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Abstract 

Light-dosimetry aims to measure personal light exposure with wearable sensors, which is a complex multi-step 

procedure. The resulting data may be used to investigate non-visual effects of light in real-life settings, to validate 

laboratory findings and answer questions pertaining to implications in applied contexts. However, personal light 

exposure patterns are usually complex and can be quantified in many ways. Various measurement and analysis 

methods have been applied across previous studies, complicating comparability and interpretation of results. To 

improve the quality and comparability of light-dosimetry research, a framework with consensus guidelines for 

light-dosimetry procedures is needed. To provide the groundwork towards such a framework, we reviewed 

previous light-dosimetry studies to identify considerations regarding measurement and data quantification. Here, 

we review metrics for quantifying light-dosimetry data in terms of the characteristics known to modulate non-

visual responses. Overall, various metrics have been employed across studies, with several metrics for each 

characteristic. We provide a description of each metric, discuss their properties, and provide example calculations 

for the application to light-dosimetry data. Moreover, we propose considerations for data quantification and 

possible research strategies for future studies. To facilitate exploration and use of the identified metrics, 

corresponding functions are provided in an openly accessible R-package. 
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1 Introduction 

Light has a profound impact on many aspects of human life. Beyond giving rise to vision, light affects diverse 

physiological and behavioural functions, either directly or mediated by the circadian system,1,2 and is therefore 

considered to play an important role in general health and wellbeing.3 Much of what is known about these so-

called non-visual effects of light has been established by extensive laboratory research, indicating that 

physiological and behavioural responses are modulated by different characteristics defining light exposure 

patterns, that is, their spectral composition, level, duration, timing, temporal dynamics and prior history, 4 as 

further elucidated below. However, laboratory stimuli are far removed from the complex dynamic light exposure 

patterns encountered in real-life: personal light exposure patterns are chaotic and highly complex signals resulting 

from the interaction between the light provided in our immediate environment and our behaviour within this 

environment. By measuring personal light exposure with wearable light sensors (i.e., light-dosimetry) together 

with non-visual responses in real-life settings, findings from controlled laboratory studies can be evaluated and 

complemented, and may help to answer questions pertaining to the implications of the non-visual effects of light 

in applied contexts, such as architecture and lighting design, therapeutical applications, shiftwork, transcontinental 

travel, and personal lifestyle.5,6 Furthermore, light-dosimetry may help researchers and lighting designers to 

validate whether a design or intervention is impacting the subjects’ actual light exposure as intended, and to 

identify potential for interventions.  

To date, a considerable amount of light-dosimetry research has already been published, with growing efforts and 

interest in recent years. With an increasing amount of research, it becomes more and more important that data is 

collected according to common standards and exploited with a shared toolset. Such standardized procedures may 

be defined in a consensus framework, which may improve the quality of the generated data and make data FAIR 

(findable, accessible, interoperable, and reusable).7 Such a framework is particularly important for a procedure 

such as light-dosimetry, which consists of multiple steps from measurement to data analysis, with each step 

warranting careful consideration.8 Broadly, these steps consist of (1) selecting optical quantities, (2) calibrating 

dosimeters, (3) selecting a measurement setup, (4) processing the measured data, (5) calculating light exposure 

metrics, and (6) linking metrics to measured responses. Importantly, differences in the execution of each step may 

lead to substantial differences in the results, complicating their interpretation and comparison across studies. 

Since to date no consensus guidelines for the light-dosimetry process exist, we set out to lay the groundwork 

towards establishing a framework for light-dosimetry applicable to real-life settings. To this end, we reviewed 

previously published light-dosimetry studies regarding methods for light measurement and data quantification. 

Given the wide scope of the topic, we separated the review in two parts: in a previously published paper,9 we 

identified methodological considerations and knowledge gaps for measuring and preparing personal light 

exposure data (steps 1–4 above), while in the present paper, we review metrics employed by previous studies to 

quantify personal light exposure data in the context of research on the non-visual effects of light (steps 5–6 above). 

Note that, although our previous review paper focussing on measurement methodology is not necessary for 

understanding the work presented here, we would like to emphasize that for the establishment of a consensus 

framework, the entire dosimetry process needs to be considered.  

The aim of the present review is to provide an overview of existing metrics for the quantification of light-

dosimetry data, to discuss their potential relevance for research applications, and to highlight knowledge gaps and 



possible ways in which the metrics can be used and evaluated in future research, which could ultimately enable 

them to be integrated into a dosimetry framework. Due to the already wide scope of this review, we did not attempt 

to systematically evaluate the identified metrics regarding their relevance for research into non-visual effects of 

light, although this would be an interesting complementary review and evaluation to conduct in the future as a 

follow-up to this paper.  

2 Background 

Light is a complex multidimensional stimulus that has been shown to modulate physiological and behavioural 

responses in laboratory settings in a way that depends on a combination of properties, notably: its spectral 

composition, level, duration, timing, temporal dynamics, and prior history.4 We therefore decided to structure the 

present review of light-dosimetry metrics according to these six specific light exposure characteristics (cf. Sections 

4.1 to 4.6). In the following two sections, we will briefly discuss these characteristics and associated findings that 

are relevant to the objectives of this review.  

2.1 Light exposure characteristics modulating non-visual responses 

2.1.1 Spectral composition 

Non-visual responses have been shown to be modulated by input from all known retinal photoreceptor types.10,11 

However, this modulation seems to be dependent on the strength and temporal dynamics of the light stimulus as 

further discussed below. At longer timeframes and higher stimulus levels, as found in many real-world settings, 

evidence suggests that the spectral sensitivity of non-visual responses matches that of melanopsin (i.e., greatest 

sensitivity to short-wavelength light peaking at 480 nm).12,13 Nevertheless, light exposure relative to all 

photoreceptors should be considered until the underlying mechanisms are better understood.14  

2.1.2 Level, duration, and temporal dynamics 

Many non-visual responses (e.g., melatonin suppression,13,15 circadian phase shifting,15,16 and alertness during 

nighttime17) have been related to stimulus level (e.g., corneal irradiance) and exposure duration in a dose-

dependent manner (where dose is stimulus level multiplied by duration), with stronger responses for higher doses, 

following a sigmoidal function.  

These dose-response relationships are strongly dependent on the duration of the light stimulus and its temporal 

pattern in a non-linear manner.4 In particular, the effectiveness of a light stimulus at a given level decreases for 

longer stimulus durations.18 Different non-visual responses (e.g., phase resetting, melatonin suppression, 

alertness) appear to have different temporal dynamics and duration-response functions.19 Moreover, the spectral 

sensitivity of responses may change over time, with cone contributions diminishing after longer exposures and at 

higher light levels.10 For example, during a 12h exposure to typical office lighting conditions, melatonin 

suppression is dominated by melanopsin.20  

The findings for long-duration continuous stimuli are in line with the temporal dynamics of intrinsically 

photoreceptive ganglion cells (ipRGCs), integrating photic information over time.21–23 At shorter time frames, 

however, non-visual response dynamics become more complex and do not follow normal photic integration,24 as 



demonstrated in studies showing that intermittent light pulses can be as effective as continuous longer exposures 

in circadian phase resetting.25–27 

2.1.3 Timing 

In addition to dose-dependent modulation, responses are modulated by the timing of light exposure relative to 

circadian rhythms and other biological processes (e.g., homeostatic sleep pressure). Phase resetting effects (i.e., 

the magnitude and direction of phase shifts) in the SCN, in particular, depend on timing, such that light in the 

biological morning phase advances, and light in the biological evening phase delays the circadian clock.28–30 

