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A B S T R A C T

Ride-sourcing services offered by companies like Uber and Didi have grown rapidly in the last
decade. Understanding the demand for these services is essential for planning and managing
modern transportation systems. Existing studies develop statistical models for ride-sourcing
demand estimation at an aggregate level due to limited data availability. These models lack
foundations in microeconomic theory, ignore competition of ride-sourcing with other travel
modes, and cannot be seamlessly integrated into existing individual-level (disaggregate) activity-
based models to evaluate system-level impacts of ride-sourcing services. In this paper, we
present and apply an approach for estimating ride-sourcing demand at a disaggregate level
using discrete choice models and multiple data sources. We first construct a sample of trip-based
mode choices in Chicago, USA by enriching household travel survey with publicly available ride-
sourcing and taxi trip records. We then formulate a multivariate extreme value-based discrete
choice model with sampling and endogeneity corrections to account for the construction of
the estimation sample from multiple data sources and endogeneity biases arising from supply-
side constraints and surge pricing mechanisms in ride-sourcing systems. Our analysis of the
constructed dataset reveals insights into the influence of various socio-economic, land use and
built environment features on ride-sourcing demand. We also derive elasticities of ride-sourcing
demand relative to travel cost and time. Finally, we illustrate how the developed model can be
employed to quantify the welfare implications of ride-sourcing policies and regulations such as
terminating certain types of services and introducing ride-sourcing taxes.

1. Introduction

Ride-sourcing services like Uber, Lyft, Didi and Grab have expanded rapidly in the last decade and have attracted considerable
ridership in many metropolitan areas worldwide (see Goletz and Bahamonde-Birke, 2021). Ride-sourcing is a disruptive transport
mode with positive (provision of convenient, affordable on-demand transportation options) and negative (congestion, pollution,
increased vehicle kilometres travelled, possible cannibalisation of public transport demand) impacts on transport systems (see
Tirachini, 2020). To realise their advantages and inhibit their disadvantages, ride-sourcing services need to be planned, regulated
and managed (Goletz and Bahamonde-Birke, 2021; Tirachini, 2020). To that end, a rigorous understanding of ride-sourcing demand
is essential. Specifically, it is crucial to (i) explain the characteristics of ride-sourcing demand, (ii) analyse the interaction of ride-
sourcing with other transport modes and (iii) quantify the welfare implications of introducing ride-sourcing services or amending
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operational policies. To provide actionable, evidence-based decision support, ride-sourcing demand analysis calls for (i) powerful
methods to leverage datasets with varying disaggregation and resolution and (ii) comprehensive datasets with user-level preferences
and vehicle-level operations at an urban scale, yet both are currently found wanting.

In terms of methods, ride-sourcing demand analysis is currently dominated by approaches without adequate foundations in
icroeconomic theory. Aggregate models such as regression models for count and continuous data (e.g. Ghaffar et al., 2020; Marquet,
020) estimate a statistical relationship between realised aggregate demand and aggregate explanatory variables. Ordered outcome
odels for explaining ride-sourcing use at the individual level (e.g. Alemi et al., 2019; von Behren et al., 2021) infer structural

elationships between demand and individual-specific attributes. These methods disregard that ride-sourcing demand arises at the
isaggregate level in the form of a mode choice involving trade-offs between various alternative-specific attributes (e.g. travel cost,
ime, reliability and safety).

Most applications of these statistical methods are driven by limited data availability. Commonly considered data sources exhibit
ignificant weaknesses when they are analysed in isolation. Household travel surveys have a broad geographical coverage. However,
hey typically only include a small number of ride-sourcing trips, which precludes a thorough analysis of ride-sourcing demand. In
rinciple, discrete choice experiments (DCEs) allow for a detailed analysis of ride-sourcing demand. However, data collected via
CEs may exhibit hypothetical biases. Also, DCEs are typically not repeated over time due to financial and logistical constraints.
ecently, ride-sourcing trip records have been published under data sharing agreements between ride-sourcing companies and city
uthorities (e.g. Ghaffar et al., 2020). These trip records have a broad spatiotemporal coverage. However, in isolation, they cannot
e used for the disaggregate analysis of ride-sourcing demand since they do not contain any information about the demand for other
odes.

This research aims at improving ride-sourcing demand analysis. To that end, we present and apply an approach for estimating
ide-sourcing demand using discrete choice models (DCMs) by fusing multiple data sources. DCMs are well suited for analysing ride-
ourcing demand due to their solid foundations in microeconomic theory. DCMs estimate structural relationships between observed
ravel choices and various alternative- and individual-specific attributes. Due to their structural nature, DCMs produce stable and
ransferable predictions, which in turn makes DCMs suitable for analysing counterfactual pricing and service configuration scenarios.

We first construct an estimation sample of trip-based mode choices in Chicago by enriching household travel survey data with
ublicly available ride-sourcing and taxi trip records. By fusing the two data sources, we address the problems of (i) having too few
ide-sourcing trip records in household travel survey data and (ii) having no information about other modes in ride-sourcing trip
ecords. However, constructing an estimation sample from two revealed preference data sources creates two challenges in developing
DCM. First, a sampling correction is needed to account for the enrichment of the household travel survey data with ride-sourcing

nd taxi trip records. Second, the constructed mode choice dataset likely exhibits endogeneity biases, as the demand for the ride-
ourcing options and their prices is simultaneously determined by supply-side constraints and surge pricing mechanisms (see e.g.
astillo et al., 2017). We address both challenges by formulating a multivariate extreme value (MEV)-based DCM with sampling and
ndogeneity corrections. To correct for sampling biases, we adopt a conditional maximum likelihood estimator (see Bierlaire and
rueger, 2020) due to its efficiency properties; and to correct for endogeneity biases, we adopt the control function approach (Petrin
nd Train, 2010) due to its simplicity. Ultimately, we apply the model to the constructed mode choice dataset to analyse the
emand for ride-sourcing services in Chicago. The parameter estimates of the DCM are translated into the elasticity of ridesourcing
emand relative to alternative-specific attributes like price and travel time. We also illustrate how the estimated model can be
mployed to quantify the welfare implications of ride-sourcing policies and regulations such as eliminating certain types of services
nd introducing taxes.

We organise the remainder of this paper as follows: In Section 2, we review related literature. In Section 3, we describe
he construction of the estimation sample for the empirical application. In Section 4, we present the general formulation of the
conometric model. In Section 5, we explain the model specification considered in the empirical application. In Section 6, we
iscuss the results of the empirical application, and in Section 7, we present the welfare analysis. Finally, we conclude in Section 8.

. Related literature

The literature on ride-sourcing demand analysis evolves rapidly. In Table 9 in Appendix A, we present an overview of recently
ublished ride-sourcing demand analysis studies. For reviews of earlier studies, the reader is directed to Tirachini (2020) and Wang
nd Yang (2019). The studies enumerated in Table 9 can be subsumed under five topics:

1. travel modes (mostly public transit) that are complemented or substituted by ride-sourcing services; impact of emerging
on-demand mobility services on vehicle ownership;

2. association of built-environment, socio-demographics, weather and land use characteristics with ride-sourcing demand at a
spatial level (e.g. census tract and census block groups);

3. association of attitudes, socio-demographic and economic characteristics with the usage of and preferences for ride-sourcing
services;

4. determinants of preferences for the use of pooled ride-sourcing services;
5. impact of mode-specific attributes (e.g. travel time and wait time) on the demand for these services in the multi-modal
2
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Fig. 1. Dataset construction.

The studies use mainly three types of data (see column ‘‘data type’’ in Table 9). First, trip records from ride-sourcing companies
re merged with supplementary data about land use, weather and census tract attributes. These studies focus predominantly on the
irst two of the five topics enumerated above; only a few studies focus on the fourth topic. Second, household travel surveys with
nformation about individuals’ travel patterns, socio-demographic characteristics and attitudes are considered for exploring the third
opic; a handful of studies also focus on topics one and four. Third, DCEs are employed to investigate topics three to five.

In terms of methods, most studies that consider the first data type aggregate trips across space and time and then rely on
eographically weighted and spatially lagged count or continuous data models with autoregressive structure or panel effects. A few
tudies use off-the-shelf machine learning algorithms such as random forest or gradient boosting decision trees. Studies considering
ousehold travel survey data use multinomial and ordered logit models. Several studies also develop joint models of continuous,
ount and ordered variables (i.e. generalised heterogeneous data models). Structural equation models are also used to analyse the
elationship between ride-sourcing demand and latent attitudes. Finally, studies collecting data through DCEs naturally employ
CMs such as nested, latent class, error component or mixed logit models.

Only a few studies use DCMs and revealed preference data to analyse ride-sourcing demand. Habib (2019) considers revealed
reference data from a household travel survey to investigate ride-sourcing demand using a semi-compensatory choice model with
robabilistic choice set formation. The study finds that ride-sourcing demand mostly complements the demand for driving and
ransit and substitutes taxi demand. Furthermore, the probability of considering ride-sourcing varies by age, whereby young people
re more likely to consider ride-sourcing, and older people are more likely to consider taxis. Lam et al. (2021) considered revealed
reference data constructed from ride-sourcing trip records, field data and API queries to analyse ride-sourcing demand in New York
3

ity. The authors employ an aggregate logit model for market share data. The model includes endogeneity corrections for price and
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wait times. The study finds that the distribution of ride-sourcing benefits varies substantially across space, with low accessibility
areas experiencing comparatively higher benefits.

In summary, household travel surveys and trip records have been used in isolation. Both data sources exhibit significant
eaknesses when used in isolation: Household travel surveys contain insufficient information about ride-sourcing demand; trip

ecords cannot be used for disaggregate demand analysis, as they do not include information about individual-level preferences for
ther travel modes. This current study contributes to the literature with a DCM for disaggregate demand analysis of ride-sourcing
ervices by fusing both datasets and addressing potential endogeneity issues. This data fusion framework leverages the richness
f both data types while addressing the shortcomings of analysing them in isolation. We also control for demographics, transit
ccessibility, parking cost, land use characteristics, pedestrian friendliness, and weather conditions in the DCM, which may affect
emand for ridesourcing services. The developed model can be used as a direct input to activity-based travel demand forecasting
odels to quantify the short- and long-term impact of policies and regulations related to ridesourcing services on the multi-modal

ransport system.
Finally, our study is also related to the literature on endogeneity and discrete choice analysis in various other applications,

ncluding but not limited to consumer choice (Petrin and Train, 2010), residential location choice (Guevara and Ben-Akiva, 2012),
irline itinerary choice (Lurkin et al., 2017) and parking choice (Gopalakrishnan et al., 2020).

. Data

We construct an estimation sample of trip-based mode choices in Chicago from November 2018 to May 2019, following the
rocess visualised in Fig. 1. In what follows, we describe the construction of the estimation sample in detail.

.1. Primary data sources

Trip records for the construction of the estimation sample are gathered from two primary sources, namely (i) ride-sourcing and
axi trip records provided on the City of Chicago Data Portal1 and (ii) the My Daily Travel household survey.

