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Abstract

One prominent approach toward resolving the adversarial vulnerability of deep
neural networks is the two-player zero-sum paradigm of adversarial training, in
which predictors are trained against adversarially-chosen perturbations of data.
Despite the promise of this approach, algorithms based on this paradigm have not
engendered sufficient levels of robustness, and suffer from pathological behavior
like robust overfitting. To understand this shortcoming, we first show that the
commonly used surrogate-based relaxation used in adversarial training algorithms
voids all guarantees on the robustness of trained classifiers. The identification of
this pitfall informs a novel non-zero-sum bilevel formulation of adversarial training,
wherein each player optimizes a different objective function. Our formulation
naturally yields a simple algorithmic framework that matches and in some cases
outperforms state-of-the-art attacks, attains comparable levels of robustness to
standard adversarial training algorithms, and does not suffer from robust overfitting.

1 Introduction

A longstanding disappointment in the machine learning (ML) community is that deep neural networks
(DNNs) remain vulnerable to seemingly innocuous changes to their input data including nuisances in
visual data [1–4], sub-populations [5–7], and distribution shifts [8–11]. Prominent amongst these
vulnerabilities is the setting of adversarial examples, wherein it has been conclusively shown that
imperceptible, adversarially-chosen perturbations can fool state-of-the-art classifiers parameterized
by DNNs [12–16]. In response, a plethora of research has proposed so-called adversarial training
(AT) algorithms [17–21], which are designed to improve robustness against adversarial examples.

AT is ubiquitously formulated as a two-player zero-sum game, where both players—often referred to
as the defender and the adversary—respectively seek to minimize and maximize the classification
error. However, this zero-sum game is not implementable in practice as the discontinuous nature
of the classification error is not compatible with first-order optimization algorithms. To bridge this
gap between theory and practice, it is commonplace to replace the classification error with a smooth
surrogate loss (e.g., the cross-entropy loss) which is amenable to gradient-based optimization [20, 22].
And while this seemingly harmless modification has a decades-long tradition in the ML literature due
to the guarantees it imparts on non-adversarial objectives [23–25], there is a pronounced gap in the
literature regarding the implications of this relaxation on the standard formulation of AT.

As the field of robust ML has matured, surrogate-based AT algorithms (see, e.g., [20–22, 26]) have col-
lectively ushered in significant progress toward designing stronger attacks and obtaining more robust
defenses [27]. However, despite these advances, recent years have witnessed a plateau in robustness
measures on leaderboards such as RobustBench, resulting in the widely held beliefs that robustness
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and accuracy may be irreconcilable [28–30] and that robust generalization requires significantly more
data [31–33]. Moreover, various phenomena such as robust overfitting [34] and insufficient robustness
evaluation [35] have indicated that progress has been overestimated [36]. To combat these pitfalls,
state-of-the-art algorithms increasingly rely on ad-hoc regularization schemes [22, 37–40], weight
perturbations [41–43], and heuristics such as multiple restarts [20], carefully crafted learning rate
schedules [34], and convoluted stopping conditions [36], all of which contribute to an unclear set of
best practices and a growing literature concerned with identifying flaws in various AT schemes [44].

Motivated by these challenges, we argue that the pervasive surrogate-based zero-sum approach to AT
suffers from a fundamental flaw. Our analysis of the standard minimax formulation of AT reveals
that maximizing a surrogate like the cross-entropy provides no guarantee that the the classification
error will increase, resulting in weak adversaries and ineffective AT algorithms. In identifying
this shortcoming, we prove that to preserve guarantees on the optimality of the classification error
objective, the defender and the adversary must optimize different objectives, resulting in a non-zero-
sum game. This leads to a novel, yet natural bilevel formulation [45] of AT in which the defender
minimizes an upper bound on the classification error, while the attacker maximizes a continuous
reformulation of the classification error. We then propose an algorithm based on our formulation
which is free from heuristics and ad hoc optimization techniques. Our empirical evaluations reveal
that our approach matches the test robustness achieved by the state-of-the-art, yet highly heuristic
approaches such as AutoAttack, and that it eliminates the problem of robust overfitting.

Contributions. We summarize our contributions in the following bullets.

• New formulation for adversarial robustness. Starting from the discontinuous minmax for-
mulation of AT with respect to the 0-1 loss, we derive a novel continuous bilevel optimization
formulation, the solution of which guarantees improved robustness against the optimal adversary.

• New adversarial training algorithm. We derive a new, heuristic-free algorithm (Algorithm 2)
based on our bilevel formulation, and show that offers strong robustness on CIFAR-10.

• Elimination of robust overfitting. Without the need of heuristic modifications, our algorithm
does not suffer from robust overfitting (RO). This suggest that RO is an artifact of the use of
improper surrogates in the original AT paradigm, and that the use of a correct optimization
formulation is enough to solve it.