Similarly, modulation of so-called acute responses (i.e., the more immediate responses to a light stimulus) such 

as alertness, heart rate and body temperature seem to depend on the timing of light exposure, though findings 

about these relationships are currently inconclusive.31,32 

2.1.4 Prior history 

An important factor modulating non-visual responses to light is prior photic history. Accumulating evidence 

suggests that prior exposure to light on a scale of hours and days can reduce the sensitivity of light-induced 

responses, such as melatonin suppression,33–36 circadian resetting,33 and nocturnal alertness.37 While these findings 

point towards long-term adaptation of the phototransduction system mainly mediated by intrinsic ipRGCs 

responses,33 similar effects on melatonin suppression during much shorter time-frames suggest the existence of a 

secondary mechanism involving rod- and cone-driven adaptation and recovery.38 

In addition to desensitising effects of prior light exposure, bright daytime light has also been found to enhance 

sleep, mood, and cognitive functions.39–41 While these effects may simply reflect acute responses to bright light, 

recent evidence indicates that prior light exposure has persistent effects on a neurophysiological level. 

Specifically, a recent study in a diurnal mammal found enhancement of circadian amplitude by prior bright 

daytime light exposure, reflected by a higher daytime peak of the SCN’s spontaneous electrical activity as well 

as an increased robustness of temperature and activity rhythms.42 Likewise, in humans, a strong day-night contrast 

such as under natural conditions has been shown to reduce interindividual variability in phase of entrainment.43,44 

2.2 Implications for light-dosimetry 

While the findings described above have led to a better understanding of the intricate physiological mechanisms 

underlying the non-visual responses to light and have found their way into preliminary recommendations for 

lighting design and practice (e.g.,  45–47), it still remains unclear how these findings interact to affect responses 

across longer time frames and dynamic patterns such as encountered in real-life settings.6 In laboratory studies, 

the modulation of non-visual responses to different light exposure characteristics are examined by exerting a tight 

control over the respective light stimulus. While stimuli vary depending on the research question, each stimulus 

is necessarily a specific instance of an arbitrary combination of all light exposure characteristics. As a result, any 

functional relationships (e.g., dose-response curves) are inherently linked to the specific instances of stimulus 

patterns used to derive them. What we do not know is to what extent these derived relationships generalise to 

other stimulus instances and ultimately to personal light exposure patterns, or, viewed differently, whether 

disentangling personal light exposure patterns into separate characteristics and relating them to measured 

responses reveals similar functional relationships. This issue is further complicated in real-life settings by inter-



individual differences in light sensitivity,48,49 and by the numerous interactions observed between the non-visual 

responses themselves and other physiological and behavioural variables.50 

Studying personal light exposure and non-visual responses in real-life settings may help to bridge current gaps in 

knowledge6 and better understand the mechanisms underlying the non-visual responses to light.5 However, it is 

far from straightforward to relate measured personal light exposure to measured responses. Specifically, an 

important question is how personal light exposure data should be quantified. That is, what metrics can or should 

be calculated from collected light data to characterise the light exposure patterns of an individual or group, or to 

examine the relationship between light and non-visual responses.6 

To start answering this question, we assembled a comprehensive set of relevant light-dosimetry studies from 

which we identified metrics that have been developed and used over the recent decades of research in this field. 

We categorise the identified metrics based on the different characteristics modulating non-visual responses as 

reviewed above and discuss their potential relevance for research and possible ways to evaluate and compare the 

metrics in future studies. 

3 Review method 

3.1 Selection of studies 

The selection of light-dosimetry studies was made by means of a forward and backward citation search method 

using the Web of Science citation database (forward and backward search) and the individual papers’ reference 

list (forward search), within the period of January–March 2021. Two early dosimetry studies were chosen as a 

starting point,51,52 since they were some of the first to study real-life light exposure patterns with wearable light 

meters (dosimeters) in the context of chronobiology. Based on these two studies, forward and backward citation 

was used to select studies that collected real-life personal light exposure data over at least 24 hours and that 

reported an analysis of the measured light data as a dependent or independent variable.  

These selection criteria generally excluded intervention field studies where personal light exposure was measured 

but not analysed as a major independent or dependent variable, except for three studies.49,53,54 Similarly, studies 

that measured personal light exposure in a context unrelated to the non-visual system (e.g., studies on visual 

acuity) were excluded, except for three myopia-related studies that used methodological approaches that have not 

been described by the other eligible studies.55–57 

In total, 104 studies were deemed eligible and formed the set of dosimetry field studies reviewed here from which 

the list of metrics to discuss could be identified 35,43,44,49,51–150, together with a set of additional metrics based on 

four conceptual articles151–155 specifically relevant to the scope of this review. A tabular overview of the selected 

studies and study characteristics is given in the supplementary data. For a more detailed description of the selection 

procedure please refer to our previously published review of methodological considerations in light-dosimetry.9 

3.2 Light-dosimetry definition and terminology 

The selected dosimetry studies were reviewed to identify metrics used to quantify the characteristics of measured 

personal light exposure data. In real-world settings, light exposure data collected with light-dosimetry typically 

consists of person-bound consecutive discrete light measurements over an extended period of several hours or 



days (i.e., time series of light exposure data). The optical quantities of the data (e.g., photopic illuminance, spectral 

irradiance in different bandwidths, α-opic irradiance etc.) and the time interval between data points (i.e., epoch) 

each depend on the specific dosimeter model and its characteristics, as well as on the selected sampling settings 

of the dosimeter. Moreover, the collected data may in some cases need to be pre-processed before analysis, 

including the removal of invalid data points and noise, and/or (logarithmic) transformation to ensure adequate 

quantification (for details see our previously published paper9). The resulting dataset can then be analysed by 

calculating selected metrics of interest. 

The metrics identified in the present review can be broadly differentiated in three classes: metrics that aggregate 

the data across a given time interval (that we will call aggregate metrics), metrics that are derived from a function 

fitted to the data (parameter metrics), and metrics that are calculated for each individual data point (point metrics). 

The sub-intervals of data that a metric is calculated for, depend on the metric itself and the analysis strategy. For 

each metric in this review, we will indicate its class (aggregate, parameter, or point) and whether it has been 

developed for a specific interval. 

Furthermore, the term light exposure data will be used in the remainder of this review to indicate the time series 

of light data measured with a dosimeter, while the term light level will be used in a generic way, to indicate a 

value of any optical quantity (e.g., irradiance, luminance, illuminance, m-EDI etc.). In cases where only specific 

quantities are applicable, SI-compliant terms will be used. 

4 Review of dosimetry metrics 

In the following, quantification metrics identified in the reviewed studies are described and categorised based on 

the characteristics described in Section 2. For each category (i.e., within each subsection 4.n), a tabular overview 

of the respective metrics is provided (i.e., in Table n, respectively), including a brief description of each metric, 

its class, a pseudo-mathematical formula of the calculation procedure (where applicable), and the respective 

studies that used the metric. 

To facilitate the exploration and use of the reviewed metrics, we also developed the R-package lightdosimetry 

(available on GitHub at github.com/steffenhartmeyer/lightdosimetry), which includes functions to calculate most 

of the metrics presented in this review. 