The City of Chicago Data Portal provides access to records of all ride-sourcing and taxi trips that transportation networking
providers and taxi companies have reported to the City of Chicago for regulatory purposes since November 2018 and January 2013,
respectively. The attributes of the trips are temporally and spatially aggregated to prevent a re-identification of individual trips.
Each trip record includes information about the trip start and end times rounded to the nearest 15 min, the pick-up and drop-off
community areas as well as the fare amount. The pick-up and drop-off census tracts are also available if at least three trips started
or ended in the relevant census tract in the relevant 15-minute period. For ride-sourcing trips, it is also known if a pooled trip was
requested. Thus, solo and pooled ride-sourcing trips can be distinguished.

The My Daily Travel household survey is a large-scale household travel survey that was conducted by the Chicago Metropolitan
Agency for Planning (CMAP) between August 2018 and May 2019. The survey collected information about the daily travel behaviour
of a representative sample of more than 12,000 households in North-eastern Illinois. More information about the survey is available
in Westat (2020). The collected data include trip records with information about the chosen transport mode (car, transit, bike,
walking, taxi, solo-ride-sourcing or pooled ride-sourcing), trip start and end times as well as origin and destination census tracts.

For the construction of the estimation sample, we exploit the temporal and spatial overlap of the ride-sourcing and taxi trip
records from the City of Chicago Data Portal and the My Daily Travel household survey. Consequently, we limit our analysis to trip
records produced between 1 November 2018 and 3 May 2019. Since we are interested in understanding ride-sourcing use in the
context of general travel demand, we only consider trips on weekdays between 5:00 and 23:00. Furthermore, to make it possible
to impute the attributes of non-chosen alternatives, we restrict our analysis to trips for which the reported start and end locations
are distinct. The start and end points of a trip are given by the centroids of the origin and destination census tracts or community
areas. We exclude trips that start or end outside of the City of Chicago.

After applying these inclusion criteria, we are left with 12,593 trip records from the My Daily Travel household travel survey.
For our analysis, we consider all trips from the My Daily Travel household survey that satisfy the inclusion criteria. 18,784,655 solo
ride-sourcing, 7,290,921 pooled ride-sourcing and 3,821,709 taxi trips from the City of Chicago Data Portal satisfy the inclusion
criteria.

We briefly describe the ride-sourcing and taxi trip records that meet the inclusion criteria. Fig. 2 shows the average weekday
ride-sourcing and taxi trip counts by pick-up community area. It can be seen that the demand for ride-sourcing and taxi trips is
concentrated in central zones (i.e. the Northeast) of the study area. In addition, Fig. 3 shows the average proportion of ride-sourcing
trips requested as pooled trips by pick-up community area. We observe that the proportion of ride-sourcing trips requested as pooled
trips is larger in the peripheral areas of the study area. Finally, Fig. 4 visualises the average ride-sourcing and taxi trip count in the
whole study area by time of day. Whereas the demand for taxi is relatively balanced throughout the day, the demand for solo and
pooled ride-sourcing trips exhibits pronounced morning and evening peaks.

1 https://data.cityofchicago.org.
4
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Fig. 2. Average weekday ride-sourcing and taxi trip counts by pick-up community area.

Fig. 3. Average proportion of ride-sourcing trips requested as pooled trips by pick-up community area.
5
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Fig. 4. Average ride-sourcing and taxi trip count by time of day.

Table 1
Population and sample mode choice frequencies.

Mode Population My Daily Travel Trip records Estimation sample

Share Count Share Count Share Count Share

Car 0.521 4 781 0.380 0.000 0.000 4 781 0.066
Transit 0.200 4 275 0.339 0.000 0.000 4 275 0.059
Walk 0.200 2 737 0.217 0.000 0.000 2 737 0.038
Bike 0.050 334 0.027 0.000 0.000 334 0.005
Taxi 0.004 45 0.004 20 000 0.333 20 045 0.276
Solo ride-sourcing 0.016 285 0.023 20 000 0.333 20 285 0.279
Pooled ride-sourcing 0.009 136 0.011 20 000 0.333 20 136 0.277

Sum 1.000 12 593 1.000 60 000 1.000 72 593 1.000

3.2. Sampling protocol

If all eligible ride-sourcing and taxi trip records were considered, the resulting estimation sample would be too large to be
rocessed. Therefore, we employ a choice-based sampling strategy to select ride-sourcing and taxi trips from the City of Chicago
ata Portal. More specifically, we randomly select 20,000 records each from the sets of eligible solo ride-sourcing, pooled ride-

ourcing and taxi trips. Table 1 shows the absolute and relative frequencies of the observed mode choices in the two subsamples
nd the final estimation sample.

We use the My Daily Travel household survey to estimate the population mode share. In line with the sample design, the
opulation quantity of interest is the mode share for trips between distinct census tracts in Chicago on weekdays between 5:00
nd 23:00. To that end, we calculate average person trip rates of the population of Northeastern Illinois using the person-specific
ampling weights provided in the My Daily Travel household survey. The calculated population mode share is shown in the column
‘Population—Share’’ in Table 1.

.3. Secondary data sources

After merging the two subsamples, we supplement the resulting dataset with information from secondary data sources.
The median household income and median age of each census tract are obtained from the American Community Survey (United

tates Census Bureau, 2021). The spatial distributions of the two quantities are visualised in Fig. 5.
We source various census tract attributes pertaining to employment and housing (employment density, residential density,

mployment and housing diversity), pedestrian friendliness (pedestrian network density, intersection density), transit supply
average proximity to transit, average transit service frequency) and car ownership (proportion of households with zero cars) from
he Smart Location Database maintained by the US Environmental Protection Agency (US Environmental Protection Agency, 2021).
mployment and housing diversity is an entropy-based diversity index accounting for employment numbers in five categories (retail,
ffice, industrial, service and entertainment) and occupied housing from the database. Figs. 5–10 show the spatial distributions of
6

he extracted quantities.
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Fig. 5. Median household income and median age by census tract.

Furthermore, information on seven land use categories (residential, commercial, institutional, industrial, transportation/
communication/utilities/waste, agricultural, open space) is gathered from the 2013 CMAP Land Use Inventory (Chicago Metropoli-
tan Agency for Planning, 2015). For each census tract in the study area, we calculate an entropy-based land use diversity index of
the form 𝐷 =

(
∑

𝑐∈C 𝑝𝑐 ln 𝑝𝑐
) /

|C |, where C denotes the set of considered land use categories, and 𝑝𝑐 is the proportion of land use
classified as category 𝑐. The right panel of Fig. 7 shows the spatial distribution of the calculated diversity index.

In addition, information about park fees are sourced from the CMAP Parking Inventory (see Ghaffar et al., 2020). The spatial
distribution of the average hourly park rate is shown in the right panel of Fig. 10.

Finally, weather information is taken from daily meteorological summaries for O’Hare International Airport provided by National
Centers for Environmental Information (2021). The average daily temperature and total daily precipitation during the observation
period are shown in Fig. 11.

3.4. Imputation of choice sets and mode attributes

Lastly, we impute choice sets and the attributes of the mode choice alternatives. Driving times and distances, transit connections
as well as walking and bicycling travel times are obtained from the HERE Routing Application Programming Interface (API).2

A mode is assumed to be available in the choice set of a trip, unless the HERE Routing API indicates that the mode in question
s not available for the given origin–destination pair. We specify the choice sets in this way, as the constructed mode choice data do
ot contain sufficient information to determine with certainty whether a mode is feasible and available for a given trip. Car, bike,
axi, solo ride-sourcing and pooled ride-sourcing are available in 100% of the trips, transit is available in 99.0% of the trips, and
alking is available in 93.8% of the trips.

For the calculation of the cost of the driving alternative, we consider two variable cost components, a vehicle running cost
omponent of 0.20 $/mile and a fuel cost component. To compute the latter, we assume a fuel economy of 20 miles per gallon.
eekly average retail gasoline prices are sourced from US Energy Information Agency (2021). Fig. 12 shows the evolution of the unit

rice of gasoline during the observation period. We approximate transit fares using agency-specific revenue information provided
n the 2019 National Transit Database (Federal Transit Administration, 2021). Based on this information, we assume a fare of 0.50
/mile for bus and a fare of 0.30 $/mile for rail and metro. Taxi fares are calculated using official fare information (City of Chicago,
020).

Since passenger wait times for ride-sourcing and taxi are not observed, we assume a fixed wait time of two minutes for solo
ide-sourcing, pooled ride-sourcing and taxi. These waiting times are included in the total travel times of these alternatives. To

2 https://developer.here.com/products/routing.
7
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Fig. 6. Employment and residential densities by census tract.

Fig. 7. Employment and housing diversity and land use diversity by census tract.
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Fig. 8. Pedestrian network and intersection densities by census tract.

Fig. 9. Average proximity to transit and average transit service frequency by census tract.
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Fig. 10. Proportion of households with zero cars and average park rate by census tract.

Fig. 11. Average daily temperature and total daily precipitation at O’Hare International Airport during the observation period.

ccount for possible detours for picking up other passenger during pooled ride-sourcing trips, we add a ten percent travel time
enalty to the driving time of pooled ride-sourcing.

We use random forests (Breiman, 2001) to impute solo and pooled ride-sourcing fares. The random forest models take into
ccount various predictors, namely trip attributes (driving distance and time, start time, the day of the week) and lagged fare
nformation (the 25th, 50th and 95th percentiles of the per kilometre fare in the whole network during the 30-minute time period
receding the start time of the trip), weather data (average daily temperature and daily precipitation amount) and characteristics of
he origin and destination census tracts (median income, median age, proportion of households with zero cars, employment density,
esidential density, land use, employment and housing diversity). The hyperparameters of the random forest models are tuned using
grid search with five-fold cross-validation. The selected hyperparameters are reported in Appendix B. We implement the random

orest models using scikit-learn (Pedregosa et al., 2011).
We evaluate the predictive performance of the random forest models using five-fold cross-validation (see Table 2). The predictive

ccuracy is measured in terms of the mean squared error between observed and predicted values and in terms of the coefficient of
10
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Fig. 12. Gasoline price during the observation period.

Table 2
5-fold cross-validation of fare imputation models.

Mean squared error R-squared

Mean Std. Mean Std.

Solo ride-sourcing
Linear regression −10.10 1.38 0.64 0.03
Random forest −8.76 1.29 0.69 0.03

Pooled ride-sourcing
Linear regression −8.72 0.31 0.46 0.01
Random forest −8.47 0.32 0.47 0.01

determination 𝑅2. For comparison, we also evaluate the predictive accuracy of linear regression models, which consider the same
set of predictors as the random forest models.

Finally, Table 3 provides a summary of the attributes of the chosen alternatives.

