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Abstract. Frequency chirping of Alfvén modes, a phenomenon observed in tokamak

fusion plasmas driven by energetic particles (EPs), can result in significant losses of

EPs. In this study, we use the global gyrokinetic code ORB5 [Comp. Phys. Comm.,

251, 107072, 2020] to investigate the nonlinear dynamics of non-adiabatic frequency

chirping energetic particle modes (EPMs). Our results illuminate non-perturbative

features of EPMs caused by the presence of EPs. Additionally, we find that, with a

fixed safety factor profile and a single toroidal mode number, the frequency chirping

rate is linearly proportional to the mode saturation amplitude, as predicted by the

theory[Rev. Mod. Phys., 20, 015008 (2016)].
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1. Introduction

Frequency chirping refers to the phenomenon where the frequency of a wave changes over

time. It is observed in both space plasmas and laboratory plasmas. In space plasmas, for

example, frequency chirping is commonly observed in the form of chorus waves, which

are electromagnetic waves that occur in Earth’s radiation belts and in the magnetosphere

of other planets. These waves are characterized by a frequency that increases over time

due to nonlinear wave-particle interaction, which is an important mechanism in the

generation of chorus waves (cf., e.g., [1, 2]). Understanding the properties and behavior

of these waves is crucial for improving our understanding of the magnetosphere and

radiation environment around Earth and other planets.

In tokamak plasmas, Alfvén eigenmodes (AEs) are electromagnetic oscillations

existing within the frequency gaps of the shear Alfvén continuous spectrum. These

modes can be excited by the presence of high-energy particles known as EPs. Energetic

particles can be created in tokamak plasmas through various mechanisms, such as fusion

reactions or neutral beam injection. They can interact with the Alfvén modes and cause

the frequency of the oscillation to change. This can affect the transport of the particles

and influence the distribution of energy and particles within the plasma (cf., e.g. [3] for

a recent review). The study of frequency chirping of Alfvén modes driven by EPs is

a crucial area of research in Fusion plasmas and is of particular interest in our work.

Understanding this phenomenon is important for improving our understanding of the

behavior of plasmas in fusion devices and for developing strategies to control these

modes. Note that in tokamak fusion plasmas, the term “frequency chirping” refers

to a change in frequency on a timescale that is typically shorter than the evolution

of background plasma parameters. It’s important to note that the latter, which is

sometimes referred to as “sweeping”, which is not addressed in this paper.

There are currently two paradigms for discussing nonlinear interactions of Alfvénic

fluctuations with EPs in fusion plasmas [4, 5], namely the bump-on-tail and the

fishbone paradigms. The bump-on-tail paradigm can be adopted when the system is

sufficiently close to marginal stability and the nonlinear changes of resonant EP orbits

are small compared to the characteristic fluctuation wavelength [6, 7]. This model can

only account for local EP transport in the presence of an isolated resonance, unless

the threshold is exceeded for the onset of stochasticity in the particle phase space

due to overlapping resonances. The essential physics of the bump-on-tail paradigm

are the same as those first introduced to analyze the temporal evolution of a small

cold electron beam interacting with a plasma in a 1D system [8, 9]. The dynamics

of the nonlinear beam-plasma system with sources and collisions [6, 7, 10] include

steady-state and bursting behaviors [11, 12, 13], the formation of hole and clump

pairs in the resonant particle phase space [13, 14, 15], and the existence of subcritical

states [15]. Applications of the 1D bump-on-tail paradigm to AEs are used to explain

the experimental observations such as frequency splitting of AE spectral lines [16], and

adiabatic frequency chirping of the modes [17, 18, 19], where the rate of frequency
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change is much slower than the wave-particle trapping frequency |ω̇| ≪ ω2
B. Numerical

simulations of the bump-on-tail system have demonstrated that structures can be formed

and propagate in the phase space as BGK modes [27] , characterized as long-range

frequency sweeping events with corresponding convective (bucket) particle transport

[20, 21, 22, 23]. Such structures also exist away from marginal stability [24], where,

however, the plasma non-uniformity effect becomes increasingly more important and

non-perturbative EP dynamics eventually requires a paradigm shift toward the so-called

fishbone paradigm [5, 25].

The fishbone paradigm is a way of understanding the non-adiabatic chirping of AEs

in tokamak plasmas. Unlike the bump-on-tail paradigm, it doesn’t require the adiabatic

assumption to be valid. The theory of non-adiabatic chirping is very well established

and addresses self-consistently nonlinear fluctuation dynamics and EP transport, treated

on the same footing taking into account toroidal geometry and plasma nonuniformity.