• State-of-the-art robustness evaluation. We show that our proposed optimization objective for
the adversary yields a simple algorithm that matches the performance of the state-of-the-art, yet
highly complex AutoAttack method, on classifiers trained on CIFAR-10.

2 The promises and pitfalls of adversarial training

2.1 Preliminaries: Training DNNs with surrogate losses

We consider a k-way classification setting, wherein data arrives in the form of instance-label pairs
(X,Y ) drawn i.i.d. from an unknown joint distribution D taking support over X × Y ⊆ Rd × [K],
where [K] := {1, . . . ,K}. Given a suitable hypothesis class F , one fundamental goal in this setting
is to select an element f ∈ F which correctly predicts the label Y of a corresponding instance X . In
practice, this hypothesis class F often comprises functions fθ : Rd → RK which are parameterized
by a vector θ ∈ Θ ⊂ Rp, as is the case when training DNNs. In this scenario, the problem of learning
a classifier that correctly predicts Y from X can written as follows:

min
θ∈Θ

E
{
argmax

i∈[K]

fθ(X)i ̸= Y

}
(1)

Here fθ(X)i denotes the ith component of the logits vector fθ(X) ∈ RK and we use the no-
tation {A} to denote the indicator function of an event A, i.e., {A} := IA(·). In this sense,
{argmaxi∈[K] fθ(X)i ̸= Y } denotes the classification error of fθ on the pair (X,Y ).

Prominent among the barriers to solving (1) in practice is the fact that the classification error is a
discontinuous function of θ, which in turn renders continuous first-order methods (e.g., gradient
descent) intractable. Fortunately, this pitfall can be resolved by minimizing a surrogate loss function
ℓ : [k]× [k]→ R in place of the classification error [24, §12.3]. For minimization problems, surrogate
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losses are chosen to be differentiable upper bounds of the classification error of fθ, in the sense that{
argmax

i∈[K]

fθ(X)i ̸= Y

}
≤ ℓ(fθ(X), Y ). (2)

This inequality gives rise to a differentiable counterpart of (1) which is amenable to minimization via
first-order methods and can be compactly expressed in the following optimization problem:

min
θ∈Θ

E ℓ(fθ(X), Y ). (3)

Examples of commonly used surrogates are the hinge loss and the cross-entropy loss. Crucially, the
inequality in (2) guarantees that the problem in (3) provides a solution that decreases the classification
error [23], which, as discussed above, is the primary goal in supervised classification.

2.2 The pervasive setting of adversarial examples

For common hypothesis classes, it is well-known that classifiers obtained by solving (3) are sensitive
to seemingly benign changes to their input data. Among these vulnerabilities, perhaps the most
well-studied is the setting of adversarial examples, wherein a plethora of research has demonstrated
that state-of-the-art classifiers can be fooled by small, adversarially-chosen perturbations [12–16]. In
other words, given an instance label pair (X,Y ), it is relatively straightforward to find perturbations
η ∈ Rd with small norm ||η|| ≤ ϵ for some fixed ϵ > 0 such that

argmax
i∈[K]

fθ(X)i = Y and argmax
i∈[K]

fθ(X + η)i ̸= argmax
i∈[K]

fθ(X)i. (4)

The task of finding such perturbations η which cause the classifier fθ to misclassify perturbed data
points X + η can be compactly cast as the following maximization problem:

η⋆ ∈ argmax
η:∥η∥≤ϵ

{
argmax

i∈[K]

fθ(X + η)i ̸= Y

}
(5)

Here, if both of the expressions in (4) hold for the perturbation η = η⋆, then the perturbed instance
X + η⋆ is called an adversarial example for fθ with respect to the instance-label pair (X,Y ).

Due to prevalence of adversarial examples, there has been pronounced interest in solving the robust
analog of (1), which is designed to find classifiers that are insensitive to small perturbations. This
robust analog is ubiquitously written as the following a two-player zero-sum game with respect to the
discontinuous classification error:

min
θ∈Θ

E
[

max
η:∥η∥≤ϵ

{
argmax

i∈[K]

fθ(X + η)i ̸= Y

}]
(6)

An optimal solution θ⋆ for (6) yields a model fθ⋆ that achieves the lowest possible classification error
despite the presence of adversarial perturbations. For this reason, this problem—wherein the interplay
between the maximization over η and the minimization over θ comprises a two-player zero-sum
game— is the starting point for numerous algorithms which aim to improve robustness.