4. Econometric model

Constructing the estimation sample from two revealed preference data sources creates two challenges in the development of a
DCM. First, a sampling correction is needed to account for the enrichment of the household travel survey data with ride-sourcing
and taxi trip records. Second, the constructed revealed preference mode choice dataset is likely to exhibit endogeneity biases, as
the demand for the ride-sourcing options and the price of the ride-sourcing options are simultaneously influenced by supply-side
constraints and surge pricing mechanisms.

In this section, we present a MEV-based DCM with sampling and endogeneity corrections to address these challenges. First,
we present the sampling correction (Section 4.1). Here, we adopt a conditional maximum likelihood estimator due to its superior
efficiency properties. Then, we describe the endogeneity correction (Section 4.2). Here, we employ the control function approach due
to its simplicity. The reader is directed Bierlaire and Krueger (2020) for a recent review of sampling correction approaches in discrete
choice analysis and to Mcfadden (1999) for an earlier synthesis of the topic. Guevara (2015) provides a review of endogeneity
correction approaches.

4.1. Discrete choice analysis under non-random sampling

We consider a sample of 𝑁 individuals indexed by 𝑛 = 1,… , 𝑁 . Every individual 𝑛 is observed to choose an alternative 𝑦𝑛 from
he set M = {1,… , 𝐽}. We stipulate a parametric model which generates the probability that individual 𝑛 chooses alternative 𝑗 ∈ M
iven explanatory variables 𝒙𝑛 and the unknown parameter 𝜽:

𝑃 (𝑗|𝒙𝑛;𝜽). (1)

andom utility theory (McFadden, 1981) posits that a rational decision-maker 𝑛 chooses the option 𝑦𝑛 with the highest utility from
, i.e.
11

𝑈𝑛𝑦𝑛 > 𝑈𝑗 ∀ 𝑗 ∈ M ⧵ {𝑦𝑛}, (2)



Transportation Research Part C 152 (2023) 104180R. Krueger et al.
Table 3
Summary of attributes of chosen alternatives.

Alternative

Attribute Count Mean Std. Min. 25% 50% 75% Max.

Driving
Cost [USD] 4 781 1.43 1.36 0.06 0.49 0.94 1.89 9.62
Travel time [min] 4 781 17.34 13.03 0.97 7.67 13.67 22.83 91.00
Avg. park rate at destination [USD/h] 4 781 1.89 2.11 0.00 0.05 1.99 2.00 9.84

Transit
Walking time [min] 4 275 17.30 6.70 0.00 12.00 16.00 22.00 52.00
On-vehicle time [min] 4 275 18.82 12.26 0.00 9.00 17.00 26.00 86.00
Fare [USD] 4 275 1.84 1.37 0.05 0.77 1.56 2.57 10.44
Transfers 4 275 0.72 0.77 0.00 0.00 1.00 1.00 3.00

Walking
Travel time [min] 2 737 28.89 37.06 3.88 13.85 20.37 28.77 595.62

Bike
Travel time [min] 334 22.21 15.96 2.70 9.78 18.18 30.26 75.20

Taxi
Travel time [min] 20 045 14.20 7.40 2.82 9.85 12.23 16.12 77.53
Fare [USD] 20 045 13.24 7.97 3.78 8.93 10.79 14.61 90.08

Solo ride-sourcing [min]
Travel time [min] 20 285 18.13 9.30 2.87 11.52 15.83 22.75 76.70
Fare [USD] 20 285 9.19 5.26 2.50 5.00 7.50 12.50 122.50

Pooled ride-sourcing
Travel time [min] 20 136 22.81 11.55 2.94 14.34 20.11 28.76 95.78
Fare [USD] 20 136 7.10 4.00 2.50 5.00 5.00 10.00 40.00

whereby

𝑈𝑛𝑗 = 𝑉𝑛𝑗 (𝒙𝑛𝑗 ,𝜽) + 𝜀𝑛𝑗 (3)

denotes the utility of alternative 𝑗 ∈ M . The utility 𝑈𝑛𝑗 is decomposed into a deterministic aspect 𝑉𝑛𝑗 (𝒙𝑛𝑗 ,𝜽) and a stochastic aspect
𝜀𝑛𝑗 , which is unknown to the analyst.

We further suppose that the sample considered in the analysis is obtained using non-random sampling. Thus, the sample consists
of 𝑆 subsamples indexed by 𝑠 = 1,… , 𝑆. Each subsample 𝑠 is characterised by a sampling protocol involving endogenous and
exogenous stratification. Under an exogenous sampling protocol, the analyst selects observations based on exogenous variables 𝒙.3
Under an endogenous sampling protocol, the analyst selects observations based on realised choices.

Discrete choice analysis under non-random sampling can be performed using a conditional maximum likelihood estimator (Man-
ski and McFadden, 1981) of the form

L̂ (𝜽; 𝒚,𝒙) =
𝑁
∑

𝑛=1
ln

𝑃 (𝑦𝑛|𝒙𝑛;𝜽)𝛼𝑛𝑦𝑛
∑

𝑗∈M 𝑃 (𝑗|𝒙𝑛;𝜽)𝛼𝑛𝑗
, (4)

Here, the term 𝛼𝑛𝑗 corrects for non-random sampling. It is defined as

𝛼𝑛𝑗 =
𝑆
∑

𝑠=1

𝑅𝑠(𝑗,𝒙𝑛)𝐻𝑠
𝑄𝑠

. (5)

𝑅𝑠(𝑗,𝒙𝑛) is the probability that a population member with configuration {𝑗,𝒙𝑛} qualifies for the subpopulation from which subsample
𝑠 is drawn. 𝐻𝑠 =

𝑁𝑠
𝑁 is the share of subsample 𝑠 in the total sample. It is an estimator of the probability of drawing an observation

belonging to subsample 𝑠 from the total sample. 𝑄𝑠 is the population share of the subpopulation from which subsample 𝑠 is recruited.
It is an estimator of the probability of drawing an observation that qualifies for subsample 𝑠 from the population.

The term
𝑃 (𝑦𝑛|𝒙𝑛;𝜽)𝛼𝑛𝑦𝑛

∑

𝑗∈M 𝑃 (𝑗|𝒙𝑛;𝜽)𝛼𝑛𝑗
(6)

in (4) needs to be adapted to the stipulated parametric form of the choice model (1). In the MEV family of DCMs (McFadden, 1978),
the probability of choosing alternative 𝑗 ∈ M conditional on explanatory variables 𝒙𝑛 and parameters 𝜽 is given by

𝑃 (𝑗|𝒙𝑛;𝜽) =
𝛬𝑗 (𝒙𝑛,𝜽)

∑

𝑗′∈M 𝛬𝑗′ (𝒙𝑛,𝜽)
, (7)

3 Note that the exogenous variables 𝒙 in the exogenous sampling protocol need not be the same as the explanatory variables 𝒙 in the choice model.
12
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where

𝛬𝑛𝑗
(

𝒙𝑛,𝜽 = {𝜷,𝝀}
)

= 𝑒𝑉𝑛𝑗 (𝒙𝑛 ,𝜷)+ln𝐺𝑛𝑗 (𝜓𝑛1 ,…,𝜓𝑛𝐽 ;𝝀) (8)

with 𝜓𝑛𝑗 = 𝑒𝑉𝑛𝑗 (𝒙𝑛 ,𝜷) and 𝐺𝑛𝑗 (𝜓𝑛1,… , 𝜓𝑛𝐽 ;𝝀) = 𝜕𝐺
𝜕𝜓𝑛𝑗

(𝜓𝑛1,… , 𝜓𝑛𝐽 ;𝝀). 𝑉𝑛𝑗 is the deterministic aspect of utility, which depends on
explanatory variables 𝒙𝑛 and parameter 𝜷. 𝐺(𝜓𝑛1,… , 𝜓𝑛𝐽 ;𝝀) is a MEV generating function with parameter 𝝀.

To evaluate (6) under the MEV assumption, the result presented in Bierlaire et al. (2008) is generalised from purely choice-based
amples to a wider class of enriched samples. We have

𝑃 (𝑦𝑛|𝒙𝑛;𝜽)𝛼𝑛𝑦𝑛 =
𝛬𝑛𝑦𝑛 (𝒙𝑛,𝜽)𝛼𝑛𝑦𝑛

∑

𝑗∈M 𝛬𝑛𝑗 (𝒙𝑛,𝜽)
(9)

and define

𝛬𝑛𝑗 (𝒙𝑛,𝜽) = 𝑒𝑉𝑛𝑗 (𝒙𝑛 ,𝜷)+ln𝐺𝑛𝑗 (𝜓𝑛1 ,…,𝜓𝑛𝐽 ;𝝀)+ln 𝛼𝑛𝑗 . (10)

Consequently, we obtain
𝑃 (𝑦𝑛|𝒙𝑛;𝜽)𝛼𝑛𝑦𝑛

∑

𝑗∈M 𝑃 (𝑗|𝒙𝑛;𝜽)𝛼𝑛𝑗
= 𝑒𝑉𝑦𝑛 (𝒙𝑛 ,𝜷)+ln𝐺𝑦𝑛 (𝜓𝑛1 ,…,𝜓𝑛𝐽 ;𝝀)+ln 𝛼𝑛𝑦𝑛

∑

𝑗∈M 𝑒𝑉𝑗 (𝒙𝑛 ,𝜷)+ln𝐺𝑛𝑗 (𝜓𝑛1 ,…,𝜓𝑛𝐽 ;𝝀)+ln 𝛼𝑛𝑗
. (11)

hus, a conditional maximum likelihood estimator for the MEV family of DCMs under non-random sampling is given by

L̂ (𝜽; 𝒚,𝒙) =
𝑁
∑

𝑛=1
ln 𝑒𝑉𝑦𝑛 (𝒙𝑛 ,𝜷)+ln𝐺𝑦𝑛 (𝜓𝑛1 ,…,𝜓𝑛𝐽 ;𝝀)+ln 𝛼𝑛𝑦𝑛

∑

𝑗∈M 𝑒𝑉𝑛𝑗 (𝒙𝑛 ,𝜷)+ln𝐺𝑛𝑗 (𝜓𝑛1 ,…,𝜓𝑛𝐽 ;𝝀)+ln 𝛼𝑛𝑗
(12)

with 𝜽 = {𝜷,𝝀}.