Furthermore, it recovers the bump-on tail paradigm near marginal stability and, thus,

provides a unified theoretical framework for investigating both adiabatic and non-

adiabatic frequency chirping events as well as perturbative and non-perturbative EP

responses to nonlinear dynamic evolution of the fluctuation spectrum [3, 5]. In Ref. [5],

as an application of this unified theoretical framework, the nonlinear theory of frequency

chirping EPMs is developed and the corresponding EP transport due to EPMs is

investigated [25]. The comprehensive review paper [3] further develops the nonlinear

theory of fishbones, building on earlier work [26]. The fishbone paradigm is particularly

useful to explore the connection with the bump-on-tail paradigm, since it reduces the

self-consistent wave-particle interaction to a time-dependent non-uniform system with

one degree of freedom, which is described by means of a Dyson-like equation. Removing

the non-uniformity sets an upper bound on the strength of the mode drive and allows

recovering the standard bump-on-tail system in the perturbative limit [5, 25].

The objective of this study is to gain an understanding of the fundamental

characteristics of non-adiabatic frequency chirping modes and provide numerical

evidence of the underlying physics, comparing simulation results with the existing unified

theoretical framework. To achieve this, we will review the theoretical explanations for

both adiabatic and non-adiabatic frequency chirping in section 2. We will use recent

phase space analysis from numerical simulations as evidence and present the theoretical

predictions for frequency chirping rates. In section 3, we will illuminate the frequency

chirping of non-perturbative EPMs using first-principle gyrokinetic simulations from the

ORB5 code [27]. By focusing on a single mode and varying different parameters, we

will demonstrate the relationship between the frequency chirping rate and the mode

saturation amplitude. Note that, our current simulations use an analytical equilibrium,

which is easier to manipulate by adding more physics and serves as a numerical

experiment rather than an attempt to explain any specific experimental results. Such

numerical settings can easily be used as a benchmark case for any code. Finally, in

section 4, we will summarize the key findings and conclusions from this study.
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2. Adiabatic chirping vs. nonadiabatic chirping

Theoretical explanation Alfvén fluctuations in burning plasmas are characterized

by low amplitudes, |δB⊥|/B0 ≲ 5×104, and predominantly perpendicular variation with

respect to the equilibrium magnetic field [28]. Resonant particles are expected to play a

crucial role in transport processes [29, 30, 31, 32, 33] more so than nonresonant particles.

Therefore, phase space structures that are obtained by averaging out dependencies on

two periodic angle-like coordinates (θ, ζ) in two-dimensional (2D) magnetized plasma

equilibria are of particular interest in studying transport processes. These structures

are commonly referred to as phase space zonal structures (PSZS) [3, 5, 34, 35]. The

dynamics of these structures are affected by the relative ordering of two time scales:

the wave-particle trapping time, τB, and the characteristic time of nonlinear evolution

of PSZS, τNL. When τB ≪ τNL, there is an adiabatic (action) invariant, phase

space density is preserved inside the structure separatrix, and phase space holes and

clumps [36, 37, 38, 39, 40, 41] form and propagate in the phase space. This nonlinear

evolution is referred to as adiabatic and particle transport can be secular and extend

over a long range [20, 21, 22] in the sense of bucket transport [42]. On the other

hand, when τB ∼ τNL, no adiabatic invariant exists in the phase space, resonant

particle motion can be secular and the dynamics is referred to as nonadiabtic. Similar

to the adiabatic regime, a phase space region where particles remain trapped is still

possible in the nonadiabatic sweeping case, but generally particles get synchronized

and de-synchronized (or, loosely speaking, trapped and detrapped) with the phase

space structure. Existence of these particles is of crucial importance and fundamental

nature [43], and, as a results, it has a big impact on the self-consistent nonlinear

evolution [1, 2, 3, 5, 44]. Thus, different nonlinear behaviours and EP transport are

expected depending the relative ordering of τB and τNL.

Numerical demonstration of trapping and detrapping process In Reference [45, 46,

47, 48], the authors utilize a Lagrangian methodology to delineate transport barriers

within the system, employing the Lagrangian Coherent Structures technique [46, 47].