2.3 Surrogate-based approaches to robustness

As discussed in § 2.1, the discontinuity of the classification error complicates the task of finding
adversarial examples, as in (5), and of training against these perturbed instances, as in (6). One
appealing approach toward overcoming this pitfall is to simply deploy a surrogate loss in place of the
classification error inside (6), which gives rise to the following pair of optimization problems:

η⋆ ∈ argmax
η:||η||≤ϵ

ℓ(fθ(X + η), Y ) (7)
min
θ∈Θ

E
[

max
η:∥η∥≤ϵ

ℓ(fθ(X + η), Y )

]
(8)

Indeed, this surrogate-based approach is pervasive in practice. Madry et al.’s seminal paper on the
subject of adversarial training employs this formulation [20], which has subsequently been used as
the starting point for numerous AT schemes [17–21].
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Pitfalls of surrogate-based optimization. Despite the intuitive appeal of this paradigm, surrogate-
based adversarial attacks are known to overestimate robustness [36, 46, 47], and standard adversarial
training algorithms are known to fail against strong attacks. Furthermore, this formulation suffers
from pitfalls such as robust overfitting [34] and trade-offs between robustness and accuracy [48].
To combat these shortcomings, empirical adversarial attacks and defenses have increasingly relied
on heuristics such as multiple restarts, variable learning rate schedules [36], and carefully crafted
initializations, resulting in a widening gap between the theory and practice of adversarial learning. In
the next section, we argue that these pitfalls can be attributed to the fundamental limitations of (8).

3 Non-zero-sum formulation of adversarial training

3.1 Fundamental limitations of surrogates in adversarial learning

From an optimization perspective, the surrogate-based approaches to adversarial evaluation and
training outlined in § 2.3 engenders two fundamental limitations.

• Limitation I: Weak attackers. In the adversarial evaluation problem of (7), the adversary
maximizes an upper bound on the classification error. This means that any solution η⋆ to (7)
is not guaranteed to increase the classification error in (5), resulting in weakened adversaries
which are misaligned with the goal of finding adversarial examples that fool DNNs. Indeed,
when the surrogate is an upper bound on the classification error, the only conclusion about the
adversarial perturbation η⋆ obtained from (7) and its true objective (5) is:{

argmax
i∈[K]

fθ(X + η⋆)i ̸= Y

}
≤ max

η:||η||≤ϵ
ℓ(fθ(X + η), Y ) (9)

Notably, the right hand side of (9) can be arbitrarily large while the left hand side can
simultaneously be equal to zero, i.e., the problem in (7) can fail to produce an adversarial
example, even at optimality. Thus, while it is known empirically that attacks based on (7) tend
to overestimate robustness [36, 47, 49], we show that this shortcoming is evident a priori.

• Limitation II: Ineffective defenders. Because attacks which seek to maximize upper bounds
on the classification error are not proper surrogates for the classification error (c.f., Limitation
I), training a model fθ on such perturbations does not guarantee any improvement in robustness.
Therefore, AT algorithms which seek to solve (8) are ineffective in that they do not optimize
the worst-case classification error. For this reason, it should not be surprising that robust
overfitting [34] occurs for models trained to solve eq. (8).

Both of these limitations arise directly by virtue of rewriting (7) and (8) with the surrogate loss ℓ.
Therefore, to summarize, there is a distinct tension between the efficient, yet misaligned paradigm
of surrogate-based adversarial training with the principled, yet intractable paradigm of minimax
optimization on the classification error. In the remainder of this section, we resolve this tension by
decoupling the optimization problems of the adversary and the training algorithm.

3.2 Decoupling adversarial attacks and defenses

Our starting point is the two-player zero-sum formulation in (6). Observe that this minimax optimiza-
tion problem can be equivalently cast as a bilevel optimization problem1:

min
θ∈Θ

E
{
argmax

i∈[K]

fθ(X + η⋆)i ̸= Y

}
(10)

subject to η⋆ ∈ argmax
η: ∥η∥≤ϵ

{
argmax

i∈[K]

fθ(X + η)i ̸= Y

}
(11)

While this problem still constitutes a zero-sum game, the role of the attacker (the constraint in (11))
and the role of the defender (the objective in (10)) are now decoupled. From this perspective, the
tension engendered by introducing surrogate losses is laid bare: the attacker ought to maximize a
lower bound of the classification error (c.f., Limitation I), whereas the defender ought to minimize an

1To be precise, the optimal value η⋆ in (16) is a function of (X,Y ), i.e., η⋆ = η⋆(X,Y ), and the constraint
must hold for almost every (X,Y ) ∼ D. We omit these details for ease of exposition.
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upper bound on the classification error (c.f., Limitation II). This implies that to preserve guarantees
on optimality, the attacker and defender must optimize separate objectives. In what follows, we
discuss these objectives for the attacker and defender in detail.