4.1 Quantification of spectral composition 

Metrics that were used to quantify characteristics related to spectral composition are shown in Table 1. Overall, 

three different metrics were identified: Spectral Contribution, Melanopic-Photopic Ratio, and Vis-nonvis.  

The point metric Spectral Contribution quantifies the relative contribution of individual spectral irradiance 

components to the combined irradiance. One study analysed these contributions per season, for each hour during 

daytime,138 and another study as a function of solar angle and before sleep onset,106 showing how the spectral 

composition changes over the course of the day. The latter study additionally compared the distribution of light 

levels of different optical quantities, such as photopic illuminance and melanopic equivalent daylight illuminance 

(m-EDI), showing characteristic overlapping peaks during night time for light sources with similar photopic and 

melanopic activation.106 Similarly, the point metric Melanopic-Photopic Ratio (M/P ratio) quantifies the spectral 

composition in terms of photopic vs. melanopic activation, and has been used to investigate the relative impact of 



different light sources on melanopic light levels before bedtime.66 Note that the term M/P ratio can refer to 

differently calculated metrics (cf.155). Therefore, the specific term [e.g., melanopic daylight equivalent ratio (m-

DER)] or the calculation procedure should always be reported. Like the M/P ratio, the aggregate metric Vis-nonvis 

introduced by Hubalek et al.96 quantifies the relationship between photopic illuminance and “circadian” irradiance 

c(λ).156 This metric is calculated for a given time interval and increases with a decreasing amount of short-

wavelength light. 

In summary, the metrics presented above quantify spectral composition by integrating for different spectral 

quantities. They can be used to achieve a better understanding of what the spectral composition of personal light 

exposure patterns is and how it changes in relation to environmental factors. Note, however, that for the research 

of non-visual effects of light it may be sufficient to simply quantify light exposure data in terms of different optical 

quantities (ideally α-opic quantities157). Overall, 20 studies used quantities other than photopic illuminance (Figure 

1A). This low number of studies may be due to a lack of dosimeters with sufficient spectral resolution, as discussed 

in our previously published review.9 

4.2 Quantification of light level 

Metrics that were used to quantify characteristics related to light level are shown in Table 2. Three types of metrics 

were identified: Standard descriptive metrics, Mean across the Brightest 10 Hours (M10m) and Darkest 5 Hours 

(L5m), and Rhythm Adjusted Mean (MESOR) derived from cosinor analysis. 

Standard descriptive metrics have been used by most studies and include the Arithmetic Mean, Geometric Mean, 

Median, Percentiles, Maximum, Standard Deviation, and Inter-Quartile Range (IQR). These aggregate metrics 

can be calculated across any time interval of interest; therefore, their informativeness depends on the interval that 

is selected. In contrast, the aggregate metrics M10m and L5m, and the parameter metric MESOR quantify the 

central tendency of light levels specifically across the 24h day and are not applicable for selected subintervals. 

Note that, while aggregating time series of light levels across a given interval provides information about the 

distribution of light levels an individual was exposed to during that interval, aggregating the data into regularly 

spaced intervals (e.g., hourly bins) may help to reduce noise in the data and analyse changes in light levels over 

longer timeframes. For instance, Martinez-Nicolas et al.113, analysed the rate of change in consecutive log-

transformed illuminance (averaged into 10 min bins) in relation to the rate of change in the corresponding wrist 

temperature. 

Overall, we can say that the identified light level-related metrics aim to quantify the central tendency of light 

levels across a given interval, although light levels can also be directly related to responses of interest. 

4.3 Quantification of duration 

Metrics that were used to quantify duration-related characteristics are shown in Table 3. Overall, two metrics were 

identified: Time Above/Below Threshold (TAT(C)), and Time within Range (TAT(Cmin,Cmax)).These aggregate 

metrics calculate the total amount of time spent above or below a defined threshold light level C or within a range 

of light levels [Cmin, Cmax], respectively. Both metrics can be expressed in terms of absolute duration or as 

percentage of time (e.g., percentage of available sunlight hours). Note, that these metrics are calculated across a 



given interval as the total amount of discrete time points where the threshold conditions are fulfilled, independent 

of the sequence of data points (cf. Pulses above Threshold in Section 4.5). 

Across the 58 studies that used these metrics, various thresholds and ranges were used (Figure 1B), specified in 

terms of photopic illuminance by all studies. Some but not all studies provided a rationale for selecting specific 

thresholds, such as indication of environmental lighting conditions (e.g., 1000 lx, indicating daylight and/or light 

exposure outdoors), recommended light levels for light therapy (e.g., 2500 lx 158), or thresholds for melatonin 

suppression, circadian resetting, and alertness (e.g., 80 lx, 100 lx, 550 lx 15,17). Only few studies defined thresholds 

based on the collected data; for example, Woelders et al.149, who selected a threshold of 615 lx to indicate daylight, 

since data recorded during solar darkness did not exceed this value. Three studies selected thresholds based on a 

sensitivity analysis.119,125,142 In this method, TAT was calculated for a wide range of thresholds (e.g., 10–3000 lx 
142) and analysed to identify which thresholds correlated with measured responses (e.g., hyperactivity 142). 

Duration of light exposure is thus generally quantified relative to a given light level threshold or range, the latter 

allowing more differentiated analysis of time spent at specific light levels. The fact that the informativeness of 

these metrics depends on the selected threshold(s), highlights the importance of selecting thresholds based on a 

specific rationale or by means of a sensitivity analysis.  

4.4 Quantification of timing 

Metrics that were used to quantify timing-related characteristics are described in Table 4. Overall, eight metrics 

were identified (detailed below): Rhythm Acrophase, Centroid of Light Exposure (LE), Midpoint of Cumulative 

Exposure (CE), Mean Timing of Light above Threshold (MLiT(C)), Onset of M10, L5 (M10on, L5on), First and 

Last Timing of Light above Threshold (FLiT(C), LLiT(C)), Phase Angle, and Relative Timing.  

The parameter metric Rhythm Acrophase and the aggregate metrics Centroid of LE, Midpoint of CE, and MLiT 

aim to estimate the timing of the peak or centre of gravity of the light exposure data within a given time interval 

(usually a 24h-day). Similarly, the aggregate metrics M10on and L5on quantify the on- and offset of the 10 hours 

timespan with the highest or lowest average light level, while the aggregate metrics FLiT and LLiT quantify the 

on- and offset of light levels above a specific threshold C. Moreover, Phase Angle quantifies the offset between 

any timing metric relative to a given timepoint, which has been calculated for MLiT relative to wake onset,99 and 

for FLiT and LLiT relative to wake on- and offset.143,146 Note that the metrics MLiT, FLiT and LLiT integrate 

information about light levels and are thus dependent on the selection of appropriate thresholds. As described for 

TAT in the previous section, sensitivity analysis can be used to select relevant thresholds, which has been 

employed for MLiT by four studies.99,119,125,142  

An important consideration for quantifying timing-related characteristics is the reference timescale. Most studies 

represented the time series of light exposure data relative to the time of day; however, in the context of non-visual 

responses, usually the timing relative to internal time (e.g., the circadian rhythm) is of interest. Therefore, it may 

be useful to represent and quantify the light exposure data relative to a physiological or behavioural marker 

(Relative Timing). Amongst the 11 studies that represented the data in this way, eight studies related light to sleep 

on- and offset, three to dim light melatonin onset (DLMO), and one to core body temperature minimum (CBTmin). 