It can be demonstrated that these structures can be described by peaked profiles

of the Finite Time Lyapunov Exponent fields [47]. These (hyperbolic) Lagrangian

Coherent Structures act as transport barriers for the tracers, classifying them into

two distinct categories of evolution, namely trapped and untrapped particles by a

wave. The Hamiltonian mapping technique has been widely developed to understand

the nonlinear dynamics of frequency chirping Alfvén modes driven by energetic

particles [49]. This technique divides the phase space into slices that are orthogonal

to the invariant coordinates, preventing particle flux between slices and allowing

for separate investigations of each slice. In a recent study [50], theses techniques

are combined to examine the detailed dynamics of particle dynamics in the phase

space. In Figure 1 (also seen in figure 23 and 24 of [50]), we show various particle

trajectories, illustrating that channels are present between the attractive and repulsive
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Figure 1: The x cooridinate Θ̄ refers to the wave-particle phase, and the y coordinate

req/a refers to the normalized minor radius at the equatorial plane. Lagrangian Coherent

Structures are displayed in red, while selected particle trajectories are illustrated using

dashed lines (refer to Figures 23 and 24 in reference [50]. The trajectories of initially

trapped particles, such as the the purple trajectory in the left panel illustrate the process

of trapping and detrapping. Reproduced from [Physics of Plasmas 29, 032512 (2022),

https://aip.scitation.org/doi/10.1063/5.0080785], with the permission of AIP

Publishing.

lines. These channels enable the inflow of particles from the lower edge and outflow

of particles from the upper edge of the coherent structure, as exemplified by the

purple trajectory in Figure 1. These findings can be easily explained by the identified

trapping and detrapping process. Additionally, it should be noted that this trapping

and detrapping process accompanying chirping fluctuations has recently been observed

in hybrid simulations [1] of ”chorus emission” in the Earth’s magnetosphere, suggesting

the universal nature of the underlying nonlinear dynamics [2, 3].

Frequency chirping rate In the adiabatic limit, the bump-on-tail paradigm (also

known as ’BB’ model) yields a quantitative prediction of the chirping rate if the value

of γL and γd are known [14, 15], where γd represents damping and γL represents the

kinetic drive by energetic particles. With some approximations, their integral relation

between δω and ωb reduces to the analytical form

δωBB = ωBB
b

(
2γd
3
t

)1/2

≈ 0.44× γL(γdt)
1/2. (1)

However, as the demonstrated by the generalized fishbone like dispersion relation

(GFLDR) [3], the EP contribution is non-perturbative and can significantly affect the

mode structure and nonlinear frequency chirping, breaking the assumptions used in the

one-dimensional bump-on-tail problem.

https://aip.scitation.org/doi/10.1063/5.0080785
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As the strength of the EP source increases, non-perturbative EP effects become

more visible on both AEs and EPMs in magnetized plasmas [51, 52, 53, 54]. EPMs,

in particular, are excited at the resonant EP characteristic frequency [55] and are

localized near the maximum of the resonant EP drive [51, 56]. This allows for

maximum power exchange between the waves and EPs by preserving the resonance

condition throughout the nonlinear evolution, a process known as ”phase locking.”

Recent studies have shown these effects in experimental measurements of the toroidal

Alfvén eigenmode (TAE) mode structures in DIII-D, in comparison with numerical

simulation results [57]. Additionally, ”phase locking” is intrinsically connected with non-

adiabatic frequency chirping of EPMs, as the frequency adapts to the local resonance

condition, following [3, 5]

ω̇ ≃ δẊ⊥ · ∇ωres , (2)

where δẊ⊥ is the fluctuation induced EP velocity and ωres is the space-dependent

resonance frequency. Frequency chirping described by equation (2) is an expression of

the intrinsic nature of nonlinear EPM dynamics, known as the ‘intrinsic autoresonance’.

This is different from the typical concept of ”autoresonance,” where the drive frequency

is controlled externally, as stated in references [58, 59]. The term ”phase locking”

is commonly used to describe the instantaneous matching of the nonlinear oscillator

frequency with that of the external drive in the case of ”autoresonant” nonlinear

evolution of phase space holes/clumps, as mentioned in references [58, 59]. In addition,

”phase locking” has also been used to describe the slow (adiabatic) evolution of phase

space holes/clumps that move to a lower energy state and compensate for energy

dissipation due to background damping, as stated in reference [60]. This confirms

the analogy of theories on adiabatic frequency sweeping of holes/clumps, as stated in

references [12, 13, 14, 15, 60, 61], with the concept of ”autoresonance” [58, 59]. In both

cases, the shortest nonlinear time scale is determined by wave-particle trapping and

the conservation of the corresponding phase space invariant on the longer time scale.

