
local boundary at bt, calculated as

Ht =
{
a|aTnt ≤ nTt bt

}
=
{
a|aTnt ≤ −nTt vo/t

}
Thus, for some (different) time t′, it holds Dt′ ⊂ Ht iff

c(t′)Tnt + r(t′) ≤ −nTt vo/t ⇐⇒
R− x̂(t)Tnt + nTt vo∆t

2/(2t) ≤ 0 ⇐⇒
nTt vo∆t

2/(2t) ≤ 0

with ∆t := t′ − t, where the last step uses (4.7). It is easy to see that for any
t ∈ (0, τ̃ ], it holds nTt vo ≤ 0 (cf. Fig. 4.3-b). Hence, the condition is true for all
t′, which means that Ht contains the entire AOτ . As this holds for every point
on the local boundary with t < τ̃ , the AOτ cannot intersect this boundary,
which proves that the AOτ̃ contains subsequent disks, i.e. AOτ = AOτ̃ .

7.C Proof of Proposition 3 (AO-shape)

For any time t and a small increment dt, we consider the two disks Dt and
Dt+dt (cf. Fig. 7.C.1). As dt → 0, we consider for one local boundary (left or
right) how bt and bt+dt converge, i.e. their constellation with respect to each
other’s tangent halfplane Ht and Ht+dt. If bt /∈ Ht+dt and bt+dt /∈ Ht as for
the left boundary in the Fig. 7.C.1, they describe a locally concave boundary.
Else if bt ∈ Ht+dt and bt+dt ∈ Ht, a locally convex boundary is described, as
for the right boundary in the Fig. 7.C.1. The other two possible constellations
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(mixing ∈ and /∈) are equivalent to the point bt being contained within nearby
disks’ interiors and thus not contributing to the AO’s boundary.

One finds (cf. Fig. 4.3) that both the left and right normal rotates monotoni-
cally with t on (0, τ̃ ]. From the aforementioned constellations, the one describing
a concave boundary is compatible with the normal rotating counter-clockwise,
if it is the left boundary, or clockwise, if it is the right boundary. And the
constellation describing a convex boundary is compatible with the normal ro-
tating clockwise, if it is the left boundary, or counter-clockwise, if it is the
right boundary. Both constellations are incompatible with the other sense of
monotonic rotation in each case. Thus, the left boundary is convex iff its nor-
mals rotate clockwise, and it is concave iff its normals rotate counter-clockwise,
whereas the right boundary is convex iff its normals rotate counter-clockwise,
and it is concave iff its normals rotate clockwise.

Looking at the Fig. 4.3, one can verify quickly that the direction of rotation
for both the left and the right normals is counter-clockwise if x̂ passes on the
right of the disk D(0, R), whereas it is clockwise if passing on the other side. On
the other hand, when on a pre-colliding course, the left and right normals rotate
clockwise and counter-clockwise, respectively. When on a post-colliding course,
the opposite holds. Combining these observations with the above considerations,
the Proposition 3 follows.

7.D Proof of AVO converging to AO

AVO’s center and radius functions [40] are respectively

c̃(t) =
δ
(
e−t/δvo − xo

)
t+ δ

(
e−t/δ − 1

), r̃(t) =
R

t+ δ
(
e−t/δ − 1

).
One can then obtain the expressions

c̃(t)

δ
= −

xo + vot

g(δ)
+

vo

δ
,
r̃(t)

δ
=

R

g(δ)
,

with g(δ) := δ (t+ δ( e−t/δ − 1 )). Their limits for δ →∞ are determined by g’s
limit, which can be calculated as limδ→∞ g(δ) = t2/2, e.g. via the exponential’s
power series expansion. Comparing with (4.3), it follows that

lim
δ→∞

c̃(t)

δ
= −

xo + vot

t2/2
= c(t), lim

δ→∞

r̃(t)

δ
=

2R

t2
= r(t).

7.E Proof of the Proposition 4 (Conservative
Halfplane)

To prove the proposition, we show that the halfplane H also admits the inter-
pretation as the set of accelerations that would cause within the time horizon a
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collision not with the actual combined collider D(0, R) (shown in Fig. 4.5) but
with the halfplane H̄ ⊃ D(0, R) whose boundary touches D(0, R) at Rn. To
show this, let AOτ (n) := {a|∃t ∈ [0, τ ] : x(t; a) ∈ H(n, R)} define the accelera-
tion obstacle for halfplanes. It contains all accelerations that would make the
two bodies collide within the time horizon τ under the motion model (4.1)
if their shapes were halfplanes whose boundaries touch the original bound-
ing circles and are orthogonal to n. One can show that AOτ (n) = H(n, a),
where a := maxt∈[0,τ ] f(t) with f(t) := 2

(
R− nT (xo + vot)

)
/t2. If there is

t∗ > 0 solving f ′(t) = 0 ⇐⇒ R = nT x̂(t), then f(t∗) is a global maximum
on (0,∞), because f ′(t) > 0 ∀t ∈ (0, t∗) and f ′(t) < 0 ∀t ∈ (t∗,∞). Else,
f ′(t) > 0 ∀t ∈ (0,∞). Therefore, if there is t∗ > 0, a = f(min{t∗, τ}), else
a = f(τ). It can be seen now that a = f (τ̃) when the normal n is chosen ac-
cording to the Algorithm 2. There, the Line 4 can also be expressed as b = f (τ̃).
Thus, it holds a = b, which proves that aforementioned interpretation is valid,
i.e. both approaches lead to the same halfplane in acceleration space, which is
conservative as D(0, R) ⊂ H̄.
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