4.2. Control function correction of endogeneity

We partition the explanatory variables 𝒙𝑛𝑗 into exogenous explanatory variables 𝒄𝑛𝑗 and an endogenous explanatory variable 𝑝𝑛𝑗
such that 𝒙𝑛𝑗 = {𝒄𝑛𝑗 , 𝑝𝑛𝑗}. Then, the utility of alternative 𝑗 ∈ M is

𝑈𝑛𝑗 = 𝑉 (𝒙𝑛𝑗 , 𝜷) + 𝜀𝑛𝑗 (13)

with

𝑝𝑛𝑗 = 𝒛⊤𝑛𝑗𝜸𝑗 + 𝜉𝑛𝑗 . (14)

Here, 𝒛𝑛𝑗 are explanatory variables which include a set of instruments 𝒎𝑛𝑗 and the exogenous explanatory variables 𝒄𝑛𝑗 such that
𝒛𝑛𝑗 = {𝒎𝑛𝑗 , 𝒄𝑛𝑗}. 𝜸𝑗 is an unknown parameter, and 𝜉𝑛𝑗 is an error term. The error term 𝜉𝑛𝑗 captures the influence of unobserved
attributes of alternative 𝑗 which impact 𝑝𝑛𝑗 but are not included in 𝒛𝑛𝑗 . The instruments 𝒎𝑛𝑗 and exogenous explanatory variables
𝑛𝑗 are independent of the stochastic aspect of utility 𝜀𝑛𝑗 and the stochastic disturbance 𝜉𝑛𝑗 . Yet, the endogenous explanatory variable
𝑛𝑗 is correlated with 𝜀𝑛𝑗 , i.e. Cov(𝑝𝑛𝑗 , 𝜀𝑛𝑗 ) ≠ 0 and thus Cov(𝜉𝑛𝑗 , 𝜀𝑛𝑗 ) ≠ 0. Ignoring the endogeneity of 𝑝𝑛𝑗 in the estimation of the
hoice model parameters 𝜽 leads to inconsistent parameter estimates (Train, 2009).

The control function correction of endogeneity (Petrin and Train, 2010) consists of constructing a control variable, which is
ncluded as an additional explanatory variable into the utility equation. Including the control variable in the utility equation creates
new utility error which is uncorrelated with all other explanatory variables, including 𝑝𝑛𝑗 (Wooldridge, 2015). The utility error is
ecomposed as

𝜀𝑛𝑗 = 𝐶(𝜉𝑛𝑗 , 𝜙𝑗 ) + �̃�𝑛𝑗 , (15)

here 𝐶(𝜉𝑛𝑗 , 𝜙) is the control function with parameter 𝜙𝑗 . �̃�𝑛𝑗 is the residual error, which remains after conditioning out the aspect
f 𝜀𝑛𝑗 that is correlated with 𝑝𝑛𝑗 . The simplest specification of the control function is

𝐶(𝜉𝑛𝑗 , 𝜙𝑗 ) = 𝜙𝑗𝜉𝑛𝑗 , (16)

hereby 𝜙𝑗 is an unknown scalar parameter. Then, the utility (13) writes

𝑈𝑛𝑗 = 𝑉 (𝒙𝑛𝑗 , 𝜷) + 𝜙𝑗𝜉𝑛𝑗 + �̃�𝑛𝑗 . (17)

A choice model with a control function correction may be estimated in one or two stages (Guevara, 2015). The one-stage
stimation approach is more efficient, but also more demanding from a computational point-of-view, as it necessitates the
pproximation a multidimensional integral in the calculation of the choice probabilities (Guevara, 2015). The two-stage estimation
pproach is computationally simpler but less efficient (Guevara, 2015). Here, we adopt the two-stage estimation approach, as we
eal with a large dataset, a circumstance which exacerbates the limitations of the one-stage approach and reduces the effects of lower
fficiency in the two-stage approach. In the two-stage approach, we first regress the endogenous variable 𝒑𝑗 on the instruments 𝒛𝑗

̂

13

nd exogenous variables 𝒄𝑛𝑗 . The residuals 𝜉𝑛𝑗 from this regression are used to calculate the control function. In the second stage, the
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choice model is estimated, with the control function being included in the utility equation. Using the two-step estimation approach,
standard errors of the second stage need to be computed via bootstrapping.4

5. Model specification

5.1. Second stage: Discrete choice model

In our analysis of the mode choice dataset described in Section 3 using the modelling approach explained in Section 4, we
consider two choice model specifications, namely multinomial logit and nested logit.5 The choice models assume a specification of
the random utility of the following form: We let

𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜀𝑛𝑗 ∀ 𝑗 ∈ {car, transit, bike,walk, taxi} (18)

𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜙𝑗𝜉𝑛𝑗 + �̃�𝑛𝑗 ∀ 𝑗 ∈ {solo ride-sourcing,pooled ride-sourcing} (19)

with

𝑉𝑛𝑗 = 𝒙(alt.-spec.)
𝑛𝑗 𝜷(alt.-spec.) + 𝒙(trip-spec.)

𝑛𝑗 𝜷(trip-spec.)
𝑗 ∀ 𝑗 ∈ M . (20)

Here, 𝒙(alt.-spec.)
𝑛𝑗 and 𝒙(trip-spec.)

𝑛𝑗 denote alternative- and trip-specific attributes, respectively. The corresponding parameters are de-
noted by 𝜷(alt.-spec.) and 𝜷(trip-spec.)

𝑗 , respectively. Whereas alternative-specific attributes vary across alternatives and trips (e.g. travel
time, travel cost etc.), trip-specific attributes only vary across trips (e.g. census tract attributes at the origin and destination). The
parameters 𝜷(trip-spec.)

𝑗 pertaining to trip-specific attributes are necessarily alternative-specific. For identification, we fix 𝜷(trip-spec.)
car to

zero. The parameter pertaining to transit cost is divided by the median household income in 10,000 USD in the origin census tract
to account for systematic heterogeneity in the sensitivity to transit cost.

We also incorporate alternative-specific departure time preferences in the utility specification. Following earlier studies on air-
travel itinerary choices (Koppelman et al., 2008; Lurkin et al., 2017; Wen et al., 2020), we consider continuous representations of
departure time preferences using a weighted sum of sine and cosine functions. The specification has the following form:

𝑉𝑛𝑗 = ⋯ + 𝛽𝑗,1 sin
(

2𝜋𝑡𝑛
1440

)

+ 𝛽𝑗,2 sin
(

4𝜋𝑡𝑛
1440

)

+ 𝛽𝑗,3 sin
(

6𝜋𝑡𝑛
1440

)

+ 𝛽𝑗,4 cos
(

2𝜋𝑡𝑛
1440

)

+ 𝛽𝑗,5 cos
(

4𝜋𝑡𝑛
1440

)

+ 𝛽𝑗,6 cos
(

6𝜋𝑡𝑛
1440

) (21)

ere, 𝛽𝑗,1,… , 𝛽𝑗,6 are unknown parameters. 𝑡𝑛 is the observed departure time of trip 𝑛 in minutes past midnight, 1440 is the total
umber of minutes in a day. Compared to discrete representations, continuous representations of departure time preferences produce
ore realistic demand predictions due to their smoothing properties (Koppelman et al., 2008; Lurkin et al., 2017).

In accordance with the model formulation put forward in the previous section, 𝜙𝑗𝜉𝑛𝑗 in (19) is the control function, and 𝜙𝑗 is the
corresponding coefficient. 𝜀𝑛𝑗 and �̃�𝑛𝑗 are error terms, which are assumed to be independent and identically distributed according
o EV1(0, 1) across 𝑛, 𝑡. �̃�𝑛𝑗 is the residual utility error that remains after conditioning on the aspect of 𝜀𝑛𝑗 that is correlated with the

endogenous variable.
In nested logit, the utility error 𝜀𝑛𝑗 (and analogously �̃�𝑛𝑗) is further decomposed as 𝜀𝑛𝑗 = �̈�𝑛𝑚(𝑗) + �̈�𝑛𝑗 with �̈�𝑛𝑚(𝑗) ∼ EV1(0, 𝜇𝑚) and

𝑚 ≥ 1. 𝑚(𝑗) maps alternatives to nests such that 𝑚(𝑗) = 𝑚 if alternative 𝑗 is in nest 𝑚. Nested logit induces positive correlation

across the utility errors of alternatives within the same nest with Corr(𝜀𝑛𝑗 , 𝜀𝑛𝑗′ ) =
⎧

⎪

⎨

⎪

⎩

1 if 𝑗 = 𝑗′

1 − 1
𝜇𝑚

if 𝑚(𝑗) = 𝑚(𝑗′) = 𝑚

0 otherwise
. In our analysis of

the mode choice dataset, we consider two nests, namely one nest containing the ride-sourcing modes solo and pooled ride-sourcing
and a second nest containing all other modes. The nest parameter of the first nest is fixed to one, which implies that the correlation
across the random utilities of the ride-sourcing alternatives is zero. We fixed the nest parameter to one after estimations of model
specifications in which both nest parameters were freely estimated subject to the constraint 𝜇other, 𝜇ride-sourcing ≥ 1 indicated an
ctive bound for 𝜇ride-sourcing, suggesting that 𝜇ride-sourcing should be fixed to one.

4 We also implemented a joint model using maximum simulated likelihood estimation. The considered joint model includes an estimable parameter capturing
he correlation between the utility error and the endogenous variable error. We implemented the model in PandasBiogeme (Bierlaire, 2018) and used 200
odified Latin hypercube sampling draws (Hess et al., 2006) to simulate the choice probabilities of the model. The model did not converge within 24 h of

stimation time on a high-performance computing cluster. For comparison, using the two-stage estimation approach, the logit and nested logit models presented
n the paper converged within 1 and 9 h, respectively. We regard an estimation time of more than 24 h as prohibitive for exploring many different model
pecifications, especially considering that a computationally efficient alternative (i.e. the two-stage approach) is available. Estimation times may be different
ith other estimation software. However, the relative estimation times are likely in the same order of magnitude even with different software. The fact that
e were unable to estimate a joint model within a reasonable amount of time on the given dataset further underlines the practical relevance of the two-stage

stimation approach. The two-stage estimation approach is statistically less efficient but offers faster computation. Using a high-performance computing cluster,
he apparent drawback that standard errors need to be computed via bootstrapping is not critical, since the estimation runs for the bootstrap samples can be
arallelised. Nonetheless, we acknowledge a need for further investigations into the relative benefits of different approaches for correcting for endogeneity in
iscrete choice models, especially for large datasets. A description of the joint model and estimation code are available from the authors upon request.

5 Cross-nested logit specifications were also explored but no meaningful nesting structures emerged.
14
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We note that the considered choice models assume deterministic choice sets, even though the actual choice sets may differ from
he imputed choice sets, especially in that fewer modes than assumed may actually be available at the moment of choice. In the
mplemented choice models, eventual differences between actual and imputed choice sets are reflected in the estimated choice
robabilities and specifically the estimates of the parameters pertaining to interactions between alternative-specific constants and
ontext variables (i.e. census tract attributes, weather conditions and departure times). Consequently, the developed choice models
re able to predict mode choice probabilities but do not capture if a mode has low a probability of being selected for a given trip
ecause it is perceived as unattractive by the decision-maker or because it is unavailable or infeasible.

.2. First stage: Control function

We hypothesise that the prices of solo and pooled ride-sourcing are endogenous, because the demand for the ride-sourcing
ptions and their prices are co-determined by supply-side constraints and surge pricing mechanisms. We employ the control function
pproach described in Section 4.2 to correct for this price endogeneity. To form the control function, we must find suitable
nstruments that are (i) correlated with the endogenous variable (i.e. price) and (ii) independent of the error term of the demand
quation (Guevara, 2015). Nevo (2000) distinguishes three types of demand-side instrument, namely (i) cost shifters, (ii) non-price
ttributes of other alternatives—also referred to as BLP-type instruments (Berry et al., 1995)—and (iii) prices of the same alternative
n other markets—also referred to as Hausman-type instruments (Hausman et al., 1994; Hausman, 1996). In this work, we consider
he product of the retail price of gasoline in USD per gallon and the driving distance in miles as cost-shifting instrument for the
rices of solo and pooled ride-sourcing. If more than one instrument were available, instrument validity could be assessed using the
ests described in Guevara (2018).