However, equation (2) highlights the distinct nature of ”phase locking” when there is a

sufficiently strong instability drive and non-perturbative EP response. In this case, in

fact, δẊ⊥ is self-consistently set by the fluctuation induced EP velocity, consistent with

the non-perturbative nature of the EP response; while in the adiabatic case ω̇ and, thus,

δẊ⊥ is controlled externally (or by a slower perturbative process) [3, 5]. In this scenario,

the wave-particle phase evolves slowly on the shortest nonlinear time scale and wave-

particle trapping is suppressed [3, 5, 25, 49, 62, 63]. In the latter, we conduct simulations

using ORB5 code [27] to investigate the evidence and demonstrate the relationship

between the chirping rate and the amplitude, as indicated in equation (2).
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3. Simulation results

3.1. Nonlinear initial value gyrokinetic code ORB5

Numerical simulations are performed using ORB5 [27], a global, electromagnetic,

particle-in-cell, gyrokinetic code that incorporates collisions and sources. These

simulations are used to validate the theoretical predictions discussed in sec. 2. ORB5

is the ideal numerical tool for investigating dynamics driven by EPs, as it maintains

a kinetic description of all species and effectively describes wave-particle interactions.

ORB5 [27, 64, 65] implements the most comprehensive physical model available. It

employs the Monte Carlo Lagrangian Particle-in-Cell (PIC) method for evolving the

distribution function, which is sampled using markers, and the fields (electrostatic and

electromagnetic potentials) are solved on a grid using finite element representation.

The ORB5 code solves the gyrokinetic Vlasov equation, which is coupled with the

relevant gyrokinetic field equations, including a polarization equation (Poisson) and,

in the electromagnetic model, a parallel Ampère’s law [27]. The gyrokinetic Vlasov

equation for particle species s, in the absence of collisions and sources, describes the

distribution function of the particles and reads:

dfs
dt

= 0 , (3)

d/dt is the convective derivative. The full derivation of the GK model of ORB5 can

be found in [66]. The distribution function is then decomposed into an analytically

known background f0, solution of the unperturbed Vlasov equation, and a perturbed

distribution functions δf . The Vlasov equation becomes now an evolution equation for

δf
dδfs
dt

= −df0s
dt

, (4)

where f0s is typically written as a function of the kinetic energy, the adiabatic invariant

per unit mass µ and the gyrocenter position R.

The nonlinear global electromagnetic gyrokinetic Lagrangian model of the code, as

outlined in references [66], is extensively discussed in [27], [67], and [65]. However, for

the purpose of this work, we have only provided a brief overview of the key components

and focus on the details most relevant simulation results.

3.2. Equilibrium and other simulation parameters

Equilibrium We examine a tokamak geometry with an aspect ratio of A = 10 and

concentric circular cross-sections. The safety factor is defined as q(ρ) = 1.4 + 0.1ρ −
0.25ρ2 + 0.2ρ3 + 1.9ρ4, where ρ is the radius of the circular flux surface. An ad-hoc

tokamak equilibrium is employed, defined by the relations B = ∇ψ×∇φ+ I∇φ, where
I = B0R0, ψ(ρ) =

∫ ρ

0
B0ρ

′dρ′/q(ρ′), and φ is the toroidal angle. The magnetic field on

the axis is B0 = 3.0T, and the major radius is R0 = 10.0m. The temperature profile for
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the bulk plasmas is assumed to have the following forms:

T0(i,e)(s)/T0(i,e)(s = 0.5) = exp

[
κT∆T

2.0
log

(
cosh ( s−0.9

∆T
)

cosh ( s−0.1
∆T

)

)]
. (5)

Here, s =
√
ψ/ψa, where ψ is the poloidal magnetic flux and ψa is the poloidal

magnetic flux at the plasma edge. For the bulk ion density profile, it is assumed to

be uniform for all simulations. Once the EP population is loaded into the simulation

code, ORB5 chooses to satisfy quasineutrality for the considered simulations. This

means that the code automatically calculates the electron density profile, in order to

achieve ne = ni + nEP at any radial position. For the bulk plasma temperature profile,

s0 = 0.5 is fixed, but different values of κT are considered in different simulations. The

ion and electron temperatures are taken to be equal everywhere: Te = Ti. For energetic

particles, the density profile have the following form:

n0h(s)/n0h(s0) = exp

[
−κn∆n tanh

(
s− s0
∆n

)]
, (6)

where s0 = 0.62, κn = 3.333 and ∆n = 0.1 are used to produce a density gradient drive.

The machine size is determined by Lx = 2ra/ρs = 350 with ra the minor radius and ρs
the characteristic sound Larmour radius, the ion-to-electron mass ratio is mi/me = 200.