The attacker’s objective. We first address the role of the attacker. To do so, we define the negative
margin Mθ(X,Y ) of the classifier fθ as follows:

Mθ : X × Y → Rk, Mθ(X,Y )j ≜ fθ(X)j − fθ(X)Y (12)

We call Mθ(X,Y ) the negative margin because a positive value of (12) corresponds to a misclassifica-
tion. As we show in the following proposition, the negative margin function (which is differentiable)
provides an alternative characterization of the classification error.
Proposition 1. Given a fixed data pair (X,Y ), let η⋆ denote any maximizer of Mθ(X + η, Y )j over
the classes j ∈ [K]− {Y } and perturbations η ∈ Rd satisfying ||η|| ≤ ϵ, i.e.,

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η: ||η||≤ϵ

Mθ(X + η, Y )j . (13)

Then if Mθ(X + η⋆, Y )j⋆ > 0, η⋆ induces a misclassification and satisfies the constraint in (11),
meaning that X + η⋆ is an adversarial example. Otherwise, if Mθ(X + η⋆, Y )j⋆ ≤ 0, then any
η : ||η|| < ϵ satisfies (11), and no adversarial example exists for the pair (X,Y ). In summary, if η⋆
is as in eq. (13), then η⋆ solves the lower level problem in eq. (11).

We present a proof in appendix B2. Proposition 1 implies that the non-differentiable constraint in (11)
can be equivalently recast as an ensemble of K differentiable optimization problems that can be
solved independently. This can collectively be expressed as

η⋆ ∈ argmax
η: ||η||<ϵ

max
j∈[K]−{Y }

Mθ(X + η, Y )j . (14)

Note that this does not constitute a relaxation; (11) and (14) are equivalent optimization problems.
This means that the attacker can maximize the classification error directly using first-order optimiza-
tion methods without resorting to a relaxation.

The defender’s objective. Next, we consider the role of the defender. To handle the discontinuous
upper-level problem in (10), note that this problem is equivalent to a perturbed version of the
supervised learning problem in (1). As discussed in § 2.1, the strongest results for problems of
this kind have historically been achieved by means of a surrogate-based relaxation. Subsequently,
replacing the 0-1 loss with a differentiable upper bound like the cross-entropy is a principled,
guarantee-preserving approach for the defender.

3.3 Putting the pieces together: Non-zero-sum adversarial training

By combining the disparate problems discussed in the preceeding section, we arrive at a novel
non-zero-sum (almost-everywhere) differentiable formulation of adversarial training:

min
θ∈Θ

E ℓ(fθ(X + η⋆), Y ) (15)

subject to η⋆ ∈ argmax
η: ∥η∥≤ϵ

max
j∈[K]−{Y }

Mθ(X + η, y)j (16)

Notice that the second level of this bilevel problem remains non-smooth due to the maximization over
the classes j ∈ [K]− {Y }. To impart smoothness on the problem without relaxing the constraint,
observe that we can equivalently solve K − 1 distinct smooth problems in the second level for each
sample (X,Y ), resulting in the following equivalent optimization problem:

min
θ∈Θ

E ℓ(fθ(X + η⋆j⋆), Y ) (17)

subject to η⋆j ∈ argmax
η: ∥η∥≤ϵ

Mθ(X + η, y)j ∀j ∈ [K]− {Y } (18)

j⋆ ∈ argmax
j∈[K]−{Y }

Mθ(x+ η⋆j , y)j (19)

2This result is similar in spirit to [49, Theorem 3.1]. However, [49, Theorem 3.1] only holds for linear
functions, whereas Proposition 1 holds for an arbitrary function fθ .
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Algorithm 1: Best Targeted Attack (BETA)
Input: Data-label pair (x, y), perturbation size ϵ, model fθ, number of classes K, iterations T
Output: Adversarial perturbation η⋆

1 function BETA(x, y, ϵ, fθ, T )
2 for j ∈ 1, . . . ,K do
3 ηj ← Unif[max(X − ϵ, 0),min(X + ϵ, 1)]

4 for t = 1, . . . , T do
5 for j ∈ 1, . . . ,K do
6 ηj ← OPTIM(ηj ,∇ηi

Mθ(x+ ηj , y)j)

7 j⋆ ← argmaxj∈[K]−{y} Mθ(x+ ηj , y)

8 return ηj⋆

Algorithm 2: BETA Adversarial Training (BETA-AT)
Input: Dataset (X,Y ) = (xi, yi)

n
i=1, perturbation size ϵ, model fθ, number of classes K,

iterations T , attack iterations T ′

Output: Robust model fθ⋆

1 function BETA-AT(X,Y, ϵ, fθ, T, T
′)

2 for t ∈ 1, . . . , T do
3 Sample i ∼ Unif[n]
4 η⋆ ← BETA(xi, yi, ϵ, fθ, T

′)
5 L(θ)← ℓ(fθ(xi + η⋆), yi)
6 θ ← OPTIM(θ,∇L(θ))
7 return fθ

Hence, in (19), we first obtain one perturbation η⋆j per class which maximizes the negative margin
Mθ(X + η⋆j , Y ) for that particular class. Next, in (18), we select the class index j⋆ corresponding to
the perturbation η⋆j that maximized the negative margin. And finally, in the upper level, the surrogate
minimization over θ ∈ Θ is on the perturbed data pair (X + η⋆j⋆ , Y ). The result is a non-zero-sum
formulation for AT that is amenable to gradient-based optimization, and preserves the optimality
guarantees engendered by surrogate loss minimization without weakening the adversary.