Light exposure data represented relative to individual internal time can then be analysed to assess its impact on 

the circadian system; for example, by quantifying light exposure data relative to individual phase response 



curves.109 In the absence of physiological markers such as DLMO or CBTmin, individual phase estimates based on 

measured sleep and wake times may be used.  

Note that many studies calculated and compared timing metrics for the entire day and/or for sub-intervals, by 

which information about timing can be integrated in any of the metrics. However, due to the large variety of 

intervals used across studies, they are not reviewed here. 

Metrics for light exposure timing have thus been found to quantify either the centre/peak of light exposure, or the 

on- and offset of a given exposure period. Amongst these methods, parameterised metrics exist that allow the 

calculation of exposure timing relative to specific light levels of interest and are suitable for sensitivity analyses. 

Note that for research on non-visual effects, it may be useful to calculate timing relative to individual physiological 

or behavioural markers, if available.  

4.5 Quantification of temporal dynamics 

Metrics that were used to quantify characteristics related to temporal dynamics are shown in Table 5. Overall, 

eight metrics were identified: Rhythm Amplitude, Relative Amplitude (RA), Light Quality Index (LQI), Rhythm 

Robustness, Interdaily Stability (IS), Intradaily Variability (IV), Frequency of Intensity Changes (FIC), and Pulses 

above Threshold.  

The first six metrics quantify 24h-rhythm characteristics of the light exposure data. Specifically, the parameter 

metric Rhythm Amplitude, and the aggregate metrics RA and LQI quantify the contrast between the light and 

dark period, whereas the parameter metric Rhythm Robustness, and the aggregate metrics IV and IS, quantify the 

temporal variability within and across days. Note that Rhythm Amplitude and Rhythm Robustness (as well as 

MESOR and Rhythm Acrophase described in the previous sections) are derived from fitting a 24h-cyclic rhythm 

to the data, such as in cosinor-based methods, which are frequently used for the analysis of circadian rhythms.159 

Similarly, IS, IV, and RA were originally developed as non-parametric methods for the analysis of actigraphy 

data to assess the strength and disruption of rest-activity rhythms.160 

The last two aggregate metrics quantify the intermittency of the light exposure data, with FIC calculating the 

number of times consecutive light levels cross a given threshold,55 and Pulses above Threshold identifying 

continuous episodes (or pulses) of light above a given threshold and quantifying them in terms of their number, 

mean level, mean duration, total duration, and mean onset.57,148 Due to their threshold parameterisation, Pulse 

metrics and FIC sensitivity analysis can be used to identify relevant threshold light levels,148 similar to metrics 

such as TAT and MLiT. 

In summary, temporal dynamics are quantified in terms of several characteristics, such as temporal variability and 

intermittency, as well as the contrast between given periods. It is important to note that some of the identified 

metrics were developed to specifically quantify 24h data and may thus not be suitable for shorter timeframes. 

Novel metrics such as Pulses above Threshold offer promising ways to characterise the intermittency of light 

exposure data within any timeframe while integrating information about light level and duration, which makes 

them suitable for sensitivity analyses.  

 

 



4.6 Quantification of exposure history 

Metrics that were used to quantify exposure history related characteristics are shown in Table 6. Overall, four 

metrics were identified: Cumulative Exposure (CE), Solar-normalised CE, Dose(Cmin,Cmax), and Exponential 

Moving Average (EMA).  

The aggregate metric Cumulative Exposure (CE) was used most frequently to quantify exposure history and is 

simply calculated as the integral of the light exposure data across a given interval (usually a 24h-day). In order to 

facilitate comparison of this metric across studies and seasons, one study additionally calculated the Solar-

normalised CE, indicating the fraction of available daylight that subjects were exposed to.55 As an alternative to 

CE, the aggregate metric Dose(Cmin,Cmax) quantifies exposure history based on the cumulative exposure within 

several ranges of light levels, which has been used to compare the contribution of light at specific levels to the 

overall exposure history.94 

A different approach was employed by Price et al.121, who quantified exposure history in time with an Exponential 

Moving Average (EMA) filter, described in detail in a conceptual article.161 Instead of expressing exposure history 

as the total amount of light an individual was exposed to over a given interval, this method mimics the response 

dynamics of the non-visual system. Unlike aggregate metrics such as CE or TAT, this point metric integrates 

information about prior light history at each point in time, which may be particularly relevant for assessing acute 

effects to light and for tracking internal time while undergoing continuous phase adjustment.  

Overall, we found two different approaches for quantifying light exposure history. One approach is to aggregate 

light exposure data across a given interval resulting in an estimate of the total light dose received, where a more 

detailed differentiation can be achieved by calculating light dose for specific light levels. The second approach is 

to calculate light exposure history as a function of time considering previous exposures, thereby retaining temporal 

information.   

4.7 Additional metrics 

In addition to the metrics used in the reviewed dosimetry studies, four conceptual articles were identified that 

present relevant metrics for light dosimetry, described in Table 7. Barroso et al.151 developed five metrics 

(Bright/Dark Threshold, Bright/Dark Mean Level, Circadian Contrast, Bright/Dark Cluster, Circadian Variation) 

intended to be used in light-dosimetry studies to quantify relevant light characteristics (i.e., level, duration, and 

temporal dynamics) for circadian research. Blesić et al.152,153 used Wavelet Transform Spectral Analysis and 

Detrended Fluctuation Analysis to quantify behavioural patterns and exposure timescales for personal UV-

exposure data, which may prove useful for quantification of light-dosimetry data in general. Fernández-Martinez 

et al.154 introduced the Disparity Index, a measure of the temporal variability of time series, which was originally 

developed in the context of ecology and has recently been applied in a light-dosimetry study162 to characterise 

exposure variability. 

5 Application of metrics 

To provide insights as to the type of outcomes one can expect from the different metrics discussed in Section 4, 

we calculated the identified metrics for two exemplary days of personal light exposure measurements. Note that 



the exemplary calculations are for illustrative purposes only and are not intended to evaluate the metrics as to their 

relevance for research on the non-visual effects of light. 

The exemplary data were collected with the Spectrace dosimeter, a novel wearable sensor recording spectral 

irradiance across 14 channels in the visible range, with automatic gain and integration time adjustment (see Webler 

et al.163 for details). The data were retrieved from Spectrace recordings while being worn by one of the authors 

from waking up to going to bed over several days in August 2021 in Lausanne, Switzerland. Light exposure was 

measured on the chest (i.e., in a vertical plane just below shoulder height) with an epoch of 30 s and averaged into 

1 min bins for the calculations presented here (using the geometric mean). 

Two days with visually different exposure patterns were selected from the dataset (see Figure 2A). The first day 

(Day 1) is characterized by consistently low light exposure across the day with brief periods of bright light 

exposure in the early morning and late afternoon; the second day (Day 2) consists of a brief period of bright light 

exposure at midday and a long period of bright light exposure in the late afternoon and evening. Note that both 

days were workdays; therefore, bright light exposure coincides with time before or after work or the lunch break. 

Metrics were calculated with light quantified as m-EDI (untransformed unless noted otherwise), for the periods 

where the wearer was awake (i.e., 05:44 – 21:23 and 05:08 – 23:37 for Day 1 and 2, respectively), except for 

metrics derived from cosinor analysis (MESOR, Rhythm Amplitude, Rhythm Robustness, Rhythm Acrophase), 

as well as M10, IS, and IV, given their requirement for 24h data. Metrics are visualized in Figure 2 and a tabular 

overview of the results is provided in Table 8. 