The parameter βe = 2µ0neT0e(s = 0.5)/B2
0 = 0.0043 is fixed.

EP initial distribution function The distribution function of the EP population is

an analytical slowing-down distribution function with pitch-angle dependence [68]. The

distribution function is a function of energy and parallel velocity, both normalized with

respect to the sound speed vs =
√
Te/mi, where Te is the electron temperature and mi

the ion mass:

f(v, ξ, ψ) = n̂(ψ)
2
√
2/π

σξ

[
erf
(

ξ0+1√
2σξ

)
+ erf

(
ξ0−1√
2σξ

)]
× exp

(
−(ξ − ξ0)

2

2σ2
ξ

)
3Θ(vα − v)

4π(v3c (ψ) + v3)
ln

(
1 +

v3α
vc(ψ)3

)
.

(7)

The analytical distribution function was obtained by multiplying a slowing-down

distribution in energy, characterized by the absolute value of velocity v =
√
2E , and

a Gaussian distribution in ξ = v∥/|v| (where ξ can range from −1 to 1) centered at ξ0
and characterized by a width σξ. The Heaviside function Θ(vα − v) is defined as 1 for

values of v < vα and 0 elsewhere, where vα is the injection velocity and vc(ψ) is the

critical velocity [69], calculated from Te(ψ). The parameter n̂(ψ) is the local value of the

normalized density. Note that, the derivatives used in the delta-f method for evolving

the Vlasov equation, df/dE , df/dψ, df/dv∥ are calculated numerically using forward

derivatives, holding the other two variables constant. In the special case of the derivative
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with respect to energy, we fix df/dE = 0 if f(E , v∥, ψ) = 0 or f(E + δE , v∥, ψ) = 0. In

all simulations, the EP injection energy Eh/Te = 84.14, ξ0 = 1.0 and σξ = 0.05 are

fixed. This implies that the energetic particles in our simulations are deeply co-passing

particles, and the injection energy does not depend on the radial position. Moreover,

the critical velocity is determined by the bulk plasma parameter.

Normalization Time scales are normalized to the ion cyclotron frequency, ωci =

qiB0/mic. When measuring frequencies of Alfvénic modes simulated with ORB5, we

shall convert these frequencies to units of the Alfvén frequency, ωA = vA(0)/R0 and the

time to units of the Alfvén time, τA = ω−1
A .

3.3. The reference case

In this section, a base case is presented and later on, comparisons are made by varying

different parameters. In this base case, a single mode with toroidal mode number n = 5

and an on-axis density ratio of nEP/ni = 0.008 is shown. In figure 2, the linear radial

mode structure and linear mode frequency are displayed. On the left, the radial mode

structure plots indicate that the mode is dominated by the poloidal mode m = 8, with

m = 7 and m = 9 being subdominant. On the right, it is shown that the mode’s

linear frequency is located on the shear Alfvén continuum and is close to the lower TAE

accumulation point, which is recognized as an EPM. The mode’s amplitude evolution

is shown in figure 3, where the amplitude reaches saturation and then damps to a lower

amplitude. Four snapshots of the radial mode structures and frequencies at different

times (as indicated by the red vertical lines in figure 3) are shown in figure 4.

In figure 4, snapshots are shown starting from the time when the mode reaches

saturation until the time when the amplitude is strongly reduced. The frequency

of the mode moves downward closely following the shear Alfvén continuum. As the

frequency chirps, the mode amplitude is strongly modified and self-consistently adjusted,

displaying the characteristic non-adiabatic feature. The downward chirping frequency

is dominated by the m = 8 poloidal harmonic. The m = 7 poloidal harmonic moves

further inward radially and tends to follow its continuum. When the frequency chirps

to the lower gap, the m = 7 harmonic decouples from the dominant m = 8 harmonic.

More details are shown in figure 5. The left plot shows the peak amplitude time

evolution of the three most dominant poloidal harmonics. The m = 8 harmonic is

always the most dominant one. In the linear phase, the m = 9 harmonic has a larger

amplitude than the m = 7 one. In the nonlinear phase, the m = 9 harmonic reaches its

maximum first, while the amplitude of the m = 7 harmonic is continuously enhanced

after the m = 8 harmonic reaches its maximum. Meanwhile, on the right plot, it is

shown that both m = 7 and m = 8 harmonic peaks drift clearly towards inner radial

positions during the chirping phase, indicating that the self-consistent modification of

the radial mode structure is essential for the dynamics of the mode frequency chirping,

consistent with the picture of EP avalanches induced by EPMs [3, 5].
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Figure 2: The mode features during the linear stage at t = 200τA. Left: radial structure

of the poloidal harmonics of the mode. Rigth: spectrum of the scalar potentail in space