4 Algorithms

Given the non-zero-sum formulation of AT in the previous section, the next question is how one
should solve this bilevel optimization problem in practice. Our starting point is the empirical version
of this bilevel problem, wherein we assume access to a finite dataset {(xi, yi)}ni=1 of n instance-label
pairs sampled i.i.d. from D.

min
θ∈Θ

1

n

n∑
i=1

ℓ(fθ(xi + η⋆ij⋆), yi) (20)

subject to η⋆ij ∈ argmax
η:∥η∥≤ϵ

Mθ(xi + η, yi)j ∀i, j ∈ [n]× [K]− {Y } (21)

j⋆ ∈ argmax
j∈[K]−{yi}

Mθ(xi + η⋆ij , yi)j ∀i ∈ [n] (22)

To solve this empirical problem, we adopt a stochastic optimization based approach. That is, we first
iteratively sample mini-batches from our dataset uniformly at random, and then obtain adversarial
perturbations by solving the lower level problems in (21) and (22). Note that given the differentiability
of the negative margin, the lower level problems can be solved iteratively with generic optimizers,
e.g., Adam [50] or RMSprop. This procedure is summarized in Algorithm 1, which we call the BEst
Targeted Attack (BETA), given that it directly maximizes the classification error.
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(b) BETA-AT10 learning curves.

Figure 1: BETA does not suffer from robust overfitting. We plot the learning curves against a
PGD20 adversary for PGD10 and BETA-AT10. Observe that although PGD displays robust overfitting
after the first learning rate decay step, BETA-AT does not suffer from this pitfall.

After obtaining such perturbations, we calculate the perturbed loss in (20), and then differentiate
through this loss with respect to the model parameters. By updating the model parameters θ in the
negative direction of this gradient, our algorithm seeks classifiers that are robust against perturbations
found by BETA. We call the full adversarial training procedure based on this attack BETA Adversarial
Training (BETA-AT), as it invokes BETA as a subroutine; see Algorithm 2 for details.

Smoothing the lower level. One potential limitation of the BETA-AT algorithm introduced in
Algorithm 2 is its sample efficiency: BETA computes one adversarial perturbation per class, but only
one of these perturbations is chosen for the upper level of the bilevel formulation (20). In this way,
one could argue that there is wasted computational effort in discarding perturbations that achieve high
values of the negative margin (12). This potential shortcoming is a byproduct of the non-smoothness
of the max operator in (22). Fortunately, we can alleviate this limitation by using smooth under-
approximations of the max (e.g., the softmax function), which is continuously differentiable. We
explore this scheme in Appendix C.

5 Experiments

In this section, we evaluate the performance of BETA and BETA-AT on CIFAR-10 [51]. Throughout,
we consider a range of AT algorithms, including PGD [20], FGSM [21], TRADES [22], MART [26],
as well as a range of adversarial attacks, including APGD and AutoAttack [36]. We consider the
standard perturbation budget of ϵ = 8/255, and all training and test-time attacks use a step size of
α = 2/255. For both TRADES and MART, we set the trade-off parameter λ = 5, which is consistent
with the original implementations [22, 26].

The bilevel formulation eliminates robust overfitting. Robust overfitting occurs when the robust
test accuracy peaks immediately after the first learning rate decay, and then falls significantly in
subsequent epochs as the model continues to train [34]. This is illustrated in Figure 1a, in which
we plot the learning curves (i.e., the clean and robust accuracies for the training and test sets) for a
ResNet-18 [52] model trained using 10-step PGD against a 20-step PGD adversary. Notice that after
the first learning rate decay step at epoch 100, the robust test accuracy spikes, before dropping off in
subsequent epochs. On the other hand, BETA-AT does not suffer from robust overfitting, as shown in
Figure 1b. We argue that this strength of our method is a direct result of our bilevel formulation, in
which we train against a proper surrogate for the adversarial classification error.
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Table 1: Adversarial performance on CIFAR-10. We report the test accuracies of various AT
algorithms against different adversarial attacks on the CIFAR-10 dataset.