5.1 Level 

All metrics related to exposure level indicate a tendency for higher m-EDI together with a larger spread for Day 

2 compared to Day 1 (Table 8). However, large differences between the metrics exist, especially between the 

Arithmetic Mean and the Geometric Mean, Median, and MESOR. Due to the strongly skewed distribution of light 

levels, the Arithmetic Mean substantially overestimates the central tendency of light levels, compared to the 

Geometric Mean and the Median. Note that the MESOR results in similar but lower values than the Median and 

Geometric Mean, as it is calculated from a cosinor function fitted to the log-transformed light data, which in this 

case does not adequately fit the data (R2 = ~0.5). 

These exemplary results highlight the difficulty of quantifying exposure level in a single metric. Particularly 

problematic is the fact that light exposure data are typically not normally distributed,164 which, despite its frequent 

use, renders the Arithmetic Mean an inadequate measure to quantify the central tendency of measured light 

exposure data. In addition, light exposure often varies greatly, even across short timeframes, limiting the mean’s 

informativeness. Therefore, it is recommended to use the Geometric Mean or the Median together with their 

respective measures of spread (i.e., Geometric SD and IQR, respectively), or to log-transform the data before 

aggregation (for a detailed discussion refer to our previously published review9). Although the MESOR has been 

used by many studies, its informativeness for quantifying exposure level is limited since it depends on the 

goodness of fit of the fitted rhythmic function (e.g., cosinor).  

Note that for illustrative purposes the metrics were calculated across the period when the subject was awake. 

However, it may often be more meaningful to use these metrics to aggregate the data across specific sub-intervals 



or regularly spaced intervals (i.e., binning) to integrate information about the timing of light exposure or analyse 

changes in light levels over longer timeframes.  

5.2 Duration 

The duration metric TAT was calculated for threshold levels between 20 lx and 2000 lx m-EDI (Figure 2D), as 

well as for the ranges 10-100 lx, 100-500 lx, and 500-1000 lx m-EDI (Table 8). Across all thresholds, TAT(C) 

was longer for Day 2 than Day 1, mainly due to a longer light exposure period. Moreover, by plotting TAT(C) as 

a function of threshold level, characteristic environments/lighting conditions can be identified in the changes in 

slope of the plotted curve; for instance, for Day 2 the plateau between 100 lx and 1000 lx m-EDI would 

differentiate between indoor and outdoor conditions. Time spent in characteristic lighting conditions can be further 

examined by calculating TAT(Cmin,Cmax) for specific threshold ranges; for example, a longer exposure to low and 

high light levels combined with a shorter exposure to moderate light levels can thereby be identified for Day 2 

when compared to Day 1. 

As shown here, the calculation of exposure duration is not straightforward but strongly depends on the light levels 

under consideration. Note that TAT(C) for a single threshold informs about the time spent at any light levels 

above or below a specified light level of interest, limiting its informativeness. For example, TAT(100) and 

TAT(1000) are identical if no light levels between 100 lx and 1000 lx are recorded, leading to a plateau when 

plotting TAT(C) as a function of threshold. Therefore, to examine how much time was spent at specific light 

levels, TAT(Cmin,Cmax) or the difference between TAT(C) for different thresholds can be calculated. This also 

shows that TAT(C) as a function of threshold can be used in a sensitivity analysis for measured responses; for 

example, calculating the correlation coefficients between TAT(C) and hyperactivity or sleep onset to determine 

the (range of) threshold(s) with the strongest association to the response.142 

5.3 Timing 

The metrics Acrophase, Midpoint of CE (Mid. CE), Centroid of LE (Cent. LE), and MLiT quantify the central 

tendency of light exposure timing; however, as they are calculated differently, they may vary significantly for 

different exposure patterns (Figure 2B, Table 8). For Day 1, Acrophase, Mid. CE, and Cent. LE, are similar and 

located close to the midpoint of the light exposure period as quantified by MLiT(10), due to the relatively 

consistent light levels across the day. Contrastingly, for Day 2, Acrophase, Mid. CE, and especially Cent. LE are 

shifted later, given to the long period of relatively bright light exposure in the late afternoon. For both days, the 

central tendency of the timing of bright light exposure periods is better captured by MLiT(1000), due to the 

threshold parameterisation. Moreover, the analysis of different threshold values for MLiT, FLiT and LLiT shows 

how the timing of light intensities is distributed across the day (Figure 2E). 

The metrics shown here allow to estimate the central tendency of light exposure timing or the on- and offset of 

light exposure periods. While for non-parametric metrics the results depend on the specific calculation procedure, 

parameterised metrics such as MLiT allow a more finely tuned quantification of the timing at specific exposure 

intensities. However, a significant shortcoming of most timing metrics included here is that they ignore 

intermittent exposures. For example, MLiT(1000) may be identical for a day with 1 h of bright light exposure in 

the morning and late afternoon (e.g., commuting times) and a day with a single bright exposure period around 

noon, yet the effects on the circadian system might be very different. An alternative may be to divide the exposure 



period in meaningful subintervals for which the timing metrics are calculated, or to quantify intermittency with 

metrics such as Pulses above Threshold (see next Section 0 Exposure Dynamics). 

On a technical note, while timing may be represented on a 24 h scale, it is important that the calculation of the 

metrics is performed on time encoded as an incremental variable (e.g., epoch time) to correctly calculate timing 

across intervals that span midnight (e.g., 2022/01/01 08:00 – 2022/01/02 02:00). Moreover, often it may be more 

meaningful to represent light exposure with respect to internal time (i.e., relative to a physiological or behavioural 

phase marker), especially when comparing between participants or groups (cf. Wilson et al.148). To transform 

metrics calculated in clock time into relative time, the timing of the internal phase marker (e.g., DLMO, CBTmin) 

simply needs to be subtracted (with time encoded as an incremental variable, see above). For example, relative to 

a hypothetical DLMO at 20:00, MLiT(1000) at 16:10 equals DLMO-3.83 and LLiT(20) at 00:43 (+1 day) equals 

DLMO+4.72.  

5.4 Dynamics 

Several metrics related to the exposure dynamics were calculated and are shown in Table 8. Rhythm Amplitude 

and LQI reflect the difference in contrast in light levels across the day between both days, with a higher contrast 

for Day 2. The variability metrics IV, Disparity Index, and Circadian Variation indicate higher variability of light 

levels for Day 1 compared to Day 2, which is in line with consistently more and shorter Pulses above Threshold 

for Day 1 (Figure 2D and F). However, while for Day 1 there is higher intermittency at lower thresholds, FIC 

shows that for Day 2 intermittency increases again at higher thresholds (Figure 2F). 

These exemplary results highlight the different ways in which the temporal dynamics of the exposure patterns can 

be quantified; yet – and reassuringly – the overall results are relatively consistent. Of note is the metric Pulses 

above Threshold, which quantifies multiple aspects of the pattern dynamics, integrating information about the 

light level, duration, timing, and intermittency. Moreover, pulses can be fine-tuned by specifying a minimum 

pulse length, and the duration and proportion of interruptions (i.e., light below threshold) allowed within a pulse 

(here ≥2 min, ≤8 min, and <25%, respectively; see Wilson et al.148), which helps to smooth noise in the data and 

mimics non-visual response kinetics. Note that without specification of these parameters, for a given threshold, 

Number of Pulses is identical to half of FIC, and Total Pulse Time is identical to TAT(C), highlighting the 

versatility of this metric. 