(s, ω). The black dashed lines are the shear Alfvén continua, which are calculated in the

ideal MHD limit [70] using the slow sound approximation [71] with an effective kinetic

pressure [72] to properly account for the geodesic compressibility.
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Figure 3: Time evolution of the mode amplitude at the peak. The red vertical lines

indicate different times, which are a: t = 380.0τA, b: t = 420.0τA, c: t = 460.0τA and d:

t = 490.0τA, respectively.
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Figure 4: Four snapshots of the mode evolution at nonlinear stage. On the left, the

radial mode structures are shown. Three poloidal harmonics are dominant, which are

green for m = 7, red for m = 8 and purple for m = 9. On the right, the frequency

sprectra are shown.
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poloidal harmonics at the peak of their radial fluctuation structure are shown. On the

right, the time evolution of the peak locations for each poloidal harmonic are shown.
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Figure 6: The frequency spectrum vs. time is shown. The linear function of the dashed

line is calculated by the peak of the frequency spectrum. The slope of the dashed line

indicates the frequency chirping rate.

In figure 6, the frequency time evolution is displayed. The frequency spectrum is

calculated by using the moving window fast Fourier transform (FFT) for all poloidal

harmonics. The contour plot is produced by integrating the multi-dimensional FFT

spectrum along both poloidal harmonics and radial positions. The frequency spectrum

shows a clear linear dependence on time. The slope of the black dashed line is used to

calculate the frequency chirping rate.

In figure 7, the normalized EP density profile at t = 600.0 is plotted and compared
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Figure 7: Normalized EP density profile at the initial time and at t = 600τA.

with the initial density profile. Despite no strong redistribution being observed, there is

still a finite modification around the mode location. The small redistribution of the total

density profile is commonly observed in single-n simulations (e.g. as shown in [49]). To

obtain a clearer vision of the nonlinear distortion of the density profile, it is necessary

to cut the phase space into slices [49].

3.4. Drift kinetic vs. gyrokinetic

In this section, we compare the effects of using a drift-kinetic model for both thermal ions

and energetic particles (EPs) by ignoring the finite Larmor radius effect in ORB5 [73].

This approach is made possible by the flexible model implemented in ORB5 [27], which

allows for numerical simulations to be carried out using the drift-kinetic limit. As

previously established in literature [3], we found that the growth rates and saturation

levels are modified when using the drift-kinetic model, but the mode structure and linear

frequency remain unchanged, consistent with previous observations in [74]. Additionally,

we observed that the frequency chirping behavior is also modified accordingly. In

figure 8, we show that when comparing to the reference case where both thermal ions and

EPs are treated using the gyrokinetic model, the growth-rate increases when ignoring

the Larmor radius effect for EPs only, but decreases when ignoring the Larmor radius

effect for thermal ions only. The saturation level, which refers to the first peak of the

amplitude, is higher for larger growth rates. The frequency chirping behaviors for each

case are qualitatively in agreement. As shown in figure 9, the chirping rates increase as

the saturation amplitude becomes larger.

3.5. Energetic particle density scan

In this section, the results of varying the EP density while keeping the bulk plasma

temperature gradient fixed at κT = 0.5 are presented. Increasing the EP density

modifies the intensity of the EP drive while keeping the EP resonances and characteristic
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Figure 9: Mode frequency spectrum vs. time for different treatments of EP and thermal

ions.

frequencies unchanged. In figure 10 (a), the real frequencies are shown. The linear mode

frequency is the same for different EP densities. In figure 10 (b), the growth rates are

shown for scanning the EP density. The growth rates are proportional to the EP density,

therefore, the damping rate and threshold density can be estimated from the dashed

black line in figure 10 (b). In this particular case, the damping rate γdτA = 0.0046 and

the threshold EP density is nEP ≃ 0.041. The mode is radially located at 0.4 ≤ s ≤ 0.85,

with a dominant m = 8, and subdominant m = 7 and 9 poloidal Fourier components for

the electrostatic field ϕ, and located in the frequency spectrum with a frequency close

to the lower accumulation point of a TAE gap on the shear Alfvén continuous spectrum.