Training
algorithm

Test accuracy

Clean FGSM PGD10 PGD40 BETA10 APGD

Best Last Best Last Best Last Best Last Best Last Best Last

FGSM 81.96 75.43 94.26 94.22 42.64 1.49 42.66 1.62 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 51.98 47.39 46.74 39.90 45.91 39.45 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 52.40 51.31 47.85 42.31 47.76 42.92 44.31 40.97 43.34 41.33
MART10 78.80 77.20 53.84 53.73 49.08 41.12 48.41 41.55 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 51.22 51.10 44.02 43.22 43.94 42.56 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 51.42 51.11 45.67 45.39 45.22 45.00 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 54.01 53.99 49.96 48.67 49.20 48.70 46.91 45.90 45.27 45.25

Table 2: Estimated ℓ∞ robustness (robust test accuracy). BETA+RMSprop (ours) vs APGD-targeted
(APGD-T) vs AutoAttack (AA). CIFAR-10. BETA and APGD-T use 30 iterations + single restart.
ϵ = 8/255. AA uses 4 different attacks with 100 iterations and 5 restarts.

Model BETA APGD-T AA BETA/AA gap Architecture

Wang et al. [53] 70.78 70.75 70.69 0.09 WRN-70-16
Wang et al. [53] 67.37 67.33 67.31 0.06 WRN-28-10
Rebuffi et al. [54] 66.75 66.71 66.58 0.17 WRN-70-16
Gowal et al. [55] 66.27 66.26 66.11 0.16 WRN-70-16
Huang et al. [56] 65.88 65.88 65.79 0.09 WRN-A4
Rebuffi et al. [54] 64.73 64.71 64.64 0.09 WRN-106-16
Rebuffi et al. [54] 64.36 64.27 64.25 0.11 WRN-70-16
Gowal et al. [55] 63.58 63.45 63.44 0.14 WRN-28-10
Pang et al. [57] 63.38 63.37 63.35 0.03 WRN-70-16

BETA-AT outperforms baselines on the last iterate of training. We next compare the performance
of ResNet-18 models trained using four different AT algorithms: FGSM, PGD, TRADES, MART, and
BETA. PGD, TRADES, and MART used a 10-step adversary at training time. At test time, the models
were evaluated against five different adversaries: FGSM, 10-step PGD, 40-step PGD, 10-step BETA,
and APGD. We report the performance of two different checkpoints for each algorithm: the best
performing checkpoint chosen by early stopping on a held-out validation set, and the performance
of the last checkpoint from training. Note that while BETA performs comparably to the baseline
algorithms with respect to early stopping, it outperforms these algorithms significantly when the
test-time adversaries attack the last checkpoint of training. This owes to the fact that BETA does not
suffer from robust overfitting, meaning that the last and best checkpoints perform similarly.

BETA matches the robustness estimate of AutoAttack. AutoAttack is a state-of-the-art adversarial
attack which is widely used to estimate the robustness of trained models on leaderboards such
as RobustBench [27, 36]. In brief, AutoAttack comprises a collection of four disparate attacks:
APGD-CE, APGD-T, FAB, and Square Attack. AutoAttack also involves several heuristics, including
multiple restarts and variable stopping conditions. In Table 2, we compare the performance of the top-
performing models on RobustBench against AutoAttack, APGD-T, and BETA with RMSprop. Both
APGD-T and BETA used thirty steps, whereas we used the default implementation of AutoAttack,
which runs for 100 iterations. We also recorded the gap between AutoAttack and BETA. Notice
that the 30-step BETA—a heuristic-free algorithm derived from our bilevel formulation of AT—
performs almost identically to AutoAttack, despite the fact that AutoAttack runs for significantly more
iterations and uses five restarts, which endows AutoAttack with an unfair computational advantage.
That is, excepting for a negligible number of samples, BETA matches the robustness estimate of
AutoPGD-targeted and AutoAttack, despite using an off-the-shelf optimizer.
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6 Related work

Robust overfitting. Several recent papers (see, e.g., [26, 54, 58–61]) have attempted to explain and
resolve robust overfitting [34]. However, none of these works point to a fundamental limitation of
adversarial training as the cause of robust overfitting. Rather, much of this past work has focused
on proposing heuristics for algorithms specifically designed to reduce robust overfitting, rather than
to improve adversarial training. In contrast, we posit that the lack of guarantees of the zero-sum
surrogate-based AT paradigm [20] is at fault, as this paradigm is not designed to maximize robustness
with respect to classification error. And indeed, our empirical evaluations in the previous section
confirm that our non-zero-sum formulation eliminates robust overfitting.

Estimating adversarial robustness. There is empirical evidence that attacks based on surrogates
(e.g., PGD) overestimate the robustness of trained classifiers [36, 47, 49]. Indeed, this evidence
served as motivation for the formulation of more sophisticated attacks like AutoAttack [36], which
empirically tend to provide more accurate estimates of robustness. In contrast, we provide solid,
theoretical evidence that commonly used attacks overestimate robustness due to the misalignment
between standard surrogate losses and the adversarial classification error. Moreover, we show
that optimizing the BETA objective with a standard optimizer (e.g., RMSprop) achieves the same
robustness as AutoAttack without employing ad hoc training procedures such as multiple restarts.
convoluted stopping conditions, or adaptive learning rates.