.3. Estimation practicalities

The choice models are estimated using the conditional maximum likelihood estimator given in (12). Note that the presented
stimator is fully general in that it can account for both endogenous and exogenous stratification. In the current application, the
ampling protocol is purely choice-based and does not involve stratification by an exogenous variable. Thus, we have ln 𝛼𝑛𝑗 =
ln 𝛼𝑗 ∀ 𝑛 ∈ {1,… , 𝑁}. 𝛼𝑗 is given by the sampling protocol defined in Table 1. Specifically, we have 𝛼𝑗 = 𝐻𝑗∕𝑄𝑗 , whereby 𝐻𝑗 is the
share of observations in the sample choosing alternative 𝑗 (see column ‘‘Estimation sample—Share’’ in Table 1), and 𝑄𝑗 is the share
of the population choosing alternative 𝑗 (see column ‘‘Population—Share’’ in Table 1).

We implement the conditional maximum likelihood estimator using PandasBiogeme (Bierlaire, 2018). Standard errors are
bootstrapped using 100 resamples. The first-stage regressions of the two-stage models are estimated using ordinary least squares.

6. Results

In Table 4, we provide the estimation results of four models, namely

• Model 1a: an uncorrected multinomial logit (MNL) model (without control function correction of endogeneity but with
sampling correction),

• Model 1b: a corrected MNL model (with endogeneity and sampling corrections),
• Model 2a: the nested counterpart of model 1a, and
• Model 2b: the nested counterpart of model 1b.

The first-stage results of models 1b and 2b are presented in Table 5. Summary statistics for the first-stage regressions, namely
𝐹 -statistics, the associated 𝑝-values and the coefficients of determination 𝑅2 are given in Table 6. Summary statistics for the choice
models are given in Table 7.

First, we test for the presence of endogeneity. Under the null hypothesis that the prices of the ride-sourcing alternatives are
exogenous, the second-stage coefficients 𝜙solo ride-sourcing and 𝜙pooled ride-sourcing on the first-stage residuals are zero. Note that the
uncorrected models 1a and 2a are nested within their corrected counterparts 1b and 2b, respectively. This is because the uncorrected
model can be obtained from the corrected model by setting 𝜙solo ride-sourcing and 𝜙pooled ride-sourcing equal to zero. Under the null
hypothesis that the prices of the ride-sourcing alternatives are exogenous, the restrictions imposed by the uncorrected model are
supported by the observed data. Table 7 shows that the log-likelihood values of the corrected models 1b and 2b are higher than
the log-likelihood values of their respective uncorrected counterparts 1a and 2a. For example, the log-likelihood of model 2b
is −96 133.77, whereas the log-likelihood of model 2a −96 147.08. Log-likelihood ratio tests indicate that the improvement in fit
offered by the corrected models is statistically significant. We have −2(−96 185.02 − (−96 167.69)) = 34.66 > 𝜒2

2,0.05 = 5.99 and
−2(−96 147.08 − (−96 133.77)) = 26.62 > 𝜒2

2,0.05 = 5.99. Thus, we reject the constraints of the uncorrected models and conclude that
the prices of the ride-sourcing alternatives are endogenous.

Furthermore, the 𝐹 -statistics of both price equations are high with 𝐹 = 17 268.265 for solo ride-sourcing and 𝐹 = 7266.419
for pooled ride-sourcing, and the associated 𝑝-values are less than 0.001 (see Table 6). Thus, we can conclude that the selected
instruments are fairly strong. More advanced testing approaches for detecting weak identification (see Frazier et al., 2020) may also
be leveraged. However, they are not needed here, because the inferences derived using the traditional test hold at a high confidence
15
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Table 4
Second stage estimation results.

Model 1a Model 1b Model 2a Model 2b

MNL uncorrected MNL corrected Nested logit uncorrected Nested logit corrected

Est. z-stat. Est. z-stat. Est. z-stat. Est. z-stat.

ASCs
ASCtransit −1.661*** −31.415 −1.604*** −25.776 −1.455*** −26.991 −1.436*** −26.428
ASCwalk 0.444*** 5.487 0.472*** 5.480 0.118 1.145 0.161 1.484
ASCbike −2.983*** −27.417 −2.939*** −26.862 −2.488*** −23.839 −2.504*** −21.759
ASCtaxi −6.424*** −55.213 −6.379*** −56.057 −5.123*** −20.661 −5.201*** −21.838
ASCsolo ride-sourcing −3.841*** −35.125 −3.734*** −37.039 −4.019*** −36.069 −3.925*** −36.673
ASCpooled ride-sourcing −4.330*** −39.596 −4.001*** −35.892 −4.484*** −40.002 −4.210*** −35.837

Mode attributes
𝛽cost, car 0.033 0.809 −0.126*** −3.115 −0.105** −2.101 −0.200*** −5.392
𝛽cost, transit −0.194*** −2.977 −0.273*** −4.007 −0.225*** −4.086 −0.279*** −4.873
𝛽cost, taxi −0.051*** −15.286 −0.081*** −14.311 −0.045*** −12.830 −0.067*** −10.704
𝛽cost, solo ride-sourcing −0.036*** −6.169 −0.106*** −8.584 −0.032*** −5.576 −0.083*** −6.607
𝛽cost, pooled ride-sourcing −0.019*** −3.486 −0.121*** −6.256 −0.023*** −4.302 −0.106*** −5.814
𝛽time, car −0.074*** −15.027 −0.063*** −12.266 −0.050*** −7.020 −0.045*** −7.725
𝛽time, transit −0.019*** −6.441 −0.022*** −7.515 −0.016*** −6.121 −0.019*** −7.305
𝛽time, walk −0.060*** −26.362 −0.060*** −24.974 −0.046*** −11.752 −0.047*** −12.205
𝛽time, bike −0.053*** −11.997 −0.055*** −12.384 −0.042*** −9.737 −0.045*** −10.817
𝛽time, taxi, solo ride-sourcing −0.050*** −13.387 −0.024*** −4.298 −0.038*** −8.585 −0.020*** −4.175
𝛽time, pooled ride-sourcing −0.042*** −13.690 −0.025*** −5.679 −0.029*** −6.911 −0.016*** −3.529
𝛽park rate at destination, car −0.249*** −38.433 −0.249*** −36.259 −0.228*** −29.709 −0.230*** −31.096
𝛽no. of transfers, transit −0.145*** −5.107 −0.144*** −5.095 −0.100*** −3.891 −0.103*** −3.966

Socio-economic attributes
𝛽median age at origin, taxi −0.085*** −5.418 −0.084*** −5.510 −0.061*** −4.974 −0.062*** −5.099
𝛽median age at origin, solo ride-sourcing 0.043*** 3.165 0.043*** 3.066 0.038*** 2.779 0.038*** 2.724
𝛽median age at origin, pooled ride-sourcing −0.021 −1.580 −0.010 −0.758 −0.024* −1.773 −0.014 −1.011
𝛽median age squared at origin, taxi 0.080*** 9.101 0.082*** 11.458 0.062*** 7.682 0.064*** 9.644
𝛽median age squared at origin, solo ride-sourcing −0.013 −1.472 −0.010 −1.170 −0.010 −1.176 −0.008 −0.980
𝛽median age squared at origin, pooled ride-sourcing −0.021** −2.526 −0.021*** −2.662 −0.018** −2.229 −0.019** −2.333
𝛽median income at origin, taxi 0.575*** 22.234 0.580*** 21.889 0.444*** 14.774 0.458*** 14.971
𝛽median income at origin, solo ride-sourcing 0.567*** 25.587 0.574*** 24.621 0.556*** 25.721 0.562*** 24.448
𝛽median income at origin, pooled ride-sourcing 0.160*** 8.432 0.149*** 7.156 0.147*** 7.978 0.138*** 6.833
𝛽median income squared at origin, taxi −0.087*** −8.111 −0.088*** −8.405 −0.067*** −7.457 −0.069*** −7.741
𝛽median income squared at origin, solo ride-sourcing −0.103*** −12.678 −0.100*** −9.950 −0.100*** −12.499 −0.098*** −9.743
𝛽median income squared at origin, pooled ride-sourcing −0.031*** −3.681 −0.026*** −3.028 −0.027*** −3.262 −0.023*** −2.692
𝛽prop. of households with zero cars at origin, car −0.435*** −22.016 −0.440*** −24.637 −0.367*** −16.787 −0.377*** −18.823

Land use and built environment
𝛽residential density at origin, taxi 0.412*** 33.337 0.413*** 36.041 0.309*** 14.931 0.318*** 14.470
𝛽residential density at origin, solo ride-sourcing 0.158*** 15.876 0.166*** 16.984 0.160*** 16.504 0.166*** 17.192
𝛽employment density at origin, taxi 0.067*** 20.569 0.067*** 21.339 0.052*** 12.964 0.053*** 12.898
𝛽employment density at origin, solo ride-sourcing −0.015*** −4.660 −0.014*** −3.810 −0.014*** −4.365 −0.013*** −3.655
𝛽employment density at origin, pooled ride-sourcing −0.037*** −10.424 −0.037*** −11.203 −0.035*** −10.193 −0.036*** −10.896
𝛽land use diversity at origin, taxi −1.392*** −7.007 −1.421*** −8.786 −1.121*** −6.713 −1.164*** −8.241
𝛽land use diversity at origin, solo ride-sourcing −0.553*** −3.654 −0.520*** −3.788 −0.480*** −3.151 −0.465*** −3.395
𝛽land use diversity at origin, pooled ride-sourcing −0.447*** −3.077 −0.486*** −3.937 −0.376*** −2.583 −0.415*** −3.391
𝛽pedestrian network density at origin, transit −0.247*** −8.639 −0.243*** −7.748 −0.215*** −8.479 −0.217*** −8.332
𝛽pedestrian network density at origin, taxi −0.504*** −19.705 −0.500*** −20.313 −0.401*** −13.632 −0.407*** −14.661
𝛽pedestrian network density at origin, solo ride-sourcing −0.239*** −9.794 −0.237*** −9.124 −0.226*** −9.339 −0.226*** −8.898
𝛽pedestrian network density at origin, pooled ride-sourcing −0.321*** −13.127 −0.332*** −12.765 −0.307*** −12.817 −0.318*** −12.366
𝛽intersection density at origin, transit 0.245*** 11.600 0.237*** 10.321 0.194*** 8.928 0.194*** 9.411
𝛽intersection density at origin, taxi 0.398*** 19.094 0.394*** 19.673 0.314*** 12.873 0.319*** 13.782
𝛽intersection density at origin, solo ride-sourcing 0.146*** 7.174 0.140*** 6.438 0.129*** 6.313 0.127*** 5.963
𝛽intersection density at origin, pooled ride-sourcing 0.192*** 9.190 0.194*** 9.598 0.175*** 8.542 0.180*** 8.878

(continued on next page)

Next, we assess the nesting structure of the nested logit models. According to Table 7, the nested logit models 2a and 2b produce
igher log-likelihood values on the sample data than the multinomial logit models 1a and 1b. For example, the log-likelihood of
odel 2b is −96 133.77, whereas the log-likelihood of model 1b −96 167.69. Log-likelihood ratio tests indicate that the improvement

in fit offered by the nested logit models is statistically significant. For model 1b versus 2b, we have −2(−96 167.69 − (−96 133.77)) =
67.84 > 𝜒2

1,0.05 = 3.84. Thus, we reject the restrictions imposed by the simpler multinomial logit models. From Table 4, it can be seen
that in model 2b, the estimate of the nest parameter for the nest containing the non-ride-sourcing alternatives is 1.251. This implies
a moderate degree of correlation across the random utilities of the alternatives in the nest. In our subsequent discussion, we thus
focus primarily on model 2b due to its superior statistical performance.
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Table 4 (continued).
Model 1a Model 1b Model 2a Model 2b

MNL uncorrected MNL corrected Nested logit uncorrected Nested logit corrected

Est. z-stat. Est. z-stat. Est. z-stat. Est. z-stat.