In figure 11, the time evolution of the mode amplitudes for different EP densities

is shown. The base case represents the strongest scenario in the analysis, and the

amplitude of the mode decreases after reaching its first peak. However, when the EP

density is lowered, the amplitude evolution shows that it increases continuously after

reaching its first peak. Once the amplitudes reach their maximum, they are damped

and gradually decrease to a lower level. In figure 12, we measure the saturation scaling

with the linear growth rate, where the saturation value is defined as the first peak,

as in reference [49]. Since the saturation is caused by the flattening of the resonant

particle density profile, in simulations without frequency chirping, the saturation can

be distinguished as two mechanisms: quadratic scaling when saturation is caused by
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Figure 10: On the left, the linear mode frequencies are shown for EP density scan. On

the right, the corresponding growth rates are shown.
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Figure 11: Time evolution of the mode amplitude at the peak for different EP densities.

resonance detuning, and linear scaling when caused by radial decoupling. However, in

the current simulations, the saturation amplitude in figure 12 is further enhanced and

the scaling is stronger than that observed without frequency chirping. Such enhancing of

saturation amplitude is expected due to the extension of wave-particle ”finite interaction

time” by phase locking to the resonant particles and maximizing the power exchange

with those particles [5].

In figure 13, the frequency spectrum for different EP density values is shown. As

the EP density increases from left to right in the figure, the frequency chirping rate also

increases as indicated by the increasing absolute value of the slope of the dashed fitting

lines. This increase in chirping rate is proportional to the amplitude of the mode’s

saturation. Note the fundamental similarity between the behavior in figure 13 and the

chirping of chorus events in the Earth’s magnetosphere illustrated, e.g., in figure 11 of

Ref [75].
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Figure 12: Scaling of saturation amplitude of scalar potential versus linear growth rate

for EP density scan. Note that both coordinates are reported in logarithmic scale.
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Figure 13: Frequency spectrum vs. time for different EP densities nEP0/ne with the

values of (a) 0.006, (b) 0.0065, (c) 0.007, (d) 0.0075 and (e) 0.008, respectively.

Figure 14: Normalized bulk plasma temperature profile for different κT .
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Figure 15: Mode real frequency in (a), and growth rate in (b) dependence of the

temperature gradient defined by κT . EP density is retained with nEP0/ne = 0.008.
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Figure 16: Linear radial structures of the poloidal harmonics of the mode on the top

and frequency spectrum on the bottom for different values of κT .

3.6. Background temperature gradient scan

In this section, we will consider five different temperature gradients corresponding to

κT = 0., 0.2, 0.4, 0.5, 0.6, as shown in figure 14. This scan study is intended to establish

reference single toroidal mode number simulations for future research on the dynamics

of Alfvén modes in the presence of ITG turbulence. As shown in figure 14, the effective

bulk plasma temperature decreases in the vicinity of the mode location by increasing

κT .

In figure 15, the linear frequencies and growth rates of the mode obtained in

simulations with different values of κT are presented. As the value of κT increases,

the linear frequencies decrease while the growth rates increase. Figure 16 shows the

linear mode radial mode structures of the normalized electrostatic potential in the
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Figure 17: Time evolution of the mode amplitude at the peak for different values of κT .

upper panel and the frequency spectrum in the lower panel. The mode is linearly

driven unstable around s ≃ 0.7, with a dominant m = 8 poloidal Fourier component

for the electrostatic potential ϕ, and subdominant m = 7 and 9 components. The mode

is located close to the lower accumulation point of a TAE gap on the shear Alfvén

continuous spectrum. As κT increases, the mode moves deeper into the continuum

where the local effective bulk plasma temperature decreases. Additionally, the m = 8

mode becomes relatively more dominant as the frequency decreases. By modifying

the background plasma temperature gradient, the linear properties can be altered.

Specifically, the local bulk plasma temperature varies across different cases, leading to

differences in the shear Alfvén continuum. Consequently, the linear mode properties are

expected to be modified, as predicted by the generalized fishbone-like dispersion relation

in [3]. Figure 17 and figure 18 show that the saturation level increases for stronger modes

and, consistently, the frequency chirping rates increase as the amplitude increases, as

shown in figure 19. The saturation amplitude scaling with the linear growth rate, in

particular, is analyzed in figure 18, where a cubic scaling is observed, consistent with

the results obtained in the EP density scan. Note that, we only focused on the initial

stage of nonlinear amplitude evolution because we observed frequency chirping during

that time. However, the longer-term amplitude evolution may be affected by adding

more physics, such as multi-mode interactions, collision and sources. Concequently, the

chirping behaviours may change, which we will investigate in future work.