One notable feature of past work is an overservation made in [49], which finds that multitargeted
attacks tend to more accurately estimate robustness. However, their theoretical analysis only applies
to linear functions, whereas our work extends these ideas to the nonlinear setting of DNNs. More-
over, [49] do not explore training using a multitargeted attack, whereas we show that BETA-AT is an
effective AT algorithm that mitigates the impact of robust overfitting.

Bilevel formulations of AT. Prior to our work, [62] proposed a different pseudo-bilevel3 formulation
for AT, wherein the main objective was to justify the Fast AT algorithm introduced in [63]. More
specifically, the formulation in [62] is designed to produce solutions that coincide with the iterates of
Fast AT by linearizing the attacker’s objective. In contrast, our bilevel formulation appears naturally
following principled relaxations of the intractable classification error AT formulation. In this way,
the formulation in [62] applies only in the context of Fast AT, whereas our formulation deals more
generally with the task of adversarial training.

7 Conclusion

In this paper, we rigorously studied the standard zero-sum formulation of adversarial training. We
argued that the surrogate-based relaxation commonly employed to improve the tractability of this
problem voids guarantees on the ultimate robustness of trained classifiers, resulting in weak adver-
saries and ineffective AT algorithms. This shortcoming motivated the formulation of a novel, yet
natural bilevel approach to adversrial training and evaluation. In our paradigm, the adversary and de-
fender optimize separate objectives, which constitutes a non-zero-sum game that preserves guarantees
on robustness. Based on this formulation, we developed a new adversarial attack algorithm—BETA,
which stands for BEst Adversarial Attack—and a concomitant AT algorithm, which we call BETA-AT.
In our experiments, we showed that BETA-AT eliminates robust overfitting, which we argued is a
direct result of optimizing an objective which is aligned with the goal of finding true adversarial
examples. We also showed that even when early stopping based model selection is used, BETA-AT
performed comparably to AT. And finally, we showed that BETA provides almost identical estimates
of robustness to AutoAttack, indicating that when the adversarial objective closely matches the true
objective, one need not resort to heuristics like multiple restarts, variable stopping conditions, and
adaptive learning rate schedules to accurately estimate robustness.

3In a strict sense, the formulation of [62] is not a bilevel problem. In general, the most concise way to write
a bilevel optimization problem is minθ f(θ, δ

⋆(θ)) subject to δ⋆(θ) ∈ argmax g(θ, δ). In such problems the
value δ⋆(θ) only depends on θ, as the objective function g(θ, ·) is then uniquely determined. This is not the case
in [62, eq. (7)], where an additional variable z appears, corresponding to the random initialization of Fast-AT.
Hence, in [62] the function g(θ, ·) is not uniquely defined by θ, but is a random function realized at each iteration
of the algorithm. Thus, it is not a true bilevel optimization problem in the sense of the textbook definition [45].

9



With regard to the bilevel formulation in this paper, future directions abound. One could imagine
applying this framework to other changes in the data space, including the kinds of distribution shifts
that are common in fields like domain adaptation and domain generalization. A convergence analysis
of BETA and an analysis of the sample complexity of BETA-AT are two more directions that we
leave for future work. The prospect of applying more sophisticated bilevel optimization algorithmic
techniques to this problem is also a promising avenue for future research.
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A Appendix

B Proof of proposition 1

Suppose there exists η̂ satisfying ||η̂|| ≤ ϵ such that for some j ∈ [K], j ̸= Y we have Mθ(X +
η̂, Y )j > 0, i.e., assume

max
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j > 0 (23)

for such η̂ and such j we have fθ(X + η̂)j > fθ(X + η̂)Y and thus argmaxj∈[K] fθ(X + η̂)j ̸= Y .
Hence, such η̂ induces a misclassification error i.e.,

η̂ ∈ argmax
η:∥η∥2≤ϵ

{
argmax
j∈[K]

fθ(X + η)j ̸= Y

}
(24)

In particular if

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j ⇒ η⋆ ∈ argmax
η:∥η∥2≤ϵ

{
argmax
j∈[K]

fθ(X + η)j ̸= Y

}
(25)

Otherwise, assume

max
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j < 0, (26)

then for all η : ||η|| < ϵ and all j ̸= Y we have fθ(X + η)j < fθ(X + η)Y , so that
argmaxj∈[K] fθ(x + η)j = Y i.e., there is no adversarial example in the ball. In this case for
any η, in particular In particular if

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j (27)

Then

0 =

{
argmax
j∈[K]

fθ(X + η⋆)j ̸= Y

}
= max

η:∥η∥2≤ϵ

{
argmax
j∈[K]

fθ(X + η)j ̸= Y

}
(28)

In conclusion, the solution

(j⋆, η⋆) ∈ argmax
j∈[K]−{Y }, η:∥η∥≤ϵ

Mθ(X + η, Y )j (29)

always yields a maximizer of the misclassification error.