Weather conditions
𝛽avg. temperature, taxi 0.163*** 9.508 0.165*** 8.414 0.124*** 7.787 0.128*** 7.017
𝛽avg. temperature, solo ride-sourcing 0.150*** 9.127 0.150*** 9.744 0.148*** 9.064 0.149*** 9.613
𝛽avg. temperature, pooled ride-sourcing 0.119*** 7.261 0.110*** 6.741 0.116*** 7.134 0.110*** 6.748
𝛽daily precipitation, taxi 0.916*** 12.374 0.917*** 12.944 0.715*** 10.852 0.731*** 10.786
𝛽daily precipitation, solo ride-sourcing 0.909*** 12.519 0.959*** 14.961 0.900*** 12.510 0.936*** 14.696
𝛽daily precipitation, pooled ride-sourcing 0.979*** 14.764 1.032*** 14.403 0.975*** 14.839 1.018*** 14.371
𝛽avg. temperature × daily precipitation, taxi 1.486*** 11.207 1.489*** 11.905 1.156*** 8.651 1.184*** 9.879
𝛽avg. temperature × daily precipitation, solo ride-sourcing 1.576*** 11.473 1.563*** 12.607 1.569*** 11.486 1.559*** 12.705
𝛽avg. temperature × daily precipitation, pooled ride-sourcing 1.695*** 13.657 1.686*** 14.424 1.690*** 13.687 1.681*** 14.489

Departure time
𝛽
sin

(

2𝜋⋅dep. time in min.
1440

)

,taxi 0.076 1.419 0.083 1.532 0.055 1.309 0.062 1.412

𝛽
sin

(

2𝜋⋅dep. time in min.
1440

)

,solo ride-sourcing 0.113*** 2.611 0.095** 2.128 0.125*** 2.893 0.111** 2.495

𝛽
sin

(

2𝜋⋅dep. time in min.
1440

)

,pooled ride-sourcing 0.023 0.539 0.026 0.593 0.033 0.785 0.035 0.809

𝛽
cos

(

2𝜋⋅dep. time in min.
1440

)

,taxi 0.596*** 8.399 0.599*** 8.953 0.472*** 8.147 0.484*** 8.025

𝛽
cos

(

2𝜋⋅dep. time in min.
1440

)

,solo ride-sourcing 0.903*** 14.394 0.870*** 15.244 0.900*** 14.539 0.877*** 15.572

𝛽
cos

(

2𝜋⋅dep. time in min.
1440

)

,pooled ride-sourcing 0.910*** 15.288 0.906*** 15.712 0.904*** 15.327 0.901*** 15.623

𝛽
sin

(

4𝜋⋅dep. time in min.
1440

)

,taxi 0.176*** 2.935 0.180*** 2.916 0.140*** 2.986 0.146*** 2.878

𝛽
sin

(

4𝜋⋅dep. time in min.
1440

)

,solo ride-sourcing 0.094* 1.915 0.070 1.379 0.092* 1.887 0.074 1.490

𝛽
sin

(

4𝜋⋅dep. time in min.
1440

)

,pooled ride-sourcing 0.152*** 3.124 0.158*** 3.436 0.147*** 3.049 0.153*** 3.315

𝛽
cos

(

4𝜋⋅dep. time in min.
1440

)

,taxi 0.615*** 18.915 0.618*** 19.522 0.484*** 14.779 0.497*** 13.515

𝛽
cos

(

4𝜋⋅dep. time in min.
1440

)

,solo ride-sourcing 0.462*** 14.992 0.438*** 13.310 0.459*** 15.040 0.442*** 13.565

𝛽
cos

(

4𝜋⋅dep. time in min.
1440

)

,pooled ride-sourcing 0.441*** 14.792 0.445*** 13.998 0.437*** 14.821 0.440*** 13.836

𝛽
sin

(

6𝜋⋅dep. time in min.
1440

)

,taxi 0.149*** 4.115 0.152*** 4.090 0.118*** 4.086 0.123*** 3.984

𝛽
sin

(

6𝜋⋅dep. time in min.
1440

)

,solo ride-sourcing 0.139*** 4.208 0.157*** 5.012 0.138*** 4.218 0.151*** 4.819

𝛽
sin

(

6𝜋⋅dep. time in min.
1440

)

,pooled ride-sourcing 0.164*** 5.214 0.169*** 5.534 0.164*** 5.261 0.168*** 5.516

𝛽
cos

(

6𝜋⋅dep. time in min.
1440

)

,taxi −0.082*** −3.010 −0.083*** −3.386 −0.063*** −2.896 −0.065*** −3.253

𝛽
cos

(

6𝜋⋅dep. time in min.
1440

)

,solo ride-sourcing −0.103*** −4.861 −0.069*** −2.726 −0.101*** −4.774 −0.076*** −3.068

𝛽
cos

(

6𝜋⋅dep. time in min.
1440

)

,pooled ride-sourcing −0.046** −2.178 −0.041* −1.769 −0.041* −1.954 −0.038 −1.636

Control function
𝜙solo ride-sourcing 0.073*** 5.266 0.054*** 4.109
𝜙pooled ride-sourcing 0.106*** 5.191 0.087*** 4.444

Nest parameter
𝜇other 1.280*** 20.408 1.251*** 20.061

*Significance level: 𝑝 < 0.1.
**Significance level: 𝑝 < 0.05.
***Significance level: 𝑝 < 0.01.

In model 2b, the estimates of the parameters pertaining to mode attributes have the expected signs and are significantly different
from zero. More precisely, the mode-specific travel time parameters are all negative and statistically significant. As expected, a larger
number of transfers appears to decrease the propensity of choosing public transit, and a higher hourly park rate at the destination
appears to decrease the propensity of choosing car.

In Table 8, we compare the weighted direct aggregate arc elasticities with respect to travel cost and time of models 2a and 2b.
It can be seen that in the corrected model 2b, the demand for taxi as well as for solo and pooled ride-sourcing is substantially more
elastic with respect to price than in the uncorrected model 2a. For example, the estimated direct aggregate arc elasticity with respect
to the cost of pooled ride-sourcing is −0.171 in the uncorrected model 2a and −0.780 in the corrected model 2b. The corrected model
2b further reveals that the direct aggregate arc elasticities of the demand for solo- and pooled ride-sourcing with respect to travel
time are in the same order of magnitude as the corresponding direct aggregate arc elasticities of the demand for car, transit and
taxi. As expected, walking and biking exhibit the highest elasticities with respect to travel time.

Fig. 13 visualises the estimated continuous departure time preferences in model 2b. While there are minor differences in departure
time preferences across the three modes in the morning, afternoon and evening hours, solo and pooled ride-sourcing appear to be
comparatively less likely to be chosen mid-day.

We also observe that weather conditions affect the demand for taxi and ride-sourcing. Our utility specification includes both
main and interaction effects of the average daily temperature and the daily precipitation amount. To facilitate the interpretation
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Table 5
First stage estimation results.

Price: solo r.-s. Price: pooled r.-s.

Est. z-stat. Est. z-stat.

𝛾constant 1.354*** 20.319 3.104*** 49.359
𝛾driving distance×gas price 0.188*** 93.702 0.137*** 71.114
𝛾driving time (solo ride-sourcing) 0.207*** 89.622
𝛾driving time (pooled ride-sourcing) 0.052*** 24.366
𝛾residential density at origin 0.142*** 20.284 0.018*** 3.328
𝛾employment and housing diversity at origin −0.450*** −8.323 −0.061 −1.217
𝛾median income at origin −0.014 −0.980 −0.182*** −12.912
𝛾median income squared at origin 0.066*** 10.732 0.067*** 12.511
𝛾median age at origin −0.021** −2.390 0.089*** 10.457
𝛾median age squared at origin 0.030*** 8.009 −0.019*** −5.961
𝛾daily precipitation 0.572*** 8.925 0.412*** 10.063
𝛾avg. temperature −0.271*** −20.146 −0.292*** −28.362
𝛾avg. temperature × daily precipitation −0.626*** −6.309 −0.441*** −6.083
𝛾employment density at origin 0.033*** 19.301 −0.000 −0.190
𝛾land use diversity at origin 0.893*** 8.255 −0.020 −0.214
𝛾pedestrian network density at origin 0.002 0.160 −0.125*** −11.532
𝛾intersection density at origin −0.053*** −6.463 0.048*** 7.680
𝛾
sin

(

2𝜋⋅dep. time in min.
1440

) −0.321*** −11.497 −0.018 −0.608

𝛾
cos

(

2𝜋⋅dep. time in min.
1440

) −0.506*** −13.622 −0.062* −1.776

𝛾
sin

(

4𝜋⋅dep. time in min.
1440

) −0.391*** −11.887 0.035 1.137

𝛾
cos

(

4𝜋⋅dep. time in min.
1440

) −0.355*** −21.450 0.018 1.175

𝛾
sin

(

6𝜋⋅dep. time in min.
1440

) 0.235*** 12.263 0.030* 1.733

𝛾
cos

(

6𝜋⋅dep. time in min.
1440

) 0.506*** 34.451 0.066*** 4.995

*Significance level: 𝑝 < 0.1.
**Significance level: 𝑝 < 0.05.
***Significance level: 𝑝 < 0.01.

Table 6
First stage estimation summary.

Price: solo r.-s. Price: pooled r.-s.

F-stat. 17 268.265 7266.419
p-val. (F-stat.) 0.000 0.000
R-squared 0.833 0.678

Table 7
Second stage estimation summary.