3.7. Frequency chirping rate vs. mode amplitude

Combining the simulation results so far, our analysis demonstrates that the frequency

chirping rate of the mode is directly proportional to its saturation amplitude, as

shown in figure 20. This holds true for all simulations conducted, despite variations

in parameters such as EP density and temperature gradient. This evidence of linear

scaling of the chirping rate with the mode amplitude is verification of the theoretical

framework, originally proposed in [76] as a conjecture, and later developed into a unified

self-consistent nonlinear theory [3, 4, 5, 25, 44, 77, 78], as indicated in equation (2).
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Figure 18: Scaling of saturation amplitude of scalar potential versus linear growth rate

for different values of κT .
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Figure 19: Frequency spectrum vs. time for different values of κT .

Considering that the same physics has been demonstrated by simulation results of

chorus emission in the Earth’s magnetosphere [1], consistent with the aforementioned

general theoretical framework [2, 75], our present numerical analysis provides further

support to the understanding of the features underlying frequency chirping phenomena

in magnetized plasma due to non-perturbative wave-particle interactions. The small

residual deviations of frequency chirping rate from linear dependence on the mode

amplitude can be attributed to small variations in the mode’s real frequency and radial

structure, consistent with mode’s linear properties in the considered nonuniform plasma

equilibria. Note that our current simulations are focused on single-mode dynamics. As

we consider more physics, such as multi-mode interactions, cross-scale couplings, sources

and collision, the mode amplitude may be modified, and the particle dynamics will need

to be further investigated in the future work.

4. Conclusion

In this study, we analyze the frequency chirping of Alfvén modes in tokamak fusion

plasmas that are driven by energetic particles using the global gyrokinetic particle-

in-cell code ORB5. The existing unified and general theoretical framework provides

predictions about the chirping rate, taking into account the non-perturbative impact
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Figure 20: Frequency chirping rates vs. saturation amplitudes are shown, which are

combining all the results from various parameter scans.

of energetic particles on the mode structure and nonlinear frequency chirping. In

section 2, We summarize the numerical evidence presented in [50]. Specifically, we

discuss the concept of ”phase locking” together with non-perturbative energetic particle

response illuminates non-adiabatic frequency chirping at the condition for maximizing

power exchange between the waves and energetic particles. The non-adiabatic frequency

chirping can be characterized numerically by using the Finite Time Lyapunov Exponent

analysis in the Hamiltonian mapping technique. We emphasize that particles are

continously trapping and detrapping with respect to the resonance structure, which

highlights the fundamental feature of the non-adiabatic chirping process; that is, the

nonlinear chirping time scale is of the same order as the wave-particle trapping time.

As a result, the frequency chirping rate dependence on saturation amplitude in the

spontaneous evolution due to non-perturbative, self-consistent wave-particle nonlinear

dynamics is different from an adiabatic chirping process controlled externally or by a

slower perturbative process.

In this research, we use ORB5 simulations to examine the frequency chirping of

an energetic particle mode (EPM) under a fixed equilibrium and a single toroidal

mode number. We vary models (drift- and gyro-kinetic) for the treatment of particle

responses, and parameters such as, the density of energetic particles and the bulk

plasma temperature gradients. Our findings show that an EPM can become unstable

driven by an anisotropic energetic particle distribution and then chirps along the shear

Alfvén continuum with a self-consistently modified mode structure. By varying different

parameters, we are able to change the mode saturation level. As a result, we observe

that the frequency chirping rate also changes with the mode saturation level. We find

that the frequency chirping rate is linearly dependent on the mode saturation amplitude,

which is in agreement with the theoretical predictions of non-adiabatic chirping. We

also argue that our result provide a strong support to the linear scaling of chirping



REFERENCES 21

rate with the flutuation amplitude as universal feature underlying frequency chirping

phenomena in magnetized plasma due to non-perturbative wave-particle interactions. In

fact, the universality of this linear dependence is recognized to be common in laboratory

and space environments, with strong support from theory, simulation and experimental

evidence..

Frequency chirping is a major concern in tokamaks due to its connection to fast ion

losses, yet there is limited understanding on how to systematically avoid it. Our study in

this paper provides evidence of non-adiabatic chirping features for a single toroidal mode,

disregarding mode-mode couplings. By identifying the dynamics of single toroidal mode

frequency chirping, our study can serve as a reference case for more complex conditions.

Using the comprehensive physical model implemented in the gyrokinetic code ORB5,

we can further investigate chirping dynamics starting from the current reference cases.

Future investigations will focus on how resonance overlap, zonal flows, or cross-scale

couplings with plasma turbulence [79] may modify the chirping dynamics.
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