5.5 Exposure History 

Exemplary calculations for exposure history are shown in (Table 8). As expected, CE is much higher for Day 2 

compared to Day 1. However, calculating light doses for specific ranges of light levels (Dose(Cmin,Cmax)) shows 

that light doses at lower light levels are higher for Day 1 compared to Day 2 and vice versa. While these metrics 

aggregate light dose across time, Exponential Moving Average (EMA) quantifies light dose at each point in time 

(Figure 2C), mimicking the response dynamics of the non-visual system with a sluggish response onset and a 

persistent response after stimulus offset. For the present calculation the data for each day was looped to determine 

the EMA value at the start of the time series. Note that EMA for raw data results in higher dose levels and more 

abrupt changes in dose than EMA for log-transformed data. 

The difference in EMA dose levels for aggregated raw or log-transformed data reiterates the problems with 

aggregating non-normally distributed light exposure data (see Section 0 Exposure Intensity, and our previously 



published review 9) and should also be considered when calculating CE. Furthermore, it should be noted that EMA 

provides an interesting basis for the calculation of any of the other metrics, similar to smoothing the data 

beforehand.9 

5.6 Summary 

The calculation of metrics for these two exemplary datasets shows interesting similarities and differences between 

the various metrics and thus highlights some of their advantages and disadvantages. An important consideration, 

when quantifying light exposure patterns, is the skewed log-normal distribution and the large range of light levels. 

Therefore, metrics that are based on an aggregation of light levels are biased by their distribution, which, to some 

extent, is an issue for all non-parametric metrics presented here. An elegant solution to this issue is the 

parameterisation of metrics with a certain threshold level or range (e.g., TAT, MLiT, Pulses above Threshold), 

allowing to quantify overall light dose, timing, and intermittency without aggregating light levels directly. In 

addition, parameterised metrics facilitate the exploration of exposure patterns by allowing a visualisation of the 

metrics as a function of light level. On the other hand, the informativeness of threshold-parameterised metrics 

depends on the chosen threshold(s). The latter therefore need to be selected carefully, either based on a-priori 

evidence or by means of a sensitivity analysis. Moreover, it is important to note that most of the metrics presented 

in this review aggregate the data across a specified time interval; therefore, the informativeness of a metric 

depends on the selected interval. In the exemplary calculation, the data were aggregated across the period when 

the subject was awake; however, more specific sub-intervals may be chosen depending on the research question.  

6 Discussion 

Our review shows that many different metrics have been used by previous studies to quantify light exposure data, 

yet often only a small subset of metrics was explored within each study. The overview of metrics we provide, 

may enable a more holistic exploration of collected data within and across studies; on the one hand, to better 

understand the mechanisms underlying non-visual effects of light, and, on the other hand, to evaluate which 

metrics may be more relevant for a particular research question or context.  

The wide range of metrics that exists, allows to disentangle complex personal light exposure patterns into many 

different aspects; however, some metrics are redundant or may not be relevant, making it unclear which metrics 

are most suited for light-dosimetry research. Which metrics should be considered in a particular research context 

depends also on the type of response; for example, intermittency or dose in time may be more relevant for the 

analysis of acute effects, whereas metrics quantifying light dose across the course of a day may be more relevant 

for effects on circadian rhythms. Moreover, an integral problem to the quantification of personal light exposure 

patterns, emphasized several times throughout this review, is the high temporal variability, wide range, and 

skewed distribution of light levels. For instance, these properties of light exposure patterns make it likely that 

aggregating light exposure across long intervals into a mean value will not be effective, especially because it 

disregards any temporal information. A better solution may be offered by threshold-parameterised metrics such 

as TAT; however, TAT disregards how the time spent above a certain threshold is distributed across the considered 

interval. In effect, most metrics are complementary to each other, highlighting the importance of using, exploring, 

and evaluating them all together in light-dosimetry research.  



Several evaluation strategies are possible (see Table 9 for an overview of proposed strategies) and studies 

focussing specifically on the evaluation of quantification metrics and novel ways of how they could be applied to 

further research on non-visual effects are already underway. Notably, a very recent study by Peeters et al.165 

systematically evaluated the metrics TAT and MLiT and their interaction in a range of sensitivity analyses against 

sleep parameters and subjective alertness in office workers, indicating a promising way to compare non-visual 

response relationships in the real-world to those in the laboratory, especially for large datasets. Other approaches 

to evaluate metrics may be to calculate and compare metrics for large datasets with different categorical variables 

(e.g., sample groups, seasons, locations etc.) and identify which metrics differentiate groups and which metrics 

are redundant or inconsistent. Furthermore, to understand what specific characteristics of light exposure are 

driving non-visual effects in real-life settings, a possible approach may be to compare metrics between light 

exposure patterns of individuals with similar or different responses. That is, investigating in which ways light 

exposure patterns that lead to the same response are similar and in which ways they are different. This approach 

could also be employed to better understand the predictions of computational models of the non-visual system, 

since a major drawback of such models is that they do not explain what is important about the pattern that led to 

the predicted response. In the long-term, findings from the evaluation of metrics could be combined into 

recommendations for a minimum toolset for quantifying light-dosimetry data. 

Finally, we would like to emphasize that the quantification of light exposure data is one of the last steps in the 

light-dosimetry process (or dosimetry chain 8), building on accurate measurement and preparation of the data, 

which we discussed in detail in our previously published review.9 Hence, any efforts of evaluating selected metrics 

together with analyses of non-visual responses will be diminished if the measured data are inaccurate or not 

representative in the first place.  

7 Conclusion 

In this review, we present and discuss metrics employed in previous studies for the quantification of personal light 

exposure patterns, thereby complementing a parallel effort by the authors towards building the groundwork for a 

framework for light-dosimetry studies. A framework for light-dosimetry studies should indeed encompass the 

entire process from measurement to data preparation to quantification and analysis. The groundwork has been 

laid, now it is up to the scientific community to build upon this and take lighting research in the field to the next 

level. 

This review is the first to provide a comprehensive overview of relevant metrics for light-dosimetry in the context 

of research into the non-visual effects of light, highlighting the wide range of metrics available. As part of a 

consensus framework, the identified metrics may help to explore non-visual effects of light in the real-world and 

verify findings of controlled laboratory studies, ultimately driving our understanding to inform any aspect of our 

lives with light, be it in architecture and lighting design, therapy and medicine, shiftwork, or general personal 

lifestyle. With this review effort, we hope to make the field of light-dosimetry more accessible and encourage 

high-quality research and further innovation. 
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Figure 1. A) Quantities other than photopic illuminance that were used across studies (Blue Irr. = short-wavelength irradiance, RGB Irr. = 
short-, medium-, and long-wavelength irradiance, Mel. Irr. = melanopic irradiance, m-EDI = melanopic equivalent daylight illuminance CI = 
irradiance weighted by c(λ)156, CS = Circadian Stimulus, CLA = Circadian Light, CCT = correlated colour temperature); B) Photopic 
illuminance thresholds for the calculation of TAT(C) and for C) TAT(Cmin,Cmax) across studies (TAT = Time above Threshold). Thresholds 
that were used to calculate the time below threshold are indicated with a “<” operator.  
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Figure 2. Calculation of metrics for example data: A) context of exemplary days (Day 1 and Day 2); B) comparison of timing-related metrics 
(MLiT = mean light timing above threshold, Mid. CE = midpoint of cumulative exposure, Cent. LE = centroid of light exposure, Acrophase 
= cosinor acrophase); C) exponential moving average (EMA) light dose with log-transformation before (EMA log) and after (log EMA) 
quantification; D–F) duration-, timing-, and temporal dynamics-related metrics as a function of threshold level (TAT = time above threshold, 
T. Pulse Time = total pulse time, M. Pulse Length = mean pulse length, FLiT = first light timing above threshold, LLiT = last light timing 
above threshold, FIC = frequency of intensity changes, N.Pulses = number of pulses). Note that only metrics are displayed that allowed for 
meaningful exemplary visual comparisons. 
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Table 1. Metrics quantifying the spectral composition.  