C Smooth reformulation of the lower level

First, note that the problem in eqs. (20) to (22) is equivalent to

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1

λ⋆
ijℓ(fθ(xi + η⋆ij), yi)

subject to λ⋆
ij , η

⋆
ij ∈ argmax

∥ηij∥≤ϵ
λij≥0,∥λi∥1=1,λiy=0

K∑
j=1

λijMθ(xi + ηij , yi)j ∀i ∈ [n]

(30)

This is because the maximum over λi in eq. (30) is always attained at the coordinate vector ej such
that Mθ(xi + η⋆ij , yi) is maximum.
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An alternative is to smooth the lower level optimization problem by adding an entropy regularization:

max
η:∥η∥≤ϵ

max
j∈[K]−{y}

Mθ(x+ ηj , y)j = max
η:∥η∥≤ϵ

max
λ≥0,∥λ∥1=1,λy=0

⟨λ,Mθ(x+ ηj , y)
K
j=1⟩

≥ max
η:∥η∥≤ϵ

max
λ≥0,∥λ∥1=1,λy=0

⟨λ,Mθ(x+ ηj , y)
K
j=1⟩ −

1

µ

K∑
j=1

λj log(λj)

= max
η:∥η∥≤ϵ

1

µ
log

 K∑
j=1
j ̸=y

eµMθ(X+η,y)j


(31)

where µ > 0 is some temperature constant. The inequality here is due to the fact that the entropy of a
discrete probability λ is positive. The innermost maximization problem in (31) has the closed-form
solution:

λ⋆
j =

eµMθ(x+ηj ,y)j∑K
j=1
j ̸=y

eµMθ(x+ηj ,y)j
: j ̸= y, λ⋆

y = 0 (32)

Hence, after relaxing the second level maximization problem following eq. (31), and plugging in the
optimal values for λ we arrive at:

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1
j ̸=yi

eµMθ(xi+ηij ,yi)j∑K
j=1
j ̸=yi

eµMθ(xi+ηij ,yi)j
ℓ(fθ(xi + η⋆ij), yi)

subject to η⋆ij ∈ argmax
∥ηij∥≤ϵ

Mθ(xi + ηij , yi)j ∀i ∈ [n], j ∈ [K]

(33)

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1
j ̸=yi

eµMθ(xi+η⋆
ij ,yi)j∑K

j=1
j ̸=yi

eµMθ(xi+η⋆
ij ,yi)j

ℓ(fθ(xi + η⋆ij), yi) (34)

subject to η⋆ij ∈ argmax
η:∥η∥≤ϵ

Mθ(xi + η, yi)j ∀i ∈ [n] (35)

In this formulation, both upper- and lower-level problems are smooth (barring the possible use of
nonsmooth components like ReLU). Most importantly (I) the smoothing is obtained through a lower
bound of the original objective in eqs. (21) and (22), retaining guarantees that the adversary will
increase the misclassification error and (II) all the adversarial perturbations obtained for each class
now appear in the upper level (34), weighted by their corresponding negative margin. In this way,
we make efficient use of all perturbations generated: if two perturbations from different classes
achieve the same negative margin, they will affect the upper-level objective in fair proportion. This
formulation gives rise to algorithm 3.
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Algorithm 3: Smooth BETA Adversarial Training (SBETA-AT)
Input: Dataset (X,Y ) = (xi, yi)

n
i=1, perturbation size ϵ, model fθ, number of classes K,

iterations T , attack iterations T ′, temperature µ > 0
Output: Robust model fθ⋆

1 function SBETA-AT(X,Y, ϵ, θ, T, γ, µ)
2 for t ∈ 1, . . . , T do
3 Sample i ∼ Unif[n]
4 Initialize ηj ∼ Unif[max(0, xi − ϵ),min(xi + ϵ, 1)],∀j ∈ [K]
5 for j ∈ 1, . . . ,K do
6 for t ∈ 1, . . . , T ′ do
7 ηj ← OPTIM(ηj ,∇ηMθ(xi + ηj , yi)j) (attack optimizer step, e.g., RMSprop)
8 ηj ← ΠBϵ(xi)∩[0,1]d(ηj) (Projection onto valid perturbation set)

9 Compute L(θ) =
∑K

j=1,j ̸=yi

eµMθ(xi+ηj,yi)j∑K
j=1,j ̸=yi

eµMθ(xi+ηj,yi)j
ℓ(fθ(xi + ηj), yi)

10 θ ← OPTIM(θ,∇L(θ)) (model optimizer step)
11 return fθ
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