Model No. of parameters Log-lik.

Model 1a: MNL uncorrected 77 −96 185.02
Model 1b: MNL corrected 79 −96 167.69
Model 2a: Nested logit uncorrected 78 −96 147.08
Model 2b: Nested logit corrected 80 −96 133.77

Null log-lik.: −157 407.73

Table 8
Aggregate direct point elasticities.

Car Transit Walk Bike Taxi Solo r.-s. Pooled r.-s.

Model 2a: Nested logit uncorrected
Cost −0.060 −0.065 NaN NaN −0.795 −0.301 −0.171
Time −0.356 −0.244 −1.025 −1.160 −0.710 −0.686 −0.674

Model 2b: Nested logit corrected
Cost −0.113 −0.079 NaN NaN −1.160 −0.784 −0.780
Time −0.315 −0.276 −1.033 −1.209 −0.376 −0.370 −0.378

of the effects, we standardised the former and kept the latter on its original scale. The estimates of these effects are statistically
significant for taxi as well as solo and pooled ride-sourcing. Since the estimated effects have the same signs and are in the same order
of magnitude, the same interpretation applies to the estimated effects for all three modes. At the mean average daily temperature
in the observation period, positive precipitation increases the demand for taxi and ride-sourcing. On dry days, a higher temperature
leads to increased demand for taxi and ride-sourcing.
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Table 9
Overview of recently published ride-sourcing demand analysis studies.

Study Location Modelling
approach

Data type Study
type

Key findings

Acheampong
et al. (2020)

Ghana Structural
equation

2 1, 3 Perceived benefits, ease of use, perceived safety risks, and
car-dependent lifestyles are associated with the adoption
and use of ride-hailing services. Ride-hailing is used alone
for full door-to-door journeys, instead of complementing
other travel modes.

Alonso-González
et al. (2020)

Netherlands Mixed and latent
class logit

3 4 Value of in-vehicle travel time for pooled on-demand
services is 7.88–10.80 euro per hour. Value of reliability
is around half of the value of wait time and in-vehicle
travel time.

Asgari and Jin
(2020)

USA Error component
logit

3 3, 4, 5 This study creates a habit index based on past usage
frequency of a mode. They find that habits and private
vehicle expenses (e.g., parking cost and time spent in
finding it) are highly associated with the preferences
towards rider-sourcing services.

Azimi et al.
(2021)

USA Error component
nested logit

3 3, 4, 5 Generation Xers and Millennials have distinct preferences
for on-demand shared mobility. Whereas the perceived
time and cost benefits of shared mobility affect
Generation Xers’ preferences for shared mobility,
Millennials’ choices are more likely to be influenced by
their attitudes towards on-demand services.

Baker (2020) San
Francisco,
USA

Geographically
weighted
regression

1 1, 2 This study finds positive relationships between
ride-sourcing use and public transport ridership, as well
as between ride-sourcing demand and choice rider (i.e.,
not transit dependent) neighbourhoods.

Bansal et al.
(2020b)

USA Multinomial
logit

2 3, 4 10% of ride-sourcing users in the USA postponed the
purchase of a new car due to availability of ride-sourcing
services. Older ride-sourcing users with higher vehicle
ownership are less likely to pool rides. Ride-sourcing
drivers with a postgraduate degree who drive daily and
live in metropolitan regions are more likely to switch to
fuel-efficient vehicles.

Bi and Ye (2021) Chengdu,
China

Latent dirichlet
allocation

1 1, 2 Ride-sourcing in Chengdu is mostly used for non-work
trips. Ride-sourcing is more extensively used in areas
with lack of public transit access.

Dean and
Kockelman
(2021)

Chicago, USA Poisson-Gamma
negative
binomial and
linear regression

1 2, 4 Longer trips in Chicago are likely to be requested as
shared rides. Census tracts with higher shares of young,
unemployed, and non-White persons, and vehicle-free
households have higher proportions of shared rides.
Shared ride-hail demand decreases with the increase in
density of pedestrian infrastructure.

Dey et al. (2021) New York
City, USA

Negative
Binomial and
fractional split

1 1, 2 Job density, employment density, bike infrastructure and
transit service significantly affect ride-hailing demand.
This study also provides a prediction framework for
predicting future ride-hailing trends.

Dong et al.
(2021)

Boston and
Philadelphia,
USA

Mixed logit 3 1, 3, 4, 5 Carless households are likely to delay or forgo car
purchasing decisions due to ride-sourcing services. TNCs
are likely to substitute transit more than complementing
it. Willingness to pay to save 10 min of wait time for
transit is US$5 in Boston and US$8 in Philadelphia,
compared to below US$3 and US$2 for TNCs.

(continued on next page)

Model 2b also provides insights into the influence of census tract attributes on travel demand. Due to the inclusion of quadratic
erms in the utility specification, we are able to capture non-linear income and age effects on the demand for taxi as well as solo and
ooled ride-sourcing. These effects are visualised in Fig. 14 over their respective realised ranges in the training dataset. For all three
odes, the non-linear income effects are concave down, whereby the curvature is more pronounced for taxi and solo ride-sourcing

han for pooled ride-sourcing. The demand for pooled ride-sourcing appears to be less sensitive to income compared to the demand
or taxi and solo ride-sourcing. Increasing income initially has a positive effect on the demand for taxi and solo ride-sourcing, but
he effect of income becomes negative for median annual household incomes above USD 140,000. This suggests that the demand
or taxi and solo ride-sourcing is comparatively lower in census tracts with high median household incomes.

Next, we consider the estimated age effects in model 2b. For solo and pooled ride-sourcing, the age effects are concave down,
hile they are concave up for taxi. The curvature of the age effect on demand for taxi is substantially more pronounced than for
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Table 9 (continued).
Study Location Modelling

approach
Data type Study

type
Key findings

Dong (2020) Philadelphia,
USA

Mixed logit 3 1, 3, 5 Higher-income females with age over 30 years, who are
less frequent transit users, are increasingly willing to
choose ride-hailing over transit. Time spent on walking to
transit stop is found to be more burdensome than
in-vehicle travel time and wait time.

Edwards (2020) Austin, USA Linear regression 1 2 Nonstandard (expansive variants) ride-sourcing services
are preferable by airport travellers and those living in
carless and low-density neighbourhoods, but are less
preferred in low-income neighbourhoods.

Ghaffar et al.
(2020)

Chicago, USA Random-effects
negative
binomial
regression

1 1, 2 Higher ride-sourcing demand is experienced in Chicago
on days with lower temperature. Census tracts with
higher household income, high proportion of carless
households, higher employment and population density,
and fewer parking spots have higher demand for
ride-sourcing services.

Gomez et al.
(2021)

Madrid,
Spain

Generalised
heterogeneous
data

2 1, 3 Young, well-educated, wealthy individuals, who are
familiar with new technologies, have more inclination
towards ride-hailing services. Environment-conscious
respondents are less inclined towards ride-hailing.
Ride-hailing has substituted transit for leisure and errand
trips.

Hasnine et al.
(2021)

Toronto,
Canada

Autoregressive
moving average

1 1, 2 Lagged demand is a good predictor of the future demand
for ride-sourcing services. Households that rent their
dwelling have positive association with ride-sourcing
demand. Bike-sharing and transit trip counts are
negatively correlated with the ride-sourcing demand, but
precipitation has a positive relationship.

Hou et al.
(2020)

Chicago, USA Linear regression
and
machine-learning

1 2,4 Ride-sourcing trips starting or ending at Chicago-area
airports have a smaller ratio for shared trips, perhaps due
to time, luggage, and other constraints.

Kang et al.
(2021)

Austin, USA Generalised
heterogeneous
data

3 3, 4, 5 Women, older adults, and non-Hispanic/non-Latino
Whites have a low propensity to pool rides in Austin.
Austin residents are willingness to pay to not pool a ride
is on averages about 62 cents for commute, US$1.70 for
shopping and US$1.32 for leisure travel.

Lazarus et al.
(2021)

California,
USA

Multinomial
logit

3 3, 4, 5 High-frequency ride-sourcing users are more likely to
share rides. Average values of in-vehicle travel time for
Los Angeles, Sacramento, San Diego, and San Francisco
are US$29.2, US$27.3, US$25.9, and US$34.5.

Li et al. (2021) Toronto,
Canada

Random-effects
panel data and
log–log
regression

1 2 Ride-sourcing and public transit demand varies by transit
mode, time of day and transit level-of-service. The
demand for ride-sourcing services is positively associated
with subway station ridership during the mid-day and
early evening, while negatively correlating with surface
transit demand during peak commuting hours.

Loa et al. (2021) Toronto,
Canada

Structural
equation

2 1, 3 Students, persons from lower-income households, and
transit pass owners are more likely to substitute
ride-sourcing for public transit.

Loa and Habib
(2021)

Toronto,
Canada

Binary logistic
and zero-inflated
ordered probit

2 3, 4 Transit pass ownership positively influences the frequency
of ride-hailing usage (i.e., complementary relationship).
The factors affecting preference for shared and
single-occupancy ride-hailing differ, and therefore, both
modes need to be studied separately.

(continued on next page)

the other two modes. In comparison to the age effect for taxi, solo and pooled ride-sourcing do not appear sensitive to age. The
effect of age on taxi demand increases sharply for median ages above 35 years, which suggests that taxi demand is comparatively
higher in census tracts with older residents.

Various land use and built environment characteristics also influence the demand for taxi and ride-sourcing. For example, a
higher residential density increases the propensities of choosing taxi and solo ride-sourcing. A higher employment density increases
the propensity of choosing taxi but decreases the propensity of choosing ride-sourcing. A higher land use diversity decreases the
propensities of choosing taxi and ride-sourcing. A denser network of pedestrian-oriented links decreases the propensities of choosing
20
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Table 9 (continued).
Study Location Modelling

approach
Data type Study

type
Key findings

Malik et al.
(2021)

California,
USA

Integrated choice
and latent
variable

2 1, 3 Omission of variables related to residential location and
vehicle ownership could bias the results on the linkage
between transit ridership and ride-hailing. To discourage
the replacement of active mode through ride-hailing
services, pricing strategies should be employed to reduce
the use of ride-hailing for short trips.

Marquet (2020) Chicago, USA Truncated
Poisson

1 1, 2 Walkable and diverse neighbourhoods attract and
generate more ride-sourcing trips. Areas with lower car
ownership generate fewer ride-sourcing trips but attract
more trips.

Nugroho et al.
(2020)

Indonesia Ordered logit 2 1, 3 Lack of car access encourages the adoption of
ride-sourcing services. Ride-sourcing services complement
the local public transport system.

Sabogal-Cardona
et al. (2021)

Mexico city Multinomial and
ordered logit

2 3 Ride-hailing is mainly used for leisure and health trips.
Young travellers with higher education and higher
income are more inclined to adopt ride-hailing. Due to
perception of crime and sexual harassment in Mexico
city, women depend more on ride-sourcing than men.