Metric Class Description Pseudo formula Studies 
(reference 
number) 

Spectral  
Contribution 

Point Contribution of individual spectral irradiance 
components (e.g., 450–500 nm) relative to the total 
energy across the visible spectrum. 
 
Example: Change in spectral contribution as a 
function of solar angle.106 

spectral irradiance / 
SUM(spectral irradiance) 
 

106,138 

Melanopic-
Photopic 
Ratio (M/P)  

Point Melanopic vs. photopic activation.  
 
Example: Mean M/P (m-DER) as function of mean 
m-EDI for different light sources.66 

 66 

Vis-nonvis Aggregate Relationship between photopic illuminance and 
circadian irradiance (CI) across time interval. 

log(MEDIAN(illuminance)) 
– log(MEDIAN(CI)) 

96 

Note: CI = irradiance weighted by c(λ)156. 
  



Table 2. Metrics quantifying characteristics related to light level. 
Metric Class Description Studies 

(reference 
number) 

Arithmetic 
Mean, 
Geometric 
Mean, Median, 
Percentiles, 
Maximum, 
Standard 
Deviation, IQR 

Aggregate Measures of central tendency and spread. 35,43,49,52,54,5
5,60,62,63,66,68,
71,72,76,78–
80,82,84,86–
88,90–92,96–
99,101,103–
108,110,115–
118,121–
123,126,129–
131,134–136, 
138–141,143–
147,149,150 

Mean of M10 
(M10m), 
Mean of L5 
(L5m) 

Aggregate Mean across brightest continuous 10h (M10) and darkest continuous 5h 
(L5).  
 
Note: The brightest/darkest period is defined as the 10h/5h period with the 
highest/lowest mean light level, respectively. Usually calculated for 24h 
data. 

81,108,114  

MESOR Parameter Rhythm-adjusted mean of fitted cosinor function.  
 
Note: Requires data to cover the period of the fitted rhythm (e.g., 24h). 
Looping the data may help to achieve a better fit. Usually calculated with 
log-transformed light levels. 

77,86,92,97,98,1
05,130,139, 
145,147,150 

  



Table 3. Metrics quantifying duration-related characteristics. 
Metric Class Description Pseudo formula Studies (reference 

number) 
TAT(C) Aggregate Total amount of time or percentage of time 

above/below threshold light level C. 
 
Note: Sometimes referred to as TALT in the 
literature. 

TAT(C) = 
COUNT(light ≥ C) 
× epoch  
TAT(<C) = 
COUNT(light ≤ C) 
× epoch 

43,44,49,52,54–58, 
61,67–73,76,77,79, 
83,85,89,91,94–96, 
101–104,107,110–
113,115,117,119,122, 
124,125,127,130,132, 
133,135,140–144,148, 
149 

TAT(Cmin,Cmax) Aggregate Total amount of time or percentage of time within 
range of light levels [Cmin, Cmax].  

COUNT(Cmin ≤ 
light < Cmax) × 
epoch 

63,93,94,100,110,113, 
127,132,139 

 
  



Table 4. Metrics quantifying timing-related characteristics. 
Metric Class Description Pseudo formula Studies 

(reference 
number) 

Rhythm 
Acrophase 

Parameter Timing of the peak (acrophase) of a fitted rhythm 
(e.g., cosinor). See MESOR in Table . 
  

 77,86,92,97,98,1
01,102,105, 
124,130,139, 
140,146,150 
 

Centroid of LE  Aggregate Mean of timepoints weighted in proportion to 
corresponding light levels.  
 
Note: Calculated by 120 as the mean hour weighted 
by the corresponding mean hourly illuminance. 

SUM(time × light) / 
SUM(light) 

120 

Midpoint of CE  Aggregate Timepoint at which of 50% of the total daily 
cumulative exposure is reached.  
 
Note: Calculated by 131 with log-transformed 
illuminance. 

time[50%CE] 131 

Mean timing of 
light above 
threshold 
(MLiT(C)) 

Aggregate Mean of timepoints at which corresponding light 
levels are below or above a given threshold C. 
 

MEAN(time[light ≥ 
C]) 

83,99,119,125,14
8 

Onset of M10 and 
L5 (M10on, 
L5on) 

Aggregate Onset of brightest continuous 10h (M10) and 
darkest continuous 5h (L5). See M10m, L5m in 
Table . 

 108 

First/last timing of 
light above 
threshold 
(FLiT(C), 
LLiT(C)) 

Aggregate First and last timepoint at which light levels are 
above/below a given threshold C.  

FLiT(C) = 
time[light ≥ C][1] 
LLiT(C) = 
time[light ≥ C][end] 

69,143,146 

Phase Angle  Aggregate Time from beginning of interval (e.g., wake onset) 
to timing metric; time from timing metric to end of 
interval (e.g., wake offset).  
 
Examples: 
- Phase Angle of FLiT and LLiT relative to wake 

on- and offset 143,146 
- Phase Angle of MLiT to wake onset 99 

| metric – time[1] | 
| metric – time[end] | 
 
 
 

99,143,146 

Relative Timing Point Representation of light exposure relative to 
physiological/behavioural time (e.g., sleep on-
/offset, DLMO, CBTmin). 

 64,67,73,82,99,1
06,108,109, 
120,126,131, 
148 

 
  



Table 5. Metrics quantifying temporal dynamics related characteristics. 
Metric Class Description Pseudo formula Studies 

(reference 
number) 

Rhythm 
Amplitude 

Parameter Amplitude of a fitted rhythm (e.g., cosinor). See 
MESOR in Table . 

 77,92,97,102,109
,130,139,140 

Relative 
Amplitude (RA) 

Parameter Relative amplitude between M10 and L5. See 
M10m, L5m in Table . 

(M10m – L5m) / 
(M10m + L5m) 

102,113,114 

Light Quality 
Index (LQI) 

Aggregate Index quantifying the contrast between light and 
dark periods.  
 
Note: Ranges between -1 and 1, with -1 indicating 
exposure to <10 lx and 1 indicating exposure to 
>500 lx (photopic illuminance). 

(TAT(500) – 
TAT(<10)) / 
(TAT(500) + 
TAT(<10)) 

113 

Rhythm 
Robustness  

Parameter Goodness of fit of a fitted rhythm (e.g., cosinor), 
equivalent to R2. See MESOR in Table . 

 102,139,140 

Interdaily 
Stability (IS) 

Aggregate Variability of 24h light exposure patterns across 
multiple days.  
 
Note: Calculated as the ratio of the variance of the 
average daily pattern to the total variance across all 
days. Typically calculated for mean hourly light 
levels.160 Ranges between 0 (Gaussian noise) and 1 
(Perfect Stability). 