Sabouri et al.
(2020)

USA Multi-level linear 1 1, 2 Census block level population, employment, activity, and
transit density are positively associated with the Uber
demand, but intersection density and destination
accessibility by auto and transit has negative effect.

Shen et al.
(2020)

Nanjing,
China

Nested logit 3 3, 5 Young travellers are naturally inclined to use
ride-sourcing, but age does not make difference in
preference of the service type (premier vs. regular). The
demand for ride-sourcing services is elastic to in-vehicle
travel time and waiting time, but much highly elastic to
travel cost.

Soltani et al.
(2021)

Adelaide,
Australia

Multinomial
logit

2 2, 3 Younger travellers with higher levels of education and
income, who live in dense areas with higher property
prices, are more inclined towards ride-hailing services.
Car ownership, ethnic background, gender, and household
size have no association with the propensity to use
ride-hailing services.

Sweet (2021) Ontario,
Canada

Mixed logit 3 3, 4, 5 An individual is willing to pay US$1 to US$4 for not
sharing trip with other passenger. The analysis provides
mixed evidence about the potential of integrating transit
with ride-sourcing to solve the last mile problem.

Toman et al.
(2020)

New York
City, USA

Multivariate
time series

1 1 This study explored substitution effects between
ride-sourcing, shared bike, taxi, and subway. The
relationship varies across weekdays and weekends, and
also during holidays.

Tu et al. (2021) Chengdu,
China

Gradient
boosting decision
trees

1 2, 4 Distance to city centre, land use diversity and road
density are the main determinants of the proportion of
shared ride-sourcing trips. Whereas the first two factors
positively affect the proportion of shared trips, the last
one and public transport density has negative affect.

von Behren
et al. (2021)

China Integrated choice
and latent
variable

2 1, 3 Ride-hailing services are more attractive in tier-2 cities
due to poor public transport infrastructure. Ride-hailing
substitutes other modes for medium-distance trips (5–10
km). Women with higher income are more likely to use
ride-sourcing services than men.

(continued on next page)

taxi and ride-sourcing. However, a higher intersection density at the trip origin increases the propensities of choosing taxi and
ride-sourcing.

7. Welfare analysis

We also use the corrected nested logit model 2b to analyse the welfare implications of ride-sourcing. More specifically, we
consider three scenarios in which we simulate welfare losses due to the removal of (i) all ride-sourcing, (ii) solo ride-sourcing and
(iii) pooled ride-sourcing services from the choice sets of observations in which the removed mode is the chosen mode. In addition,
21
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Table 9 (continued).
Study Location Modelling

approach
Data type Study

type
Key findings

Ward et al.
(2021)

USA Difference-in-
difference

1 1 Entry of ride-sourcing services led to an increase of 0.7%
in vehicle registrations. The effect varies across urban
areas. There is no significant effect of the entry of
ride-souring services on the transit use.

Wang et al.
(2022)

Michigan,
USA

Latent class
cluster analysis

2 3, 4 Males, college graduates, and car owners have a higher
inclination towards ride-sourcing services. Vehicle owners
have lesser interest in sharing ride-sourcing trips than
their demographic counterparts.

Yan et al. (2020) Chicago, USA Random forest 1 2 Among the built-environment variables, employment
density and walkability at trip origin have high
correlation with ride-sourcing demand. Among the
transit-supply factors, frequencies of bus and rail services
have the strongest correlation with ride-sourcing demand.

Yan et al. (2021) Michigan,
USA

Ordered logit 2 1, 3 Male college graduates with poor transit access are more
inclined to use mobility-on-demand transit services, but
people with lack of access to mobile data have
significantly lower preference for such services. Disability
does not seem to be associated with the preference for
mobility-on-demand services.

Yu and Peng
(2020)

Austin, Texas Structural
equation

1 2 Population/employment/road density, and transit
accessibility have positive association with ride-sourcing
demand, but walk accessibility have a negative effect.
These effects vary across the time-of-day.

Note 1: In column ‘‘data type’’, 1: spatial trip level, census, weather, land use data, 2: household travel survey, 3: discrete choice experiment.
Note 2: In column ‘‘study type’’, 1: substitution/complementary effect of ride-sourcing on other travel modes and vehicle ownership, 2: correlation between
a spatial unit’s characteristics (e.g., population density) and ride-sourcing demand, 3: relation of individual-level attitudes and socio-economic attributes with
preference for ride-sourcing services, 4: factors affecting preference for shared ride-sourcing services 5: effect of mode-specific attributes on the demand for
ride-sourcing services.

Fig. 13. Departure time utility in model 2b.

we analyse the welfare implications of ride-sourcing taxes, inspired by a congestion tax implemented in Chicago in 2020 (McMahon,
2020). More specifically, we consider two taxation scenarios in which a tax is added to the fare of trips in which solo ride-sourcing
is selected. In the first scenario, we impose a fixed tax of USD 3 on solo ride-sourcing trips, and in the second scenario, we apply a
variable tax of 20% added to solo ride-sourcing fares.

For each scenario and trip, we compute compensating variations, i.e. the monetary compensations that offset the alteration of
the choice sets. Compensating variations are straightforward to compute in MEV-based DCMs if the considered model specification
22

contains a generic cost parameter. In this case, the compensating variation for an observation is given by the difference in consumer
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Fig. 14. Income and age effects in model 2b.

Fig. 15. Box plots of compensating variations in elimination scenarios (dashed white lines indicate means).

surplus divided by the cost parameter estimate. The difference in consumer surplus in MEV-based models is given by

ln𝐺
(

𝑒𝑽
1
𝑛
)

− ln𝐺
(

𝑒𝑽
0
𝑛
)

, (22)

where it is assumed that a policy changes the choice set from C 0 to C 1, prices from 𝑝0𝑛𝑗 to 𝑝1𝑛𝑗 and non-cost attributes from 𝑿0
𝑛 to

𝑿1
𝑛 such that the utilities change from 𝑽 1

𝑛 to 𝑽 0
𝑛. Furthermore, 𝐺 is the MEV generating function of the considered model. In the

current application, it is not possible to analytically compute compensating variations, as the considered model specification contains
alternative-specific cost parameters. Therefore, we adopt the simulation approach presented in McFadden (2012) to compute
compensating variations in the considered scenarios.

In Figs. 15 and 16, we show box plots of the computed compensating variations in the elimination and taxation scenarios,
respectively. Fig. 15 suggests that welfare losses are largest due to the elimination of all ride-sourcing services, closely followed
by the removal of only solo ride-sourcing services, whereas welfare losses due to the removal of pooled ride-sourcing services are
comparatively small. While the mean compensating variations for the first two elimination scenarios are USD 0.43 and USD 0.35,
respectively, the compensating variation in the third scenario, in which only pooled ride-sourcing services are eliminated, is only
USD 0.13. As expected, welfare losses in the taxation scenarios are smaller compared to the elimination scenarios (see Fig. 16).
This is because in the taxation scenarios, alternatives are made less attractive through the introduction of a tax but are not entirely
removed from choice sets. It can be seen that welfare losses are higher in the scenarios with a fixed tax compared to the scenarios
with a variable tax. Whereas the mean compensating variation is USD 0.12 in the first taxation scenario, the mean compensating
variation in the second scenario is USD 0.07. In all scenarios, the distributions of the compensating variations exhibit a considerable
spread and a heavy right tail. For example, in the first elimination scenario, the interquartile range of the compensating variations is
23
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Fig. 16. Box plots of compensating variations in taxation scenarios (dashed white lines indicate means).

Fig. 17. Average compensating variations by community area in elimination scenarios.

USD 0.40, and in the first taxation scenario the interquartile range is USD 0.12. In all scenarios, the mean is larger than the median.
These results suggest that the distribution of ride-sourcing benefits is highly heterogeneous. Overall, the compensating variations
appear small. However, this can be explained by the fact that the ride-sourcing alternatives have comparatively small probabilities
of being selected compared to other alternatives, such as car and public transit.

In Fig. 17, we present the average compensating variations by community area for the elimination scenarios, in which services are
removed from choice sets. The figure reveals substantial heterogeneity in the distributions of the computed compensating variations
in the three considered scenarios across the community areas of the study region. In all three scenarios, ride-sourcing benefits are
valued higher in central areas. The average compensating variations in the community areas of the study area in the first scenario
range from USD 0.09 to 0.73. Benefits of solo ride-sourcing are valued higher than the benefits of pooled ride-sourcing. Whereas
the average compensating variations in the second scenario range from USD 0.02 to 0.59, the average compensating variations in
the third scenario range from USD 0.05 to only 0.35.

Finally, in Fig. 18, we present the average compensating variations by community area for the taxation scenarios. The average
compensating variations range from USD 0.01 to 0.19 in the fixed tax scenario and from USD 0.01 to 0.11 in the variable tax
scenarios. The spatial distributions of the compensating variations appear similar in both scenarios and are consistent with the
spatial distributions obtained in the elimination scenarios.
24
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Fig. 18. Average compensating variations by community area in taxation scenarios.

8. Conclusion

In this paper, we presented and applied an approach for estimating ride-sourcing demand at a disaggregate level from multiple
data sources using DCMs. In sum, our research makes four contributions to the literature. First, we demonstrate how ride-sourcing
demand estimation with DCMs can be performed by fusing multiple disaggregate data sources. Second, we show how traditional
household travel surveys can be enriched with emerging sources of big data (i.e. trip records). Third, we highlight the importance
of controlling for endogeneity biases in ride-sourcing demand estimation. Finally, we provide a methodology for incorporating
emerging mobility options (such as ride- and bike-sharing etc.) into disaggregate activity-based travel demand forecasting models.

There are several ways in which our work could be extended. First, an important avenue for future research is to compare
different methods for correcting for endogeneity in discrete choice models, especially for large datasets. Such an analysis may
include one- and two-stage approaches as well as alternative estimation approaches in addition to maximum (simulated) likelihood
such as maximum approximate composite marginal likelihood (Bhat and Sidharthan, 2011) as well as Markov chain Monte Carlo and
Variational Bayes methods (see e.g. Bansal et al., 2020a; Hawkins and Habib, 2022). Second, the constructed mode choice dataset
could be enriched with trip records providing information about other emerging transport modes such as bike-sharing. Third, the
temporal structure of the data could be explicitly considered to investigate the temporal stability of the structural relationship
between travel demand and the various explanatory variables. Finally, a fourth direction for future research is to circumvent the
deterministic definition of choice sets by adopting a choice model in which the availability of alternatives is treated in a probabilistic
manner (see Habib, 2019).
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Appendix A. Overview of ride-sourcing demand analysis studies

See Table 9.

Appendix B. Random forest hyperparameters
25

See Table 10.
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Table 10
Hyperparameters of random forest models.
Parameter Price: solo r.-s. Price: pooled r.-s.

No. of trees 100 100
Prop. of features to consider on split 1

3
1
2

Max. tree depth ∞ 10
Min. no. of samples to split internal node 5 40
Min. no. of samples to be at a leaf node 5 1
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