VAR(mean daily 
pattern) / VAR(all 
days) 

95,102,113,114 

Intradaily 
Variability (IV) 

Aggregate Variability of consecutive light levels within a 24h 
day.  
 
Note: Calculated as the ratio of the variance of the 
differences between consecutive light levels to the 
total variance across the day. Typically calculated 
for mean hourly light levels.160 Higher values 
indicate more fragmentation. 

VAR(consecutive 
differences) / 
VAR(day) 

95,102,113,114 

Frequency of 
Intensity Changes 
(FIC(C)) 

Aggregate Number of times consecutive light levels cross 
threshold C.  
 
Note: Calculated by 55 with photopic illuminance 
threshold of 1000 lx. 

 55 

Pulses(C) Above 
Threshold 

Aggregate Clustering of continuous episodes (pulses) with 
light above threshold C. The following metrics 
were calculated across identified pulses:  
- Number of Pulses 57,148 
- Mean Pulse Intensity 148 
- Mean Pulse Length 148 
- Total Pulse Time 148 
- Mean Pulse Onset 148 

 
Clustering Criteria: 
- Interruptions ≤8min and <25% of pulse length 148 
- Pulse length ≥5min 57 

 57,148 

 
  



 
Table 6. Metrics quantifying characteristics related to exposure history. 

Metric Class Description Pseudo formula Studies 
(reference 
number) 

Cumulative 
Exposure 
(CE) 

Aggregate Integral of light exposure over given interval. SUM(light) 54,55,59,64,96
,99, 
103,106,131,1
41,143 

Solar-
normalized 
CE 

Aggregate Ratio of cumulative personal light exposure to cumulative 
solar radiation.  

SUM(light) / 
SUM(solar) 

55 

Dose(Cmin,Cm

ax) 
Aggregate Dose of light exposure within range of levels [Cmin, Cmax].  

 
TAT(Cmin,Cmax) × 
(Cmax – Cmin)/2 

94 

EMA dose Point Light exposure smoothed with an exponential weighted 
moving average.  
 
Note: The amount of smoothing can be adjusted with the 
parameter β. Calculated by 121 with β = log(2)/90, 
approximating a decay half-life of 90 minutes. An 
appropriate initial value at t = 0 can be estimated by looping 
the data (see 161).  

EMAt = EMAt-1 + β 
× 
 (lightt – EMAt-1) 

121 

 
  



 
Table 7. Other relevant quantification methods and metrics proposed by studies not included in the review. 

Study 
(reference 
number) 

Description 

151 Bright/Dark Threshold (TB, TD): Max/min threshold where TAT > 6h/8h. 
Bright/Dark Mean Level (MB, MD): 20% trimmed mean of light above TB / below TD. 
Circadian Contrast: Difference between MB and MD. 
Bright/Dark Cluster (CB, CD): Longest continuous interval above TB / below TD. 
Circadian Variation:  Average hourly coefficient of variation. 

152,153 Wavelet Transform Spectral Analysis and Detrended Fluctuation Analysis: Quantification of behavioural patterns and 
exposure timescales.  

154 Disparity Index: Measure of temporal variability of time series. Higher values indicate more variability.  

 
  



 
Table 8. Metrics calculated for two exemplary days (Day 1 and Day 2) in August 2021 in Lausanne, Switzerland. Unless otherwise noted, 
metrics were calculated for the periods when the subject was awake. 

Metric Day 1 Day 2 
Exposure Level   
     Mean ± SD (lx) 121 ± 501 723 ± 1,830 
     GeoMean ± SD (lx) 19 ± 7 22 ± 37 
     Median (lx) 16 25 
     IQR (lx) 35 228 
     Maximum (lx) 9,648 18,077 
     M10m (lx) b 151 1,323 
     MESOR (lx) a b 8 18 
Exposure Duration   
     TAT(10,100) (min) 508 417 
     TAT(100,500) (min) 96 70 
     TAT(500,1000) (min) 15 27 
     TAT(1000) (min) 33 225 
     TAT(1000) (% daylength) 4% 27% 
Exposure Timing   
     Mid. CE (hh:mm) a 12:56 14:55 
     Cent. LE (hh:mm) 13:43 16:13 
     Acrophase (hh:mm) b 12:58 14:35 
     MLiT(10) (hh:mm) 13:01 13:13 
     MLiT(1000) (hh:mm) 16:11 16:14 
     M10on (hh:mm) b 08:05 09:58 
     FLiT(500) (hh:mm) 06:39 10:56 
     LLiT(500) (hh:mm) 18:04 19:07 
     FLiT(500) Angle (min) 55 348 
     LLiT(500) Angle (min) 199 270 
Exposure Dynamics   
     Rhythm Amplitude (lx) a b 7 16 
     LQI -0.89 -0.47 
     Rhythm Robustness a b 0.48 0.49 
     IV a b 0.55 0.46 
     Disparity Index  0.55 0.48 
     FIC(1000) 26 28 
     N. Pulses(200) 16 9 
     Pulse(200) Mean (lx) 771 1,386 
     M. Pulse(200) Length (min) 6 32 
     T. Pulse(200) Time (min) 96 291 
     M. Pulse(200) Onset (hh:mm) 10:07 12:18 
Exposure History   
     CE (lx-min) 113,486 802,706 
     Dose(10,100) (lx-min) 22,860 18,765 
     Dose(100,500) (lx-min) 19,200 14,000 
     Dose(500,1000) (lx-min) 3,750 6,750 
     Dose(1000,3000) (lx-min) 29,000 152,000 
Metrics in Barrosso et al.151   
     TB (lx) 24 72 
     TD (lx) 0.21 0.55 
     MB (lx) 96 1,677 
     MD (lx) 0.01 0.01 
     CB (min) 56 132 
     CD (min) 455 313 
     Circadian Variation 5.21 2.93 

a Calculated with log-transformed light levels. Metrics related to exposure levels were back transformed to standard scale for easier 
comparability. 

b Calculated for the entire 24 h period. 
Note: SD = standard deviation, GeoMean = geometric mean, IQR = interquartile range, M10m = mean of brightest 10 h, MESOR = rhythm 
adjusted mean, TAT = time above threshold, Mid.CE = midpoint of cumulative exposure, Cent. LE = centroid of light exposure, MLiT = 
mean light timing above threshold, M10on = onset of brightest 10 h, FLiT = first light timing above threshold, LLiT = last light timing 
above threshold, LQI = light quality index, IV = intradaily variability, FIC = frequency of intensity changes, N. Pulses = number of pulses, 
M. Pulse Length = mean pulse length, T. Pulse Time = total pulse time, M. Pulse Onset = mean pulse onset, CE = cumulative exposure, TB 
= bright threshold, TD = dark threshold, MB = bright mean level, MD= dark mean level, CB = bright cluster, CD = dark cluster. 

 
  



 
Table 9. Possible strategies for evaluating light-dosimetry metrics in future studies. 

- Sensitivity analyses of parameterised metrics against measured responses to identify dose-response 
relationships. 

- Compare distribution of metrics across data of diverse samples, to identify metrics with a wide range of 
outcome values, indicating metrics that can differentiate groups/individuals. 

- Compare distribution of metrics between groups of individuals with similar measured responses. 
- Compare distribution of metrics between groups of light exposure time series that lead to similar predicted 

responses. 
- In the long term: define minimum toolset to quantify/describe personal light exposure data. 

 
 


